
Università degli Studi di Padova
Facoltà di Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Software tools for philological access of
historical audio documents

Virtual Magnetic Tape Recorder developed using Web technologies

Candidato:
Francesco Anderloni
Matricola 1034160

Relatore:
Prof. Sergio Canazza
Correlatore:
Prof. Antonio Rodà

Anno Accademico 2013–2014

Francesco Anderloni: Software tools for philological access of historical
audio documents: Virtual Magnetic Tape Recorder developed using Web
technologies, Tesi di Laurea Magistrale in Ingegneria Informatica, c©
aprile 2014.

This thesis was formatted with the Tesi Classica LATEX template, by
Lorenzo Pantieri.

http://www.lorenzopantieri.net/LaTeX.html

C O N T E N T S

1 preservation of the musical cultural heritage 1

1.1 Preservation of audio documents 3

1.1.1 Passive preservation 4

1.1.2 Active preservation 4

1.2 Philological Authenticity of audio documents 5

1.2.1 Two Legitimate Directions 6

1.2.2 "To save history, not rewrite it" 6

1.3 The remediation process 7

1.4 Preservation of musical equipment 9

1.4.1 Active preservation of electroacoustic music 9

1.4.2 Active preservation of electrophone instruments
through virtualization 13

1.4.3 Interaction with virtual devices: control param-
eters and interfaces 15

1.5 Instruments for philological access of audio documents 17

2 web technologies and web applications 19

2.1 Web Applications 19

2.1.1 Advantages and disadvantages of web apps 20

2.2 Web Technologies 22

2.2.1 HTML5 23

2.2.2 Web Audio API 26

2.2.3 CSS3 31

2.2.4 Node.js 33

3 magnetic tape recorder virtualization 37

3.1 Requirement Analysis 37

3.2 The Studer A810 Magnetic Tape Recorder 38

3.2.1 Replication of the equalization in the digital do-
main 41

3.2.2 Interface design 45

4 web application development and testing 47

4.1 Software tools used 47

4.1.1 Express.js 47

4.1.2 Jade 48

4.1.3 Yeoman 48

4.2 Back-end development 50

4.3 Front-end development 52

4.4 Testing the application 60

4.4.1 Deployment in the cloud 60

4.4.2 Tests performed 60

iii

iv contents

5 conclusions and future work 63

a code listings 65

bibliography 79

L I S T O F F I G U R E S

Figure 1 Wax phonograph cylinder 2

Figure 2 Vinyl disc 2

Figure 3 Magnetic tape cassette 3

Figure 4 Operational protocol for the remediation pro-
cess 8

Figure 5 Microphone 10

Figure 6 Phonograph 11

Figure 7 Moog Modular synthesizer 12

Figure 8 Roland TR-909 drum machine 14

Figure 9 Minimoog synthesizer 16

Figure 10 Arturia’s MiniV plugin 17

Figure 11 Web app architecture 21

Figure 12 HTML5, CSS3 and JavaScript logos 23

Figure 13 Modular routing with Web Audio API 28

Figure 14 Another example of modular routing 29

Figure 15 Node.js’s event loop 35

Figure 16 The Studer A810. Photo taken at the Centro di
Sonologia Computazionale, Padova. 39

Figure 17 RC networks used in tape equalization 40

Figure 18 Frequency response curves for professional equal-
ization standards 41

Figure 19 Frequency response curves for commercial and
home use tape standards 42

Figure 20 IEC 1 7.5in/s standard 43

Figure 21 IEC 1 15in/s standard 43

Figure 22 IEC 2 7.5 and 15in/s standard, NAB 7.5 and
15in/s standard 44

Figure 23 NAB 3 3.75in/s standard 44

Figure 24 Starting grid for our interface design 45

Figure 25 An intermediate step in the interface design
process 46

Figure 26 Starting work directory for the project 49

Figure 27 Final application structure 51

Figure 28 Application interface 53

Figure 29 Main interface elements breakdown 55

Figure 30 Modular routing graph for the application 57

Figure 31 Modular routing graph connections 58

v

vi List of Tables

Figure 32 Page load performance analysis results - water-
fall view. 62

L I S T O F TA B L E S

Table 1 Recommended Response Time-Constants for tape
equalization standards 42

S O M M A R I O

La conservazione la fruizione dei documenti sonori sono problemi
complessi che richiedono competenze multidisciplinari e un approc-
cio rigorosamente scientifico, ma che sono di fondamentale importan-
za in diversi settori scientifici: musicologico, sociologico, antropolo-
gico e tutte le discipline legate all’Ingegneria dell’Informazione. In
questo lavoro vengono presentati innanzitutto i concetti alla base dei
processi di conservazione filologica del patrimonio culturale musica-
le. Dopo aver introdotto lo stato dell’arte delle tecnologie Web e le
web application, vedremo come la loro diffusione e la loro evoluzione,
con l’introduzione di funzionalità sperimentali, possano essere punti
di forza ai fini di facilitare l’accesso al patrimonio culturale. In par-
ticolare, vedremo come esse possano essere impiegate allo scopo di
realizzare strumenti software utili all’accesso filologico dei documenti
sonori, realizzandone un esempio: il magnetofono virtuale.

A B S T R A C T

The preservation and fruition of audio documenta are complex is-
sues which require multidisciplinary expertise and a rigidly scientific
approach, but are also of paramount importance in various scientific
sectors: musicological, sociological, anthropological and all the disci-
plines related to Information Engineering. In this work we will first
describe the concepts that stand at the very basis of the musical cul-
tural heritage philological preservation processes. Then, after having
introduced the state of art of Web technologies and web applications,
we will show how their diffusion and evolution, with the introduc-
tion of powerful experimental features, can be strengths towards the
purpose of developing useful software tools for granting philiologi-
cal access to audio documents, showcasing an example: the virtual
magnetic tape recorder.

vii

R I N G R A Z I A M E N T I

Ai miei genitori, che mi hanno sempre sostenuto e mi hanno sup-
portato in questo (lungo) cammino universitario, e alle mie sorelle
che sono una parte molto importante della mia vita. Ai nonni, zii,
cugini e parenti tutti.

Agli amici di una vita, quelli con cui sono cresciuto insieme, e
con i quali ancora oggi intraprendo ancora nuove avventure. Agli
amici conosciuti lungo il cammino, a scuola, e a quelli che hanno
avuto il coraggio di sopportarmi per ben 5 anni come coinquilino. Ai
nuovi amici conosciuti durante il periodo universitario, che mi hanno
aiutato a viverlo alla grande.

A tutte le persone che hanno creduto in me, ma anche a quelli che
non ci avrebbero scommesso: traguardo raggiunto!

Padova, aprile 2014 Francesco

ix

I N T R O D U C T I O N

The history of humanity has been perpetuated in documents of dif-
ferent kinds: books, paintings, sculptures, photos, movies are some
examples. All of these constitutes the tangible component of what is
usually referred to as cultural heritage. Audio documents represents a
very important part of the cultural heritage; since the introduction of
recording techniques, in the second half of the 19th century, a lot of
valuable information has been recorded as audio signals on different
supports. Nowadays, audio lives mostly in the digital domain: from
recording to production to storage, almost every phase of the creation
of an audio document is carried out without resorting to physical au-
dio devices. But, during the last century, many audio documents
have been produced on physical supports; and while a small percent-
age was brought to the digital domain, a large part still lives on discs,
tapes or even cylinders only, and is endangered by the inherent degra-
dation process of physical goods. This issue is being tackled by the
archival community, which not only is trying to preserve as much as
possible the original supports, but is also taking action in order to let
the information contained in these documents outlive their carriers.
Maintaining the cultural heritage alive is also important in order to
allow the access to these contents.

The evolution of information technology has been aiding these pro-
cesses, allowing for more efficient preservation techniques and tools,
and the widespread diffusion of the World Wide Web has ultimately
allowed to make all the information contained in multimedia archives
available remotely, revolutionizing the fruition of knowledge.

Web technologies have come a long way since the introduction of
the World Wide Web in 1989, and have already proven to be very
powerful tools to create all kinds of application. With this work, we
will examine how experimental web technologies could allow archive
to make accessible not only the audio documents, but also the devices
needed to experience a philological listening experience. We will also
prototype an application of this kind, the virtual magnetic tape recorder,
describing the tools used, the development process and the features
we were able to achieve.

the first chapter will present the preservation of audio documents,
the issues that have arose in the discussion on the philological
value of re-recordings and the preservation of musical instru-
ments.

xi

xii List of Tables

the second chapter will introduce the state of the art of Web tech-
nologies, examining in details the features that assumed a fun-
damental role in our application’s development process.

the third chapter will present the devices we based our work on,
the Studer A810 magnetic tape recorder. We will discuss the re-
quirement analysis for our application and illustrate our project
design.

the fourth chapter will show the development process behind
the back-end and front-end implementation of the app and briefly
discuss the results of qualitative testing performed in order to
evaluate the capabilities of future developments.

the fifth chapter will finally present our conclusions on the mat-
ter and provide some insights on what possible future applica-
tions could be.

the appendix a will contain code listings for the main components
of our application.

1 P R E S E R VAT I O N O F T H E
M U S I C A L C U LT U R A L H E R I TA G E

We refer to all the information and artifacts created, preserved and
handed down by humanity during its history as cultural heritage. This
includes tangible culture (buildings, monuments, books, paintings..),
intangible culture (languages, traditions, folklore) and natural her-
itage (landscapes, biodiversity) [19]. Preservation of the cultural her-
itage and distribution of information related to it are two of the main
goals of UNESCO, a specialized agency of the United Nations. We The United Nations

Educational,
Scientific and
Cultural
Organization
(UNESCO) "was
created in 1945 in
order to respond to
the firm belief of
nations, forged by
two world wars in
less than a
generation, that
political and
economic
agreements are not
enough to build a
lasting peace. Peace
must be established
on the basis of
humanity’s moral
and intellectual
solidarity" [33].

call musical cultural heritage the particular subset of the cultural her-
itage related to human musical expressions, the results of artistic pro-
cesses, as well as the influxes of music on other cultural fields such
as theater, cinematography, art and so on. This comprises everything
from music sheets to the musical instruments, as well as all the audio
documents, the recordings of musical performances, that allow us to
access the listening experience further down in time after its original
execution. While the first methods of audio recording date back to
the 9th century, when inscribed cylinders were used to play back a
composition on a custom-build organ [64], most of the recordings
dates to the period included between the introduction of the phono-
graph, in the second half of the XIX century, and present times [56].
This interval also coincides with the period of maximum technolog-
ical progress, which resulted in a fast evolution of the technology
related to the creation of audio documents. In the course of roughly
150 years, the recording support of choice moved from cylinders (Fig-
ure 1) to discs (first made of resin, then plastic) (Figure 2) to magnetic
tapes (Figure 3) to optical supports and finally digital drives.

The evolution process was so fast that often a method became the
de facto standard even before actual standards could be introduced
for the previous one. The main advantage of the rapid evolution
of recording methods and supports is the fact that this allowed for
progressively greater sound quality and less expensive production
of supports and recording/replaying equipment, paving the way to
mainstream diffusion of recorded music. The main disadvantage is
that a great quantity of documents remained "stuck" in an older for-
mat and their perpetuation was not followed through, causing their
progressive extinction and sometimes even their disappearance. It is
now evident that something has to be done to maintain the cultural
heritage as alive as possible in order to make its fruition available to
future generations. For some parts of it, a lot of work has already
been done: books and manuscripts have been preserved in libraries
and transcribed to make them available in digital format; art is col-

1

2 preservation of the musical cultural heritage

Figure 1: A wax phonograph cylinder. Source: [55]

Figure 2: A vinyl disc. Source: [73]

1.1 preservation of audio documents 3

Figure 3: A magnetic tape cassette. Source [38]

lected in museums and each piece of art is thoroughly analyzed with
modern techniques in order to extract as much information as possi-
ble to extend its preservation. For musical cultural heritage, the dis-
cussion on what needs to be done is still relatively young. The most
efficient solution proposed involves the use of modern technologies -
specifically, computer science and engineering.

1.1 preservation of audio documents
Audio documents represent a big chunk of all the information that

forms the music cultural heritage. Nowadays we are used to think of
audio recordings as digital files, usually obtained through the Inter-
net, which are easily playable on a great number of devices and are
always accessible. As we saw, though, this has been just the last step
in an evolutionary process that brought Information Technology in
the digital domain. Before that, music recordings have always been A simple scratch on

the surface of a vinyl
disc can make it
unplayable;
oxidation of the
reflective layer on
optical supports
such as CDs and
DVDs will occur
even if they are kept
at rest, causing data
loss.

associated with some kind of physical support, and therefore the vast
majority of audio documents still exists in physical form. These ob-
jects are subject to the unavoidable natural degradation of their phys-
ical qualities, and this fact endangers the information they carry. It is
clear then that audio documents preservation is necessary. How to per-
form this preservation, though, is still a very discussed topic. First
of all, let us define the two main ways an audio document can be
safeguarded:

4 preservation of the musical cultural heritage

1.1.1 Passive preservation
Direct passive preservation involves the actuation of preserving

rules concerning the storing and access of physical, original copies
in order to avoid the main causes of physical carriers deterioration.
These causes are for the most part common to all types of supports,
but the solutions proposed are different, due to the ways the various
types of support handle the effects of each deterioration agent. Typ-
ical causes of deterioration of physical supports include humidity,
temperature, dust and dirt deposits, mechanical deformations and
mold. It is in the best interest of the archive to conserve physical
copies of audio document in a controlled environment where the ef-
fects of these agents are continuously kept under close observation in
order to limit their (inevitable) impact on the supports’ quality and
conservation.

1.1.2 Active preservation
Active preservation involves the implementation of a precise and

defined re-recording process in order to produce copy of the document
on a new support (possibly on a different medium), paired with an ex-
tensive description of any useful data related to the document itself.
This new copy will then substitute the original one in every subse-
quent access in order to preserve the original document as much as
possible, as well as carrying most of the information relative to the
original one when that will not be longer playable.

Direct passive preservation can be carried out only if the main
causes of the physical carriers deterioration are known and conse-
quently avoided [6], and therefore requires knowledge of physics
and chemistry involved for each different type of support. Standard-
ized procedures have been proposed and discussed during the years
and are now currently employed in archives all over the world.

Active preservation is a much more complex topic. The same phys-
ical and chemical knowledge required for passive preservation is
needed, but a more technical understanding of all the theoretical and
practical aspects of sound recording is also necessary, along with mu-
sicological and historic-critical knowledge, essential for the individ-
uation and correct cataloging of the information contained in audio
documents [6]. All these competences would ideally be personified
by a unique figure, the so-called Tonmeister, but it is usually more easy
to have them spread across a multidisciplinary team of experts. This
is one of the main factors that obstruct the safeguard of audiovisual
documents: teams like these are difficult and expensive to form, and
the active preservation process, in order to be carried out correctly, re-
quires time and economical resources. On the other hand, it must be

1.2 philological authenticity of audio documents 5

kept in mind that active preservation will produce copies of the audio
documents that one day will substitute the original ones, therefore it
must be executed correctly in order to preserve as much information
as possible.

The re-recording process has also been the focus of a fervid discus-
sion in the last thirty years, and just recently the audio preservation
community has started to agree on the methods and tools to use. It is
now clear that the remediation process (the operation of transferring
the information from the original medium to another one) should pro-
duce a copy of the document in the digital domain, since other types
of archival media are subject to deterioration themselves (requiring
the repetition of the re-recording process multiple times), and impose
additional difficulties to the access to the information. The discussion
has culminated in the two concepts "preserve the content, not the carrier"
and "distribution is preservation" [6].

1.2 philological authenticity of audio doc-
uments

To fully preserve all the information contained in an audio docu-
ment, both passive and active preservation are needed. The digital
copy obtained through the re-recording process is also used as a mas-
ter to produce access copies. This poses particular attention to the
methods and tools used in the process: unfortunately, this is sub-
ject to electronic, procedural and operative errors, and indulges in
the aesthetic changes of the current times. Therefore, total neutral-
ity in the process of the information transfer is not realistic, putting
the spotlight on the philological problem of the documents authentic-
ity [6]. First of all, in order to preserve as much information as
possible, a standardized re-recording process should be outlined and
presented to the community for discussion. The discussion should be
based around some fundamental philological aspects from the litera-
ture, which describes the levels of interpretation in the re-recording
process and their effect on the philological authenticity of the new
copy. Then, more details about the actual techniques and tools can be
introduced in order to obtain consistent results. This is exactly what
happened in the last decades, with the discussion on active preser-
vation starting with fundamental concepts of philological value to
details regarding the standardization of procedures and tools.

6 preservation of the musical cultural heritage

1.2.1 Two Legitimate Directions
In 1980, with an article titled "The establishment of international re-

recording standards", William Storm tried to define a solution to ad-Storm at that time
was Assistant
Director of the

Thomas A. Edison
Re-recording

Laboratories at
Syracuse University

Libraries [6].

dress the lack of standard procedures for audio restoration. Storm
stated that two legitimate directions, or types of re-recording, are suit-
able from the archival point of view:

1. one that would permit reproduction "as the perpetuation of the
sound of an original recording as it was initially reproduced and heard
by the people of the era" [67], highlighting the double documen-
tary value of re-recording by proposing an audio-history sound
preservation. This method puts the historical conditions and
technology of the era in which the recording was produced
in the spotlight, adding information related to the quality of
recording and reproducing systems of the time, all with the in-
tent of offering a historically faithful reproduction of the audio
signal: "how records originally sounded to the general public" [67].

2. the other would imply a deeper level of restoration to obtain "the
true sound of an artist" and "the live sound of original performers",
permitting the use of "playback equipment other than that orig-
inally intended", as long as it is being proved objective, valid
and verifiable by the researcher [54].

The contents of the article brought attention to the problem, even-
tually generating a discussion that was set to span well over two
decades before any sight of a unified solution.

