
Fakultät für Informatik

CSR-23-05

NaturalWalk: An Anatomy-based
Synthesizer for Human Walking

Motions

Samer Salamah · Guido Brunnett · Sabrina Bräuer ·
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Abstract: We present a novel data-driven approach for synthesizing human 
gait motions with individual style characteristics and natural appearance. Our 
approach is based on the concept of a motion signature that captures the 
essential characteristic of an individual walking motion. For each joint angle 
our motion model consists of a shape template and feature functions that 
describe the variation of that shape with the stride length. For the synthesis of 
a walking motion, the feature functions are evaluated for a desired stride 
length. Then the templates are adapted to match the computed features and 
used as progressions for the joint angles of the skeleton. We demonstrate our 
data driven approach using motion data captured from 12 individuals. We 
report on an experiment showing that the synthesized motions have a natural 
appearance and maintain the individual style.  

1 Introduction 

The realistic animation of virtual humans is still a challenging topic with many 
applications e.g. in computer games [1], simulations [2], ergonomic assessments [3] and 
robotics [4].  An application of particular current interest uses virtual reality (VR) 
technology for remote collaborations, meetings etc. [5]. The increasing use of such 
applications will certainly also raise the demand for high-quality self-representations in 
VR both with respect to the visual appearance and the motions of avatars. With regard to 
motions, an obvious desire is to display avatars with movements that are as similar as 
possible to one’s own movements. Another requirement could be to use movements that 
differ from one’s own movements only in very specific characteristics, for example to 
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disguise unwanted movement features. Having this application in mind, one can imagine 
that future VR users will not only use 3D scans of their body for the character creation 
but own motion capture data of key movements that are frequently performed in 
interactions. Walking motions play an essential role in this context because they occur 
frequently and convey a first impression about a person. 

State-of-the-art methods of motion synthesis can be categorized as follows:  

(1) stochastic or CNN-based methods for motion prediction allow the short-term 
continuation of a motion on a basis of a given sequence of frames but do not offer 
sufficient control for animation purposes. 

(2) data-driven methods for neural style transfer allow to generate style adapted 
motions for character control but only refer to generic styles (e.g. “happy”) and 
not to individual motion characteristics.  

(3) physics based methods allow the simulation of individual styles but require 
profound knowledge about the anatomical conditions of the individual. For a 
more detailed discussion see Section 2.  

Our work is motivated by the apparent gap between the categories (2) and (3) 
characterized by the lack of a purely data-driven kinematic method that allows 
movements with individual style characteristics to be generated with high fidelity. In this 
paper, we develop such a method for the important case of gait motions based on a 
profound kinematic analysis. Our approach is based on the concept of an individual 
motion signature that for each joint angle consists of a shape template and feature 
functions that describe the variation of that shape. Templates can be defined to capture 
motion characteristics of individuals or groups of individuals, e.g. people of the same 
gender or age, and can be specified for different types of movements. However, in this 
paper only walking motions of individuals are considered. 

We define template functions based on motion samples to describe whole body 
movements of individuals during walking. For our approach, we recorded motion data 
from 12 healthy subjects performing natural walking motions of different speeds. It is 
well known that for natural walking motions there is a linear relation between stride 
length and speed ([6] and [10]). Exploiting this relationship, we decided to study the 
motion variation in dependence of the stride length because this case appears more often 
in applications (e.g. motion planning). 

As walking is a periodic movement, it suffices to define templates of strides. For each 
individual, we define templates for joint angle progressions by averaging the information 
contained in all recorded strides. This is done because averaging preserves shape features 
occurring in a significant large subset of instances while smoothing out minor variations. 
Now, the challenge is to transform the discrete representation of the template into a 
representation that has the flexibility to create progression functions for walking motions 
of different stride lengths and can be described with as few parameters as possible. 
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We investigated different possibilities to define 𝐶1-continous shape-preserving 
approximations of templates using low degree polynomials. We obtained best results 
using a quintic spline 𝑇𝑐 interpolating endpoints and extreme points of a given template 
𝑇 and determining the remaining degrees of freedom with a least squares approximation 
of the templates shape within each segment. Due to the monotonicity of its segments, 𝑇𝑐 
has exactly the same number of extreme points as the template 𝑇. Since endpoints and 
extreme points are the only (explicit) references to the shape of the template, we denote 
these as ‘feature points’.  

For each individual, we model ‘feature functions’ based on the recorded data which 
describe the variation of the feature points with the stride length. This involves the 
following steps. In the first step, we relate each recorded joint angle function to the 
corresponding motion template and in this way extract measurements of the template’s 
feature points from the recordings. This results in measurement series both for the time 
values and angular values of the feature points in dependence of the stride length. In a 
second step, outliers are removed and best fitting quadratic polynomials to the 
measurements are computed which represent the feature functions. 

To generate a progression function for a particular speed, we interpolate the features 
provided by the feature functions with an adaption of 𝑇𝑐 that matches the feature points. 
This adaption is shape-preserving and can be easily obtained by exploiting the Bezier 
representation of the spline segments as follows. Let 𝑃1, 𝑃2 denote two consecutive 
extreme points of the template, 𝑄1, 𝑄2 the corresponding extreme points associated with 
a particular speed and 𝐴 the 2d affine map that maps 𝑃1 onto 𝑄1 and 𝑃2 onto 𝑄2. If 𝑠 
denotes the segment of  𝑇𝑐 joining 𝑃1, 𝑃2, then an adapted spline segment interpolating 
𝑄1, 𝑄2 can be obtained by applying the affine map 𝐴 to the Bezier points of 𝑠. Applying 
this transformation to each segment of 𝑇𝑐, one obtains a speed-adapted progression 
function with the same shape as the original template. This shape-preserving variation of 
the spline template is the core element of our motion generation on the level of joint 
angles.  

In addition to the specification of joint angle progression, the motion generation requires 
to compute the global body position 𝒑0

𝑡  of each pose that corresponds to the location of 
the pelvis node of the skeleton. To compute 𝒑0

𝑡 , we perform a forward kinematics of the 
skeleton, starting either from the position of the ankle joint or from the position of the 
toe joint of the supporting foot, i.e. for this computation we need to know the supporting 
foot and in which phase of movement it is at the moment. Our investigation of this 
problem shows that changes in the motion phase are indicated by certain minima of the 
joint angle functions. Since these minima are already contained in the feature vector, the 
times of the changes in the motion phases can easily be taken from this vector. This 
provides a particularly simple method for determining the current phase of motion.  

To demonstrate the quality of the walking motions that are produced by our method, we 
conducted an extensive evaluation. A numerical comparison between 1680 recorded 
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strides and their syntheses showed that the mean joint displacement between two such 
motions varies between 0.5 and 3.6cm. Furthermore, the temporal coherence between 
similar poses is extremely high with an average deviation of 1.6 frames. While this 
evaluation shows a high mathematical similarity of the compared motions, it remains to 
evaluate how synthesized motions are perceived by observers. Therefore, we included a 
user study in our evaluation that consisted of two phases. In the first phase, users 
evaluated the perceived naturalness of the synthesized motions on an end-labeled bipolar 
5-point Likert scale, ranging from artificial to natural. An equivalence test for the 
statistical analysis showed that participants do not perceive differences in naturalness 
between recorded and synthesized motions that are larger than Δ = .027  with respect to 
a scale ranging from 0 to 1.  

In the second phase, we tested the ability of the observer to recognize a reference motion 
among a set of three choices including the reference, its twin and a distractor motion. As 
a reference, either a recorded motion or a synthesized motion was shown. The twin of a 
recorded motion is defined as its synthesis and vice versa. For the evaluation, we only 
considered decisions for the reference R or the twin T. Under the assumption that the 
twin is complete identical to the reference, we would expect an equal number 𝜇 of 
decisions for the reference and the twin. Since NaturalWalk is a non-interpolating 
scheme that does not exactly reproduce the recordings, we cannot expect this result, but 
we did get a remarkably high 84% of the maximum possible. Taking into account, that 
humans have a high ability to recognize even slight differences between motions [39,40], 
we consider this result as a further confirmation of the high quality of the movements 
generated by our method. 

