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Introduction

The art of tilings and patterns has long been present in the history of civilizations. Used in
almost any situation that requires some type of decoration, famous examples can be found
in Roman temples, Persian, Celtic and Arabic constructions. From geometric shapes to
animals and human figures are present in tilings. However, their use is not limited to
aesthetics, they can also be found in nature such as in the honeycomb of a bee, the design
of a spider’s web, the wings of dragonflies and the skin of lizards. They have also been
used in engineering for the production of components where it is more economical to put
shapes together without any space between them.

(a) (b)

(c)
(d)

Figure 2: Some examples of tilings and patterns. (a) Roman mosaic, (b) snake skin tiling,
(c) dragonflies wings tiling, (d) Persian tiling in a temple. Image credit: Image credit:
[Bee].

Because we can find them all around us in different situations, mathematicians, physi-
cists, engineers, artists, among others, have made significant contributions to the study
of tilings and patterns.

In this work we will focus in the study of aperiodic set of tiles, and the project method.
The last one it was first described by Bruijin [De 81] in 1981, proving that Penrose tilings
can be seen as the projection of a 2-dimensional plane in a 5-dimensional space. Hence,
the aim of this thesis is to try to answer the following question: Can we use the IFS
(iterated function system) approach to give a description of Ammann tilings?

3
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In order to accomplish this, we must first study the projection method, which allows
us to describe certain tilings as model sets. With that goal in mind, Chapter 1 presents
the basic tools we need to introduce ourselves into the study of tilings, such as number
fields, Perron Frobenius Theory, lattices and theorems on the existence of fixed points
in metric spaces. Chapter 2 defines the main objects of study in this work which are
the tilings. We describe several classes of tilings and different examples. Further on, in
Chapter 3, we study what a substitution is, and its relation with tilings. In Chapter 4 we
explain the projection method, the model sets and we illustrate them with the silver mean
substitution. Finally, in Chapter 5 we discuss the examples we have worked on during the
study time dedicated to this thesis. Firstly, we provide the cut and project scheme of the
1-dimensional Fibonacci substitution, next we study the 19 self-similar Wang shift. Lastly
we analyze if the tilings admitted by the Ammann aperiodic set A2 can be described as
model sets.



Chapter 1

Preliminaries

In this introductory chapter, we recall some fundamental facts about fields and linear
algebra to stablish a firm basis for the rest of the document.

1.1 Number-theoretic tools

In this section we set notation and recall briefly some important definitions and theorems
about number fields which will be mainly used in the last two chapters of this document.
For general reference on this topic and proofs of the theorems mentioned here refer to
[BG13].

A field L is called a field extension of K if L is a larger field containing K and this
will be denoted by L : K. If L : K is a field extension, then L has a natural structure as
a vector space over K with its dimension [L : K] being the degree of the extension.

If [L : K] is finite we say that L is a finite extension of K. Given a field extension
L : K and an element α ∈ L, there may or may not exist a polynomial P ∈ K[x] such
that P (α) = 0, P ̸= 0. If not, we say that α is transcendental over K. If such a P exists,
we say that α is algebraic over K. If α is algebraic over K, then there exists a unique
monic polynomial Q of minimal degree such that Q(α) = 0, and Q is called the minimum
polynomial of α over K.

Let α1, . . . , αk ∈ L. We will denote K(α1, . . . , αk) ⊆ L the smallest subfield of L
containing K and α1, . . . , αk.

Theorem 1. If L : K is a field extension and α ∈ L, then α is algebraic over K if and
only if K(α) is a finite extension of K. In this case, [K(α) : K] = deg(P ) where P is the
minimum polynomial of α over K, and K(α) = K[α].

Now, we say that a complex number α is algebraic if it is algebraic over Q. Let A
denote the set of algebraic numbers. This set is a subfield of C. If K is a subfield of C
such that [K : Q] is finite then K is a number field, and by previous theorem this means
that every element of K is algebraic, hence K ⊆ A and K = Q(α1, α2, . . . , αn), for some
α1, α2, . . . , αn ∈ A

Theorem 2. If K is a number field then K = Q(θ) for some algebraic number θ.

5



6 CHAPTER 1. PRELIMINARIES

If K = Q(θ) is a number field of degree n over Q and EmbK = {σ : K → C :
σ a monomorphism}, then card(EmbK) = n, where the elements σi(θ) = θi are the dis-
tinct zeros in C of the minimum polynomial of θ over Q. We call the θi’s the conjugates
of θ.

A complex number α is an algebraic integer if there is a monic polynomial P with
integer coefficients such that P (α) = 0. We will denote by B the set of algebraic integers.
This set is a subring of A and we will write D = K∩B for the ring of integers of a number
field K. The following criterion allows us to determine when an algebraic number α is an
algebric integer.

Proposition 1. An algebraic number α is an algebraic integer if and only if its minimum
polynomial over Q has coefficients in Z.

A quadratic field is a number field K = Q(θ) of degree 2 over Q. This means that θ
is a zero of the polynomial x2 − ax+ b for a, b ∈ Z.

Theorem 3. Let d be a square-free rational integer. Then the integers of Q(
√
d) are:

1. Z[
√
d] if d ̸≡ 1 mod 4,

2. Z[1
2
(1 +

√
d)] if d ≡ 1 mod 4.

Example 1. The examples presented here are used in later chapters.

1. Since α =
√
2 satisfies P (x) = x2 − 2, then it is an algebraic integer with minimal

polynomial P and correponding quadratic number field K = Q(α). By Theorem 3,
the ring of rational integers of K is Z[

√
2] = {a+ b

√
2 | a, b ∈ Z}.

2. K = Q(
√
5) is a quadratic number field since α = 1

2
(1 +

√
5) is an algebraic integer

with minimal polynimial P (x) = x2 − x − 1. Again, using Theorem 3, the ring of
rational integers of K is Z[α].

1.2 Lattices

Lattices are used in the last two chapters to define a certain set of points that characterise
the set of tiles we are working on. We recall definitions and important theorems from the
book [BG13].

A set consisting of one point is called a singleton set, and countable unions of sin-
gleton sets are called point sets. We say that a point set Λ ∈ Rd is discrete if each
element in Λ has an open neighbourhood in Rd that does not contain any other point of
Λ. And Λ is uniformly discrete if there is an open neighbourhood U of 0 ∈ Rd such that
(x+ U) ∩ (y + U) = ∅ holds for every pair of distinct elements of Λ.

We define the Minkowsky sum of U, V ⊆ Rd as

U + V := {u+ v | u ∈ U, v ∈ V }.

A point set Λ is relatively compact if its closure is compact, and it is relatively dense
if exists a compact set K ⊆ Rd such that Λ +K = Rd.
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Definition 1. A lattice is a point set Γ ⊆ Rd such that

Γ = Zb1 ⊕ . . .⊕ Zbd

for some vectors b1, . . . , bd, with the requirement that its R-span is Rd.

Example 2. The easiest lattice we can find is Zd for d ∈ N.

Let K = Q(θ) be a quadratic number field with θ ∈ R and consider the non trivial
algebraic conjugation defined by θ → −θ together with its unique extension to a field
automorphism. We define the Minkowski embedding of the ring of algebraic integers Z[θ]
of K as

L = {(x, x′) | x ∈ Z[α]} ⊆ R× R,

where x′ is the image of x under the algebraic conjugation, with basis vectors (1, 1) and
(θ, θ′).

Example 3.

1. The non trivial algebraic conjugation in the field K = Q(
√
2) is ⋆ :

√
2 → −

√
2.

Then the Minkowsky embedding of Z[
√
2] is L = {(x, x′) | x ∈ Z[

√
2]}.

2. The non trivial algebraic conjugation in the field K = Q(
√
5) is ⋆ :

√
5 → −

√
5.

The Minkowsky embedding of Z[τ ] with τ = 1
2
(1 +

√
5) being the golden ratio is

L = {(x, x′) | x ∈ Z[τ ]}.

1.3 Perron-Frobenius Theory

The Perron–Frobenius Theorem is a fundamental result for non-negative matrices that
we will use later in chapter 2 where Perron Frobenius left and right eigenvectors play an
important role in substitutions.

