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Summary

This thesis work aims to reconstruct the spatial distribution of the saturated hydraulic

conductivity in one of the artificial hillslopes at the Landscape Evolution Observatory

(LEO). This is a fundamental task to better describe and forecast flow dynamics in LEO.

The advanced characterization of LEO soil properties is motivated by the unexpected

hydrological response of the hillslope during the first rainfall experiment, where the gen-

eration of overland flow was not forecast by pre-experiment numerical simulations. A

possible explanation for this behavior is the development of localized heterogeneity within

the hillslope, as indicated by Niu et al. [2014]. Starting from this idea, here we investigate

the feasibility of estimating the saturated hydraulic conductivity of LEO soil from the

measurement of volumetric water content, which are spatially distributed. The numerical

simulations of the rainfall experiment are fulfilled through the physically-based hydrolog-

ical model CATHY. Using a probabilistic approach, we estimate the posterior probability

distribution of the saturated hydraulic conductivity using two data assimilation schemes,

ensemble Kalman filter and sequential importance resampling. In particular, we introduce

a new restarting process that ensure the physically consistency of the simulations dur-

ing the assimilation. Different degrees of spatial heterogeneity are considered to model

the spatial distribution of the saturated hydraulic conductivity, from zonation pattern

to stochastic random field. Our results show that the assimilation process allows us to

slightly reduce the error on volumetric water content measurements for almost all the con-

sidered configurations. However, the simulated hydrological response with the posterior

distribution of hydraulic conductivity is still far from the observed one. These evidences

suggest that the problem is ill-conditioned, affected by the measurements uncertainty.
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Sommario

Il lavoro di questa tesi è volto a ricostruire la distribuzione spaziale della conducibi-

lità idraulica di uno dei pendii che costituiscono il LEO. Questo obiettivo è fondamen-

tale per descrivere e prevedere le dinamiche idrauliche del LEO in maniera migliore.

La caratterizzazione approfondita delle proprietà fisiche del terreno del LEO è motivata

dall’inaspettata risposta idrologica del pendio durante il primo esperimento di pioggia,

in cui il deflusso superficiale non era stato previsto nelle simulazioni numeriche realizzate

prima dell’esperimento stesso. Una possibile spiegazione, proposta da Niu et al. [2014],

è l’insorgere di eterogeneità localizzate all’interno del pendio. Partendo da questi pre-

supposti, un processo di data assimilation è stato realizzato, con lo scopo di stimare la

conducibilità idraulica del terreno del LEO, incorporando le misure distribuite del conte-

nuto volumetrico d’acqua (VWC) raccolte durante il primo esperimento. Le simulazioni

sono realizzate con il modello idrologico CATHY. Usando un approccio probabilistico,

stimiamo la distribuzione di probabilità a posteriori della conducibilità idraulica satura

usando due schemi di data assimilation, ensemble Kalman filter e sequential importan-

ce resampling. In particolare, introduciamo un nuovo processo iterativo che assicura la

consistenza sul piano fisico delle simulazioni durante le assimilazioni. Il pendio è sta-

to modellato con diversi gradi di eterogeneità, da una suddivisione in zone a un campo

stocastico casuale. I risultati ci mostrano che il processo di assimilazione ci permette di

ridurre leggermente l’errore sulle misure di VWC in tutte le configurazioni prese in esa-

me. La risposta idrologica del terreno, tuttavia, rimane molto diversa da quella realmente

osservata. Questi fatti suggeriscono che il problema affrontato sia malcondizionato, affet-

to dall’incertezza sui dati assimilati. La stima dei parametri potrebbe essere migliorata

dall’assimilazione di ulteriori misure di altre grandezze geofisiche. italian
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Chapter 1

Introduction

A major issue in the hydrological sciences is the study of the response of a basin to

atmospheric forcings. The interactions between surface, subsurface and atmosphere are

fundamental in determining the partitioning of rainfall and the redistribution of water in

the subsoil domain. These aspects are fundamental for agriculture and climate studies,

but also for water quality management and prevention and mitigation of natural haz-

ards [McLaughlin, 2002]. The prediction of hydrologic responses is challenged by the

spatial variability and temporal dynamics of the physical and biological processes that

control water movement in the landscape. Hydrologic systems are interdependent with

biota, soils, geomorphology and micro-climate characterizing the soil surface and subsur-

face. The hydrologic predictions would be improved by the deeper understanding of these

interconnections. The difficulty in precisely defining the boundary conditions and the

insufficient measurements hurdle the investigation of these aspects in field experiments

[Hopp et al., 2009].

These limitations are addressed at the Landscape Evolution Observatory (LEO) ris-

ing at Biosphere 2 facility near Tucson, Arizona. The infrastructure, consisting of three

identical slanting slopes, offers the possibility to fulfill hydrological experiments under

strictly controlled conditions. Sensors and sampling instruments collect different quanti-

ties with a spatial density and temporal frequency impossible to be recreated in natural

fields. Heterogeneous and homogeneous rainfall patterns may be applied to the soil via an

artificial rainfall system. LEO is designed to make possible the study of the evolution of

landscape throughout years of experimentation [Gevaert et al., 2014]. A first experiment

has been realised in order to test the sensors, to investigate the hydrological dynamics of

the landscape and to generate a steady state of soil moisture for further tracer experi-

ments. Numerical simulations were run prior to the experiment in order to estimate the

time needed by the system to reach steady state. Unexpectedly, the actual behaviour of

1



2 CHAPTER 1. INTRODUCTION

the system has been very different from the predicted one. Steady state was never reached

and a saturation excess was developed. A fundamental assumption in the prior simula-

tions was the homogeneity of the soil, derived from the way in which the soil has been

built. Niu et al. [2014] fulfilled a modeling study in order to understand the reasons of the

differences between forecasted and real response of the system. The results support the

hypothesis of the development of localized heterogeneity, due to downslope compaction

and sediment transport.

The first experiment at LEO and the work of Niu et al. [2014] traced the path for this

thesis work. The addressed issue is the reconstruction of the values of saturated hydraulic

conductivity in LEO hillslope. The soil has been considered heterogeneous. The objective

is pursued using the coupled physically-based hydrologic model CATHY and using a

data assimilation (DA) process to solve the identification problem. DA methods allow to

determine the optimal parameters characterizing the soil, using observations collected in a

given time and space domain [Yeh, 1986]. The improvement of the spatial characterization

of the saturated hydraulic conductivity is expected to increase the accuracy of the response

of the model. We tested both ensemble Kalman filter (EnKF) and sequential importance

resampling (SIR) DA approaches. The assimilated observations are the volumetric water

content measurements, collected during the first experiment at LEO.

The thesis is structured as follows. Chapter 2 contains a review of the literature con-

cerning coupled hydrologic models and the application of data assimilation and parameter

estimation to hydrologic issues. In Chapter 3, the LEO facility is described, along with

the planning and realisation of the first experiment and the results of the posterior anal-

ysis performed by Niu et al. [2014]. Chapter 4 describes the features of CATHY, while

Chapter 5 is devoted to the description of the data assimilation schemes applied in this

thesis work. Finally, Chapter 6 collects the different simulations performed in order to

characterise the spatial distribution of hydraulic conductivity. Different configurations of

heterogeneity has been considered and modeled, and the results are reported and com-

pared.



Chapter 2

Literature Review

Data assimilation methods are often applied to hydrologic problems to help correcting the

forecast on the basis of updated state observations. In this thesis work, the process-based

coupled hydrological model CATHY and the data assimilation methods EnKF and SIR

are used to estimate the spatial distribution of saturated hydraulic conductivity of the

LEO hillslope. A brief revision of process-based coupled hydrological models is followed

by a short introduction to the main data assimilation methods applied to hydrologic

problems. Finally, a review of the data assimilation processes implemented to tackle on

hydrological issues concludes this Chapter.

2.1 Coupled hydrological models

Surface and subsurface water dybamics are strictly interdependent, but the significant

difference in terms of timescales lead to the common approach of considering them as two

separated components. This perspective makes the system easier to be understood and

to be described in a mathematical way. The resulting models, however, result incomplete.

Their accuracy can be enhanced only considering surface and subsurface as a coupled

system [Furman, 2007]. Hereinafter a brief review of process-based coupled hydrological

models is reported.

Pohll et al. [1996] proposed a coupled surface-subsurface model of a subsidence crater

in Nevada (USA). The topographic attributes are individuated by a terrain analysis mod-

ule, the overland flow is simulated through a kinematic wave equation and the moisture

migration through vadose zone is described by Richards equation. The model for surface

flow is linked with a two-dimensional axisymmetric vadose zone model. Ad hoc accurate

boundary conditions are assigned to the subsurface module.

In the model presented by Singh and Bhallamudi [1998],devoted to the prediction of over-

3



4 CHAPTER 2. LITERATURE REVIEW

land flow, surface and subsurface flow are described by the one-dimensional De Saint

Venant equation and the two-dimensional Richards equation. VanderKwaak and Loague

[2001] developed a fully-coupled model aimed to the quantitative estimation of water

flow and solute transport within a spatially variable porous medium. The subsurface

flow is considered in a three-dimensional setting, while the surface flow is estimated by

the two-dimensional diffusion wave approximation of the depth-integrated shallow water

equation. The links between these components is realised by first order flux exchange

driven by pressure head gradients.

The two-dimensional approximation of the diffusion wave model is proposed to describe

the surface flow also in Morita and Yen [2002]. The subsurface flow is described by the

three-dimensional form of Richards equation. The coupling is realised considering the

infiltration between surface and subsurface as common internal boundary condition.

In the model proposed by Downer and Ogden [2003], overland flow and channel flow

were distinctly considered, respectively by a two-dimensional and one-dimensional model.

Analogously, the water flow in saturated and unsaturated flow was described by a two-

and one-dimensional version of Richards equation respectively. Snowfall accumulation

and melting could be taken into account. Panday and Huyakorn [2004] distinguish over-

land flow and channel flow with coupling achieved by first order exchange. This model

accounts for urban and agricultural features at various scales, e.g., the effects of depres-

sion storage may be included in the equations for overland and channel flows and in the

surface-subsurface interactions.

Gunduz and Aral [2005] proposed a coupled model to simulate the interactions along a

river bed. A two-dimensional vertically averaged saturated groundwater flow model was

coupled with a surface channel flow model based on the dynamic wave form of the De

Saint Venant equations. The two equations were solved simultaneously, within the same

global matrix structure. The first order coupling is used to link the two models.

A modified Dupuit model is presented in Anderson [2005]to simulate the interaction be-

tween stream and river. The groundwater flow is steady, the hydraulic head is constant,

the incoming and outgoing fluxes are defined. This model is modified to include a sec-

ond parameter representing the hydraulic conductivity of the aquifer beneath the stream,

considered different from the value of hydraulic conductivity in the rest of the aquifer.

The model described in Graham and Butts [2005] distinguished overland flow, channel

flow, unsaturated flow and saturated groundwater flow. The unsaturated flow is con-

sidered primarily vertical. Infiltration in the unsaturated zone can be described in four

different ways: the full Richards equation, a simplified gravity flow procedure, a two-layer

water balance method for root zone and the zone between roots and the water table or
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the calculation of net recharge by other means. It is solved in parallel with the saturated

groundwater flow. The latter is solved with a three-dimensional finite difference scheme.

Overland flow is again described by a finite-difference approximation of De Saint Venant

equation. Channel flow is again considered one-dimensional.

Kollet and Maxwell [2006] incorporate a two-dimensional overland flow simulator into a

parallel three-dimensional variably saturated subsurface flow code. The coupling in this

case is realised imposing the continuity of fluxes and of pressure at the ground surface.

The surface equation represents a Neumann boundary condition to Richards equation.

A different approach is explored in Weill et al. [2009], where the computational domain

is enriched with a fictitious porous layer at the land surface. In this way a continuum is

created from saturated zone to land surface. Hydraulic gradient governs the movement of

water, and pressure and velocities are continuous. A unique Richards equation is written

to describe both surface and subsurface processes. Also Goderniaux et al. [2009] proposed

a fully integrated surface-subsurface flow model for the saturated and partially saturated

zone. The subsurface flow equation is the three-dimensional Richards equation, while

the surface flow is described by a two-dimensional depth-averaged flow equation. These

equations are simultaneously solved through a finite element solver.