The remainder of this paper is organized as follows. Following to the discussion of 
related work in section 2, preliminaries of the mathematics of motions are summarized 
in section 3. In section 4, we report on the acquisition and analysis of the data used as 
the basis of our approach. In section 5 shape templates and feature functions are 
introduced. The method of motion synthesis is described in section 6. Section 7 reports 
on the evaluation of the presented method.  

2 Related Work 

Due to their importance in applications, human gait has been widely studied in human 
movement sciences (e.g. [6], [7], [8], [9], [10]) or from the viewpoint of applications, 
e.g. [11]. Furthermore, numerous approaches for the synthesis of human walking motions 
have been proposed. Early kinematic approaches can be divided into two categories: 
procedural approaches and motion signal processing. 

Based on experiment data, procedural approaches formulate equations on certain 
kinematic aspects of walking movement, e.g. the duration of the different phases within 
a stride. These equations are then used to compute key frames which are interpolated to 
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obtain the motion (e.g. [12, 13, 14]). These approaches laid the ground for more advanced 
methods, but do not allow modeling of individual walking styles due to the crude 
approximation of the motion kinematics. 

Approaches of the second category are inspired by methods of signal processing and 
generate new motions from existing ones by applying global operations as motion 
blending, motion warping (e.g. [15, 16, 17]). Although suffering from the deficit to fulfil 
spatial constraints such as hand placements or avoidance of feet sliding, these proposals 
provided extremely useful tools for motion generation in general. 

Applications of these techniques for walking motions include an online method that 
produces walking motions along a curved path [18]. However, in this work style aspects 
of the generated motion refer to the style of moving the mouse during the input of the 
path. In [19] motion warping is applied to generate motions specified by six style 
parameters: stride frequency, double support time, foot flexion, vertical hip excursion 
(apex and nadir) and pelvic swivel. 

More recent work on motion synthesis fall into the categories of dynamics simulation 
and data-driven motion models. Approaches of the first category describe motion by a 
set of forces and torques acting upon a multi-body system. For an overview of such 
methods until 2010 see [20]. More recent methods are based on deep reinforcement 
learning which allows robust control policies to be learned by deep neural networks (e.g. 
[21]). Such methods even allow the simulation of pathological gait ([22]). However, for 
the reproduction of an individual walking style the anatomical conditions (e.g. mass 
distribution, body proportions, bone deformity, muscle conditions) must be known. This 
requirement excludes these methods for our vision of a simple and large-scale use of 
individual walking styles for avatar control. 

Data-driven approaches build motion models from the analysis of large data sets of 
motion examples. Early approaches define motion spaces by interpolation of base 
motions [23] or by tessellation of the motion matrix containing the captured motions into 
its principle components [24]. These approaches have the inherent problems of lack of 
controllability and quality both resulting from the fact that the motion space is based on 
an abstract mathematical definition that has only an indirect relation to the kinematics of 
motion. Since then, more sophisticated motion models based on HMM or neural 
networks have been proposed, but they still struggle with the aforementioned problems. 

In Computer Vision, neural networks have been used to learn motion models for the 
purposes of motion prediction and recognition. Prediction aims to compute the 
progression of a motion on the basis of a given sequence of poses. Both RNN- and CNN-
based methods perform properly on short-term prediction (< 500ms) but tend to fail in 
the long-term prediction due to a collapse to a mean pose [25]. To reduce mode-
collapsing, the use of stochastic models has been proposed [26]. Deep learning is also 
applied to improve the accuracy of gait recognition methods but relies on the availability 
of large data sets. To overcome the lack of training data, a framework to create synthetic 
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motion data has been presented [27]. It allows the variation of body shape, clothing, view 
and lighting conditions for the display of a virtual character but creates motion variations 
by sampling from a PCA motion space. 

In Computer Graphics, neural network based motion models have been proposed to 
synthesize character movements based on high level parameters. In [28] the learned 
model is represented by the hidden units of a convolutional autoencoder that represents 
motion data in sparse components which can be combined to produce complex 
movements. However, the representation of motion has several disadvantages that make 
it necessary to apply a post process optimization to achieve a usable result. Even the 
rigidity of the skeleton has to be ensured by imposing bone length constraints in the 
optimization. More recent works focus on the problem of style transfer which is of 
interest in animation because it allows the reuse of recorded motion data in different 
contexts. However, the considered “styles” do not refer to specified kinematic properties 
of a movement but to a style represented by an example motion (frequently showing 
generic emotional states such as “happy” or “sad”; [29]). Typically, autoencoders are 
used that decompose an input motion into a content (i.e. the motion in a neutral style) 
and a style encoding during the learning phase. At runtime, the decoder combines the 
content of a presented motion with a previously learned style to produce the style-
transferred output. In the contribution of [30] the style encoder also learns a common 
embedding from both 2D and 3D joint positions, which enables style extraction and 
transfer from videos. Output motions from the described methods have an appearance of 
a blend between the original motion and the example motion describing the style and 
currently there is no way to produce output with prescribed kinematic properties. 

The quality evaluation of synthesized motions is a challenging issue that is left out in 
many works. Zhao et al. used [26] applied different metrics (measuring semantic 
consistency, diversity and distribution similarity) to show a statistical similarity between 
real data and data synthesized with their method. Such a similarity, however, can only 
be considered necessary for the quality of the synthesis. The statistical evaluation 
presented in this paper provides a stronger statement, because the deviations between 
real and synthesized movements are considered explicitly. However, any form of 
numerical evaluation can only give an indication of the quality of the data. The decisive 
proof of quality must relate to the perceived quality of the data and can therefore only be 
provided in a user study. 

The only work we know of in which a user study was conducted to evaluate the quality 
of synthesized motions is by Tilmanne et al [31]. In their work the authors present an 
HMM-based motion model that allows to create style variations (in the sense of generic 
styles as “drunk”) of a neutral walk encoded in the HMM. The study consisted of three 
phases two of which show some similarities to our work. In the first phase the naturalness 
of the motions was evaluated using a 3-point scale (real, undecided, synthetic). In this 
test 65% of the original walks and 50% of the synthetic walks were labeled as “real 
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walks”. In the second test, the participants were asked to classify motions according to 
the displayed style. This task was successfully completed for 48% of the real motions 
and 36% of the synthesized motions. In the third test, participants were asked to rate the 
resemblance of simultaneously shown videos of real and synthesized motions in the same 
style using a 5-point scale. Here, participants achieved a global score of 3.15 which is 
close to maximum of 4. Unfortunately, for none of the tests the statistical significance of 
the results was investigated.  

3 Preliminaries 

3.1 Mathematics of motion 

In computer animation, a kinematic human skeleton is an embedded graph (more 
precisely a tree) that describes the pose of a human body. The nodes 𝑱𝑖  of this tree 
represent abstractions of joints in the human body and thus contain rotational 
information, while the edges of the tree correspond with bones. Since the graph is 
embedded in 3D space each joint 𝑱𝑖  has a position 𝒑𝑖

𝑡 at the time t with respect to a global 
coordinate system. In this work, we use the skeleton of the Bio Vision Hierarchy (BVH) 
format [32] consisting of 𝑛𝐽 = 23 joints. The root node 𝑱0  of this hierarchy is a virtual 
joint in the pelvis area. Fig. 1 shows this skeleton in a rest pose that is used as a reference 
for the pose description. Let 𝒑𝑖

𝑟𝑒𝑠𝑡 (𝑖 = 0, . . . , 𝑛𝐽) denote the joint positions in the rest 
pose. Any joint 𝑱𝑖   (𝑖 = 0, . . . , 𝑛𝐽) has an associated bone 𝑻𝑖  connecting it to its unique 
father 𝑱𝑓(𝑖)  , i.e.   𝑻𝑖 = 𝒑𝑖

𝑟𝑒𝑠𝑡 − 𝒑𝑓(𝑖)
𝑟𝑒𝑠𝑡. The lengths |𝑻𝑖 | of these bones specify the 

anthropometry of a particular body. Based on these definitions, an arbitrary pose  𝑷𝑡 at 
the time t can be defined as 

 𝑷𝑡 = (𝒑0
𝑡 , 𝒒0

𝑡 , 𝒒1
𝑡 , 𝒒2

𝑡 , … , 𝒒𝑛𝐽
𝑡  ), 

where 𝒑0
𝑡  specifies the global position of the skeleton, 𝒒0

𝑡  its global orientation and 𝒒𝑖
𝑡 

(𝑖 = 0, . . . , 𝑛𝐽) is the 3d rotation that brings the bone 𝑻𝑖  into the desired orientation with 
respect to the local frame of  𝑱𝑓(𝑖) , i.e. 

