
UNIVERSITY OF PADOVA

Department of Information Engineering
Master of Science in ICT for Internet and Multimedia – Cybersystems

Master’s Thesis

Mixing Deep Networks and
Entangled Forests

for the Semantic Segmentation of 3D Indoor Scenes

Supervisor
Dr. Stefano Ghidoni
Co-supervisor
Matteo Terreran, MSc

Candidate
Filippo Rigotto

Academic year 2018 2019

A very big thank you to all the people who made this possible.

We have seen that computer programming is an art, because it applies accumulated
knowledge to the world, because it requires skill and ingenuity, and especially

because it produces objects of beauty. A programmer who subconsciously views
himself as an artist will enjoy what he does and will do it better.

Prof. Donald E. Knuth

It’s nice to be elegant, but it’s more important to be effective.

Prof. Michele Zorzi

Abstract

Object recognition and semantic segmentation are major topics in the computer
vision field: while the former aims to find objects in a scene, with the coordinates of
their bounding boxes being the typical output, the latter focuses on a more specific
pixel-wise classification.

This kind of elaboration has been performed firstly on 2D images often made of
three channels (RGB), with great performance and results. In recent years, thanks to
several advances in hardware, in particular lower costs and a huge boost in processing
power, accurate and reliable 3D data from sensors has been more steadily available.

This work focuses on semantic segmentation over 3D data such as point clouds
representing indoor scenes, like offices, conference rooms and working spaces: after
researching the current state of the art, deep neural networks based on the PointNet
concept are evaluated, and one, the Superpoint Graph architecture, is selected for
blending and mixing its features with the ones used by the 3D Entangled Forests
algorithm, a modification of the random forests learning architecture.

The exchange of features between the two architectures occurs in both directions, to
have an insight on their relevance during the preparation and learning phases.

Contents

1 Introduction 1
1.1 Working with 3D data . 2
1.2 Machine learning . 4

1.2.1 Deep neural networks . 4
1.2.2 Random Forests . 5

1.3 Thesis objectives and structure . 6

2 State of the Art 7

3 The Stanford dataset 11

4 Deep learning on 3D data 15
4.1 PointNet++ . 15
4.2 Superpoint Graphs . 18
4.3 JSIS3D . 20

5 Entangled forests 23
5.1 RF Training and inference . 23
5.2 Strengths and weaknesses . 24
5.3 3D Entangled Forests . 24

5.3.1 Unary features . 25
5.3.2 Entangled features . 26

6 Experiments on S3DIS 27
6.1 Training and test split . 27
6.2 Evaluation metrics . 27
6.3 PointNet++ . 29
6.4 Superpoint Graphs . 30
6.5 JSIS3D . 32
6.6 Entangled forests . 33
6.7 Cumulative evaluation . 34

7 Exchanging features between architectures 37
7.1 Experiments on 3DEF . 37

7.1.1 SPG features added to 3DEF clustering part 37

A

7.1.2 Training forests on SPG features 41
7.2 Experiments on SPG . 44

7.2.1 Porting features from 3DEF 44
7.2.2 Changing color space . 46
7.2.3 Enabling features in different steps 48

8 Conclusions 51

List of Figures I

List of Tables III

Acronyms IV

Bibliography V

B

Chapter 1

Introduction

Recent years have seen the rise of Computer Vision (CV) as a key field of research.
The advent of Augmented Reality (AR), Virtual Reality (VR) and Artificial In-
telligence (AI) and the general availability of faster and more powerful PCs and
Graphics Processing Units (GPUs) alongside cheap but accurate 3D sensors. The
most significant is Microsoft’s Kinect, a camera that allows for the acquisition of
RGB images along with depth given by lasers and structured light systems. This
device has pushed forward the boundaries in this field, initially focused on 2D images,
and now 3D scene processing and understanding has become quite a relevant topic
in both research and industry.

While activities like objects and shapes recognition and scene understanding are
simple tasks for human beings, it is much difficult for a robot or for an AI to make
autonomous decisions based on vision results. This has a particular relevance in
indoor environments filled of objects of different shapes and volumes. In order for a
robot to know its surrounding environment it has to be able to segment the input
and to extract the semantic meaning of each section.

Semantic segmentation is a key sub-problem of scene understanding: it involves the
decomposition of images into meaningful regions and structures. This is achieved
by assigning a label from a predefined set to each and every pixel in the image, a
task known as pixel-wise classification. Classification is a hard task because objects
may be occluded by other things or their perception may be distorted by shadows
or light reflection due to the materials they are made of. Because of this, objects
are never well defined and lot of samples of them are needed to boost the accuracy
of the algorithms. A sample image resulting from the semantic segmentation of an
outdoor scenario, a populated street, can be found in Figure 1.1.

1

1 – Introduction

car
person

road sign
writing

street lane
sidewalk

tree

Figure 1.1: Semantic segmentation of a 2D image depicting an outdoor environment.
Labels are represented by different colors superposed to the original image.

(source: sthalles.github.io/deep_segmentation_network)

1.1 Working with 3D data
Considering our three-dimensional world, images become scenes and pixels become
points. Thus a scene is made of multiple points, forming a point cloud. Examples of
point clouds are depicted in Figure 1.2a and Figure 1.3a. Points are identified by
their three coordinates with respect to a fixed reference frame, and in the vision field
they are also typically characterized by additional properties such as the class label
or the color expressed by a tuple of values according to a specific color space; for
example, an RGB triplet, HSV values or a single intensity value for monochromatism.
As clouds are in an Euclidean space a distance metric may be defined among points.
Moreover, points in the cloud do not have an intrinsic order, contrary to image
pixels that are structured in a 2D plane, or simply a 2D matrix, and for which a
precedence order may be defined (in both row and column directions). Points also
present invariance under certain transformations: for example, rotating the whole
cloud together should not modify neither classification nor segmentation properties.

(a) Point cloud (b) Mesh version (c) Voxelized version

Figure 1.2: Several representations of the Stanford bunny.
(sources: pointcloudwarehouse.com, cse.osu.edu (CSE3541), ResearchGate)

2

https://sthalles.github.io/deep_segmentation_network
http://www.pointcloudwarehouse.com/details.html?pointCloudId=565211fe3598d00eab8040a1
http://web.cse.ohio-state.edu/~wang.3602/courses/cse3541-2017-fall/01-Overview.pdf
https://www.researchgate.net/figure/Voxelized-representation-of-the-Stanford-bunny-geometry_fig7_321487917

1.1 – Working with 3D data

Point clouds are a versatile tool to represent objects and surfaces but they are not
the only structure for working with 3D data: a visual example, the historic Stanford
bunny1, is presented in several versions in Figure 1.2. Meshes are a more complete 3D
representation that include faces defined between points. Another popular alternative
is obtained through voxelization, a process that takes a 3D object and constructs
a regular 3D shape surrounding it, usually made by simple polygons like cubes.
Practically, voxelization is a uniform mapping of each points’ coordinates (x, y, z)
into discrete voxel coordinates (i, j, k). The mapping depends on the resolution of
the voxel grid in the space, that can either be fixed or chosen so objects occupy
a subvolume of predefined volume. Using a fixed resolution maintains the objects’
relative scale, while using the second approach avoids the loss of shape that occurs
when voxels are too small. The projection method consists of representing a 3D
object with multiple 2D images (“views”) taken from different orientations and stored
alongside with depth, the distance between the camera and the 3D point location, for
every pixel. Data is said to be in 2.5D, or RGB-D, in this case. The original object
can be reconstructed from views by means of geometrical properties of the space, as
performed by Structure from Motion (SfM) algorithms [1], [2].

(a) Original scene (b) Segmented scene

Figure 1.3: Semantic segmentation of a 3D indoor scene.

The task of semantic segmentation remains unchanged in this domain: the 3D scene
is decomposed into meaningful regions and a label is assigned to each point of the
cloud. An example of a processed indoor office is presented in Figure 1.3: left, the
point cloud of the room with original colors evidenced; right, the same point cloud
where colors represent different labels, that is, points colored in azure are part of the
same floor class, brown is for points of the wall class, blue is for chairs, etc.

1More at the page http://graphics.stanford.edu/data/3Dscanrep/#bunny

3

http://graphics.stanford.edu/data/3Dscanrep/#bunny

1 – Introduction

1.2 Machine learning

Automated learning, or Machine Learning (ML), is the ability of programming
computers so that they can “learn”: in summary, it can be thought as the process of
converting experience into knowledge. [3] While the given input represents experience,
the output is a program that can generalize and perform some operations, the
most common is the classification task. As a practical example of that, imagine an
algorithm that can analyze e-mails and tell whether a specific one is spam or not,
or another algorithm that predicts what single object is in an image (within a set
of predefined choices). These algorithms are called learners or, for this particular
task, classifiers. Classifiers initially starts with no knowledge and they learn by
iterating multiple times over input data, for which they also know the right result
labels (supervised learning). To have a good classifier the goal during learning is to
minimize the classification error, quantified by a loss function that is an indicator of
the difference between predicted and true labels, while keeping high the capability
to generalize to new data, that is, to prevent overfitting on training data. Overfitting
occurs when learning becomes too tailored to input data and the algorithm has bad
performance on new data.

Several different kinds of Machine Learning (ML) algorithm exists: many tools may
be used as automatic learners, and in this thesis two will be extensively used: deep
networks and random (entangled) forests.

1.2.1 Deep neural networks

Artificial Neural Networks (NNs) are the most prominent trend in computer vision
in the last decade, even if their foundations date way back in time. Networks of the
simplest kind are made of a collection of interconnected neurons (or perceptrons, as
pioneered by Rosenblatt in 1958. [4]) stacked in layers, and they are known as Multi-
layer Perceptrons (MLPs). An example is in Figure 1.4. Each connection has a weight
that is initially random and changes during learning through the backpropagation
algorithm: after data has passed through the network, a gradient descent optimization
approach exploits the chain rule of derivatives to compute the gradient of the loss
function, which is then propagated back through layers to update nodes’ weights.
This phase is also denoted as training (or fitting) a NN. A trained network with its
learned set of weights may be used to predict labels for new data, a phase called
inference. During inference weights are frozen and backpropagation is not enforced,
because the model is already fitted. A network is considered deep if it is made of more
than three layers. MLPs are not the only type of network, and some architecture
examples are presented in Chapter 4. Moreover, different network topologies are
required for working with different 3D representations, such as the ones presented
previously in this chapter.

4

1.2 – Machine learning

Figure 1.4: Scheme of a Multi-layer Perceptron (MLP), from [5, §11.2].

1.2.2 Random Forests
Random Forest (RF) classifiers are an ensemble learning method that work by
constructing multiple decision trees on training data. Decision trees are a simple
representation to classify sample data, but trees grown very deep tend to overfit
and forests constitute a way to weight between trees trained on different parts of
the dataset. The forest is trained using a modified bagging algorithm which consists
on repeatedly fitting trees to a random sample of the training set. Predictions are
then made by averaging single trees’ predictions, this keeps low the variance of the
model, or by taking the most suggested class (majority rule). A visual example is in
Figure 1.5. RF classifiers will be further explored in Chapter 5.

Figure 1.5: Scheme of a Random Forest (RF) classifier.
(source: globalsoftwaresupport.com/random-forest-classifier-bagging-machine-learning)

5

https://www.globalsoftwaresupport.com/random-forest-classifier-bagging-machine-learning

1 – Introduction

1.3 Thesis objectives and structure
This thesis poses as objectives to study and evaluate the current state of the art
in semantic segmentation applied to indoor scenes, in the form of plain 3D point
clouds, and to evaluate and compare both deep networks and Entangled Forest (EF)
classifiers. Then, this thesis contributes by studying the feasibility of exchanging
features between one of the selected deep networks and Entangled Forests.

This work has been developed during an internship at the Intelligent and Autonomous
Systems Lab2 at the University of Padova under the supervision of Dr. Stefano
Ghidoni, assistant professor, and Matteo Terreran, Ph.D. student.

The thesis is structured as follows. In Chapter 2, the current state of the art and
related works in semantic segmentation is reviewed. In Chapter 3 the Stanford
dataset considered for the thesis is described and analyzed. In Chapter 4 three
most prominent architectures based on deep learning are thoroughly examined and
compared. In Chapter 5 the Entangled Forests algorithm is investigated. For both
these two last chapters, configurations, parameters, issues encountered and proposed
solutions are laid out. Chapter 7 discloses attempts and achieved results in exchanging
features between the two realities. Finally, concluding remarks and possible future
developments are presented in Chapter 8.

2IAS-Lab, Via Ognissanti, 72, 35131 Padova, http://robotics.dei.unipd.it

6

http://robotics.dei.unipd.it

Chapter 2

State of the Art

The topic of semantic segmentation has been reviewed in several surveys in the
literature. While most of them focus only on 2D images [6]–[9] some recent works
conduct a more extensive review also including the 3D space and point clouds.
Weinmann et al. [10] present a fully automated and versatile framework composed of
neighborhood selection, feature extraction and choice, and classification; for each of
them they consider and list a variety of common approaches and test applicability in
terms of simplicity, efficiency and reproducibility. Garcia-Garcia et al. [11] collect and
describe the most used datasets and challenges, and then go on reviewing existing
deep learning-based methods and networks, highlighting contributions and relevance.