The model presented by Shen and Phanikumar [2010] addressed a long-term simulations

of medium-large spatial domains. Physically-based conservation laws are the basis of this

model. The hydrological domain in which calculations take place is subdivided into dif-

ferent compartments. Particular attention is paid to vadose zone, since it controls evapo-

transpiration and it links groundwater to surface water. Also in this model the overland

flow and the channel flow are distinguished. The two-dimensional and one-dimensional

form of diffusion wave equation describe respectively the two flows. Another distinction

is done for soil water flow and groundwater flow. The first is assumed to be vertical and

it is approximated with then one-dimensional Richards equation. The saturated aquifer

is conceptualized as a series of vertical layers. In each layer, a two-dimensional equation

describes the groundwater flow.

The chosen coupled physical-based model for the simulations fulfilled in this thesis

work is CATHYmodel [Paniconi and Putti, 1994]. It couples a three-dimensional Richards

equation describing subsurface flow with a one-dimensional diffusion wave equation for

surface flow. As for the described models, it proposes the finite element/finite difference

solvers for subsurface and surface equations, the handling of heterogeneous parameters

and inputs, and the possibility to define a variety of boundary conditions over the domain.

In addition, the drainage network is identified through a digital elevation model analysis.

Storage effects and retardation, due to lakes and topographic depressions, are incorpo-
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rated. The channel flow and the overland flow are described by the same equation, with a

distinction realised through different sets of parameters. Coupling is realised through the

assignment of proper nonlinear boundary conditions. The different dynamics of surface

and subsurface flow are taken into account. In fact, a nested time stepping is used for the

surface module, and a coarsened grid may be generated for the subsurface domain. In the

model soil swelling and shrinking can be taken into account, thanks to the formulation of

the subsurface storage coefficient with moisture-dependent porosity. Data assimilation is

implemented via Newtonian nudging, ensemble Kalman filter and sequential importance

resampling.

2.2 Data assimilation in Hydrology

Data assimilation in hydrology is used to forecast the state of the system and also to

estimate the parameters starting from observed data. In most cases, the chosen assimila-

tion method is ensemble Kalman filter, since it easy to be implemented and conceptually

simple. Other methods, as particle filters (PF), are increasing in importance, since they

are flexible and they are more accurate for strongly nonlinear systems. Hereinafter, a

brief review of some experimental data assimilation hydrological works using EnKF and

PF are reported.

Walker et al. [2002] applied Kalman filter assimilation technique to estimate the soil mois-

ture profile by means of a distributed three-dimensional soil moisture model. The Kalman

filter is modified in order to overcome its computational limitations. The assimilation used

real data collected in an Australian catchment. As the results showed, if the forecast of

the model is far from the observation, then the assimilation would improve the prediction.

On the contrary, if the forecast is yet close to the observed value, the assimilation could

induce a degradation in the results. In addition, when the model is well calibrated and the

forcing data are accurately reported, the updating time interval is relatively unimportant

for the correct retrieval of the soil moisture profile.

In Paniconi et al. [2003] the implementation of Newtonian Nudging in the model CATHY

is described. This method consists in adding a forcing term to the model equations in

order to force the model variables towards the observations. It is computationally less

intensive than other methods, and with simple formulation. The assimilation is tested on

a test case. Two scenarios are designed, in the first the atmospheric boundary conditions

are perturbed, and in the second the initial conditions are perturbed. All the measure-

ments were generated via CATHY model. The results of these simulations show that

nudging is simple, efficient and flexible. It allows also the utilization of informations from
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different measurement sources. Limitations are implicit in the definition of the interpola-

tion functions used to spatially distribute the effects of the measurements.

A dual state-parameter estimation approach is presented in Moradkhani et al. [2005]. The

authors chose the ensemble Kalman filter method. The estimation of both parameters

and state variables was achieved through two interactive filters. The updated parameters,

at each step, are used to update the model state. Results confirmed that this method is

reliable for streamflow forecasting.

Parameter estimation with particle filters is reported in Moradkhani and Hsu [2005].

Particle filters are more suitable than Kalman-filter based recursive procedures when the

considered system is strongly nonlinear. In this case, in fact, the first and second order

characteristics are not sufficient to fully describe the evolution of the conditional prob-

ability of the prediction. Particle filters on the contrary can handle nonlinearities and

give a relatively complete representation of posterior distribution. Parameter estimation

is obtained with particle filters both for a synthetic scenario and for a real-world prob-

lem. The suitability of particle filters for this issue is verified. It is also evidenced the

importance of considering as source of uncertainty not only parameter estimation, but

also model structural errors and input measurements errors.

In Weerts and El Serafy [2006], Ensemble Kalman filter and two particle filters, sequen-

tial importance resampling (SIR) and residual resampling (RR), are applied to a quasi-

distributed conceptual hourly rainfall-runoff model. The performances of the different

methods are compared. Results showed that when ensemble dimension is small, EnKF

achieved better results than particle filters. For intermediate number of realisations, RR

method outperformed EnKF, and SIR gave the worse results. The enlargement of the

ensemble did not improve the results of RR and EnKF. The simulations showed also the

importance in choosing the optimal error models to obtain a good estimate of the system

states. In particular, particle filters are more sensitive to this choice than EnKF. EnKF

and SIR methods have been compared also in Zhou et al. [2006], in land surface assimi-

lation, and again the validity of EnKF method has been confirmed.

Chen and Zhang [2006] presented a study in which ensemble Kalman filter was used for

the assimilation of dynamic and static measurements and for the estimation of model vari-

ables and parameters. The validity of EnKF is confirmed both for parameter estimation

and for system state prediction. In particular, the assimilation of dynamic measurements

improves the predictability of the model. A parameter estimation with ensemble Kalman

filter is reported in Liu and Chen [2008] and it concerns hydraulic conductivity and various

transport model parameters. Also in this work the validity of EnKF even in approaching

nonlinear fluid flow is confirmed.
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Xie and Zhang [2010] studied a combined state-parameter estimation via EnKF, based

on a physically-based hydrological model. Runoff data and other measurements are as-

similated. Results showed that the estimation of hydrologic states is accurate even if the

prior knowledge of the parameter is not precise. The estimation of hydrologic parame-

ters, on the other hand, is harder due to the ill-posedness of the problem in distributed

models. The estimation of parameters may be improved assimilating other measurements

besides runoff data. Also in Franssen et al. [2011] the ensemble Kalman filter is used for

a state-parameter estimation. In particular, the model is updated in real time with the

collected measurements.

Ensemble Kalman filter is compared with Newtonian Nudging in the assimilation of syn-

thetic observations in Camporese et al. [2009]. The model used to fulfill this comparison

is CATHY. Measurements were extracted from a synthetic true simulation, set up from

realistic data of rainfall and evaporation. The results evidenced that newtonian nudging

performances depend strongly on the number of spatial observations. The accuracy of

predicted streamflow hydrograph is sufficiently high only when there is a large number of

available measurements. EnKF method, on the other hand, well reproduces the true sub-

surface state when streamflow is assimilated along with pressure head and soil moisture.

The produced streamflow hydrograph is more accurate.

In Camporese et al. [2012], hydraulic conductivity and specific storage coefficients are

estimated in a real-world case in Padua. Piezometric data are assimilated with EnKF

method.

Pasetto et al. [2012] compared the performances of EnKF and SIR, implemented in

CATHY model. The physical, statistical and numerical consistency of the state variables

during the entire assimilation process were assessed. Results showed that both methods

helped in improving the system forecast, with respect to the simulations without data

assimilation. When only streamflow was assimilated, then EnKF did not reproduce ade-

quately the pressure heads during evaporation periods. Streamflows and pressure heads,

in fact, are poorly correlated and the unsaturated zone has highly non-linear dynamics.

Another conclusion of this experiment is that the update step of EnKF may return a

physically inconsistent updated state. This circumstance increase the difference in the

non-linear solver, and some realisations which do not reach convergence may get lost.

SIR updates, on the other hand, are affected by numerical degradation of the ensemble

when the ensemble size is small and the initial conditions are not accurate. The authors

proposed a modified version of the algorithm to avoid the degradation. Overall, however,

the experiments demonstrated that both methods may be used as data assimilation algo-

rithms for hydrological simulations with CATHY model, with SIR the method of choice
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if non-Gaussian distributions arise.

This overview evidences the reliability of EnKF, both for state prediction and pa-

rameter estimation, even if the updated state is not always physically consistent with

the model. Particle filters, and SIR in particular, offer analogous performances with the

advantage of being able to handle also strong nonlinearities of the considered system and

to assure the physical consistency of the updated states. These considerations led to the

choice of EnKF and SIR methods for the parameter estimation performed in this thesis

work.
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Chapter 3

Landscape Evolution Observatory

In the Earth surface and outer subsurface, physical, chemical, biological, geological pro-

cesses take place. The quantitative understanding of the complex interaction between

these processes is a difficult but essential task to describe, and eventually control, the

Earth surface dynamics. The LEO was built in order to improve the knowledge about

the interactions among these processes and to have a better instrument to investigate:

• how water, carbon and energy move through landscape;

• the consequences of climate changes on Earth’s landscapes;

• the effects of biological systems as vegetation and microbes on landscapes;

• the alteration of terrestrial water resources due to climate changes.

This thesis work aims in estimating the hydraulic conductivity of the LEO soil. This

chapter describes the characteristics of the facility and the features of the experiment.

3.1 LEO intent and general features

The LEO is located inside the facility of Biosphere 2 that rises near Tucson, Arizona.

LEO was built by the University of Arizona with the objective of better quantifying the

interactions among hydrologic partitioning, geochemical weathering, ecology, microbiol-

ogy, atmospheric processes and geomorphic changes associated with incipient hillslope

development.

LEO is composed of three identical slanting slopes that are 11.25 m wide and 29.60

m long, with an average declination equal to 10◦. Figure 3.1 shows the image of one

of the three slopes. Along with the main inclination, also the transverse sections of the

11
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Figure 3.1: One of the three slopes composing LEO facility.

Figure 3.2: Location of the 496 sensors of soil water content and DEM of the surface of
the hillslope [Pasetto et al., 2014].
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Table 3.1: Soil sample characteristics based on column experiment [Gevaert et al., 2014].

Characteristic Value

Porosity 0.39
Bulk density 1.59 g/cm3

Capillary fringe 30 cm
Saturated hydraulic conductivity 2.2 × 10−5 m/s

hillslope slightly converge toward the center with an average angle of 7◦, forming a V-

shaped profile. Basaltic ground and loamy sand are the components of the landslides.

Seeking for a spatially homogeneous landscape, the soil was spread as loose material on

the basement, for several horizontal strips and vertical layers [Gevaert et al., 2014]. Each

layer was compacted to a specific depth before the deposition of new soil. The final

thickness of the hillslope is equal to 1 m. In order to ease the downslope flow, a gravel

section is placed at the lower end of each slope. This is 50 cm wide and it is kept in place

by a plastic plate perforated with 2 mm holes [Niu et al., 2014]. The initial soil hydraulic

properties were estimated analysing a sample of soil of the same kind of the one used

to build the hillslope. In order to limit the disturbance, the sample was not extracted

directly from the hillslope [Gevaert et al., 2014]. The initial sample soil characteristics are

listed in table 3.1. In a further investigation based on the particle size distribution, the

value of the hydraulic conductivity was determined to be 7.8× 10−6 m/s [Gevaert et al.,

2014].

A large number of sensors have been installed in LEO for the monitoring of many

physical, chemical and biogeochemical features. The spatial density of sensors in LEO is

unlikely to be achievable in natural field settings. In detail, each hillslope has the following

instrumentation:

• 496 sensors of soil water content;

• 992 sensors of soil temperature;

• 496 sensors of soil water potential;

• 496 samplers of soil water;

• 141 samplers of soil gas;

• 48 sensors of carbon dioxide concentration;

• 24 surface heatflux plates;
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• 120 custom electrical resistivity tomography probes;

• 34 piezometers;

• 10 load cells;

• 15 magflow and tipping bucket flow meters in rain and drainage system;

• 1 3D laser scanner;

• a suite of permanent and deployable atmospheric and ecological instrumentation.

Figure 3.2 shows the location of the 496 sensors measuring soil water content, which

are placed at five different depths. Note that the majority of the sensors is located at

the superficial layers, with the goal of capture in detail the interactions between the

unsaturated soil and the atmosphere. The last panel of Figure 3.2 shows the DEM of the

LEO surface.

The artificial rainfall system allows to design both homogeneous and heterogeneous

rain patterns. Rainfall rate may be kept constant in time or also vary on any of the

three slopes. The range of possible rates is 0.003-0.045 m/h. The sensors allow to collect

measurements at short time intervals and in a wide spatial range.

