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Abstract

Child poverty maps allow governments and other organizations to design policies to track and
evaluate their impact in the fight against child poverty. However, reliable data on the geo-
graphic distribution of child poverty is scarce, sparse in coverage and expensive to collect. For
some countries, the only available measurements are at the country level. In this thesis, we pro-
pose to train Machine Learning models to obtain finely grained predictions of child poverty
using heterogeneous and publicly available data sources as geographical, demographic and eco-
nomic georeferenced inputs. Benchmarks of child poverty, computed from nationally repre-
sentative household survey data, are used as targets to train and calibrate our proposed predic-
tion models. The multidimensional child poverty index has six dimensions: sanitation, water,
education, housing, health and nutrition, and is defined such that the predictions can be com-
pared across countries. Using the techniques that are introduced in this thesis, we compute and
release a complete andpublicly available set ofmicro-estimates of prevalence, depth and specific
poverty dimensions at a 5.2 km2 resolution for sub-Saharan African countries. Prediction in-
tervals are included to facilitate responsible downstream use. The resulting micro-estimates
have the potential of being used to deepen the understanding of the causes of child poverty in
sub-Saharan Africa and to gain insights on the impact of future actions.
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1
Introduction

In the world 1.2 billion children suffer from child poverty [1]. Child poverty has long lasting
effects on children, both on the short term and on the long term. Lack of realization of basic
needs causes a child to not enjoy his/her rights and not reach his/her full potential, causing
threats to the child’s health andwell being. Moreover, adults with a history of childhood abuse
and/or neglect tend to have lower levels of education, lower wages and less employment [2].
The effects of child poverty are even more long lasting, such that it will take 4 to 5 generations
(i.e. around 150 years) for a family that grows up in poverty to reach the average national level
of income [3].
Given its alarming consequences, poverty is the first point of the “Sustainable Development

Goals”, adopted in 2015 by the United Nations member states. The goal is to “end poverty in
all its forms everywhere”. This objective is subdivided inmore specific targets, we can focus on
the second one that claims: “By 2030, reduce at least by half the proportion of men, women
and children of all ages living in poverty in all its dimensions according to national definitions”
[4]. In the target above, we want to highlight several points that will be discussed more in
depth along the chapter. There is a specification of children as separate from adults, since child
poverty is different from general poverty, and poverty is specified in all its dimensions given its
multidimensionality. Moreover, there is the need for national definitions in terms of poverty,
and measurements of the proportion of poverty in terms of sex and age.
However, not all countries have developed their definition of child poverty. Moreover, these

measurements are not comparable since they have been computed based on different defini-
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tions. Thus, a new definition of child poverty has been proposed by UNICEFwith the goal of
being internationally comparable [5]. One of the objectives of this definition of child poverty
is policy design by organizations such as UNICEF and private organizations such as Save The
Children.

In this introductory chapter, we will start by defining child poverty in Section 1.1, then
we will talk about how to give a national definition of poverty in 1.2, that will be useful to
understand the internationally comparable definition of child poverty in Section 1.3. At the
end of the chapter we will be able to specify the goal of this thesis in Section 1.4.

1.1 Child Poverty

Let us start by defining child poverty [5]:

Child poverty is the lack of public and private material resources to realize their
rights constitutive of poverty.

Rights of poverty are those that directly depend on material resources for their continued
realization. For example, sanitation andhousing are rights constitutive of poverty,while privacy
and happiness are not.

We need tomeasure child poverty separately from adult poverty because the needs are differ-
ent, starting with education. Children should not work to earn a living, they depend on adults
for support, care. Moreover, children are between 25% to 50% of the national population, and
in some countries, evenmore than half. Hence, not having ameasure of poverty specific to the
child would lead to a miscalculation of national poverty, leading to incorrect policy design and
incorrect assessment of policy impact [6].

Child poverty should be independent of monetary income. It is neither a cause or conse-
quence ofmonetary income. Child poverty needs to bemeasured because it affects the children
and “the deprivation in these rights is what makes the child poor” [5]. Moreover, measuring
child poverty in terms of monetary income is not only inadequate [7], but it could be harmful.
For example, if the household income is the result of child labor, then lowering the percent-
age of households in monetary poverty is damaging for the children. Or if income increases
because adults work overtime, that could lead to children being neglected and ending up in
unsafe situations since their parents are never home.
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1.2 National Definitions of Child Poverty

To reach the Sustainable Development Goals, each country should have their national defini-
tion of poverty. To tackle this point, UnitedNationsDevelopment Programme, UNICEF and
World Bank have jointly produced a guide for countries to measure multidimensional poverty
(poverty measured in terms of rights and not solely based on income) [? ].

Such as for child poverty, also general poverty should not be measured based on income,
since monetary poverty does not provide the full picture. With multidimensional poverty, it
is important to assess the deprivation of each dimension, and then to understand how these
deprivations overlap between each other.

The government should be the entity to measure the process of child poverty, because its
participation as an official entity grants legitimacy to the process, facilitating the use by other
stakeholders. The definition and measurements of poverty should be rigorous, transparent,
institutionalized, sustainable, and useful.

The guide specifies the methodology to measure multidimensional child poverty, and it is
based on identification and aggregation of the deprivations, that is:

1. Identify a set of relevant dimensions of poverty and define indicators for each dimension.

2. Determine criteria to assess deprivations.

3. Define a satisfactory threshold for each indicator.

4. Classify each individual (or household) as deprived or not in each dimension based on
the criteria and the thresholds.

5. Sum the number of deprivations with the respective weights of each indicator.

6. Define a poverty cut-off.

7. Aggregate the results of individuals (or households).

This 7-step guideline can be used identifymultidimensional povertymeasures for each coun-
try, and similar steps have been taken to determine a definition of internationally comparable
child poverty.
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1.3 Internationally comparable child poverty

While each country is supposed to have its own way to measure child poverty, this is not al-
ways the case. Moreover, even with these definitions we cannot use them to compare poverty
in different countries. Therefore, we want to introduce another study carried out by UNICEF
to address this problem [5]. These estimates of child poverty are comparable because they use
the same dimensions, the same indicators and the same threshold. The focus of these measure-
ments is for supra-national poverty assessment and they are not indicated for national ones.

For the internationally comparable estimates of child poverty, four principles have been fol-
lowed:

1. estimates at the individual child level

2. the dimensions considered must be rights constitutive of poverty

3. all dimensions are equally weighted

4. measure how poor children are

In the next subsections, we can dive more into details about each point.

Individual Child Level

The first principle says that the estimates should not be a disaggregation of a household mea-
sure, but measured directly at the individual level. Doing the opposite -measuring poverty at
the household level, and then disaggregating- could not be beneficial to the child, if the house-
hold is not considered below the poverty line because of reasons just regarding adults with no
effects on the children’s lives [6]. For example, if an adult is not unemployed anymore, and
does not take the child to doctor’s visits.

Rights constitutive of poverty

Human rights are rights that allow one to take part in ordinary living activities customary to
the society in which they belong; these have been referred to as capabilities [8]. While rights
constitutive of poverty are those whose realization is blocked by lack ofmaterial resources. The
rights constitutive of poverty approach remarks that child poverty estimates center on individ-
ual children, since they are, differently from households, rights-holders.
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Other measurements such psycho-social and emotional deprivations, neglect, violence are
not material, and therefore not considered in the context of child poverty, but they are part of
theWellbeing andQuality ofLife ofChildren. Moreover, data limitations is another important
factor in the selection of indicators and dimensions, since in some household surveys there are
not the full set of indicators, or not all indicators are asked to all children. Hence, the definition
includes 6 dimensions that are [9]:

education, health, housing, nutrition, sanitation, and water.

For each dimension included, we need to specify the indicators and the thresholds, made
explicit in Table 1.1, that have been selected following these criteria:

• Simplicity: consider only one indicator per dimension to avoid imbalance across dimen-
sions.

• Maximize country coverage: using indicators that are available in all data surveys.

• Validity: using indicators based on material deprivations and not emotional or spiritual
ones.

• Reliability: accurate measurements.

• Internationally agreed criteria.

• Feasibility to separate severe and moderate deprivation,

Another key point to take into account is that in absence of knowledge, no imputationneeds
to bemade. This data limitation leads to underestimating poverty, that is, however, better than
overestimating it.

As for the national definitions of child poverty, there is a two-step approach: identification
(which children are deprived in which dimension), and aggregation (individual summary mea-
sure of the child’s information).

Dimensions equally weighted

Human rights are the birthright of each human being, and therefore are universal [10]. De-
clared internationally in 1948 by theUniversalDeclaration ofHumanRights in 1948, all rights
are of equal validity and importance [11]. While equal importance of rights holds for every hu-
man being, the guideline of Committee on the Rights of the Child focuses more specifically
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about children’s rights saying that “they are indivisible and interrelated, and that equal impor-
tance should be attached to each and every right recognized therein” [12].

Hence, from equal importance of all human rights we can derive equal weighting of dimen-
sions, that means that all dimensions have the same weights. These are the reasons for it [13]:

• Not only weighting implies a ranking between rights, but it explicitly says how much
one right is more important than the other.

• Having weights could cause a person with more deprivations to be less poor than one
with just one deprivation (if this deprivation has a greater weight). Even if weights are
decided based on experts’ opinions or a focus group with the people in question (con-
sidered “poor”), they would still be arbitrary.

• A more statistical approach would be following the principle of indifference or insuffi-
cient reasoning [14]. The principle says that in absence of any sufficient evidence, the
agent should have the same degree of belief towards all outcomes.

• Literature advises strongly against weighting of indexes, showing that applying weights
does not provide any gain in information [15]. Moreover, since the dimensions are all
rights constitutive of poverty and therefore are all based on lack of material resources,
the indexes are expected to be correlated between each other. This points to saying that
it is not worth weighting [16].

• Another reason is ease of communication: lack of weighting makes the definition of
multidimensional poverty easier to interpret, making it more transparent.

• For the Capabilities approach, there is no trade off between rights.

• Lastly, applying Ockham’s razor we follow the more parsimonious option of no weight-
ing.

We can lastly note that equal weighting holds only for dimensions, and not for indicators.
However, in these definitions there is only one indicator per dimension, so there are no con-
cerns for weighting in the different indicators.

Measuring Depth

The last point focuses on, not only measuring the prevalence of child poverty, but also the
depth. As a child poverty cut-off, the number of deprivations to consider a child poor, in this
approach, is 1. Thus, a child is multidimensional poor if he or she is deprived in at least one
dimension. We need to focus also on the number of deprivations a child is deprived in, since
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prevalence does not paint thewhole picture, and it would underestimate improvements in chil-
dren’s lives (if a policy reduces the number of deprivations from 5 to 2, the prevalence does not
change, but the situation of the child is improved. Other important measurements should
be the number of children that suffer from one deprivation, two deprivations, three ect. The
whole distribution of deprivations is required to comprehend poverty at the individual level.

It is important to address equity and to explore the differences between boys and girls, geo-
graphic locations, parent’s formal education and other disparities.

1.4 Goal

Having high-resoluted measurements of child poverty is an important step for policy-making
and to track how poverty changes through time. Traditionally a geographic distribution of
poverty is computed combining a household survey with a broader survey, such as a census.
However, this method produces official statistics [17], and household surveys are expensive
and slow to collect, and not available for all countries. Moreover, the discussion for the lack
of data and the research for alternative ways to estimate poverty is accentuated regarding child
poverty, since the subset of survey data available tomeasure ground truth data is almost halved,
since in many countries children are about 50% of the population.