The first attempts at working on point clouds through deep learning techniques used
a volumetric representation, that is, they employ voxelized input data. An example
of this is the work of Maturana and Scherer [12]. They perform object detection
through a 3D Convolutional Neural Network (CNN) that is an extension of the
2D version where convolution is performed with three-dimensional kernels over the
voxelized input.

Because of the computational expensiveness of performing 3D convolutions, Su et
al. [13] managed to build 3D shape classifiers from sets of 2D image renderings
and then performed 2D convolutions. Their pipeline is then to obtain several image
views of the scene, to apply a CNN on these and then to report and merge back
results in the 3D space. They obtained better results because of the efficiency of 2D
representations w.r.t. 3D voxelization, advances in image descriptors and massive
databases such as ImageNet [14], all true at the time they wrote the paper. A similar
approach of using multiple 2D views is presented by Boulch et al. [15].

At the same time manual feature extraction was still investigated by Hackel et
al. [16]: they studied efficient ways of dealing with huge point clouds such as the
ones coming from Light Detection and Ranging (LiDAR) scans, based on the central
concept of points’ neighborhood so to account for spatial correlation between classes.
Multi-scale neighborhoods in 3D point clouds were investigated by Thomas et al. [17]:

7

2 – State of the Art

based on spherical neighborhood and proportional subsampling, this allows feature
computation with a consistent geometrical meaning, such that they can be used for
example by RF classifiers. The latter work is based on other notable results in 3D
descriptors, pooling and local surface features [18]–[21].

After having delved into CNN based on both volumetric and multi-view represen-
tations [22], a pioneering work by Qi et al. attempted to design a neural network
that directly consumes point clouds: PointNet [23]. Such neural network was created
arguing that traditional convolutional networks require highly regular input like
image grids, 3D voxels or meshes; generally raw point clouds are not in a regular
format. Directly working on points is more straightforward than recurring to voxeliza-
tion. PointNet is a unified architecture that outputs class labels for the entire input
(classification) or per-point segment labels (semantic segmentation). The network
learns to summarize an input point cloud by a sparse set of key points.

A key limitation of PointNet in its first formulation is that it does not capture local
structures, limiting the ability to recognize fine patterns. The solution proposed by
the same authors, named PointNet++ [24], is to introduce a hierarchical network
that applies the base PointNet recursively on an overlapping partition of the point
cloud, thus learning local features at progressively increasing scales much like what
does the SIFT algorithm [25] for 2D images. More insights on this network will be
covered in Section 4.1.

Engelmann et al. [26] further recognize that the neighborhood context used by
PointNet is not sufficient: spatial context is in general very important for semantic
segmentation, and thus they introduce two mechanisms to account for that. While
the first is similar to PointNet++ in incorporating neighborhood information by
processing input data at different scales or by considering multiple adjacent regions,
the second approach operates on the estimated point descriptors and consolidates
them by exchanging information over a larger spatial neighborhood. Consolidation
is a second stage in the network architecture and is done by employing MLPs and
max-pooling or Gated Recurrent Units (GRUs).

Wang et al. [27] developed a new layer operation, namely EdgeConv, that incorporates
local neighborhood information, can be stacked or recurrently applied to learn global
shape properties and captures semantic characteristics. The need for such operation
rises from previous considerations on PointNet: it operates on single points and
extensions allow the network to consider points’ neighborhood to exploit local
features; anyway, treating points independently at a local scale neglects fundamental
geometric relationships and this results in underrepresenting features. EdgeConv
addresses this while maintaining permutation invariance, a foundation of PointNet.
Long-distance context could also be exploited by means of a two-step hierarchical
Recurrent Neural Network (RNN), as recently proved by Ye et al. [28]. The input
point cloud is subdivided into partially overlapping blocks along the two horizontal
directions, on which two sets of RNNs are consequently applied so to account for long

8

2 – State of the Art

spatial dependencies. Experimental results by the authors show that this recurrent
approach largely improves accuracy.

SEGCloud is a more complex framework presented by Tchapmi et al. [29], that is
made of several parts all centered on the use of a CNN. The 3D CNN operates on
voxelized regular 3D point clouds and outputs predictions at the voxel level, that
is, all points in a voxel are assigned the same label. Fine-grained labeling (at the
point level) is obtained through Trilinear Interpolation (TI), for the upsampling of
class scores from voxel neighbors to points, and a final Conditional Random Field
(CRF) that ensures spatial consistency and smoothness between labels. Additionally,
according to [30], the iterative nature of operation of CRFs is the same of RNNs,
and they can be freely exchanged.

The use of Self-Organizing Maps (SOMs) [31] to model spatial distribution of points
in clouds is investigated by Li et al. [32]: hierarchical feature extraction is performed
on individual points and SOM nodes, and the input point cloud is represented by a
single feature vector. This approach is successfully used to perform part classification
and segmentation on datasets made for object recognition such as ModelNet [33].

Landrieu and Simonovsky [34] developed a novel approach based on the Superpoint
Graph (SPG) to tackle the challenge of dealing with point clouds made of million of
points. Clouds are represented as a collection, a graph, of interconnected simple shapes,
dubbed superpoints, on which classification and segmentation is performed using
smaller PointNets for superpoint embedding and graph convolutions for semantic
segmentation, through modified versions of Edge-Conditioned Convolutions (ECCs)
and GRUs. Superpoint graphs encode contextual relationships between object parts in
3D point clouds, and can consider both fine details and long-range context information
simultaneously. A deeper tractation of this network will be developed in Section 4.2.
A similar approach based on supervoxel contexts and graph-based optimization
applied to instance segmentation of trees in urban areas was presented shortly after
by Xu et al. [35].

Convolutional networks applied to features extracted from input data by a MLP is
the backbone of PointCNN [36]: the fully connected network is used to simultaneously
weight and permute input features ideally keeping order invariance, while hierarchical
convolutions perform the classification and segmentation tasks.

At the present time, an attempt at jointly considering both semantic and instance
segmentation is carried on time by Pham et al. [37]. Pointwise networks predict the
semantic classes of 3D points and embed them into high-dimensional vectors so that
points of the same object instance are represented by similar embeddings. A multi-
value CRF is used to incorporate semantic and instance labels in a joint optimization
problem. The pointwise network part will be further expanded in Section 4.3.

Aside of the inquired neural networks, still today many works focus on non-deep
algorithms to perform semantic segmentation on 3D point clouds. Their major
strength is not to rely on GPUs, so they are more suitable for mobile robotics

9

2 – State of the Art

applications where computation power and battery life have non-neglibigle limits. A
notable mention is RF classifiers [38]. Their use for the task of semantic segmentation
is sparse in the literature: Montillo et al. [39] worked on 3D tomography and first
proposed entangling the binary tests applied to each tree node of the forest, such
that the test result depend both on results of tests applied earlier in the same tree
and on the input voxel to be classified.

Wolf et al. previously worked on RF classifiers [40] applied to 3D indoor scenes. Their
framework involved over-segmenting the input point cloud, calculating discriminative
feature vectors for each segment and conditional label probabilities using a RF,
to then initialize a dense CRF that account for the likelihood of different class
labels appearing close to each other. The same authors subsequently applied the
entanglement concept to 3D point clouds introducing the 3D Entangled Forest
(3DEF) [41], an extension of standard RF with the use of 3D entangled features,
which capture frequently appearing combinations of classes and learn their 3D
geometric configuration in the scene. Relations are learned between different classes
and also within the same class, to have a smooth classification output without
resorting to CRFs. Antonello et al. [42] studied an offline method to directly apply
3DEF classifiers to whole reconstructions, along with two approaches based on a
multi-view frame fusion algorithm to improve semantic segmentation of single frames
and to build a semantic map. 3DEF classifiers will be further developed in Chapter 5.

10

Chapter 3

The Stanford dataset

Several datasets that focus on semantic segmentation exist: some focus on 2D data
(KITTI [43], Cityscapes [44], ScanNet [45]), some add depth information (NYU-D [46],
Sun RGB-D [47], SceneNN [48]), others also comprise 3D point clouds (Stanford [49],
Sun3D [50], Matterport3D [51]). Note that these lists are not exhaustive. Among all
these datasets, the “Stanford” 2D-3D-S1, is a dataset of large-scale indoor spaces
collected by Armeni et al. for their work on joint 2D-3D scene understanding [49].

As the name suggests, this dataset contains both 2D RGB images and 3D point
clouds with RGB data, plus depth and semantic annotations for 13 different classes,
obtained using a Matterport2 scanner. The 2D/2.5D part is made of 70000 RGB
images, for which the scanner also provided the corresponding depths, surface normals
and camera information. Semantic annotations and global XYZ images (in both
regular and 360° equirectangular3 formats) are elaborated in a post-acquisition phase.
The 3D part includes point clouds along with RGB values and the semantic label for
each point. The Stanford Large-scale 3D Indoor Spaces Dataset (S3DIS) dataset is a
subset of the full 2D-3D-S dataset that contains only the 3D part, and it was used by
the same authors for a previous work on 3D semantic parsing of indoor spaces [52].

The dataset is made of mainly educational and office rooms grouped into 6 areas
originated from 3 different buildings, with a covered area of over 6000m3 and over
215 million total points. For each room a colored point cloud and 3D semantic
annotations for objects are provided. Detected objects are both structural elements
(ceiling, floor, wall, beam, column, window and door) and office furniture (table,
chair, sofa, board and bookcase). Rooms are heterogeneous and they contain different
subsets of the objects, e.g. there is generally no sofa in the offices, but there are some

1http://buildingparser.stanford.edu/dataset.html
2https://matterport.com
3A projection of the 3D space into a 2D image, typically a panorama derived from 360° cameras.

11

http://buildingparser.stanford.edu/dataset.html
https://matterport.com

3 – The Stanford dataset

in the open space, and equally the bookcase is likely to be in conference rooms but
not in storage rooms.

As a last important note, this is an unbalanced dataset: it becomes clear from
Table 3.2 where it can be noticed how bigger elements in rooms, such as walls, are
made of much more points than for example sofas or boards. This is a common
problem also in the literature and is a challenge for automatic learning.

Tables 3.1 and 3.2, reprinted from the website, show the composition of the dataset:
for each area, it is reported the number and type of rooms, and the number of points
per class. Figure 3.1 shows sample close-ups of 3D clouds and semantics data for
each area.

Figure 3.1: 3D part of the dataset (S3DIS). Above, 3D point clouds with RGB data.
Below, semantic annotations represented by different colors for each class.

(source: http://buildingparser.stanford.edu/dataset.html)

12

http://buildingparser.stanford.edu/dataset.html

3 – The Stanford dataset

T a
bl
e
3.
1:

C
om

po
sit

io
n
of

S3
D
IS

da
ta
se
t.

N
um

be
r
of

ro
om

s
pe

r
ar
ea
.

A
re
a

Vo
l.

O
ffi
ce

C
on

f.
A
ud

ito
riu

m
Lo

bb
y

Lo
un

ge
H
al
lw
ay

C
op

y
Pa

nt
ry

O
pe

n
St
or
ag

e
W
C

T o
ta
l

(m
2)

(m
3)

R
o o

m
R
oo

m
Sp

ac
e

A
re
a
1

96
5

28
50

31
2

–
–

–
8

1
1

–
–

1
45

A
re
a
2

11
00

30
65

14
1

2
–

–
12

–
–

–
9

2
39

A
re
a
3

45
0

12
15

10
1

–
–

2
6

–
–

–
2

2
24

A
re
a
4

87
0

27
80

22
3

–
2

–
14

–
–

–
4

2
49

A
re
a
5

17
00

53
70

42
3

–
1

–
15

–
1

–
4

2
55

A
re
a
6

93
5

26
70

37
1

–
–

1
6

1
1

1
–

–
53

To
ta
l

60
20

17
36
0

15
6

11
2

3
3

61
2

3
1

19
9

27
0

T a
bl
e
3.
2:

C
om

po
sit

io
n
of

S3
D
IS

da
ta
se
t.

N
um

be
r
of

3D
po

in
ts

pe
r
cl
as
s,

fo
r
ea
ch

ar
ea
.

C
ei
lin

g
Fl
oo

r
W
al
l

Be
am

C
ol
um

n
D
oo

r
W

in
do

w
Ta

bl
e

C
ha

ir
So

fa
Bo

ok
ca
se

Bo
ar
d

To
ta
l

A
re
a
1

56
45

23
5

62
58

87
30

70
15

6
7

91
28

92
5

A
re
a
2

82
51

28
4

62
58

94
9

47
54

6
7

49
18

13
07

A
re
a
3

38
24

16
0

14
13

38
9

31
68

10
42

13
46

0
A
re
a
4

74
51

28
1

4
39

10
8

41
80

16
0

15
99

11
96

3
A
re
a
5

77
69

34
4

4
75

12
8

53
15
5

25
9

12
21

8
43

14
37

A
re
a
6

64
50

24
8

69
55

94
32

78
18

0
10

91
30

10
01

T o
ta
l

39
1

29
0

15
52

16
5

26
0

54
9

17
4

46
1

13
69

61
59

0
14

3
60

93

13

Chapter 4

Deep learning on 3D data

In this chapter, the focus moves towards deep learning on 3D data: a selection of
deep networks from the state of the art (Chapter 2) that works on 3D point clouds
are now thoroughly exposed and investigated.

4.1 PointNet++

As already mentioned in Chapter 2, PointNet is a deep network architecture that
works directly on 3D point clouds and outputs class labels for the entire input
(classification) or per-point segment labels (semantic segmentation).