The LEO high verifiability and monitoring capacity of real-scale hydrological processes

make the facility suitable to validate and, eventually, develop hydrological models. In

turn, the models may be used to interpret measured data and, in future, to forecast the

outcomes of LEO experiments. An example is given in Niu et al. [2014], where the coupled

surface-subsurface model CATHY (see Chapter 4) is used first to predict the behaviour

of the LEO hillslope during the first experiment, and then to better understand LEO

hydrological response.

In the first three years from the construction, the slopes will have no vegetation. Many

aspects will be investigated:

• hydrologic processes;

• surface modification due to rainsplash and overland flow;

• hillslope-scale fluid transit times;

• evolution of moisture distribution;

• rates and patterns of geochemical processes;

• emergent non-vascular and microbial ecology;
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• development of carbon and energy cycles within the shallow subsurface.

In a second phase of the experiment, vascular plants able to tolerate both heat and

droughts will be introduced and the consequences on water carbon and energy circulation

in the slopes will be investigated.

3.2 First experiment at LEO

The hydrological dynamics of the landscape are investigated in the first experiment at

LEO-1, the first of the three identical landscapes. The experiment was aimed to test

the functionality of the sensor network, investigate the landscape hydrological response

under a heavy rainfall, and generate a steady state of soil moisture for further tracer

experiments.

Experiment planning

The experiment planning comprised the following successive steps [Niu et al., 2014]:

1. a continuous and constant rainfall rate is applied to the landscape, in order to make

it reach the hydrologic steady state;

2. at the reaching of steady state, the artificial rainfall event is interrupted and the

slope drains for a week;

3. another continuous and constant rainfall event is applied to the slope, the water

being labeled with deuterium.

The planning included the automatic sampling of rainfall and seepage water outflow

at every 15 min and the manual measuring from a subset of the soil suction lysimeters

array at each 3 h. Initial water storage was equal to 36.13 m3, which corresponds to a

volumetric water content equal to 8-11% in most of the hillslope. The bottom of soil near

to the central trough however was wetter due to rainfall system deliver testing several

weeks prior to the described experiment [Gevaert et al., 2014]. Rainfall started at 10:00

LT, 18 February 2013 and ended at 8:00 LT, 19 February 2013 [Niu et al., 2014]. Rainfall

intensity was constant and equal to 12 mm/h [Gevaert et al., 2014].

Experimental actual outcome

Prior to the experiment, numerical simulations were run in order to estimate the time

requested by LEO-1 to reach steady state under the chosen experimental conditions. The
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hydraulic homogeneity of the slope was a fundamental assumption. According to the

simulation, seepage flow would have been equal to the precipitation rate 36 h after the

beginning of the rainfall. On the contrary, in the actual process steady state was never

reached, while saturation excess was developed. Overland flow occurred about 15 h after

the start of the rainfall, which caused the removal of a small fraction of soil and the

formation of a slight channel in the central part of the slope [Niu et al., 2014]. Overland

flow was estimated in an indirect way. During rainfall, it has been calculated on the

basis of a water mass balance using measured precipitation. After the end of the rainfall,

overland flow rate was calculated basing on the time needed to fill a fixed volume. This

procedure was repeated at every half hour [Gevaert et al., 2014].

From the analysis of the measured data, Gevaert et al. [2014] discover that the satu-

ration process had been step-wise. In the first phase, the soil was in dry conditions. In

the second phase, an abrupt passage from dry to wetter unsaturated conditions occurred.

This circumstance corresponded to the passage of the infiltration front. Once it passed,

the soil moisture content remained constant in time, while it decreased with increasing

depth. The third phase started with the passage of the saturation front. Soil passed from

wet unsaturated conditions to wet saturated conditions. Shallower sensors perceived the

passage of the infiltration phase first. The second phase then started before in the shal-

lower part of the hillslope and then propagated towards the bottom of the soil profile. On

the contrary, the third phase started from the deeper layers and then propagated towards

the surface. The latter phase did not ever reached neither the top of the hillslope nor the

far sides.

Numerical simulations with the hydrological model CATHY may help to better under-

stand the water dynamics in the artificial hillslope. The model is described in Chapter 4,

while the analysis on LEO first experiment, which is the core of this thesis work, is

described in the following section.

3.3 CATHY application on LEO first experiment

In the first LEO experiment, results given by the prior numerical simulations were rele-

vantly different from the actual behaviour of the slope during the experiment (see 3.2).

A possible explication of the sizeable disparity between the numerical simulation and the

actual behaviour of the hillslope under the same conditions is the development of het-

erogeneity due to transport of fine sediments in the downstream direction. The gravel

section was partially removed and analysed shortly after the experiment. The fraction

of fine particles for volume of gravel was equal to 2%, and the holes in the plastic plate
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were partially clogged with fines. The importance of these two facts in determining the

difference between predicted and actual behaviour is not known. A modeling study has

been fulfilled in order to better understand the causes of the yet mentioned differences

between hydrological model response and actual behaviour of the hillslope [Niu et al.,

2014].

Hillslope Modeling and boundary conditions

For the numerical simulation of the hydrological experiment, a discrete representation

of the hillslope is necessary. Niu et al. [2014] discretize the LEO-1 slope into a grid

of 60 × 24 cells in the horizontal direction and 8 layers in the vertical direction. The

resulting number of superficial nodes is 61× 25. In the vertical direction the 9 nodes are

not uniformly distributed, being thicker at the top and the bottom of soil surface. In

this way the infiltration at soil surface and seepage flow at the bottom nodes is better

characterised. The following boundary conditions (BC) are assigned to the nodes on the

boundaries of the slope:

• seepage face BC to the 25× 8 nodes modeling the downslope boundary;

• atmospheric BC to the nodes on hillslope surface;

• zero flux conditions to every other LEO boundary node.

The atmospheric BC, Qatm, was indirectly estimated, since evaporation E was not directly

measured. The estimate differs depending on the time period [Niu et al., 2014]. From

08:00 LT to 20:00 LT, 18 February 2013 the rate of change in water storage dS/dt is used to

estimate Qatm. Prior to the beginning of seepage and overland flow, in fact, evaporation

can be seen as the difference between dS/dt and the rainfall rate P . Evaporation is

considered negligible in the successive time period, from 20:00, 18 February to 08:00,

19 February. Atmospheric boundary condition in this phase is considered equal to the

sprinkler rainfall rate. In the following and last time period, rainfall was absent and

evaporation rate is set equal to the average evaporation rate in Arizona in the actual

conditions. Table 3.2 summarizes the values of Qatm in the different phases.

In the simulations time stepping varies from 0.1 to 180 s, basing on the convergence

of the iterative linearisation scheme of Richards equation (see 4.4). Different numerical

simulations are fulfilled with different parameter configurations for soil properties [Niu

et al., 2014]. Involved soil parameters are, among the others, the van Genuchten curve

fitting parameter (n), the porosity (θsat) and the saturated hydraulic conductivity (Ksat).
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Table 3.2: Atmospheric boundary condition values

Phase Time interval (LT) Qatm

1 08:00 18/02 - 20:00 18/02 dS/dt
2 20:00 18/02 - 08:00 19/02 12 mm/h
3 08:00 19/02 - end -0.083 mm/h

Scenarios overview

The numerical simulations reported by Niu et al. [2014] have been fulfilled both before and

after the real experiment. Two scenarios, M1 and M2, refer to two modelizations of LEO-1

soil prior to the experiment. They both assume homogeneous hydraulic conductivity, Ksat,

with different values. In M1, Ksat is modeled with the value obtained from an analysis

of soil particle size distribution while the Ksat calibrated based on a previous LEO test is

used in M2. The results using these models do not forecast any overland flow as shown in

Figure 3.3. This implies that the value of porosity considered in M1 and M2 is too high,

and/or the homogeneity assumption is not correct. The following attempts, M3 and M4,

explore the eventual heterogeneity of saturated hydraulic conductivity. Scenarios M3 and

M4 differ in the value of van Genuchten parameter n. In the configuration M3, n is derived

from laboratory tests on LEO soil samples, in such a way to minimize the error with the

soil retention data (n=1.72). In configuration M4, n is obtained from a preexperiment

analysis of particle size distribution, and it is equal to the one of scenarios M1 and M2

(n=2.26). Being fixed the other soil parameters, both in M3 and M4 configurations two

spatial distributions of Ksat are explored. One is under the hypothesis of homogeneous

soil, the other assumes that the LEO hillslope surface has a lower hydraulic conductivity

than the rest of the slope soil. The best fitting set of parameters is evaluated minimizing

the error between measured and simulated data. The mean relative error is computed as

the mean between the error on water storage variation e∆S and seepage face flow eQS.

e =
1

2
(e∆S + eQS) (3.1)

e∆S =

∫ T

0
|∆Sm −∆Ss| dt∫ T

0
∆Sm dt

(3.2)

where the subscripts m and s indicate respectively the measured and simulated data sets.

The relative error for seepage face flow eQs is computed similarly to e∆S.
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Figure 3.3: Comparison between measured and simulated storage, seepage face flow and
overland flow. Results for scenarios M1 and M2 [Niu et al., 2014].

Figure 3.4: Comparison between measured and simulated storage, seepage face flow and
overland flow. Results for scenarios M3 and M4 with heterogeneous Ksat [Niu et al., 2014].
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Results

The results of the pre-experimental simulations (scenarios M1 and M2) are plotted along

with the actual measurements in Figure 3.3. Both configurations do not give overland

flow, while the answer in terms of seepage flow is diametrically opposite and far from the

measurements. M1 has a smaller value for saturated hydraulic conductivity, then seepage

face flow is negligible. Water storage remains constant after having reached the peak.

On the other hand, the higher Ksat value of M2 gives an overestimation of the seepage

face flow. Being overland flow null in both scenarios, the only variation of saturated

hydraulic conductivity value is not sufficient to reproduce the observed overland flow.

Both scenarios M3 and M4 consider a heterogeneous and a homogeneous configuration.

In scenarios M3, the homogeneous configuration gives a higher number of best simulations

in terms of water storage, while the heterogeneous configuration gives a higher number

of best simulations concerning seepage flow. The quality of the simulations is established

on the basis of the relative error. However, considering the mean error normalized on the

number of simulations, the M3 heterogeneous configuration has more best simulations

than the homogeneous. M4 scenario has a higher value for van Genuchten parameter

n. The results are analogous to those of M3 scenario. In this case, the heterogeneous

configuration has a higher number of best simulations, in particular for seepage flow. In

addition, the heterogeneous configurations of M3 and M4 scenarios show that the latter

has a best performance in terms of mean relative errors. The fraction of simulations with

a mean relative error lower than 10% is higher in the latter configuration than in the

former. The same is valid for an error threshold of 15%. Both the best heterogeneous

realisations of M3 and M4 scenarios give a good response also in terms of overland flow,

that almost match the estimated overland flow occurred during the experiment as shown

in Figure 3.4.

The values of Ksat calibrated in these analysis are used to define the prior distribution

of Ksat in the data assimilation process fulfilled in this thesis work. Chapter 6 contains

the detailed description of the procedures and of the results.



Chapter 4

CATHY model

The numerical simulation of LEO experiments by means of a hydrological model is a

fundamental step for a deeper description and, eventually, the forecast of LEO hydrologic

dynamics. In this thesis work, the numerical simulations are conducted with the model

CATHY (CATchment HYdrology). This chapter is devoted to the description of the

model.

4.1 Catchment hydrology model

Atmosphere, surface and subsurface represent a continuous system in which water cir-

culates under different phases [Furman, 2007]. Focusing on the surface-subsurface sub-

system, water passes from surface to vadose or saturated zones through infiltration. In

turn, groundwater nourishes surface streams through springs. Both surface and vadose

zone receive water from atmosphere via rain precipitation. Water fluxes in the different

system elements are interdependent. In order to reproduce accurately these processes, the

interconnections between surface and subsurface must be taken into account, despite of

the significant difference in the timescales of surface and subsurface water flow. Coupled

hydrological models like CATHY try to recreate the continuum between surface and sub-

surface modules. In these models the constraints that each element of the system exerts

on the others are expressed by boundary conditions.