The objective of this thesis is to compute finely grained measurements of internationally
comparable child poverty in all the 48 countries in Sub-SaharanAfrica, including the countries
that lack DHS surveys in recent years. The estimates have a resolution on average of 5.16 km2,
and they will follow an hexagonal grid. Measurements will be available only in areas with at
least 30 children for privacy reasons. The variables that have been estimated will be: the av-
erage number of dimensions deprived, the proportion of children deprived in at least 2 or 3
dimensions, the proportion of children deprived in sanitation, water, housing and education.
These variables will be predicted by applying Machine Learning models to georeferenced data
such as satellite images, economic features, population bands ect.

In chapter 2, previous works in the field are going to be analyzed, in chapter 3 we focus on
the data collection part of the pipeline, in 4 we dive into the theoretical concepts of modeling,
and in chapter 5 we focus on different aspects of the experiments, whose results will be shown
in chapter 7.
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Dimension Unit of
Analysis

Severe Deprivation
Definition

Moderate Deprivation
Definition (includes severe
deprivation)

Shelter
Children
under 17 years
of age

Children living in a dwelling
with five or more persons per
sleeping room.

Children living in a dwelling
with three ormorepersonsper
sleeping room.

Sanitation
Children
under 17 years
of age

Children with no access to
a toilet facility of any kind
(i.e. open defecation, or pit
latrines without slabs, hang-
ing latrines, or bucket latrines,
etc).

Children using improved fa-
cilities but shared with other
households.

Water
Children
under 17 years
of age

Childrenwith no access to wa-
ter facilities of any kind (i.e.
using surface water or unim-
proved facilities such as non-
piped supplies).

Children using improved wa-
ter sources but more than
15 minutes away (30 minutes
roundtrip)

Nutrition
Children
under 5 years
of age

Stunting (3 standard devia-
tions below the international
reference population).

Stunting (2 standard devia-
tions below the international
reference population).

Education
Children
between 5-14
years of age

Childrenwhohave never been
to school.

Children who are not cur-
rently attending school.

Children
between 15-17
years of age

Children who have not com-
pleted primary school.

Children who are not cur-
rently attending secondary
school (or did not complete
secondary school).

Health
Children
12-35 months
old

Children who did not receive
immunization against measles
nor any dose of DPT.

Children who received less
than 4 vaccines (out of
measles and three rounds of
DPT).

Children
36-59 months
old

Children with severe cough
and fever who received no
treatment of any kind.

Children with severe cough
and fever who did not re-
ceive professional medical
treatment.

Children
15-17 years
old

Unmet contraceptive needs.
Unmet contraceptive needs
(using only traditional
methods)

Table 1.1: Dimensions of child poverty with respective indicators, and thresholds for moderate and severe deprivations.
Table from [5].
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2
RelatedWorks

Measuring poverty has been the focus of research for over a century, since the first survey of
living standards was taken more than 100 years ago in England [18]. Since then, many studies
have been conducted on how to define poverty and how to map it. On this last point, we can
observe that conventionalmethods topredict poverty in small areas require a population census
and some other nationally representative survey [19]. These techniques have been criticized in
terms of coverage and accuracy [20]. Since then, new approaches to predict poverty have been
implemented [21, 22, 23], applying newer and more sophisticated methods from statistical
models to Machine Learning and Deep Learning.

Literature for poverty predictions is very rich, however, it ismore focused on general poverty
rather than child poverty. Hence, we focus onmethods on how to produce finely grainedmaps
for other socioeconomic variables with Machine Learning in Section 2.1, while in Section 2.2
we show current results for child poverty maps in sub-Saharan Africa.

2.1 Socioeconomic variable mapping

While literature for high resolution child povertymaps is scarce, we can analyze the research on
new techniques and methodology to produce how resolution maps for wealth, poverty based
on income or consumption, well-being, community happiness. These studies vary for the grid
construction, methods used and data sources. On this last point, we can differentiate the stud-
ies in feature-based models and image-based models.
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For the first category data sources can be very different. Mobile phone data are a rich source
of information, implemented in a program targeting study in Afghanistan to focus on ultra-
poor households [24]. Another way to include mobile phone information was taken by Khan
and Blumenstock [25], modelling the mobile phone network as a multi-view graph in a semi-
supervised learning scenario to predict poverty. At the individual level, poverty and wealth
have been predicted in Rwanda from the past history of mobile phone use. After combina-
torially engineering factors of communications, the data has been fed to an elastic net model
[26]. Mobile phone information have been used also in combination with other data sources,
as we can observe in a study in Bangladesh where a hierarchical Bayesian geostatistical model
was implementedusing as inputmobile phonemetadata, such as basic phone usage, top-uppat-
terns and social networks, and environmental and physical metrics, such as vegetation indexes,
nighttime lights, climate, distance to roads [27]. An interesting point of the study is the grid
construction: predictions were provided on a Voronoi tessellation grid, based on mobile cell
tower positions, providing more localized information in urban areas and sparser information
in rural areas. The effects of geographical factors have been analyzed with some spatial regres-
sion techniques inKenya [28]. While the study is localized to the country, we can see that other
research teams made use of geographical factors in their studies [27, 23, 29, 30]. For example,
geographical features such as nighttime light intensity, Normalized Difference Vegetation In-
dex (NDVI), land surface temperature, built-up areas and point of interests have been passed
to a Random Forest model to predict poverty [30]. Another interesting data source is textual
data, such as tweets orWikipedia articles. The former have been used to define a finely grained
map of “gross community happiness” at the community level in London [31]. While the lat-
ter have been processed to predict economic development at the community level, extracting
textual information from geolocatedWikipedia articles [32].

We can focus on the secondgroupofmodels, that are the imagebasedone. Afirst approach is
based on applying transfer learning to train daytime satellite images to predict nighttime light
intensity with a convolutional neural network (CNN). From this model, features have been
extracted and fed to Machine Learning models to predict poverty [21, 22, 33]. The contri-
bution of Jean et al. will be explained more in depth in Section 2.1.1. While other studies
use nighttime light intensities not as the output of the CNN model from which features are
extracted, but training two separate models, joined at the end in a final fully connected layer
[34], or in two separate models whose output are fed into each other to obtain better training
data [29]. Other studies exploits satellite images, without considering nighttime light inten-
sity. The minimum well-being poverty line and the well-being poverty line were estimated in
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Mexico applying a end-to-end CNN to Planet imagery and Digital Globe imagery [35]. They
use GoogleNet as architecture, fine-tuning the weights from ImageNet. In Belize, alternative
satellite sources, such asMODIS andLandset, have been used since they are freely available and
released as open-source [36]. All the bands, not just the visible ones, are being used in the study.
Themodel used is an ensemblemodel ofRidge regression, elastic net regression, random forest,
extreme gradient boosted trees. Reducing even more the data sources needed, a study uses as
predictors just the the NDVI, that measures vegetation greeness: reflecting on the importance
of including agricultural production as predictors [37]. The images are from NASA’s Terra
satellite. While within these studies we have the most performing models, the models are not
interpretable. The scope of thesemaps is policymaking, so it is important for the policymakers
to trust and understand the process.

Most studies predict poverty just for one country, with the exception of a couple of studies
[34, 32, 22, 23, 29]. Now we want to focus on the contribution of three important studies:
Jean et al. predict poverty from satellite images, Chi et al. use satellite images and other data
source and Lee et al. propose a new model to refine training data obtaining state of the art
results.

2.1.1 Transfer learningwith satellite images

Starting from [21], Jean et al. introduce transfer learning methods from satellite imagery to
estimate poverty [22]. This study is focused on 5African countries: Malawi, Nigeria, Rwanda,
Tanzania, and Uganda. The measures of poverty predicted are two: one based on assets, and
another based on consumption expenditures. The firstmeasure has been computed fromDHS
surveys, as the principal component of survey responses ofmultiple questions about assets own-
ership [38]. The second one has been obtained from the World Bank’s Living Standards Mea-
surement Study surveys [39]. The authors use daytime satellite images and nighttime light
intensities as input. Nightlight intensity values go from 0 to 63, and they have been binned
in three classes 0-2, 3-34, 35-63. These values have been taken from the United States Air
ForceDefenseMeteorological Satellite Program satellites, that have been processed byNational
Oceanic and Atmospheric Administration’s National Geophysical Data Center to estimate
global human-generated lighting between 20:30 and 22:00 local time every day [40]. The reso-
lution of this dataset is 1 km. In later studies, an updated dataset is used for this purposes, that is
theVisible Infrared ImagingRadiometer SuiteDay/NightBand (VIIRSDNB) [33, 34, 23, 29].
Since the location provided by data surveys used is jitter to ensure privacy, they extracted night-
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lights estimates within a 10 km× 10 km square centered in the provided coordinates, to which
the mean value was assigned. The daylight images have been collected from the Google Static
Maps at zoom level 16, with a resolution 2.5m per pixel. Hence, to match the nighttime lu-
minosity resolution, the images are 400× 400 pixels. For each household cluster, 100 images
were extracted to convert a 10 km× 10 km area, while for larger states 25 evenly spaced images
were extracted per cluster.

Figure 2.1: Relation between asset‐based poverty and nightlight intensity at cluster level for Nigeria, Tanzania, Uganda and
Malawi. Image taken from [22].

Now, we can focus on the modelling part. The method follows two steps, first through
transfer learning training amodel to predict a proxy for poverty, and then extract features from
the model to actually predict poverty. The proxy in the first part is used since poverty maps are
scarce, and the variable is nighttime light intensity, noisy but easily obtainable proxy, reasoning
its correlation to urban developments. The relations between the two variables can be observed
in Figure 2.1. The authors start by fine-tuning an 8-layer CNNmodel (VGG F) pretrained on
ImageNet, that consists of amodel trained to classify images in 1000 different categories. While
predicting the categories, the model learns low-level image features, such as edges and corners.
These features can be used in other tasks, even not related to the categories learnt in the initial
scope of themodel. Hence, theCNNmodel is fine-tuned to predict nighttime light intensities,
starting from daytime satellite imagery. Given the resolution of the data, for each cluster the
CNNmodel is run 100 times, obtaining 100 features vectors. The average of this vector acts as

12



the input features to predict poverty.
This CNN is used as a feature extractor, summarizing the high dimensional input into a low

dimensional set of features predictive of variation of nighttime lights. These features are used
to train a ridge regressionmodel to estimatewealth, applying regularization to avoid overfitting.
The model explains from 55% to 75% of the variation in average household asset wealth, and
for 41% to 56% of consumption expenditures across the 5 countries considered as can be seen
in the diagonal of Figure 2.2. While in the other entries of the image, we can see how the train
model on one country would perform on the others, to assess how the model would perform
in other countries without survey data.

Figure 2.2: Cross‐validatedR2 of a model trained on one country and evaluated on another for consumption expendi‐
ture (A) and asset‐based poverty (B). The countries considered are Nigeria, Tanzania, Uganda, Malawi, and then also an
additional column with pooled results from the four countries. Image taken from [22].

Starting from this work, another study has obtained similar results using publicly available,
freely distributively satellite images from Landsat 7, at a lower resolution [33].