We start saying that a matrix M ∈ Md(R) is non-negative if all its entries are non-
negative numbers. A non-negative matrix is positive when at least one entry is strictly
greater than zero, and it is called strictly positive when all its entries are strictly greater
than zero. We write, respectively, M ⩾ 0, M > 0 and M ≫ 0.

Definition 2. A non-negative matrix M = (Mij)1≤i,j≤d is called irreducible if, for each
index pair (i, j), there is an integer k ∈ N with (Mk)ij > 0.

Definition 3. A non-negative matrix M ∈ Md(R) is called primitive if there exists an
integer k ∈ N such that Mk ≫ 0.

The directed graph GM associated to a non-negative matrix M ∈ Md(R) is defined as
the graph with d vertices labelled from 1 to d and a directed edge from vertex j to vertex
i, for all index pairs (i, j) with Mij > 0.

Example 4. It is clear from the definition that a primitive matrix is irreducible. For

example, M =

(
0 1
1 1

)
is primitive with k = 2, and therefore it is irreducible with asso-

ciated graph
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a b

However, the converse is not true. For instance, the matrix M =

(
0 1
1 0

)
is merely

irreducible and it has associated graph

a b

If M ∈ Md(F ) is a matrix over a field F , its adjoint matrix adj(M) is the transpose
of the d× d matrix whose (i, j)-th term is equal to (−1)i+j times the determinant of the
matrix obtained from M by erasing the ith row and jth column. Let λ be a eigenvalue of
M with associate eigenvector v. The minimal polynomial of M is the monic polynomial
qλ ∈ F [λ] of smallest degree such that qλ(M) = 0. Let gλ be the monic greatest common
divisor of all the coefficients of the matrix adj(λI − M). The reduced adjoint matrix of
λI −M is defined by Cλ := adj(λI −M)/gλ.

Theorem 4 (Perron-Frobenius Theorem). Let M ∈ Md(R) be an irreducible non-negative
matrix. Its spectral radius is then strictly positive and a simple eigenvalue of M , called
the Perron–Frobenius eigenvalue λPF of M . Moreover, the corresponding eigenvector v
can be chosen to have all entries strictly positive, written as v > 0.

To see the geometric intuition under Perron’s theorem, take a d-dimensional closed
positive cone C. Since the entries of the matrix are non-negative, the image of C under
the transformation defined by M is itself. But the matrix is additionally primitive, then
there exists k ∈ N such that after k iterations the image is contained in the interior of
the cone because all the entries are positive, therefore the transformation is a contraction.
And if we iterate the matrix we obtain a sequence of cones that approximate to a unique
invariant direction that is PF eigenvector, as we can see in Figure 1.1 with the matrix of
Example 4.

Figure 1.1: Sequence of cones obtained after the iteration of a primitive matrix and
converging to the PF left eigenvector indicated in orange.

Theorem 5. Let M ∈ Md(R) be primitive, and λPF be its Perron–Frobenius eigenvalue.
Let Cλ be the reduced adjoint matrix of λI −M , and qλ be the minimal polynomial of M .
Then:

1. Let u and v be a right and left eigenvector of M for the eigenvalue λPF . Suppose
that u and v are normalized such that vu = 1. Then we have

CλPF
= q′λPF

uv.

In particular, all the entries of the matrix CλPF
/q′λPF

are positive.
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2. The relation

lim
n→∞

1

λn
PF

Mn =
1

q′λPF

CλPF

holds.

Proof. See [AS+03].

1.4 Groups

The content of this section is a short remainder of some definitions of topological abelian
groups taken from [BG13].

Let G be a group, and assume that it is equipped with a topology. G is locally compact
if each point of G possesses a compact neighbourhood. If G is also Abelian, it is called a
locally compact Abelian group, or LCAG for short. For example, Rd with its usual topol-
ogy is an LCAG, as is any finite Abelian group (equipped with the discrete topology)
and any compact Abelian group, such as the unit circle S1. Further examples are discrete
groups such as Zn with the discrete topology.

An LCAG G is called compactly generated when there is a compact neighbourhood of
0 ∈ G that generates the entire group. For instance, Rd, Zn and compact Abelian groups
K are examples.

1.5 Fixed point theorems

The existence of a unique fixed point of an iterated function system plays an impor-
tant role in then last chapter of this document. Therefore this section intends to only
present a selection of basic notions and main results. For further material refer to [Con14].

Let (X, d) be a metric space. A mapping T : X → X is called a contraction on
X if there exists a positive constant K < 1 such that d(T (x), T (y)) ≤ Kd(x, y), for all
x, y ∈ X. A fixed point of a mapping T : X → X of a set into itself is an x ∈ X that
satisfies T (x) = x. For instance, a rotation of the plane has as a unique fixed point the
center of the rotation. A finite collection of contraction mappings on a complete metric
space is called an iterated function system (IFS).

Theorem 6 (Banach’s fixed point theorem). Let (X, d) be a complete metric space and
let T : X → X be a contraction on X. Then T has a unique fixed point x ∈ X.

Let (X, d) be a metric space. Let H(X) be the set of non-empty closed and bounded
subsets of X. To turn H(X) into a metric space, a metric is defined by using the notion
of expansion. Given a non-empty subset A ⊂ X and r ≤ 0, an r-expansion of A is defined
to be the points in X within distance at most r of some point of A:

Er(A) = {x ∈ X | d(x, a) ≤ r for some a ∈ A}.

The Hausdorff distance between A,B ∈ H(X) defined by dH(A,B) = inf{R ≥ 0 :
A ⊂ Er(B), B ⊂ Er(A)}, is a metric on H(X) called the Hausdorff metric on H(X).
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Theorem 7. Let f : X → X be a contraction with constant K. Then the induced map
on H(X) given by A → f(A) is a contraction with the same constant: dH(f(A), f(B)) ≤
K · dH(A,B) for all A,B ∈ H(X).

Theorem 8 (Hutchinson). Let f1, . . . , fm : X → X be contractions. Set F : H(X) →
H(X) by F (A) = f1(A)∪. . .∪fm(A). If fi has contraction constant Ki, F is a contraction
with constant max(K1, . . . , Km).

Corollary 1. If X is a complete metric space and f1, . . . , fm are contractions on X, then
there is a unique non-empty closed and bounded subset A ⊂ X such that f1(A) ∪ . . . ∪
fm(A) = A.



Chapter 2

Tilings and Aperiodicity

In this chapter we define the principal notions of tilings and some of its properties. The
main reference of this section is the book [GS87].

A tile in Rd is defined as a non-empty compact subset of Rd which is the closure of
its interior. A tiling T in Rd is a countable set of tiles, which is covering as well as a
packing of Rd, i.e., the union of all tiles in T is Rd, and the intersection of the interior of
two different tiles in T is empty.

(a)

(b)

Figure 2.1: (a) Kite and dart Penrose tiles. (b) A tiling by Penrose kites and darts. Image
credit: [Ouy+18].

We will say that two tilings T1 and T2 in Rd are congruent if one of them may be made
coincide with the other by a rigid motion. And we will say that these two tilings are the
same if there is a similarity transformation in Rd that maps T1 onto T2.

Figure 2.2: Monohedral convex pentagonal tiling. Image credit: [Wik21a]

If all the tiles of a tiling T are congruent to one of a minimal set P = {P1, P2, . . . , Pn}
of tiles, then the Pi’s are called the prototiles of T , and we say that they admit the tiling

11



12 CHAPTER 2. TILINGS AND APERIODICITY

T . We say that a tiling T is n-hedral if there are n prototiles such that every tile of
T is congruent directly or reflectively to one of the n prototiles. For instance, Figure
2.2 is a monohedral tiling discovered in 2015 by Casy Mann, Jennifer McLoud-Mann,and
David Von Derau, mathematicians of the University of Washington Bothell, with unique
prototile the convex pentagon of angles 60◦, 150◦, 90◦, 105◦ and 135◦.

2.1 Classes of tilings

When we talk about tilings we can refer to periodic or non-periodic tilings, aperiodic set
of tiles, substitution tilings, cut and project tilings, and among others. Since the formal
definition of these tilings is not uniform in the different bibliographies of the topic, we
take as reference the notation used in [GS87].