𝒑𝑖
𝑡  =  𝒒𝑖

𝑡 .  𝑻𝑖  +  𝒑𝑓(𝑖)
𝑡 . 

A motion 𝑀 is a sequence of 𝑛𝑃 poses: 𝑀 = (𝑷𝑡),   𝑡 = 0,… , 𝑛𝑃.  
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Figure 1: BVH skeleton with local coordinates systems at the joint positions: red for x-
axis, blue for z-axis and green for y-axis. Anatomical body planes are shown in a similar 
shade as their normal vectors: red sagittal plane, blue frontal plane and green for 
transversal plane. 

 

It is common, to express 𝒒𝑖
𝑡 in terms of elementary rotations about the axes of the local 

frame of 𝑱𝑓(𝑖) , i.e. one uses three angles 𝛼𝑖(𝑡), 𝛽𝑖(𝑡) and 𝛾𝑖(𝑡) to specify the rotation at 
time value t about the x-, y-  and z-axis of the local frame of 𝑱𝑓(𝑖) , respectively. The 
quantities 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are commonly referred to as joint angles (although not all of them 
correspond to a rotational degree of freedom of a human joint). The temporal variation 
of the joint angles in a motion constitutes discrete functions 𝛼𝑖(𝑡), 𝛽𝑖(𝑡) and 𝛾𝑖(𝑡) 𝑡 =

0, … , 𝑛𝑃 which are called progression functions of the joint 𝑱𝑖 . We also say, that 𝛼𝑖(𝑡) 
is the α-progression of joint 𝑱𝑖  etc. We use the symbol 𝜃 for an arbitrary joint angle (i.e. 
without specifying the associated rotational axis). Note, that a motion is completely 
specified when 𝒑0

𝑡 , 𝒒0
𝑡  and the progression functions of all 3𝑛𝐽 joint angles 𝜃 are given.  

3.2 Walking motions 

Human walking is a periodic form of locomotion where at any time there is at least one 
foot in contact with the ground [6]. In this work, we consider only straight walking on a 
flat horizontal ground. Considering one foot, a period consists of two phases: (1) stance 
phase, where the considered foot is in contact with the ground and (2) swing phase, where 
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the considered foot has no contact with the ground [10]. The stance phase begins with a 
heel-strike pose, which is the first pose in which a swinging foot touches the ground, and 
ends with a toe-off pose, which is the last pose before the foot loses contact to the ground 

(see Fig. 2). Commonly, one defines a step as a 
portion of a walking motion that starts with a heel 
strike pose of one foot and ends with the next heel 
strike pose of the other foot. The stance phase of one 
foot lasts about 60% of time for one step, while the 
swing phase lasts about 40% of this. However, the 
faster the motion becomes, the shorter the contact 
phase and the longer the swing phase last (see [6], 
[10]). A stride is generally defined as a portion of a 
walking motion starting by a heel strike pose of one 

foot and ending by the next heel strike pose of the same foot. Within each stride, both 
feet touch the ground in a short interval. This double support phase occurs in between 
the swinging phases of the different legs. From a kinematic point of view, a walking 
motion is produced by flexion and extension of the lower extremities. Thus, it can be 
described as angular movements of hips, knees and feet in the sagittal plane [33] which 
correspond to the α-progressions of these joints. 

4 Data acquisition and analysis 

In this section, we report on the acquisition and analysis of the data used as the basis of 
our approach.  

Assessing joint angle progressions of the lower extremities for different walking humans, 
it is apparent that these functions show many similarities and even the variations seem to 
follow distinguishable patterns. For illustration, Fig. 3 shows the α-progressions of the 
left knee for 3 different subjects walking with the same speed.  

Figure 2: Subphases of the stance 
of the right foot. 
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Figure 3: α-progressions of the left knee for 3 different subjects walking with the same 
speed. Progressions of the same color belong to the same subject. 

 

To investigate the occurring shapes of such progressions, we recorded motion data for 
12 healthy subjects without gait disorders (6 male and 6 female, aged between 26 and 54 
years). A 17-wireless IMU-based sensor system (Xsens [34]) was used to collect 3-
dimensional (3D) kinematic data at 60 Hz on a 15 m walkway. IMUs were attached to 
velcro bands respectively taps on 17 anatomical landmarks: head, sternum, shoulders, 
upper and lower arms, pelvis, hands, upper and lower legs and feet [35]. Overall, these 
markers represented 23 rigid segments and 13 joints in all three planes. The sensor-to-
segment calibration was conducted in the recommended manner by Xsens. This 
procedure was done in two calibration steps Npose (10 s) + Walk (20 s) and was 
sufficient, when the quality indication was on a “good” respectively “acceptable” level. 
These static and dynamic calibration trials were followed by the kinematic data capturing 
while subjects walked at three different walking speeds (1.0 m/s, 1.5 m/s and 2.0 m/s) on 
a 15m walkway wearing their own shoes. For each speed, 20 sequences were recorded 
to create sufficient data to study intrapersonal variations, i.e. in total, we recorded about 
720 motion clips consists of approximately 4 - 8 consecutive strides. Subjects were 
instructed to start walking from a standing still position (3 s), walk 15 m at the 
predetermined speed and stand still for 3 s at the end. As the recording was stopped, 
subjects went back to the starting position. The mean speed was controlled by two 
photoelectric barriers (Alge-Timing, Lustenau, Austria) – a deviation of ten percent of 
the predetermined speed was allowed, otherwise, the trial was invalid.  

Since we were interested to specify basic shapes of the joint angle progressions for a 
complete gait cycle, we segmented the recorded data into strides. However, we found the 
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common stride definition (that is based on the notion of a heel-strike pose) not to be 
useful for the automatic processing of our data. Due to inaccuracies in the motion data, 
it is difficult to precisely recognize the first contact of a swinging foot with the ground. 
Consequently, a segmentation of the motion data based on this criterion leads to strides 
that start (or end) with clearly differing poses, which means that the segments represent 
different sections of the walking motion. To overcome this problem, we based our 
segmentation on the requirement that start and end poses (regarding the lower 
extremities) of all segments are as similar as possible. More precisely, we use the 
following stride definition for our segmentation: 

A stride is a portion of a walking motion that begins with a pose where the left foot 
touches the ground and the flexions of the left and right hip in the sagittal plane are 
approximately equal and ends with the next pose that fulfils these conditions. 

To segment a given motion clip  𝑀 = (𝑷𝑡), 𝑡 = 0,… , 𝑛𝑃 into strides according to this 
definition, we first compute the local minima of the discrete function 𝑓(𝑡) =
|𝛼𝑙ℎ𝑖𝑝(𝑡) − 𝛼𝑟ℎ𝑖𝑝(𝑡)|, 𝑡 = 0,…𝑛𝑃. The minimum points Ω = (𝑡𝑙), 𝑙 = 0,… , 𝑛𝑀  of 𝑓 
are used to segment the motion into 𝑛𝑀 strides 𝑆𝑙 defined as a sub-sequence of poses of 
𝑀, i.e.,  𝑆𝑙 = (𝑷𝑡),    𝑡 ∈ [𝑡𝑙 , 𝑡𝑙+1] for 𝑙 = 0,… , 𝑛𝑀 − 1. Segments containing less than 
20 poses are discarded as they do not correspond to strides but variations of a standing 
pose. 