In its basic settings the network considers only points’ coordinates (x, y, z) and it
learns to summarize an input point cloud by a sparse set of key points: in particular, it
learns a set of optimization functions (or criteria) that select interesting or informative
points in the cloud, and encodes the reason for their selection.

Nonetheless, a point cloud is just a set of points and thus it is natively invariant to
point permutations: this property is preserved using max-pooling. Pooling is a simple
symmetric function empirically proven to be the best candidate by the authors, that
also tested other alternatives such as to sort input into a canonical order or treat the
input as a sequence to train a RNN. Falling back to sorting procedures does not work
because in higher dimensional spaces there is no ordering that is stable w.r.t. point
perturbations, see [53], and RNNs add unwanted and unmanageable complexity to
the architecture, while not being sure that the network will become invariant to
input order after having been trained with randomly permuted sequences.

The network is robust to small perturbations or corruptions through point insertion
and deletion, and to affine transformations on the input set. In fact, a data-dependent
spatial transformation that attempts to canonicalize data before PointNet process
them is shown to improve the results.

15

4 – Deep learning on 3D data

Figure 4.1: PointNet architecture [23]. n is the number of input points, k and m are
the number of categories for classification and segmentation, respectively.

In brackets, layer sizes.
(source: http://stanford.edu/~rqi/pointnet)

The network is presented in Figure 4.1: the initial stages are the same for both
classification and segmentation operations. The architecture is made of a stack of
MLP layers, interspersed with with max-pooling layers and smaller transformation
networks (T-net in the figure).

T-net predicts an affine transformation that is directly applied to its input via matrix
multiplication, to perform point alignment to a canonical space. T-nets are applied
both to input space and feature space. However, the network that operates on the
feature space has much higher dimension than the spatial transform matrix, which
greatly increases the difficulty of optimization. The solution is to add a regularization
term to the training loss: the transformation matrix is constrained to be close to an
orthogonal matrix, so it will not loose information. The regularization term stabilizes
optimization and enhances performance. Batch normalization [54] and ReLU are
used for all layers, dropout [55] is used for the last MLP in the classification part.

The final fully connected layers aggregate learnt optimal values (i) into a global
descriptor for the entire shape or (ii) for predicting per-point labels. In the first case,
the network outputs k scores for all the k candidate classes, while in the latter the
model outputs n ×m scores for each of the n points and each of the m semantic
categories.

Practically, the output of the classification network is a vector that constitutes a
global signature of the input set, but point segmentation requires a combination
of both local geometry and global knowledge (semantics), achieved concatenating
the global vector with per-point features and extracting new features based on this
combination.

16

http://stanford.edu/~rqi/pointnet

4.1 – PointNet++

A key limitation of PointNet is that it does not capture local structures induced by
the space points live in, limiting the ability to recognize fine patterns or to generalize
to complex scene: PointNet++ [24] is the solution proposed by the same authors.

The input set of points is partitioned into overlapping local regions according to the
distance metric of the underlying 3D space. Local features capturing fine geometric
structures are extracted from small neighborhoods and then further grouped into
larger units, again processed to obtain higher level features. The procedure is repeated
until features of the whole cloud are obtained: PointNet++ leverages neighborhoods
at multiple scales to achieve robustness and capture details; random input dropout
during training helps adaptively learning weights and combine multi-scale features.

Figure 4.2: PointNet++ hierarchical architecture [24].
Points in 2D Euclidean space are used as an example.

(source: http://stanford.edu/~rqi/pointnet2)

PointNet++ structure is depicted in Figure 4.2: it is composed of many set abstraction
levels that process a set of points and produce a subset ready for next level. Each
set abstraction is made of three layers: the sampling layer selects a set of points
as centroids of local regions, the grouping layer constructs local region sets based
on centroids neighbors, and PointNet encodes region patterns into feature vectors.
Sampling is performed using the iterative farthest point sampling (FPS) algorithm,
that has better coverage than simple random choices. Grouping is performed using
the ball query algorithm that finds all points within a given radius from the centroids
or alternatively using the K-nearest neighbors search that finds a fixed number of
neighbors.

Each partition is then defined as a neighborhood ball in the 3D space, parameterized
by the centroid location and the scale, a common structure needed to share weights
in PointNet layers. The authors acknowledge that the input point set may have
variable density at different areas, a commonly verified assumption, and thus taking
a small neighborhood may result in having too few points that prevent PointNet

17

http://stanford.edu/~rqi/pointnet2

4 – Deep learning on 3D data

to capture robust patterns: in this case a larger scale should be used to look to a
sufficient number of points.

In PointNet++ each abstraction level extracts multiple scales of local patterns and
combine them according to local densities: PointNet layers are density-adaptive. Two
types of layer are proposed by the authors, also represented in Figure 4.3:

• Multi-scale Grouping (MSG): apply grouping layers and PointNets at different
scales and concatenate all the features in a single feature vector. Random input
data dropout optimizes learning by different sparsity and varying uniformity.
It is computationally expensive since PointNets run for every centroid, which
are many at lower levels.

• Multi-resolution Grouping (MRG): the feature vector of a region at some level
is a concatenation of two vectors, one summarizes features at each subregion of
the lower level, the other is obtained by directly processing all raw points in the
region using a single PointNet. The importance of each of the two subvectors
depends on the density of the local region, so they must be weighted differently
for each case. It is computationally more efficient since feature extraction in
large scale at the lowest levels is avoided.

concat

(a) (b)

A or Bconcat

(c)

A B

multi-scale aggregation
cross-level multi-scale aggregation

cross-level adaptive scale selection
Figure 4.3: Density-adaptive grouping layers in PointNet++ [24].

(a) Multi-scale grouping (MSG); (b) Multi-resolution grouping (MRG).

In each set abstraction layer, the input point set is subsampled. But in the semantic
segmentation task labels are needed for each point: distance-based interpolation
across levels is employed to propagate labels to all the original input data points.

4.2 Superpoint Graphs
Superpoint Graphs are a novel point cloud representation introduced by Landrieu
and Simonovsky in 2018 [34] and resumed in [56]. They propose to represent large
3D point clouds as an interconnection of simple shapes named superpoints. This
structure can be captured by an attributed directed graph called the superpoint graph

18

4.2 – Superpoint Graphs

(SPG). The representation is able to consider entire object parts as a whole, and to
describe in detail relationships between adjacent objects.

Figure 4.4: Pipeline for the Superpoint Graphs architecture [34].

The authors’ starting point are LiDAR scans: they are made of hundreds of millions
of points, and the problem is intractable using direct deep learning approaches
like PointNet. The superpoint representation allows to split the problem into three
distinct subproblems, also visually presented in Figure 4.4 and in Figure 4.5.

Figure 4.5: The SPG framework on a toy example with a table and a chair [34].

First, the point cloud is partitioned into geometrically simple but meaningful shapes:
the objective is not to retrieve individual objects but rather to break down objects
into simple parts, clusters. Clusters are geometrically simple and it can be assumed
that they are semantically homogeneous, that is, they do not cover objects of different
classes. This step is unsupervised as are clustering procedures in general, and makes
no use of labels. Moreover, the segmentation adapts to local geometry: clusters can
be both large simple shapes like walls and smaller components such as parts of a
chair. For each point of the cloud a set of geometric features is computed. In the
implementation, they characterize the shape of the points’ 10-nearest neighborhood:
linearity, planarity, scattering, verticality, as defined in [57], [58] and elevation,
the z coordinate of the point, normalized over the whole cloud. The partition is
constituted by connected components, the superpoints, that solve the generalized
minimal partition problem: it is an optimization problem of a non-convex and non-
continuous functional, and thus the problem cannot be solved exactly for a large
point cloud, however the `0-cut pursuit algorithm [59], [60] developed by one of the
authors can provide an approximate solution in few iterations.

19

4 – Deep learning on 3D data

Point
clouds

10-
Nearest
Neighbors

list

Super-
point
Graphs

Network
training

Geom.
features

Graph
features

Figure 4.6: Preprocessing pipeline for the SPG architecture.

The constant connected components define the superpoints from which the superpoint
graph (SPG) can be easily derived: it is an oriented attributed graph whose nodes
are the set of superpoints and edges, referred as superedges, represent the adjacency
between them. Moreover, superedges are annotated with 13 features that comprise
mean, standard deviation and centroid offsets, along with length, surface, volume and
point count ratios, that can also be computed from the eigenvalues of the covariance
matrix of points’ positions in each superpoint, sorted by decreasing value.

Every superpoint is downsampled to a few hundred of points, on which a small
PointNet can easily operate to obtain a compact descriptor, a fixed-size vector named
embedding. Descriptors are computed in isolation: contextual information is injected
in a later stage.

The SPG is by orders of magnitude smaller than any graph built on the original
point cloud: as a last step, deep learning algorithms can be used to classify each
superpoint based on its embedding. The most suited class of architectures for this
task is graph convolutions, specifically ECC [61], developed by one of the authors:
ECC can dynamically generate filtering weights using a MLP that build up a weight
matrix for each edge. The general idea is that superpoints refine their embeddings by
using information passed along superedges: in the implementation, each superpoint
maintains its state in a GRU, initialized with the embedding from PointNet. GRUs
are modified to ignore the external context if the class state is almost certain and to
learn to focus on specific feature channels. They operate in a way similar to CRFs
for 2D image segmentation, but the domain is richer and less constrained. GRUs
provide the final labels for the semantic segmentation task.

For more detailed information, mathematical insights and references about each step
in the framework and in the architecture, please refer to the original paper [34].

4.3 JSIS3D
Pham et al. [37] try to jointly address the problems of semantic and instance
segmentation of 3D point clouds: as already mentioned in the introduction, while
semantic segmentation aims to classify each point using a set of predefined classes,

20

4.3 – JSIS3D

instance segmentation is a further step that also discriminates between different
objects: for example, two chairs will have the same semantic label (the one that
identifies chair, of course) but two different instance labels.

In their work, the authors acknowledged that most of the times object categories
and object instances are mutually dependent and shape and appearance features
extracted on an instance may help to also identify the object category, and they
developed a deep Multi-task Pointwise Network (MT-PNet) for predicting semantic
classes and embedding points into high-dimensional vectors such that points of
the same object instance end up having similar representations and thus can be
clustered, and also proposed a multi-value CRF to incorporate and jointly optimize
both semantic and instance labels in the field model into a unified framework.

Figure 4.7: The MT-PNet network structure [37].

The network, named MT-PNet, is depicted in Figure 4.7. It accepts as input overlap-
ping 3D windows scanned from the entire cloud and produces labels for all vertices
within the windows. The network structure highly resembles PointNet architecture
but in the end it diverges in two branches that predict semantic labels and generate
pointwise instance embeddings for 3D points. The loss used for the network is the
sum of the prediction loss, that is, the usual cross-entropy, and of the embedding
loss, which is defined as Le = α · Lpull + β · Lpush + γ · Lreg where intuitively Lpull

attracts embeddings towards their centroids, Lpush keeps centroids away from each
others, and Lreg is a regularization term. Constants are empirically set.

At this stage, points in the cloud are represented by their 3D location, their normal
vector, color and the resulting embedding from MT-PNet. Semantic and instance
labels are then represented as random variables taking values from their respective
sets of possible choices. While the set of semantic labels is known, the set of instance
labels needs to be determined. The multi-value CRF works on a graph defined
over the point cloud and its set of labels, and simultaneously optimizes both labels’
random variables according to an energy function that includes many potentials
linked to both physical and semantic constraints. This latter part is optional and
only serves to smooth the network’s results: for full mathematical details, please refer
to the original paper [37].

21

Chapter 5

Entangled forests

As briefly mentioned in the introduction, Chapter 1, Random Forest (RF) classifiers
are made of a collection of Decision Trees (DTs) (recall Figure 1.5). A DT is a
structure made of nodes that represent a test on a data attribute. For each node the
test’s outcome generates two branches that lead to two other nodes. The structure
then evolves from the root node down to the final leaves as a binary tree.

5.1 RF Training and inference
To separate differently labeled data, tests have to be performed. Every node in the
trees is associated with a split function: these functions are learned during the forest’s
training phase. Trees start with only the root node and they grow by subsequently
splitting data until one of the following conditions occur:

• the class label distribution on data that came to a node only contain points
with the same label;

• a maximum tree depth level is reached;

• the size of the subset of the data that landed on a specific node is below a
given threshold;

• the difference from the best achievable split is negligible.

Training stops when all child nodes have become leaves and a further split is not
possible anymore. Trees in the forest can be trained in parallel. Leaves store a
probability distribution given by the subset of training data that came to them
through decisions.

The right split function for each node is selected from a randomly drawn pool of
functions from a predefined set: the final candidate is the function that maximized
the quality of the split, according to an evaluation metric. The most common metric

23

5 – Entangled forests

is the entropy of the class distribution: the best split is the one that has the lowest
entropy among the ones produced by the candidate functions.

As for neural networks, a trained RF classifier may be used to predict classes for
new data points: they go through the now-defined trees’ structure and the final class
probabilities are given by averaging each tree’s output distribution.

5.2 Strengths and weaknesses
RF achieve high accuracy and generally do not require too much data preprocessing.
The forest structure is highly parametrical and flexible: while after training the trees’
structure is fixed, some parameters have to be set beforehand, like the number of
trees in the forest and the maximum allowed depth for each tree. A tradeoff is needed:
computation time scales linearly with the number of trees (RFs are much harder and
time-consuming to construct than DTs), but performance also saturates.