CATHY is a physically-based model [Camporese et al., 2010] that couples the partial

differential equations describing the surface and subsurface flows. CATHY automatically

subdivides atmospheric fluxes into infiltration, exfiltration and change in surface water

storage [Sulis et al., 2010]. The model consists of two partial differential equations, de-

scribing the surface and subsurface flows. The surface module is approximated by a rill

flow along a one-dimensional drainage pattern, while the subsurface module is treated

21
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with a three-dimensional approach. The numerical solutions of the two equations are

described in Subsections 4.2 and 4.4, respectively. In addition to the usual atmospheric

specified flux and specified head boundary conditions, the model allows for the defini-

tion of seepage face boundary conditions and non-atmospheric Dirichlet and Neumann

conditions, which may vary in time and space. Different levels of soil heterogeneity can

be handled by CATHY, by assigning different parameter values to different zones of the

domain.

4.2 Surface runoff routing

CATHY surface module subdivides the drainage basin in hillslope and channel flows,

which determine the two main processes governing the surface hydrologic response [Cam-

porese et al., 2010]. At the beginning of the rainfall event, in fact, water flows over

hillslopes or agricultural watersheds as sheet flow. In a second time, soil erodibility and

topographic irregularities lead to the concentration of flow into small channels [Orlandini

and Rosso, 1996]. However, it is assumed that also hillslope flow can be described by

an accurate surface flow path. The whole surface flow then is described by a system of

one-dimensional rivulet flow routing along a network of surface flow paths. The eventual

presence of lakes, streams and pools that may cause retardation in the water flow can be

taken into consideration (see Subsection 4.3). Available DEM data allow us to accurately

represent the surface topography, and, as a consequence, the hillslope flow paths. In fact,

drainage network and flow direction are individuated starting from the catchment DEM

and following a precise procedure. First, the DEM cells are sorted into descending ele-

vation order. After that, the cells in flat or depressed areas are individuated and their

elevation is raised in order to have always a small positive slope downward. Finally, the

cells are again sorted into descending elevation order. The flow direction is then assigned

following mainly three schemes:

• D8 scheme;

• Multiple direction D∞ method;

• Nondispersive D8-LTD scheme.

Depending on the chosen scheme, each cell will discharge water to one or two downward

cells (respectively for the D8 and D8-LTD schemes and for the D∞ scheme). By means

of this methods it is also possible to define the drainage area of each cell. Three ways are

available in order to distinguish hillslope flow and channel flow: posing a threshold on
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the upstream drainage area A, on the function A× Sk, where S is the local terrain slope

and k an exponent, or on the ratio between land surface curvature and the mean terrain

slope. Notwithstanding the chosen criterion, if the imposed threshold is not exceeded,

then hillslope rill flow occurs. Otherwise channel flow takes place. This approach allows

the model to define the channel head locations with a physically realistic description of

the surface flow. It is assumed that the bed slope and length of each part of the extracted

drainage network are dependent on their location in the transport network. Cross section

resistance and conductance vary with the discharge, along with the water-surface width.

In this way the surface flow in the model may range from a system of tiny rivulets to a

network of wide rivulets, with the formation of a sheet flow.

In CATHY a preprocessor determines the surface drainage channel network from the

DEM data. Water flux in the channel network is described by the diffusion wave approx-

imation of the Saint-Venant equation:

∂Q

∂t
+ ck

∂Q

∂s
= Dh

∂2Q

∂s2
+ ckqs (4.1)

where s is a spatial coordinate [L], Q is the discharge along the rivulet/stream channel

[L3/T ], ck is the kinematic celerity [L/T ], Dh is the hydraulic diffusivity [L2], and qs

is the inflow (positive) or outflow (negative) rate from the subsurface to the surface

[L3/LT ]. Muskingum-Cunge method is the basis for the surface routing scheme used

in CATHY model. Hillslope rill and channel flows have different characteristics. These

distinctions are taken into account by considering different distributions of Gauckler-

Strickler roughness coefficient [Orlandini and Rosso, 1996]. Each cell receives water both

from the upward cells and the subsurface. The latter contribution includes both the

water actually exfiltrating from the subsurface and the water that cannot infiltrate. The

subsurface contribution is expressed as total flux of water per unit length of channel

link [L3/LT ]. Also lateral inflow qL has the same unit measure, since it is calculated as

described in Equation (4.2) [Orlandini and Rosso, 1996]:

qL = q
∆x∆y

∆s
(4.2)

where q [L/T ] is the local contribution to infiltration excess runoff, ∆x and ∆y are

DEM cell sizes in the direction of the horizontal cohordinates x and y and ∆s is the

channel length within the cell. Water depth on each cell, i.e., the ponding head h, is

determined starting from the incoming and outgoing discharges of that cell. Equation (4.3)

[Camporese et al., 2010] allows the routing of lateral inflows and inflow hydrographs onto

each individual channel:
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Qk+1
i+1 = C1Q

k+1
i + C2Q

k
i + C3Q

k
i+1 + C4q

k
si+1

(4.3)

where the term Qk+1
i+1 ([L3/T ]) is the discharge at network point (i + 1)∆s and time

(k + 1)∆t, qksi+1
is the subsurface contribution at the (i + 1)th space interval and time

k∆t. The coefficients C1, C2, C3 [-] and C4 [L] depend on the kinematic celerity ck, on

the temporal interval ∆t, on the channel length ∆s and on a weighting factor X.

4.3 Topographic depressions oversight

The artificial modification of the elevation of isolated depressed DEM cells is applied in

order to correct DEM errors and regularise the grid. It is a suitable approach also if the

basin is steep, where the main driving force of the water flow is slope. In quite flat areas, on

the contrary, this approach may lead to incorrect reproduction of storage and retardation

effects on the catchment response. In fact, the topographic depressions may represent

DEM errors but also pools and lakes. Then it is necessary to warily procede in modifying

cell elevation. In CATHY model the real nature of the depressions is individuated basing

both on DEM informations and on prior field observations. The correct extraction of

the drainage network may be compromised by these depressions. The matter is avoided

applying a “lake boundary-following“ procedure. The cells around the pit (“buffer cells“)

collect the water of all the cells which draw off water to the depression. The flow direction

in these cells is forced to address water to a single cell, representing the lake outlet. After

that the modified DEM is again corrected, excluding from the analysis the central cells

of the depression. The lake outlet cell, or reservoir cell, assumes all the geometrical and

physical characteristics of the depression. The buffer cells transfer with infinite celerity all

the water they drain to the outlet cell, expressing in this way the storage and retardation

effects of the depression. Solving the continuity equation of the reservoir gives the outflow

from the reservoir cell.

dV

dt
= I(t)−O(h∗) (4.4)

where V is the storage volume of the reservoir, I and O are the incoming and outgoing

discharges, respectively dependent on time t and water elevation h∗ above a reference level

in the reservoir. The calculated outflow is used in the surface routing as outgoing flux

from the cell. Reservoir water elevation is assigned to all the lake cells. The boundary

conditions of subsurface solver include also these values corresponding to the ponding

head.
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4.4 Subsurface module

The subsurface flow is modeled by the Richards equation:

Sw(ψ)Ss

∂ψ

∂t
+ φ

∂Sw

∂t
= div [KsKr(Sw(ψ)) (∇ψ + ηz)] + qss(hp) (4.5)

where Sw is water saturation [−], i.e., the ratio between the volumetric moisture content θ

and the saturated moisture content θs (equal to the porosity, φ), Ss is the aquifer specific

storage coefficient [L−1], ψ is pressure head [L], t is time [T ], ∇ is the gradient operator

[L−1], Ks is the saturated hydraulic conductivity tensor [L/T ], Kr(ψ) is the relative

hydraulic conductivity function [−], ηz = (0, 0, 1)′, z is the vertical coordinate directed

upward [L], and qss represents distributed source or sink terms (respectively positive

and negative) [L3/L3T ]. The nonlinear relations between ψ and the relative hydraulic

conductivity Kr and the water saturation Sw can be explicitly described by the curves of

Brooks and Corey [1964], Van Genuchten and Nielsen [1985] or Huyakorn et al. [1984].

The equation needs boundary conditions. In this case, at the surface-subsurface interface

they are derived from the numerical solution of the surface module (see 4.5). In the model,

heterogeneity is expressed by assigning different initial values of hydrological parameters

in different zones of the domain. The zones may include many cells or correspond even

to a single cell. In the latter case, there is full heterogeneity.

Galerkin discretization

A finite element Galerkin method is used to numerically solve the Richards equation (4.5)

[Camporese et al., 2010]. The spatial discretization of the domain is based on tetrahedral

elements, since the problem is three-dimensional [Paniconi and Putti, 1994]. The soil

parameter that characterize the nonlinear equation are estimated in element centroids.

Time discretization is fulfilled through a weighted finite difference scheme [Paniconi and

Putti, 1994]. Galerkin method is finite element procedure usable in continuum problems

[Huyakorn and Pinder, 1983]. In general, the finite element approach can be described

with five steps. In the first step, the physical system is discretized into finite elements.

A discrete number of nodal points assures the link among the elements. In the second

step, nodal variables of each element are connected via a matrix expression, the so-called

element matrix. In the third step, a description of the entire global system is built via

the assemblage and combination of the element matrices into algebraic equations. A

global matrix collects the coefficients of the final set of equations. The nodes shared by

different elements are characterised by the assignment of compatibility conditions which
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must be respected in the assembling phase. In the fourth step, the global matrix equation

is completed with the prescribed boundary conditions. In the fifth and last step, the

obtained system of algebraic equations is solved. Galerkin method describes a particular

way to compute the element matrix, i.e., step two. It belongs to the group of finite element

methods based on the weighted residuals (MWR) [Huyakorn and Pinder, 1983]. These

methods are applied on continuum problems governed by a differential equations like the

following:

L(u)− f = 0 (4.6)

where u is the unknown function, L the differential operator and f the known forcing

term. Equation (4.6) is defined in a domain Ω, which is a compact subset of R3. In

general, finite element methods approximate the solution throughout three steps.

1. In the first step the unknown function u is approximated with a trial function defined

as a linear combination of n basis functions

û =
n∑

i=1

vici (4.7)

where vi are linearly independent basis functions defined over the domain Ω, ci

the unknown coefficients to be determined, and n is the number of unknowns in

the discretized system. The substitution of the trial function û in Equation (4.6)

produces a residual ε:

ε = L(û)− f (4.8)

2. MWR methods try to minimize the residual ε. To achieve this minimum, a weighted

integral on the entire domain Ω is realised and then placed equal to zero. In the sec-

ond step a number n of weighting functions wi is selected. MWR methods compute

ci imposing the following condition:

∫

Ω

wiε dΩ =

∫

Ω

wi[L(û)− f ] dΩ = 0 for i = 1, 2, ..., n (4.9)

Once the weighting functions are specified, then Equations (4.7) and (4.9) can be

combined. The result is a set of equations in the n unknowns ci, i = 1, ..., n.

3. In the final step the set of equations is solved with respect to ci and then the

unknown function u can be approximated by means of Equation (4.7).
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In the Galerkin method the weighting functions and the basis functions are the same, i.e.,

wi = vi. Then, the weighted residual equations are:

∫

Ω

viε dΩ =

∫

Ω

vi[L(û)− f ] dΩ = 0 for i = 1, 2, ..., n (4.10)

First, in Galerkin finite element method the domain is subdivided in elements, e.g., tetra-

hedral, which cover all the domain without overlapping. The unknown function is ap-

proximated over each element T e by the following trial function:

û

∣∣∣∣
Te

=
ne∑

i=1

viui (4.11)

where ne represents the number of nodes on the element Te,vi are the interpolating func-

tions defined on the element Te (which means that, for each node on Te there is a basis

function that is equal to one over that node, and zero over the other nodes), and the

coefficients ui become the unknown values of the function u over the nodes. The integral

in Equation (4.10) is equal to the sum of the integrals realised over each element, and

thus it can be easily computed. The local integrals Qe
i governing the behaviour of each

element can be written as:

Qe
i =

∫

Te

vi[L(û)− f ] dTe, i = 1, 2, ..., n (4.12)

Then, the global matrix equation is obtained assembling the local contributions Qe
i .