For each subject and joint angle, the segmentation creates at least 240 progressions (20 
sequences per speed, at least 4 strides per sequence). For the shape analysis of these 
functions, we compared the number of their extremal points (max or min). Table 1 shows 
the results of the joint angles 𝛼𝑙ℎ𝑖𝑝,  𝛼𝑙𝑘𝑛𝑒𝑒 and 𝛼𝑙𝑓𝑜𝑜𝑡. It is apparent that for each of these 
joint angles a large majority of progressions contains the same number of extremal points 
(the majority vote). Furthermore, for most subjects and joints a second cluster exists that 
contains progressions with the same number of extremal points different from the 
majority vote. For example, there are 253 instances of the α-progression of the left hip 
of subject 2. 192 instances have 4 extrema while 57 have only 2 ones. Only 4 instances 
have a different count. 

 

Joint 
Angle 

𝜶𝒍𝒉𝒊𝒑(𝒕) 𝜶𝒍𝒌𝒏𝒆𝒆(𝒕) 𝜶𝒍𝒇𝒐𝒐𝒕(𝒕) 

Features 
Count 

4 2 other 4 2 other 4 6 other 

Subject 1 235 6 0 241 0 0 180 61 0 
Subject 2 192 57 4 214 37 2 238 12 3 
Subject 3 188 57 4 248 1 0 204 42 3 
Subject 4 197 35 8 240 0 0 231 7 2 
Subject 5 253 1 8 262 0 0 227 32 3 
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Subject 6 289 45 19 319 34 0 346 5 2 
Subject 7 238 68 0 304 1 1 304 1 1 
Subject 8 257 16 5 244 33 1 199 76 3 
Subject 9 283 72 0 349 6 0 352 3 0 
Subject 10 228 65 4 293 4 0 289 8 0 
Subject 11 423 14 2 341 96 2 435 2 2 
Subject 12 353 88 0 322 117 2 438 1 2 

Table 1: Numbers of extremal points in joint angle progressions for all subjects 
considered in this work. 

 

Fig. 4 shows the shapes of two 𝛼𝑙ℎ𝑖𝑝 progressions chosen from the two major clusters of 
subject 2. Obviously, the shape of the progression with 2 extrema can be considered a 
variation of the more general shape with 4 extrema. 

 

 
Figure 4: Two different shapes of the α-progression of the left hip of subject 2. The 
orange shape can be considered a special case of the blue shape in which two extrema 
are missing. 

 

We analyzed whether the variations in the number of extrema depends on the stride 
length, but at least an obvious relation could not be established. Fig. 5 shows that 
variations in the number of extrema occur over the whole range of stride lengths. 
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Based on these findings, we decided to define one template shape for each joint angle 
which is used to create walking motions of different speeds in the range of the recorded 
speeds. 

 

 
Figure 5: Number of extrema per stride length for α-progressions of left hip in two 
different subjects: subject 7 on the left and subject 9 on the right. 

5. Shape templates and feature functions 

In this section, we define shape templates for the progression functions of joint angles of 
a walking human. Depending on the application, shape templates can be used to represent 
motion characteristics of individuals or groups of individuals. These cases differ in the 
choice of segmented strides used in the template definition while the process to create 
the templates remains the same. The template definition is based on shape describing 
feature points extracted from the considered data base. A model is presented that 
describes the variation of these feature points as a function of the stride length. This 
allows to create progression functions realizing walking motions of a particular stride 
length by adapting the template functions.  

5.1 Definition of template functions 

We will define features of walking motions based on a set of segmented strides. For a 
correct assignment of different measurements to a particular feature, it is necessary to 
normalize the duration of the motion segments. This is done by computing a continuous 
representation of each motion segment and resampling these representations with a 
constant number of 101 frames. For the continuous representation we employ linear 
interpolation. 

The template 𝑇𝜃 of a joint angle 𝜃 is a (discrete) function that serves as a shape model 
for the progression of 𝜃, i.e. it shows the main shape characteristics of the progressions 
that appear for varying stride lengths but abstracts from minor shape variations. Since an 
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averaging procedure has the desired effect of preserving shape features occurring in a 
relevant subset of instances and smoothing out minor variations, we define the template 
𝑇𝜃 as follows: 

𝑇𝜃(𝑡) =
1

𝑛𝑆
∑ 𝜃𝑘(𝑡)

𝑛𝑆

𝑘=1
    for 𝑡 = 0,… ,100 

where nS is the number of strides considered and 𝜃𝑘(𝑡) is the progression of joint angle 
𝜃 in the stride k. Ends points and extremal points constitute the feature vector 𝐹 of the 
template 𝑇𝜃, i.e. 

                                𝐹(𝑇𝜃) = ( (𝑡1, 𝑇𝜃(𝑡1)), … , (𝑡𝑚, 𝑇𝜃(𝑡𝑚)) ) ,                                           (1) 

where 𝑚 − 2 is the number of extremal points of 𝑇𝜃, i.e., 𝑡1 = 0 and 𝑡𝑚 = 100 and 
(𝑡𝑗 , 𝑇𝜃(𝑡𝑗)) with  𝑡𝑗 ∈ {2,… ,99} is an extremal point for 𝑗 = 1, . . . , 𝑚 − 1. The number 
𝑚(𝜃) is called the feature count of 𝑇𝜃. The number 𝑟(𝜃) ∈ {1, 2} specifies whether the 
sequence of extremal points of 𝑇𝜃 begins with maximum (r=1) or minimum (r=2). The 
pair  (𝑚(𝜃), 𝑟(𝜃)) is called feature signature of 𝑇𝜃. Fig. 6 shows examples of shape 
templates with highlighted features.  

 

 
Figure 6: Shape templates of 𝛼𝑙ℎ𝑖𝑝 (blue), 𝛼𝑙𝑘𝑛𝑒𝑒 (orange) and 𝛼𝑙𝑓𝑜𝑜𝑡 (green) of subject 
9 with feature points. 

 

In the motion generation, we will compute progression functions for given instances of 
feature vectors. For this, we employ a continuous representation of the template function 
that is adapted to the particular values of the feature vector. In the next section, we begin 
by computing continuous representations of the templates. 
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5.2 Continuous representation of template functions 

Let 𝑇𝜃 be the template of a joint angle 𝜃 and 𝐹(𝜃) the associated feature vector according 
to (1). We compute a 𝐶1-continuous function 𝑇𝜃

𝑐: [0,100] → 𝑹 such that  
1. 𝑇𝜃

c(𝑡𝑗) = 𝑇𝜃(𝑡𝑗) for 𝑗 = 1,… ,𝑚. 
2. 𝑡2, … , 𝑡𝑚−1   are the only extremal points of  𝑇𝜃

𝑐 in ]0,100[. (2) 

Condition 1 of the above problem can be easily fulfilled by constructing a low degree 
polynomial Hermite spline, i.e. by fitting polynomials into each segment [𝑡𝑗 , 𝑡𝑗+1], 𝑗 =

1, …𝑚 − 1. We used different polynomial degrees to inspect how well these functions 
approximate the shapes of the template segments. For simplicity, we will restrict the 
following discussion to an interior segment [𝑡𝑗 , 𝑡𝑗+1], j = 2,…𝑚 − 2 . 

Interpolating the conditions 𝑇𝜃
𝑐(𝑡𝑗) = 𝑇𝜃(𝑡𝑗), 𝑇𝜃

𝑐′
(𝑡𝑗) = 0, 𝑇𝜃

𝑐(𝑡𝑗+1) = 𝑇𝜃(𝑡𝑗+1) and 
𝑇𝜃

𝑐′
(𝑡𝑗+1) = 0 with cubic polynomials yields a 𝐶1 cubic spline. However, some segments 

of this spline tend to be far off the corresponding segment of the template (see Fig. 7). 
Using quartic polynomials allows to interpolate an inflection point within the segment. 
However, as shown in Fig. 7 complicated segments tend to have several inflections points 
and the interpolation of one of them improves the interpolation only slightly. 
Interpolating all inflection points would greatly improve the approximation but such an 
approach comes with the following disadvantage. Using inflection points as features 
would require to develop a model that describes how their numbers and locations change 
with the stride length (see section 5.4 for such a model of extremal points). However, 
spurious inflection points can easily occur in noisy curve data and the inclusion of 
inflections as features would thus introduce inaccuracies into our method. We also used 
a quintic Hermite approach where in addition to the cubic case also second derivatives 
at the knots (which are estimated from the template functions) are interpolated. Fig. 7 
shows that this another approach that improves the approximation only slightly. 