1.2.2 "To save history, not rewrite it"
Following Storm’s work, Dietrich Schüller formulated new guide-Dietrich Schüller is

a key figure in the
audiovisual archival

community, and is
currently member of

a number of
Austrian and
international

organizations,
including the

Intergovernmental
Council for the

Information for All
Programme of

UNESCO, of which
he is vice president

[59].

lines for re-recording based on a preliminary analysis of the aim of the
process, obtained from a deep study of the technical and artistic con-
tent carried by the recorded composition. These guidelines were sub-
sequently incorporated in an official document commissioned by UN-
ESCO, titled "Safeguarding the Documentary Heritage" [5]. The guide
follows the philosophical approach "save history, not rewrite it": the re-
recording process should guarantee the best quality possible for the
restored signal while limiting the audio processing to the minimum,
in order to preserve the artistic vision of the author. The analysis
should start with an accurate investigation of signal alterations, cate-
gorized in:

• intentional, due to an active action taken by the artist during
or before the recording process, such as equalization and noise
reduction systems;

1.3 the remediation process 7

• unintentional, either effects of the imperfection of the recording
technique of the time or caused by misalignment of the record-
ing equipment.

Then, a re-recording strategy should be established: either follow
a similar approach to Storm’s first legitimate direction, in order to ob-
tain a representation of the audio signal as perceived by the people
of the era (Type A), or manipulate the re-recording process to get as
close as possible to the sound of the recording as it was produced, pre-
cisely equalized for intentional recording equalizations, compensated
for eventual errors caused by misaligned recording equipment and
replayed on modern equipment to minimize replay distortion (Type
B) [5]. It should be noted that Type B re-recordings, while producing
an historically faithful level of reproduction that is preliminary to any
further possible processing of the signal, require the use of compen-
sation derived from knowledge external to the audio signal, there-
fore a certain margin of interpretation of the document is required,
both from historical acquaintance with it and from technical-scientific
knowledge [6]. Finally, a third type of re-recording is defined as Type
C, and sets the guidelines for obtaining an historically faithful repro-
duction of the recording "as produced, but with additional compen-
sation for recording imperfections caused by the recording technique
of the time" [60]. These compensations relate strictly to the area of
equalizations to correct nonlinear frequency response caused by im-
perfect historical recording equipment and must be rigorously docu-
mented by the restorer in the reports which accompany the restored
copy.

1.3 the remediation process
Many different proposal for a standard re-recording methodology

have been introduced and discussed between the end of the 20th cen-
tury and the beginning of the new millennium. Some have been
obtained as a result of years of refining consolidated archival prac-
tices; others have been created from scratch, keeping in mind the
fundamental discussion at the very basis of the problem, to take ad-
vantage of the newest technologies in the field. An example of con-
solidated re-recording and active preservation process is the one pro-
posed and used by the re-recording team of the Centro di Sonolo-
gia Computazionale of the Università degli Studi di Padova. We
will briefly discuss the fundamental aspects on which this particu-
lar process is based as an example of the work involved. First of
all, the team must discuss the philological and choose one of the ap-
proach. Schüller’s Type B is usually the recommended choice as it
allows a good degree of objectivity, since the compensations needed
that are external to the audio signal are obtainable from historical ac-

8 preservation of the musical cultural heritage

quaintance with the document being processed along with technical-
scientific knowledge retrievable from the history of audio technology
- topics that should be well-known among the members of the team
[6]. Then a destination medium should be chosen: the current best
solution is a transposition to the digital domain, which not only al-
lows the conservation of the new copy in a truly non-degradable sup-
port, but also allows the storage of secondary information related toSecondary

information includes
photo and videos of

the original support
and the re-recording

process, as well as
every bit of

information that
could be useful for

the philological
fruition of the

document.

the document along with the audio signal and facilitates the access
to the document itself, thanks to the widespread diffusion of digital
communication technologies. A step-by-step operation protocol must
then be outlined, describing in details the remediation process, articu-
lated in procedures and sub-procedures, that in the end will produce
the preservation copy, the organized data set that groups all the infor-
mation represented by the source document, stored and maintained
as the preservation master [6]. Figure 4 depicts the remediation pro-
cess, in which three distinct steps can be observed; each set can be
split up in several different sub-steps - for example step 1, "Prepara-
tion of the carrier", can be composed of a first procedure of physical
documentation gathering, followed by a visual inspection and a chem-
ical analysis of the support, and concluded by an optimization of the
carrier based on the results obtained from the previous sub-steps.6 Journal of Electrical and Computer Engineering

Original
carrier

Preparation of
the carrier Signal transfer Processing and

archiving
Preservation

copy

Control procedures

Before playback Playback After playback

Figure 1: Scheme of the remediation process, in which three distinct steps can be observed, as well as the set of control procedures applied
during the workflow. Each step is articulated in procedures and sub-procedures.

Table 1: Typologies of analogue mechanical carriers.

Carrier Period Composition Stocks
Cylinder recordable 1886–1950s Wax 300,000

Cylinder replicated 1902–1929 Wax and Nitrocellulose with plaster
(blue amberol) 1,500,000

Coarse groove disc replicated 1887–1960 Mineral powders bound by organic binder
(shellac) 10,000,000

Coarse and microgroove discs recordable
(“instantaneous discs”) 1930–1950s Acetate or nitrate cellulose coating on aluminum

(or glass, steel, card) 3,000,000

Microgroove disc (vinyl) replicated 1948-today Polyvinyl chloride-polyacetate copolymer 30,000,000

vertically. The only exceptions are some soft variants of in-
stantaneous discs.

(4) Dust and Dirt. Dust and dirt of all kinds will deviate the
pick-up stylus from its proper path causing audible cracks,
clicks, and broadband noise. Fingerprints are an ideal adhe-
sive for foreign matter. A dust-free environment and cleanli-
ness are, therefore, essential. For some examples on the effects
on audio signals, see Figures 2 and 3.

2.6.2. Magnetic Tapes. The basic principles for recording sig-
nals on amagneticmediumwere set out in a paper byOberlin
Smith in 1880.The idea was not taken any further until Valde-
mar Poulsen developed his wire recording system in 1898.
Magnetic tape was developed in Germany in the mid-1930s
to record and store sounds.The use of tape for sound record-
ing did not become widespread, however, until the 1950s.
Magnetic tape can be either reel to reel or in cassettes. Table 2
summarizes some types of these carriers.

The main causes of deterioration are related to the insta-
bility of magnetic tape carriers and can be summarized as
follows [25, 27, 29, 31–33].

(1) Humidity.Humidity is the most dangerous environmental
factor. Water is the agent of the main chemical deterioration
process of polymers: hydrolysis. Additionally, high humidity
values (above 65% RH) encourage fungus growth, which lit-
erally eats up the pigment layer of magnetic tapes and floppy
disks and also disturbs, if not prevents, proper reading of
information. Floppy disks have been among the most com-
mon carriers for audio data storage in the field of electronic
music in the 1980s and 1990s of the last century. Composers

Table 2: Types of magnetic tape carriers.

Period Type of
recording Composition

Base: cellulose acetate
1935–1960 Analogue Magnetic pigment: Fe2O3

Formats: open reel
Base: PVC

1944–1960 Analogue Magnetic pigment: Fe2O3

Formats: open reel
Base: polyester

1959-today Analogue Magnetic pigment: Fe2O3
Formats: open reel, compact cassette IEC
I

1969-today Analogue
/digital

Base: polyester
Magnetic pigment: CrO2

Formats: compact cassette IEC II, DCC
Base: polyester

1976–1980 Analogue Magnetic pigment: SLH Ferro (blue tabs,
Type I) and FeCr (red tabs, Type II)
Formats: Elcaset

1979-today Analogue
/digital

Base: polyester
Magnetic pigment: metal particle
Formats: compact cassette IEC IV, R-DAT

usually memorized some short sound objects on floppy
disks, synthesized at low sampling frequency (8–15 kHz).The
study of these musical excerpts is very important from a

Figure 4: Operational protocol for the remediation process. Source [6]

The input of the remediation process is an audio document, and the
expected output is its preservation copy, along with the source docu-
ment ready to be stored again. If each step is carried out according
to the operational protocol, the preservation copy will fulfill the re-
quirements of accuracy, reliability, and philological authenticity [21].
Authenticity is, in fact, the result of a process, it cannot be evaluated
by means of a boolean flag, and it is never limited to the document
itself but extended to the information/document/record system [24].
Finally, particular tools or techniques can be suggested for different
use cases, explaining in which step of the protocol they should be
incorporated and how they should be used. Sometimes these tools
are developed by the team members itself in order to exactly fulfill
the specific requirements of the re-recording process.

1.4 preservation of musical equipment 9

1.4 preservation of musical equipment
Let us think about not only the music generated by the use of instru-

ments, but about the instrument themselves. How should the instru-
ments be preserved? They are physical objects, just as the supports
that store music - so one could argue passive preservation is needed.
This consideration is absolutely right, but poses the same issues we
analyzed with passive preservation of musical recordings: sooner or
later, no matter how good the preserving process is, the instrument
is going to deteriorate, eventually losing the information it carries.

This means it is necessary to delineate an active preservation process,
a way to define and store the information embedded in the instru-
ment in order to make it easily replicable within a certain approxi-
mation. The problem here, though, is much more complex: it is not
sufficient to extrapolate the signal from the support and let it live in
digital form - it is necessary to preserve and recreate the whole struc-
ture of the instrument, starting from its physical components. This
is a work that requires specific knowledge, adequate funding within
institutional frameworks and interdisciplinary collaboration among
several experts in the field [4].

While recordings of sounds and musical performances have been
around since the end of the 19th century, and re-recordings tech-
niques and standards have been discussed since the 1980s, active
preservation of instruments is a much younger problem, especially
for electroacoustics instruments, which have started to gain signifi-
cant cultural importance only in the second half of the 20th century.
Awareness towards this complex issue has raised in recent years, with
the launch of preservation projects such as DREAM , funded by the The Digital

Re-working/Re-
appropriation of
Electro-Acoustic
Music is a EU
funded project,
aimed at preserving,
reconstructing, and
exhibiting the
devices and the
music of the Studio
di Fonologia
Musicale di Milano
della Rai [20].

European Union, with the goal to save at least a part of the huge
cultural heritage of electroacoustic music.

1.4.1 Active preservation of electroacoustic music
We define active preservation of electroacoustic music as the set of

all the actions aimed at keeping alive the musical compositions, by
transferring the recordings and the instruments to the digital domain,
allowing performance and functionality both for musicological re-
search and for philological analysis [4]. We already discussed about
preservation of musical compositions, so in this part we will focus
about two processes strictly related to the instruments: preservation
and restoration. The first is related to the actions aimed at maintain-
ing cultural heritage in its original form, while the second is related
to the actions aimed at making cultural heritage available, following
subjective aesthetic principles [4].

Electronic instruments are usually just a part of the cultural infor-
mation related to a composition: often, they are accompanied by tex-

10 preservation of the musical cultural heritage

tual and graphic materials (scores, schemes), audio documents and
software. All of these must be preserved as well, both actively and
passively, to minimize the loss of the information related to the elec-
tronic music composition. This, however, is relatively easy once a
standardized preservation process has been designed. The hard part
is defining a solid process aimed at transferring the information car-
ried by electronic instruments in the digital domain.

First, let us examine the different types of electronic instruments,
and how their inherent features may relate with the restoration pro-
cess. Electronic instruments differs from traditional ones in many
ways: the use of electric energy as the main sound producing mech-
anism, rapid obsolescence, the dependance on scientific research and
available technology [10]. It is useful to group different types of elec-
tronic instruments in three categories, based on their characteristics:

1. Electroacustic instruments transform the acoustic pressure sig-
nal generated by the vibration of a body into a voltage variation.
The sound is subsequently processed through an amplification
system;

Figure 5: The microphone is the most immediate example of electroacustic
instrument. Source: [41]

2. Electromechanical instruments transform the effect of electrome-
chanical, electrostatic or photoelectric phenomenons generated
by the motion of a tape or a disc into voltage variations. In this
case amplification is needed to make the sound audible;

3. Electronic instruments generates sounds directly by using elec-
tronic components - no acoustic or mechanical vibration is needed.
These instrument evolved with the scientific progress regard-

1.4 preservation of musical equipment 11

Figure 6: A turntable, or phonograph, is an electromechanical instrument.
Source [56]

ing electronic components during the course of the last cen-
tury, gaining the ability to synthesize sounds by using valves,
semiconductors, integrated circuits. They also became more
and more complex with the years, combining more elemental
parts such as oscillators and filters to produce a modular, pro-
grammable and interactive system.

For each of these types, several hundreds or even thousands of
models have been designed and manufactured, and millions of copies
already populate the Earth. Some of those have been released com-
mercially, produced on a larger scale and made available to the gen-
eral public, while some other existed just as prototypes or personal
experiments of dedicated musicians and engineers. From this point
of view, the preservation process must include as much information
as possible about the design and building process of the instrument,
a task that may be easy enough in the first case, given the availability
of official documentation and specifics by the manufacturer, but defi-
nitely harder in the second one. Maintaining original units functional Reusing electronic

components
subtracted from
other devices is a
practice known as
cannibalism [4].

through the years would also be more problematic since the compo-
nents used in the devices are usually custom, or even reused, older
components taken straight from other devices.

In light of the above discussion, we propose to transpose the cat-
egories of passive preservation and active preservation - usually ap-
plied to document preservation - to the field of electrophone instru-
ments. In this context, passive preservation is meant to preserve the

12 preservation of the musical cultural heritage

Figure 7: The Moog Modular synthesizer, an example of electronic instru-
ment. Source: [68]

original instruments from external agents without altering the origi-
nal electronic components, while active preservation involves a new
design of the instruments using new electronic components or a vir-
tual simulation of the instrument [4].

As we saw with the preservation of audio documents, passive preser-
vation is essential for audio equipment too, and every possible mea-
sure should be taken in order to preserve the original instruments as
much as possible, especially when it comes to custom-built devices
that would otherwise disappear from the cultural heritage. That said,
active preservation becomes important too not only because it is the
only way to maintain the knowledge of those instrument after they
inevitably disappear, but for the fruition of that knowledge. Active
preservation with modern techniques, as discussed in this work, may
allow a wide number of users to interact with the replicas, effectively
gaining access to all the information associated with the instrument,
while avoiding to put additional stress on the already frail original de-
vice. The discussion on active preservation of physical devices is very
much open nowadays - detractors argue that it is a pointless practice
due to lack of a standard process of emulation and archiving, the in-
herent loss of information due to approximation of the replicas and
their rapid obsolescence due to rapid improvements in technology.
On the other hand, no other viable solution to the problem has been
proposed and active preservation, if done right, is actually reputed to
be a desirable solution by many experts in the field [4].

1.4 preservation of musical equipment 13

1.4.2 Active preservation of electrophone instruments through vir-
tualization

In the previous section we have seen why the active preservation
of an instrument is far more complex than the active preservation
of recorded music. The fact that the most interesting cases of in-
struments to be preserved are often built from original designs of
expert musician and technicians, combined with the use of different
electrical components and the lack of documentation, make this task
even more daunting. Sure, the specific function of a given instru-
ment could easily be understood and replicated with modern tools,
analogue or digital, but this procedure would generate a loss of in-
formation: all the imperfection of the original instruments are in fact
addictions to the character and timbre of the sounds it generates, and
they have to be replicated as accurately as possible, in order to pre-
serve its identity. What is important to notice is that the fundamental
concept on which active instrument preservation is based is sound syn-
thesis - the same concept that makes the generation of sounds from
electronic instruments possible. In this case, just like for recorded
music, what is necessary to do is transpose this concept in the digital
domain: we are now talking about virtualization of musical instru-
ments. There are different ways to synthesize a sound, and all of
them translate into different ways of virtualization. The are two main
models used to represent and manipulate sound synthesis:

1. The signal based model utilizes simple generators (oscillators,
noise generators, waveform generators) that are subsequently
combined with other components able to apply linear and non-
linear transformations to the signal. The sounds outputted from
the generators can be totally synthetic (e.g. pure sinusoid, white/
brown/pink noise. . .) or waveforms obtained by sampling real
sounds. For example, the famous TR–909 drum-machine (figure
8), developed by Japanese electronic equipment manufacturer
Roland Corporation in the early 80s, was capable of generating
ten drum sounds, seven of which (kick, snare, toms, clap and rim
shot) were synthesized from oscillators and effects, while the re-
maining three (hi-hats and cymbals) were obtained through digi-
tal sampling of actual instruments [17, 58]. The transformation
techniques can be time-based, if they manipulate the generators’
output samples in the time domain, or frequency-based, if instead
they operate on the frequency spectrum of the signals with op-
erations like digital filtering. This model is relatively simple to
implement and manipulate, and has the advantage of offering
complete control to the operator - its main con is that it is quite
limited in its capabilities.

14 preservation of the musical cultural heritage

Figure 8: Roland TR-909 drum machine. Source: [58]

2. The physical based model is based on the actual physical inter-
action that happens between the components of an instrument.
While the signal-based model is used to describe the sound it-
self, as it is perceived by the listener, the physical-based model
utilize physics notions to describe the source of the signal, and
the way it behaves to generate a particular sound. For example,
a guitar could be modeled by providing a system that describes
its vibrating strings and its resonating body, with equations that
permit to obtain the output sound based on the insertion of in-
put parameters (i.e. description of the strings plucking). This
method is rather complex and requires the calculation of large
number of parameters in real time: for this reason it has not
been possible to realize an efficient implementation until re-
cently, when the computing power of CPU became sufficient
to quickly calculate the large number of values that constitute
the numeric solution of the physical model’s equations.

As we said, an accurate replication of all the dynamics involved
in the generation of a sound from a custom analogue device in the
digital domain should include possible imperfections and erratic be-
haviors, since they are part of the identity of the instrument itself. For
this reason, the signal-based model often isn’t enough flexible for a
faithful virtualization. Implementing each component of the instru-
ment with an accurate physical model, on the other hand, could make
the replication of the exact physical interactions happening during
the generation of the sound, and is therefore the preferred method.
In cases where the sound-producing (or sound-processing) device
to be simulated is an analogue electronic system, rather than a me-
chanical or acoustic system, the term “virtual analogue synthesis” is

1.4 preservation of musical equipment 15

commonly used to refer to physically-based sound synthesis of these
devices [4].

1.4.3 Interaction with virtual devices: control parameters and inter-
faces

One of the advantages of using the physical-based model to real-
ize the generation of sound in virtualized instruments is that control
parameters (i.e. the variables that contribute in producing a variation
of the sound) are hard-wired in the sound synthesis scheme, as it is
part of the equations that originated the synthesis algorithm. This al-
lows a more natural interaction with the virtualized instrument itself,
provided that an interface resembling the original device is present.