An isometry or congruence transformation is a bijective distance preserving transfor-
mation between metric spaces. For example, in the Euclidean plane E2 there are four
types of isometries: rotation, translation, reflection and glide-reflection. We say that an
isometry σ of a set S is a symmetry of S if σ(S) = S. The set of isometries of a metric
space forms a group with respect to the composition called the isometry group.

The definition of isometry can be extended to tilings in the natural way. If T is a
tiling, an isometry σ is a symmetry of T if it maps every tile of T onto a tile of T . If
T is a marking tiling, i.e., a tiling in which there is a marking or motif on each tile, a
symmetry of the marked tiling is an isometry which maps the tiles and the markings of
T onto tiles and markings of T .

Definition 4. A tiling T is periodic if its symmetry group contains a non-trivial trans-
lation. And T is non-periodic if the only translation in its symmetry group is the trivial
translation, i.e., the identity.

The monohedral tiling shown in Figure 2.2 is a periodic tiling as the tiling in (a) of
Figure 2.3, and in (b) we have a non-periodic tiling. Notice that the group of symmetries
of (b) contains rotations, however the unique translation that contains is the identity.

(a) (b)

Figure 2.3: (a) Periodic floret pentagonal tiling. Image credit [Wik21b]. (b) Non-periodic
Gailiunas’s spiral tiling. Image credit: [Ste17].

Definition 5. A set of prototiles in Rd is called aperiodic if it tiles Rd, and every tiling
admit by the prototiles is non-periodic.
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In the previous definition it is really important to make emphasis in the word every,
since a set of prototiles can admitted non-periodic tilings and not necessarily be aperiodic.
The set R1 of Robinson’s tiles shown in Figure 2.4 is an example of an aperiodic set of
tiles dicovered by Raphael Robinson in 1971.

(a)
(b)

Figure 2.4: Robinson’s aperiodic set R1 of six tiles and an admitted tiling by R1. Image
credit: [Wik22].

Other classes of tilings different from periodic and non-periodic tilings are substitution
and cut and project tilings. There are two classes of tiling substitution rules [Fra08]:
geometric and combinatorial. The first one is based on a linear expansion map and the
last one rely on a sort of concatenation of tiles. A tiling obtained from a geometric
subsitution can be defined as a tiling whose tiles can be composed into larger tiles, called
level-one tiles, whose level-one tiles can be composed into level-two tiles, and so on ad
infinitum. In some cases it is necessary to partition the original tiles before composition.
Figure 2.5 is an example of this class of tilings. Cut and project tilings are tilings that
can be expressed as model sets of certains cut and project schemes. Later on, we define
these classes of tilings in detail and we provide several examples. Although it seems that
from every substitution tiling it is possible to obtain a CPS and viceversa, this is not true
in general. There exist cut and project tilings that can not be obtained as substitution
tilings and viceversa. In this document most of the examples provided in the last chapter
will remain in the intersection of these two classes.

(a) (b)

Figure 2.5: (a) Relation between some classes of tilings. (b) Chair substitution tiling.
Image credit: [Bla17].



Chapter 3

Substitutions

Some of the most simple examples of tilings are given using the theory of substitutions
which we introduce here. The main reference of this section for the first section is [AS+03]
and for the second section it will be the [BG13].

3.1 One dimensional substitutions

An alphabet A is a non empty set of symbols that can be finite or infinite. In this text we
will focus on finite alphabets denoted by An if it contains n symbols. A word is a finite
or infinite chain of symbols from A, written by juxtaposing their symbols. Let [m. . . n]
denote the set of integers from m to n. A finite word is a map from [1 . . . n] to A. If
n = 0, we get the empty word, which we denote by e, and we denote by A∗ the set of all
finite words made up of letters chosen from A. If w is a finite word, then its length is the
number of symbols it contains, which is denoted by card(w). For example, if w = 010101,
then card(w) = 6. The number of occurrences of a symbol a in w is denoted by carda(w).
Thus, card0(w) = 3 = card1(w).

The composition of two finite words u and v is defined as the concatenation of their
symbols and denoted by uv. Composition of words is not commutative, but it is associa-
tive, so A∗ together with the concatenation is a monoid. A word y is a subword of a word
w if there exist words x, z such that w = xyz. We denote by w[k,l] for k, l ∈ Z and k ≥ l
the finite subword of w from position k to l.

Definition 6. A general substitution rule on a finite alphabet An with n letters is a map
ϱ from A∗

n to itself such that ϱ(uv) = ϱ(u)ϱ(v) for u, v ∈ A∗
n.

If there is a constant k such that card(ϱ(a)) = k for all a ∈ An, then we say that ϱ is
k-uniform. A substitution is said to be expanding if card(ϱ(a)) ≥ 2 for all a ∈ A.

Definition 7. For a given general substitution rule ϱ, the matrix Mϱ ∈ Mn(Z) defined
by (Mϱ)i,j = cardai(ϱaj) is called the substitution matrix of ϱ

Example 5. (Fibonacci substitution). Consider the rule

ϱ :
a → ab
b → a.

14
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This substitution is called the Fibonacci substitution because it can be also defined by
f0 = a, f1 = ab, fn+2 = fn+1fn, and the sequence of lengths of the words fi is the
Fibonacci sequence.

Definition 8. A substitution rule on a finite alphabet An is called irreducible when, for
each index pair (i, j), there exists some k ∈ N such that aj is a subword of ϱk(ai). And ϱ
is primitive when some k ∈ N exists such that, for all ai, aj ∈ An, ai occurss in ϱk(aj).

From Section 1.3 we can deduce that a substitution rule ϱ is irreducible or primitive if
and only if its substitution matrix Mϱ is an irreducible or a primitive non-negative matrix,
respectively.

Example 6. The substitution matrix and associated directed graph of the Fibonacci
substitution are

Mϱ =

(
1 1
1 0

)
a b

Since Mϱ is primitive then the Fibonacci substitution is also primitive.

Proposition 2. Let ϱ be a substitution on a finite alphabet An and w be a finite word.
Then, for any l ∈ N, carda1ϱ

l(w)
...

cardanϱ
l(w)

 = M l
ϱ

carda1(w)
...

cardan(w)

 .

Proof. By induction over l. For l = 1, we have that cardaiϱ(w) =
∑

1≤ai≤n

cardaiϱ(aj)cardaj(w)

which is equal to

(
cardaiϱ(a0) · · · cardaiϱ(an)

)
·

cardai(w)
...

cardai(w)

 = iMϱ ·

cardai(w)
...

cardai(w)

 ,

where iMϱ is the i-th row of Mϱ.

Suppose this is true for l and let’s show it for l + 1.

carda1ϱ
l+1(w)
...

cardanϱ
l+1(w)

 =

carda1ϱ
l(ϱ(w))
...

cardanϱ
l(ϱ(w))

 = M l
ϱ

carda1ϱ(w)
...

cardanϱ(w)

 = M l
ϱMϱ

carda1(w)
...

cardan(w)



Since we can associated a matrix to a substitution, we can use PF theory to describe
some properties of non-negative substitutions. But before this we will introduce some
important definitions and propositions.

Proposition 3. Let ϱ be a primitive substitution on the finite alphabet An = {a1, . . . , an}.
Let Mϱ be the substitution matrix of ϱ, and let λPF be the PF eigenvalue of Mϱ. Then for
each non-empty word w on A∗

n, there exists a positive constant cw such that

lim
l→∞

card(ϱl(w))

λl
PF

= cw
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Proof. If w ∈ A∗
n is a non empty word then by the previous proposition,

lim
l→∞

card(ϱl(w))

λl
PF

= lim
l→∞

1

λl
PF

(
1 · · · 1

)
M l

ϱ

carda1(w)
...

cardan(w)

 .

Then, by Theorem 5, this limit exists and

lim
l→∞

card(ϱl(w))

λl
PF

=
(
1 · · · 1

) M l
ϱ

λl
PF

carda1(w)
...

cardan(w)

 = cw.