In CATHY model, the Galerkin method is applied to Richards equation 4.5. The final

system of equations is the following:

f(Ψk+1) = A(Ψk+1)Ψk+1 + F (Ψk+1)
Ψk+1 −Ψk

∆tk+1
+ b(Ψk+1)− q(tk+1) = 0 (4.13)

where Ψ is the vector of nodal pressure heads, superscript k denotes the time step, A is

the stiffness matrix, F is the storage or mass matrix, b contains the gravitational gradi-

ent component of Richards equation, and q contains the specified Darcy flux boundary

conditions and forcing terms. Note that the temporal integration in (4.13) is achieved

with the implicit Euler scheme with a variable time step ∆tk+1 = tk+1− tk. The nonlinear

equation (4.13) is then solved via Newton or Picard methods [Paniconi and Putti, 1994].
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Newton and Picard nonlinear solvers

Newton scheme is an iterative method to compute the solution of a nonlinear equation. A

sequence Ψk+1,(1),Ψk+1,(2), . . . ,Ψk+1,(m) is construct until the satisfaction of a convergence

criteria for the solution of Equation 4.13. Newton scheme can be written as follows:

f ′(Ψk+1,(m))h = −f(Ψk+1,(m)) (4.14)

where h = Ψk+1,(m+1)−Ψk+1,(m), superscript (m) is an iteration index and f ′(Ψk+1) is the

Jacobian matrix. The ij − th component of the Jacobian matrix is written as:

f ′

ij = λAij +
1

∆tk+1
Fij +

∑

s

∂Ais

∂ψk+1
j

ψk+λ
s +

1

∆tk+1

∑

s

∂Fis

∂ψk+1
j

(ψk+1
s − ψk

s ) +
∂bi

∂ψk+1
j

(4.15)

The initial guess for the new iteration is typically set to Ψk+1,(0) = Ψk.

Picard scheme can be seen as an approximation of the Newton scheme. In fact, it is:

[
λA(Ψk+1,(m)) +

1

∆tk+1
F (Ψk+λ,(m))

]
h = −f(Ψk+1,(m)) (4.16)

where the meanings of the terms are the same of the ones in Newton scheme. Picard

scheme converges only linearly, while Newton scheme converges quadratically. The pres-

ence of the three derivative terms in Newton scheme makes it computationally expensive.

The initial estimate of the solution affects sensitively the convergence of both schemes. In

CATHY model the time evolution of the simulation is controlled by the subsurface solver.

In fact, the length of its time steps is not fixed, but it may be adjusted [Camporese et al.,

2010]. The length of the time steps is changed throughout the simulation, depending

on the convergence behaviour of the nonlinear scheme [Paniconi and Putti, 1994]. A

tolerance and a maximum number of iterations allowed for each time step are defined.

Simulation ends at time Tmax, that corresponds to the final time of the experiment. The

initial time step is ∆t0, with a maximum number of iteration equal to iter0max. For the

following iteration, ∆t0 is increased of a fixed quantity if the system converged in less than

the allowed iterations. It remains equal if the convergence needed a number of iterations

included between iter1max and iter2max. If the convergence is reached in more than the al-

lowed iterations, ∆t0 is reduced of a fixed quantity. Finally, if convergence is not achieved

then back-stepping occurs, i.e., the solution for the actual time level is recomputed with

a time step lower than the previous one. In the first iteration a first solution estimate is

necessary for the beginning of the iteration procedure, and it corresponds to the initial
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conditions.

4.5 Surface-subsurface coupling

The coupling between surface and subsurface equations is forced by ensuring the mass

balance at the surface/subsurface interface. The water exchange between surface and sub-

surface flow regimes is represented by qss (from surface to subsurface) in the subsurface

flow equation (4.5) and by qs (from subsurface to surface) in the surface flow equation (4.1).

Every time step starts with the solution of the surface flow equation allowing the model

to compute the surface-to-subsurface contribution. This is given as an input to the sub-

surface flow equation at the subsequent time. In turn, the solution of the subsurface flow

equation gives the value of subsurface-to-surface contribution, which will be an input for

surface flow equation. Surface-to-subsurface flux may be also equivalently expressed as

ponding head. Time step size, surface area attributions to cells and nodes allow to easily

pass from a volumetric flux [L3/T ] to a specific flux [L/T ] and to ponding head [L]. The

coupling process is predominantly governed by the subsurface element. This is due to the

fact that the subsurface equation handles atmospheric forcing, which is fundamental in

surface-subsurface partitioning. The boundary conditions assigned to the surface nodes

are different depending on the saturation of the considered node. The condition may be

a Neumann or a Dirichlet condition. The former implies the assignment of a specified

flux to the node, the latter the assignment of a specified head. When precipitation and

evaporation rates are governed by atmospheric conditions, these fluxes correspond to the

Neumann condition assigned to the surface nodes. The situation changes in prolonged

periods of rainfall or droughts, when the threshold values respectively of saturation or soil

moisture deficit are reached. Infiltration and exfiltration processes are no more governed

by the atmospheric status, but they are driven by soil conditions. Boundary conditions

are switched from a Neumann sort to a Dirichlet (specified head) one. CATHY considers

also the distinction between saturation and ponding status. In order to make this differen-

tiation possible, each surface node is marked with a parameter representing the threshold

pressure head value beyond which the water is routed by the surface flow model. During

rainfall events, a fixed head boundary condition is assigned to the unsaturated surface

nodes which became saturated or ponded during the event. The next time step of the

subsurface flow equation will give the return flow rate. When the computed flux exceeds

the input potential rate, the Dirichlet condition is switched to a Neumann one. There is

no switching if the flux is negative (i.e., if the flux is going backward from the subsurface

to the surface). In dry periods, when evaporation takes place, the assigned condition
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changes from the Neumann type to the Dirichlet type when soil moisture drops below

the moisture deficit threshold, correspondent to a specific pressure head value ψmin. The

condition returns a Neumann BC when a rainfall event starts or, even if the dry period

endures, when the absolute value of the computed flux becomes larger than the absolute

value of the input potential rate. The available informations are then:

• the updated pressure head of surface nodes;

• whether the atmospheric forcing is positive or negative, i.e., either if it is raining or

evaporating;

• in presence of Dirichlet condition, the absolute value of the computed flux respecting

the potential flux and whether the former represents infiltration or exfiltration.

These acquired facts lead to the definition of the term qs, given as an input to the surface

flow routing module for the next step. The potential fluxes are separated into infiltra-

tion, exfiltration as evaporation and exfiltration as return flux by means of the boundary

condition switching procedure.

Time stepping

The time evolution of the simulation is governed by the subsurface solver by means of

adaptation and back stepping (see 4.4). The chosen time step in subsurface solver, ∆tss,

is usually larger than the optimal time step for the surface solver, ∆ts. The consequence is

that for each subsurface time step a major number ns of surface time steps is fulfilled (ns

= int (∆tss/∆ts)). The value of ns changes at each new outer time level, and it depends

on the surface flow discharges of the previous time level. The surface and subsurface time

steps are then nested one into the other. The constraints imposed to the subsurface solver

are intended to avoid an excessive number of surface solver time steps per subsurface solver

time step.

Being Muskingum-Cunge method explicit in time, it is then possible to solve equa-

tions (4.5) and (4.1) with a non-iterative sequential algorithm, starting at tk = 0 and

ending at tk = Tmax:

1. ns is determined starting from ∆tss and ∆ts and the equation (4.1) is solved ns

times, where qks is used as input and the outputs are Qk+1 and consequently the

distribution of ponding heads hk+1;

2. boundary conditions for the subsurface solver are set basing on the values hk+1 along

with the atmospheric input at time tk+1, allowing the solution of equation (4.5) for

pressure heads ψk+1;
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Figure 4.1: Surface grid subdivision and coarsening for the subsurface solver

3. the inflow term of overland flux qk+1
s is calculated via the subsurface solver using

ψk+1 and the balance between atmospheric inputs and actual fluxes.

Flow discharges are set as initial condition to the surface equation (4.1) in order to initialise

the algorithm. When the needed values are not known, the subsurface solver is run. The

output gives an initial guess for the overland flow based on the actual atmospheric input

and on the initial distribution of the pressure heads ψ (initially uniformly distributed,

hydrostatically distributed along vertical direction or deduced from a steady state water

balance simulation).

Surface and subsurface mesh definition

Surface and subsurface modules differ in some not negligible aspects. The former has a one

dimensional nature, a cell-based spatial discretization and it ignores the pit cells. The lat-

ter, on the other hand, has a three dimensional nature, a node-based spatial discretization,

and is forced to consider also the topographic depression cells. Surface and subsurface

grids differ for cell numbering, since the latter takes into consideration the pit cells, while

the former not. The surface grid is the basis of the tetrahedral three-dimensional mesh. In

fact, each cell is subdivided in two triangles, which are then replicated along the vertical

direction. The subsurface grid may be coarsened with respect to the surface one, since the

subsurface processes are typically slower and computationally more expensive than the

surface one. Instead of two triangles per cell, it may consists of two triangles per group

of four cells, or per group of nine cells, and so on. Figure 4.1 shows this escamotage. It

is finalised to the reduction of computational effort in the subsurface solver, keeping the

grid resolution, then the accuracy, of the surface solver. The exchange of informations

between cells and nodes needs special attention, due to the differences between surface

and subsurface modules described above. A linear interpolation process is necessary since

the subsurface grid nodes are at the corners of the cells. Ponding head values in output

of the surface solver are transmitted to the node after a linear interpolation. In turn,

overland flow contributions, computed by the subsurface solver, are transferred to the
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surface cells after a linear interpolation. In defining the boundary conditions, the value

assigned to the surface nodes of the subsurface grid corresponds to the computed water

depth averaged on the cell area.



Chapter 5

Data assimilation methods

The application of hydrological models to real scenarios may result in large discrepancies

between the simulated and the observed processes, which are mainly due to uncertainties

on the input data and model parameters, or to model structural errors. Thus, there is the

need of correcting the model output with the observations. The idea of data assimilation

(DA) methods is to update the model state variables at the observation times in order

to obtain a better forecast of the model. The hydrologic model CATHY is integrated

with two DA techniques: ensemble Kalman filter (EnKF) and sequential importance

resampling (SIR) particle filter. These two methods have been used in this thesis work.

In this Chapter we present the mathematical framework of DA methods, with particular

attention to EnKF and SIR, and their use for parameter estimation.

5.1 Data assimilation

Hydrologic measurements are often local both in time and space, and are hardly mea-

surable in a direct way. As a consequence, available data are usually scarce, and this

condition affects hydrologic studies. The advent of remote sensing data and automated

ground-based sensors are improving the data availability. However, the traditional manual

approaches and computer-based estimation procedures may be not able to manage the

large volume of data yielded by the new measuring technologies. DA techniques have been

developed to supply the lack of suitable instruments, with the idea that, in addition to the

advanced measuring instruments, also mathematical models describing the environmental

systems are a source of information for the DA process [McLaughlin, 2002].

33
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5.1.1 Data assimilation - mathematical formulation

Characterising the state of the environmental system is the principal aim of DA. In hy-

drologic applications, the relevant variables usually vary both in time and space. These

variables may represent a forcing on the system (input variables), describe the system

behaviour (state variables), or be observable variables depending on the state of the sys-

tem (output variables). In dynamic applications, being the system spatially discretized

by means of a numerical scheme, a set of state equations describe the temporal evolution

of the system state [McLaughlin, 2002]. These equations may be written as follows:

x(t) = A (x(τ), α, u(t), t, τ) , t > τ ≥ 0 (5.1)

x(t0) = A0(α) (5.2)

where the vector x(t) collects the discretized system state variables defined at time t, the

vector α collects the time-invariant inputs (model parameters), the vector u(t) collects

the time-dependent inputs, and x(t0) is the initial state of the system. The state at time

τ is related to the state at time t by means of a nonlinear operator A. The system state

variables, which are represented by the vector x(t), are not necessarily measurable in a

direct way. It is useful to define a vector y(t) of measurable output variables, depending

on the system states:

y(t) = H(x(t), t) (5.3)

where H represents the nonlinear relation between observations and system state. The

knowledge of the variables of the state equation is never perfect, and the variation scale

is often smaller than the grid resolution. A convenient approach is to consider the state

variables as random variables characterized by the joint probability density functions

(pdf) p(u(t1), ..., u(tnx), α) and p(x(t)), where tnx is the last time step, tnx = tmax. In

theory, if the former is specified, the latter can be derived through the state equation 5.1.