 Based on these experiments, we decided to follow an approach that combines 
interpolation and approximation. More precisely, we approximate each segment of 𝑇𝜃 
with a quintic polynomial 𝑝𝑗  that interpolates positions and derivatives at the end points 
of the interval [𝑡𝑗 , 𝑡𝑗+1] and determine the remaining two degrees of freedom with a least 
square approximation of the points of 𝑇𝜃 within the interval.  

For this, we use a Bezier representation of 𝑝𝑗 on the interval [𝑡𝑗, 𝑡𝑗+1], i.e. 

𝑝𝑗(𝑡) = 𝑏0,𝑗 (𝑡)𝐵𝑖,𝑗(𝑡) + ⋯ + 𝑏5,𝑗 (𝑡)𝐵5,𝑗(𝑡),  𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], 𝑗 = 1,…𝑚 − 1 

where 𝐵𝑘,𝑗(𝑡), 𝑘 = 0,…5 denote the Bernstein polynomials of degree 5 on [𝑡𝑗 , 𝑡𝑗+1]. 
Here, we set  

𝑏0,j = 𝑏1,j = 𝑇𝜃(𝑡𝑗) and 𝑏4,j = 𝑏5,j = 𝑇𝜃(𝑡𝑗+1), 
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which guarantees that 𝑝𝑗 interpolates 𝑇𝜃(𝑡𝑗) and 𝑇𝜃(𝑡𝑗+1) and has vanishing derivatives 
at both end points. The remaining Bezier coefficients 𝑏2,𝑗, 𝑏3,𝑗 are determined by solving 
the least squares problem  

ℎ(𝑏2,𝑗, 𝑏3,𝑗) = ∑|𝑇𝜃(𝑡𝑗 + 𝑢𝑖) − 𝑝𝑗(𝑡𝑗 + 𝑢𝑖)|
2

𝑛

𝑖=0

→ min 

with   𝑢𝑖 = 
𝑡𝑗+1−𝑡𝑗

𝑛
∗ 𝑖.  The solution of this minimization task is obtained by solving the 

following system of equations using the Moore-Penrose inverse: 

[
 
 
 
𝐵2,𝑗(𝑢0) 𝐵3,𝑗(𝑢0)

𝐵2,𝑗(𝑢1) 𝐵3,𝑗(𝑢1)
… …

𝐵2,𝑗(𝑢𝑛) 𝐵3,𝑗(𝑢𝑛)]
 
 
 

[
𝑏2,𝑗

𝑏3,𝑗
] =

[
 
 
 
 
 𝑇𝜃(𝑡𝑗 + 𝑢0) − 𝑝𝑗(𝑡𝑗 + 𝑢0)

𝑇𝜃(𝑡𝑗 + 𝑢1) − 𝑝𝑗(𝑡𝑗 + 𝑢1)
…

𝑇𝜃(𝑡𝑗 + 𝑢𝑛) − 𝑝𝑗(𝑡𝑗 + 𝑢𝑛)]
 
 
 
 

 

 

 
Figure 7: Left: different approximation methods applied to a segment of the template 
progression of 𝜶𝒍𝒇𝒐𝒐𝒕. Right: zoomed view. 

 

Since the approximation is computed with respect to a monotone subsequence of 𝑇𝜃, 
each polynomial 𝑝𝑗 is itself monotone which means that 𝑇𝜃

c has no further extremal points 
in ]0,100[ besides 𝑡2, … , 𝑡𝑚−1. Thus, the function 𝑇𝜃

𝑐: [0,100] → 𝑹 obtained in this way 
is a quintic 𝐶1spline satisfying (2).  

5.3 Building the feature functions 

In the motion generation, we will synthesize joint angle progressions for any given stride 
length 𝑙. Thus, for any joint angle 𝜃 we need a function that describes the variation of the 
feature points of 𝑇𝜃 with the stride length. These feature functions are obtained by 
interpolation of feature data extracted from the considered set of segmented strides. 
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Figure 8: Template (in red) computed from a set of 𝛂𝒍𝒌𝒏𝒆𝒆 progressions (in grey). 
Feature points of progressions marked with triangles. 

 

First, we will consider the extraction of the feature data. Fig 8 illustrates the problem for 
a set of α𝑙𝑘𝑛𝑒𝑒 progressions of subject 9 (shown in grey). The template of  α𝑙𝑘𝑛𝑒𝑒 is shown 
in red with crosses indicating the feature points. The locations of the feature points in the 
individual progressions are marked with colored triangles. Each of these triangles 
corresponds to a measurement of a feature point and we want to extract these 
measurements. 

Let 𝛴 denote a set of nS segmented and normalized strides and 𝛴𝜃 be the set of 
progressions of a joint angle 𝜃 contained in 𝛴. For each progression 𝑠 ∈ 𝛴𝜃 we compute 
its feature signature and recorded length of that stride from which it has been extracted. 
This is done because we want to create a data base of feature points in dependence of the 
recorded stride length. For this, we need to find a correspondence between the extremal 
points of each 𝑠 ∈ 𝛴𝜃 and those of the template 𝑇𝜃 because only the latter are considered 
in our model. Since we have sufficient data, we simplify this fitting process by only 
considering those progressions that have the same feature signature as 𝑇𝜃. Then, we 
simply associate the extremal points of the two functions according to the order of 
appearance.  

For each joint angle 𝜃, the described procedure extracts recorded feature data from the 
set of strides in the format 

𝑍𝑗
𝑘(𝜃) = {(𝑙𝑘, 𝑡𝑗

𝑘 , 𝑦𝑗
𝑘)}  𝑗 = 1, . . , 𝑚  and  𝑘 = 1,… , 𝑛𝑅(𝜃) 
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where (𝑡𝑗𝑘 , 𝑦𝑗
𝑘) is the location of the j-th feature point of 𝑇𝜃 in the k-th stride and 𝑙𝑘 is 

the length of that stride. Note, that the number of strides 𝑛𝑅(𝜃) from which data can be 
extracted varies with 𝜃.  

We approximate the extracted feature data separately in the time and angle domain, i.e., 
we consider the sets  

𝑋𝑗
𝑘(𝜃) = {(𝑙𝑘, 𝑡𝑗

𝑘)}  and  𝑌𝑗𝑘(𝜃) = {(𝑙𝑘, 𝑦𝑗
𝑘)}  𝑗 = 1, . . , 𝑚  and  𝑘 = 1, … , 𝑛𝑅(𝜃). 

We use the DBSCAN algorithm [36] to remove outliers in these data sets and then 
compute best fitting quadratic polynomials. In this way, we obtain a function 𝜒𝛳,𝑗(ℓ) 
approximately describing the variation of the  jth feature of 𝑇𝜃 in the time domain and a 
function 𝜓𝛳,𝑗(ℓ) to denote its variation in the angular domain. Fig. 9 and Fig. 10 show 
the data sets 𝑋3

𝑘(𝛼𝑙𝑘𝑛𝑒𝑒) and  𝑌3
𝑘(𝛼𝑙𝑘𝑛𝑒𝑒) for the third feature point (corresponding to the 

absolute maximum) of 𝛼𝑙𝑘𝑛𝑒𝑒 of  subject 9 and the quadratic fits to these sets.  

 

 
 

6 Motion Generation 

In this section, we describe how a walking motion of a particular stride length 𝑙 and stride 
duration 𝑑 is computed for a skeleton of specified anthropometry and an associated set 
of feature functions  𝜒𝛳,𝑗 and 𝜓𝛳,𝑗, 𝑗 = 1, . . , 𝑚, given for each joint angle 𝜃. The motion 
generation proceeds in the following steps.  