2.1.2 Microestimates of relative wealth

Chi et al. computed available micro-estimates of relative wealth for all low- and middle- in-
come countries, located in Africa, Asia, Europe and Latin America [23]. These predictions are
freely available for 91 countries. The authors used theMicrosoft Bing tile system [41], and the
grid has a resolution of (2.4 × 2.4) km2. The output to predict is relative household wealth,
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computed fromDHS survey data, taking the first principal component of 15 questions regard-
ing assets and housing characteristics. The measure is relative to the country, and within each
country it has mean 0 and standard deviation equal to 1. The model uses as input several data
sources: both quantifiable geospatial variables and features extracted from images. The first set
of features are road density, land cover, elevation, slope, precipitation, population, connectiv-
ity variables such as cell towers, WiFi access points, mobile devices. Connectivity, nighttime
radiance and population density are found to be some of the most important features. We can
observe that the connectivity data are proprietary to Meta and not publicly available. While
for image-based features, the authors followed an approach similar to [22]. The images are
256× 256, and have a resolution of 0.58m per pixel. The images are downsampled averaging
each 16×16 block obtaining a resolution of 9.375mper pixel. Then, the images are fed to a pre-
trained CNN. The network used is ResNet-50, that has been trained on 3.5 billion Instagram
images to predict correspective hashtags [42], without tuning the parameters In the second to
last layer, they extract a 2048 feature vector, then compress it with PCA, obtaining a feature
vector with 100 dimensions (the first 100 components explained 97% of the variance). Since
DHS surveys jitter the GPS location, to ensure that the input data cover the true location, for
each location, they compute a population-weightedmean of the input data of a 2× 2 or 4× 4
grid of cells centered on the DHS location. The different grid size depends on urban or rural
areas, since the location is jittered differently for urban and rural areas. The model used for the
prediction is a gradient-boosted regression tree, tuning the hyperparameter with three differ-
ent cross-validation techniques: K-fold cross validation, leave-one-country-out cross-validation
and spatially stratified cross-validation. The performance of the model is on average 71% R2

for cross-country estimation and 77%R2 for single country estimations. To validate the results
the authors use census data and four independent data sources specific to certain countries. An
interesting point of this paper is the error modeling. To estimate model performance, they fit
a linear regression model on the absolute value of the model’s residual (on the cells that have
ground truth information), using as predictors some observable characteristics of it, such as
input features of the predictive model (except the ones based on images), features regarding
the availability of ground-truth data nearby and country-level characteristics. Predictions and
error estimates are available for cells with at least 30 people for privacy reasons.
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2.1.3 Refined model

Amore recent work produces high resolution poverty maps for 25 sub-Saharan African coun-
tries, comparing single country and cross-country estimations [29]. The resolution is 1 square
mile (1.6× 1.6 km2). Here the grid is built differently, and it is focused on villages, identified as
populated places combining information throughOpenStreetMap andUnitedNationsOffice
for the Coordination of Humanitarian Affairs. The poverty measure used is based on assets.
Starting fromDHS data, they compute an International Wealth Index (IWI) [43], that allows
for cross-country comparison for a fixed time frame. This index is highly correlated with the
original DHSwealth index. Themethodology employs two sets ofmodels: a feature-based one
and an image-based one. The data sources considered are: OpenStreetMap (OSM), VIIRS
DNB nighttime lights dataset, the High-Resolution Settlement Layer (HRSL) and daytime
satellite images [44, 45, 46, 47]. FromOSM, they extract length of road and distance to closest
road or junction, number of junctions andbuilding and total building area. FromVIIRSDNB
dataset, that has 15 arcsec resolution, they compute for each cell six summary statistics: max,
mean and median of luminosity, ratio of zero luminosity and upper and lower third luminos-
ity. From the HRSL dataset, they extract population estimates, compensated with WorldPop
data for countries for which it is not available.

After an overview of the data sources, we can divemore deeply into themodel, which can be
seen in Figure 2.3. The first step is training an XGBoost (eXtreme Gradient Boosting) model
usingOSMdata, nighttime luminosity and population density as input and the IWI as output.
After fine-tuning the hyperparameters with Bayesian optimization, the better model is chosen
between the cross-country and single country estimator. Here the trained model is applied to
all the populated places in the 25 countries considered, obtaining an estimate of wealth. These
values are then fed to the third step, that is a customized CNN. These types of models need
abundant data, a strategy previously adopted is nightlight as a proxy as in [22, 21], but night-
time luminosity is limited, especially in rural areas. The CNN model returns a probability
distribution of the 1 square mile cell to be rich, upper-middle class, lower-middle class or poor.
Classification has been chosen over regression to capture multi-faceted qualitative geospatial
features that may go lost otherwise. The model is iterated over time and we can see how the re-
sults improve after each iteration in Figure 2.4. The performance is state-of-the-art for poverty
maps, achieving on average anR2 of 86% for cross-country estimation and 88% for single coun-
try estimation. The results for a single country are shown in Figure 2.5.
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Figure 2.3: Pipeline of the refining model of [29]. At step (1) an initial XGBoost model is trained on OSM and nightlight
data to predict IWI. After training, the model is used to predict IWI for all populated places at step (2). At (3), a CNN model
is trained on day‐time satellite images to classify a discretization of the IWI output. After training, the model predicts the
label for the data used in training at step (1), and these values are fed to a new XGBoost model and the process is repeated.
The two models improve each other at each iteration providing more refined training data. Image taken from [29].

2.2 Current Child Poverty maps

In this section we want to focus on the current results of child poverty mapping. An inter-
esting work has been done through the Multidimensional Overlapping Deprivation Analysis
(MODA) methodology [48]. This approach has another measurement of child poverty that
is still child-centered and multidimensional. The dimensions included are water, sanitation,
housing, nutrition, health, education and information. The first three are measured irrespec-
tive of age, while housing and nutrition is measured for children below 5, and education and
information only for children above 5. Within this framework a child is considered multidi-
mensional poor if he/she has at least two deprivations over five.

The authors use data from DHS andMICS surveys for their analysis, that are separated for
age groups, and rural/urban. The analyses are available at the country level and at the sub-
Saharan level. The dimensions included are similar, and we can look at the results to have a
country level overview of child poverty. The deprivation distribution of multidimensional
child poverty can be seen in Figure 2.6. The plots are separated for children below five and over
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Figure 2.4: Improvement of R‐square through each estimation of the refining process in 6 countries: Mozambique, Zambia,
Burkina Faso, Nigeria, Malawi and South Africa. Image taken from [29].

Figure 2.5: Validation of estimations of wealth in Sierra Leone. From the left, cross‐country predictions for 13,040 popu‐
lated places, 336 DHS cluster poverty output, validation plot, achieving a 91.12% R‐squared.Image taken from [29].

five, and in total 86.4% of all children experience at least one deprivation, and 67% of children
are multidimensionally poor. There are 30 countries considered, and this leads to 247millions
of children.

Thenwe can analyze the results for singular countries, observing large variation inprevalence
in Figure 2.7, as 30% of children are multidimensionally poor in Gabon and 90% in Ethiopia.
Focusing on depth, the average number of deprivations among children with at least one de-
privation varies from 1.7 in Gabon and Eswatini to 3.4 in Chad and Ethiopia. Overall, we can
observe that deprivation intensity and prevalence are generally positively correlated.
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Figure 2.6: Distribution of the number of deprivations children suffer from, by age‐group with MODA methodology. Image
taken from [48].

For the remaining countries 14 countries in sub-SaharanAfricawithoutDHSorMICSdata,
the authors fitted a ordinary least square regression model using the Human Development In-
dex, urban population and population size as predictions, estimating that 64.4% children in
the 44 countries of Sub-Saharan Africa are multidimensionally poor, that corresponds to 291
millions of children.
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Figure 2.7: Multidimensional poverty prevalence and depth computed for 30 countries in sub‐Saharan Africa with the
MODA methodology. Image taken from [48].
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3
Data Collection

Collecting data is an intensive and fundamental step in a data science project, and we divide
the following section in two parts: output and input. In section 3.1, we will analyze how the
ground-truth measurements of child poverty are computed and how the grid is built, while in
section 3.2, we will analyze which data sources are used as input and how they are aggregated.
Lastly, in Section 3.3

3.1 Ground-TruthMeasurements

Measurements of child poverty multidimensional poverty were computed from traditional
face-to-face surveys with 299,977 unique households living in 14,443 villages in 25 different
low- andmiddle- incomecountries (LMICs). TheseDemographic andHealthSurveys (DHSs),
which are independently funded by the US Agency for International Development, contain
detailed questions about the economic circumstances of each household and make it possible
to compute a standardized indicator of the average asset-based wealth of each village [49, 38].
From the 1980s, 300 surveys have been carried out in just under 100 countries. Weights are as-
signed to each household to make the aggregation representative to national level. The survey
provides a wide range of indicators to monitor population, health and nutrition. We can see
an example of the spatial distribution of the people surveyed in Nigeria in Figure 3.1.

The DHS surveys have been processed by Save The Children to compute the indexes of
the child poverty dimensions according to the indicators indicated in Table 1.1. The most
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Figure 3.1: Locations of hexagons with DHS measurements in Nigeria. Each hexagon has on average an area of 5.16 km2.

recent surveys analyzed canbe found in Figure 3.2. For each dimension, a binary value indicates
whether the child is deprived or not in that dimension.

Another survey that could be used in the future is the Multiple Indicator Cluster Surveys
(MICS), which is an international household survey developed and funded by UNICEF to
monitor poverty indicators for children. MICS data do not make public the GPS locations, so
these surveys can be used for a country level analysis. With STC preprocessing, the countries
with availableMICSdata are: CentralAfricanRepublic (2019), Chad (2019), TheDemocratic
Republic of the Congo (2018), Congo (2015), Côte d’Ivoire (2016), Eswatini (2014), Gambia
(2018), Ghana (2017), Guinea-Bissau (2019), Lesotho (2018),Madagascar (2018),Mauritania
(2015), Sao Tome and Principe (2019), Togo (2017).

3.1.1 Grid Construction

To compute a finely grained index of child poverty, we partition the Earth into identifiable
grid cells, usingUber’s grid system of hexagons [50]. As we have seen in the literature, there are
different strategies for computing a grid, that canbe auniformornotuniformgrid. An example
of uniform gridding is the Voronoi grid or a grid based on postal codes [27]. However, the cells
vary in terms of size and area, and they may be subject to change. While for not-uniform, we
observe in literature many grids with square cells. Even if this polygonal shape is easy to deal
with images, it does not have the best properties for grid construction. For example, squares
have two types of neighboring cells: one where they share one vertex and one where they share

22



Figure 3.2: In the plot of the left, there are mapped the countries with DHS surveys and the year it has been carried out.
On the right there is the number of children surveys per country.

one edge. On the contrary, hexagons have only one type of neighbors, providing an advantage
for clustering and dealing with neighbors. The hexagonal shape is chosen due to uniformity of
neighbors and reduce sampling bias from edge effects, which is attributed to a high perimeter-
area ratio.
Uber provides 16 resolutions for the grid, and we use the seventh, where each hexagon has

on average an area of 5.16 km2. This resolution allows predictions to be finely grained to be
used by policy-makers, while respecting the privacy of the households.

Figure 3.3: Illustrative example of H3 hexagonal grid. Image taken from [50].

The DHS data include GPS coordinates and so we map each individual to the respective
hexagonal cell, and the value for the cell is computed taking the mean. Hence, the output
represents the proportion of children deprived in that dimension, and it is a value between 0
and 1. While for depth, the target variable represents the average number of deprivations a
child on average has per hexagon. For each dimension, we set a threshold on the number of
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surveys necessary to include the hexagon in the training set to 30. The amount of observations
per hexagon changes based on the dimension, since each dimension has a different amount of
missing values.
In Table 3.1, we observe the number of hexagons per country of the countries with noDHS

survey.