Since the substitution ϱ is primitive, there exists an integer k > 0 such that, for each
i = 1, 2, . . . , n, we have cardaiϱ

k(w) > 0. Hence

cw = lim
l→∞

card(ϱl+k(w))

λl+k
PF

= lim
l→∞

card(ϱl(ϱk(w))

λl+k
PF

=
(
1 1 · · · 1

) Cr

λk
PF q

′
r

carda1ϱ
k(w)

...
cardanϱ

k(w)

 .

But by Theorem 5, Cr/q
′
r is positive, so cw > 0.

Infinite and bi-infinite words are sequences of the form w = w0w1w2w3 . . . or w =
. . . w−2w−1w0w1w2, with respective sets of symbols denoted by AN

n and AZ
n. The image of

a substitution ϱ in an infinite word w is defined by ϱ(w) = . . . ϱ(c−2)ϱ(c−1)ϱ(c0)ϱ(c1) . . ..
Let b ∈ An and w be a word. If

limn→∞
cardb(w[0,n−1])

n

exists and equals to r, then the frequency of b in w is defined to be r and it is denoted by
Freqb(w).

Definition 9. Let ϱ be a substitution rule on a finite alphabet An. A finite word is called
legal for ϱ, if it occurs as a subword of ϱk(ai) for some 1 ≤ i ≤ n and some k ∈ N. A finite
or infinite word w such that ϱ(w) = w is called a fixed point of ϱ. A bi-infinite word ω is
called a fixed point of a primitive substitution if ϱ(ω) = ω and ω−1|ω0 is a legal two-letter
word of ϱ.

A fixed point ωa with legal seed a ∈ A∗
n is called a morphic fixed point if there exists

a 1-uniform substitution τ : A∗
n → A∗

m such that ωa = τ(wa).

Example 7. Let t = t0t1t2 . . . be the fixed point starting with 0, of the morphism ϱ which
maps 0 → 01, 1 → 10, called the Thue–Morse sequence. Then we can see that, for all
k ≥ 0, the subword t[2k,2k+11] has one 0 and one 1, and Freq0(t) = Freq1(t) = 1/2.

Theorem 9. Let ω be a fixed point of a primitive substitution ϱ. If the frequency of
all letters exists, then the vector of the frequencies is a non-negative normalized right
eigenvector of the substitution matrix of ϱ, associated with the PF eigenvalue of this
matrix.
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Proof. Let ϱ : A∗
n → A∗

n be a substitution with fixed point w = wa1 for a1 ∈ An, and M
be the substitution matrix of ϱ. We have that

M

freqa1(w)
...

freqan(w)

 = M lim
l→∞

1

card(ϱl(a1))
M l

1
...
0


= lim

l→∞

card(ϱl+1(a1))

card(ϱl(a1))

1

card(ϱl+1(a1))
M l+1

1
...
0


= λ

freqa1(w)
...

freqan(w)

 .

The third equality holds because at least one of the rows of the vector of frequencies
is not zero, then the limit to the infinity of card(ϱl+1(a1))/card(ϱ

l(a1)) exists and it is
denoted by λ. The first equality holds because the frequency of all the letters exists, in
particular freqa1(w)

...
freqan(w)

 = lim
l→∞

1

card(ϱl(a1))
M l

1
...
0

 .

Additionally, there exists an integer h ≥ 1 such that Mh has no eigenvalue diferent of λh
PF

with modulus equal to λh
PF , and there exists an integer p ≥ 1 and a positive number e such

that card(ϱhl(a1)) = elp−1λhn
PF +O(np−1rhn). From this we can deduce that λ = λPF .

We have just seen the meaning of the right PF eigenvector for substitutions. Like-
wise, through some geometric realization using the left PF eigenvector of the substitution
matrix, we will be able to tile the real line.

Definition 10. Consider a primitive substitution rule on a finite alphabet with substi-
tution matrix Mϱ and PF eigenvalue λ. The associated geometric inflation rule with
inflation multiplier λ is obtained by turning the letters ai into closed intervals (the pro-
totiles) with lengths proportional to the entries of the left PF eigenvector of Mϱ, and by
dissecting the λ-inflated prototiles into copies of the original ones, respecting the order
specified by ϱ.

Example 8. Consider the Fibonacci substitution defined in Example 5. Its substitution
matrixMϱ has PF left eigenvector λ = 1+

√
5

2
. Then the substitution rule can be interpreted

as an inflation rule for two prototiles as

3.2 Block substitutions

In the previous sections we were able to give a geometrical interpretation in one dimen-
sion of the substitutios. However, substitution rules can also be used to define objects in



18 CHAPTER 3. SUBSTITUTIONS

higher dimensions. For this, let’s consider block substitutions.

Intuitively, we can think of a block substitution as a map that sends every letter of a
finite alphabet to a d-dimensional rectangular array of letters.

Definition 11. Fix a dimension d and lengths l1, l2, . . . , ld,which are positive integers with
each li > 1. Let Id the set defined by Id = {j = (j1, . . . , jd) | ji ∈ 0, 1, . . . , li−1 for all i =
1, . . . , d}. A substitution S is a map from A× Id into A such that for each element a ∈ A,
it assigns a map Sa : Id → A and for k ∈ Id, the mapping S restricted to the element k
is a mapping from A to A.

As one dimensional substitutions, block substitutions also have an associated matrix
defined in the same way than before.

Example 9. This example is taken from [Fra05].

1. The chair tiling in Figure 2.5 with set of tiles L-triominoes; three squares attached
in a L shape, it can be obtained from the substitution

0 →
(
2 0
0 1

)
, 1 →

(
1 3
0 1

)
, 2 →

(
2 3
0 2

)
, 3 →

(
2 3
3 1

)
.

Its substitution matrix is

M =


2 1 1 0
1 2 0 1
1 0 1 1
0 1 1 2

 .

2. The table tiling can be obtained from the substitution

0 →
(
2 3
0 0

)
, 1 →

(
1 1
2 3

)
, 2 →

(
0 2
1 2

)
, 3 →

(
3 0
3 1

)
,

and it has substitution matrix

M =


2 0 1 1
0 2 0 1
1 0 2 0
1 1 0 2

 .

3.3 Inflation rule of tilings

Definition 12. Consider a finite set {T1, T2, . . . , Tn} of tiles, where each Ti ⊂ Rd is
a compact set with non-empty interior and T ◦

i = Ti. An inflation rule with inflation
multiplier λ > 1 consists of the mappings

λTi → ∪n
j=1Tj + Aji (3.1)

with finite sets Aji ⊂ Rd, subject to the mutual disjointness of the interiors of the sets
on the right hand side and to the individual volume consistency conditions vol(λTi) =∑n

j=1 vol(Tj)card(Aji), both for each 1 ≤ i ≤ n.
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Figure 3.1: Example of a stone inflation. Image credit: [Fra08].

Given an inflation rule we can associate to it a matrix M defined by (Mij)ij =
(card(Aij))ij. This is a non-negative matrix, so the terms irreducible and primitive can
be defined as in Section 3.1.

As we did with the prototiles obtained from the geometric rule of substitutions, we
can choose a specified control point. In this text we work with consistent inflation rules,
i.e., inflations tha map tiles with disjoint interiors in tiles with the same property. A tiling
that is constructed by such an inflation rule will be called a self-similar tiling. When an
inflation rule satisfies equality in Equation (3.1) between the left and the right hand sides,
we call it stone inflation.

Example 10. Consider the set of tiles T = {T1, T2, T3, T4} consisting of a square T1 with
edges of length α = (1 +

√
13)/2, of two rectangles T2 and T3 of edges of size α and 1,

and a square of edges of size 1. Consider the inflation rule in Figure 3.1 with inflation
multiplier α.

Let’s see explicitely which are the maps of the inflation rule and the corresponding
sets Aij. For this, let’s take as control point the left bottom corner and identify it with
(0, 0).