1. For each joint angle 𝜃, the evaluation of the feature functions at stride length 𝑙 
provides a feature vector 

𝐹(𝜃) = ( (𝑠1, 𝑒1),… , (𝑠𝑚, 𝑒𝑚) ) with 𝑠𝑗: = 𝜒𝛳,𝑗(𝑙) and 𝑒𝑗: = 𝜓𝛳,𝑗(𝑙), 𝑗 = 1, . . , 𝑚. 

Figure 9:  Figure 9: Variation of time values of the 
third feature of subject 9. 

Figure 10: Variation of angular values 
of the third feature of subject 9 (outlier 
marked in red). 
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2. For each joint angle 𝜃, a progression function 𝑇𝜃
𝐹 is generated by adapting the 

template function  𝑇𝜃
𝑐  to match the feature vector 𝐹(𝜃). This step is described in 

section 6.1. 
3. Each pose 𝑷𝑡 of the motion is computed by evaluating the progression functions 

𝑇𝜃
𝐹 for all joint angle 𝜃 at t and using the obtained values to specify the 

orientations of the joints of the skeleton. This step is described in section 6.2. 

6.1 Adaption of template functions  

Let 𝜃 be any joint angle and (𝑚, 𝑟) the feature signature of its template 𝑇𝜃
𝑐. A vector  𝐹 =

( (𝑠1, 𝑒1),… , (𝑠𝑚, 𝑒𝑚) ) is an admissible feature vector corresponding to the feature 
signature (𝑚, 𝑟), if 

1. 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑚    and   𝑠1 = 0 and 𝑠𝑚 = 100 
2. for 𝑟 = 1 and 𝑚 even: 𝑒1 ≤ 𝑒2, 𝑒2 ≥ 𝑒3 , 𝑒3 ≤ 𝑒4, … , 𝑒𝑚−2 ≥ 𝑒𝑚−1 , 𝑒𝑚−1 ≤ 𝑒𝑚 
3. for 𝑟 = 1 and 𝑚 odd:   𝑒1 ≤ 𝑒2, 𝑒2 ≥ 𝑒3 , 𝑒3 ≤ 𝑒4, … , 𝑒𝑚−2 ≤ 𝑒𝑚−1 , 𝑒𝑚−1 ≥ 𝑒𝑚 
4. for 𝑟 = 2 and 𝑚 even: 𝑒1 ≥ 𝑒2, 𝑒2 ≤ 𝑒3 , 𝑒3 ≥ 𝑒4, … , 𝑒𝑚−2 ≤ 𝑒𝑚−1 , 𝑒𝑚−1 ≥ 𝑒𝑚 
5. for 𝑟 = 2 and 𝑚 odd:   𝑒1 ≥ 𝑒2, 𝑒2 ≤ 𝑒3 , 𝑒3 ≥ 𝑒4, … , 𝑒𝑚−2 ≥ 𝑒𝑚−1 , 𝑒𝑚−1 ≤ 𝑒𝑚. 

For a given admissible feature vector 𝐹 corresponding to the feature signature (𝑚, 𝑟) we 
compute a function 𝑇𝜃

𝐹: [0,100] → 𝑹 such that 
1. 𝑇𝜃

𝐹(𝑠𝑗) = 𝑒𝑗  for 𝑗 = 1,… ,m. 
2. 𝑠2, … , 𝑠𝑚−1   are the only extremal points of 𝑇𝜃

𝐹 in ]0,100[. 
We compute 𝑇𝜃

𝐹 by scaling the segments 𝑝𝑗  of 𝑇𝜃
𝑐 such that condition 1 is satisfied.  In 

other words, 𝑇𝜃
𝐹 consists of 𝑚 quintic polynomials  𝑞𝑗 that are scaled versions of the 

polynomials 𝑝𝑗 of  𝑇𝜃
𝑐, i.e. 

𝑇𝜃
𝐹(s) = 𝑞𝑗(𝑠)   for 𝑠 ∈ [𝑠𝑗, 𝑠𝑗+1],   𝑗 = 0, … ,𝑚 − 1 

𝑞𝑗(𝑠) = 𝑏0,𝑗
∗  𝐵0,𝑗

∗ (𝑠) + ⋯+ 𝑏5,𝑗
∗  𝐵5,𝑗

∗ (𝑠) , 𝑠 ∈ [𝑠𝑗, 𝑠𝑗+1] 

with Bezier points  𝑏𝑘,𝑗
∗ = 𝛼𝑗𝑏𝑘,𝑗 + 𝛽𝑗 ,     𝑘 = 0,…5 

where    𝛼𝑗 = 𝑒𝑗−𝑒𝑗+1

𝑏0,𝑗−𝑏5,𝑗
,        𝛽𝑗 = 𝑒𝑗+1 −

𝑒𝑗−𝑒𝑗+1

𝑏0,𝑗−𝑏5,𝑗
𝑏0,𝑗   

and  𝐵𝑘,𝑗
∗  denote the quintic Bernstein polynomials on [𝑠𝑗 , 𝑠𝑗+1]. 

It can be easily verified, that this definition specifies 𝑇𝜃
𝐹 as a 𝐶1 quintic spline 

𝑇𝜃
𝐹: [0,100] → 𝑹 that confirms with 1. Condition 2 is also satisfied because scaling 

preserves monotonicity and thus no additional extremal points are introduced. For the 
motion generation, 𝑇𝜃

𝐹 is discretized by sampling it at the integers 𝑖 = 0,… ,100. Note, 
that in general 𝑞𝑗  is represented by a different number of sample points than 𝑝𝑗 because 
[𝑠𝑗 , 𝑠𝑗+1] in general represents a different portion of [0,100] than [𝑡𝑗 , 𝑡𝑗+1]. 
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6.2 Computing the poses 

For the motion generation, we recall from section 3.1 that a motion is a sequence of poses 
of the form  𝑷𝑡 = (𝒑0

𝑡 , 𝒒0
𝑡 , 𝒒1

𝑡 , 𝒒2
𝑡 , … , 𝒒𝑛𝐽

𝑡  ) where 𝒑0
𝑡  specifies the global position of the 

skeleton, 𝒒0
𝑡  its global orientation and 𝒒𝑖

𝑡 is the 3d rotation that brings the bone 𝑻𝑖   into 
the desired orientation specified by the angular values 𝛼𝑖(𝑡), 𝛽𝑖(𝑡) and 𝛾𝑖(𝑡) (𝑖 =

1, … , 𝑛𝐽). The anthropometry is specified by the lengths |𝑻𝑖 | of the bones in our skeleton. 

As output of the second step in the motion generation described in section 6.1, we 
obtained a progression function  𝑇𝜃

𝐹 for each joint angle 𝜃 of the skeleton. Evaluating 
these functions at 𝑡 we obtain the rotational values  𝛼𝑖(𝑡), 𝛽𝑖(𝑡) and 𝛾𝑖(𝑡) of each joint 
𝐽𝑖, i.e. 𝒒i

𝑡 for 𝑖 = 1,… , 𝑛𝐽. 

The rotation 𝒒0
𝑡  does not correspond to joint angles of the skeleton, but represents the 

global orientation of the skeleton in its root node. While 𝒒0
0 is an input to the motion 

generation (the initial orientation of the skeleton) the differences 𝒐𝑡 = 𝒒0
𝑡 − 𝒒0

0 represent 
an individual motion characteristic (the orientational fluctuation around the motion 
direction). Therefore, we process the elementary rotations 𝛼, 𝛽 and 𝛾 associated with 𝒐𝑡 
in the same way as being done for the joint angles of the skeleton. This means that our 
motion model includes 3 template functions for the elementary rotations of 𝒐𝑡 which are 
adapted to match the feature information provided by the feature functions. Then, 𝒐𝑡 is 
computed by evaluating the 3 stride length adapted templates at 𝑡 and 𝒒0

𝑡  is obtained as 
𝒒0

𝑡 = 𝒐𝑡 + 𝒒0
0. 

The global body position 𝒑0
𝑡  of each pose corresponds to the location of the pelvis node. 