Single trees tend to overfit the data, and RF try to solve this problem. While
averaging or combining results in the forest mitigates the problem, two further
actions may be evaluated: setting the maximum tree’s depth to prevent going too
much deeper, and employing the bagging strategy, that is, to train each tree on a
smaller randomly-drawn subset (a bag) of the whole training data.

Another drawback of RF is that they process input points independently, such that
each data point is related to a feature vector. Nonetheless, contextual information
that derives from considering also the point’s neighborhood may be relevant to help
points’ classification for the semantic segmentation task. Wolf et al. [41] proposed a
modification of the standard architecture of RF to incorporate spatial information:
they introduced entangled features in addition to standard unary features associated
to single points, and named the new architecture 3D Entangled Forest (3DEF).

5.3 3D Entangled Forests

Point
clouds

Over-
segmen-
tation

Merging
into

clusters
Features

Forest
training

Figure 5.1: Preprocessing pipeline for the 3DEF classifier.

The algorithm accepts point clouds as input, which in the case of S3DIS represent
single rooms. Voxel Cloud Connectivity Segmentation (VCCS) [62] is responsible to
operate an unsupervised oversegmentation of the cloud into regions of perceptually
similar 3D points, named supervoxels. By construction supervoxels obey to the
spatial geometry of the scene and do not violate object edges. Next, a region growing
algorithm is applied to recursively merge pairs of adjacent supervoxels into larger
segments if their relative distance is below a fixed threshold. The distance function

24

5.3 – 3D Entangled Forests

considers a weighted combination of color in CIELAB space, surface normal and
point-to-plane distances between clusters. This procedure leads to a set of segments,
or clusters, input for the classifier. An example is in Figure 5.2. Feature vectors are
computed for each segment, and on that basis the forest is trained. The trained forest
is then refined with a rebalance of trees’ leaves, a step that allows to achieve better
performance.

(a) RGB scene (b) True labels (c) Clusters

Figure 5.2: Example of clustering for a conference room: (a) the original scene; (b)
true labels from the dataset; (c) output of VCCS segmentation and subsequent
merging procedure. Each label and cluster is represented with a different color.

5.3.1 Unary features
Point clouds and segments are aligned with the ground (floor) plane, an information
that is both passed as parameter (the floor label) and acquired in the previous
clustering step (the floor points’ location). Then for each segment a 18-dimensional
unary feature vector is computed, using the set of points that belongs to each
segment. Considered features include non-complex and fast-to-compute appearance
and geometric properties such as:

• mean and standard deviation of the points’ color, for each channel in the
CIELAB color space;

• mean and standard deviation of the angle between the surface normal and the
ground plane;

• height above ground for the highest and lowest point in the segment;

• width, height and depth of the bounding box surrounding the segment;

• horizontal and vertical elongations from ratios between the previous dimensions;

• “thickness” of the segment;

• occupied area in the horizontal and vertical plane.

During training, for each feature the only parameter to be sampled is a threshold.
During inference, if a segment’s value for the feature is larger than this threshold,
the feature evaluates to true.

25

5 – Entangled forests

5.3.2 Entangled features
Entangled features come from information extracted from closer nodes during the
forest’s training: when learning deeper levels of each tree, storing class distributions
even for intermediate nodes helps splitting data and further growing the trees in the
structure. The crucial point is to have a method to find across different scenes other
data points whose contextual information help prediction for current data point.
Each 3D entangled feature learns a set of geometric constraints relative to currently
classified segment. Given two segments si and sj, considered constraints include:

• the point-to-plane distance measured along the surface normal of sj, from the
centroid of sj to the closest point of si, to be in a range between a minimum
and a maximum;

• the oriented enclosed angle between the surface normals of si and sj projected
into both horizontal and vertical planes. For indoor scenes, these are very
descriptive, because objects and structures are often aligned to some of the
canonical room axis;

• the Euclidean distance between the two segments, to be lower than 1, to limit
the influence of distant segments.

These constraints reduce the whole set of available segments to a small candidate
subset, on which the feature learns the parameters for a binary test, to extract
contextual information. Binary tests are different for each feature:

• Existing segment: the feature evaluates to true if at least one of the candidate
segments passes the binary test, that is, it fulfills the geometrical constraints;

• TopN: based on the previous with the addition of intermediate label predictions
for each candidate segments. The feature also learns a candidate label l and a
positive integer N : if l is among the top N class labels of the distribution for
at least one of the candidate segments, the feature evaluates to true;

• Inverse TopN: same binary test as above, but the angle difference is computed
against the ground plane instead of si, and the point-to-point distance is
measured inversely from the centroid of si to the closest point of sj , to account
for classes with non-regular surface normal (classes not composed by mainly
planar surfaces);

• Node descendant: considers the path a segment si took through the tree during
inference. The feature evaluates to true if the current tree node that si has
reached is a descendant of tree node n, an additionally learned parameter;

• Common ancestor: the dual equivalent of the previous, additionally taking the
classification path of the target sj into account. The feature evaluates to true
if the first common ancestor node of both si and sj is reached after at most m
steps, a learned parameter.

26

Chapter 6

Experiments on S3DIS

After some introductory details, the networks previously introduced in Chapter 4
and the 3DEF algorithm presented in Chapter 5 are separately tested and their
performance on the Stanford dataset’s 3D point clouds is compared.

6.1 Training and test split
Specific areas in the S3DIS dataset contain similar rooms, both in terms of content
and building structure. As also noted in Chapter 3, the dataset has imbalanced
semantic classes: bigger elements in rooms are made of more points than smaller
objects. For a better learning, it is necessary to split data in training and test subsets
in such a way that no similar areas and rooms appear together.

The authors in [52] propose three different splits, and then they perform cross-
validation on them to avoid overfitting and to have a more balanced sampling. The
first of these three proposals is used throughout all the following tests: Area 5 is kept
as test set, while the remaining ones constitute the training set.

6.2 Evaluation metrics
The segmentation task is generally a M -class problem (M > 1) and segmentation
algorithms may be evaluated using a M ×M confusion matrix, that collects and
divides the number of classified samples: a sample of such a matrix, restricted to a
simpler 2-class problem, is depicted in Table 6.1. Having on columns actual “true”
classes and on rows predicted labels from the algorithm, the diagonal of the matrix
contains the number of all correctly matched samples, and the remaining constitutes
the number of all the wrongly classified samples. In Table 6.1, a True Positive (TP)
is a sample whose class is A and is correctly labeled as such, while a True Negative
(TN) is a sample of B correctly classified: they both reside on the diagonal; False

27

6 – Experiments on S3DIS

Positives (FP) and False Negatives (FN) are, respectively, samples of A classified as
B and vice-versa, and they are outside the diagonal.

Table 6.1: Sample confusion matrix, with example numbers. True labels are on
columns and predicted labels are on rows. Definitions are w.r.t. the A class.

A B

A TP = 100 FN = 10
B FP = 5 TN = 50

Accuracy is defined as the ratio of true predictions to the total evaluated samples:

A = TP + TN

TP + TN + FP + FN

In a multi-class problem, accuracy can be computed separately for each class or as
a single value over the total number of samples; in this case it is called global or
overall accuracy and it is obtained from the diagonal of the matrix. Moreover, Mean
accuracy is the average of per-class accuracies:

Ai = TPi

TPi + FPi

MA = 1
M

∑
i

Ai OA = 1
N

∑
i

TPi

where N is the total number of considered samples and i ∈ [1..M] is the class indexer.
Note that the average in MA is not weighted according to the class distribution.

Precision P and recall R metrics are also equally meaningful in a multi-class problem:
they are defined as the ratio of true positives (TP) to the total predicted positives
(TP+FP), and the ratio of true positives to all predictions classified in the same class
(TP+FN). The F1-score is the harmonic average between the two. Mathematically,

P = TP

TP + FP
R = TP

TP + FN
F1 = 2× P ×R

P +R

These metrics can be computed separately for each class.

The Intersection-over-Union (IoU) is another measure of the accuracy of predicted
samples Ŷ compared to the ground truth, that is, the true labels Y . The name derives
from considering the number of common points in between the two sets divided by
the number of points present in the union of the sets:

IoU(Y, Ŷ) = Y ∩ Ŷ
Y ∪ Ŷ

It can be rewritten using the above definitions, generating per-class and mean IoUs:

MIoUi = TPi

TPi + FNi + FPi

MIoU = 1
M

MIoUi

All the presented metrics are widely used to compare algorithms and models in the
literature for classification-like tasks, and will also be used here to evaluate and
compare previously descripted architectures.

28

6.3 – PointNet++

6.3 PointNet++

While the official implementation1 of PointNet++ is developed using the TensorFlow
framework [63], for system compatibility reasons this thesis uses the implementation
brought by Erik Wijmans2 which uses the PyTorch library [64].

The network accepts batches of 4096 points: in the training phase, when all points
in the training subset have passed through the network it is called the end of an
epoch, and metrics are computed. Occasionally, metrics are also measured against the
test subset. During learning, increasing accuracy and diminishing loss values on the
training set are typical, and the same behavior is expected on the test set: accuracy
will improve but after a certain epoch the gap between training and test loss values
gradually increase. This is an indication of overfitting and overall performance will
get worse. In this case, the training phase lasted for 250 epochs, but from Figure 6.2
it can be seen from increasing loss values how overfitting occurs after more or less 30
epochs, and Figure 6.1 also shows that accuracy does not improve anymore: learning
after this point is thus useless.

0 10 20 30 40 50
Epoch

0.70

0.75

0.80

0.85

Accuracy
Train
Val

Figure 6.1: Accuracy values during training and validation phases.

1https://github.com/charlesq34/pointnet2
2https://github.com/erikwijmans/Pointnet2_PyTorch

29

https://github.com/charlesq34/pointnet2
https://github.com/erikwijmans/Pointnet2_PyTorch

6 – Experiments on S3DIS

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Loss
Train
Val

Figure 6.2: Loss values during training and validation phases.

6.4 Superpoint Graphs
The implementation of this network is available on GitHub3 and it also uses the
PyTorch framework.

Tests on this network focused on searching the best pair of batch size, the number
of points that are simultaneously fed into the network, and single PointNets input
point number (recall Figure 4.5). This can be challenging: increasing both the batch
size and the point number leads to a huge GPU memory usage, but provides a low
performance increment. Keeping both value low should result in the network not
learning as broadly as it could: the batch size is also related to weight propagation
between layers, and a greater size imply information exchange between more cells.

Figure 6.3 shows training and validation accuracy for the best tried configurations:
the legend is structured as s3dis-[batch size]-[point number]. Other metrics
for the same configurations are provided in Table 6.2. The baseline, provided by the
authors of the network and also used in their paper, is the pair 2–128. For most
tests validation was sparsely performed, because the aim was to rapidly increase
the point number so as to reach values similar to what the full PointNet runs on:
configuration 4–2048 (not depicted in the figure) quickly saturates the 24 GB of
RAM installed on a Titan RTX. For the same reason, training of 8–1024 broke after
every few epochs: manually restarting the process leads for the network to always
see the same batches of data, and this leads to overfitting; training stopped after

3https://github.com/loicland/superpoint_graph

30

https://github.com/loicland/superpoint_graph

6.4 – Superpoint Graphs

160 epochs due to errors in the procedure. The same figure also shows how there
is no real improvement in validation accuracy for all tests after 100 epochs. Other
configurations behave pretty similar and in the end 4–1024 was selected as the best
choice, but 8–512 could equally be used as they are pretty close in accuracy. Plots
for the selected configuration can be seen in Figure 6.4.

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Accuracy

s3dis-2-2048 train
s3dis-2-2048 test
s3dis-4-1024 train
s3dis-4-1024 test

s3dis-8-1024-160e train
s3dis-8-1024-160e test
s3dis-8-512 train
s3dis-8-512 test

Figure 6.3: Accuracy values during training and validation phases, for several
configurations.

Table 6.2: Values for training and validation phases, for several configurations. All
metrics but loss are expressed as percentage value. Metrics were computed after 200

training epochs, except for * where values are for the 100th epoch.

2 – 128 8 – 512 4 – 1024 2 – 2048 8 – 1024*
Train Test Train Test Train Test Train Test Train Test

Accuracy 88.06 81.28 89.66 81.18 88.88 81.06 87.79 81.21 93.10 75.22
Loss 0.329 — 0.287 — 0.320 — 0.322 — 0.188 —

Avg. IoU 74.95 53.80 77.77 57.40 76.00 56.49 74.42 60.56 79.68 50.27
Over. Acc. 90.77 85.92 91.68 85.56 91.17 86.14 90.53 86.38 92.32 82.68

31

6 – Experiments on S3DIS

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy
Train
Test

(a) Accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Training loss
Data

(b) Loss

0 25 50 75 100 125 150 175 200
Epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Overall accuracy
Train
Test

(c) Overall accuracy

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Average IoU

Train
Test

(d) Average IoU

Figure 6.4: Plots for the selected configuration: batch size 4 and 1024 points as
PointNets’ input.

6.5 JSIS3D
The implementation is open-source4: the network is developed using PyTorch, and
the CRF part is in C++. This latter part was not publicly available at the time of
this thesis, so tests focused only on the deep network.