We call user interface the part of an instrument which interacts with
the player in order to produce a particular sound [61]. For traditional
instruments, the user interface is usually immediately recognizable as
it has been developed over a long time and it has entered common
knowledge. For electronic instruments, interfaces can be more com- In a piano, for

example, the
interface consists of
the keys and the
pedals that allow the
musician to play a
certain note. The
whole piano itself is
part of the interface
in the sense that it
produces the sound.

plex and their comprehension is usually not as immediate as with
traditional instruments. There is not a direct correlation between the
shape of an electronic instruments and its sound, nor there are stan-
dardized ways of accessing a particular control. Some electronic in-
struments partially resemble traditional instruments: for example, a
great number of synthesizers sports keys just like a piano that achieve
the same exact effect (play a determinate note with a certain velocity),
though they are usually accompanied by a multitude of other con-
trols to manipulate the sound’s parameters. There are knobs, switches,
faders, pads, resistive and capacitive touch sensors. . . Each of those has
a particular function - we say there is a mapping between that part
of the interface and a parameter in the sound generation. For exam-
ple, if a knob controls an oscillator the mapping is represented by the
connection between the motion of the knob and the behavior of the
oscillator. Mapping is a crucial part of designing the interface of an Twisting the knob

that controls the
frequency of an
oscillator can
provide both a tactile
and a visual feedback
(the sound changes
in real time), as well
as a visual feedback
depending on the
interface (for
example, if there is a
display showing the
oscillator frequency
in Hertz).

instrument: it is extremely important for mapping strategies to be nat-
ural, understandable and intuitive. It is also important that the action
performed by the user provides an immediate feedback, be it auditory,
tactile or visual [61].

When we consider virtualized instruments, it is important not only
to replicate the sound of their original counterparts, but also build
an interface that can provide a comparable experience for the users.
Interfaces for virtual instruments can be made with physical compo-
nents similar to the ones used in the original devices, laid out in an ac-
curate replication of the original design, and providing the same map-
ping and the same feedback. In this case, the only difference between
the original instrument and its virtual version would be the lack of
the original internal components, emulated by the physical-model

16 preservation of the musical cultural heritage

representation running on a calculator. If it is possible to “hide” the
calculator behind the interface, then it is possible to obtain a virtual
device that sounds, looks and feels just like the original one, which
is the full accomplishment of the goal of researches on this subject.
Sometimes, though, it is not possible (or it is simply easier) to realize
a physical interface for virtual instruments. In these cases a virtual
interface is then provided: an implementation of the mapping of the
instrument’s parameters that also resides on the calculator running
the emulation. This implementation can be visualized on a screen,
and the parameters can be manipulated using the calculator’s stan-
dard input methods (mouse, keyboard, trackpad. . .) or devices more
suitable such as MIDI controllers. This is the case for a great number
of commercial products that emulate the sounds of classic electronic
equipment for use in digital music production - the so-called plug-
ins. These pieces of software bundles together the sound generation
virtualization and the interface emulation and can be used in Digital
Audio Workstation software. Usually the software house that developsThere are different

standard used in the
production of

plugins, the most
notable ones being

Virtual Studio
Technology (VST,

[74]) and Audio
Units (AU, [3]).

a plugin works closely with the original manufacturer in order to get
every aspect of the virtualization right; for the interface, a skeumorphic
approach is often used, replicating the original design of the instru-
ment in detail. Figure 9 shows a classic vintage synthesizer, the Min-
imoog, produced by Moog Music between 1970 and 1981. Its plugin
version, commercialized by software house Arturia with parternship
with Moog Music, is shown in figure 10. All the original controls that
constituted the original interface are immediately recognizable in the
virtual interface.

Figure 9: The Minimoog synthesizer. Source: [42]

1.5 instruments for philological access of audio documents 17

Figure 10: Arturia’s MiniV plugin. Source: [43]

1.5 instruments for philological access of
audio documents

There is a particular subset of audio equipment which undertakes
additional importance from the functionality they provide: recording
and replaying systems. They are important pieces in the creation and
fruition of audio documents, and their impact on the signal being
recorded or reproduced is definitely not negligible. In fact, as dis-
cussed in section 1.2 , these instruments, being part of the original
recording processes of musical performances of all kind, become part
of "the sound of the artists" itself, other than being a reflection of the
technological capabilities of the era. As we saw, a lot of audio docu-
ments, before being subject to active preservation measures, exist only
in physical form, most of the times on a particular type of support
or format - discs, tapes, optical supports etc. Each different format
requires a different replaying system, and sometimes even different
versions of the same format requires completely different systems.
Vinyl records, for example, are meant to be reproduced at a fixed ro-
tation speed, and therefore require a phonograph able to operate at
that specific speed. Recording and replaying standards have been in-
troduced during the years for all kinds of different supports, but for
practical reasons their number is still fairly large, and this caused the
design and commercialization of many different instruments. While
one could argue that these pieces of audio equipment have less cul-
tural value than actual electronic instruments that produces distinct
sounds, and they are not as endangered as custom-build electronic
instruments due to their more widespread diffusion and more effi-
cient conservation (the most important are still functional and actively
used in recording studios all over the world), they are subject to the
same deterioration problems discussed in the previous section and

18 preservation of the musical cultural heritage

therefore should be actively preserved as well. Adding the fact that
nowadays recording technologies and techniques are progressively
shifting towards the digital domain, with analogue equipment being
used less and less by professionals in the industry, and that physical
replaying systems are almost extinct due to the diffusion of digital au-
dio files that can be reproduced on a variety of multi-purpose devices,
the issue at hand becomes even more relevant. Active preservation
of this class of instruments then acquires notable relevance not only
for the reasons discussed in the previous section, but also as a way
to make these (often rare and expensive) instruments more accessible
to the general public, allowing a truly philological access to audio
documents. In fact, the digital access copy of an audio document
could be paired with the digital emulation of the instrument(s) that
would be required to reproduce the physical copy of the document
revolutionizing the access procedure for archives, and most notably,
eliminating the need to locate both the original support and the re-
playing system.

2 W E B T E C H N O LO G I E S A N D W E B
A P P L I C AT I O N S

The first web applications were introduced to take advantage of the
widespread diffusion of the Internet and the constantly increasing ca-
pabilities of web browsers, which allowed the evolution of Web tech-
nologies both on the server and the client side.

Nowadays, with Internet connectivity spreading out to more and
more devices, the possibility to develop a multi-platform application
that can leverage the potential of Web standards and offer a rich ex-
perience while providing a uniform user experience across different
devices is a crucial decision factor in the design and development of
applications of all kinds.

The standardization of some of these technologies by overseeing
organizations coordinated by the World Wide Web Consortium, paired
with the constant efforts of the developers community, keeps the inter-
est in producing new pieces of software that enhance the capabilities
of web applications high, and allows the introduction of new features
that can subsequently become largely adopted.

In this section, we will define the general aspects that characterize
web applications, as well as introducing the main Web technologies that
were vital for the development of our project, the HyperText Markup
Language revision 5 (HTML5), which introduced experimental features
related to audio management in the browser we adopted to satisfy
our project requirements, and Node.js, a back-end framework for web
applications.

2.1 web applications
A web application or web app is any application software that runs

in a web browser or is created in a browser-supported programming
language (such as the combination of JavaScript, HTML and CSS) and
relies on a common web browser to render the application [79].

Usually, a web application is composed of several different tiers,
each assigned to a different role in the application’s structure. By def-
inition, the presentation tier is managed by the web browser through
a rendering engine which translates client-side code to a user interface.
The browser can also run client-side business logic to modify the con-
tent on the page or to communicate with a server, usually using a
scripting language such as JavaScript. The other tiers usually reside
on a remote infrastructure which interacts with the client in order to
provide data (storage tier) and perform calculations (business logic tier).

19

20 web technologies and web applications

This general definition is by no mean always applicable, as there can
also be a various number of intermediate tiers performing different
tasks.

The simplest type of architecture that can be realized with this tier
structure is the so-called “dumb terminal”, where all the elaborations
are made on the server and the client just provide an interface for
visualizing results and issue commands. Given the capabilities of
modern web browser, the unusual “dumb server” architecture could
also be implemented, with all the elaboration done client-side and
the server performing only as data storage. These two, though, are
limit cases and generally web applications divide their load on both
the client and the server, to optimize execution and communication
performance [79].

Web applications exploit the ever-growing capabilities of browser
engines and web technologies to provide rich user interfaces on the
client side. For this reason, the design and implementation of the
client side of the application are realized using HTML and CSS for
content organization and displaying and JavaScript for dynamic script-
ing, being these the standard for the Web industry.

Implementation of server-side business logic, on the other hand, is
possible with a wide selection of different technologies and program-
ming languages, ranging from solid enterprise solutions to indepen-
dently developed experimental frameworks. The same goes for data
storage, with different types of databases and management systems
interoperable with almost any business logic structure thanks to the
work of programming companies and independent developers.

For both these aspects, it is interesting to note the impact of the
open source culture in software development, which has made the cre-
ation and maintaing of important pieces of software possible. The
evolution of the so-called Cloud Computing also helped the shift to-
wards web applications and web services, with IaaS (“Infrastructure
as a service”), PaaS (“Platform as a service”) and SaaS (“Software as
a service”) functionalities becoming easier and cheaper to adopt [12].

2.1.1 Advantages and disadvantages of web apps
The only requirements for running a web application are a web

browser and the presence of an active network connection, both vastly
diffused. Web browsers exist for a great number of different hardwareIn 2013, the number

of devices connected
to the Internet

exceeded 10 billion.
Analysts expect the

number of connected
objects to reach 50

billion by 2020 [13].

and software platforms, making web apps cross-platform compatible
“out of the box”.

Since there is no “installation” process, web apps are usually easier
to use and set up even for inexperienced users. The fact that up-
grades, maintenance and introduction of new features are performed
on the server and automatically rolled out means that the end users
don’t have to worry about keeping the app “up to date”. On the other

2.1 web applications 21

Figure 11: Representation of the architecture of a web app.

22 web technologies and web applications

hand, they have to make sure to use a recent version of their web
browser of choice in order to be able to support all the newest fea-
tures provided by the Web standards. This is an issue that proves
to be more serious than one would expect, therefore web apps devel-
opers often have to make sure that their applications are supported
by the vast majority of web browsers, including outdated ones, by
disabling advanced features or recurring to fallbacks.

Another big advantage of web applications is the fact that most of
the application data and computation usually resides on the server,
making them perform decently even on outdated client hardware;
since the data is stored remotely, syncing functionalities can be intro-
duced to make it accessible from different devices.

Even with the introduction of various solutions to overcome the “al-
ways online” requirement, though, web applications inherently fall
short when there is no connection available. Despite the continuos
evolution of web technologies it is still difficult to reach the level of
efficiency and usability of native applications (i.e. programs devel-
oped for a specific platform). Another disadvantage is the loss ofFamous web

applications such as
Facebook and

Youtube
experienced negative
feedbacks from their
users after interface
layout changes [23].

control on customization and the lack of flexibility for the end users,
which are forced to adopt each change introduced by the developer(s),
since the code resides on the server. For these reasons, web applica-
tions users are often susceptible to unwanted modifications, creating
a volatile market where it is hard for companies to retain a satisfied
user base.

2.2 web technologies
With the term web technologies we refer to all the software and hard-

ware components that allow the communication between two devices
over a network. Client-side, web technologies mostly comprise of
software tools and frameworks which leverages on the three main
building blocks of the Web, the HyperText Markup Language (HTML),
Cascading Style Sheets (CSS) and the JavaScript scripting language. The
first have sustained an increasing standardization process overseen by
the World Wide Web Consortium, an institution composed by member
organizations which maintain full-time staff for the purpose of work-
ing together in the development of standards for the World Wide Web
[78].

In addition, a great number of third party tools and libraries has
been developed by third party organizations and independent pro-
grammers, and has been released either as commercial products or
distributed free of charge on the Internet. Notable examples includeAsynchronous

JavaScript and
XML is a technique

used to create
asynchronous web

apps [1].

jQuery, a JavaScript library to facilitate manipulation of the DOM and
add functionalities such as AJAX, which is open sourced and released
for free under the MIT License [35], CSS frameworks such as Boot-

2.2 web technologies 23

Figure 12: The official HTML5 logo, and two unofficial CSS3 and JavaScript
logos.

strap, maintained by Twitter’s developers [71], and tools to aid the
application design and development process such as the Dev Tools
included in Google’s web browser Chrome [11].

On the server-side, technologies are implemented using a variety
of programming languages and design models. Languages such as
PHP, Ruby, Perl, Python, as well as Enterprise Java (J2EE) and Mi-
crosoft.NET Framework, are used by developers to output data dy-
namically using information from files and databases [79]. Server-
side web technologies include back-end frameworks, such as Ruby
on Rails or node.js, server software, such as Apache Tomcat or nginx,
database management systems, middleware for handling the coordi-
nation of the application over distributed servers, and many other
pieces of software, as well as optimized runtime environments and
operating systems tied to the hardware implementation of the server’s
architecture. Giving a thorough description of all these is difficult
given the great number of components that could be catalogued as
“Web technologies”; therefore, in the following sections we will dis-
cuss only the ones that were vital in the development of our project,
mainly HTML5 for the client side and Node.js for the server side.
Other third party tools and frameworks will be shortly described with
their use cases in chapter 4.

2.2.1 HTML5
HTML5 (HyperText Markup Language version 5) is the fifth revi-

sion of the HTML standard, which defines the markup language used
to structure and present content for the World Wide Web. HTML
allows users to explicitly declare how the content present on their

24 web technologies and web applications

webpages should be organized in a standardized way thanks to use of
HTML elements. These elements are represented by tags, keywords en-
closed in angle brackets, that commonly appears in opening-closing
pairs which holds part of the content: for example, the code line

<h1>This is a header</h1>

shows a h1 tag which encloses the phrase “This is a header”. The h1The backslash (“/“)
in the second h1 tag

makes it a closing
tag, while the first

h1 tag is the opening
tag of the pair.

tag is used to indicate that the content included between the opening
and closing tag is a header, and it is just one of many kinds of tag
available to structure and organize content on the page. Tags are used
to standardize the representation of the document: each web browser
will render the page in the same way, i.e. a h1 header will always
appear as a header.

HTML tags allow the use of multimedia content (such as pictures,
audio and video files) and hyperlinking, the use of hypertext to link
other web pages or content to the current displayed page.

The first version of HTML dates back to 1990–1991, when physicist
Tim Berners-Lee of CERN proposed the adoption of the standard for
research documents. In 1993 Berners-Lee filed a proposal draft for
the first HTML specification, backed by the IETF (Internet Engineer-
ing Task Force, an organization that coordinates a large number of
working and discussion groups on web-related topics); in 1995 the
IETF completed the work on HTML 2.0, the first HTML specification
intended to be treated as a standard [28]. Since 1996 the HTML spec-
ifications have been maintained by the World Wide Web Consortium.
The W3C and the Web Hypertext Application Technology Working
group started the renewal work for HTML5 in 2004, 4 years later
the last updates to the incumbent web standards, HTML 4.01 and
XHTML 1.01 [32].

The term HTML5 is usually used to represent two different con-
cepts:

• the new version of the HTML markup language, which includes
new elements, attributes, and behaviors;

• a larger set of technologies that allows more diverse and pow-
erful Web sites and applications. This set is sometimes called
HTML5 & friends and often shortened to just HTML5 [30].

New elements have been introduced to enrich the semantic content
of documents (such as the <article> or <section> elements) and
improve the use of rich media (specific <audio> and <video> tag, as
well as support for Math Formulas and vector graphics). Some older
elements have been improved and standardized to grant uniform be-
havior across all browsers, and others have been completely removed
and taken over by newer ones. The Document Object Model (often

2.2 web technologies 25

shortened as DOM), the tree representation of any X/HTML docu-
ment, assumes much greater relevance in HTML5 and its manipula-
tion is being made more immediate thanks to the introduction of new
APIs that can be used with JavaScript. These new APIs extend and
improve the already existing interfaces and make for a dramatically
more dynamic web experience, with functionalities like 2D and 3D
drawing, media playback and in-browser application support [32].

Canvas

Added in HTML5, the HTML <canvas> element can be used to
draw graphics via scripting in JavaScript. For example, it can be used
to draw graphs, make photo compositions, create animations or even
do real-time video processing or rendering [45], through the use of
the Canvas 2D Context API [75]. Canvas was initially introduced by
Apple for use inside their own Mac OS X WebKit component in 2004

and was adopted by other web browsers vendors in the following
years, along with the initiation of the standardization process by the
Web Hypertext Application Technology Working Group (WHATWG)
on new proposed specifications for next generation web technologies
[9]. It is currently in Candidate Recommendation state [75] . A Candidate

Recommendation is
a document that
W3C believes has
been widely
reviewed and
satisfies the Working
Group’s technical
requirements [77].

Essentially, the canvas element is a rectangular area on the screen
that you can draw into [39]. The 2D Context API gives you the possi-
bility of drawing lines, shapes, images and text, or to apply transfor-
mations to drawn elements or add effects such as shadows [75].

Canvas is lower level than other drawing methods such as the SVG
Vector API, so you can have more control over the drawing and use
less memory, making it a great choice for charts, graphs, dynamic
diagrams, and interactive interfaces, such as video games [39]. The
major disadvantage is that usually it requires more lines of code, al-
though this can be mitigated by the use of additional libraries built
on top of the main API.

Canvas is one of the new features introduced as part of the HTML5

specification that is supported by the vast majority of web browsers:
complete or partial support is provided in web browsers used by
almost 90% of the global users at the time of this writing [8].

Audio

The <audio> element is used to represent sound content in docu-
ments without recurring to third party plugins. Added as part of
HTML5, it may contain several audio sources, represented using the
src attribute or the <source> element; the browser will choose the
most suitable one. Fallback content for browser not supporting the The Media

Element
specification was
defined in order to
add other compliant
elements later on.

element can be added too [44]. <audio> falls under the Media Ele-
ment interface definition along with another element introduced in
HTML5, <video>, sharing the same attributes. Their attributes spec-

26 web technologies and web applications

ify the behavior of the element: in particular, it is possible to decide if
the reproduction of the audio source should be controlled to the user
agent’s default controller, or if the author has provided its own using
the associated scripting directives; an element could play its source
sounds as soon as the page finishes loading thanks to the autoplay

attribute; there are also attributes that regulates reproduction of the
sound such as loop and muted.