Country Code # hexagons
Botswana BWA 97,688
Cabo Verde CPV 899
Central African Republic CAF 121,928
Chad TCD 224,373
Congo COG 64,775
Côte d’Ivoire CIV 83,903
Equatorial Guinea GNQ 5,737
Eritrea ERI 23,454
Eswatini SWZ 3,029
Ethiopia ETH 232,333
Gambia GMB 2,266
Ghana GHA 59,764
Guinea-Bissau GNB 7,387
Madagascar MDG 112,606
Mauritania MRT 202,481
Mauritius MUS 407
Sao Tome and Principe STP 274
Seychelles SYC 189
Somalia SOM 102,263
South Africa ZAF 220,528
Sudan SDN 328,724
South Sudan SSD 120,393
Zimbabwe ZWE 63,573
tot 2,078,974

Table 3.1: Countries without recent DHS surveys and the number of hexagons in that country.

3.1.2 Neighboring approach

70% of the individuals from the DHS survey are located in rural areas and 30% in urban ones.
To ensure the privacy of the subject of the DHS survey, DHS jitters the GPS location. Urban
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clusters are displaced up to 2 km, and rural clusters are displaced up to 5 km [38]. A randomly
selected 1% of rural clusters are displaced up to 10 km.

Hence, the exact GPS location of the household may not fall in the hexagon it has been as-
signed to. To take this fact into account, data fromeachhouseholdhas been copied to theneigh-
boring hexagons in urban areas and in two neighboring hexagons in rural one. This method
ensures that the true location of the household surveyed is covered. In areas where more sur-
veys fall, the mean has taken. This procedure is supported by an assumption of smoothness
among neighboring cells. A visual representation of this method can be seen in Figure 3.4.

Figure 3.4: Example of the neighboring approach in urban areas to the left and in rural areas to the right. The neighboring
approach consists in replicating the output to the k‐ring neighboring cells as a way to augment the data and account for
GPS jitter in DHS surveys. For rural areas k is equal to 2, and for urban areas k is equal to 1.

In Table 3.2, we can see the number of hexagons per country and the number of hexagons
with ground-truth output with and without the neighboring approach, for the countries that
have DHS surveys.

3.1.3 Missing Values

In the poverty indicators computed by STC from the DHS surveys, there are some missing
values. Some values are missing because those dimensions are not relevant to the child. For
example, the dimension education is relevant only for children older than 5, while nutrition
only for children younger than 5 and health for children of range 1-5 and 15-17.

However, there are indexes where data is missing and the dimension is relevant to the child.
The lack of response to certain DHS variables may be caused because the question was not
asked (due to the interviewer error) or because the respondent did not want to answer. DHS
highlights the importanceofnotmakingup answers, andSTCandUNICEFexplicitly says that
it is better to underestimate poverty than to overestimate it. So no imputation techniques were
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Country Country
Code

# hex
w output

# hex w
output (neigh) # hexagons

Angola AGO 519 5,983 215,093
Benin BEN 468 4,864 26,302
Burkina Faso BFA 498 7,070 63,999
Burundi BDI 489 3,668 4,258
Cameroon CMR 364 4,127 96,805
Comoros COM 116 361 379
DRCongo COD 468 6,742 386,149
Gabon GAB 220 2,276 52,659
Guinea GIN 362 5,083 56,744
Kenya KEN 1,181 13,926 102,898
Lesotho LSO 314 3,088 5,550
Liberia LBR 561 6,489 25,331
Malawi MWI 761 7,921 15,369
Mali MLI 304 4,566 268,851
Mozambique MOZ 521 6,996 131,056
Namibia NAM 261 3,272 146,574
Niger NER 396 5,891 219,041
Nigeria NGA 1,296 16,678 190,861
Rwanda RWA 440 3,272 3,821
Senegal SEN 515 5,941 40,385
Sierra Leone SLE 464 5,820 17,545
Tanzania TZA 546 7,568 149,873
Togo TGO 274 3,473 13,544
Uganda UGA 634 8,554 37,757
Zambia ZMB 488 6,583 120,545
tot 12,460 150,233 4,470,363

Table 3.2: Countries with recent DHS surveys, the respective number of children surveyed per country, the number of
hexagons with the response output with and without the neighboring approach.

used on the output values. The number of hexagons available for each dimension is shown
in Figure 3.5. We can observe that there are no missing values regarding sanitation, housing
and water, while this is not the case for education, health and nutrition. While the lack of data
for education is not that significant, it is a concern for health and nutrition where there are re-
spectively 779 and 810 hexagons with ground truth data without introducing the neighboring
approach in whole sub-Saharan Africa.
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Figure 3.5: Number of available hexagons for each dimensions at the sub‐Saharan level, without the neighboring approach
(to the left) and with it (to the right). We can notice that nutrition and health have the most missing values, since they
are relevant only for a small age group. The amount of data for the proportion of children deprived in at least 1, 2, 3 or 4
dimensions is the same as the number of data of depth.

3.1.4 Output

The output variables are: depth, prevalence, proportion of childrenwith at least 2, 3, 4 depriva-
tions, proportion of children with at least three deprivations, proportion of children deprived
in sanitation, water, housing and education. In Figure 3.6, we can see how the different dimen-
sions are correlated between each other. All dimensions are positively correlated between each
other. As expected, depth is highly correlated with prevalence and the proportion of children
with 2, 3, 4 deprivations that are still correlatedwith each other. Housing, nutrition and health
are the least correlated with the other variables and between each other.

Moreover, we can observe the need to measure all these different dimensions. In Figure 3.7,
we can observe the distribution of each output. Prevalence is skewed towards 1, while health,
nutrition, housing, water, education and depth are skewed towards 0. For sanitation we find a
U-shaped distribution, where the most frequent values are 0 and 1.

3.2 Input Data

The input data are georeferenced data to represent physical, economical, demographic charac-
teristics of each hexagon. A comprehensive list of all the variables can be seen inTable 3.3. Now
we will analyze in depth each data source.
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Figure 3.6: Correlation between child poverty dimensions. We can observe that all variables are positive correlated among
themselves. Nutrition and health are the least correlated to the other dimensions, and prevalence and depth among the
most.

Conflict Zones

The Uppsala Conflict Data Program (UCDP) is a program at the Uppsala Universitet in Swe-
den, that collects data on organized violence [51, 52]. The dataset used is the most disaggre-
gated one, that covers individual events of organized violence, that can be defined as “phenom-
ena of lethal violence occurring at a given time and place”. The disaggregation geolocalize the
events at the village level. The UCPD datasets on organized violence are updated yearly.

Open StreetMap

Open Street Map is an open source geographical database, built through crowdsourced volun-
teered geographic information [44]. OpenStreetMap data are used by thousands of websites
and mobile applications [53], plus many academic studies [54]. Through the Overpass API,
used to extract OSM data, we sum the road length of each hexagon, dividing it for its area,
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obtaining road density.

OoklandOpen Data

Global fixedbroadbandandmobile (cellular) networkperformancemap tiles, allocated to zoom
level 16 web mercator tiles (approximately 610.8m by 610.8mmeters at the equator). Data is
provided in both Shapefile format as well as Apache Parquet with geometries represented in
Well Known Text (WKT) projected in EPSG:4326. Download speed, upload speed, and la-
tency are collected via the Speedtest by Ookla applications for Android and iOS and averaged
for each tile. Measurements are filtered to results containing GPS-quality location accuracy.

OpenCellID

OpenDatabase of Cell Towers is collected by Unwired Lab, a small company that works in the
geolocation space [55]. OpenCellID is a collaborative community that collects GPS positions
of cell towers, computing the average of the position of the received radio signal of a GSM
base station. From the database, we extract information aboutGSM,UMTS and LTE, that are
respectively 2G, 3G and 4Gmobile network technologies,

Critical Infrastructure

Critical infrastructure is of extreme importance for the functioning of society and for socio-
economic development. A study aggregatesOpenStreetMapdata andmeasure its global spatial
intensity through theCritical Infrastructure Spatial Index (CISI) [56]. The available resolution
is 0.10× 0.10 degrees.

Economics

Economical variables such as Gross Domestic Product (GDP) have been computed at high-
resolution by a team at Aalto University in Finland [57]. The dataset contains global measures
GDPper capita for the 25-year period of 1990–2015. We included the latest availablemeasures.

Wealth

The relative wealth index is an estimation of wealth of one micro-region with respect to other
areas in the same country. The index has been computed for low andmiddle income countries,
creating a grid of (2.4× 2.4) km2. This work has been assessed byMeta’s Data for Good team
in collaboration with the University of Berkeley [23].
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Commuting Zones

TheData for Good team atMETA has identified geographic areas where people live and work,
called commuting areas [58]. These areas are different from traditional boundaries of cities,
counties or states and can help identify how people move and interact, giving insights on local
economies. From the data we obtain geometries of the commuting zone and the area, the road
length and population of each commuting zone.

The following data sources are extracted through Google Earth Engine.

Topography

The Shuttle Radar Topography Mission provides an elevation dataset, from which slope can
be computed [59]. The elevation is measured in meters.

Vegetation andWater

FromLandsat 8 of theU.S. Geological Survey, normalized difference water index (NDWI) and
normalized difference vegetation (NDVI) index are included. The first has a composite value
with a time span of a year, while the second one over the time span of 32 days. Both indexes
have a resolution of 30m. The use of NDVI is found in literature as a predictor of poverty
[37].

Precipitation

TerraClimate is a dataset computed by the Climatology Lab of the University of California
Merced, that contains climatic water balance for global terrestrial surfaces [60]. The dataset
has amonthly temporal correlation and a 4 km spatial resolution. From the dataset, evapotran-
spiration (measured inmillimeters), precipitation accumulation (measured inmillimeters) and
Palmer Drought Severity Index (PDSI) are collected.

Global Precipitation Measurement is an international satellite project that records and es-
timates data observations of rain and snow globally [61]. With a resolution of 11 km, we ex-
tracted the “merged satellite-gauge precipitation estimate”, measured in millimeters per hour.
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Human Settlement

Global Human Settlement Layers project supported by the Joint Research Centre, the Euro-
peanCommission andDirectorate-General forRegional andUrbanPolicy,measures themulti-
temporal build-up presence with 38m resolution to describe the human presence in the planet
[45, 46, 47].

Healthcare

A collaboration between MAP (University of Oxford), Telethon Kids Institute (Perth, Aus-
tralia), Google, and theUniversity of Twente, Netherlands havemapped accessibility to health-
care, computing the travel time to the nearest hospital or clinic, with or without motorized
transport, at a spatial resolution of 927.67m [62].

Nightlight

Colorado School ofMines computedmonthly average radiance composite images, using night-
time data from theVisible Infrared ImagingRadiometer SuiteDay/Night Band. With a spatial
resolution of 463.83m, we included average DNB radiance values and cloud-free coverages,
that is the the total number of observations that went into each pixel, since for certain areas
there are no quality data, due to cloud cover or solar illumination. Nighttime intensity is an
important variable in literature for the prediction of poverty [21, 22].

Pollution

MODIS Terra and Aqua and Multi-angle Implementation of Atmospheric Correction (MA-
IAC) produced a data product that measures the land aerosol optical depth, with a spatial res-
olution of 1 km a temporal resolution of one day [63]. From this collection, we extracted blue
band (0.47 μm) and green band (0.55 μm) aerosol optical depth over land. These can be used
as measures of pollution.

Population

World Pop estimates population dataset per each country, releasing a new dataset every year
[64]. It also provides estimations for age/sex structure per each country at a 100m spatial reso-
lution. World Popmeasures population in a constrained and unconstrainedmanner. The first
one is using a mask of the settlement layer and the second one does not use any mask, since
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the population layer would carry the errors of the settlement mask. Hence, we use the uncon-
strained demographic maps [65].
We used population estimation for 2020. The dataset is available in GeoTIFF format with

resolution of 3 arc seconds (that corresponds to approximately 100m at the equator), and the
projection isGeographicCoordinate System,WGS84. The files include age information in the
following age groups: from 0 to 12months, from 1 to 4 years, and then every 5 year age-group,
until 80+ group.