The network can be trained using a GPU, but performance evaluation, that is,
inference on the test set, requires a CPU due to the use of Mean Shift algorithm
[65] and is a long process. Tests involved running training for 10 epochs, saving a
snapshot of the state of the network for inference, and going on for another 10 epochs
as in a loop to seek the best epoch for optimal learning. Loss, overall accuracy and
average metrics values for each test are presented in Figure 6.5: learning is nearly
stable after epoch 40 and it does not show an overfitting indication.

4https://github.com/pqhieu/jsis3d

32

https://github.com/pqhieu/jsis3d

6.6 – Entangled forests

20 40 60 80 100 120 140
Run

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mean values progression

OvAcc
Acc
IoU
Prec
Rec

(a) Overall acc. and average metrics values

0 20 40 60 80 100 120 140
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Loss
Training
Validation

(b) Loss values during training

Figure 6.5: Plots for training phase.

6.6 Entangled forests
The 3DEF algorithm works on point clouds saved as PCD files, one for each room
in the case of S3DIS, and the clustering program internally finds the room’s floor
plane to align the cloud: it expects to have floor points’ in a nearly horizontal plane.
However the original point clouds structure is such that the point of view is from
above, that is, the floor of the room is a nearly vertical plane in the 3D space. A
preprocessing step was thus necessary to rotate the cloud.

Assuming a global reference frame O oriented with the person’s point of view, a
rotation by -180° along the Ox axis and a subsequent shift upwards in the Oz axis are
needed to quantitatively align the floor of the rooms with a horizontal plane before
feeding the clouds to the clustering program. This is a logic assumption if operating
for example with robot-mounted cameras that will see the floor in the bottom part
of the field of view. This is achieved using a coordinate transformation matrix T to
rotate each point p of coordinates [x, y, z]> into pN of coordinates [xN , yN , zN]> of
an angle α (in radians):xN

yN

zN

 = pN = T p =

1 0 0
0 cosα − sinα
0 sinα cosα

xy
z

As a convention, counterclockwise rotations have α > 0.

A proof that the rotation is needed can be found in Figure 6.6a comparing NR-* and
R-* tests: of the 259 PCDs (rooms) that make the dataset, if no rotation is applied
more than half of them, colored in yellow in the histogram bars, are not processed
because for the algorithm the floor is missing, while instead its points are aligned
exactly in the vertical plane and thus are not detected. Figure 6.6b also shows that
rotation also slightly improves both overall accuracy and mean accuracy among all

33

6 – Experiments on S3DIS

the classes, but the improvement is not substantial. While the rotation solves this
issue, still some PCDs cannot be processed due to errors in the segmentation part
and clusters cannot be built.

3DEF algorithm allows to use some filters during the preprocessing step. A second test
is whether bilateral and outlier filtering should be used. Bilateral filtering necessitates
an organized PCD, that is, the assumption is that it exists a point of view in the
space from where points in the cloud can be seen as aligned to a 2D grid. This is
clearly not the case for this dataset, where clouds are simply a list of points and
have no structure. Outlier filters work but accuracy values is lower in any test they
are used, as it can be seen comparing *-F with respect to *-NF tests in Figure 6.6b.

The above considerations drove to select to rotate PCDs and not applying any
filtering, that is, R-NF is selected as the winning configuration.

NR-NF NR-F R-NF R-F
Test

0

50

100

150

200

250

PC
D

nu
m

be
r

OK
Floor
Failed

(a) Histogram of floor detections in PCDs.

NR-NF NR-F R-NF R-F
Test

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Global
Mean

(b) Overall and mean accuracy values.

Figure 6.6: Statistics on the preprocessing steps of 3DEF algorithm, for the choices
of whether to rotate PCDs (abbreviated as R or NR) and to apply filtering (F or NF).

6.7 Cumulative evaluation
Here we present the summing results of the preliminary tests: PointNet++, Superpoint
Graphs in the 4–1024 configuration and JSIS3D have been retrained up to the optimal
number of epochs, and their evaluation is compared with 3DEF’s performance.

Figure 6.7 and Table 6.3 show that SPG has better overall accuracy and mean per-
class accuracy compared to the other deep networks and to 3DEF. The difference can
be noted also looking at the unfolded per-class accuracies as presented in Figure 6.8
and Table 6.4: we can clearly distinguish “major” classes like wall, floor and ceiling,
that are well recognized by all the algorithms, but less represented objects are the
ones that contribute most to the improvement SPG shows w.r.t. the competition:
look for example at column, that is never well classified except by SPG, or to all
the subsequent classes (in the figure) where SPG excels, except board and beam.

34

6.7 – Cumulative evaluation

Classes like column or beam are almost never well classified but overall accuracies
are nonetheless high because, as mentioned in Chapter 3, there are less points to be
classified in such classes compared to sets of walls’ or similar classes points.

It is interesting to note that, even if 3DEF is based on a different algorithm, namely
random forests, it achieves similar overall accuracy values w.r.t. deep learning
networks. Looking at the mean accuracy, 3DEF is better than two out of three deep
networks: it is thus comparable to the state of the art, while not requiring a GPU or
high computational power; it can be a good choice for mobile robotics applications,
where limits are strict due to power constraints.

PN SPG JSIS EF
0.0

0.2

0.4

0.6

0.8

1.0
Overall accuracy
Mean per-class accuracy

(a) Overall accuracy
PN SPG JSIS EF

0.0

0.2

0.4

0.6

0.8

1.0
Precision
Recall
F1

(b) Precision, recall and F1

Figure 6.7: Overall accuracy and global metrics for each architecture on S3DIS.

ceiling floor wall column beam window door table chair bookcase sofa board clutter
0.0

0.2

0.4

0.6

0.8

1.0
PN
SPG
JSIS
EF

Figure 6.8: Accuracy for each class and tested architecture on S3DIS.

35

6 – Experiments on S3DIS

T a
bl
e
6.
3:

Ev
al
ua

tio
n
m
et
ric

s
va
lu
es

fo
r
ea
ch

ar
ch
ite

ct
ur
e.

Io
U

wa
s
no

t
im

pl
em

en
te
d
in

3D
EF

at
th
e
tim

e
of

th
es
e
te
st
s.

A
rc
h.

Ep
oc
hs

O
v.

A
cc
.

Av
g.

A
cc
.

Av
g.

Pr
ec
isi
on

Av
g.

R
ec
al
l

Av
g.

F1
Av

g.
Io
U

PN
+
+

50
0.
81

83
6

0.
52

22
3

0.
56

11
7

0.
52
22

3
0.
53

31
5

0.
42

83
3

SP
G

10
0

0.
86

67
0

0.
66

52
3

0.
73

08
1

0.
66
52

3
0.
68

55
2

0.
58

10
0

JS
IS
3D

70
0.
81

79
9

0.
50

40
8

0.
34

82
4

0.
27
38

5
0.
29

63
7

0.
41

93
7

3D
EF

—
0.
79

41
6

0.
55

40
6

0.
51

58
7

0.
55
40

6
0.
51

15
3

—

T a
bl
e
6.
4:

A
cc
ur
ac
y
fo
r
ea
ch

cl
as
s
an

d
te
st
ed

ar
ch
ite

ct
ur
e.

A
rc
h.

ce
ili
ng

flo
or

wa
ll

co
lu
m
n

be
am

w
in
do

w
do

or
ta
bl
e

ch
ai
r

bo
ok
ca
se

so
fa

bo
ar
d

cl
ut
te
r

PN
+
+

0.
94

11
0.
98

10
0.
86

03
0.
0

0.
00

63
0.
53

95
0.
25

87
0.
73

41
0.
73

49
0.
11

78
0.
56

62
0.
46

02
0.
58

85
SP

G
0.
92

94
0.
98

84
0.
94

30
0.
43

51
0.
0

0.
59

01
0.
67

57
0.
89

08
0.
91

98
0.
80

19
0.
67

23
0.
13

15
0.
66

95
JS

IS
3D

0.
96

58
0.
98

47
0.
91

07
0.
0

0.
04

38
0.
57

75
0.
14

94
0.
60

09
0.
77

48
0.
31

01
0.
53

00
0.
19

40
0.
51

09
3D

EF
0.
92

58
0.
96

84
0.
80

39
0.
0

0.
70

20
0.
54

37
0.
41

02
0.
76

81
0.
74

63
0.
52

08
0.
52

28
0.
01

14
0.
27

87

36

Chapter 7

Exchanging features between
architectures

Among the three analyzed deep networks, SPG is the one that most resembles 3DEF,
in terms of preprocessing steps: the former works by building small graphs on the
cloud, the latter builds clusters. Both algorithms extract features on these structures,
on which the network and the forest is trained, respectively. To try to improve the
performance of both algorithms, we experimented in mixing, adding and removing
these features in both directions.

7.1 Experiments on 3DEF
We wanted to have an insight on the most relevant and useful unary features for
training the forests. Several tests have been conducted:

1. Linearity, planarity, scattering and verticality, part of SPG’s geometric features
as discussed in Section 4.2, have been added to the original set of 19 unary
features already part of 3DEF. The aim was to see if they could add any new
information or if they are more efficient and useful than existing features.

2. Forests have been trained on both geometric and graph features as computed
by the SPG partition script. The aim was to see if forests can be trained on
graphs preprocessed by SPG, and how their performance compares to those
trained on 3DEF’s clustering output.

7.1.1 SPG features added to 3DEF clustering part
A different forest has been trained on the rotated PCDs of the S3DIS dataset,
preprocessed by the 3DEF clustering script:

• With the original 19 unary features (the baseline for comparisons);

• With only the 4 features inherited from SPG, plus color;

37

7 – Exchanging features between architectures

• With both the original 19 and the 4 inherited unary features.

For each test entangled features might be enabled or not.

Figure 7.1 visually provides insights that are numerically presented also in Table 7.1.
The original configurations with 19 unary features (tests 19 and 19+E) are compared
to using color plus the 4 inherited features from SPG, with and without entangled
features (tests 4 and 4+E): entangled features play an enormous role in enhancing
performance in the last two tests, meaning that this set of unary features alone is
not able to successfully summarize input data. Using all the original and inherited
features (tests 23 and 23+E) leads to slightly lower accuracy and metrics values,
compared to the baseline: this evidences how adding these four extra features is not
providing new ways for the algorithm to learn from data. This behavior could be
an indication that the analyzed features are not adequate or meaningful w.r.t. the
original set of features, or that 3DEF has been pushed forward to the limit where it is
no more possible to learn new meaningful things on the specific dataset; this can be
confirmed by the fact that entangled features provide less performance enhancement
w.r.t. the previous tests.

19 19+E 4 4+E 23 23+E
0.0

0.2

0.4

0.6

0.8

1.0

Overall accuracy
Mean accuracy
Mean precision
Mean recall
Mean F1

Figure 7.1: Accuracy and metrics for each test.
Metrics are obtained by averaging each class’ single values.

38

7.1 – Experiments on 3DEF

Table 7.1: Evaluation metrics values for each test.

Test Ov. Acc. Avg. Acc. Avg. Precision Avg. Recall Avg. F1
19 0.77009 0.96463 0.48548 0.52493 0.47309

19+E 0.79416 0.96833 0.51587 0.55406 0.51153
4 0.36211 0.90186 0.30166 0.30883 0.25391

4+E 0.66024 0.94773 0.41070 0.40794 0.38556
23 0.78215 0.96649 0.48667 0.53425 0.48333

23+E 0.79407 0.96832 0.51209 0.55329 0.50992

Figure 7.2 represents accuracy values for each class present in the database, comparing
all the tests. Even if results may seem pretty high for all classes, bad performance
of test 4 may be explained by noting that the forest missed points in the more
represented classes like ceiling, floor and wall, and the global accuracy value suffered
from this, while the average of the accuracy values stayed high because most values
were around 90% and the average is not weighted on the frequency of points for each
class. Again, entangled forest mitigated this issue, as it can be seen by the huge gap
between the two tests’ accuracy values of the first three classes in the figure. Full
numerical results are in the upper part of Table 7.7.

ceiling floor wall column beam window door table chair bookcase sofa board clutter
0.0

0.2

0.4

0.6

0.8

1.0

19
19+E
4
4+E
23
23+E

Figure 7.2: Accuracy for each class and for each test.

39

7 – Exchanging features between architectures

Normal Mean
Normal Std Dev
L channel mean
a channel mean
b channel mean

L channel Std Dev
a channel Std Dev
b channel Std Dev

Min Height
Max Height
BBox Width

BBox Height
BBox Depth

Vertical Area
Horizontal Area

Vertical Elongation
Horizontal Elongation

Thickness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(a) Original conf., 19 unary features

Normal Mean
Normal Std Dev
L channel mean
a channel mean
b channel mean

L channel Std Dev
a channel Std Dev
b channel Std Dev

Min Height
Max Height
BBox Width

BBox Height
BBox Depth

Vertical Area
Horizontal Area

Vertical Elongation
Horizontal Elongation

Thickness
Existing Segment

TopN Segment
Inverse TopN Segment

Node Descendant
Common Ancestor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(b) Same as (a), plus entangled features

L channel mean

a channel mean

b channel mean

L channel Std Dev

a channel Std Dev

b channel Std Dev

Linearity

Planarity

Scattering

Verticality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(c) Color and 4 inherited unary features

L channel mean

a channel mean

b channel mean

L channel Std Dev

a channel Std Dev

b channel Std Dev

Linearity

Planarity

Scattering

Verticality

Existing Segment

TopN Segment

Inverse TopN Segment

Node Descendant

Common Ancestor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(d) Same as (c), plus ent. features

Normal Mean
Normal Std Dev
L channel mean
a channel mean
b channel mean

L channel Std Dev
a channel Std Dev
b channel Std Dev

Min Height
Max Height
BBox Width

BBox Height
BBox Depth

Vertical Area
Horizontal Area

Vertical Elongation
Horizontal Elongation

Thickness
Linearity
Planarity

Scattering
Verticality

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(e) All 19 plus 4 unary features

Normal Mean
Normal Std Dev
L channel mean
a channel mean
b channel mean

L channel Std Dev
a channel Std Dev
b channel Std Dev

Min Height
Max Height
BBox Width

BBox Height
BBox Depth

Vertical Area
Horizontal Area

Vertical Elongation
Horizontal Elongation

Thickness
Linearity
Planarity

Scattering
Verticality

Existing Segment
TopN Segment

Inverse TopN Segment
Node Descendant

Common Ancestor

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(f) Same as (e), plus ent. features

Figure 7.3: Importance of features during trees’ trainings, for all tests.
The darker the color, the more the feature was used for splits while growing trees.