The source of the sound playing in each <audio> element should
be declared as the value of the src attribute, or with one or more
<source> children element(s). The latter solution is recommended
to provide multiple copies of the same file encoded with different
codecs in order to implement a fallback chain. Not all browsers, in-Video codecs and

audio codecs are
used to handle video

and audio, and
different codecs offer

different levels of
compression and

quality. A container
format is used to

store and transmit
the coded video and

audio (both together,
the case of a video

with a soundtrack)
[40].

tact, support the playback of all the common codecs used. In fact, the
adoption of HTML5 audio and video has become polarized between
proponents of free and patented formats [29]. Currently, different
web browsers supports different subsets of the proposed codecs pool,
which includes the royalty-free WebM and Ogg Vorbis formats and
more popular formats such as MP3 and AAC [40]. HTML5 also pro-
vides an implementation for displaying synchronized text (such as
captions) for Media Elements through the use of children elements.

2.2.2 Web Audio API
Web Audio API is high-level JavaScript API for processing and syn-

thesizing audio in web applications. The goal of this API is to include
capabilities found in modern game engines and some of the mixing,
processing, and filtering tasks that are found in modern desktop au-
dio production applications [15]. The design and development pro-One notable example

is the Audio Data
API that was
designed and
prototyped in

Mozilla Firefox.
Mozilla’s approach

started with an
element and
extended its

JavaScript API with
additional features

[63].

cess followed previous attempts by independent developers, which
created third-party implementations of similar concepts to overcome
the limitations of audio management in modern web browsers. The
result is a versatile API that can be used in a variety of audio-related
tasks, from games, to interactive applications, to very advanced mu-
sic synthesis applications and visualizations [63].

The APIs have been designed with a wide variety of use cases in
mind. Ideally, they should be able to support any use case which
could reasonably be implemented with an optimized C++ engine
controlled via JavaScript and run in a browser. That said, modern
desktop audio software can have very advanced capabilities, some of
which would be difficult or impossible to build with this system. Nev-
ertheless, the proposed system will be quite capable of supporting a
large range of reasonably complex games and interactive applications,
including musical ones. And it can be a very good complement to
the more advanced graphics features offered by WebGL. The API has
been designed so that more advanced capabilities can be added at a
later time [15].

2.2 web technologies 27

Main Features

The W3C Audio Working Group is actively working on Web Audio
API; the progress have been documented in a series of working drafts
on the W3C website and is open for community discussion. The
W3C Technical Report Development Process will eventually produce
a recommendation that will phase through different stages of maturity
before receiving the endorsement of the W3C Members and the Di-
rector [77]. The latest published working draft is the fifth on the spec-
ification, and was published on the 10th of October, 2013 - although
minor updates have been subsequently issued [15].

The main features introduced up to this point include processing
of audio from different sources such as an audio or video media
element, a remote WebRTC stream, or the user’s camera and micro- WebRTC is a free,

open project that
enables web
browsers with
Real-Time
Communications
(RTC) capabilities
via simple
JavaScript APIs
[82].

phone; audio synthesis and processing directly in JavaScript as well
as through the use of pre-built structures that allow the user to eas-
ily access a library of effects, wave generators and waveshaping tools;
modular routing for simple or complex mixing/effect architectures,
including multiple sends and submixes; automation of audio param-
eters for envelopes, fade-ins/fade-outs, granular effects, filter sweeps,
LFOs etc.; flexible handling of channels in an audio stream, allowing
them to be split and merged; spatialized audio supporting a wide
range of 3D games and immersive environments; efficient real-time
time-domain and frequency analysis/music visualizer support [15].

Modular routing

The Web Audio API is built around the concept of an audio context.
The audio context is the main element of the specification, and it is
implemented by the AudioContext interface. In practical terms, the
audio context is a directed graph of nodes that defines how the au-
dio stream flows from its source to its destination. As audio passes
through each node, its properties can be modified or inspected [63].
These nodes are implemented by the AudioNode interface, which de-
scribes the main characteristics each node must possess. Let us ex-
amine how the implementation works: the AudioContext interface
represents a set of AudioNode objects and their connections. It al-
lows for arbitrary routing of signals to the AudioDestinationNode

(what the user ultimately hears). Nodes are created from the context
and are then connected together. In most use cases, only a single
AudioContext is used per document. Figure 13 depicts the process
of creating and connecting the AudioNodes in an AudioContext for
the simplest structure available, a direct connection between a source
node and a destination node. Figure 14 depicts a more intricate rout-
ing graph with different kinds of nodes connecting multiple sources
to manipulation nodes and finally to the destination node.

28 web technologies and web applications

(a) Creation of the AudioContext.

(b) Creation of two AudioNodes.

(c) Connection of the two AudioNodes.

Figure 13: Modular routing with Web Audio API.

Audio Nodes

Audio nodes are created using the create method of the AudioContext
interface. In the current implementation, there is a specific method
for each type of node. Each node can have inputs and/or outputs:
for example, a source node has no inputs and a single output, while
an AudioDestinationNode has one input and no outputs and repre-
sents the final destination to the audio hardware. Most processing
nodes such as filters will have one input and one output. Each type
of AudioNode differs in the details of how it processes or synthesizes
audio but, in general, each AudioNode will process its inputs (if it has
any), and generate audio for its outputs (if it has any) [15].

Each output has one or more channels. The exact number of chan-
nels depends on the details of the specific AudioNode. An output may
connect to one or more AudioNode inputs, thus fan-out is supported.
An input initially has no connections, but may be connected from one
or more AudioNode outputs, thus fan-in is supported. Each AudioNode

input has a specific number of channels at any given time. This num-

2.2 web technologies 29

Figure 14: A more complex example of modular routing with Web Audio
API. Source: [15].

ber can change depending on the connection(s) made to the input. If
the input has no connections then it has one channel which is silent
[15].

For performance reasons, practical implementations will need to
use block processing, with each AudioNode processing a fixed number
of sample-frames of size block-size. In order to get uniform behavior
across implementations, this value has been defined explicitly: block-
size is defined to be 128 sample-frames which corresponds to roughly
3ms at a sample-rate of 44.1KHz [15].

Connection between nodes is performed using the connect() method,
which accepts the name of the node we want to connect to as a pa-
rameter. In the example of figure 13, the connection is performed
by executing Source.connect(Destination);. Connections can also
be removed by calling the disconnect() method, which operates in
a similar way. There are different kinds of audio nodes that can be
routed together to form the desired audio graph. We can arrange
them in four main groups based on their role in the routing graph:

1. Source Nodes are used to generate sounds in the AudioContext.
The source of the sound can be an audio asset stored in memory
(represented by an AudioBuffer object), for which an AudioBuf-

ferSourceNode is used; the content of an audio or video HTML
element, for which a MediaElementAudioSourceNode is used; a
MediaStream, for which a MediaStreamAudioSourceNode is used.
It is also possible to generate a periodic waveform sound using
the OscillatorNode, which allows the user to define the type

30 web technologies and web applications

of waveform (sine, square, sawtooth, triangle or custom) and the
wave frequency in Hertz;

2. Modification Nodes accept one or more inputs and operate lin-
ear or non-linear transformations on the signal which is then
outputted. Examples are the GainNode, which alter the level(s)
of its input signal(s), the BiquadFilterNode, which allows sim-
ple filtering using a second-order filter structure of which it is
possible to define the type of filtering (low-pass, high-pass, band-
pass, notch and others) and filtering parameters such as the
cut/center frequency and the Quality factor, and the DelayNode,
which allows to delay the input signal by a certain amount of
seconds. Two particular modification nodes are the ConvolverNode,
which allows to apply a linear convolution effect to the signal
given an impulse response saved as a .wav PCM file, and the
ScriptProcessorNode, which allows to operate directly on the
samples of the input signal using JavaScript;

3. Analysis Nodes operate as pass-through nodes (the audio stream
is passed un-processed from input to output) and provide infor-
mation regarding their input signals. The AnalyserNode, for ex-
ample, can provide real-time frequency and time-domain anal-
ysis information using the getByteFrequencyData() and
getByteTimeDomainData() methods;

4. Destination Nodes gather the final signal obtained through
the routing graph and send it to a specific destination. The
AudioDestinationNode is an AudioNode representing the final
audio destination and is what the user will ultimately hear. It
can often be considered as an audio output device which is
connected to speakers. All rendered audio to be heard will be
routed to this node, a “terminal” node in the AudioContext’s
routing graph. There is only a single AudioDestinationNode

per AudioContext, provided through the destination attribute
of AudioContext [15]. The MediaStreamAudioDestinationNode,
instead, can be used to generate a stream of the input signal
and send it for example, to a remote peer using the RTCPeer-
Connection addStream() method.

Browser Support

Unlike other HTML5 features, Web Audio API is still in Working
Draft state [15], therefore support for all its functionalities is still not
guaranteed in web browsers. Currently, about 60% of the Internet
user base utilizes a browser which supports Web Audio API [80]. A
big part of the remaining ~40% is represented by mobile browsers,
which, while being based on the same basic core as their desktop

2.2 web technologies 31

counterpart, often sacrifice advanced functionalities in order to im-
prove performances.

2.2.3 CSS3
Cascading Style Sheets (CSS) is a style sheet language used for de-

scribing the look and formatting of a document written in a markup
language. CSS is a cornerstone specification of the web and almost
all web pages use CSS style sheets to describe their presentation [18].

CSS is designed primarily to enable the separation of document
content from document presentation, including elements such as the
layout, colors, and fonts. This separation can improve content ac-
cessibility, provide more flexibility and control in the specification of
presentation characteristics, enable multiple pages to share format-
ting, and reduce complexity and repetition in the structural content
[18], as well as making maintenance easier [46].

CSS can also allow the same markup page to be presented in dif-
ferent styles for different rendering methods, such as on-screen, in
print, by voice (when read out by a speech-based browser or screen
reader) and on Braille-based, tactile devices. It can also be used to
allow the web page to display differently depending on the screen
size or device on which it is being viewed [18].

CSS specifies a priority scheme to determine which style rules ap-
ply if more than one rule matches against a particular element. In this
so-called cascade, priorities or weights are calculated and assigned to
rules, so that the results are predictable. The CSS specifications are
maintained by the World Wide Web Consortium (W3C). Developed
in levels, CSS1 is now obsolete, CSS2.1 a recommendation and CSS3,
now split into smaller modules, is progressing on the standard track
[46].

As HTML grew, it came to encompass a wider variety of stylistic
capabilities to meet the demands of web developers. The ideal way
to handle styling was to separate the structure from the presentation
and give the user different options for at least three different kinds of
style sheets: one for printing, one for the presentation on the screen
and one for the editor feature [18].

To improve web presentation capabilities, nine different style sheet
languages were proposed to the World Wide Web Consortium’s (W3C)
www-style mailing list. Of the nine proposals, two were chosen as
the foundation for what became CSS: Cascading HTML Style Sheets
(CHSS) and Stream-based Style Sheet Proposal (SSP). Several key fig-
ures in the web development community worked together to develop
the CSS standard (the ‘H’ was removed from the name because these
style sheets could also be applied to other markup languages besides
HTML) [18]. The CSS level 1 Recommendation was published in

32 web technologies and web applications

December 1996; in 1997 the W3C formed the CSS Working Group, a
specific organization to prosecute the work on the CSS standard [18].

The CSS Working Group began tackling issues that had not been
addressed with CSS level 1, resulting in the creation of CSS level 2 on
November 4, 1997. It was published as a W3C Recommendation on
May 12, 1998. CSS level 3, which was started in 1998, is still under
development as of 2014 [18].

CSS has a simple syntax and uses a number of English keywords to
specify the names of various style properties. A style sheet consists
of a list of rules, each formed by one or more selectors and a declaration
block. In CSS, selectors are used to declare which part of the markup
a style applies to; a selector could then comprise all elements of a
specific type (declaring the equivalent HTML tag), or all the elements
specified by a particular attribute, such as class or a unique identifier
(id). Selectors may be combined in many ways, especially in CSS
2.1, to achieve great specificity and flexibility [18]. A declaration
block consists of a list of declarations in braces. Each declaration itself
consists of a property, a colon (:), and a value. If there are multiple
declarations in a block, a semi-colon (;) must be inserted to separate
each declaration [18].

Rules are applied to page elements according to their specificity, a
value that describes the relative weights of various rules and deter-
mines which styles are applied to an element when more than one
rule could apply. Based on specification, a simple selector has a speci-
ficity of 1, class selectors have a specificity of 10, and ID selectors
a specificity of 100 [18]. A combined selector assumes a specificity
value equal to the sum of the specificity of the elementary selectors
that are part of it.

The final style for an element can be specified in many different
places, which can interact in a complex way. Three main sources of
style information form a cascade. They are:

• The browser’s default styles for the markup language.

• Styles specified by a user who is reading the document.

• The styles linked to the document by its author in an external
file, in a definition at the beginning of the document or on a
specific element in the body of the document.

Different styling priorities are assigned to rules originating from
different sources. For styles in the cascade, author stylesheets have
priority, then reader stylesheets, then the browser’s defaults [46].
Other types of styling have intermediate priority collocations [18].

A fundamental aspect in CSS is inheritance, the mechanism by which
properties are applied not only to a specified element, but also to its
descendants. Inheritance relies on the document tree, which is the

2.2 web technologies 33

hierarchy of (X)HTML elements in a page based on nesting. Descen-
dant elements may inherit CSS property values from any ancestor
element enclosing them. Inheritance prevents certain properties from
being declared over and over again in a style sheet, allowing the soft-
ware developers to write less CSS. It enhances faster-loading of web
pages by users and enables the clients to save money on bandwidth
and development costs [18]. For inherited styles, a child node’s own
style has priority over style inherited from its parent [46].

CSS3 Features

As with HTML5, the W3C is pursuing development of the third
level of CSS development with the usual maturation process. The work
on CSS3 has been split into different modules, each related to a dif-
ferent feature, each being developed independently. So far only four
modules have been published as formal recommendation:

• Color (level 3);

• Selectors (level 3);

• Namespaces;

• Media queries;

with other modules currently in candidate recommendation status
that can be used safely in any modern browsers [14]. Unfortunately,
the most interesting modules (such as animations, transforms and fil-
ters) are still in early development stages; browsers vendor have made
an effort to provide support for most of them, but their utilization
should be backed by a thorough analysis of browsers adoption and
should provide fallback solutions for unsupported browsers [31].

2.2.4 Node.js
Node.js is a platform developed for easily building fast, scalable net-

work applications. It uses an event- driven, non-blocking I/O model
that makes it lightweight and efficient, perfect for data-intensive real-
time applications that run across distributed devices [48].

Node.js was created by Ryan Dahl in 2009 as a set of asynchronous
libraries taking advantage of the V8 JavaScript Engine (developed and
open sourced by Google and powerful component of their Chrome
web browser), which translate JavaScript code to native, optimized
machine code [72], as well as a custom HTTP parser and the libev,
libeio, evcom and udns libraries for asynchronous I/O and event loop
management [62] – later replaced by the libUV astraction layer [49].
Before its inception, few other asynchronous libraries and frameworks
existed – notable examples include the Twisted framework for Pyhton

34 web technologies and web applications

(2002) and EventMachine for Ruby (2003) [34] – and the use of Java-
Script as a server-side programming language was well known since
the late ‘90s. However, up until that point nobody even thought about
a combination of the two. Dahl believed there was some potential in
the development of such thing and focused his energy on the project,
finally managing to showcase his progresses at JSConf 2009 in Berlin
[25]. From there on, Node.js gained the support of thousands of in-
dependent developers, and at the end of 2010 it also obtained the
financial support of the software and services company Joyent [70].

Node.js is currently distributed as an installer package available
for download on the official website [48]. Once installed, any Node
application can be launched through the use of the “node” command;
the installer also makes the access to the Node Packaged Modules
[47] (third-party-developed modules that expand Node’s capabilities)
directory possible through the “npm” command.

Main features

The main feature of Node.js is its event loop. The event loop makes
asynchronous coding possible without requiring overhead-heavy so-
lutions like multithreading (the “traditional” way of dealing with con-
current requests). Using callbacks the developer can stop worrying
about what happens in the backend, and he/she is guaranteed that
his/her code is never interrupted and that doing I/O will not block
other requests without having to incur the costs of thread/process
per request (i.e. memory overhead) [69]. The event loop handles
and processes external events and converts them into callback invoca-
tions – I/O calls are the points at which Node.js can switch from one
request to another. At an I/O call, the code saves the callback and
returns control to the Node.js runtime environment, which proceeds
with the execution of the code. The callback will be executed later
when the data is actually available, and the results will be handled us-
ing powerful constructs such as first-class functions and anonymous
functions [69]. Figure 15 shows how the event loop works.

The event loop is a single thread that handles multiple concur-
rent connections; this makes the overhead of Node.js grow relatively
slowly as the number of requests it has to serve increases because
there’s no OS thread/process initialization overhead. All long-running
tasks (network I/O, data access, etc. . .), instead, are always executed
asynchronously on top of worker threads which return the results via
callback to the event loop thread. JavaScript’s language features (func-
tions as objects, closures, etc. . .) and Node’s programming model
make this type of asynchronous/concurrent programming much eas-
ier to utilize – there’s no thread management, no synchronization
mechanisms, and no message-passing nonsense [66]. The single-
thread nature of the event loop makes the execution of programs
virtually deadlock-free [37].

2.2 web technologies 35

Figure 15: The event loop in Node.js. Source [26].

Node.js is a server-side software system designed for writing scal-
able Internet applications, notably web servers. Programs are written
on the server side in JavaScript. Node.js creates a web server by itself,
making it unnecessary to use web server software such as Apache
or Lighttpd and allowing full control of how the web server actually
works [49].

Node.js is extremely developer-friendly. First of all, it enables web
developers to create an entire web application on both server-side
and client-side in one language, JavaScript, which is easy to learn
and largely present on the Internet. Node is simple to install and
configure and it just works “out of the box” on a variety of opera-
tive systems. It has a built-in package manager called NPM which
lets users install additional modules with a single command-line in-
struction. Modules are additional libraries which introduce support
for new functionalities such as database connection, encryption and
view templating. Modules are the result of the hard work of the
ever-growing developers community surrounding Node, which since
its launch has collaborated in refining and expanding its capabilities
[83], [50].