Name Description Source

hex_code hex code
country_code country code
geometry polygon geometry wkt
n_conflicts Number of conflicts Conflict Zones
length_km Road Length [km] Open Street Map
area_km2 Area hexagon [km2] Open Street Map
road_density Density of roads in hexagon [1/km] Open Street Map
avg_d_kbps Average download speed [kilobits per

second]
Internet Connectivity

avg_u_kbps Average upload speed [kilobits per sec-
ond]

Internet Connectivity

GSM Mobile tower for 2G network Mobile Cell Tower
UMTS Mobile tower for 3G network Mobile Cell Tower
LTE Mobile tower for 4G network Mobile Cell Tower
avg_signal Average Signal Mobile Cell Tower
africa Critical Infrastructure Spatial Index Critical Infrastructure
ec2019 Electricity consumption of 2019 Electricity
GDP_PPP_1990 Gross Development Product for 1990 Economics
GDP_PPP_2000 Gross Development Product for 2000 Economics
GDP_PPP_2015 Gross Development Product for 2015 Economics
2019gdp Gross Development Product for 2019 Economics
rwi Relative Wealth index Wealth
rwi_error Error of Relative wealth index Wealth
name_commuting Name of the commuting zone Commuting Zones
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win_population
_commuting

Population of commuting zone Commuting Zones

win_roads_km
_commuting

Total length of roads of commuting
zones

Commuting Zones

area_commuting Area of commuting zone Commuting Zones
elevation Elevation Topography
slope Slope Topography
evapotrans Evapotranspiration Precipitation
precipiacc Accumalation of precipitation Precipitation
precimean Average precipitation Precipitation
precistd Standard deviation of precipitation Precipitation
pdsi Palmer Drought Severity Index Precipitation
ndvi Normalized Difference Vegetation In-

dex
Vegetation

ndwi Normalized DifferenceWater Index Water
water_surface Water surface Human Settlement
no_built Land no built-up in any epoch Human Settlement
build_2000_2014 Built-up from 2000 to 2014 epochs Human Settlement
build_1990_2000 Built-up from 1990 to 2000 epochs Human Settlement
build_1975_1990 Built-up from 1975 to 1990 epochs Human Settlement
build_prior_1975Built-up up to 1975 epoch Human Settlement
cnfd Confidence of the settlment class Human Settlement
accessibility Travel time to the nearest hospital Access to healthcare
accessibility
_walking_only

Travel time to hospital using non-
motorized transport

Access to healthcare

avg_rad Average DNB radiance values. Nightlight
cf_cvg Number of cloud-free observations Nightlight
Optical_Depth

_047
Blue band (0.47 μm) aerosol optical
depth over land

Pollution

Optical_Depth
_055

Green band (0.55 μm) aerosol optical
depth over land

Pollution

population Population Population
M_0 Male population between 0 and 12

months
Population

33



M_1 Male population between 1 and 4 y.o. Population
M_5 Male population between 5 and 9 y.o. Population
M_10 Male population between 10 and 14 y.o. Population
M_15 Male population between 15 and 19 y.o. Population
M_20 Male population between 20 and 24 y.o. Population
M_25 Male population between 25 and 29 y.o. Population
M_30 Male population between 30 and 34 y.o. Population
M_35 Male population between 35 and 39 y.o. Population
M_40 Male population between 40 and 44 y.o. Population
M_45 Male population between 45 and 49 y.o. Population
M_50 Male population between 50 and 54 y.o. Population
M_55 Male population between 55 and 59 y.o. Population
M_60 Male population between 60 and 64 y.o. Population
M_65 Male population between 65 and 69 y.o. Population
M_70 Male population between 70 and 74 y.o. Population
M_75 Male population between 75 and 79 y.o. Population
M_80 Male population older than 80 y.o. Population
F_0 Female population between 0 and 12

months
Population

F_1 Female population between 1 and 4 y.o. Population
F_5 Female population between 5 and 9 y.o. Population
F_10 Female population between 10 and 14

y.o.
Population

F_15 Female population between 15 and 19
y.o.

Population

F_20 Female population between 20 and 24
y.o.

Population

F_25 Female population between 25 and 29
y.o.

Population

F_30 Female population between 30 and 34
y.o.

Population

F_35 Female population between 35 and 39
y.o.

Population
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F_40 Female population between 40 and 44
y.o.

Population

F_45 Female population between 45 and 49
y.o.

Population

F_50 Female population between 50 and 54
y.o.

Population

F_55 Female population between 55 and 59
y.o.

Population

F_60 Female population between 60 and 64
y.o.

Population

F_65 Female population between 65 and 69
y.o.

Population

F_70 Female population between 70 and 74
y.o.

Population

F_75 Female population between 75 and 79
y.o.

Population

F_80 Female population older than 80 y.o. Population
child_pop Child population Population

Table 3.3: Input data variables with explanation and context.

3.3 Processing

After collecting all the data and aggregating them at the hexagonal level, we pre-process the data
through scaling and imputing missing values.

3.3.1 Data scaling

Feature scaling is an important step in data processing, and it is needed to standardize the range
of the features of the data. A technique that is robust to outliers is the robust scaler, given by:

x− Q2(x)
Q3(x)− Q1(x)

(3.1)
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where Qi is the i-th quantile. This scaler subtracts the sample median and divides it for the
sample interquartile range (IQR). The scaling happens independently on each feature with
the statistics computed with the samples of the training set. Median and IQR are then used to
scale the test set.

Typically standardization uses the mean and the standard deviation, instead of the median
and IQR. However, these two quantities can be negatively influenced by outliers.

3.3.2 Imputing

In Figure 3.5, we show the amount of missing values per dimension and we highlight the im-
portance of not imputing those missing values to not overestimate poverty. Now, we want to
investigate how to deal with missing values regarding the input features. An interesting way to
impute these values is through k- Nearest Neighbors [66]. For each observation that has miss-
ing values, those are obtained computing themean of k nearest neighbors (that have a value for
the missing feature) of the training set. The distance between two observations is computed
based on the not-missing features. The default distance used is the Euclidean distance, defined
in Equation 3.2.

d(x, y) =

(
n∑
i=1

(xi − yi)2
)1/2

for x, y ∈ Rn (3.2)

The features of thek-NearestNeighbors (KNN) selected canbeuniformly averagedorweighted
based on the distance. Let us observe that since for each observation and for each feature we
are taking the nearest samples that do not have a missing value for that feature, for the same
observation we may have different neighbors for different features, depending on the amount
of missing values. If the number of samples with a feature available is less than k and defining
distance is not possible, themean of the training set for that feature is imputed in the remaining
samples. While if a feature is missing in the whole training set, it is removed.

However, KNN’s cost grows with the size of the data, making it computationally expensive
for large datasets. So in that case, a substitute imputer is using the median to fill the missing
data.
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Figure 3.7: Distribution of the output variable for prevalence, 2 or more deprivations, 3 or more deprivations, depth, hous‐
ing, water, sanitation, nutrition, health and education.
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Figure 3.8: Correlation between features and response variables with correlation above absolute value 0.3.
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4
Models

Supervised learning is a part of statistical learning where the objective is to establish a relation
between a response variable and a set of predictor variables, while unsupervised learning con-
sists in finding patterns in data with no predefined response Y. We can observe the difference
between explanatorymodeling and predictivemodeling. In the first, the focus is to understand
the causal relation betweenX andY, while in the second, the goal is to predict the response start-
ing from X [67]. In this thesis, we will deal with a supervised learning problem, focusing on
predictive modeling.

Hence, we want to learn a function f : X → Y, called hypothesis function, that outputs
y ∈ Y from x ∈ X. In a supervised learning setting, we haveD = {(x1, y1), ..., (yn, xn)} that
is our training set composed by n instances i.i.d. drawn from a joint probability distribution
PX,Y. In a statistical learning framework, we want to build a model that can provide accurate
predictions on new, unobserved data from PY,X. Hence, predictive modeling can be seen as
a function estimation problem [68], where the accuracy of the function is assessed through
a loss function L(ŷ, y), that assesses the discrepancy between the the predicted value ŷ from
the outcome y. Associated to an hypothesis function, we have a risk, that is defined as the
expectation of the loss function:

R(h) = E[L(h(x), y)] =
∫

L(h(x), y)dP(x, y) (4.1)

Thus, the objective of a learning algorithm is finding the hypothesis function h∗ ∈ H that
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minimized the risk:
h∗ = argmin

h∈H
R(h) (4.2)

However, to compute the risk, the joint probability PX,Y is required, therefore what can be
done in practice is compute an approximation of it, called empirical risk, that is an empirical
estimate of the true risk of the model, where the expectation of the loss is taken with respect to
the empirical distribution P̂X,Y, that assigns 1/n to each data point (uniform distribution):

Remp(h) =
1
n

n∑
i=1

L (h (xi) , yi) (4.3)

The empirical riskminimizationprinciple [69] states that the learning algorithm should choose
ĥ ∈ H that minimizes the empirical risk:

ĥ = argmin
h∈H

Remp(h) (4.4)

By the strong law of large numbers,

lim
n→∞

Remp(h) = R(h∗), (4.5)

Hence, the objective of the learning algorithm is to solve an optimization problem. We need
to specify the hypothesis space to make the problem not ill-posed. Restricting the function
space defines a class of model, calledmodel class. These restrictions can be seen as a complexity
restriction of some kind, since most model classes impose, explicitly or implicitly, some simple
structure in small neighborhoods of the input space X.

While we choose amodel minimizing the empirical risk, the overall goal is to have the lowest
true risk, being able to perform well on new, independent data from PX,Y. Estimating a model
with as few assumptions as possible is preferable, but a too flexible model may not generalize
well to unseen data. This phenomenon is called overfitting. On the other hand, if the model is
not flexible enough to capture the complex structure of the data, it leads to underfitting.

An hypothesis function with low expected risk E[R(ĥ)] tends to generalize well. Specific to
the squared error loss, this quantity can be decomposed in terms of bias and variance. We can
visualize the trade-off between variance and bias in Figure 4.1.

• Bias: bias errors are caused by erroneous assumptions about the model space. High bias
can cause underfitting, since the model does not capture relevant relations between the
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Figure 4.1: Graph of the trade‐off between variance and bias. A model with high complexity has high variance overfits the
data and it is not able to generalize well. While a model not complex enough cannot capture the patterns in the data, and it
has high errors in the training and test data.

predictors and the response variable. The bias of an estimator ĥ ∈ H is the difference of
the expected value of the estimator at that point and the the true value:

Bias(ĥ(z)) = E[ĥ(z)]− f(z) (4.6)

• Variance: the model is too sensitive to small fluctuations in the training set. High vari-
ance may lead to overfitting and the functions also model random noise.

Var(Z) = E
[
(Z− E)2

]
= E[Z2]− E[Z]2 (4.7)

We can write the expectation of the conditional risk at x for the squared loss:

E[R(ĥ(x))] = E
[
(Y− ĥ(x))2 | X = x

]
= Noise+ Bias[ĥ(x)]2 + Var[ĥ(x)].

(4.8)

The first term is a noise term, while the other two remaining terms are bias and variance. This
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decomposition can be done for x. Hence, fromEquation 4.8, we can derive the concept of bias-
variance trade-off, that highlights the importance of selecting a model balancing its complexity.
While the mathematical decomposition holds for the squared error loss, the complexity trade-
off can be generalized also for the other losses [70].

4.1 Decision Trees

A decision tree is a non-parametric supervised learning method that can be used for classifica-
tion or regression [71]. The output is inferred by learning simple decision rules inferred from
the features. It can be seen as a piecewise constant approximation [72].