λT1 :

T1 + {(2, 2)}
T2 + {(2, 0), (2, 1), (0, α+ 2)}
T3 + {(α + 2, 0), (0, 2), (1, 2)}
T4 + {(0, 0), (1, 0), (0, 1),
(1, 1), (α + 2, α), (α + 2, α+ 1),
(α + 2, α+ 2), (α, α + 2),
(α + 1, α+ 2)}

λT2 :

T1 + {(0, 0)}
T2 + ∅
T3 + {(α, 0), (α + 1, 0), (α + 2, 0)}
T4 + ∅

λT3 :

T1 + {(0, 0)}
T2 + {(0, 0), (0, α), (0, α+ 1), (0, α+ 2)}
T3 + ∅
T4 + ∅

λT4 :

T1 + {(0, 0)}
T2 + ∅
T3 + ∅
T4 + ∅

So, this rule has the inflation matrix M, and Figure 3.2 is a square-shaped patch of
this stone inflation.

M =


1 1 1 1
3 0 3 0
3 3 0 0
9 0 0 0


Figure 3.2: Iteration of the inflation
rule. Image credit: [BG13].



Chapter 4

Cut and Project Schemes

In this chapter we will explain the projection method. This chapter is mainly based in
chapter 7 of [BG13].

Definition 13. A cut and project scheme (CPS) is a triple (Rd,H,L) with a (compactly
generated) LCAGH, a lattice L in Rd×H and the two natural projections π : Rd×H → Rd

and πint : Rd ×H → H, subject to the conditions that π |L is injective and that πint(L)
is dense in H.

Let’s denote L = π(L). We define the star map of the CPS as the map ⋆ : L → H
given by

x 7→ x⋆ := πint((π |L)−1(x)),

with the image of L under the star map denoted by L⋆. The star map is well-defined since
π is a bijection between L and L with ((π |L)−1(x)) the unique point in the set L∩π−1(x).
Additionally, we can see L as the Minkowski embedding of L,

L = {(x, x⋆) | x ∈ L}.

We can sumarise the definition of CPS in the following diagram.

Rd Rd ×H H

π(L) L πint(L)

L L⋆

π πint

⊂ ⊂

1−1

⊂ dense

⋆

For a given CPS (Rd,H,L) and a set A ⊂ H,

⋏(A) = {x ∈ π(L) | x⋆ ∈ A}

denotes a projection set within the CPS. The set A is called a window.

Definition 14. Let (Rd,H,L) be a CPS according to Definition 13. If W ⊂ H is a
relatively compact set with non-empty interior, the projection set ⋏(W ), or any translate
t + ⋏(W ) with t ∈ Rd, is called a model set. A model set is regular when µH = 0 where
µH is the Haar measure of H. If L⋆ ∪ ∂W = ∅, the model set is called generic.

20
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R R× R R

Z[
√
2] L Z[

√
2]

L L⋆

π πint

⊂ ⊂

1−1

⊂ dense

⋆

Figure 4.1: Cut and project scheme obtained from silver mean substitution.

Example 11. Let d = 1, H = R, π : R× R → R the projection into the first coordinate
and πint : R× R → R the projection in the second coordinate. Now, let’s define the star
map as the algebraic conjugation in the field K = Q(

√
2). In Chapter 1 we saw that,

with the algebraic conjugation, we can define a lattice generated by the vectors (1, 1) and
(
√
2,−

√
2). Let L be the Minkowski embedding. π|L is injective, and Z[

√
2] ⊂ R is dense

in R as represented in Figure 4.1.

Now we will see how this CPS is related to substitutions and tilings. Consider the
silver mean substitution given by

ϱ :
a → aba
b → a.

Its substitution matrix and associated graph are

Mϱ =

(
2 1
1 0

)
, a b

with left eigenvalue λPF = 1 +
√
2.

According to the theory of Section 3.1, we can construct a bi-infinite fixed point as
follows. Consider the legal seed ω(1) = a |a and define ω(i+1) = ϱ(ω(i)) for i ≥ 1. Iterating
we obtain

a |a ϱ−→ aba |aba ϱ−→ abaaaba |abaaaba ϱ−→ . . .
ϱ−→ ω(i) i→∞−−−→ ω = ϱ(ω).

Now, if we set λ = λPF as the inflation multiplier of the geometric inflation rule ac-
cording to Definition 10, we obtain an interval a of length λPF and an interval b of length
1 as in Figure 4.2.

Figure 4.2: Geometric interpretation of the silver mean substitution.

Take the left endpoints of the intervals of length λPF and length 1 obtained in the
image of the bi-infinite fixed point ω under the inflation rule, and denote them by Λa and
Λb. By the property of the fixed point, we obtain the following equation system.

Λa = λΛa ∪̇ (λΛa + (λ+ 1)) ∪̇ λΛb

Λb = λΛb + λ.
(4.1)
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Notice that Λa and Λb are subsets of Z[
√
2]. By applying the star map to the previous

equations, and taking closures we obtain the following equation

Wa = λ⋆Wa ∪ (λ⋆Wa + (λ⋆ + 1)) ∪ λ⋆Wb

Wb = λ⋆Wb + λ⋆ (4.2)

with Λ⋆
a = Wa and Λ⋆

b = Wb

Since |λ⋆| < 1, Equation (4.2) is an iterated funtion system (IFS). By Corollary 1 of
Hutchinson Theorem, this IFS has a unique solution. Let’s try to compute the solution
using SageMath. First we create a function describing the equation system given by the
λ-inflation.

1 R.<sqrt2 > = ZZ[sqrt (2)]

2 def stone_inflation(U,V):

3 s=1+ sqrt2

4 Us=[s*i for i in U]

5 U1_s =[(1+s)+i for i in Us]

6 Vs=[s*i for i in V]

7 EndPoints_a=Us+U1_s+Vs

8 EndPoints_b =[s+i for i in Us]

9 return(EndPoints_a+EndPoints_b)

Afterwards, we apply the star map as in Equation (4.2).

1 R.<sqrt2 > = ZZ[sqrt (2)]

2 def F(U,V):

3 s=1-sqrt2

4 Us=[s*i for i in U]

5 U1_s =[(1+s)+i for i in Us]

6 Vs=[s*i for i in V]

7 EndPoints_a=Us+U1_s+Vs

8 EndPoints_b =[s+i for i in Us]

9 return ([ EndPoints_a ,EndPoints_b ])

Finally, we define the composition of the inflation map that allows us to take the
limit to infinity. In Figure 4.3(a) we can appreciate the results after fourteen iterations,
where each vertical line corresponds to an iteration. The figure only shows the last seven
iterations. And in 4.3(b) we see the solution of the system which is Wa = [

√
2−2
2

,
√
2
2
] and

Wb = [−
√
2
2
,
√
2−2
2

].

1 g=Graphics ()

2 U=[25]

3 V=[1000]

4 for i in range (1,14):

5 U,V = F(U,V)

6 #print("U=",[x.n() for x in U])

7 #print("V=",[x.n() for x in V])

8 if i > 7:

9 g+= points ([(i,x) for x in U], color=’blue’)

10 g+= points ([(i,x) for x in V], color=’red’)

11 g.show()

Let’s denote Λa ∪Λb = Λ and Wa ∪Wb = W . By definition we have that Λa ⊂ ⋏(Wa)
and Λb ⊂ ⋏(Wb). Also, since the the boundary of W is not contained in L then ⋏(W ) =
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(a) (b)

Figure 4.3: Silver mean atractor.

⋏(W ◦). By the substitution we can deduce that the distance between neighbouring points
in Λ is 1 or 1 +

√
2. But the same is true for ⋏(W ◦).

Proposition 4. If x ∈ ⋏(W ◦) is an arbitrary element of the silver mean point set, its
successor to the right is either x+ 1 or x+ 1 +

√
2.

Proof. See [BG13].

We now can prove one of the principal results of this chapter.

Theorem 10. The silver mean point set Λ satisfies Λ = ⋏(W ◦) = ⋏(W ) within the CPS

in Figure 4, with W =
[
−

√
2
2
,
√
2
2

]
. The corresponding identities hold for Λa and Λb as

well, with windows Wa and Wb.

Proof. The second equality is already proven. It remains to prove that Λ = ⋏(W ◦). With
the previous results we showed that these two sets share the property that the distance
between neighbouring points is either 1 or 1+

√
2. If there exists an element x ∈ ⋏(W ◦)\Λ,

this element will create new distances, which is a contradiction. So the sets have to be
the same.