Pros & cons of using Node.js, and typical use cases

Nowadays Node.js is being used in a lot of applications all over
the internet, meeting the needs and requirements of a vast number of
web application. It is not, however, the “Holy Grail” of webapp devel-
opment: there are some use cases for which Node just is not cut for
and will not bring any advantage – sometimes even producing a per-
formance loss. Applications that are very heavy on CPU usage, and
very light on actual I/O, such as video encoding software, artificial in-

36 web technologies and web applications

telligence or similar CPU hungry software, can be implemented with
Node, but you will probably get better results with C or C++ [27]. If
you still need to do CPU-heavy computation and interfacing with the
web a good solution lies in realizing your web services with Node,
coding the heavy part in C/C++ and then using one of the many C/
C++ interfaces for Node to realize the communication between the
two ends. Node will not bring any more benefits than PHP, Ruby or
Python for CRUD (“Create, Read, Upload, Delete”) or simple HTML ap-
plications. You will most likely end up sacrificing the power of tested
and reliable frameworks for a little scalability (although there is an
increasing number of interesting frameworks for quick and efficient
webapp creation being developed for Node lately) [27]. That said,
there are some use cases in which Node.js is actually recommended
for the advantages it brings to the table: all of them pretty much rely
on of the fact that a Node web server can satisfy a great number of re-
quests thanks to asynchronous coding. An example of this would be
implementing lightweight REST/JSON APIs: Node’s non-blocking I/
O model combined with JavaScript actually make it a great choice
for wrapping other data sources such as databases or web services
and exposing them via a JSON interface [27]. Node is also great for
soft real-time applications such as chats/instant messaging networks,
Twitter-like feed apps and sports betting interfaces, as well as AJAX/
websocket single page apps (a good example of this is Google’s GMail).
The ability to process many requests per seconds with low response
times, combined with features like sharing components such as vali-
dation code between the client and server make it a great choice for
modern web applications that do lots of processing on the client [27].
Finally, data streaming is another good use case: in fact, traditional
web stacks often treat http requests and responses as atomic events,
but they actually are streams, and many cool Node.js applications can
be built to take advantage of this fact. One great example is parsing
file uploads in real time, or building proxies between different data
layers. This was actually the use case which inspired the creation of
Node – in the beginning, Dahl wanted to find the best way of notify-
ing a user, in real time, about the status of a file upload over the web
[25].

3 M A G N E T I C TA P E R E C O R D E R
V I R T U A L I Z AT I O N : P R O J E C T
A N A LY S I S A N D D E S I G N
P R O C E S S

The main aim of this work was to develop the virtualization of an elec-
troacustic instruments using some of the Web technologies described
in chapter 2, in order to research the validity of an implementation
of this kind. Our goal was to realize a valid digital emulation of a
physical instrument that could take advantage of the latest develop-
ment in Web technologies in order to profit from the advantages of
web applications. In particular, we decided to dedicate our attention
on that subsets of instruments described in section 1.5: recording and
replaying systems. For the moment, we focused only their playback
functionality, given its importance in the philological access of audio
documents.

In this section we will outline the requirements for our application,
as well as introducing the device on which we based our work, the
Studer A810 magnetic tape recorder. We will then describe the design
process that allowed us to emulate the main features of this particular
instrument.

3.1 requirement analysis
First of all, let us define the requirements and goals of this work.

As we saw in section 1.4.2, active preservation of an instrument must
accomplish two major requirements:

• Preserving the identity of the instrument by accurately repli- While it may not
seem obvious, even
playback systems
introduce a certain
level of signal
alteration, often to
improve the quality
of the output which
is usually affected by
alterations produced
during the recording
and playback
processes.

cating all of its sound features. In the case of playback sys-
tems, this means that all the possible modifications to the audio
signals introduced by the device must be emulated as close as
possible;

• Providing the users an interface that resembles the original
one, either by using physical components or by designing a
virtual interface.

In addition, we wanted to develop an application that can be ac-
cessed remotely, allowing the user to have at least part of the experi-
ence he would have by using the physical device, but from his current
location.

37

38 magnetic tape recorder virtualization

In a typical situation, a user interested in accessing a particular au-
dio document located in a multimedia archive would physically reach
the building, compile an access request, receive the original support
(usually for a short amount of time) and then be granted access to the
equipment needed to replay the document (if he/she does not own it
him/herself). Our implementation of the virtual device instead could
make remotely accessing both the document and the playback equip-
ment possible, simplifying the fruition process for both the users and
the archive. Another notable advantage introduced is the fact that the
user would receive digital access copies specifically prepared for this
process (for example, compressed and watermarked, in order to pre-
vent unauthorized diffusion), safeguarding both the original, physical
support and the main preservation copy.

3.2 the studer a810 magnetic tape recorder
The electromechanical instrument on which we based our work is

the Studer A810 Magnetic Tape Recorder. One specimen of this device
is currently in use at the Centro di Sonologia Computazionale of the
Università degli Studi di Padova, and it still being used to perform
the re-recording process of audio documents preserved on magnetic
tapes. The A810 is a professional machine introduced in the early
1980s by Swiss equipment manufacturer Studer. This instrument is
suited for both recording and playback of audio from a variety of
magnetic tapes, supporting most of the recording standards.

The A810, as all the other professional tape recorders, has been de-
signed to optimize the quality of the recorded signal during a record-
ing session, and the quality of the playback signal when a tape is
played. In practical terms, this means that sensitive, noise-free am-
plification and special correction and equalization are applied to the
output signal, in order to compensate distortion and alteration intro-
duced by the magnetic flux of the tape [7].

The most effective correction applied by the tape recorder while
playing a tape is the equalization of the signal, which is introduced
according to a specific frequency response associated with an analog
circuit. This equalization is introduced with an analog circuit ob-
tained from the serie of two RC Networks: figure 17a and 17b show
the two structures of theses networks.

Each network is characterized by the value of their resistance and
capacitance components, R and C: these can be chosen to implement
a different equalization curve. In particular, each frequency response
is associated to the product of these two values, which is called equiv-
alent time constant: we call t1 = R1C1 the product of the resistance
and capacitance value of the network of type (a), and t2 = R2C2 the
same product, but for the network type (b). As the name suggests,

3.2 the studer a810 magnetic tape recorder 39

Figure 16: The Studer A810. Photo taken at the Centro di Sonologia Com-
putazionale, Padova.

40 magnetic tape recorder virtualization

(a) Parallel RC network.

(b) Series RC network.

Figure 17: RC networks used in tape equalization. Source: [7]

t1 and t2 assume a time value and are usually expressed in microsec-
onds (µs). It is then possible to associate each equalization curve to
a specific time constant, with different values producing slightly dif-
ferent frequency responses. Figure 18 shows some of these curves,
where the left-hand side (low frequencies emphasis) equalization is in-
troduced by the network of figure 17b, while the right-hand side (high
frequencies filtering) is due to the network of figure 17a.

The effect of varying the values of t1 and t2 are also shown: in
particular, it is possible to notice that increasing the value of t1 results
in a slightly more steep right end of the curve, while increasing t2
“flatten” the left end.

These frequency responses can be plotted for different values of t1
and t2 by using the following equation:

NdB = 10log10

[
1+

1012

(2πft2)2

]
− 10log10

[
1+ 10−12(2πft1)

2
]
+K

where K is a constant that can be chosen to shift the zero dB reference
to 1000 Hz (typical for professional standard) or 315 Hz (typical for
domestic standard), without changing the shape of the curve. From
the time constant we can also obtain the cutoff frequency of each filter,
with the relation

fci
=
106

2πti

To ensure that tapes made on a different model of recorder could
be properly reproduced on another system, equalization standards

3.2 the studer a810 magnetic tape recorder 41

Figure 18: Frequency response curves for professional equalization stan-
dards. Source: [7]

were introduced by relevant organizations in the industry, such as the
International Electrotechnical Commission and the National Associa-
tion of Broadcasters. Given the variety of tape models in common
use, a family of equalization standards have been designed, with one
appropriate for each chosen playback speed, head gap, and appli-
cation, making recordings freely interchangeable (within their own
classification) on different machines [7].

Frequency response curves for professional tape standards are visi-
ble in figure 18, while those for commercial and home use are shown
in figure 19.

In our work, we emulated four professional standards introduced
by the IEC, and three domestic standards proposed by the NAB. Table
1 shows these standards along with their tape speed inmm/s and in/
s and the values of the two time constants t1 and t2 that shapes the
equalization curve.

3.2.1 Replication of the equalization in the digital domain
In order to accomplish our first requirement, we started off by out-

lining a operational strategy to transpose in the digital domain the
equalization effects applied by the magnetic tape recorder to the out-
put signal. Given the amount of information available, we managed
to emulate the frequency response curves (with good approximation)
with digital filters designed in Matlab.

42 magnetic tape recorder virtualization

Figure 19: Frequency response curves for commercial and home use tape
standards.

The analog-to-digital process was fairly simple: first, we started off
by eliciting the transfer function of the series of the two networks of
figures 17a and 17b which is of the following form:

H(s) =
1+ st2

st2(1+ st1)

Then, we applied the bilinear transform method to obtain the trans-The bilinear
transform maps the

analog complex
variable s to the
digital complex

variable z with the
following

substitution:
s = 2

T
1−z−1

1+z−1 ,
where T is the

numerical
integration step size

of the trapezoidal
rule used in the

bilinear transform
derivation.

form function of the equivalent digital filter; this was done by using
the bilinear function in Matlab, which receives as inputs the vectors
representing the numerator and denominator factors of the analog
transfer function and the sampling frequency used in the digital fil-
ter (which we set at 44100Hz as we will work with compressed files

Table 1: Recommended Response Time-Constants. Source: [7].

Application t1(µs) t2(µs)

Professional - Reel-to-reel
380 mm/s (15 in/s) IEC 1 (1968) 35 ∞
380 mm/s (15 in/s) IEC 2 50 3180

190 mm/s (7.5 in/s) IEC 1 (1968) 70 ∞
190 mm/s (7.5 in/s) IEC 2 50 3180

Commercial and Domestic (Home-Use) Reel-to-reel
380 mm/s (15 in/s) (NAB 1965) 50 3180

190 mm/s (7.5 in/s) (NAB 1965) 50 3180

95 mm/s (3.755 in/s) (NAB 1965) 90 3180

3.2 the studer a810 magnetic tape recorder 43

which use this frequency value) and outputs two vectors containing
the coefficients for the digital filter’s transfer function’s numerator
and denominator.

Figures 20, 21, 22 and 23 show the frequency response curves of
the digital filters obtained for different values of t1 and t2, which
are comparable with good approximation to the analog frequency
response curves of figures 18 and 19.

Figure 20: Frequency response curve obtained for the digital implementa-
tion of standard IEC 1 at 7.5in/s.

Figure 21: Frequency response curve obtained for the digital implementa-
tion of standard IEC 1 at 15in/s.

Finally, we stored the impulse response for each pair of values of
t1 and t2 as .wav PCM files for use in our implementation with the
Web Audio API ConvolverNode, as we will see in section 4.3.

44 magnetic tape recorder virtualization

Figure 22: Frequency response curve obtained for the digital implementa-
tion of standard IEC 2 at 7.5in/s and 15in/s and standard NAB
at 7.5in/s and 15in/s.

Figure 23: Frequency response curve obtained for the digital implementa-
tion of standard NAB at 3.75in/s.

3.2 the studer a810 magnetic tape recorder 45

3.2.2 Interface design

Given our goal of realizing the virtualization of the tape recorder
using only web technologies, the fulfilling of the second requirement
implicated the realization of a virtual interface. The design process
started with a visit at the Centro di Sonologia Computazionale, where
it was possible to observe and operate the A810. The visit was well
documented with photos (such as the one shown in figure 16) and
videos of the tape recorder in function. One of the researcher of the
CSC was kind enough to guide us through the various configuration
and control parameters, as well as showcasing some of the material
obtained in a typical re-recording session, such as close-up videos of
the magnetic tape scrolling through the tape heads.

We then proceeded to design the interface trying to adhere as much
as possible to the original design while factoring in sizing and pro-
portion concerns that are typical in Web projects. Using the graphics
editing program Adobe Photoshop we first set up a grid to outline the
main elements of our interface: this is shown in figure 24.

Figure 24: Starting grid for our interface design.

46 magnetic tape recorder virtualization

We sized our interface at 960x1040 pixels, in order to fill exactly
(with an added 40 pixels bar to be placed on top or bottom) half of
an HD screen. This design choice may turn out useful in the case, forHigh-definition

screens have a
resolution of

1920x1080 pixels.

example, of dedicated emulation machines in libraries and archives,
where the app could be launched full-screen, paired with another em-
ulated device of the same size or using the remaining screen estate to
show additional informations. Setting the main width to 960 pixels is
also a common choice in web design lately, as it is usually a multiple
of the screen width of mobile devices, allowing for the introduction
of a responsive layout later on .Responsive Web

Design is a Web
design approach

aimed at crafting
sites to provide an

optimal viewing
experience—easy

reading and
navigation with a

minimum of
resizing, panning,

and
scrolling—across a

wide range of
devices.

After setting up the grid, we started the design by drawing the
shapes of the main element of the interface, then refining the details
such as gradients, shadows and lighting. For the control mapping,
we decided to not replicate all the knobs and buttons available on the
machine, but to insert only the controls that map the functionalities
that we decided to implement. This resulted in a simpler interface, al-
lowing us to make the controls bigger and easier to detect too, which
may help inexperienced users. Figure 25 shows an intermediate step
of the design, while the final version will be shown in section 4.3.

Figure 25: An intermediate step in our interface design process.

4 W E B A P P L I C AT I O N
D E V E LO P M E N T A N D T E S T I N G

After having analyzed and replicated the sound features and the
interface of the instrument, we proceeded by implementing the web
application using the technologies discussed in chapter 2: HTML5 for
the front-end and Node.js for the back-end.

In this section we will first introduce other software tools and
frameworks that helped us in the development process; then, we will
describe the actual implementation of the two tiers of our application,
explaining in details its behavior and all the functionalities achieved.
Finally, we will discuss the results of a brief testing process that fol-
lowed the deployment of the application on a remote server.

4.1 software tools used
4.1.1 Express.js

We chose Node.js as our backend platform, paired with the power-
ful Express.js framework. Express.js, distributed through Node Pack-
age Manager, is a light-weight web application framework which pro- Express.js is the

most popular
module in the NPM
registry, and it is
used by
organizations and
companies such as
Mozilla and
MySpace.

vides a robust set of features for building single and multi-page, and
hybrid web applications [22]. Basically, Express.js operates as an up-
per layer abstracting the functionalities of the Connect Module, a third
party middleware layer that is itself operating above the HTTP Module
built in into Node.js. The three main features that Express.js makes
available are:

• Simple routing for mapping different requests to specific han-
dles. In particular, each request URL could be mapped to an
handle performing a HTTP Verb (GET, POST, PUT, DELETE, ...) ac-
tion. It also possible to bypass part of the current route’s call-
back and proceed with another route, making the evaluation of
pre-conditions on routes possible;

• Request handling with augmented request and response ob-
jects that allows the execution of methods not available in vanilla
Node, such as redirect or sendfile;

• Views rendering through a specified templating engine, allow-
ing dynamic rendering of web pages. Express works with a
number of templating engines, requiring only a simple setup
process in the app initialization code.

47

48 web application development and testing

All of these features were useful in the development of our appli-
cations and will be exemplified in the application’s code itself for
further explanation.

4.1.2 Jade
Even if our application was fairly simple and didn’t rely heavily

on data models, we chose to render views through one of templating
engines supported by Express.js, Jade. Jade views are saved as .jade

files written with a specific syntax which translate directly to HTML,
while providing templating capabilities such as the use of variables
for dynamic rendering and template inheritance.

4.1.3 Yeoman
To set up our working directory we used Yeoman, a workflow op-

timizer tool for web apps [84], which is also available for quick and
easy install through NPM. The initialization procedure actually installs
three pieces of software: yo, a scaffolding tool, grunt, a build tool, and
Bower, a package manager. We won’t delve into details about these
three applications, as their comprehension is not required to under-
stand the development process. What it is necessary to know is that to
scaffold out the working directory yo uses special plug-ins called gen-
erators, which can be obtained through various sources, such as code
repositories and NPM again. In our case, we used the community-
provided generator-express [16] plugin, which created the work direc-
tory of figure 26.

The scaffolding tool set up the typical root structure of a node app,
with the following elements:

• app.js is the main application file, which includes the lines of
code necessary to launch the application. To start up the web
app, it will simply be necessary to launch the node app com-
mand from the command line;

• package.json holds various metadata relevant to the project.
This file is used to give information to NPM to allow it to iden-
tify the project as well as handle the project’s dependencies. It
can also contain other metadata such as a project description,
the version of the project in a particular distribution, license
information and configuration data;

• the node_modules directory includes all the necessary node mod-
ules to run the application, such as express.js. When a new
module gets installed with the nom install command, its code
gets copied in this directory and made it available to use in the
project;

4.1 software tools used 49

Figure 26: The starting work directory for our project.

50 web application development and testing

• the public folder contains static assets such as stylesheets, scripts
and images, organized in subfolders;

• the routes folder contains Express’ route files, which hold the
code to handle request. They are organized in subfolders with
a structure that must pair with the one of the URL we want
to use in our project, i.e. handlers associated to the root path
(“/”) will be stored in the index.js file contained in the routes

folder; handlers associated to the “/play/” URL will be stored
in the index.js file contained in the play subfolder, and so on;

• the views folder contains the templates for the webpages, in our
case some .jade files.

From this base structure we started coding our application with
a text editor (Sublime Text 3), backing up our progress on a GitHub
repository [2], using the Git version control system.

4.2 back-end development
Following the project set-up phase, we started the development of

the back-end of our application. First of all, we made some modifi-
cations to the project’s structure, by deleting unnecessary files and
adding two important folders, audio, located in the project’s root
folder, where placed the access copies (lossy files) of the audio docu-
ments we wanted to make accessible through the app, and impulse_

responses, which contains the .wav files of the impulse response gen-
erated with Matlab, as seen in section 3.2.1. The final structure of the
project at the end of the development process is shown in figure 27.

Now, let us describe the implementation of the web app. We
wanted the server-side of our application to respond to three kinds
of requests from the client, each associated with a different URL:

• The root URL, to which the server should respond by render-
ing and sending the main view of the application - which in
this case is the only one available, as we decided to implement
our web app as a single page application for the moment. This
means that a client visiting the URL “http://serverip:server-
port” on a browser would obtain the index.html file generated
by the rendering of the index.jade file and all the static assets
(scripts, stylesheets and images) linked to it to initialize the ap-
plication and visualize its interface;

• The “/list” URL, which would return some sort of list of theJavaScript Open
Notation (JSON) is

a format used to
transmit data objects

consisting of
attribute-value pairs

[36].

playable files to be displayed in a selector on the application
interface. We decided to format this list as a JSON object, which
is a common choice in this type of applications;

4.2 back-end development 51

Figure 27: The final structure of our application.