• The advantages of the model is that it is simple to understand and to interpret, and the
reasoning for the predictions can be explicitly visualized, as can be seen in Figure 4.2.
They can deal with continuous and categorical data and are invariant under monotone
transformation of the input. Decision trees capture non-linear relations between fea-
tures and response, and they perform variable selection. Moreover, the cost of predic-
tions is logarithmic in the number of training data.

• The disadvantages of thismodel is that over-complex trees donot generalizewell, leading
to overfitting (that can be mitigated with pruning). Small variation in the data can lead
to major changes in the structure of the tree and they have high variance that can be
managed through bagging or boosting. Their predictive performance is usually limited
and they lack smoothness.

Learning an optimal decision tree is an NP-complete problem [74]. Hence, in practice
heuristic algorithms such as a greedy approach, make local optimal decisions at each node.
However, these algorithms do not guarantee a globally optimal decision tree, and this can be
mitigated by training multiple trees in an ensemble learner. A decision tree can be constructed
in the following way: at the root node the best feature is selected and the training data are
divided based on a threshold. For the other nodes the feature and the threshold are selected
based on the training data that would reach that node. This procedure is repeated in a recur-
sive manner. Given the training data {xi}mi=1 ⊂ Rn, and a output vector y ∈ Rm, a decision
tree recursively partition the feature space so that sampleswith similar target values are grouped
together. Let the data at the node k be represented byDk with |Dk| = nk. Each split θ = (φ, tk)
is defined by a feature φ and by a threshold tk, and θ partitionDk inD

left
k (θ) andDright

k (θ):

Dleft
k (θ) = {(x, y) ∈ Rn ×Rm|xj ≤ tk}

Dright
k (θ) = Dk\D

left
k (θ)

(4.9)
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Figure 4.2: Example of a decision tree of the titanic dataset. The data are first split based on the sex feature, and then on
age and lastly on the number of siblings and spouses aboard. Here pruning has been applied. We can observe that the
decisions taken by the model can be intuitively explainable, making decision trees a very interpretable class of models.
[73].

4.2 EnsembleMethods

Ensemble methods are methods that combine a group of weak learners to collectively make a
final prediction. A weak learner is a learner whose performance is slightly better than random
chance. A single model may not perform so well by itself due to high bias or variance, however,
when aggregated it yields a better performance. There are twomain types of ensemble learning
methods: boosting [75, 76, 77, 78] and bagging [79], and their differences can be visualized
in 4.3. Both methods through resampling have different training sets for each classifier. Let
us note that combining multiple learners is useful if there is disagreement among them, since
if they have identical outputs there is no gain. An ideal ensemble has highly correct classifiers
that disagree as much as possible [80, 81].

• In bagging theweak learners are trained in parallel. Each classifier has a different training
set that is generated by randomly sampling with replacement the training set. Bagging is
effectivewith “unstable”methods,where a small change in thedata lead to larger changes
in the predictions, like decision trees. A method that uses bagging is random forest.

• In Boosting, the weak learners are trained sequentially. The training set of each class is
chosen based on the performance of the previous learners. At each step the training set
is built by sampling with higher probability the observation wrongly predicted at the
previous step.
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Figure 4.3: (a) Boosting: the models are sequentially built on the errors of the previous model, focusing on those predic‐
tions wrongly predicted. (b) Bagging: the models are fitted and evaluated in parallel. Image from [82].

4.3 Gradient Boosting

The gradient boosting framework was developed by Friedman and called GBM. It casts the
problem as a numerical optimization problem where the objective is to minimize the loss of
the model by adding weak learners using a gradient descent like procedure. We can visualize
the additive procedure in Figure 4.4. This class of algorithms is described as a stagewise ad-
ditive model: when a weak learner is added, the existing ones are frozen and left unchanged.
This differs from a stepwise approach, that readjusts previously entered terms when new ones
are added. Examples of the former approach are XGBoost and LightGBM, while of the latter
is Adaptive boosting (AdaBoost), that iteratively identify wrongly predicted points and it ad-
just their weights, continuing to optimize in a sequential matter until it obtains the strongest
predictor [75].

There are three main components in a gradient boosting algorithm: a loss function to opti-
mize, a weak learner and an additive model [83]. The first two depend on the type of problem
to solve and there are different options that will be later listed. The last component is an ad-
ditive model, where trees are added one at the time keeping the existing one fixed. Gradient
boosting algorithm is a iterative functional gradient descent algorithms [84, 85]. At each step,
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Figure 4.4: As the number of fitted trees additively increases to deal with the wrong predictions of the previous model, the
error decreases.

a new base-learner ϕ(x) is added to the ensemble:

fm+1(x) = fm(x) + ϕ(x) = y (4.10)

The function ϕ tries to learn the residual of the previous model fm

ϕ(x) = y− fm(x) (4.11)

Through gradient descent the model is trained to minimize any loss function (y − f(x) is the
derivative of themean square error). The newmodel gives the steepest descent in the loss func-
tion, and this is the meaning of the ‘gradient’ part in gradient boosting. The complete algo-
rithm is shown in Algorithm 4.1.
As previously said, the type of loss and type of learner can vary depending on the problem,

that can be a regression, classification or other. Wewill focus for regression loss, since the prob-
lem we want to solve is a regression problem. We can visualize the regression losses in Figure
4.5.

1. Regression :continuous variable y ∈ R

• Gaussian L2 loss:

L2(y, f(x)) =
n∑
i=1

(yi − f(xi))2
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Algorithm 4.1 Gradient Boosting

InputData setD = {(xi, yi)
p
i=1} ⊂ Rn ×R

A loss function L(·, ·) : R → R+

A base learner ϕ ∈ Φ
The number of iterationsM.
The learning rate η.

Initialize f̂
(0)

with a constant:f̂
(0)
(x) = f̂0(x) = θ̂0 = argmin

θ

n∑
i=1

L (yi, θ)

form = 1 toM

Compute the negative gradient ĝm (xi) =
[
∂L (yi, f (xi))

∂f (xi)

]
f(x)=f̂(m−1)

(x)

Fit a new base-learner function ϕ̂m = argmin
ϕ∈Φ,β

n∑
i=1

[(
−ĝm (xi)

)
− βϕ (xi)

]2
Compute step-size ρ̂m = argmin

ρ

n∑
i=1

L
(
yi, f̂

(m−1)
(xi) + ρϕ̂m (xi)

)
Shrink learning rate f̂m(x) = ηρ̂mϕ̂m(x)

Update function estimate f̂
(m)

(x) = f̂
(m−1)

(x) + f̂m(x)

end for

Output f̂(x) ≡ f̂
(M)

(x) =
M∑

m=0

f̂m(x)
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• Laplace L1 loss function:

L1(y, f(x)) =
n∑
i=1

|yi − f(xi)|

• Huber loss function, δ specified:

Lhuber(y, f(x) | δ) =

{
1
2(y− f(x))2 for |y− f(x)| ≤ δ
δ ·
(
|y− f(x)| − 1

2δ
)
, otherwise

• Quantile loss function, α specified:

Lquantile ((yi − f(xi)) | α) =

{
α(yi − f(xi)) if (yi − f(xi)) ≥ 0
(α− 1)(yi − f(xi)) if (yi − f(xi)) < 0

2. Classification: categorical variable y

• Binomial loss function
• Exponential loss (used in AdaBoost)

3. Other

• Loss functions for survival models
• Loss functions counts data (Poisson loss)
• Custom loss functions

There are several options for theweak learners that can be classified in linearmodels, smooth
models anddecision trees. Other types ofmodels, such asMarkov randomfields [86] orwavelets
[87] are used only for specific tasks.

• Linear models: ordinary linear regression, Ridge penalized linear regression, random
effect

• Smooth models: P-splines, Radial basis functions

• Decision trees: decision tree stumps, decision trees with arbitrary interaction depth
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Figure 4.5: Graph representation of the regression losses: (A) L2 squared loss function, (B) L1 absolute loss function, (C)
Huber loss function, (D) Quantile loss function. Images from [83].

• Other models: Markov Random Fields, wavelets, custom base-learner functions

4.4 XGBoost

ExtremeGradientBoosting (XGBoost) is an implementationof gradient boostingdecision tree
(GBDT) [88], that differs from gradient boosting in the implementation details. XGBoost
introduces regularization techniques to control the complexity of the trees to achieve better
performance.

obj =
n∑
i=1

L(f(xi), yi) +
K∑
k=1

Ω(f(k)) (4.12)

The first addendum of Equation 4.12 is the loss term, while the second is a regularization term
that penalizes complexity of the model [88]. To understand the Ω(·) function, let us define a
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tree f(x) such as:
f(x) = wq(x),w ∈ RT, q : Rp → {1, 2, · · · ,T} (4.13)

wherew is the vector of scores on leaves, q is a function assigning each point to the correspond-
ing leaf andT is the number of leaves. With these notations, we can define the complexity score
of a tree

Ω(f) = γT+
1
2
λ∥w∥22 (4.14)

where γ is a hyperparameter known as complexity parameter. Another technique used to avoid
overfitting is using a shrinkage parameter η, that scales the feature weights. Also row subsam-
pling and column subsampling are supported by XGBoost.

Furthermore, other advantages ofXGBoost is that it canhandlemissing values automatically,
it allows parallel processing for efficiency, and incremental training, so that the training can be
executed in different moments. XGBoost includes a randomization parameter to reduce the
correlation between trees, which is important in ensemble models. Lastly, XGBoost employs
Newton Boosting, which can be interpret as a Newton method in the function space.

Figure 4.6: XGBoost split all the nodes at a given depth before starting splitting deeper leaves. This approach differs from
the LightGBM one. Image from [89].

4.5 LightGBM

LightGBM is a free and open source GBDT framework, developed byMicrosoft [90].
The advantages are sparse optimization, parallel training, multiple loss functions, regulariza-

tion, bagging and early stopping. An important step of LightGBM is the construction of the
trees: they do not grow level-wise (row by row), but leaf-wise (best-first) [91]: choosing the leaf
that will yield the largest decrease in loss. A visualization of the two techniques can be seen in
Figures 4.6 and 4.7
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Figure 4.7: LightGBM grows trees in a best‐first way, prioritizing the nodes to split, choosing the leaves that maximize the
most the loss. Keeping fixed the number of leaves, these leaf‐wise growth algorithms tend to achieve lower losses than the
level‐wise ones. Image from [89].

LightGBM implements a highly optimized histogram-based algorithm that has advantages
in terms of efficiency and memory. Two other techniques to increase efficiency are imple-
mented by LightGBM that are Gradient-Based One-Side Sampling (GOSS) and Exclusive Fea-
ture Bundling (EFB).
GOSS is themethod to take into account that there are no native weights for data samples in

GBDT.Hence, only instances with larger gradients are kept (larger than a predefined threshold
or among the top percentiles), since they are the one that contribute the most to information
gain.
EFB is a technique to reduce the number of effective features used. In real applications, even

if there is a large number of features, the feature space is quite sparse. This fact contributes
to designing a nearly lossless method to bundle together nearly exclusive features that rarely
take nonzero values simultaneously. Hence, the dimensionality of the feature space is reduced,
speeding up themethodwithout hurting accuracy. An example of this is one-hot encoding fea-
tures. In EFB, we need to specify which features to bundle together and how to construct the
bundle. The first issue is NP-hard, so an exact solution cannot be found in polynomial time.
Hence, we aim for a good approximation algorithm, reducing the optimal bundling problem
to a graph-coloring problem [92], having as vertices the features, and adding edges if the fea-
tures are not mutually exclusive (or at least allowing a small number of conflicts). The edges
are weighted by the number of conflicts between features. Then a greedy algorithmwith a con-
stant approximation ratio can produce good results. Then we merge the features in feature
bundles, adding offsets to the original features so that they reside in different bins, and the
original features can be identified also in the feature bundles.
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5
Experiments

In Figure 5.1, we observe the methodology followed to obtain the predictions. The steps in
yellow have been explained in Chapter 3.