40

7.1 – Experiments on 3DEF

A tool of 3DEF provides a way to analyze the trained forest to have insights on
the relevance of features during subsequent steps, that is, related to trees’ depth.
Figure 7.3 visually present this information: a darker color in the plot means the
feature was used a lot to perform splits between sets of points in the training phase.
For tests 23 and 23+E it can be noted how features that come from SPG are among
the less used, apart from verticality: 3DEF does not find these features to be so
relevant to made splits based upon them. Definitely, when entangled features come
into play, they clearly dominate the scene; in tests where they are not enabled we
can see how scattering and heights are among the most relevant for decisions. Some
features related to color are needed to leverage this information during training.

7.1.2 Training forests on SPG features

For these tests, the structures created by the SPG partition script, that is, archives
for both geometric and superpoint graphs’ features, are converted in a format that
is readable by 3DEF’s forest training program. Then, for each point cloud, that is,
for each room in the S3DIS dataset, a unique cluster ID is associated to each of
the 10-neighborhoods point sets, and to every component of each superpoint graph,
respectively (recall Figure 4.6): in this way, graphs are converted to clusters by simply
considering only their nodes.

Clusters generated by using the 10-neighborhoods sets overlap, and each point ends
up belonging to more than one cluster: to avoid ambiguity in decisions, the distance
between the point and the centroid of the neighborhood is used, that is, the point is
assigned to the nearest cluster, the one that minimizes the distance. But at some
time in the computation each point ends up being a centroid for its neighborhood:
clusters degenerate to comprise only a single point (the centroid itself), and this
made clustering nearly useless. Nonetheless, a forest can be trained on this setup, it
just takes a lot more time to process all the points. Instead, components of the SPG
did not overlap and the conversion process has been successful.

3DEF preprocessing was skipped and forests were directly trained on the specific set
of features, and evaluation is performed against the relative converted clusters.

Figure 7.4 allows for metrics comparisons between the same baseline of previous
tests, a forest trained with 19 unary (and no entangled) features on 3DEF’s clusters,
compared to those trained with SPG’s geometric and graph features on clusters
derived from superpoint graph’s components. Poor overall accuracy is explained
using with the same previous discussion: the forest is weak in classifying the most
representative labels, as it can be seen looking at low accuracy values for ceiling, floor
and wall on Figure 7.5. Moreover, for the same leitmotiv the unweighted average of
accuracy values for each of the classes, orange in the figure, is high as in the previous
case (compare to Figure 7.1) because all the values are pretty high, and most of
them are above 80%.

41

7 – Exchanging features between architectures

19 Geom Graph
0.0

0.2

0.4

0.6

0.8

1.0

Overall accuracy
Mean accuracy
Mean precision
Mean recall
Mean F1

Figure 7.4: Accuracy and metrics for each test.
Metrics are obtained by averaging each class’ single values.

Test 19, the same as before, is kept for comparisons.

Table 7.2: Evaluation metrics values for each test.

Test Ov. Acc. Avg. Acc. Avg. Precision Avg. Recall Avg. F1
19 0.77009 0.96463 0.48548 0.52493 0.47309

Geom 0.11596 0.86399 0.05839 0.06689 0.04244
Graph 0.14790 0.86891 0.09196 0.11891 0.07478

Numerical results are presented in Table 7.2 and in the lower part of Table 7.7. What
is not numerically reported is that forests trained on graphs’ nodes features are
trained way more fast than their counterpart built over geometric features, because
graphs have been already reduced from the whole cloud when their nodes’ features
are computed, while geometric features are computed on subsets of the whole cloud
and their number is by orders of magnitude higher than the number of graph’s
components.

Figure 7.6 shows the importance of features during training: points’ coordinates are
among the most used for splits, along with scattering and verticality in Geom test.

42

7.1 – Experiments on 3DEF

ceiling floor wall column beam window door table chair bookcase sofa board clutter
0.0

0.2

0.4

0.6

0.8

1.0

19
Geom
Graph

Figure 7.5: Accuracy for each class and for each test.
Test 19, the same as before, is kept for comparisons.

Linearity

Planarity

Scattering

Verticality

X

Y

Z

R

G

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(a) Geom: features from 10-neigborhoods

Centroid X

Centroid Y

Centroid Z

Length

Surface

Volume

Point count

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tree Depth

F
ea

tu
re

(b) Graph: SPG nodes’ features

Figure 7.6: Importance of features during trees’ trainings, for both tests.

43

7 – Exchanging features between architectures

7.2 Experiments on SPG
In this opposite scenario, unary features from 3DEF clustering script are brought into
the SPG partition process. The next step in the pipeline after partition is to prepare
archives that can be consumed by the network’s learning phase: these archives are
built based on the SPG graph components and by concatenation of points’ coordinates
X, Y, Z, color components R,G,B, features and normalized points’ coordinates w.r.t.
the whole cloud.

7.2.1 Porting features from 3DEF
It is easy to add features during the partition phase and the most straightforward
to be transferred are the one that refers to the cluster’s bounding box (BB): the
concept is directly translated to virtually have the box to be wrapped around graphs’
nodes instead of considering clusters.

Porting the whole block of BB-related unary features resulted in an error during
the graph reduction phase as operated by the `0-cut pursuit algorithm mentioned in
Section 4.2. As a result, features were gradually included in blocks and several tests
were conducted; beside of the original linearity, planarity, scattering and verticality
already part of the original algorithm (original test), these were separately added:

• BB’s dimensions (width, depth and height, whd test);

• BB’s area in the vertical and horizontal directions (area test);

• BB’s minimum and maximum height (height test);

• BB’s ratios between dimensions (elongation in the two planes and “thickness”);

These tests evidenced how the problem in the optimization derived from considering
features based on the ratios between dimensions, this is the reason why they were
excluded in the last test that was made, that comprise all the features used in
previous tests, namely SPG’s original four plus the three dimensions, two areas and
two heights (all test).

Tests’ evaluations are compared to the original configuration as a baseline. Note that
this differs from results presented in Chapter 6 for SPG because our own version of
the source code has been updated in the meantime, and a bugfix was made available
by the original author1 that in fact lowered performance for all these tests: as the
baseline is obtained using the same code of the tests, comparisons are reliable.

Training evolutions are presented in Figure 7.7. In general validation accuracy is
almost always in the range [0.45, 0.6], even if learning is much more difficult when
considering area features; simpler features like those made by single values or that
involve only differences seem not to worsen accuracy and yield the best results.

1See issue 127 on the GitHub repository for more information on the bug.

44

https://github.com/loicland/superpoint_graph/issues/127

7.2 – Experiments on SPG

0 20 40 60 80 100
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy

0-original train
0-original test
1-area train
1-area test
2-height train

2-height test
3-whd train
3-whd test
4-all train
4-all test

Figure 7.7: Accuracy values during training and validation phases, for all the
different tests. The legend shows what features have been added to the standard 4:

the first number is merely a counter to keep the progression order.

Adding minimum and maximum heights enhances performance by a little over the
original configuration: this is also confirmed by the overall accuracy and other metrics
in Figure 7.8. Numerical results are presented in Table 7.3 for metrics and in the
upper part of Table 7.8 for accuracy values for each class.

Table 7.3: Evaluation metrics values for each test.

Test Ov. Acc. Avg. Acc. Avg. Prec. Avg. Recall Avg. F1 Avg. IoU
original 0.75715 0.43998 0.56496 0.43998 0.43427 0.34374
area 0.69883 0.38281 0.53019 0.38281 0.36615 0.28711
height 0.75943 0.44840 0.59033 0.44840 0.45081 0.35928
whd 0.72243 0.36627 0.60306 0.36627 0.36805 0.29261
all 0.72415 0.39747 0.59064 0.39747 0.42053 0.32236

45

7 – Exchanging features between architectures

0-original 1-area 2-height 3-whd 4-all
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overall accuracy
Mean accuracy
Mean precision
Mean recall
Mean F1
Mean IoU

Figure 7.8: Accuracy and metrics values for each test.
Mean values are obtained by averaging single per-class values.

7.2.2 Changing color space

As the 3DEF algorithm uses the LAB color space and means and standard deviations
for every channel are part of the unary features, a test has been conducted swapping
RGB values with their LAB counterpart in the archives. RGB test is thus equal to
original of Subsection 7.2.1. However, Figure 7.9 and Table 7.4 show that there
is no real improvement in changing the color space: performance is slightly worse
due to “minor” classes being less correctly classified, as it can be seen numerically
comparing their accuracy in the middle part of Table 7.8. This evidence can be noted
also by looking at validation accuracy during training, as per Figure 7.10.

Table 7.4: Evaluation metrics values for each test.

Test Ov. Acc. Avg. Acc. Avg. Precision Avg. Recall Avg. F1 Avg. IoU
RGB 0.75715 0.43998 0.56496 0.43998 0.43427 0.34374
LAB 0.73861 0.40119 0.51841 0.40119 0.38360 0.31177

46

7.2 – Experiments on SPG

lab rgb
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overall accuracy
Mean accuracy
Mean precision
Mean recall
Mean F1
Mean IoU

Figure 7.9: Accuracy and metrics values considering the LAB color space.

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

0.9
Accuracy

lab train
lab test

rgb train
rgb test

Figure 7.10: Accuracy values during training and validation phases, considering the
LAB color space.

47

7 – Exchanging features between architectures

7.2.3 Enabling features in different steps
An interesting question is where features are more relevant: previously mentioned
tests have been made by computing features in the early stages and then having
them for all the pipeline (recall Figure 4.6). We tried a different approach and built a
test configuration where additional features were computed on the 10-neighborhood
sets and then kept for the graph reduction phase but discarded for learning by
the network, and the opposite, that is, to compute features and to use them only
for learning but not in the previous stage of computing the superpoint graph. A
summary of the tests is displayed in Table 7.5. We chose to work with height features
because, as evidenced in previous tests in Subsection 7.2.1, they may improve over
the baseline.

Table 7.5: Use of features for every test.

Test SPG computation Network learning
Full Original + height Original + height

Only lrng Original only Original + height
Only SPG Original + height Original only

Figure 7.11 exposes mixed outcomes: comparing the original height test (full in
the figure, which is the same as height in Subsection 7.2.1) with onlylearning,
the test where superpoint graphs are computed only on the original 4 features and
not height ones but learning occurs on the whole set of features, it can be noted
how all metrics are lower: this can be seen as the fact that the algorithm benefits
from having more features to aid in drawing the graph structure. A higher training
accuracy for the onlylearning test may also be an indication of overfitting input
data, as previously seen for certain preliminary tests. On the opposite, a network
that learns only from the 4 original features and the graph constructed from a more
solid foundation with more features may enhance performance, as it can be seen
from the last epochs in the figure, where validation accuracy has started to rise over
the opponents. Nonetheless, at the last epoch performance between the baseline and
onlyspg, the test where superpoint graphs are computed on the full set of features
but learning only occurs on the original 4 features, is comparable, as evidenced by
Figure 7.12.

Numerical results are exposed in Table 7.6 and in the lower part of Table 7.8.

Table 7.6: Evaluation metrics values for each test.

Test Ov. Acc. Avg. Acc. Avg. Prec. Avg. Recall Avg. F1 Avg. IoU
Full 0.75943 0.44840 0.59033 0.44840 0.45081 0.35928

Only lrng 0.72437 0.37617 0.60249 0.37617 0.38880 0.30403
Only SPG 0.75591 0.43670 0.65957 0.43670 0.44633 0.35339

48

7.2 – Experiments on SPG

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

Accuracy

full train
full test
onlylearning train

onlylearning test
onlyspg train
onlyspg test

Figure 7.11: Accuracy values during training and validation phases, for both tests.

full onlylearning onlyspg
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Overall accuracy
Mean accuracy
Mean precision
Mean recall
Mean F1
Mean IoU

Figure 7.12: Accuracy and metrics values for both tests.

49

7 – Exchanging features between architectures

T a
bl
e
7.
7:

Te
st
s
on

3D
EF

.A
cc
ur
ac
y
fo
r
ea
ch

cl
as
s
an

d
te
st
.