• The “play/filename” URL, to which the server should respond
by starting the transfer or a specific audio file (indicated by its
filename) for reproduction in the application.

To associate each URL with the necessary server logic we used Ex-
press.js’s routing functionalities. In our main app.’s file, following
some setup lines, we have the following lines of code:

// Request handling

app.get(’/’, routes.index);

app.get(’/list’, routes.list);

app.get(’/play/:file’, play.file);

which associate each GET request URL to a handler function contained
in one of the files in the routes folder; for example, the handler for
the root URL request implemented in the index.js file of the main
route folder is simply

// Returns the Homepage rendered view

exports.index = function(req, res){

res.render(’index’, { title: ’Reel2Virtual’ });

};

where it is possible to see that the handler receives as parameters
the req (request) and res (response) objects associated with the HTTP
GET call. The mechanism is the same for the other type of requests
(full code listings are available in Appendix A). We made a design

52 web application development and testing

choice to simplify the process of extraction of the information related
to the audio files (sent through the /list call), which dictates that the
filename of each file contained in the audio folder should adhere to
the following naming convention:

equalizationstandard.filename.filetype

where equalizationstandard is a string that indicates the equaliza-
tion standard associated with the tape model of the original sup-
port from which the audio file was obtained, filename is the title
of the audio documents and filetype its filetype (i.e. extension).
For example, a file named “15IEC1.Fantasie Impromptu - Frederic

Chopin.ogg” is an Ogg Vorbis file containing the recording of “Fan-
taise Impromptu” by Frederic Chopin, obtained from a tape following
the IEC 1 standard with a reproduction speed of 15in/s.

Finally, we have the index.jade template which describes the DOM
of the main page of our application.Jade syntax allows

the developers to
speed up the writing
of webpages’ code by
taking advantage of

features like
whitespace-

sensitivity while
maintaing a

structure similar to
that of a regular

.html file.

4.3 front-end development
Once our back-end service was set up and running, we focused

our efforts on the development of the client side of the application.
Thanks to the capabilities of the features introduced in HTML5, we
were able to move most of processing the to the client: as shown in the
previous section, in fact, the server does not perform any additional
computation other than serving the requests coming from the client.

Application interface

Let us discuss the main application interface first. Figure 28 shows
the appearance of the application in a web browser, after all the re-
sources have been loaded. This design is the result of the process out-
lined in section 3.2.2; it is possible to see that the top of the interface
resembles the actual appearance of the device (see image 16), while
the bottom part, which contains the controls of the tape recorder, has
been vastly simplified. This followed our decision to not show part of
the interface that maps controls to features that have not been imple-
mented in our application (for example, some of the control buttons
in the lower-left side of the machine), and to re-use the space gained
from their removal to increase the size of active controls and overall
simplifying the interface.

The interface is composed of two main components:

• the top part (red box in figure 29) is all contained in a big
<canvas> element, and is actually composed by three layers: a
background, a layer containing only the metal component of the
two reels and the metal pins that hold them. This because we

4.3 front-end development 53

Figure 28: The interface of our web application, as rendered by the web
browser.

54 web application development and testing

wanted to reproduce the rotation of the reels during playback.
To draw and animate these layers we used Kinetic.js, a third-
party JavaScript library which greatly simplifies the coding pro-
cess of <canvas> animations. Not only it allowed us to assign
z-indexes to each layer (in order to stack them correctly), but alsoThe z-index sets the

stack order of
specific elements in

various contexts,
including CSS.

to define a function associated to the rotation animation, with
the possibility to change the rotation speed during execution.
We stored all the code relative to this part of the interface in the
interface.js script, which is linked to the index.html page
and therefore automatically executed upon loading;

• the bottom part (blue box in figure 29), instead, was realized
using traditional HTML elements such as divs (<div>) and para-
graphs (<p>). This choice was made in order to link specific ele-
ments to the various functions that allow the users to perform
actions. These functions, as well as the initialization scripts,
are stored in the eqcontrol.js file, which is also linked to the
main .html file. Some functionalities required the use of the
popular third party JavaScript library jQuery, that we decide to
link through the use of a Content Delivery Network (CDN), rather
than downloading a copy and adding it to our scripts folder, just
like we did for the Kinetic.js library introduced before.

Initialization

Now, let us describe the functioning of the application. When the
root URL is accessed, all the files needed are served by the server.
The interface.js drawing script runs and render the initial frame
of the <canvas> element; at the same time, some setup operation are
executed in the eqcontrol.js script:

• a new audio element (with a blank source) is created; this willThe audio element
does not need to be
shown on the page;

playback can be
managed through a

set of dedicated
JavaScript APIs.

host the file currently being played by the application;

• the Web Audio API AudioContext is also created to host the
routing graph of the application. The graph contains the follow-
ing elements, which are created in order:

– a SourceNode assuming as input the <audio> element gen-
erated in the previous step;

– seven ConvolverNodes that are used to implement the seven
standards of equalization we analyzed in section 3.2.1. Each
ConvolverNode, in fact, has a buffer property which must
hold a representation of the impulse response we want
to convolve with the input signal to perform the filter-
ing. Therefore, for each of them, a new request is sent to
server, which responds by sending to each of them the cor-
rect .wav file storing the correspondent impulse response.

4.3 front-end development 55

Figure 29: Main interface elements breakdown.

56 web application development and testing

The ConvolverNodes are also loaded with additional prop-
erties, such as the reel rotation speed in deg/s (estimated
from one of the operational videos);

– an additional GainNode, inserted in the AudioContext to
compensate for the low volume output of the ConvolverNodes
in Webkit browsers.

The only connection made at this point is the one between the
the GainNode and the (unique) DestinationNode of the AudioContext
(which will pass the output signal to the system), since the oth-
ers will be handled automatically by other functions. Figure 30

shows the modular graph obtained at the end of the initializa-
tion process;

• a call to the “/list” URL is performed to receive the list of
playable files stored on the server. When the server responds,
the JSON object received is parsed and a pull-down menu (green
box in figure 29) is automatically populated, creating an option
showing the track title and the associated equalization standard
for each file.

Application functionalities

Once the page has loaded and the initialization scripts has been
executed, the control passes in the hands of the users, which can start
using the application. First, a track has to be loaded: this could be
done simply by selecting one of the options that populates the drop-
down menu (green box of figure 29). As soon as the track has been
selected, a few things happen:

• a request is sent to the server at the “/play/filename” URL,
where filename is the filename of the requested track. The
server responds by sending back the requested file;

• the audio file requested is set as the source of our only <audio>

element, by changing the value of its src attribute;

• the requested file starts buffering;

• the reels animation is triggered at the correct speed;

• the Tape Speed Selector knob (orange box in figure 29) is rotated
to indicate the selected tape equalization standard used;

• new connections are introduced in the Web Audio API modular
routing graph in order to let the sound “flow” from the source
to the destination. In particular, the SourceNode is connected
to the ConvolverNode associated to the equalization standard
in use (indicated by the Tape Speed Selector knob), and the
ConvolverNode is subsequently connected to the GainNode. At

4.3 front-end development 57

Figure 30: The Web Audio API modular routing graph for our application.

58 web application development and testing

this point, a path from the Source to the Destination exists, so
the sound can be outputted to the system. Figure 31, for exam-
ple, shows the AudioContext after a track with equalization IEC
1 at 7.5in/s has been selected;

This phase is followed by a few seconds of inactivity due to the initial
buffering of the audio file. As soon as the first chunk of the file has
been receive, the sound start flowing through the AudioNodes and
gets outputted to the system (speakers). At the same time, the track
timer (yellow box of figure 29) starts updating, to reflect the track’s
elapsed time, replicating the behavior of the original machine.

Figure 31: Connections introduced in the AudioContext after a track has
been selected.

The user can decide to change the track playing simply by selecting
another option in the drop-down menu; this implies another execu-
tion of the actions of the previous bullet list. Alternatively, the user

4.3 front-end development 59

can decide to manipulate the playback of the current track using the
Tape Speed Selector knob or the control buttons (pink box of figure
29).

Clicking on the former produces the following effects:

• the knob rotates to indicate that another equalization standard
has been selected. Each click on the knob moves it to the next
standard in clockwise order;

• the modular routing graph is altered to reflect the choice. In
particular, existing connections coming from and going to the
ConvolverNode associated to the previous standard in use the
are disrupted, and new connections from/to the ConvolverNode

associated to the newly selected standard are introduced, to
properly filter the signal;

• the rotation speed of the reels is changed to reflect the new
selection;

• whenever possible, the playbackRate attribute of the <audio> In current
implementations,
playbackRate can
assume any value
greater than 0. A
value of 1 makes the
audio play at normal
speed, values
between 0 and 1
makes it play slower
and values greater
than 1 makes it play
faster. Audible
effects are currently
limited to a subset of
values around 1 for
performance reasons.

element is changed, in order to provide a more realistic experi-
ence. This attribute, in fact, actually changes the reproduction
speed of the audio track, exactly like changing the tape speed
on the actual device would do.

The control buttons, instead, offer some basic playback control for
the the track:

• the “STOP” button emulates the action of halting the rotation of
the reels, resulting in the both the animation and the audio play-
back being stopped. The playback is actually being paused, and
the effect is visible in the track timer, which holds the current
elapsed time;

• the “PLAY” button allows to proceed with the playback of a track
after this has been stopped. As one would expect, both the reel
animation and the audio playback are resumed. Pressing this
button while the track is already playing doesn’t produce any
effect;

• the “C” button allows to fast-rewind the current track. The reels
starts spinning in the opposite direction (as one would expect)
and the playback is reversed and accelerated. The action con-
tinues while the button is being pressed; upon release, normal
playback is reinstated;

• the “B” button implements a similar fast-forward functionality,
allowing to scroll through the track at a faster speed. The be-
havior is similar to the one of the rewind button, with the track
being play at normal rate when the button is released.

60 web application development and testing

4.4 testing the application
While our application leverages experimental functionalities that

are not completely supported by the majority of the browsers yet, we
wanted to be able to evaluate its performances at least in some limited
cases, in order to provide a basic reference for future developments.
This section outlines some evaluations and measurements as well as
a breakdown of the status of support of the various features at the
time of writing.

4.4.1 Deployment in the cloud
We saw that the majority of the logic of the application is run on

the client, but since the server has to handle the requests and serve
all the assets that are needed for the application to run, we wanted
to have an idea of the times involved in the loading process. In order
to produce realistic results for our tests, we decided to deploy our
application on a remote server and access that instead of running it
on a local server on the same machine performing the request.

We executed the deployment on OpenShift [53], Red Hat’s Platform-
as-a-Service, which provides built-in configurations for running popu-
lar back-end framework in the cloud. Without delving into the details,
OpenShift’s web interface and command-line tools allowed us to cre-
ate a new instance of Node.js server to run the code fetched from
our GitHub repository [github]. After having performed some basic
configuration and having installated our app, we were ready to begin
testing by accessing a dedicated URL.

4.4.2 Tests performed
Testing tools

server specifications Our server was what OpenShift calls gear,
a virtual machine with scalable performances operating on top of
EC2, Amazon’s Infrastructure-as-a-Service [51]. OpenShift provides a
free “small” gear to test out simple application, which can use up to
512 MB of memory and up to 1 GB of storage. An exact measure
for CPU performance is not available since computational power is
scaled based on the need of the application (within an upper bound).

client specifications Front-side testing was made on a Intel Core
i5 (2.4 Ghz) machine running Mac OS X 10.9.2. The application
was developed and debugged using the Canary version of Google’s
browser Chrome, which is the product of the experimental release
channel and therefore introduces new features ahead of the stable re-
lease, with all the pros and cons of the case. Additional testing was

4.4 testing the application 61

made on the stable release of Chrome; at the time of writing, this was
version 33.0, while Canary was on version 35.0.

We limited our tests to this browser because was the best fit, ac-
cording to the following reasons:

• it was our browser of choice during development;

• other browsers such as Mozilla Firefox and Opera requires dif-
ferent implementations of core features of our app like the use
of Web Audio API, requiring the writing of additional code that
could have slowed down our development process, which was
just aimed at exploring the possibilities of bleeding-edge fea-
tures;

• it is capable of reproducing all the most diffused audio formats;

• it sports a powerful set of Dev Tools which provides a number
of interesting statistics on performance as well as assisting the
debug process.

Such limited testing is aimed at giving a qualitative assertion of the
feasibility of such a project in the future, when appropriate precau-
tions could be taken in order to provide support to other browsers.

Page load performance

To test the loading and rendering time of our application we used
the online tool WebPageTest [81], which allows the execution of several
kind of tests to evaluate the page load performance of websites and
web applications.

We performed multiple runs of the standard test proposed, which
analyzes the generation of the document as all the assets are being
served to the client, and provides an insightful breakdown of the
times involved per each requests.

The results were encouraging: figure 32 shows a document com-
pletion time under 1s, with the main interface being displayed in less
than 1.5s, upon reception of the static assets (images). The median
Speed Index result is 1358, meaning that it should be possible to bring The Speed Index is

the average time at
which visible parts
of the page are
displayed. It is
expressed in
milliseconds and
dependent on size of
the view port [65].

it down to around 1000 (a value usually associated with good page
performance) with little optimization. This results were achieved by
keeping our page structure simple and not adding unnecessary code.
We believe that carrying out an optimization process could maintain
good performances while allowing for the introduction of advanced
functionalities.

Runtime performance

General runtime performance was analyzed using Chrome’s Dev
Tools. Again, the simple structure of the application yielded good

62 web application development and testing

Figure 32: Page load performance analysis results - waterfall view.

results, with CPU use never spiking over 15% and layout framerate
assessing around the optimal value of 60FPS (frames per second) for
almost the time of execution. This shows how the use of <canvas>

to realize the animation was a good development choice, as it has a
lower impact on performances.

Mobile testing

As an additional note, we thought it might have been interesting to
test our application on a mobile device too, as future developments
will surely take into account the increasing relevance of mobile web
developing.

Brief tests performed on an a smartphone and a tablet both run-
ning the latest version of the Android mobile OS (4.4.2 at the time of
this writing) show encouraging results. The latest mobile version of
Chrome, while being stripped-down in terms of functionalities in re-
spect to its desktop counterpart, runs the application with no major
issues, allowing the reproduction of audio files without significant
performance hits. The only unsupported feature, for the moment,
was the use of the playbackRate attribute for the <audio> element,
which we deemed acceptable as it is not absolutely necessary for the
functioning of the application.

A dedicated development and optimization process for mobile de-
vices, with the adoption of a responsive layout and lightweight script-
ing could definitely be an interesting road for future work.

5 C O N C L U S I O N S A N D F U T U R E
W O R K

The goal of this work was the design and implementation of a
virtual instrument, following the practices and requirements intro-
duced by the archival community, but with additional focus on ac-
cessibility and broad diffusion. This particular requirement was ac-
complished by making use of the recent developments in Web Tech-
nologies, which have progressively evolved along with the expansion
of the World Wide Web, and can now offer innovative features and
tools to develop more and more complex web applications. The type
of instrument we virtualized, the magnetic tape recorder, is an im-
portant piece of equipment, which assumes a fundamental role in
the philological access of audio documents stored on magnetic tapes.
Its sound features and its interface, in fact, are essential in order to
reproduce a fully philological experience. The realization of our ap-
plication stands as a first example of how a device like the magnetic
tape recorder could be virtualized and made more accessible to users
all over the world through the Internet, just like multimedia docu-
ments - a paradigm shift that has already been involving archives in
recent years. The possibility to serve the users not only the informa-
tion stored in the access copy of a document, but also (part of) the
philological experience associated with it is a great accomplishment,
and this work shows how this could be made possible in the near
future.

The development process of our web application followed the intro-
duction of innovative, experimental features regarding the managing
and manipulation of audio sources in the browser, along with some
more established technologies for content serving and rendering. The
innovation process, fueled by the constant work of organization such
as the W3C and a vibrant community of developers, is definitely go-
ing to continue in the next years. This means that incumbent technolo-
gies will be constantly improved and new, more efficient technologies
will be introduced, but also that the support for them will increase,
spreading to more devices and platforms.

The ability to develop such kind of application, leveraging the ca-
pabilities of Web Technologies, means that within few years it will
become accessible to more and more devices and therefore to more
and more users, allowing the spreading of human knowledge, which
is the ultimate goal of organizations such as UNESCO.

We believe this work can pose the basis for the realization of more
complex applications that could become an important resource in the
preservation process of the musical cultural heritage. From this start-

63

64 conclusions and future work

ing point, future developments could spread in different directions. A
web application of this kind could be incorporated in the re-recording
process by interfacing with the other software tools already available
to the archival community. For example, after having obtained the
master copy as the result of the (digital) re-recording process, access
copies could be generated automatically and made instantly available
for access through the web-virtualized version of their playback sys-
tems. The application could be improved to display the secondary
information related to the audio document that is also generated
during the re-recording process, providing a richer experience. This
could also be automated by exporting information to and from the
access files’ metadata, or by interfacing the web app with archive’s
databases. The application could also be improved to provide differ-
ent interfaces for common users and archive administrators, with the
possibility to manage files and information directly from the browser,
becoming a uniform web platform for archive systems.

Since mobile devices already had a great impact on how we inter-
act with information every day, larger attention could be posed on
how to improve the mobile experience of these applications, creating
dedicated versions more suited to the different screen sizes and capa-
bilities of these devices, and providing fallback solutions to make up
for unsupported features, while trying to bring the experience on par
with the desktop version as much as possible.

With the evolution of audio-related web technologies and the gen-
eral improvement of web standards performance it could be possible
to develop better emulations of audio devices, making it possible to
virtualize instruments using refined methods such as physical model-
ing. Instruments virtualization could be made easier with the devel-
opment of libraries and additional tools to facilitate the implementa-
tion process of sound features and interfaces.

We believe that in the future web applications will continue to play
a great role in the interaction between users and information. Start-
ing to work early on experimental features could yield better results
later on, when they will become part of standards specification and
become widely adopted. Getting the archival community interested
in this scenario could provide great results, and we hope that our sim-
ple experiment could become a useful starting point in this regard.