Chapter 5

More examples

The aim of this chapter is to show different examples of cut and project schemes computed
during the study of the theory of the previous chapter. We will start with the well known
Fibonacci substitution, we will continue with the 19 self similar Wang shift and finish
with the Ammann L-shape tile.

5.1 Fibonacci Cut and Project scheme

As we saw in Example 5, the Fibonacci substitution is a primitive substitution defined by

a → ab, b → a, with substitution matrix Mϱ =

(
1 1
1 0

)
and PF left eigenvector λ = 1+

√
5

2
.

We want to construct a fixed point of the substitution to apply the inflation rule
defined in Chapter 3, and in this way to obtain a tiling of the real line. Starting from the
legal seed a|a, an iteration of ϱ gives

a|a ϱ−→ ab|ab ϱ−→ aba|aba ϱ−→ abaab|abaab ϱ−→ abaababa|abaababa
ϱ−→ abaababaabaab|abaababaabaab
ϱ−→ abaababaabaababaababa|abaababaabaababaababa ϱ−→ · · ·

which converges on all positions except the underline one. The latter positions al-
ternates between ab and ba, so that we have created a 2-cycle under ϱ, and hence two
bi-infinite fixed points of ϱ2. Let w be the fixed point of ϱ2 obtained from the seed a|a.
Choose intervals of length λ and 1 for a and b respectively, apply the inflation rule with
inflation factor λ and take the left endpoints as their characteristic points denoted by Λa

and Λb. The geometric fixed point equation for ϱ2 implies the identities

Λa = λΛa ∪̇ λΛb

Λb = λΛa + λ.

Notice that Λa, Λb ⊂ Z
[
1+

√
2

2

]
⊂ K = Q(

√
5), and Z

[
1+

√
2

2

]
⊂ R is a dense subset.

Then considering the algebraic conjugation in K, ⋆ : K → K, by taking closures, we can
transform the previous equations system in

24
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Wa = λ⋆Wa ∪ λ⋆Wb

Wb = λ⋆Wa + λ⋆.

with Wa = Λ⋆
a and Wb = Λ⋆

b .

Since |λ⋆| < 1, each equation of the previous system is a contraction, therefore it is
an IFS, and by Hutchinson theory it has a unique solution given by Wa = [λ − 2, λ − 1]
and Wb = [−1, λ− 2]. We can check this solution using SageMath in a similar way than
in Example 11.

Figure 5.1: Fibonacci windows with Wa in blue and Wb in red.

As we did in Chapter 4, from the geometric inflation rule associated to the Fibonacci
substitution we can define a CPS. For this let d = 1, H = R, and L = {(x, x⋆) | x ∈ Z[λ]}
be the lattice obtained defining the star map as the algebraic conjugation in the field
K = Q(

√
5). Let π and πint be the natural projections in the first and second coordi-

nates, respectively. Then it is clear that π |L is injective and πint(L) = Z
[
1+

√
5

2

]
is dense

in R. Then the CPS corresponding to the Fibonacci substitution is as in Figure 5.2.

R R× R R

Z
[
1+

√
5

2

]
L Z

[
1+

√
5

2

]

L L⋆

π πint

⊂ ⊂

1−1

⊂ dense

⋆

Figure 5.2: CPS of the Fibonacci substitution

By definition, Λa ⊂ ⋏(Wa) and Λb ⊂ ⋏(Wb). But in the same way as in the example
of silver mean substitution, Λa = ⋏(Wa) and Λb = ⋏(Wb). This means that the tiling of
the real line obtained from the geometric inflation rule of the Fibonacci substitution is a
cut and project tiling.

Although this CPS describes the points of the Fibonacci geometric inflation, it is not
unique. If we consider d = 1, L = Z2, H = R, and the projections π : R2 → R defined by
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π(x, y) = λx + y and πint(x, y) = −x
λ
+ y, then this also defines a CPS. In this case the

star map ⋆ : π(L) → H is defined by ⋆ : x → x⋆ := πint((π|L)−1(x)). Moreover,

Λa = π(Z2 ∩ π−1
int(Wa)) = {π(x) | x ∈ Z2, πint(x) ∈ Wa},

Λb = π(Z2 ∩ π−1
int(Wb)) = {π(x) | x ∈ Z2, πint(x) ∈ Wb}.

So, for this case the CPS is summarised in the following figure

R R× R R

Z
[
1+

√
5

2

]
Z2 πint(L)

L L⋆

π πint

⊂ ⊂

1−1

⊂ dense

⋆

Figure 5.3: Another CPS associated to the Fibonacci substitution.

5.2 19 self-similar Wang shift

Wang tiles are square tiles with colored edges with matching condition being edge-to-edge,
and colors on contiguous edges must match and only translations of the tiles are allowed.
Wang tiles were created in 1960 by Wang. The first aperiodic set of Wang tiles was found
by Wang’s student, R. Berger, in 1966. This aperiodic set consisted of 20426 tiles. In the
same year Berger was able to give a smaller aperiodic set of 104 Wang tiles. After that,
several mathematicians have made efforts to find smaller aperiodic sets of Wang tiles.
Some of them are mentioned in the following table.

Figure 5.4: set of Wang tiles.

Authors Size Year

Berger 104 1966
Knuth 92 1968
Robinson 56 1971
Grunbaum et al. 24 1987
Ammann 16 1971
Kari 14 1996
Culik 13 1996
Jeandel and Rao 11 2015

In this section we study the stone inflation of 19 self-similar Wang shift shown in
Figure 5.5, which was provided by Labbé in [Lab19].

Take as characteristic point the bottom left corner of each tile and denotes by Λi the
set of characteristic points of the tile ui for i ∈ {0, . . . , 18}. We can construct a fixed
point of ϱ2 starting from one of the last seven tiles. Applying the stone inflation to the
fixed point we obtain the equation system



5.2. 19 SELF-SIMILAR WANG SHIFT 27

Figure 5.5: Stone inflation of the 19 self-similar Wang shift. Image credit: [Lab19].

Λ0 = λΛ18 + v1,

Λ1 = λ(Λ12 + v1) ∪̇ λ(Λ13 + v1) ∪̇ λ(Λ14 + v1) ∪̇ λ(Λ15 + v1),

∪̇ λ(Λ16 + v1) ∪̇ λ(Λ17 + v1),

Λ2 = λ(Λ11 + v2) ∪̇ λ(Λ18 + v1),

Λ3 = λ(Λ9 + v2) ∪̇ λ(Λ10 + v2),

Λ4 = λΛ17 + v2,

Λ5 = λΛ16 + v2,

Λ6 = λ(Λ8 + v2) ∪̇ λ(Λ13 + v2) ∪̇ λ(Λ15 + v2),

Λ7 = λ(Λ12 + v1) ∪̇ λ(Λ14 + v2),

Λ8 = λ(Λ4 + v3) ∪̇ λ(Λ5 + v3) ∪̇ λ(Λ6 + v3),

∪̇ λ(Λ7 + v3) ∪̇ λ(Λ18 + v3),

Λ9 = λ(Λ3 + v3) ∪̇ λ(Λ14 + v3) ∪̇ λ(Λ15 + v3) ∪̇ λ(Λ17 + v3),

Λ10 = λ(Λ16 + v3),

Λ11 = λ(Λ2 + v3) ∪̇ λ(Λ12 + v3) ∪̇ λ(Λ13 + v3),

Λ12 = λΛ15,

Λ13 = λΛ3 ∪̇ λΛ14 ∪̇ λΛ17,

Λ14 = λΛ7 ∪̇ λΛ11 ∪̇ λΛ13 ∪̇ λΛ18 ∪̇ λΛ8,

Λ15 = λΛ2 ∪̇ λΛ6 ∪̇ λΛ12,

Λ16 = λΛ1 ∪̇ λΛ5 ∪̇ λΛ10,

Λ17 = λΛ0 ∪̇ λΛ4 ∪̇ λΛ9,

Λ18 = λΛ16,

(5.1)

where v1 = (1, 1)T , v2 = (0, 1)T , v3 = (1, 0)T .