In most cases, the high dimensionality of the spatially discretized state vector and the

nonlinearity of the state equation make the derivation unfeasible. Instead of considering

the full probability density function p(x(t)), DA procedures focus on the mean, mode and

variance which characterize it. The mean represents an estimate of the state variable,

while the variance measures the uncertainties [McLaughlin, 2002]. Hydrological models

compute a forecast of the behaviour of the system, starting from given initial and boundary

conditions. Input, output and state variables are affected by significant uncertainties,

which may be limited by DA processes. This aim is reached through the incorporation of

measurements of the output variables represented by the vector y(t). The measurements
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are not perfect, due to sensor errors, extraneous noises, and differences in temporal and/or

spatial scales between measurements and output variables. These uncertainties are taken

into account in the definition of the output measurement vector y(t) which is slightly

different from 5.3:

y(t) = H(x(t), ω(t), t) (5.4)

where ω(t) is a random variable accounting for the measurement errors (described by the

prior pdf p(ω(t))), and the other elements have the meaning described above. Now the

available informations are the following:

• state and measurement equations (Equations 5.1 and 5.4);

• probability density functions of system inputs and measurements errors;

• the vector y1:nz = (y(t′1), ..., y(t
′

nz
)), collecting the measurements at nz output times

which are a subset of the discrete times t0, t1, ..., tnx.

The conditional probability density p(x(t)|y1:nz) is the objective of DA. When the full pdf

is not obtainable, then its mean and covariance are investigated [McLaughlin, 2002]. DA in

hydrologic systems is highly challenging since the spatial and temporal variability of many

hydrological processes and state variables as soil moisture, rainfall, evapotranspiration and

hydraulic conductivity are unknown.

Filtering problem

A variation of the DA problem consists in the filtering problem. In this case, the aim is to

characterize the pdf of the system state x(t) at a given measurement time, t = t′j, given

the set of measurements collected in the interval (t0, t
′

j) [Jazwinski, 1970]. For this reason

we will use the notation xj = x(t′j) and yj = y(t′j). This kind of issue is solved with a

sequential approach [McLaughlin, 2002]. Given the knowledge of the pdf at the previous

observation time t′j−1, p(xj−1|y1:j−1), and the new measurement vector at time t′j, yj, the

filtering pdf of the system state p(xt|y1:j) is evaluated in two steps:

• the propagation step that propagates the state pdf until the new assimilation time

tj, computing the forecast pdf p(xj|y1:j−1).

• the update step that combines the new measurement yj with the forecast pdf.

The starting point for the recursion of these two steps is the definition of the initial pdf,

p(x0) at time t0, which may be derived from the input pdf of the parameters p(α). Then,

this pdf is propagated to the first measurement time t′1. The forecast pdf p(x1) is then
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updated with the measurement y1 using the update step. The result is the conditional

density p(x1)|y1:1), being y1:1 = (y(t′1)). The procedure is repeated until the final assimi-

lation time t′nz. At the end, the pdf will be conditioned to the whole set of measurements

available in the interval (t0, t
′

nz).

The analytical solution for the filtering problem exists for linear models and is the

well known Kalman filter (KF). In linear models the forecast and update pdfs are Gaus-

sian, and thus they can be simply described by their first and second order moments

[Arulampalam et al., 2002]. The KF method recursively computes the exact mean and

variance of these distributions. For nonlinear problems, however, it is necessary to use

nonlinear filters. Nonlinear dynamics, in fact, cannot be fully described by the mean and

the covariance, they need further moments. Two nonlinear assimilation methods are en-

semble Kalman filter (EnKF) or the sequential importance resampling (SIR) filter. These

methods are described hereinafter.

5.1.2 Ensemble Kalman filter

The EnKF is an assimilation algorithm based on the Monte Carlo (MC) method. An

ensemble of model predictions is used to evaluate error covariance information. The

ensemble is then updated with the observations through the KF. Each state realisation in

the ensemble is propagated in time through the model dynamics (5.1) [Das and Mohanty,

2006]. Then, the update step is essentially based on KF but with a different calculation

of the error covariance matrix. KF computes and propagates in time the error covariance

matrix, which implies a high computational effort, especially in case of large nonlinear

problems. In EnKF, on the contrary, the error covariance matrix is calculated on the basis

of the ensemble of realisations [Chen and Zhang, 2006]. The EnKF method, similarly to

KF is defined by three principal components:

• the state vector x(t), which collects model parameters and dependent variables;

• the forecast model, such as Equation (5.1);

• the observation model that links the available observations with the state vector.

Each member of the ensemble has a state vector xkj , where k is the realisation index,

k = 1, . . . , N . The forecast model is performed on each ensemble member using Equation

5.1:

xk,fj = A
(
xk,aj , ρj, α

k, t′j , t
′

j−1

)
(5.5)

where the postscript k indicates the ensemble member, αk is the vector of parameters

associated to the k− th realisation, the superscript f and a indicate the realization state
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value after the forecast and the assimilation respectively, j indicates the assimilation time

t′j, A is the nonlinear operator, the vector xkj collects the discretized system state variables

defined at time t′j and ρ represents a realization of the model error.

An observation vector yk for each ensemble member is computed at each assimilation

time tj:

ykj = H(xk,fj , ωj) (5.6)

where ykj represents the observation data simulated with realisation k and ωj is a random

realisation of the measurement error. In standard EnKF framework, Equation (5.6) is

linear (H is a matrix, H) with an additive noise ω modeled as Gaussian with 0 mean and

variance Rj: y
k
j = Hxk,fj + wj. The assimilation procedure starts when the first set of

observation data is available. The Kalman gain, which is necessary for the update step,

is calculated by means of the following equations:

〈
xfj

〉
≈

1

N

N∑

k=1

xk,fj (5.7)

P f
j ≈

1

N − 1

N∑

k=1

(xk,fj −
〈
xfj

〉
)(xk,fj −

〈
xfj

〉
(5.8)

Kj = P f
j H

T (HP f (t′j)H
T +Rj)

−1 (5.9)

where
〈
xfj

〉
is the mean state vector, P f

j is the state covariance matrix, N is the dimension

of the ensemble, Kj is the Kalman gain, the superscript T indicates transpose, H is the

linear observation operator of Equation 5.6, Rj is the covariance matrix of the observation

error. The ensemble is updated using the formulas of the Kalman gain, i.e.:

xk,aj = xk,fj +Kj(y
k
j −Hxk,fj ) (5.10)

where xk,aj is the updated ensemble member. The EnKF method is widely used since it is

conceptually simple and easy to be implemented [Evensen, 2003]. In addition, even if the

forecast realisations are far from the measurements, EnKF method leads each ensemble

realisation toward the observations [Pasetto et al., 2012]. A principal assumption in EnKF

is that model errors are Gaussian distributed [Clark et al., 2008]. The Gaussian pdf is

fully characterised by the first and second order moments. The method uses the Kalman

gain even if the Gaussian nature of forecast and measurement errors pdfs is not assessed.

However, in nonlinear systems the Gaussian approximation may introduce errors in the

update step and higher order DA methods would be necessary to properly manage the

assimilation. In fact, the simply update using only the second order moment may lead to
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divergence and instability in nonlinear systems [Moradkhani and Hsu, 2005]. In addition,

the physical consistency of the updated ensemble is not verified with EnKF, with the

meaning that the updated state variables of the model may be not consistent with the

dynamics of the model. The consequences are numerical difficulties and inaccuracies in

the computation of the system solution in the time step following the update [Pasetto

et al., 2012].

In CATHY model, EnKF algorithm is implemented through the following three equa-

tions [Camporese et al., 2009].

Model equation

x(t) = A(x(τ), α, u(t), t, τ) for t > τ ≥ 0 (5.11)

x(0) = x0(α) (5.12)

where the vectors x(t) collect the hydrologic unknowns of the problem, in this

case the pressure head at each node of the subsurface grid and inflow and out-

flow discharge at each cell of the surface discretization. The vector α collects the

time-invariant set of soil parameters. The vector u(t) collects the time-dependent

atmospheric forcing variables. The initial state of the system is x0(α). The state

at time τ is related to the state at time t by means of the nonlinear operator A.

The latter operator is linked to the numerical solution of the Richards equation, as

described in Equation (4.13).

Measurement equation

yj = Hj(xj, ωj, t
′

j) for j = 1, ..., nz (5.13)

where the vector yj collects the measurements of volumetric water content, H is the

nonlinear operator between observations and system states, ωi is a random term

taking into account the measurement errors.

Update equation

xk,aj = xk,fj +Kj

(
yj −H(xk,fj , ωk

j , t
′

j)
)

(5.14)

where the vectors xk,aj collects the update system variables, the superscript k indi-

cates realisation of the ensemble, the term Kj represents the Kalman gain, depen-

dent on the system state and the measurement error covariance matrices [Camporese

et al., 2009].
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The nominal mean values of soil parameters, initial conditions and atmospheric forcing are

perturbed in order to obtain the ensemble components. The ensemble of measurements

is realised in an analogous way, to simulate measurement errors.

5.1.3 Sequential importance resampling

SIR is a DA technique belonging to the family of particle filters. Particle filter implement

recursive Bayesian filter by MC simulations. In this approach, the required posterior

density function is represented by a set of random samples with associated weights. The

samples and the respective weights are the basis for the computation of the estimated

ensemble [Arulampalam et al., 2002]. Particle filters can be applied also to non-linear and

non-Gaussian state-space models. Each particle represents a set of spatially distributed

state variables with an associated weight that somehow describes the probability of that

particular state. The spatial distribution of the realisation is not changed during the

update step. In fact, the update is realised on the particle weights, rather than on state

variables directly [Salamon and Feyen, 2009]. Basically, the filtering pdf is approximated

by a set of random samples xkj associated to a set of weights πk
j . The importance sam-

pling technique is the origin of the weighted representation of the filtering pdf, which is

approximated as follows:

p(xj|y1:j) ≈
N∑

k=1

πk
j δ(xj − xkj ) (5.15)

where δ is the Dirac delta function. In SIR procedure, at the beginning of the simulation,

uniform weights are assigned to each independent realisation of the initial pdf. Being

the pdf p(x0), and being N the number of independent realisations of p(x0), the initial

weights are πk
0 = 1

N
. In the forecast step, each realisation is propagated in time using the

model dynamic equations (5.1.2) without changing the weights. For the update step, new

weights are recursively computed with the following equation:

π̃k
j = πk

j−1 p(yj|xj) (5.16)

πk
j =

π̃k
j

ΣN
i=1π̃

k
j

(5.17)

where p(yj|xj) is the likelihood function of the observations, which can be obtained from

the pdf of the measurement error and Equation (5.13). The deterioration of the ensemble

is a possible problem, due to the degeneration of the weights to negligible values after

few steps. In this case, the state estimation may be inaccurate and the propagation of

particles with negligible importance is a waste of computational effort. This problem
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frequently happen when the space dimension is big with respect to the sample size, or

when the variance of the pdf of the observations is small [Arulampalam et al., 2002]. The

number of realisations effectively contributing to the determination of the empirical pdf

is estimated by the mean effective sample size Ñeff (≤ N):

Ñeff =
1

ΣN
j=1(π

k
t′
j

)2
(5.18)

Typically, deterioration occurs for small Ñeff . In order to avoid this chance, a resampling

step is added after the update step. This step consists of removing the particles with small

weights and focus on particles with more relevant weights. A new set of samples (xk∗j )Nk=1

is generated by resampling the filtering pdf (5.15). The new samples are typically copies

of the realisations with larger weights, and thus are closer to the measurements. The

resampling avoid the degeneracy of the ensemble, but on the other hand it may induce

a loss in the diversity among the particles. The ones with higher weights, in fact, are

statistically selected many times. The resultant sample will have many repeated points.

This problem is enhanced if the noise of the model is small.

5.1.4 Parameter estimation

The described DA techniques are used to correct the pdf of the system state with the

available data, in order to reduce the uncertainties on the state estimation during the

forecast step. DA methods are used also to approach inverse problems, where also the

pdf of the model parameters has to be determined. The traditional inverse problem

aims to the determination of the optimal parameter set which minimizes the error with

the observations [Yeh, 1986]. Here, using a probabilistic approach, we are interested in

approximating the pdf of the parameters.

In EnKF the parameter estimation is performed in the update step, by correcting

simultaneously both model state variables and parameters. The used approach is called

state augmentation, in which state and parameter vectors are combined in a unique state

vector [Moradkhani et al., 2005]. The parameters then are updated at each assimilation

step together with the state variables.

In SIR, the resampling step is used to obtain a new distribution of the parameter

values. In the resampling step is not advantageous to simply copy the most probable

parameters, otherwise, after the resample, most of the parameter values {α̂
(i)
t }, i = 1, ..., N

are equal. In this case, the number of different parameter values is equal to the number

of realisations with non-negligible weights. If the consecutive update is realised with
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these values, the ensemble collapses on one parameter value after few updates, since the

parameters do not change in the forecast step. Thus, the posterior distribution is not

adequately explored and parameter estimations may be erroneous. The perturbation of

the duplicated parameters may solve this problem. Pasetto et al. [2014] propose to sample

new parameter values for the duplicated realisations in the resample step. The analytical

form of the parameter distribution is maintained during the update step, while its expected

value and variance are corrected according to the updated realisations weights. Being the

initial distribution lognormal, it is fully described by the first and second order moments.