Figure 5.1: Diagram of the methodology pipeline. Yellow represents data collection and processing, green the modeling
section and blue validation.The red zigzag represents the steps exclusive for the modeling country per country, while the
purple dots represents those for a generalizable model.
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5.1 Metrics

The problem is a regression problem, and the outputs are bounded between 0 and 1, with the
exception of depth that is between 0 and 4. As metrics, we will consider the mean square error
and theR2.
The mean square error (MSE) measures the average of the squares of the errors. For the

empirical risk minimization principle, we can use theMSE as empirical risk, that is the average
loss on the observed data set, as an estimation of the trueMSE, that is computed on the actual
population distribution.

MSE =
1
n
∑
i=1

n
(yi − f(xi))2 (5.1)

The mean square error can be used to assess the quality of a model function. It is used for
regression problems, computing the mean distance from each point to the predicted one. In
the definition, the square part is critical to not include negative signs. A lower MSE indicates
that themodel is closer to the actual data, producing amore accuratemodel. The disadvantage
of the metric is that it heavily weighs outliers.
Another very interesting metric in regression problems is the coefficient of determination,

also calledR2, that quantifies theproportionof the variationof theoutcomepredictable through
the input features. Identifying with ȳ the mean of the observed data:

ȳ =
1
n

n∑
i=1

yi (5.2)

we define two quantities: the sum of squares of residuals SSR, and the total of squares SST.

SSR =
n∑
i=1

(yi − f(xi))2 (5.3)

SST =
n∑
i=1

(yi − ȳ)2 (5.4)

Hence, we can now defineR2 through these two quantities:

R2 = 1− SSR
SST

(5.5)

If the predicted values exactly match with the observed ones, then SSR = 0 and R2 = 1.
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While a baseline model that always predicts the mean of the observed values results in SSR =

SStot, that gives R2 = 0. However, models that have worse predictions that the baseline have
a negativeR2. Therefore, the coefficient of determination can be more intuitively informative
than other regression evaluation metrics, whose range vary.

In the Equation 5.5, we can see that the last term is the fraction of the variance unexplained
(FVU), since it compares the variance of the model’s error with the total variance of the data.

R2 = 1− FVU (5.6)

5.2 Spatial Cross Validation

If the assumption that the data are i.i.d. does not hold, then randomly splitting the data in
train-test does cause data leakage. This fact is often the case with geospatial data. The first
law of geography states that “everything is related to everything else, but near things are more
related than distant things” [93]. Features are more likely to be similar to the ones in adjacent
areas than to distant ones.

Spatial autocorrelation is used to prevent overfitting. However, this may be beneficial in
somecases, for example ifwewant tofill spatial gapsbetween the trainingdata. While ifwewant
a more generalizable model, spatial autocorrelation would lead to inflating the training data
accuracy of a potentially poormodel. This could be concerning if this model is then applied to
areas where there are no ground truth data to verify the values.

An example of the different spatial folds can be found in Figure 5.2.

5.3 Feature Importance

Tohave amore transparent and interpretableMachineLearningmodelwewant to interpret the
results in terms of overall importance of each feature. SHAP (SHaply Additive exPlanations)
is a technique based on cooperative game theory [94], to show the importance of each feature
(without evaluating the quality of it).

This approach starts from the shapley values, that are computed averaging themarginal con-
tributions of the predictions across all permutations, in a cooperative game where each feature
is a player.

The first is global interpretability, since the collective SHAP values show the positive or neg-
ative contribution of each prediction. The second one is local interpretability, where we can
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Figure 5.2: Spatial cross validation in Nigeria (for visualization purposes without the neighboring approach. The data are
split at random in train and test (where the test size is 20% of the total data), then the training data are splitted in geo‐
graphically close neighbors in 5 folds.

focus on each observation, understanding the contribution of each feature on an individual
case. Lastly, the SHAP values can be computed for any tree-based model. While the SHAP
values help provide a more interpretable model, they do not give causality information.

Nowwe can focusmore on themath behind the shapley values. Let us consider a gamewith
N players that collaborate together to obtain a score σ. The contribution of that player is the
difference in score if the others would have played without it. To understand how to compute
this concept, we can use the following notation: Π = {πi}Ni=1 the set of players, P(Π) as the
set of parts of Π. Hence, a coalition, that is a combination of player, is an element of P(Π),
and we can define the score function as σ : P(Π) → R. Hence, the shapley value φπi of a
player πi can be defined as the weighted sum of the score of games where the player was part of
the coalition minus the scores of games where she was not part of the coalition:

φπi =
∑

c∈P(Π)πi∈c

ωc(σ(c)− σ(c\{πi})) (5.7)
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and the weights are given by:

ωc = −(|c| − 1)!(N− |c|)!
N!

(5.8)

where |c| is the number of players of the coalition including πi. This methodology is computa-
tionally expensive, because it would mean retraining the model for a large number of possible
feature combinations. Hence, we can use an approximation, based on the idea that removing
one or more features from the model is approximately equal to compute the expected value of
the predictions over all possible values of the removed features. With this approximation, we
can more efficiently compute the values, that are the SHAP values.

5.4 Prediction Intervals

In a regression problem, the likelihood of a point prediction of a numeric target is very low,
hence including prediction intervals makes the predictions more robust. Predictions uncer-
tainty can be caused by lack of data quality, like noise, or quantity issues, where the true com-
plex distribution is not captured. Estimating uncertainty is essential for sensitive domains and
it can be used to build trust in decisions taken by the algorithms.

A prediction interval is an estimate of an interval in which a future observation will fall,
with a certain probability, given what has already been observed. Prediction intervals are not
the same as confidence intervals. While a confidence interval pertains to a statistic estimated
frommultiple values and expresses sampling uncertainty, a prediction interval expresses inher-
ent uncertainty in a particular data point on top of the sampling uncertainty, and is thus wider.
There is a trade-off between interval width and tolerance, i.e., the percentage of mistakes per-
missible. For the purpose of this work, we consider the 95% prediction intervals for each data
point.
Weuse aModelAgnostic Prediction Interval Estimator (MAPIE) to compute the prediction

intervals [95]. The estimator includes aleatoric and epistemic uncertainties and it is based on
the theory of conformal prediction method [96, 97, 98, 99, 100, 101, 102]. MAPIE is based
on cross validation, relying on it to obtain conformity scores on the whole training set and
perturbedmodels. These are then combined to estimate prediction intervals on new data with
strong theoretical guarantees.
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6
Results

In this chapter we are going to present the results of the experiments. We can divide the ex-
periments carried out in twomain sections. In Section 6.1, the focus is interpolating the DHS
data to obtain predictions for all the hexagons of that country, so each model will be country
specific. In Section 6.2, the objective is creating a model that we apply to all the countries in
sub-Saharan Africa, extrapolating the DHS data to the countries that do not have DHS data.

6.1 Model dependent on country

The goal of this experiment is producing predictions for the remaining hexagons for those 25
countries that have DHS surveys. Hence, we employ a separate model for each country and
for each dimension. In this experiment we implement the neighboring approach, as a way to
augment the data considering the smooth variation with each area. The test size is 20% of the
data.

We train two models, an XGBoost and a LightGBM model, for each country and for each
dimension, using spatial cross validation to select the best hyperparameters. The AutoML li-
brary Flaml, developed byMicrosoft, has been employed fixing eachmodel for hyperparameter
tuning [103], using a time budget of 10 seconds.. In Figure 6.1, we can compare the average
performance of XGBoost and LightGBM for each dimension, averaging the results obtained
in each country as they are, and weighted on the test size. We can observe that in almost all di-
mensions, XGBoost performs better than LightGBM, except for depth, nutrition, and preva-
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lence, where the performance is very similar. Sowe can conclude that XGBoost better captures
the distribution of poverty in this situation, and we will show the next results in terms of this
model.
While the average of the R2 of the different countries summarizes in one value the perfor-

mance of that dimension, it does not capture its distribution. Hence, we plot in Figure 6.2
the boxplot of the performance of each dimension in all the countries. Here we observe that
the proportion of children deprived in at least 4 dimensions has on average a performance of
R2 > 0.55, but the country’s performance are very spread out, reaching even very low results
(close to zero). In this sense nutrition and health are even worse, since the models for some
countries have a negative R2 on the test set, that means that for some countries the model is
worse than a constant model. This scores could be explained by the lack of data in these two
dimensions, that can be observed in Figure 3.5.
Now we want to disaggregate these results to analyze and compare the performance of each

individual country. We select prevalence and depth as the main dimensions and we plot their
results in a barplot in Figure 6.3. While the performance of the dimensions seen in Figure
6.1 are all above 0.4, the scores of the countries are very spread out, with the worst R2 values
obtained byMalawi and Rwanda.

We can then focus on the performance of a single country, plotting the predicted values of
prevalence and depth with the true ones. We show the results for Nigeria in Figure 6.4.
Finally we display the results for all the countries and all the dimensions in Figure 6.1 and

6.2.
The last part of the experiment is to evaluate howmuch thesemodels can generalize. Hence,

after selecting the hyperparameters in the training set for each country, we use them to retrain a
model on all thedata of the country (including also the test set), andwe test themodel separately
on each country. The performance is evaluated in terms of R2, and the results can be seen in
Figure 6.5, where negative values ofR2 are cut off at 0.

6.2 Generalizable model

In the previous section, for each country amodel was trained focused on that country, and as it
can be seen in Figure 6.5, thesemodels do not generalizewell. Hence, we use a different strategy,
creating a model trained on multiple countries. To do this, we randomly select 5 countries
(i.e. the 20% of the countries with DHS information) that we keep separate as part of the test
set. The countries considered are Angola, Burundi, Guinea, Sierra Leone and Uganda. The
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Country Prevalence 2 or more 3 or more 4 or more Depth
AGO 0.64 0.83 0.45 0.58 0.72
BEN 0.51 0.64 0.66 0.45 0.74
BFA 0.53 0.63 0.49 0.87 0.78
BDI 0.59 0.41 0.23 0.02 0.42
CMR 0.72 0.76 0.7 0.75 0.66
COM 0.4 0.27 0.5 0.13 0.42
COD 0.41 0.61 0.27 0.42 0.76
GAB 0.72 0.69 0.92 0.74 0.73
GIN 0.53 0.56 0.62 0.58 0.54
KEN 0.37 0.45 0.46 0.63 0.58
LSO 0.54 0.47 0.47 0.6 0.47
LBR 0.26 0.4 0.45 0.35 0.4
MWI 0.23 0.26 0.23 0.08 0.19
MLI 0.76 0.48 0.4 0.84 0.5
MOZ 0.64 0.58 0.56 0.8 0.62
NAM 0.76 0.59 0.9 0.75 0.72
NER 0.46 0.29 0.32 0.79 0.36
NGA 0.51 0.45 0.52 0.53 0.56
RWA 0.38 0.24 0.38 0.17 0.23
SEN 0.65 0.69 0.77 0.69 0.74
SLE 0.41 0.39 0.22 0.1 0.54
TZA 0.43 0.71 0.48 0.77 0.52
TGO 0.76 0.41 0.38 0.59 0.42
UGA 0.4 0.25 0.35 0.48 0.35
ZMB 0.55 0.45 0.39 0.52 0.4

Table 6.1: R2 scores of XGBoost model for all countries for depth, prevalence and prevalence of 2, 3, 4 dimensions.

location of these countries can be visualized in Figure 6.6. Thus, the observations of the test
set represent 19.8% of the sample size. From here, we follow themethodology shown in Figure
5.1, without the neighboring approach and imputing the missing values through the median,
since KNN is computationally expensive on large datasets. Another step to the methodology
is encoding the information about which country the hexagon belongs to through one-hot
encoding.