A C O D E L I S T I N G S

back-end code
app.js - Main application file
// Module dependencies.

var express = require(’express’),

routes = require(’./routes’),

play = require(’./routes/play’),

http = require(’http’),

path = require(’path’),

util = require(’util’);

var app = express();

// Express.js configuration

app.configure(function(){

app.set(’ipaddress’, process.env.OPENSHIFT_NODEJS_IP || ’127.0.0.1’);

app.set(’port’, process.env.OPENSHIFT_NODEJS_PORT || 3000);

app.set(’views’, __dirname + ’/views’);

app.set(’view engine’, ’jade’);

app.use(express.favicon());

app.use(express.logger(’dev’));

app.use(express.bodyParser());

app.use(express.methodOverride());

app.use(app.router);

app.use(express.static(path.join(__dirname, ’public’)));

});

// Development environment only for the moment

app.configure(’development’, function(){

app.use(express.errorHandler());

});

// Request handling

app.get(’/’, routes.index);

app.get(’/list’, routes.list);

app.get(’/play/:file’, play.file);

// Dispatching public files (css, js, imgs) requests

app.get(’/*.(js)’, function(req, res){

65

66 code listings

res.sendfile("./public/js"+req.url);

});

app.get(’/*.(css|eot|svg|ttf|woff)’, function(req, res){

res.sendfile("./public/css"+req.url);

});

app.get(’/*.(jpg|png|gif)’, function(req, res){

res.sendfile("./public/img"+req.url);

});

// Impulse responses for the ConvolverNodes are also

// served as static files

app.get(’/*.(wav)’, function(req,res){

res.sendfile("./public/impulse_responses/"+req.url);

});

// Web Server Startup

http.createServer(app).listen(app.get(’port’),

app.get(’ipaddress’), function(){

console.log("Express server listening on port " + app.get(’port’));

});

routes/index.js - Route file
var path = require(’path’),

fisy = require(’fs’);

// Returns the Homepage rendered view

exports.index = function(req, res){

res.render(’index’, { title: ’Reel2Virtual’ });

};

// Returns a JSON containing a list of playable files

exports.list = function(req, res) {

var music_path;

music_path = path.join(path.resolve(__dirname, ’..’), ’audio’);

return fisy.readdir(music_path, function(error, files) {

var file, output, _i, _len;

output = [];

for (_i = 0, _len = files.length; _i < _len; _i++) {

file = files[_i];

var split = file.split(".");

if (split[0] !== "") {

track = {};

track[’ips’] = split[0];

track[’title’] = split[1];

track[’filetype’] = split[2];

track[’filename’] = file;

code listings 67

output.push(track);

}

}

return res.json(output);

});

};

routes/play/index.js - Route file
var path = require(’path’),

fisy = require(’fs’);

// Send the selected audio file

exports.file = function(req, res) {

var filePath, stat;

filePath = path.join(path.resolve(__dirname, ’..’, ’..’),

’audio’, req.param(’file’));

stat = fisy.statSync(filePath);

res.header(’content-type’, ’audio/ogg’);

res.header(’content-length’, stat.size);

return res.sendfile(filePath);

};

index.jade - Index page template
!!! 5

html(lang=’en’)

head

meta(charset=’utf-8’)

title Reel2Virtual

link(rel=’stylesheet’, href=’style.css’)

script(type=’text/javascript’,

src=’http://code.jquery.com/jquery-1.10.2.min.js’)

script(type=’text/javascript’,

src=’http://cdnjs.cloudflare.com/ajax/libs/kineticjs/5.0.1/kinetic.min.js’)

body

#container

#bottom

p#timer

| 00:00

.clickcontainer

a(href=’#rewind’).click#rewind

a(href=’#ffward’).click#ffward

a(href=’#play’).click#play

a(href=’#pause’).click#pause

a.knob(onclick=’nextEQ(currentEQ);’)

68 code listings

img#kn(class=’IEC1_7’, src=’knob.png’, alt=’Speed selector knob’)

.trackSelector

p

| TRACK SELECTOR:

select#selector(onchange="switchSong(value);")

option(disabled)

| Select a track...

p.footer

| 2014 | Università degli Studi di Padova

script(type=’text/javascript’, src=’interface.js’)

script(type=’text/javascript’, src=’eqcontrol.js’)

front-end code
interface.js - Interface drawing script
// Global variable

var anim;

// Reel rotation speed (initial value set to zero)

var angularSpeed = 0;

window.addEventListener(’load’, function(e) {

// Kinetic.js Stage object is associated to the

// <canvas> element

var stage = new Kinetic.Stage({

container: ’container’,

width: 1040,

height: 720

});

// Graphics are grouped in a layer

var layer = new Kinetic.Layer();

// Loading the tape reels

var tape = new Image();

tape.onload = function() {

var reelL = new Kinetic.Image({

x: 190,

y: 210,

image: tape,

width: 300,

height: 300,

offset: {x:150, y:150},

code listings 69

rotation: Math.floor(Math.random()*120)

});

var reelR = new Kinetic.Image({

x: 850,

y: 210,

image: tape,

width: 300,

height: 300,

offset: {x:150, y:150},

rotation: Math.floor(Math.random()*120)

});

layer.add(reelL);

layer.add(reelR);

reelL.setZIndex(1);

reelR.setZIndex(2);

layer.draw();

// Reel animation function

anim = new Kinetic.Animation(function(frame) {

var angleDiff = frame.timeDiff * angularSpeed / 1000;

reelR.rotate(angleDiff);

reelL.rotate(angleDiff);

}, layer);

};

// Loading the background

var bg = new Image();

bg.onload = function() {

var studer = new Kinetic.Image({

x: 0,

y: 0,

image: bg,

width: 1040,

height: 720

});

// Add the shape to the layer

layer.add(studer);

// Move it to the bottom of the layer

studer.setZIndex(0);

layer.draw();

};

// Finally, we load the pins (which shouldn’t rotate

// with the rest of the reels)

var pin = new Image();

pin.onload = function() {

70 code listings

var pinL = new Kinetic.Image({

x: 183,

y: 203,

image: pin,

width: 15,

height: 15

});

var pinR = new Kinetic.Image({

x: 843,

y: 203,

image: pin,

width: 15,

height: 15

});

layer.add(pinL);

layer.add(pinR);

// Move them to the top of the layer

pinL.setZIndex(3);

pinR.setZIndex(4);

layer.draw();

// Add the layer to the stage

stage.add(layer);

};

// Source files

bg.src = ’canvasbg.jpg’;

tape.src = ’tapemetal.png’;

pin.src = ’pin.png’;

}, false);

eqcontrol.js - Audio management and interaction script
// Our <audio> element

var audio = new Audio();

// Hide default controls

audio.controls = false;

audio.autoplay = false;

audio.id = ’track’;

// Function for the playback timer update

audio.ontimeupdate = function() {

var currentSeconds =

(Math.floor(this.currentTime % 60) < 10 ? ’0’ : ’’) +

Math.floor(this.currentTime % 60);

var currentMinutes =

code listings 71

(Math.floor(this.currentTime / 60) < 10 ? ’0’ : ’’) +

Math.floor(this.currentTime / 60);

// As a side note, native getElementById is faster than

// jQuery’s $ selector

document.getElementById(’timer’).innerHTML = currentMinutes +

" : " + currentSeconds;

};

// Creation of the AudioContext

var context;

if (typeof AudioContext !== ’undefined’) {

context = new AudioContext();

} else if (typeof webkitAudioContext !== ’undefined’) {

context = new webkitAudioContext();

}

// Wait for window.onload to fire

window.addEventListener(’load’, function(e) {

// Our <audio> element will be the audio source.

source = context.createMediaElementSource(audio);

// Gain to compensate for volume loss after convolution

gain = context.createGain();

// It seems to be a problem only in webkit browsers

if (typeof webkitAudioContext !== ’undefined’) {

gain.gain.value = 25;

}

// A convolver for each supported standard

IEC1_15 = context.createConvolver();

IEC1_7 = context.createConvolver();

IEC2_15 = context.createConvolver();

IEC2_7 = context.createConvolver();

NAB_15 = context.createConvolver();

NAB_7 = context.createConvolver();

NAB_3 = context.createConvolver();

// Setting the ID for each convolver

IEC1_15.id = "IEC1_15";

IEC1_7.id = "IEC1_7";

IEC2_15.id = "IEC2_15";

IEC2_7.id = "IEC2_7";

NAB_15.id = "NAB_15";

NAB_7.id = "NAB_7";

NAB_3.id = "NAB_3";

72 code listings

// Setting the impulse response for each convolver

// (some are shared)

IEC1_15.imp = "IEC1_15";

IEC1_7.imp = "IEC1_7";

IEC2_15.imp = "IEC2_15";

IEC2_7.imp = "IEC2_15";

NAB_15.imp = "IEC2_15";

NAB_7.imp = "IEC2_15";

NAB_3.imp = "NAB_3";

// Chaining the convolver in a round-robin fashion

IEC1_7.next = IEC1_15;

IEC1_15.next = IEC2_7;

IEC2_7.next = IEC2_15;

IEC2_15.next = NAB_15;

NAB_15.next = NAB_7;

NAB_7.next = NAB_3;

NAB_3.next = IEC1_7;

IEC1_7.prev = NAB_3;

IEC1_15.prev = IEC1_7;

IEC2_7.prev = IEC1_15;

IEC2_15.prev = IEC1_7;

NAB_15.prev = IEC2_15;

NAB_7.prev = NAB_15;

NAB_3.prev = NAB_7;

// Setting the (extimated) reel rotation speeds

IEC1_15.speed = IEC2_15.speed = NAB_15.speed = - 360 * 1.5;

IEC1_7.speed = IEC2_7.speed = NAB_7.speed = - 360 * 0.75;

NAB_3.speed = - 360 * 0.375;

// Function to request impulse responses .wav files

function setImpResp(convolver) {

var request = new XMLHttpRequest();

request.open("GET", "/" + convolver.imp + ".wav", true);

request.responseType = "arraybuffer";

request.onload = function() {

convolver.buffer = context.createBuffer(request.response,

false);

console.log("Impulse response for convolver " +

convolver.id + " loaded successfully.");

};

request.send();

}

code listings 73

// Loading impulse responses - TBCompleted

setImpResp(IEC2_15);

setImpResp(IEC2_7);

setImpResp(IEC1_15);

setImpResp(IEC1_7);

setImpResp(NAB_15);

setImpResp(NAB_7);

setImpResp(NAB_3);

gain.connect(context.destination);

// List playable files

$.getJSON(’/list’, function(result) {

$.each(result, function(key, track) {

$(’#selector’).append(’<option value="’+track.filename+

’">[’+track.ips+’] ’+track.title+’</option>’);

});

audio.src = ’/play/’+result[0].filename;

});

}, false);

// Play - Stop - Prev - Next functions for the buttons

function play(element) {

element.play();

anim.start();

}

function pause(element) {

element.pause();

anim.stop();

}

// ’next’ and ’prev’ buttons have been replaced by ’rewind’

// and ’fast forward’.

// We’re keeping the code for future reference

function next() {

var s = document.getElementById(’selector’);

s.selectedIndex =

(document.getElementById(’selector’).selectedIndex + 1) %

s.length;

if (s.selectedIndex === 0)

s.selectedIndex =

(document.getElementById(’selector’).selectedIndex + 1) %

s.length;

switchSong(s.value);

74 code listings

}

function prev() {

var s = document.getElementById(’selector’);

s.selectedIndex = ((s.selectedIndex - 1) % s.length + s.length) %

s.length;

if (s.selectedIndex === 0)

s.selectedIndex = ((s.selectedIndex - 1) % s.length + s.length) %

s.length;

switchSong(s.value);

}

// Fast Forward and Rewind functionalities

var intervalRewind;

function fastForward() {

audio.playbackRate = 4.0;

changeSpeed(currentEQ.speed * 3);

}

function rewind() {

changeSpeed(currentSpeed * (-3));

intervalRewind = setInterval(function() {

audio.playbackRate = 1.0;

if (audio.currentTime === 0) {

clearInterval(intervalRewind);

pause(audio);

anim.stop();

} else {

audio.currentTime += -0.1;

}

},30);

}

function resume() {

audio.playbackRate = 1.0;

changeSpeed(currentEQ.speed);

clearInterval(intervalRewind);

changeEQ(currentEQ);

}

// Adding event listeners

var wasPlaying = true;

$(’#play’).click(function() {

code listings 75

play(audio);

wasPlaying = true;

});

$(’#pause’).click(function() {

pause(audio);

wasPlaying = false;

});

$(’#rewind’).mousedown(function() {

if (audio.paused) {

play(audio);

}

rewind();

});

$(’#rewind’).mouseup(function() {

resume();

if (!wasPlaying)

pause(audio);

});

$(’#ffward’).mousedown(function() {

if (audio.paused)

play(audio);

fastForward();

});

$(’#ffward’).mouseup(function() {

resume();

if (!wasPlaying)

pause(audio);

});

var currentEQ;

var currentSpeed;

var originalSpeed;

var newConv;

// Functions to switch EQ and load new tracks

function changeEQ(newEQ) {

if (newEQ != currentEQ) {

source.disconnect(currentEQ);

source.connect(newEQ);

newEQ.connect(gain);

76 code listings

changeSpeed(newEQ.speed);

currentSpeed = newEQ.speed;

currentEQ = newEQ;

}

}

function changeSpeed(newSpeed) {

angularSpeed = newSpeed;

}

// Change the EQ and the playback rate with the IPS knob

function nextEQ(inEQ) {

if (originalSpeed / inEQ.next.speed == 2) {

audio.playbackRate = 0.5;

}

else if (originalSpeed / inEQ.next.speed == 0.5) {

audio.playbackRate = 2.0;

}

else {

audio.playbackRate = 1.0;

}

$(’#kn’).attr(’class’, inEQ.next.id);

changeEQ(inEQ.next);

}

// Revert to the original EQ

function revertEQ() {

nextEQ(newConv.prev);

}

function switchSong(newSong) {

var newEQ = newSong.split(’.’);

anim.stop();

audio.src = ’/play/’+newSong;

audio.addEventListener(’canplaythrough’, function() {

if (newEQ[0] == ’IEC1_15’)

newConv = IEC1_15;

else if (newEQ[0] == ’IEC1_7’)

newConv = IEC1_7;

else if (newEQ[0] == ’IEC2_15’)

newConv = IEC2_15;

else if (newEQ[0] == ’IEC2_7’)

newConv = IEC2_7;

else if (newEQ[0] == ’NAB_15’)

newConv = NAB_15;

else if (newEQ[0] == ’NAB_7’)

code listings 77

newConv = NAB_7;

else if (newEQ[0] == ’NAB_3’)

newConv = NAB_3;

changeEQ(newConv);

originalSpeed = newConv.speed;

$(’#kn’).attr(’class’, newConv.id);

audio.playbackRate.value = 1.0;

play(audio);

});

wasPlaying = true;

}

matlab script for obtaining the digital fil-
ter for each equalization standard
clc;

clear all;

close all;

% t1 and t2 values

% Equalization IEC2 at 15 in/s

t1 = 50*10^-6;

t2 = 3180*10^-6;

% Sampling frequency for the digital filter

Fs = 44100;

% Analog transform function coefficients

num = [t2 1];

den = [t1*t2 t2 0];

% Applying bilinear transformation

[numd,dend] = bilinear(num,den,Fs);

% Plot the frequency response

figure

freqz(numd,dend,1000,Fs);

% Set logarithmic scale on the frequency axis

ax = findall(gcf, ’Type’, ’axes’);

set(ax, ’XScale’, ’log’);

set(ax, ’XLim’, [0 22050]);

set(ax, ’YLim’, [-80 20]);

% Plot the impulse response

78 code listings

figure

impz(numd,dend);

% Save impulse response

[filtimp,T] = impz(numd,dend,[],Fs);

stereofilt = horzcat(filtimp,filtimp);

audiowrite(’IEC2_15.wav’,stereofilt,Fs);

B I B L I O G R A P H Y

[1] AJAX (Wikipedia Entry). url: https://en.wikipedia.org/wiki/
Ajax_(programming) (cit. on p. 22).

[2] Francesco Anderloni. reel2virtual code repository. url: https://
github.com/ffander/reel2virtual (cit. on p. 50).

[3] Audio Units (Wikipedia Entry). url: https://en.wikipedia.org/
wiki/Audio_Units (cit. on p. 16).

[4] Federico Avanzini and Sergio Canazza. Virtual analogue instru-
ments: an approach to active preservation of the Studio di Fonologia
Musicale. Vol. The Studio di Fonologia - A Musical Journey 1954-
1983 Update 2008-2012. Hal Leonard MGB, 2009 (cit. on pp. 9,
11, 12, 15).

[5] George Boston. “Safeguarding the Documentary Heritage. A
Guide to Standards, Recommended Practices and Reference Lit-
erature Related to the Preservation of Documents of All Kinds”.
In: UNESCO (1988) (cit. on pp. 6, 7).

[6] Federica Bressan and Sergio Canazza. “A Systematic Approach
to the Preservation of Audio Documents: Methodology and
Software Tools”. In: Journal of Electrical and Computer Engineer-
ing 2013 (2013), p. 21 (cit. on pp. 4–8).

[7] Marvin Camras. Magnetic Recording Handbook. Van Nostrand
Reinhold Company, New York, 1988 (cit. on pp. 38, 40–42).

[8] Canvas browser support. url: http://caniuse.com/canvas (cit.
on p. 25).

[9] Canvas Element (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Canvas_element (cit. on p. 25).

[10] Joel Chadabe. “Le principe du voltage-control et ses implica-
tions pour le compositeur”. In: Musique en Jeu 8 (1972) (cit. on
p. 10).

[11] Chrome Developer Tools. url: https://developers.google.com/
chrome-developer-tools/ (cit. on p. 23).

[12] Cloud Computing (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Cloud_computing (cit. on p. 20).

[13] Connections Counter: The Internet of Everything in Motion. url:
http://newsroom.cisco.com/feature-content?type=webcontent&

articleId=1208342 (cit. on p. 20).

[14] World Wide Web Consortium. Current state of work on the CSS3
Standard. url: http://www.w3.org/Style/CSS/current-work
(cit. on p. 33).

79

https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)
https://github.com/ffander/reel2virtual
https://github.com/ffander/reel2virtual
https://en.wikipedia.org/wiki/Audio_Units
https://en.wikipedia.org/wiki/Audio_Units
http://caniuse.com/canvas
https://en.wikipedia.org/wiki/Canvas_element
https://en.wikipedia.org/wiki/Canvas_element
https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://newsroom.cisco.com/feature-content?type=webcontent&articleId=1208342
http://www.w3.org/Style/CSS/current-work

80 bibliography

[15] World Wide Web Consortium. Web Audio API - W3C Working
Draft 10 October 2013. url: http://www.w3.org/TR/webaudio/
(cit. on pp. 26–30).