Prior and resampled parameters, respectively {α
(k−)
j } and {α̂

(k)
j }, are the basis for the

update of the expected mean value µαj
and coefficient of variation cvαj

at each assimilation

step. The mean of the updated distribution is imposed to be equal to the weighted mean

of the parameters, while the coefficient of variation is imposed to be equal to the maximum

coefficient of variation between forecasted and updated parameters:

µαj
= E

(
α̂
(k)
j

)
(5.19)

cvαj
= s ·max

(
cv(−)

αj
, cvα̂j

)
(5.20)

where, in the second equation, s is a coefficient which reduces gradually the variance of

the distribution. The use of the maximum value for the coefficient of variation prevents

the fast collapse of the filter when few realisations are resampled.

The convergence of posterior parameters pdf, in this way, occurs after several updates.

When the repetition of the assimilation interval does not give any improvement of the

ensemble, then the process is stopped.

The parameters distribution computed with this procedure may change at every as-

similation time during the simulation. However, the model parameter α are typically

time independent, and should not change in time. For this reason it is useful to repeat

the assimilation procedure until that the parameter distribution converges. Thus Pasetto

et al. [2014] introduces an external loop that repeats the DA simulation. At each new

external iteration, i.e., the repetition of the filtering process, the mean and variance of

the parameter prior distribution is updated by the average values of the updated mean

and variance of the parameters computed in the previous filtering process:

µl+1
α0

=
1

nz

nz∑

j=1

µl
αj

(5.21)

cvl+1
λ0

=
1

nz

nz∑

j=1

cvlαj
(5.22)
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where nz is the number of updates in each sampling DA cycle and l is the index of the

external iterations. In practice the prior distribution at the (l + 1)th filtering process is

the mean posterior distribution at the lth filtering process. This procedure reduces the

effect of the initial bias on the parameter estimation.

5.2 Data assimilation on LEO experiment - features

In the DA process fulfilled in this thesis work, the hillslope is represented as a three-

dimensional domain 1 m deep with a DEM as that reported in Figure 3.2. The two side

boundaries, the bottom of the hillslope and the upslope boundary are impermeable, while

the downslope boundary is modeled as a seepage face boundary condition. Given an initial

spatial distribution of soil water content θ, rainfall and evaporation boundary conditions

are assigned at the surface as the one estimated during the experiment. The soil water

content responds according to this forcing term and to the soil hydraulic properties. The

DA procedure is aimed to infer the spatial distribution of soil hydraulic conductivity of

the LEO hillslope. The estimated Ksat is then used in order to simulate the behaviour of

the hillslope. Both EnKF and SIR algorithms are applied. The problem of the physical

consistency of the EnKF updated states becomes critical in the simulation of LEO dynam-

ics, in particular if the considered domain is not completely saturated. In this situation,

in fact, there are strong nonlinearities which contrast with the Gaussian approximation.

In CATHY model, the back-stepping is forced, in the time steps immediately after an

EnKF update, in order to ease the convergence [Pasetto et al., 2012].

In this thesis work, we propose to overcome this problem by considering a different

temporal path for the assimilation updates. According to this new path, the simulations

restart from the initial time after every update step, i.e., the updated parameter pdf is

used as prior distribution and the process is restarted from time t = 0. The new update

step occurs at the following assimilation time. Again the simulation is stopped at the

update time, the updated parameter pdf is considered as prior pdf at time t = 0 and

the update time is adjourned to the following assimilation time. Figure 5.1 shows the

iterative path. This procedure is followed until the end of the simulation.
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Figure 5.1: Temporal path of the assimilation process
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Chapter 6

Estimation of the hydraulic

conductivity field from distributed

soil water content observations at

LEO

The first experiment at LEO-biosphere (see Chapter 3) is the focus of this thesis work.

The gap between the actual hydrologic response of the hillslope and the results of the

initial numerical simulations shows that the assumption of homogeneity is not verified.

The most accredited hypothesis is that the water flow may have changed the internal

particle distribution, inducing a variation in the value of saturated hydraulic conductivity

in different zones of the hillslope. Here, a data assimilation process is employed to recon-

struct the value of Ksat from the observations of soil water content obtained at the 496

sensors and to try to find the spatial distribution that can reproduce, through the model,

the actual hydrologic response of the hillslope.

6.1 Problem setting

The LEO-1 hillslope is the domain of interest. As told in 3 it is a sloping hillslope 11.25 m

wide and 29.6 m long. Soil thickness is equal to 1 m. The average declination is equal to

10◦. The transverse section of the hillslope converges toward the center with an average

angle of 7◦, forming a v-shaped profile. Many samplers and sensors have been installed in

the hillslope. In particular, there are 496 sensors for volumetric water content. The data

collected by these sensors are used in this DA process. The sensors are placed at depths

equal to 0.05, 0.2, 0.35, 0.5, 0.85 and 1 m (see Figure 3.2).

45
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(a) Horizontal grid.

(b) Vertical Section of the mesh.

Figure 6.1: Non-uniform grid representation
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Table 6.1: Depth of nodes along z direction

# node 1 2 3 4 5 6 7 8 9 10 11

depth [m] 0 0.05 0.1 0.2 0.25 0.35 0.4 0.5 0.65 0.85 1

The hillslope is discretized by means of a three-dimensional grid. This grid is obtained

by replicating a surface triangulation along the vertical direction in order to define the

tetrahedral elements needed for the solution of the Richards equation (see Subsection 4.4).

The surface grid, shown in Figure 6.1, has uniform node spacing of 0.5 and 1 m in the

x and y direction, respectively. This choice derives from the intent to have a node in

correspondence of each sensor, allowing a direct comparison between the measurements

of a sensor and the values computed by the model without any interpolation. Its vertical

replications form 10 computational layers, spaced as shown in Table 6.1.

Since the considered problem is nonlinear, in order to achieve the convergence of the

DA algorithm for the identification problem an iterative scheme is used, as described

in Section 5.2. The first assimilation update is fixed 6 h after the beginning of the

measurements, i.e. 4 h after the beginning of the rainfall. The assimilation process ends

36 h after the starting of data collection, with update every 2 h. Since the variance of the

ensemble reduces as the simulation proceeds, in order to avoid a too fast reduction a slight

increase of variance is assigned at the beginning of each external DA iteration. Time step

size in CATHY is adapted to the convergence behaviour of the nonlinear solver, which can

vary with each realisation(see Subsection 4.4). A minimum and maximum value for time

step length is fixed. If the convergence is not reached even with the smallest time step

size, the correspondent realisation is discarded. A check in the model makes the entire

simulation stop when the number of active realisations fall below a fixed threshold.

Since the DA algorithm is essentially an iterative procedure, we need an initial guess

for the parameters to be identified. For this, we start from the M4 scenario of Niu

et al. [2014] (see 3.3). We consider as constant the soil porosity θsat, the Van Genuchten

fitting parameter n and the elastic storage coefficient Ss, and try to identify the spatial

distribution of saturated hydraulic conductivity Ksat.

During the assimilation, Ksat is allowed to vary between 7.0e-06 and 7.0e-04 m/s.

Table 6.2 lists all the assimilation characteristics.

The hillslope may be considered as partially or fully heterogeneous, according on

whether hydraulic conductivity value is assigned by zone (a group of neighbouring cells)

or varies at each point of the domain. In the first case, the spatial distribution of Ksat is

defined by ‘zones‘ (subsets of connected tetrahedra) of constant Ksat. In the second case
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Table 6.2: General assimilation features

Feature Value

Kmean [m/s] 1.0e-04
Kmin [m/s] 7.0e-06
Kmax [m/s] 7.0e-04
θsat [m

3/m3] 0.37
n [-] 2.26
Number of realisations 50
Number of updates 16
Time of first update [h] 6
Step length [h] 2
Time of last update [h] 36
Time step for non linear solver [s] 0.1
Minimum time step for nonlinear solver [s] 0.05
Maximum time step for nonlinear solver [s] 900

Ksat is considered a second order stationary random field with given mean, variance and

correlation structure [Dagan, 1989].

At the end of the assimilation process, the final ensemble is given in input to the model

CATHY, which simulates the experiment given the identified parameters and the time-

dependent atmospheric boundary conditions described in Section 3.2. CATHY model is

run also with the initial set of parameters. The resulting values of overland flow, seepage

face flow and water storage are compared against the observed values. In both cases, the

error on volumetric water content is calculated. The error takes into account the measured

and the assimilated values of volumetric water content in the nodes corresponding to the

sensors. The error is calculated by means of Equation 6.1:

ei(tj) =

√∑NOBS

l=1

(
θobsl (tj)− θassl (tj)

)2

NOBS

i = 1, ..., NENS

j = 1, ..., nz
(6.1)

where ei(tj) is the error referred to the i− th realisation at the j− th time of assimilation,

NOBS is the number of available measures, θobsl is the volumetric water content value

measured at the l − th sensor (node) and θassl is the value obtained from the assimilated

ensemble correspondent to the same sensor node. NENS is the number of final realiza-

tions of the ensemble and Tmax is the time of last update of the assimilation process. The

error is then calculated on every realization belonging to the ensemble. The mean error

of the ensemble is calculated and is plotted together with the minimum and maximum

error values.
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Figure 6.2: Layers in vertical direction

6.2 Partially heterogeneous hillslope

In this case, the spatial distribution of Ksat is defined by zones of constant Ksat. Initially,

the hillslope has been subdivided in 5 layers. The layering has been designed in such a

way to have a sensor in the vertical midsection of each layer. In a second time, a further

subdivision has been implemented in order to account for the seepage face, i.e., the section

where, most probably, the fine particles accumulated during the first LEO experiment.

As referred in Section 6.1, the hydrologic response in terms of overland flow, seepage face

flow and water storage and the error on volumetric water content are plotted for each

attempt. In addition, the evolution of the ensemble throughout the assimilation time

steps is plotted for each zone, individually.

6.2.1 Configuration with 5 zones

Figure 6.3 and Figure 6.2 show the horizontal and vertical dissection of the 5 zone config-

uration. The zones correspoond to the layers in Figure 6.2 and are labeled with capital

letters. The chosen assimilation method for this configuration is SIR (see 5.1.3 in Chap-

ter 5). The evolution of the ensemble in time is plotted Figure 6.4. The vertical axis is

logarithmic, and each plot represents a zone of the 5 in which the hillslope is subdivided.

In layers A and B, the final value is about 1.0e− 05m/s. In the remaining layers the final

value is higher than 1.0e− 04m/s.

The assimilated ensemble has been given in input to the model CATHY,producing
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Figure 6.3: Horizontal zonation in the case with 5 zones
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Figure 6.4: Parameter estimation for the five zones configuration - SIR algorithm
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Figure 6.6: Horizontal zonation in the case with 10 zones

forecast results for each realisation of the ensemble. These results are plotted in the

same figure to form a band of lines representing the response distribution. In Figure 6.5

the hydrologic response is compared against the measured value, in the right columns of

plots. A plot is dedicated to the mean, maximum and minimum error values. The same

quantities have been computed for the prior distribution of parameters. These results are

plotted in the left column of plots. The overland flow is underestimated with respect to

the measured one. It is necessary to remember, however, that the measures of overland

flow are affected by large uncertainty. Seepage flow is initially overestimated, while the

error is slightly reduced at the end of the assimilation process.

6.2.2 Configuration with 10 zones

In this configuration, a 2 m wide section has been defined in the lower part of the hillslope,

as shown in Figure 6.6. The vertical sections are labeled with numbers. The layers are

the same of the 5 zone configuration. In this case, both SIR and EnKF methods (see

subsections 5.1.2) are used for the assimilation, and the results are compared.

In Figure 6.7 the time evolution of the ensemble in time is plotted in semilogarithmic

scale both for EnkF algorithm (top figure) and for the SIR algorithm (bottom figure).

Each box of figures represents a different material zone. The left column includes the

zones of Section 1 (turquoise area in Figure 6.6) while the right column includes the zones

of Section 2 (green area in Figure 6.6).