To compute  𝒑0
𝑡 , we execute a forward kinematics of the skeleton starting from the 

position of the supporting foot. For this, it is necessary to know the supporting foot in 
each moment of the motion. More precisely, we need to know whether the supporting 
foot touches the ground with its sole or only with the toes. In the first case, the position 
of the ankle joint of the supporting foot is used as the starting point of the forward 
kinematics while in the second case, the position of the toe joint is used. Therefore, we 
have to divide the ground contact of the walking motion in four different phases: sole 
contact left, toe contact left, sole contact right and toe contact right. When executing the 
forward kinematics, we need to know to which of these phases the current pose belongs. 
This distinction is made upon the occurrence of particular configurations in the 
progression functions that indicate the change of the support phase. 

The analysis of captured data showed that the change of a support phase can be 
determined based on the 𝛼-progressions of the toe, ankle and knee joints (Fig. 11). We 
determine the phase change from left (right) toe to right (left) foot based on the 
occurrence of a global minimum of the flexion of the left (right) toe. To determine the 
support change from the ankle joint to the toe joint of the same foot, different methods 
could be used, e.g. thresholding the flexion of the toe. However, in our experiments we 
found it more reliable to detect this support change using the occurrence of a global 



21 
 

minimum of the flexion of the knee of the other leg. Note, that as a result of 6.1 the 
progression functions are available to perform the computation of the minima. 

By default, the left ankle is the support joint in the first pose for which the position of the 
root node is given as an input parameter 𝒑0

0 of the motion generation. To compute the 
position of the left ankle, we execute a forward kinematics of the skeleton starting from 
the pelvis position downwards to the positions of the joints of the left foot. For this, the 
joint angles synthesized for the first pose are used. In the next step, we execute the 
forward kinematics starting from the position of the left ankle up to the position of the 
root node. This time, using the joint angles synthesized for the second pose. In this way, 
we continue alternating between a forward kinematics starting at the pelvis or the 
position of the supporting joint. The switch of the supporting phase from one leg to the 
other takes place in a double support phase where both feet touch the ground. Therefore, 
it does not happen that the position of a foot is taken as the starting point of the 
computation when the foot is not grounded. 

 

 
Figure 11: Changes of the support phases approximately coincide with minima of 
certain joint angle progressions. 

 

Finally, we apply a smoothing filter to the root joint trajectory 𝒑0
𝑡  to suppress variations 

due to the iterative nature of its computation.  

The computed joint angle progressions still have the normalized duration of 𝜏 frames, 
which means that all generated motions have the same speed when they are visualized. 
To change the speed of the motion, we need to change the duration of the joint angle 
curves. If the desired walking speed is 𝑣, all joint angle progressions are resampled with 
𝑑 =  𝜔 . 𝑙 / 𝑣  frames, where 𝑙 is the stride length and 𝜔 the visualization frequency. The 
walking speed is an optional input parameter. Thus, if no speed is given, the generator 
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will compute a suitable one using a linear function in stride length. This function is 
determined during the modeling process and it can vary slightly from one subject to 
another as we can see in Fig. 12.  

 

 
Figure 12: The relationship between stride length and walking speed in the recorded 
data of subject 7 and subject 9. 

 

The output of the walking generator is a BVH file [32] consisting of a human skeletal 
model and a sequence of poses which represent a walking motion of the given stride 
length and the given walking speed. 

7 Experimental Results 

In this section, we evaluate the quality of the motions generated with our method. Since 
NaturalWalk represents a non-interpolatory scheme, a numerical evaluation is possible 
by comparing a recorded motion and a synthesized motion of same stride lengths and 
speeds. While such a comparison can be used to evaluate the mathematical similarity of 
two motions, it fails to answer the question how synthesized motions are perceived by 
observers. Therefore, we include a user study on the perceived naturalness of the 
synthesized motions in our evaluation. 

7.1 Numerical Evaluation 

The evaluation is based on the strides provided by the segmentation except those strides 
that are performed beginning or ending with a standing pose. The smallest number of 
such strides available for each of the 12 recorded subjects is 140. To include all subjects 
with the same weight, the evaluation is based on 140 * 12 = 1680 strides with lengths 
varying between 105cm and 198cm. For each of the 140 strides of a subject S, the stride 
length 𝑙 and duration 𝑑 was extracted and the motion generator was used to compute a 
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synthetic stride using the same parameters 𝑙 and 𝑑, the feature functions of S and the 
anthropometry of S. In this way, a synthetic twin is computed for each of the 1680 
motions. 

Let 𝑀,𝑀′ denote a captured motion and its synthetic twin, respectively. For the 
evaluation, both  strides are normalized to a duration of 𝜏 = 101 frames. Let 𝒑𝑖

𝑡 and �̂�𝑖
𝑡 

denote the 3D global positions of the joint 𝐽𝑖  (𝑖 = 1,… , 𝑛𝐽) at frame t of 𝑀 and 𝑀′ 
respectively. Then 

𝑀𝐷(𝑀,𝑀′)  =  
1

𝜏 ∗ 𝑛𝐽
∑∑|𝒑𝑖

𝑡 − �̂�𝑖
𝑡|

𝑛𝐽

𝑖=1

𝜏

𝑡=1

   

provides the mean joint displacement, i.e., the average value over all frames and joints 
of the distances between corresponding joints of 𝑀 and 𝑀′ at the same frames, while  

 Max(𝑀,𝑀′)  =  𝑚𝑎𝑥
𝑡=1,𝜏

(𝑚𝑎𝑥
𝑖=1,𝑛𝐽

(|𝒑𝑖
𝑡 − �̂�𝑖

𝑡|)) 

provides the maximum joint displacement, i.e., the largest distance over all frames 
between corresponding joints of 𝑀 and 𝑀′ at the same frames. In addition to these 
metrics that measure the spatial similarity between two motions, we consider the 
following metric adapted from [37] to measure the temporal coherence between a 
captured and a synthesized motion: 

C(𝑀,𝑀′)  =
1

(𝜏 − 1) ∗ 𝑛J
∑∑|𝑐𝑖

𝑡|

𝑛𝐽

𝑖=1

𝜏−1

𝑡=1

 

𝑐𝑖
𝑡 =

|𝒑𝑖
𝑡 − 𝒑𝑖

𝑡+1| − |�̂�𝑖
𝑡 − �̂�𝑖

𝑡+1|

𝑣𝑖
𝑡  

Here, 𝑣𝑖
𝑡 is an approximation of the speed of the joint Ji at frame t in the captured stride 

𝑀 computed as average of  |𝒑𝑖
𝑡 − 𝒑𝑖

𝑡+1| over 6 frames around t. (If 𝑣𝑗
𝑡=0, the average is 

computed over more frames.)  

The temporal coherence metric C measures how similar the captured and synthesized 
motion evolve over time. Since 𝑣𝑖

𝑡 has the dimension [cm/frame], C  has the dimension 
[frame], i.e. a value of C(𝑀,𝑀′) = nF means that a particular pose of 𝑀 appears nF 
frames earlier or later in 𝑀′. 

For each of these metrics, we computed the mean (MEAN), standard deviation (SD), 
minimum (Min) and maximum (Max) value for all 1680 evaluation pairs. The results 
listed in Table 2 show a very high similarity between synthesized and captured motions. 
In particular, from the fact that the mean joint displacement 𝑀𝐷 varies between 0.5 and 
3.6cm we conclude that most of the corresponding poses in synthesized and captured 
motions are visually indistinguishable. Furthermore, the temporal coherence between 
similar poses is extremely high with an average deviation of 1.6 frames and a maximum 
deviation of 4.8 frames. 
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Larger displacements of certain joints are mostly due to a correction of the ground contact 
in the motion generation. Due to inaccuracies in the motion capturing, a foot in the stance 
phase is usually not strictly fixed to the ground in the recorded data. In contrast, the 
motion generator enforces the ground contact of the foot during the stance phase and thus 
introduces differences to the captured data. These differences accumulate because of the 
iterative procedure of motion generation. 

 
 MD [cm] Max [cm] C [frame] 

Mean 1.2 7.6 1.6 
SD 0.4 2.0 0.7 
Min 0.5 2.5 0.8 
Max 3.6 11.9 4.8 

Table 2: Spatial and temporal differences for 1680 motion pairs of 12 subjects. 