T e
st

ce
ili
ng

flo
or

wa
ll

co
lu
m
n

be
am

w
in
do

w
do

or
ta
bl
e

ch
ai
r

bo
ok
ca
se

so
fa

bo
ar
d

cl
ut
te
r

19
0.
95

25
0.
96

73
0.
93

27
0.
97

99
0.
97

14
0.
98

09
0.
97

57
0.
97

24
0.
97

96
0.
97

25
0.
94

53
0.
99

24
0.
91

69
19

+
E

0.
95

33
0.
98

20
0.
93

68
0.
97

74
0.
97

45
0.
98

53
0.
97

42
0.
97

45
0.
97

80
0.
99

10
0.
95

05
0.
99

28
0.
91

75
4

0.
81

42
0.
76

01
0.
87

40
0.
87

88
0.
93

42
0.
94

93
0.
90

33
0.
89

58
0.
95

72
0.
98

50
0.
91

52
0.
95

28
0.
90

35
4+

E
0.
94

54
0.
92

20
0.
91

22
0.
96

97
0.
91

75
0.
98

24
0.
93

74
0.
95

91
0.
95

48
0.
99

20
0.
93

40
0.
98

83
0.
90

51
23

0.
95

26
0.
98

20
0.
93

45
0.
98

15
0.
96

88
0.
97

92
0.
97

47
0.
97

15
0.
97

89
0.
98

69
0.
94

40
0.
99

16
0.
91

73
23

+
E

0.
95

02
0.
98

23
0.
93

71
0.
98

02
0.
97

46
0.
98

34
0.
97

64
0.
97

47
0.
97

79
0.
99

04
0.
95

30
0.
99

34
0.
91

41
G
eo
m

0.
63

49
0.
77

77
0.
59

59
0.
98

88
0.
98

53
0.
95

65
0.
82

56
0.
93

57
0.
97

16
0.
84

97
0.
91

49
0.
99

62
0.
79

85
G
ra
ph

0.
59

85
0.
70

27
0.
76

43
0.
93

47
0.
96

82
0.
94

15
0.
90

79
0.
90

62
0.
92

41
0.
90

74
0.
90

25
0.
96

75
0.
86

98

Ta
bl
e
7.
8:

Te
st
s
on

SP
G
.A

cc
ur
ac
y
fo
r
ea
ch

cl
as
s
an

d
te
st
.S

ym
bo

ls
m
ar
k
eq
ua

lt
es
ts
,r
ep

ea
te
d
fo
r
co
nv

en
ie
nc

e.

Te
st

ce
ili
ng

flo
or

wa
ll

co
lu
m
n

be
am

w
in
do

w
do

or
ta
bl
e

ch
ai
r

bo
ok
ca
se

so
fa

bo
ar
d

cl
ut
te
r

or
ig
in
al

†
0.
92

32
0.
99

29
0.
95

24
0.
04

75
0.
0

0.
30

60
0.
27

95
0.
44

18
0.
92

03
0.
20

77
0.
0

0.
0

0.
64

80
ar
ea

0.
79

05
0.
99

13
0.
92

38
0.
01

45
0.
0

0.
09

70
0.
18

10
0.
47

27
0.
75

70
0.
12

45
0.
00

23
0.
00

07
0.
62

05
he

ig
ht

?
0.
93

49
0.
98

79
0.
96

93
0.
07

06
0.
0

0.
25

21
0.
39

63
0.
60

11
0.
88

12
0.
17

41
0.
0

0.
00

32
0.
55

81
w
hd

0.
96

06
0.
99

30
0.
92

53
0.
16

54
0.
01

0.
05

96
0.
11

94
0.
32

21
0.
41

87
0.
07

19
0.
00

49
0.
0

0.
70

65
al
l

0.
83

50
0.
96

00
0.
95

32
0.
05

27
0.
0

0.
20

38
0.
22

85
0.
39

51
0.
56

86
0.
24

87
0.
00

69
0.
09

42
0.
62

00
RG

B†
0.
92

32
0.
99

29
0.
95

24
0.
04

75
0.
0

0.
30

60
0.
27

95
0.
44

18
0.
92

03
0.
20

77
0.
0

0.
0

0.
64

80
LA

B
0.
96

15
0.
98

50
0.
97

22
0.
00

37
0.
0

0.
09

51
0.
12

54
0.
56

05
0.
87

39
0.
07

53
0.
0

0.
0

0.
56

24
F u

ll?
0.
93

49
0.
98

79
0.
96

93
0.
07

06
0.
0

0.
25

21
0.
39

63
0.
60

11
0.
88

12
0.
17

41
0.
0

0.
00

32
0.
55

81
O
.l
rn
g

0.
94

18
0.
99

19
0.
95

10
0.
12

88
0.
03

0.
10

19
0.
26

26
0.
15

26
0.
59

43
0.
12

80
0.
00

09
0.
01

38
0.
59

53
O
.S

PG
0.
83

94
0.
99

60
0.
96

42
0.
06

49
0.
0

0.
13

68
0.
24

03
0.
54

15
0.
89

14
0.
37

74
0.
00

57
0.
00

04
0.
61

86

50

Chapter 8

Conclusions

3D semantic segmentation is truly a major research topic in the computer vision
field: this is testified by the many works and active researchers on the subject, the
literature is huge and it is always growing with new ideas and new approaches, not
restricted to the ones that involves the use of deep learning.

PointNet pioneered the deep learning way by introducing an architecture that directly
consumes 3D point clouds without recurring to voxelization or other representations,
and many works are based on this concept, like the Superpoint Graph architecture.
It extracts a reduced graph from the whole point cloud and then applies small
PointNets to subgraphs, in order to gather compact representations to be fed to
recurrent networks that maintain the state and make predictions on points.

In parallel, traditional methods have also been perfected, and 3DEF maintained state
of the art performance on datasets like S3DIS as proved in Chapter 6. Moreover,
the use of entangled features has been demonstrated to enhance performance on
accuracy by allowing spatial context to be included as a relevant part in learning,
thus capturing more meaningful insights on data.

Even if with mixed outcomes, the extensive tests we made on both architectures
confirm that there is no algorithm that can overwhelm the others: both deep networks
and the 3DEF algorithm have their pro and cons, and they perform better in different
and heterogeneous scenarios and setups; it clearly depends on the equipment that is
planned to be used for performing the task of segmentation, for example whether
a GPU is available or not, or whether there is the need of online computations on
a mobile robot or the elaboration is completely offline: these will set the prevalent
method to be used.

For 3DEF, it was demonstrated that entangled features play an important role but
they were not extensively used as this work principally focused on unary features.
Adding the specific set of features from SPG did not enhance the performance: this
is not a symptom the algorithm cannot get better, but rather that the set of feature
simply does not add valuable information in the learning phase. It was also proven

51

8 – Conclusions

that currently the partition method in SPG is not a valid substitute for 3DEF’s
original clustering algorithm, built upon the PCL library. For SPG, adding height
features showed marginal improvement over the original method, while using other
types of features currently implemented in 3DEF or changing color space did not
prove to be useful experiments.

Tests also shows that there is room for improvement on both algorithms, but choices
have to be weighted by also considering the relative percentage gain in accuracy,
and the changes in training, learning and computation times that are proportional
to the complexity of the final network or to the number and complexity of used
features, as revealed but not reported while working on this thesis. It was planned but
not implemented due to lack of time to perform some tests to bring the entangling
concept to SPG by leveraging points’ distances to build clusters of points inside
the 10-neighbors of a point P , and to compute on them features such as mean
and standard deviation of color’s channels, along with centroids’ coordinates and
distances from P . In our vision, these features would have been added to the original
set to mimic the entangling process proper of 3DEF; to investigate this approach is
one of the possible path to further develop research in this field.

52

List of Figures

1.1 Semantic segmentation of an outdoor environment 2
1.2 Several representations of the Stanford bunny 2
1.3 Semantic segmentation of a 3D indoor scene. 3
1.4 Scheme of a Multi-layer Perceptron (MLP) 5
1.5 Scheme of a Random Forest (RF) classifier 5

3.1 S3DIS dataset overview . 12

4.1 PointNet architecture . 16
4.2 PointNet++ hierarchical architecture 17
4.3 Density-adaptive grouping layers in PointNet++ 18
4.4 Pipeline for the Superpoint Graphs architecture 19
4.5 SPG framework on a toy example . 19
4.6 Preprocessing pipeline for the SPG architecture. 20
4.7 MT-PNet deep network . 21

5.1 Preprocessing pipeline for the 3DEF classifier. 24
5.2 Example of clustering for a conference room 25

6.1 PointNet++: Training and test accuracy values 29
6.2 PointNet++: Training and test loss values 30
6.3 SPG: Accuracy values for several configurations 31
6.4 SPG: Plots for 4-1024 configuration 32
6.5 JSIS3D: Plots for training phase . 33
6.6 3DEF: Preprocessing plots . 34
6.7 Metrics for each architecture . 35
6.8 Class-wise accuracy for each architecture 35

7.1 Accuracy and metrics for each test 38
7.2 Class-wise accuracy for each test . 39
7.3 Feature importance in forest training 40
7.4 Accuracy and metrics for each test 42
7.5 Class-wise accuracy for each test . 43
7.6 Feature importance in forest training 43
7.7 Accuracy values plot for all the tests 45

I

List of Figures

7.8 Accuracy and metrics values for each test 46
7.9 Accuracy and metrics values for both tests 47
7.10 Accuracy values plot for both tests 47
7.11 Accuracy values plot for both tests 49
7.12 Accuracy and metrics values for both tests 49

II

List of Tables

3.1 S3DIS dataset. Number of rooms per area 13
3.2 S3DIS dataset. Number of 3D points per class, for each area 13

6.1 Sample confusion matrix . 28
6.2 SPG: Values for several configurations 31
6.3 Evaluation metrics values for each architecture 36
6.4 Class-wise accuracy for each architecture 36

7.1 Evaluation metrics values for each test 39
7.2 Evaluation metrics values for each test 42
7.3 Evaluation metrics values for each test 45
7.4 Evaluation metrics values for each test 46
7.5 Use of features for every test . 48
7.6 Evaluation metrics values for each test 48
7.7 Tests on 3DEF: Class-wise accuracy for each test 50
7.8 Tests on SPG: Class-wise accuracy for each test 50

III

Acronyms

3DEF 3D Entangled Forest.

AI Artificial Intelligence.

AR Augmented Reality.

BB bounding box.

CNN Convolutional Neural Network.

CRF Conditional Random Field.

CV Computer Vision.

DT Decision Tree.

ECC Edge-Conditioned Convolution.

EF Entangled Forest.

GPU Graphics Processing Unit.

GRU Gated Recurrent Unit.

LiDAR Light Detection and Ranging.

ML Machine Learning.

MLP Multi-layer Perceptron.

MT-PNet Multi-task Pointwise Net-
work.

NN Neural Network.

RF Random Forest.

RNN Recurrent Neural Network.

S3DIS Stanford Large-scale 3D Indoor
Spaces Dataset.

SOM Self-Organizing Map.

SPG Superpoint Graph.

TI Trilinear Interpolation.

VCCS Voxel Cloud Connectivity Seg-
mentation.

VR Virtual Reality.

IV

Bibliography

[1] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, «Segmentation and
Recognition Using Structure from Motion Point Clouds», in European Confer-
ence on Computer Vision (ECCV), 2008, pp. 44–57.

[2] A. Martinovic, J. Knopp, H. Riemenschneider, and L. Van Gool, «3D All The
Way: Semantic Segmentation of Urban Scenes From Start to End in 3D», in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2015.

[3] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2014.

[4] F. Rosenblatt, «The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain», Psychological Review, pp. 65–386, 1958.

[5] G. Garrido and P. Joshi, OpenCV 3.X with Python By Example. Packt, 2018.
[6] H. Zhu, F. Meng, J. Cai, and S. Lu, «Beyond pixels: A comprehensive survey

from bottom-up to semantic image segmentation and cosegmentation», Journal
of Visual Communication and Image Representation, vol. 34, pp. 12–27, 2016.
doi: https://doi.org/10.1016/j.jvcir.2015.10.012.

[7] M. Thoma, «A Survey of Semantic Segmentation», 2016. arXiv: 1602.06541.
[8] H. Ajmal, S. Rehman, U. Farooq, Q. U. Ain, F. Riaz, and A. Hassan, «Convo-

lutional neural network based image segmentation: a review», vol. 10649, 2018.
doi: https://doi.org/10.1117/12.2304711.

[9] M. Naseer, S. Khan, and F. Porikli, «Indoor Scene Understanding in 2.5/3D
for Autonomous Agents: A Survey», IEEE Access, vol. 7, pp. 1859–1887, Jan.
2019. doi: 10.1109/ACCESS.2018.2886133.

[10] M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet, «Semantic point cloud in-
terpretation based on optimal neighborhoods, relevant features and efficient
classifiers», ISPRS Journal of Photogrammetry and Remote Sensing, vol. 105,
pp. 286–304, 2015. doi: https://doi.org/10.1016/j.isprsjprs.2015.01.
016.

[11] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J. G.
Rodríguez, «A Review on Deep Learning Techniques Applied to Semantic
Segmentation», 2017. arXiv: 1704.06857.

[12] D. Maturana and S. Scherer, «VoxNet: A 3D Convolutional Neural Network
for Real-Time Object Recognition», in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sep. 2015, pp. 922–928.