The point sets Λi, i ∈ {0, . . . , 18} are subsets of Z
[
1+

√
5

2

]
× Z

[
1+

√
5

2

]
. If we consider

the algebraic conjugation automorphism i : Q(
√
5) → Q(

√
5) that sends

√
5 to −

√
5, we

can define the star map ⋆ : Q(
√
5)×Q(

√
5) → Q(

√
5)×Q(

√
5) by ⋆ : (x, y) → (i(x), i(y)).

So, the corresponding diagonal embedding is L =
{
(x, y, x⋆, y⋆) | x, y ∈ Z

[
1+

√
5

2

]}
. L is

a discrete and co-compact set in R4, therefore it is a lattice and it is generated by the
vectors (1, 0, 1, 0), (0, 1, 0, 1), (λ, 0, λ⋆, 0), (0, λ, 0, λ⋆). Let’s consider the natural projec-
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tion π : R4 → R2 that send a point into the first two coordinates, and πint : R4 → R2 that
send a point into the last two coordinates. Clearly π|L is injective, and since Z[λ] is dense
in R, the product space Z

[
1+

√
5

2

]
×Z

[
1+

√
5

2

]
is dense in R2. Then the CPS corresponding

to the 19 self-similar Wang shift is (R4,R2,L).

Using SageMath we can see where point sets Λi are locate. First we define the stone
inflation and we find the IFS relative to the fixed point. Figure 5.6 shows the points in
the Λi’s sets.

1 from slabbe import Substitution2d

2 from slabbe import GraphDirectedIteratedFunctionSystem as GIFS

3 da = {0: [[17]] , 1: [[16]] , 2: [[15] ,[11]] , 3: [[13] ,[9]] ,

4 4: [[17] ,[8]] , 5: [[16] ,[8]] , 6: [[15] ,[8]] ,

5 7: [[14] ,[8]] , 8: [[14 ,6]], 9: [[17, 3]], 10: [[16, 3]],

6 11: [[14, 2]], 12: [[15, 7],[11,1]], 13: [[14, 6],[11,1]],

7 14: [[13, 7],[9,1]], 15: [[12, 6],[9,1]], 16: [[18, 5],[10,1]],

8 17: [[13, 4],[9,1]], 18: [[14, 2] ,[8 ,0]]}

9

10 wangshift_stoneinflation = Substitution2d(da)

11

12 wang_selfsimilar = GIFS.from_two_dimensional_substitution(

wangshift_stoneinflation)

Figure 5.6: Location of the point sets Λi’s.

Now we apply the Galois conjugation to the Equation (5.1) to obtain the unique
windows Wi that satisfy the IFS.

1 wang_selfsimilar_conjugate = wang_selfsimilar.galois_conjugate ()

2 wang_selfsimilar_conjugate.plot(S=S, n_iterations =10)

The solution of the IFS, Figure 5.7, defines a partition of the plane, which it is re-
ally interesting because each region indicates us where to put the corresponding Wang tile.

Although it seems that the previous stone inflation is not related to the examples
given so far, we will see that it is related with the Fibonacci substitution. Notice that
the tiles obtained under the inflation can be gruped in four subsets of tiles with the
same shape as in Figure 5.8. If we consider equivalence classes as follows ”two letters are
equivalent if they appear in the same column”, then a = [A]col = [C]col = {A,C} and
b = [B]col = [D]col = {B,D}. So, the map {A,B,C,D} → {a, b} that sends each letter
to the corresponding class is well defined, and in the same way the map that maps into
the equivalence classes with respect to the rows.
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Figure 5.7: Solution sets of the IFS determined by (5.1)

With the previous setting a new CPS is defined as follows. Let d = 4, H = R2, L = Z4

and the projections π : R4 → R2 and πint : R4 → R2 given by π : (x1, x2, x3, x4) 7→
(λx1 + x2, λx3 + x4), and πint : (x1, x2, x3, x4) 7→ (−x1/λ+ x2,−x3/λ+ x4).

Figure 5.9 shows that we cannot obtain a fixed point of the stone inflation starting
with the seed of four A squares. Instead, we are able to obtain a fixed point of the square
of the inflation with such seed.

Figure 5.8: Equivalence classes obtained from 19 self-similar Wang shift stone inflation.

Figure 5.9: Fixed point of the square of the inflation of the 19 self-similar Wang shift.

Applying the stone inflation to the fixed point described above, we obtain the equation
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system
ΛA = λΛA ∪̇ λΛB ∪̇ λΛC ∪̇ λΛD

ΛB = λ(ΛA + v1) ∪̇ λ(ΛC + v1)

ΛC = λ(ΛA + v2) ∪̇ λ(ΛB + v2)

ΛD = λ(ΛA + v1 + v2)

(5.2)

with v1 = (1, 0)T and v2 = (0, 1)T .

Given the projections, the star map is defined, so we can apply the star map and
take closures in Equations (5.2) to obtain as unique solution the set Wa ∪ Wb = W =
[−1, λ− 1]× [−1, λ− 1].

5.3 Ammann L-Shape tile

Robert Ammann discovered four new sets of aperiodic tiles commonly denoted by A2,
A3, A4 and A5 [GS87]. The first two sets of Ammann tiles have relation with the golden

ratio λ = 1+
√
5

2
and we will focus in the first set. The set A2 of Ammann tiles contains

two tiles known as L-shape tiles denoted by A- and B-tile.

(a)
(b)

(c)
(d)

Figure 5.10: Ammann aperiodic sets of tiles: (a) A2, (b) A3, (c) A4, (d) A5. Image
credit: [AGS92]

In 1992 Ammann, Grübaum, and Shepard showed in [AGS92] using the recognizability
property that the set of supertiles is aperiodic. The recognizability property says that if a
set P of prototiles satisfies:

1. in evering tiling admitted by P there is a unique way in which the tiles can be
grouped into patches which lead to a tiling by supertiles; and

2. the markings on the supertiles, inherited from the original prototiles, imply a match-
ing condition for the supertiles which is exactly equivalent to that originally specified
for the prototiles,
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Figure 5.11: Inflation rule of the A-, B-tiles.

then P is aperiodic.

The goal of the master thesis is to know if we can use the IFS approach to give a CPS
description of Ammann tilings admitted by the set A2. In this section it is presented
what was achieve.

The set of supertiles or composed tiles has the property that are similar in shape to the
original ones if and only if p/q = (p+ q)/p and r/s = (r+ s)/r, that is, if p/q = r/s = λ.

From [AGS92] we recover the substitution given by the inflation multiplier λ = 1+
√
5

2
.

Since we consider only translations, the set of tiles that it will be consider has eight tiles
which includes the vertical, horizontal and a double reflection of the two original A-, B-
tiles.

From each tile take as characteristic point the point marked in pink in Figure 5.11.
Using the fixed point of the substitution that starts with A1 (see the code at the end to
see the construction of the fixed point using SageMath) we obtain the following equation
system.

ΛA1 = (λΛA3 − v1) ∪̇ λΛB1,

ΛA2 = (λΛA4 − v1) ∪̇ λΛB2,

ΛA3 = (λΛA1 + v1) ∪̇ λΛB3,

ΛA4 = (λΛA2 + v1) ∪̇ λΛB4,

ΛB1 = (λΛA2 − v2) ∪̇ (λΛB2 − v3) ∪̇ (λΛB4 − v1 − v2) ,

ΛB2 = (λΛA1 + v2) ∪̇ (λΛB1 + v3) ∪̇ (λΛB3 + v2 − v1) ,

ΛB3 = (λΛA4 − v2) ∪̇ (λΛB2 + v1 − v2) ∪̇ (λΛB4 − v3) ,

ΛB4 = (λΛA3 + v2) ∪̇ (λΛB1 + v1 + v2) ∪̇ (λΛB3 + v3) ,

(5.3)

where v1 = (0, 2r + s)T , v2 = (2p+ q, 0)T , v3 = (3p+ 2q, 0)T .

To see where are located the points ΛAi
and ΛBi

, i ∈ {1, 2, 3, 4}, we use SageMath.
In the first lines of code we define some linear and affine maps and then we define the
substitution of Figure 5.11 to values p = r = λ, and q = s = 1.