7.2 User Study 

We conducted a user study to evaluate the perceived naturalness of the motions 
synthesized with our method. Due to Corona restrictions, the experiment took place 
online with a total number of 72 participants. All participants were students enrolled in 
one of the programs of the Institute of Media Research at Chemnitz University of 
Technology. The age of the participants varied from 18 to 38 years (M = 23.4, SD = 4.3). 
Fifty-seven participants specified their gender as female, twelve as male. Three 
participants declined to answer (“I don't want to answer the question.”). Before the start 
of the study, the participants were informed about the actual purpose of it.  

The experiment consisted of two phases. For each phase we included a test run to 
familiarize the participants with the look of the virtual characters and their task in the 
experiment. Scores achieved in the test runs were not counted in the evaluation. We 
reserved the motions of two recorded subject (one male, one female) exclusively for the 
test runs. Therefore, the recorded motions of ten subjects (5 male and 5 female) were 
used in the experiments. To visualize the motions, we used two virtual characters which 
are clearly distinguishable as male or female gender (see Fig. 13). Motions captured from 
men (women) were visualized with the male (female) virtual character. For the 
experiments we used the recorded walking motions of medium speed. From the pool of 
these recorded motions, we selected one recording for each subject such that all chosen 
motions have similar walking speed and stride length. For each selected recording, we 
synthesized a walking motion using the average walking speed and average stride length 
of the recording as input to the motion generator. For each of the resulting 20 motions, 
we created a video clip (60fps) showing four complete strides of the virtual character 
from the same perspective.  
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Figure 13: Male and female model used to visualize the motions. 

 

In the first phase of the experiment, we explicitly addressed the perceived naturalness of 
the motions. For this, we used an experimental design where each participant watches all 
20 videos presented in a fully randomized order. Each video was played 5 times in 
succession and then rated by the participant on an end-labeled bipolar 5-point Likert 
scale, ranging from artificial to natural (see Fig. 14). 

After scaling the scores to the interval [0,1] we obtained:  

𝑀𝑟= .506, 𝑆𝐷𝑟= .292 and  𝑀𝑠= .513,  𝑆𝐷𝑠= .296, 

where 𝑀𝑟 and 𝑀𝑠 denote the average score of all videos showing recorded movements 
and synthesized movements, respectively. Table 3 provides a more detailed view by 
listing the ratings of captured versus synthesized motions of each subject. In summary, 
based on our measurements we found (nearly) no difference in the average rating of 
naturalness of recorded and synthesized motions. Furthermore, differences in the ratings 
of subjects (interpersonal differences) are much larger than differences in the ratings of 
captured and synthesized motions (methodical differences). Thus, our measurements 
indicate that the presented motion generator is able to reproduce the perceived 
naturalness of a human walking motion. In the following, we will evaluate the statistical 
significance of this result. 
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For the statistical analysis, average values of ratings of each participant in the two groups 
of real and artificial motions are considered. Fig. 15 shows box plots of this data. Since 
we have paired samples, we apply a dependent samples t-Test and use the common 
significance level 𝛼 = .05 to evaluate the statistical significance. For the t-Test we use 
the pair of hypotheses: 
𝐻0: Participants do not perceive differences of naturalness between recorded and 
synthesized motions,  
𝐻1: Participants do perceive differences of naturalness between recorded and synthesized 
motions. 
 

 
Table 3: Mean values of naturalness per subject. 

Subject Gender Mean Cap Mean Syn SD Cap SD Syn

1 m .73 .66 .22 .26

3 m .30 .24 .23 .24

4 m .40 .38 .27 .29

7 m .45 .44 .27 .26

9 m .65 .73 .26 .23

2 f .36 .44 .30 .26

5 f .41 .47 .27 .26

6 f .56 .58 .23 .27

10 f .55 .50 .27 .24

12 f .64 .68 .26 .28

Mean .51 .51 .26 .26

Figure 14: Screen shot of user interface of the online study. The texts shown here are 
translations of the German texts used in the experiment.  
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Fig. 15: box plots of the ratings of real and synthesized motions. 

 

For the t-Test, we obtained t(71)= -.63, p= .53. Since the 𝑝 value is much larger than the 
significance level  𝛼 we find no statistical indication to reject the null hypothesis 𝐻0 (in 
other words we find no indication to assume the alternative hypothesis 𝐻1). An even 
stronger statement can be achieved using the two one-sided tests (TOST) procedure to 
test for equivalence ([38]) and reject the presence of the smallest effect size of interest 
(SESOI). For this, we formulate the hypotheses: 
𝐻0: Participants do perceive differences in naturalness between recorded and synthesized 
motions that (in absolute value) are larger than Δ,  
𝐻1: Participants do not perceive differences in naturalness between recorded and 
synthesized motions that (in absolute value) are larger than Δ. 

For Δ = .027 we obtained t(71) = 1.694, p= .047 and thus conclude statistical equivalence 
for the groups of recorded and synthesized motions for this value of Δ.  

On the basis of this evaluation, we conclude that there is no relevant difference in the 
perceived naturalness between recorded motions and those computed with our motion 
generator. 

In the second phase of the experiment, we investigated the perceived quality of the 
motions generated with our method based on an assignment task. Three of the original 
72 participants did not complete this part of the experiment what resulted in a gender 
distribution of 55 women, 11 men and 3 diverse. Each participant completed twenty 
assignment tasks. In each of these, one of the 20 videos was randomly chosen and 
presented to the participant as a reference 𝑅 followed by three other videos (the selection 
set). The selection set for a particular video 𝑅 consists of 𝑅 itself, the twin 𝑇 of 𝑅 and a 
distractor D. Two videos A and B are called twins, if either B shows the synthesized 
version of the recorded motion displayed in A or A shows the synthesized version of the 
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recorded motion displayed in B. The distractor D of  𝑅 is randomly chosen among all 
videos different from 𝑅 and 𝑇 but showing a motion of the same gender as 𝑅. The videos 
𝑅, 𝑇 and D of the selection set appear in one row below the cue video. The order in which 
these videos appear in this row is chosen randomly (see Fig. 16). Each video of the 
selection set was started at the same time after the reference video has been shown the 
first time. Then, all videos including the reference were played five times in a row 
simultaneously.  

 

 
Figure 16: Screenshot of user interface in the second phase of the online study. 

 

The rationale behind this experimental design is as follows: humans have a great ability 
to recognize even small differences in movements ([39,40]). Since the synthesis is not 
identical to the recording, observers should be able to pick the reference motion within 
the selection set. However, each false assignment to the twin of the reference is an 
indication that - despite the existing deviations - the synthesized motion looks so similar 
to the reference motion that it was possible to deceive the observer.  

For an experiment with 𝑛 assignments where an identical copy of the reference 𝑅 instead 
of a synthesis is used for the twin 𝑇, the expected values for the assignments to 𝑅 and 𝑇 
are equal: 𝜇 = (𝑛 − 𝑚)/2 , where 𝑚 denotes the assignments to the distractor. 
Assignments to the distractor are not considered because these seem to indicate that the 
participant was unfocused or has a general problem with regard to judging movements.  
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Table 4 shows the results of the assignment experiment. In total, the participants 
completed 1380 assignments. In 92 cases the distractor was selected which corresponds 
to a share of 7 percent. The remaining 1288 assignments (Sum_RT) are divided into 749 
assignments to the reference (Sum_Ref) and 539 assignments to the twin (Sum_Twin). 
A 𝜒2-test shows the expected statistical significance for the difference of Sum_Ref and 
Sum_Twin with a low effect size of 0.027. However, the strikingly high rate of 539 
assignments to the twin corresponds to a value of 84% of the expected value of 
assignments μ in an experiment with R= T, further confirming the high quality of the 
movements generated by our method.  

 

Sum_Ref Sum_Twin Sum_RT Orig 
correct 

Orig to 
Synth 

Orig 
to Dis 

Synth 
Correct 

Synth to 
Orig 

Synth 
to Dis Sum 

749 539 1288 382 263 45 367 276 47 1380 

Table 4: Results of the assignment task. 
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