[16] Pete Cooper. Generator express. url: https : / / github . com /

petecoop/generator-express (cit. on p. 48).

[17] Roland Corporation. AIRA — TR-909 Rhythm Composer. Jan. 2014.
url: https://www.youtube.com/watch?v=pXsMvTSCkuY (cit. on
p. 13).

[18] CSS (Wikipedia Entry). url: https://en.wikipedia.org/wiki/
Cascading_Style_Sheets (cit. on pp. 31–33).

[19] Cultural Heritage (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Cultural_heritage (cit. on p. 1).

[20] DREAM Project homepage. url: http://dream.dei.unipd.it/
(cit. on p. 9).

[21] L. Duranti. “Interpares3 - team Canada final report"”. In: Tech.Rep.,
University of British Columbia (2012) (cit. on p. 8).

[22] Express.js - node.js web application framework. url: http://expressjs.
com (cit. on p. 47).

[23] Facebook Poll: 94 Percent Of Users Don’t Like Redesign. url: http:
//techcrunch.com/2009/03/19/facebook-polls-users-on-

redesign-94-hate-it/ (cit. on p. 22).

[24] M. Factor, E. Henis, and D. Naor et al. “Authenticity and prove-
nance in long term digital preservation: modeling and imple-
mentation in preservation aware storage”. In: Proceedings of the
1st Workshop on the Theory and Practice of Provenance, San Fran-
cisco, California, USA (2009) (cit. on p. 8).

[25] Jarod Ferguson. Solving the upload progress bar problem – The
History of Node.js. Feb. 2012. url: http://elegantcode.com/
2012/02/06/solving-the-upload-progress-bar-problemthe-

history-of-node-js/ (cit. on pp. 34, 36).

[26] Cloud Fondry. Future-proofing Your Apps: Cloud Foundry and Node.js.
url: http://blog.cloudfoundry.com/2012/06/27/future-
proofing-your-apps-cloud-foundry-and-node-js/ (cit. on
p. 35).

[27] Felix Geisendörfer. Felix’s Node.js Convincing the boss guide. 2011.
url: http://nodeguide.com/convincing_the_boss.html (cit.
on p. 36).

[28] HTML Wikipedia Entry. url: https://en.wikipedia.org/wiki/
HTML (cit. on p. 24).

[29] HTML5 Audio (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/HTML5_Audio (cit. on p. 26).

http://www.w3.org/TR/webaudio/
https://github.com/petecoop/generator-express
https://github.com/petecoop/generator-express
https://www.youtube.com/watch?v=pXsMvTSCkuY
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Cultural_heritage
https://en.wikipedia.org/wiki/Cultural_heritage
http://dream.dei.unipd.it/
http://expressjs.com
http://expressjs.com
http://techcrunch.com/2009/03/19/facebook-polls-users-on-redesign-94-hate-it/
http://techcrunch.com/2009/03/19/facebook-polls-users-on-redesign-94-hate-it/
http://techcrunch.com/2009/03/19/facebook-polls-users-on-redesign-94-hate-it/
http://elegantcode.com/2012/02/06/solving-the-upload-progress-bar-problemthe-history-of-node-js/
http://elegantcode.com/2012/02/06/solving-the-upload-progress-bar-problemthe-history-of-node-js/
http://elegantcode.com/2012/02/06/solving-the-upload-progress-bar-problemthe-history-of-node-js/
http://blog.cloudfoundry.com/2012/06/27/future-proofing-your-apps-cloud-foundry-and-node-js/
http://blog.cloudfoundry.com/2012/06/27/future-proofing-your-apps-cloud-foundry-and-node-js/
http://nodeguide.com/convincing_the_boss.html
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/HTML5_Audio
https://en.wikipedia.org/wiki/HTML5_Audio

bibliography 81

[30] HTML5 Introduction - Mozilla Developer Network. url: https://
developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

(cit. on p. 24).

[31] HTML5 Please. url: http://html5please.com/ (cit. on p. 33).

[32] HTML5 Wikipedia Entry. url: https : / / en . wikipedia . org /

wiki/HTML5 (cit. on pp. 24, 25).

[33] Introducing UNESCO. url: http://en.unesco.org/about-us/
introducing-unesco (cit. on p. 1).

[34] Anders Janmyr. A Not Very Short Introduction To Node.js. May
2011. url: http://www.jayway.com/2011/05/15/a-not-very-
short-introduction-to-node-js/ (cit. on p. 34).

[35] jQuery Homepage. url: http://jquery.com/ (cit. on p. 22).

[36] JSON (Wikipedia Entry). url: https://en.wikipedia.org/wiki/
JSON (cit. on p. 50).

[37] Jeff Kunkle. Node.js Explained. July 2012. url: http://kunkle.
org/nodejs-explained-pres/#/dead-lock-free (cit. on p. 34).

[38] Magnetic tape (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Magnetic_tape (cit. on p. 3).

[39] Josh Marinacci. HTML Canvas Deep Dive. url: http://projects.
joshy.org/books/canvasdeepdive/toc.html (cit. on p. 25).

[40] Media formats supported by the HTML audio and video elements.
url: https://developer.mozilla.org/en- US/docs/HTML/
Supported_media_formats (cit. on p. 26).

[41] Microphone (Wikipedia Entry). url: https://en.wikipedia.org/
wiki/Microphone (cit. on p. 10).

[42] Minimoog (Wikipedia Entry). url: https://en.wikipedia.org/
wiki/Minimoog (cit. on p. 16).

[43] MiniV Plugin product page. url: http : / / www . arturia . com /

evolution/en/products/minimoogv/intro.html (cit. on p. 17).

[44] Mozilla Developer Network. <audio>. url: https://developer.
mozilla.org/en-US/docs/Web/HTML/Element/audio (cit. on
p. 25).

[45] Mozilla Developer Network. Canvas. url: https://developer.
mozilla.org/en-US/docs/HTML/Canvas (cit. on p. 25).

[46] Mozilla Developer Network. CSS. url: https : / / developer .

mozilla.org/en-US/docs/Web/CSS (cit. on pp. 31–33).

[47] Node Packaged Modules. url: https://npmjs.org/ (cit. on p. 34).

[48] node.js Official Website. url: https://en.wikipedia.org/wiki/
V8_(JavaScript_engine) (cit. on pp. 33, 34).

[49] Node.js Wikipedia Entry. url: http://en.wikipedia.org/wiki/
Nodejs (cit. on pp. 33, 35).

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
http://html5please.com/
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/HTML5
http://en.unesco.org/about-us/introducing-unesco
http://en.unesco.org/about-us/introducing-unesco
http://www.jayway.com/2011/05/15/a-not-very-short-introduction-to-node-js/
http://www.jayway.com/2011/05/15/a-not-very-short-introduction-to-node-js/
http://jquery.com/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
http://kunkle.org/nodejs-explained-pres/#/dead-lock-free
http://kunkle.org/nodejs-explained-pres/#/dead-lock-free
https://en.wikipedia.org/wiki/Magnetic_tape
https://en.wikipedia.org/wiki/Magnetic_tape
http://projects.joshy.org/books/canvasdeepdive/toc.html
http://projects.joshy.org/books/canvasdeepdive/toc.html
https://developer.mozilla.org/en-US/docs/HTML/Supported_media_formats
https://developer.mozilla.org/en-US/docs/HTML/Supported_media_formats
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Minimoog
https://en.wikipedia.org/wiki/Minimoog
http://www.arturia.com/evolution/en/products/minimoogv/intro.html
http://www.arturia.com/evolution/en/products/minimoogv/intro.html
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/HTML/Canvas
https://developer.mozilla.org/en-US/docs/HTML/Canvas
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://npmjs.org/
https://en.wikipedia.org/wiki/V8_(JavaScript_engine)
https://en.wikipedia.org/wiki/V8_(JavaScript_engine)
http://en.wikipedia.org/wiki/Nodejs
http://en.wikipedia.org/wiki/Nodejs

82 bibliography

[50] Jolie O’Dell. Why Everyone Is Talking About Node. Mar. 2011. url:
http://mashable.com/2011/03/09/node-js/ (cit. on p. 35).

[51] OpenShift. CPU performance of small gear. url: https://www.
openshift . com / forums / openshift / cpu - performance - of -

small-gear (cit. on p. 60).

[52] OpenShift. FAQs. url: https : / / www . openshift . com / faq #

t6n11272.

[53] OpenShift. Homepage. url: https://www.openshift.com/ (cit.
on p. 60).

[54] Nicola Orio et al. “Methodologies and tools for audio digital
archives”. In: International Journal on Digital Libraries 10.4 (Dec.
2009), pp. 201–220 (cit. on p. 6).

[55] Phonograph cylinder (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Phonograph_cylinder (cit. on p. 2).

[56] Phonograph (Wikipedia Entry). url: https://en.wikipedia.org/
wiki/Phonograph (cit. on pp. 1, 11).

[57] Raja Rao. Future-proofing Your Apps. June 2012. url: http://
blog.cloudfoundry.com/2012/06/27/future-proofing-your-

apps-cloud-foundry-and-node-js/.

[58] Roland TR-909 (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Roland_TR-909 (cit. on pp. 13, 14).

[59] Dietrich Schuller. Curriculum vitae. url: http://www.phonogrammarchiv.
at/wwwnew/DS_CV_e.htm (cit. on p. 6).

[60] Dietrich Schüller. “The ethics of preservation, restoration, and
reissues of historical sound recordings”. In: Journal of Audio En-
gineering Society 39.12 (1991), pp. 1014–1016 (cit. on p. 7).

[61] Stefania Serafin and Steven Gelineck. Novel interfaces for control-
ling musical expression: historical overview and current directions.
Vol. The Studio di Fonologia - A Musical Journey 1954-1983

Update 2008-2012. Hal Leonard MGB, 2009 (cit. on p. 15).

[62] Slides from Ryan Dahl’s presentation at JSConf ’09. 2009. url: http:
//s3.amazonaws.com/four.livejournal/20091117/jsconf.

pdf (cit. on p. 33).

[63] Boris Smus. Web Audio API: Advanced Sound for Games and Inter-
active Apps. O’Reilly Media, Mar. 2013 (cit. on pp. 26, 27).

[64] Sound recording and reproduction (Wikipedia Entry). url: https://
en.wikipedia.org/wiki/Sound_recording_and_reproduction

(cit. on p. 1).

[65] Speed Index - WebPageTest Documentation. url: https://sites.
google.com/a/webpagetest.org/docs/using-webpagetest/

metrics/speed-index (cit. on p. 61).

http://mashable.com/2011/03/09/node-js/
https://www.openshift.com/forums/openshift/cpu-performance-of-small-gear
https://www.openshift.com/forums/openshift/cpu-performance-of-small-gear
https://www.openshift.com/forums/openshift/cpu-performance-of-small-gear
https://www.openshift.com/faq#t6n11272
https://www.openshift.com/faq#t6n11272
https://www.openshift.com/
https://en.wikipedia.org/wiki/Phonograph_cylinder
https://en.wikipedia.org/wiki/Phonograph_cylinder
https://en.wikipedia.org/wiki/Phonograph
https://en.wikipedia.org/wiki/Phonograph
http://blog.cloudfoundry.com/2012/06/27/future-proofing-your-apps-cloud-foundry-and-node-js/
http://blog.cloudfoundry.com/2012/06/27/future-proofing-your-apps-cloud-foundry-and-node-js/
http://blog.cloudfoundry.com/2012/06/27/future-proofing-your-apps-cloud-foundry-and-node-js/
https://en.wikipedia.org/wiki/Roland_TR-909
https://en.wikipedia.org/wiki/Roland_TR-909
http://www.phonogrammarchiv.at/wwwnew/DS_CV_e.htm
http://www.phonogrammarchiv.at/wwwnew/DS_CV_e.htm
http://s3.amazonaws.com/four.livejournal/20091117/jsconf.pdf
http://s3.amazonaws.com/four.livejournal/20091117/jsconf.pdf
http://s3.amazonaws.com/four.livejournal/20091117/jsconf.pdf
https://en.wikipedia.org/wiki/Sound_recording_and_reproduction
https://en.wikipedia.org/wiki/Sound_recording_and_reproduction
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index

bibliography 83

[66] Aaron Stannard. Intro to Node.JS for .NET Developers. Dec. 2011.
url: http : / / www . aaronstannard . com / post / 2011 / 12 / 14 /

Intro-to-NodeJS-for-NET-Developers.aspx (cit. on p. 34).

[67] William Storm. “The establishment of international re-recording
standards”. In: Phonographic Bulletin 27 (1980), pp. 5–12 (cit. on
p. 6).

[68] Synthesizer (Wikipedia Entry). url: https://en.wikipedia.org/
wiki/Synthesizer (cit. on p. 12).

[69] Mikito Takada. Understanding the Node.js Event Loop. Feb. 2011.
url: http://blog.mixu.net/2011/02/01/understanding-the-
node-js-event-loop/ (cit. on p. 34).

[70] Jessica Thornsby. Node.js Moves to Joyent. Nov. 2010. url: http:
//jaxenter.com/node-js-moves-to-joyent-32530.html (cit.
on p. 34).

[71] Twitter Bootstrap. url: http://getbootstrap.com/ (cit. on p. 23).

[72] V8 (JavaScript Engine) Wikipedia Entry. url: http : / / nodejs .

.org (cit. on p. 33).

[73] Vinyl records (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Vinyl_records (cit. on p. 2).

[74] Virtual Studio Technology (Wikipedia Entry). url: https://en.
wikipedia . org / wiki / Virtual _ Studio _ Technology (cit. on
p. 16).

[75] W3C: HTML Canvas 2D Contex Candidate Recommendation. url:
http : / / www . w3 . org / TR / 2013 / CR - 2dcontext - 20130806 /

#drawing-images-to-the-canvas (cit. on p. 25).

[76] W3C: HTML5 Candidate Recommendation. url: http://www.w3.
org/TR/2014/CR-html5-20140204.

[77] W3C Technical Report Development Process. url: http://www.w3.
org/2005/10/Process-20051014/tr#q73 (cit. on pp. 25, 27).

[78] W3C Wikipedia Entry. url: https://en.wikipedia.org/wiki/
World_Wide_Web_Consortium (cit. on p. 22).

[79] Web Application (Wikipedia Entry). url: https://en.wikipedia.
org/wiki/Web_application (cit. on pp. 19, 20, 23).

[80] Web Audio API browser support. url: http : / / caniuse . com /

#feat=audio-api (cit. on p. 30).

[81] WebPageTest. url: http://www.webpagetest.org/ (cit. on p. 61).

[82] WebRTC Project Homepage. url: http://www.webrtc.org/ (cit.
on p. 27).

[83] "Why is Node.js becoming so popular?" - Quora Question. May 2011.
url: http://www.quora.com/Node- js/Why- is- Node- js-
becoming-so-popular (cit. on p. 35).

http://www.aaronstannard.com/post/2011/12/14/Intro-to-NodeJS-for-NET-Developers.aspx
http://www.aaronstannard.com/post/2011/12/14/Intro-to-NodeJS-for-NET-Developers.aspx
https://en.wikipedia.org/wiki/Synthesizer
https://en.wikipedia.org/wiki/Synthesizer
http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/
http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/
http://jaxenter.com/node-js-moves-to-joyent-32530.html
http://jaxenter.com/node-js-moves-to-joyent-32530.html
http://getbootstrap.com/
http://nodejs..org
http://nodejs..org
https://en.wikipedia.org/wiki/Vinyl_records
https://en.wikipedia.org/wiki/Vinyl_records
https://en.wikipedia.org/wiki/Virtual_Studio_Technology
https://en.wikipedia.org/wiki/Virtual_Studio_Technology
http://www.w3.org/TR/2013/CR-2dcontext-20130806/#drawing-images-to-the-canvas
http://www.w3.org/TR/2013/CR-2dcontext-20130806/#drawing-images-to-the-canvas
http://www.w3.org/TR/2014/CR-html5-20140204
http://www.w3.org/TR/2014/CR-html5-20140204
http://www.w3.org/2005/10/Process-20051014/tr#q73
http://www.w3.org/2005/10/Process-20051014/tr#q73
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
http://caniuse.com/#feat=audio-api
http://caniuse.com/#feat=audio-api
http://www.webpagetest.org/
http://www.webrtc.org/
http://www.quora.com/Node-js/Why-is-Node-js-becoming-so-popular
http://www.quora.com/Node-js/Why-is-Node-js-becoming-so-popular

84 bibliography

[84] Yeoman - Modern workflows for modern webapps. url: http : / /

yeoman.io/ (cit. on p. 48).

http://yeoman.io/
http://yeoman.io/

	Contents
	List of Figures
	List of Tables
	Sommario
	Abstract
	Ringraziamenti
	Introduction
	1 Preservation of the musical cultural heritage
	1.1 Preservation of audio documents
	1.1.1 Passive preservation
	1.1.2 Active preservation

	1.2 Philological Authenticity of audio documents
	1.2.1 Two Legitimate Directions
	1.2.2 "To save history, not rewrite it"

	1.3 The remediation process
	1.4 Preservation of musical equipment
	1.4.1 Active preservation of electroacoustic music
	1.4.2 Active preservation of electrophone instruments through virtualization
	1.4.3 Interaction with virtual devices: control parameters and interfaces

	1.5 Instruments for philological access of audio documents

	2 Web Technologies and web applications
	2.1 Web Applications
	2.1.1 Advantages and disadvantages of web apps

	2.2 Web Technologies
	2.2.1 HTML5
	2.2.2 Web Audio API
	2.2.3 CSS3
	2.2.4 Node.js

	3 Magnetic tape recorder virtualization
	3.1 Requirement Analysis
	3.2 The Studer A810 Magnetic Tape Recorder
	3.2.1 Replication of the equalization in the digital domain
	3.2.2 Interface design

	4 Web application development and testing
	4.1 Software tools used
	4.1.1 Express.js
	4.1.2 Jade
	4.1.3 Yeoman

	4.2 Back-end development
	4.3 Front-end development
	4.4 Testing the application
	4.4.1 Deployment in the cloud
	4.4.2 Tests performed

	5 Conclusions and future work
	A Code listings
	Bibliography