V

https://doi.org/https://doi.org/10.1016/j.jvcir.2015.10.012
https://arxiv.org/abs/1602.06541
https://doi.org/https://doi.org/10.1117/12.2304711
https://doi.org/10.1109/ACCESS.2018.2886133
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.01.016
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.01.016
https://arxiv.org/abs/1704.06857

Bibliography

[13] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, «Multi-view con-
volutional neural networks for 3D shape recognition», in IEEE International
Conference on Computer Vision (ICCV), 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, «ImageNet Classification with
Deep Convolutional Neural Networks», Commun. ACM, vol. 60, no. 6, pp. 84–
90, May 2017. doi: 10.1145/3065386.

[15] A. Boulch, B. L. Saux, and N. Audebert, «Unstructured Point Cloud Semantic
Labeling Using Deep Segmentation Networks», in Eurographics Workshop on
3D Object Retrieval, The Eurographics Association, 2017. doi: 10.2312/3dor.
20171047.

[16] T. Hackel, J. D. Wegner, and K. Schindler, «Fast semantic segmentation of 3D
point clouds with strongly varying density», ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences, vol. 3, no. 3, 2016.

[17] H. Thomas, F. Goulette, J. Deschaud, and B. Marcotegui, «Semantic Clas-
sification of 3D Point Clouds with Multiscale Spherical Neighborhoods», in
International Conference on 3D Vision (3DV), Sep. 2018, pp. 390–398. doi:
10.1109/3DV.2018.00052.

[18] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, «Rotation Invariant Spherical
Harmonic Representation of 3D Shape Descriptors», in Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, 2003, pp. 156–164.

[19] Y. Shen, C. Feng, Y. Yang, and D. Tian, «Mining Point Cloud Local Structures
by Kernel Correlation and Graph Pooling», Jun. 2018, pp. 4548–4557. doi:
10.1109/CVPR.2018.00478.

[20] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein, «Recent Trends, Ap-
plications, and Perspectives in 3D Shape Similarity Assessment», Computer
Graphics Forum, vol. 35, no. 6, pp. 87–119, 2016. doi: 10.1111/cgf.12734.

[21] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, «3D Object Recognition
in Cluttered Scenes with Local Surface Features: A Survey», IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2270–2287,
Nov. 2014. doi: 10.1109/TPAMI.2014.2316828.

[22] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, «Volumetric
and Multi-View CNNs for Object Classification on 3D Data», 2016. arXiv:
1604.03265.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, «PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation», in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 77–85. doi:
10.1109/CVPR.2017.16. arXiv: 1612.00593.

[24] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, «PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space», in Conference on Neural
Information Processing Systems (NIPS), Dec. 2017, pp. 5099–5108. arXiv:
1706.02413.

[25] D. G. Lowe, «Distinctive Image Features from Scale-Invariant Keypoints», Int.
J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. doi: 10.1023/B:
VISI.0000029664.99615.94.

VI

https://doi.org/10.1145/3065386
https://doi.org/10.2312/3dor.20171047
https://doi.org/10.2312/3dor.20171047
https://doi.org/10.1109/3DV.2018.00052
https://doi.org/10.1109/CVPR.2018.00478
https://doi.org/10.1111/cgf.12734
https://doi.org/10.1109/TPAMI.2014.2316828
https://arxiv.org/abs/1604.03265
https://doi.org/10.1109/CVPR.2017.16
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1706.02413
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Bibliography

[26] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, «Exploring Spatial
Context for 3D Semantic Segmentation of Point Clouds», in IEEE International
Conference on Computer Vision (ICCV) Workshops, Oct. 2017.

[27] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
«Dynamic Graph CNN for Learning on Point Clouds», 2018. arXiv: 1801.
07829.

[28] X. Ye, J. Li, H. Huang, L. Du, and X. Zhang, «3D Recurrent Neural Networks
with Context Fusion for Point Cloud Semantic Segmentation», in European
Conference on Computer Vision (ECCV), Sep. 2018.

[29] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, «SEGCloud:
Semantic Segmentation of 3D Point Clouds», in International Conference on
3D Vision (3DV), Oct. 2017, pp. 537–547. doi: 10.1109/3DV.2017.00067.

[30] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C.
Huang, and P. H. S. Torr, «Conditional Random Fields as Recurrent Neural
Networks», in IEEE International Conference on Computer Vision (ICCV),
Dec. 2015, pp. 1529–1537. doi: 10.1109/ICCV.2015.179.

[31] T. Kohonen, «The self-organizing map», Proceedings of the IEEE, vol. 78, no. 9,
pp. 1464–1480, Sep. 1990. doi: 10.1109/5.58325.

[32] J. Li, B. M. Chen, and G. Hee Lee, «SO-Net: Self-Organizing Network for
Point Cloud Analysis», in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2018.

[33] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao, «3D ShapeNets: A Deep
Representation for Volumetric Shapes», 2014. arXiv: 1406.5670.

[34] L. Landrieu and M. Simonovsky, «Large-scale Point Cloud Semantic Segmen-
tation with Superpoint Graphs», vol. 1711.09869, 2017.

[35] Y. Xu, Z. Sun, L. Hoegner, U. Stilla, and W. Yao, «Instance Segmentation
of Trees in Urban Areas from MLS Point Clouds Using Supervoxel Contexts
and Graph-Based Optimization», in IAPR Workshop on Pattern Recognition
in Remote Sensing (PRRS), Aug. 2018, pp. 1–5. doi: 10.1109/PRRS.2018.
8486220.

[36] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, «PointCNN: Convolution
On X-Transformed Points», in Advances in Neural Information Processing
Systems 31, Curran Associates, Inc., 2018, pp. 820–830.

[37] Q.-H. Pham, D. T. Nguyen, B.-S. Hua, G. Roig, and S.-K. Yeung, «JSIS3D:
Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task
Pointwise Networks and Multi-Value Conditional Random Fields», in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[38] L. Breiman, «Random Forests», Machine Learning, vol. 45, no. 1, pp. 5–32,
Oct. 2001. doi: 10.1023/A:1010933404324.

[39] A. Montillo, J. Shotton, J. Winn, J. E. Iglesias, D. Metaxas, and A. Criminisi,
«Entangled Decision Forests and Their Application for Semantic Segmentation
of CT Images», in Information Processing in Medical Imaging, 2011, pp. 184–
196.

VII

https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1801.07829
https://doi.org/10.1109/3DV.2017.00067
https://doi.org/10.1109/ICCV.2015.179
https://doi.org/10.1109/5.58325
https://arxiv.org/abs/1406.5670
https://doi.org/10.1109/PRRS.2018.8486220
https://doi.org/10.1109/PRRS.2018.8486220
https://doi.org/10.1023/A:1010933404324

Bibliography

[40] D. Wolf, J. Prankl, and M. Vincze, «Fast semantic segmentation of 3D point
clouds using a dense CRF with learned parameters», in IEEE International
Conference on Robotics and Automation (ICRA), May 2015, pp. 4867–4873.
doi: 10.1109/ICRA.2015.7139875.

[41] ——, «Enhancing Semantic Segmentation for Robotics: The Power of 3-D
Entangled Forests», IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 49–56, Jan. 2016. doi: 10.1109/LRA.2015.2506118.

[42] M. Antonello, D. Wolf, J. Prankl, S. Ghidoni, E. Menegatti, and M. Vincze,
«Multi-View 3D Entangled Forest for Semantic Segmentation and Mapping»,
in IEEE International Conference on Robotics and Automation (ICRA), May
2018, pp. 1855–1862. doi: 10.1109/ICRA.2018.8460837.

[43] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, «Vision meets Robotics: The
KITTI Dataset», International Journal of Robotics Research (IJRR), 2013.

[44] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, «The Cityscapes Dataset for Semantic
Urban Scene Understanding», in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[45] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser, and M. Nießner,
«ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes», 2017. arXiv:
1702.04405.

[46] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, «Indoor segmentation and
support inference from RGBD images», in European Conference on Computer
Vision (ECCV), 2012, pp. 746–760. doi: 10.1007/978-3-642-33715-4_54.

[47] S. Song, S. P. Lichtenberg, and J. Xiao, «SUN RGB-D: A RGB-D scene
understanding benchmark suite», in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jun. 2015, pp. 567–576. doi: 10.1109/CVPR.
2015.7298655.

[48] B.-S. Hua, Q.-H. Pham, D. T. Nguyen, M.-K. Tran, L.-F. Yu, and S.-K. Yeung,
«SceneNN: A Scene Meshes Dataset with aNNotations», in International
Conference on 3D Vision (3DV), 2016.

[49] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese, «Joint 2D-3D-Semantic Data
for Indoor Scene Understanding», Feb. 2017. arXiv: 1702.01105.

[50] J. Xiao, A. Owens, and A. Torralba, «SUN3D: A Database of Big Spaces Re-
constructed Using SfM and Object Labels», in IEEE International Conference
on Computer Vision (ICCV), Dec. 2013.

[51] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song,
A. Zeng, and Y. Zhang, «Matterport3D: Learning from RGB-D Data in Indoor
Environments», in International Conference on 3D Vision (3DV), 2017.

[52] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. K. Brilakis, M. Fischer, and
S. Savarese, «3D Semantic Parsing of Large-Scale Indoor Spaces», in IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 1534–1543.

[53] O. Vinyals, S. Bengio, and M. Kudlur, «Order Matters: Sequence to sequence
for sets», Nov. 2015. arXiv: 1511.06391.

VIII

https://doi.org/10.1109/ICRA.2015.7139875
https://doi.org/10.1109/LRA.2015.2506118
https://doi.org/10.1109/ICRA.2018.8460837
https://arxiv.org/abs/1702.04405
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1109/CVPR.2015.7298655
https://doi.org/10.1109/CVPR.2015.7298655
https://arxiv.org/abs/1702.01105
https://arxiv.org/abs/1511.06391

Bibliography

[54] S. Ioffe and C. Szegedy, «Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift», in International Conference
on Machine Learning (ICML), vol. 37, 2015, pp. 448–456.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
«Dropout: A Simple Way to Prevent Neural Networks from Overfitting»,
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[56] L. Landrieu and M. Boussaha, «Point Cloud Oversegmentation With Graph-
Structured Deep Metric Learning», in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 1904.02113, Jun. 2019.

[57] J. Demantké, C. Mallet, N. David, and B. Vallet, «Dimensionality Based Scale
Selection in 3d LIDAR Point Clouds», ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences, vol. XXXVIII-5/W12, pp. 97–
102, Sep. 2011. doi: 10.5194/isprsarchives-XXXVIII-5-W12-97-2011.

[58] S. Guinard and L. Landrieu, «Weakly supervised Segmentation-aided Clas-
sification of Urban Scenes from 3D LiDAR point clouds», ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. XLII-
1/W1, pp. 151–157, May 2017. doi: 10.5194/isprs-archives-XLII-1-W1-
151-2017.

[59] L. Landrieu and G. Obozinski, «Cut Pursuit: fast algorithms to learn piecewise
constant functions on general weighted graphs», SIAM Journal on Imaging
Sciences, vol. 10, no. 4, pp. 1724–1766, 2017. doi: 10.1137/17M1113436.

[60] L. Landrieu, H. R. Raguet, B. Vallet, C. Mallet, and M. Weinmann, «A
structured regularization framework for spatially smoothing semantic labelings
of 3D point clouds», ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 132, pp. 102–118, Oct. 2017. doi: 10.1016/j.isprsjprs.2017.08.010.

[61] M. Simonovsky and N. Komodakis, «Dynamic Edge-Conditioned Filters in
Convolutional Neural Networks on Graphs», in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 29–38. doi: 10.1109/
CVPR.2017.11.

[62] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, «Voxel Cloud Connec-
tivity Segmentation - Supervoxels for Point Clouds», in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2013, pp. 2027–2034.
doi: 10.1109/CVPR.2013.264.

[63] M. Abadi et al., «TensorFlow: A system for large-scale machine learning»,
in USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016, pp. 265–283.

[64] A. Paszke et al., «Automatic Differentiation in PyTorch», in NIPS Autodiff
Workshop, 2017.

[65] D. Comaniciu and P. Meer, «Mean Shift: A Robust Approach Toward Feature
Space Analysis», IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5,
pp. 603–619, May 2002. doi: 10.1109/34.1000236.

IX

https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-97-2011
https://doi.org/10.5194/isprs-archives-XLII-1-W1-151-2017
https://doi.org/10.5194/isprs-archives-XLII-1-W1-151-2017
https://doi.org/10.1137/17M1113436
https://doi.org/10.1016/j.isprsjprs.2017.08.010
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.1109/CVPR.2017.11
https://doi.org/10.1109/CVPR.2013.264
https://doi.org/10.1109/34.1000236

	Title page
	Abstract
	Contents
	Introduction
	Working with 3D data
	Machine learning
	Deep neural networks
	Random Forests

	Thesis objectives and structure

	State of the Art
	The Stanford dataset
	Deep learning on 3D data
	PointNet++
	Superpoint Graphs
	JSIS3D

	Entangled forests
	RF Training and inference
	Strengths and weaknesses
	3D Entangled Forests
	Unary features
	Entangled features

	Experiments on S3DIS
	Training and test split
	Evaluation metrics
	PointNet++
	Superpoint Graphs
	JSIS3D
	Entangled forests
	Cumulative evaluation

	Exchanging features between architectures
	Experiments on 3DEF
	SPG features added to 3DEF clustering part
	Training forests on SPG features

	Experiments on SPG
	Porting features from 3DEF
	Changing color space
	Enabling features in different steps

	Conclusions
	List of Figures
	List of Tables
	Acronyms
	Bibliography