The plot for the ensemble Kalman filter is now considered. In all the zones except Zones 2-

A and 2-C, the maximum, minimum and mean values collapse to a single line. This implies

that all the ensemble realisations converge to the same value. In Zone 1-A, the hydraulic
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Figure 6.7: Parameters estimated in the ten zone configuration - comparison between
EnkF and SIR algorithms
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Figure 6.8: Hydrological response with prior and posterior estimated parameter values
and error on volumetric water content - Comparison between EnKF and SIR algorithms
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Table 6.3: Errors on volumetric water content with prior and posterior distribution -
discretized case

Attempt
Final mean error

Prior distribution Posterior distribution

10 zones - EnKF 0.055371 0.047519
10 zones - SIR 0.055371 0.048573
5 zones - SIR 0.054857 0.049435

conductivity decreases throughout the assimilation until reaching the minimum value after

few steps. In zone 2-A, on the contrary, the hydraulic conductivity increases significantly.

In Zones 1-B and 2-B the final value is lower than that of the zones in layers C and

D. Looking at the plot for the SIR algorithm, the situation is different. The maximum,

minimum and mean values do not collapse to the same value. As iterations progress,

the gap between maximum and minimum values shrinks, due to the forced reduction of

variance throughout the iterations. Starting from the initial value of 1.0e − 04 m/s, the

hydraulic conductivity evolves in different ways. In the surface zones, 1-A and 2-A, the

value drops to the lower limit of 7.0e − 06 m/s. The behaviour of the surface layer 2-A

is in open contrast with that observed in EnkF assimilation. In the lower zones, both in

sections 1 and 2, the hydraulic conductivity increases. The deepest layers of both vertical

sections have a smaller K value.

Concerning the hydrologic responses, in the case of EnKF the outputs are concentrated

around the mean. This behaviour is a typical phenomenon occurring in EnKF and is called

‘filter imbreeding‘: in many zones the ensemble collapses on a unique value and subsequent

assimilation has no effect. Both EnKF and SIR ensembles show an overestimation of

measured seepage flow and a underestimation of the overland flow. Looking at the error

plots, in both cases the errors of the posterior distribution are smaller than those of the

prior distribution, and achieve similar values.

Table 6.3 collects the final errors of all attempts realised with the current configuration.

As it was expected, they are smaller than those obtained with the prior distribution, even

if the hydrologic response is far from the observed behaviour of the hillslope. Even if

the configurations are different, the errors on volumetric water content do not change

significantly.

The influence of hydraulic conductivity variation on the estimation of volumetric water

content has been further investigated by running CATHY using the Ksat distribution

identified in the first assimilation of the SIR algorithm. Ten simulations are then run,

each one with the Ksat value in the zone replaced by Ksat=1.0e−04 m/s. Figures 6.9, 6.10
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Figure 6.9: Comparison among the overland flow - perturbed sets
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Figure 6.10: Comparison among the seepage face flow - perturbed sets
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Figure 6.11: Comparison among the water storage - perturbed sets
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Table 6.4: Errors on volumetric water content with perturbed parameters

Perturbed zone Error on volumetric water content

1-A 0.053717
1-B 0.052182
1-C 0.052645
1-D 0.055206
1-E 0.052280
2-A 0.052139
2-B 0.052120
2-C 0.052516
2-D 0.055347
2-E 0.051027

and 6.11 show the hydrologic response of the hillslope with the ten differently perturbed

sets of hydraulic conductivity. The hydrologic responses change evidently when Zone 1-D

and 2-D are perturbed. The overland flow in all the cases is less underestimated than in

the hydrologic response obtained with the unperturbed set of parameters. Even if this

difference is visible, the errors on volumetric water content are similar in the perturbed

and unperturbed cases (Figure 6.12). Table 6.4 summarizes the final average errors on

volumetric water content.

In summary, the results of the partially heterogeneous configurations are all similar to

each other, even if the configurations and the initial set of parameters change. In addition,

the comparison between the hydrologic responses of prior and posterior distributions

shows that storage is well reproduced, volumetric water content estimation is improved

but overland flow and seepage face flow are not well reproduced. The uncertainty in the

overland flow measurements but also the ill-posedness of the problem may be the causes

of this result.

6.3 Fully heterogeneous hillslope

In the fully homogeneous hillslope configuration, the grid described in Section 6.1 is

uniformly refined in order to better describe the problem and to ease the convergence of

the nonlinear problem. In this case, the spatial distribution of Ksat is considered a random

field with defined mean, variance and exponential correlation structure. The correlation

length, which defines the distance beyond which two points are statistically uncorrelated,

is different in the vertical and horizontal directions. Two different cases are considered.

In the first case, the correlation length is set equal to 4 m in horizontal direction and 0.25



6.3 FULLY HETEROGENEOUS HILLSLOPE 59

5

10

15

20

25

d= 0.00÷0.05 m

E
ns

 m
ea

n

5

10

15

20

25

E
ns

 m
in

−5−202 5

5

10

15

20

25

x (m)

E
ns

 m
ax

d= 0.15÷0.20 m

−5−202 5
x (m)

d= 0.30÷0.35 m

−5−202 5
x (m)

d= 0.50÷0.55 m

−5−202 5
x (m)

d= 0.80÷0.85 m

−5−202 5
x (m)

 
d= 0.95÷1.00 m

 10
−6

10
−4

 

 10
−6

10
−4

−5−202 5

 

x (m)

 10
−6

10
−4

Figure 6.13: Parameter estimation - correlation length = 4 m (EnKF algorithm)

m in vertical direction. In the second case, the horizontal correlation length is equal to

8 m and the vertical correlation length is set equal to 0.5 m. In the fully heterogeneous

case, the SIR method is not suitable since it does not account for the spatial correlations.

The EnKF method must be chosen notwithstanding its intrinsic limitation related to the

Gaussian assumption. The first attempts, realised with the usual iterative assimilation

scheme, did not reach convergence. For this reason, the modified temporal path suggested

in section 5.2 has been implemented. The initial parameter values assigned to each cell

are randomly generated, given mean, variance and correlation length.

Concerning the configuration with a correlation length equal to 4 m, thanks to the

iterations the problem converged and reached the end of the simulation. In Figure 6.13

the assimilated ensemble of hydraulic conductivity has been plotted. Due to the large

number of cells, only the last ensemble has been plotted on a grid, selecting the layers

where the sensors are located. In particular, the mean, maximum and minimum values are

plotted. The identified distribution of saturated hydraulic conductivity has a mean that

is lower for the surface and the deeper layers, with respect to the intermediate layers. The

average hydrologic response is again different from the actual behaviour of the hillslope in

terms of overland flow and seepage face flow. The average storage, on the contrary, is well
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Figure 6.14: Hydrologic response and error on volumetric water content - correlation
length = 4 m (EnKF algorithm)

reproduced. The error is still lower than the one calculated with the prior distribution.

The assimilated ensemble of hydraulic conductivity obtained in the configuration with

horizontal correlation length equal to 8 m is reported in Figure 6.15. The surface layer

presents a low hydraulic conductivity value, which increases with increasing depth. This

is a relevant difference compared to the case with horizontal correlation length equal to

4 m. In that case, in fact, the mean saturated hydraulic conductivity was low also in

the deeper layers. This difference is particularly evident in the deepest layer. Despite of

this difference, the hydrologic responses (see Figure 6.16) are very similar, with negligible

overland flow, excessive seepage face flow, and well reproduced storage.

In general, the assimilated ensembles present the lower hydraulic conductivity in the

surface layer, and higher values in the deeper layers. Even if the error on volumetric

water content are always lower for the posterior distribution with respect to the prior

one, the hydrologic response of the system is more distant from the true behaviour when

the posterior distribution is used. In addition, the difference among errors referring to the

different configurations is small, notwithstanding the difference in grid resolution, spatial

configuration and assimilation algorithm. Figure 6.17 compares the mean errors of the

various attempts, compared with a reference error calculated for the homogeneous hillslope

having hydraulic conductivity equal to 1.0e−04 m/s. The figure shows that the errors are
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Figure 6.15: Parameter estimation - correlation length = 8 m (EnKF algorithm)
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Figure 6.16: Hydrologic response and error on volumetric water content - correlation
length = 8 m (EnKF algorithm)
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very similar despite of the different spatial configuration and distribution of parameters.

The simulations fulfilled with perturbed parameters confirm this fact. Even if the spatial

distribution was forcedly changed, the hydrologic response was similar and especially

the volumetric water content estimation was not affected by the imposed perturbation.

These circumstances suggest that the reconstruction of hydraulic conductivity spatial

distribution is a highly ill-conditioned problem. When a problem is well-conditioned, then

a unique solution exists and it depends on the input data in a continuous way, i.e., small

variations in the input data imply small variations in the results. The ill-conditioning, on

the contrary, implies that small variations in the initial values cause large variations in

the results. The unknown uncertainty of the available data is a cause. The reconstruction

would be improved if other kinds of data, such as geophysical measurements were available.
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Conclusions

The LEO is an ‘open access‘ experimental hillslope, where laboratory scale experiments

that are ‘close‘ to the natural scale can be performed. The facility offers a great op-

portunity to improve the knowledge about hydrologic processes and landscape evolution.

During the first experiment run in 2013, the response of the hillslope proved to be sur-

prisingly different from pre-experimental predictions of numerical simulations. Niu et al.

[2014] found a possible explanation of the occurred discrepancy, suggesting the devel-

opment of a localized heterogeneity. Starting from these conclusions, this thesis work

aims to reconstruct the spatial distribution of hydraulic conductivity in the LEO soil.

The objective is pursued via data assimilation of the measurements collected during the

first experiment at LEO. Ensemble Kalman filter and sequential particle filtering are the

chosen assimilation methods. The parameter estimation is carried out by means of the

physical-based coupled hydrological model CATHY. Many simulations have been imple-

mented considering different degrees of soil heterogeneity. A novel assimilation iteration

scheme has been developed in order to force the convergence of the model. The hillslope,

modeled by means of a surface grid replicated in vertical direction, has been subdivided

into ten zones, then into five. In each zone, the soil has been considered homogeneous. In

the ten zones configuration, the assimilation has been carried out both with EnKF and

SIR configuration, while in the five zones configuration only the SIR method has been

applied. A second experiment considers the hillslope as fully heterogeneous, modeling the

hydraulic conductivity as a second order stationary random field. In this case, only EnKF

algorithm has been used for the assimilation.

For each spatial configuration, the values of the parameters identified by the various as-

similation procedures was used in CATHY to simulate the hydrologic response of the

hillslope under the real atmospheric conditions of the first experiment at LEO. In this

way, both the assimilated spatial distributions of hydraulic conductivity and the state
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predictions could be compared against measurements. In addition, a simulation has been

carried out also with the prior distribution of parameters. The results, computed in terms

of overland flow, seepage face flow and water storage, do not compare favourably with the

observations showing an error that is larger than the error of the simulations reported in

Niu et al. [2014]. The error on volumetric water content is improved by the assimilation

process while the total runoff is still very far from the observed values. The influence

of hydraulic conductivity variation on the estimation of volumetric water content has

been further investigated. Ten perturbed sets of parameters have been given in input

to CATHY, and the results again are similar in the ten cases, with little variations of

the error on volumetric water content. These circumstances induce to consider the re-

construction of saturated hydraulic conductivity as an ill-conditioned problem. When a

problem is ill-conditioned, a small variation of the input parameters corresponds to a great

variation on the results. Our results suggest that the use of distributed soil water con-

tent measurements to identify a distributed parameter with a physically based catchment

model seems to be insufficient to constrain and render well-conditioned the identification

problem. Possible explanations for this behaviour are mainly two.

On one hand, the uncertainty related to the accuracy of the used sensors is large. In

fact, the raw data had to be preconditioned to exclude a number of non-physical data

values and the entire story of surface-most measurements were also excluded because

unrealistically noisy. It is here suggested that smoothing techniques could be used here

to improve the data quality without excluding data values.

A second source of ill-conditioning raised by the use of moisture content data to

constrain the identification problem in the fact that this type of measurement does not give

any information in the saturated areas, where saturation is constantly unitary (moisture

content equal to saturated porosity). The overland and seepage fluxes are controlled

principally by the values of the saturated conductivity in the saturated zone. For this

reason, a better and more accurate strategy, not investigated in this thesis, would be

to include flow (overland and seepage) measurements in the assimilation process. This

possibility is not explored at the moment because the time series of the overland flow rates

measured during the first experiment is strongly underestimated, and corrections are being

investigated. Once more accurate data will be available, the experiments reported in this

thesis will be repeated including also flux data information during the assimilation.
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