1 from slabbe import GraphDirectedIteratedFunctionSystem as GIFS

2 z = polygen(QQ, ’z’)

3 K = NumberField(z**2-z-1, ’phi’, embedding=RR(1.6))

4 phi = K.gen()
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5 F = AffineGroup (2,K)

6 p = phi; q = 1;s = 1;r = phi

7 phi_matrix = matrix ([[phi , 0],[0, phi]])

8 f1 = F.linear(phi)

9 f2 = F(phi_matrix , vector ([0, -2*r-s]))

10 f3 = F(phi_matrix , vector ([0, 2*r+s]))

11 f4 = F(phi_matrix , vector ([-2*p-q, -2*r-s]))

12 f5 = F(phi_matrix , vector ([-2*p-q, 2*r+s]))

13 f6 = F(phi_matrix , vector ([2*p+q, 2*r+s]))

14 f7 = F(phi_matrix , vector ([2*p+q, 0]))

15 f8 = F(phi_matrix , vector ([-2*p-q, 0]))

16 f9 = F(phi_matrix , vector ([-3*p-2*q, 0]))

17 f10 = F(phi_matrix , vector ([3*p+2*q, 0]))

18 f11 = F(phi_matrix , vector ([2*p+q, -2*r-s]))

19

20 edges = [(’A1’,’A3’,f3) ,(’A1’,’B2’,f7) ,(’A2’,’A4’,f3) ,(’A2’,’B1’,f8),

21 (’A3’,’A1’,f2) ,(’A3’,’B4’,f7), (’A4’,’A2’,f2) ,(’A4’,’B3’,f8),

22 (’B1’,’B4’,f6) ,(’B1’,’B2’,f10) ,(’B1’,’A1’,f1) ,(’B2’,’B1’,f9),

23 (’B2’,’B3’,f5) ,(’B2’,’A2’,f1) ,(’B3’,’B2’,f11) ,(’B3’,’B4’,f10),

24 (’B3’,’A3’,f1) ,(’B4’,’B1’,f4) ,(’B4’,’B3’,f9) ,(’B4’,’A4’,f1)]

25 ammann_IFS = GIFS(K^2,edges)

Once our equation system is defined as an IFS, we set our set of tiles as a the set of
vertices with initial position in the origin. Then Figure 5.12 shows us the location of all
the vertices satisfying the equations.

1 vertices = ammann_IFS.vertices ()

2 S = {v:[ vector ((0,0))] for v in vertices}

3 ammann_IFS.plot(S=S, n_iterations =4)

Figure 5.12

Since the sets of endpoints are contained in Z
[
1+

√
5

2

]
× Z

[
1+

√
5

2

]
, then we can make

the same construction that we did with 19 self-similar Wang shift. Applying the star map
to the equation system (5.3) and taking closure as expressed in the following code, we are
able to obtain the unique solution of the system.

1 ammann_IFS_conjugate = ammann_IFS.galois_conjugate ()

2 ammann_IFS_conjugate.plot(S=S, n_iterations =6)

In Figure 5.13 we can see that the windows that we obtained from the IFS are not
a partition of the plane as it is in Figure 5.7 for the 19 self-similar Wang shift case. So,
from this IFS we can not deduce anything about the point sets ΛAi

, ΛBi
. If we want to
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Figure 5.13

recover the n-th iteration of the inflation it is possible to do it using the definition of the
inflation. Figure 5.14 is the example of the 5-th iteration.

1 from sage.misc.latex_standalone import TikzPicture

2

3 vertices = ammann_IFS.vertices ()

4 S = {v:[] for v in vertices}

5 S[’A1’] = [vector ((0,0))]

6 d = ammann_IFS(S=S, n_iterations =5)

7

8 def tikz_from_dictionary(d):

9 phi =1.6180

10 p = phi; q = 1;s = 1;r = phi

11 lines = []

12 lines.append(r’\begin{tikzpicture}’)

13 for (x,y) in d[’A1’]:

14 x = numerical_approx(x, digits =5)

15 y = numerical_approx(y, digits =5)

16 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,{r+s})

-- ++ ({p},0) -- ++ (0,{-s}) -- ++ ({q},0) -- ++(0,{-r}) -- cycle;’)

17 for (x,y) in d[’A2’]:

18 x = numerical_approx(x, digits =5)

19 y = numerical_approx(y, digits =5)

20 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,{r+s})

-- ++ (-{p},0) -- ++ (0,{-s}) -- ++ (-{q},0) -- ++(0,{-r}) -- cycle;

’)

21 for (x,y) in d[’A3’]:

22 x = numerical_approx(x, digits =5)

23 y = numerical_approx(y, digits =5)

24 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,-{r+s

}) -- ++ ({p},0) -- ++ (0,{s}) -- ++ ({q},0) -- ++(0 ,{r}) -- cycle;’)

25 for (x,y) in d[’A4’]:

26 x = numerical_approx(x, digits =5)

27 y = numerical_approx(y, digits =5)

28 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,-{r+s

}) -- ++ (-{p},0) -- ++ (0,{s}) -- ++ (-{q},0) -- ++(0 ,{r}) -- cycle;

’)

29 for (x,y) in d[’B1’]:

30 x = numerical_approx(x, digits =5)

31 y = numerical_approx(y, digits =5)

32 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,{r+s})

-- ++ ({p+q},0) -- ++ (0,{-s}) -- ++ ({p},0) -- ++(0,{-r}) -- cycle;

’)

33 for (x,y) in d[’B2’]:

34 x = numerical_approx(x, digits =5)

35 y = numerical_approx(y, digits =5)
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36 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,{r+s})

-- ++ (-{p+q},0) -- ++ (0,{-s}) -- ++ (-{p},0) -- ++(0,{-r}) --

cycle;’)

37 for (x,y) in d[’B3’]:

38 x = numerical_approx(x, digits =5)

39 y = numerical_approx(y, digits =5)

40 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,-{r+s

}) -- ++ ({p+q},0) -- ++ (0,{s}) -- ++ ({p},0) -- ++(0 ,{r}) -- cycle;

’)

41 for (x,y) in d[’B4’]:

42 x = numerical_approx(x, digits =5)

43 y = numerical_approx(y, digits =5)

44 lines.append(r’\draw[very thick]’ + f’ ({x},{y}) -- ++ (0,-{r+s

}) -- ++ (-{p+q},0) -- ++ (0,{s}) -- ++ (-{p},0) -- ++(0 ,{r}) --

cycle;’)

45 lines.append(r’\end{tikzpicture}’)

46 return TikzPicture(’\n’.join(lines))

Figure 5.14: Iteration of Ammann substitution.



Conclusion

In this work we provided in Chapter 2 the basic notions about tilings mentioning the
different classes that there exists and some well-known examples. In Chapter 3 we intro-
duced symbolic and geometric substitutions in different dimensions. Moreover, we gave
meaning to the left and right eigenvalue and eigenvector of a substitution matrix. In
Chapter 4 was presented the project method and the cut and project tilings, illustrating
the corresponding definitions with the silver mean substitution. Finally, in Chapter 5 the
goal was to construct different CPS’s using the theory of the previous chapter.

Basically we presented three examples of well-known substitution and set of tiles. In
the last example, the aperiodic Ammann set of tiles A2 we take is the aperiodic set of
supertiles constructed in [AGS92], and the respective inflation rule. From this we obtain
an iteration function system that allowed us to obtained eight compact sets of R2 that
contain all the characteristic points. However, we were not able to describe the sets of
characteristic points of the supertiles as project sets in such a way that the corresponding
sets obtained from the iterated function system (IFS) was a partition. Nevertheless, we
notice that if we make a different choice of characteristic points, the IFS change and
therefore different solutions of the system are obtained. For instance, if we only change
the control point of A1 to choose the point in the upper right corner of the tile, then the
solution of the corresponding IFS is a fractal as shown in Figure 5.15.

Figure 5.15: Solution of the iterated function system obtained from Ammann stone infla-
tion.

So a question remains open. Does there exist a good selection of characteristic points
such that the solution of the associated IFS is a partition?
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