Furthermore, we explore how different cross validation techniques can help us to obtain a
more generalizable model. In Figure 6.7, we can observe how the data are splitted in different
folds with spatial cross validation and with the traditional (random) cross validation. With
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Country Housing Water Sanitation Nutrition Health Education
AGO 0.7 0.58 0.87 0.32 0.63 0.51
BEN 0.65 0.51 0.55 0.64 0.76 0.72
BFA 0.8 0.57 0.44 0.73 0.77 0.58
BDI 0.35 0.34 0.59 0.32 0.55 0.63
CMR 0.51 0.74 0.74 0.94 0.77 0.85
COM 0.8 0.57 0.52 0.39 0.27 0.73
COD 0.21 0.43 0.82 0.52 0.89 0.31
GAB 0.35 0.78 0.74 0.87 0.37 0.57
GIN 0.32 0.64 0.5 0.48 0.4 0.55
KEN 0.74 0.33 0.3 -0.85 0.75 0.75
LSO 0.23 0.21 0.36 0.81 0.42 0.42
LBR 0.17 0.31 0.31 0.54 0.61 0.22
MWI 0.49 0.29 0.19 0.35 0.28 0.49
MLI 0.65 0.33 0.7 0.68 0.86 0.5
MOZ 0.8 0.45 0.69 -0.02 -0.26 0.43
NAM 0.92 0.52 0.81 0.17 0.37 0.78
NER 0.36 0.3 0.43 0.55 0.39 0.28
NGA 0.24 0.35 0.51 0.56 0.53 0.74
RWA 0.25 0.35 0.5 0.5 0.09 0.53
SEN 0.36 0.73 0.62 0.62 0.74 0.49
SLE 0.22 0.6 0.55 0.2 -0.0 0.56
TZA 0.4 0.44 0.45 0.79 0.56 0.73
TGO 0.41 0.25 0.63 0.69 0.67 0.76
UGA 0.67 0.46 0.42 -0.45 0.58 0.71
ZMB 0.27 0.42 0.49 0.18 -0.41 0.51

Table 6.2: R2 scores of XGBoost model for all countries for housing, water, sanitation, nutrition, health and education.

spatial cross validation, we can observe that hexagons of the same fold are geographically close
to each other, and the folds are built so that there are almost the same number of elements in
each one of them. Whilewith the standard cross validation technique, the elements in the same
fold are spread across the whole area.

Following the insights obtained in Figure 6.1, we can see that XGBoost performs better, and
hence we employ this model, exploiting as hyperparameter tuner the Flaml AutoML frame-
work, giving 120 seconds as time budget for each dimension. The results can be found in Ta-
ble 6.3. After training and evaluating the model, we predict poverty in the whole sub-Saharan
Africa, and the results can be seen in Figure 6.8 for prevalence and in Figure 6.10 for depth.
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Dimension Spatial cv Random cv
Prevalence 0.43 0.42
2 or more 0.40 0.40
3 or more 0.28 0.27
4 or more 0.14 0.12
Depth 0.45 0.45
Sanitation 0.33 0.34
Water 0.26 0.24
Housing 0.081 0.060
Health 0.079 0.11
Nutrition 0.044 0.044
Education 0.19 0.16

Table 6.3: Comparison of results of applying spatial cross validation and random cross validation for a generalizable model.
Each model is evaluated in terms ofR2 on the test set, and the model used is XGBoost.

To facilitate downstream use of the results, we also include the prediction intervals. The pre-
dicted intervals are mapped in terms of their lengths, in Figure 6.9 for prevalence and in 6.11
for depth.

Lastly, we focus on better understanding the choice of the model, to have a less “black-box”
model and amore interpretable one. We compute the SHAP values plotted in Figure 6.12. We
can observe that the most important feature is avg_rad, that represents the nighttime light
intensity. This result agrees with the studies found in literature that use night luminosity as
a proxy for asset-based poverty [21, 22]. In the plot we can observe that low values of night
radiance have a positive impact on the outcome, thatmeans towards higher levels of prevalence.
After that, we find the critical infrastructure spatial index (CISI), indicated by africa, and we
can observe that low values of CISI positively impact the model.

An interesting insight is that the age groupswith themost impact are older groups, bothmale
and female (M_75, F_80, F_65, F_75, M_65). Commuting areas, that show how people
move and interact, are useful in predicting poverty, thuswe can observe that the amount of kilo-
meters of roads (win_roads_km_commuting) and the area (area_commuting) are important.
Also road_density results important. Other features predicted as important are: geographic
information about precipitation, such as thePalmerDrought Severity Index (pdsi), evapotran-
spiration (evapotrans) and average precipitation (precimean), elevation (elevation), veg-
etation (ndvi). Furthermore, we can find economical information such as (rwi), cell tower in-
formation such as mobile tower for 3G network (UMTS) and average signal (avg_signal), and
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lastly access to hospital (accessibility), also without motorized vehicles (accessibility
_walking_only).

The last step is to validate the results. To do so, we compare the predictions with theDHS at
a subnational. In the surveys, each observation is included with a weight, so that the weighted
aggregation is representative. Hence, we aggregate our results at a subnational level, weighting
them on the child population. We also compareMICS surveys that do not share theGPS infor-
mation. Therefore, we compare those results at a national level. In the countries where we have
both DHS and MICS surveys, we use the first since they provide more granular information.
We have MICS surveys for: Central African Republic, Côte d’Ivoire, Congo, Ghana, Gam-
bia, Guinea-Bissau, Madagascar, Mauritania, Sao Tome and Principe, eSwatini, Chad, South
Africa. The results for prevalence can be seen in Figure 6.13, while those for depth in Figure
6.14.
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Figure 6.1: Comparison of the performance of XGBoost and LightGMB in terms ofR2 on the test set across different
dimensions, averaging the results of the 25 countries with DHS information on the top, and the weighted average of the
dimensions on the bottom.
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Figure 6.2: Distribution ofR2 values for the different dimensions. We can see that nutrition and health reach really low
performance, that can be expected since they have a lot of missing values.
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Figure 6.3: Performance of prevalence and depth in terms ofR2 using an XGBoost model per each country. Malawi and
Rwanda have the lowest performance, while Namibia is among the best ones.

65



Figure 6.4: The plot compares the predicted outcomes of XGBoost with the true ones. The optimal results would be on
the diagonal. The results are for Nigeria and the dimensions plotted are prevalence (on the left) and depth (on the right).
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Figure 6.5: For each country, we tested the model trained on one country on the other ones, to see if a similar model could
be generalized. The performance are shown in terms ofR2, cutting off at 0. In the diagonal we see the performance of the
model on the test of that country.
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Figure 6.6: Visualization of the countries held out during training as part of the test set: Angola, Burundi, Guinea, Sierra
Leone and Uganda.
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Figure 6.7: On the right a visualization of spatial cross validation is shown, while on the left we can observe the effects of
standard cross validation, where the elements are picked at random. The number of folds considered is 5.
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Figure 6.8: Distribution of prevalence in sub‐Saharan Africa.
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Figure 6.9: Distribution of interval length for prediction intervals for prevalence in sub‐Saharan Africa.
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Figure 6.10: Distribution of depth in sub‐Saharan Africa.

72



Figure 6.11: Distribution of interval length for prediction intervals for depth in sub‐Saharan Africa.
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Figure 6.12: SHAP values for XGBoost model for prevalence. Here we can observe that the most important variable is
avg_rad, that represents nighttime luminosity intensity, followed by africa, that represents the critical infrastructure
spatial index. Gray represents NA values.
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Figure 6.13: State level

Figure 6.14: Caption
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7
Conclusion

More than one billion children are multidimensionally poor. A child is multidimensionally
poor if he/she is deprived in at least one dimension. The dimensions included in this inter-
nationally comparable multidimensional index are sanitation, water, housing, health, nutri-
tion and nutrition. For each dimension we have just one indicator, that is shown along with
the respective threshold and the age group considered in Table 1.1. We have equal weighting
among the dimensions to construct the index, since all rights are equally important. In this
study we focus on severe deprivations. Child poverty has negative long lasting effects on chil-
dren, and its alarming consequences havemade this the first point of the “Sustainable Develop-
ment Goals” adopted in 2015 by the United Nations member states. To “end poverty in all its
forms everywhere” it is essential to map the distribution of poverty. Studies in literature have
contributed high resolution estimates mainly for asset-based poverty and consumption-based
poverty. However, just a few focus on child poverty. It is essential to distinguish child poverty
from adult poverty, and to define it independently frommonetary poverty, since children have
different rights from adults, they should not work and earn an income. Moreover, children
constitute from 25% to 50% of the population, someasuring child poverty separately allows us
to better track how poverty evolves. Therefore, child poverty is defined as the lack of resources
needed to realize rights constitutive of poverty. These rights are the ones that depend on mate-
rial resources for their realization.

Hence, the goal of the thesis is to construct a finely-grained map and to predict for each cell
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variables regardingpoverty such as prevalence, depth, and thedifferent deprivations. Webuild a
hexagonal grid, delevoped byUber [50], where each hexagonhas on average an area of 5.16 km2.
The ground truth data derive from the DHS surveys, which have been processed to obtain a
binary indicator for each dimension on whether the child is deprived in that dimension. The
data have been aggregated at the hexagon level computing the mean. From there, we collect
georeferenced data from several data sources such as Google Earth Engine, Uppsala Conflict
Data Program, Open Street Map, Ookland Open Data, OpenCellID, Meta’s Data for Good
repository, WorldPop. A detailed description of the variables included can be found in Table
3.3. Hence, two experiments have been conducted.

1. In the first, we predict multidimensionally child poverty only in the 25 countries that
have a recent DHS survey. The data have been processed with robust scaling and KNN
imputer. A neighboring approach (explained in Section 3.1.2) has been implemented
as a way to introduce smoothness, augment the data and account for DHS location dis-
placement. For each country and for each dimension we compare the performance of
XGBoost and LightGBM, finding the first slightly more performant in the majority of
the cases. TheR2 results can be observed in Table 6.1 and in Table 6.2.

2. In the second, we build amodel to be able to generalize on the countries that do not have
DHS information. We randomly split the countries for which we have ground truth
data in training and test, and we start modeling comparing spatial cross validation and
the standard cross validation techniques. The two techniques perform similarly, with
spatial cross validation slightly better. The results can be read in 6.3. Here we do not use
the neighboring approach to have a more generalizable model, and we process the data
with robust scaling and median imputer. The model implemented is XGBoost.

To facilitate responsible downstream use of the predictions, we include prediction intervals.
The results for this model (point estimates and prediction intervals) for prevalence and depth
can be seen in the Figures 6.8, 6.9, 6.10, 6.11. Moreover, we focus on interpreting the results
using the SHAP values, since better interpretability leads to better adoption. Themost impor-
tant features can be observed in Figure 6.12. Lastly, aggregated predictions have been validated
with the DHS and MICS subnational and national values, as can be observed in Figures 6.13,
6.14.

Comparing the results between the first and the second experiment, we observe that overall
better results are achieved in the first one, and therefore themodels fill the gaps of theDHS sur-
veys. Hence, further DHS surveys in the remaining countries would improve the predictions
in those countries.
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Although localizing where poor children are is an important step towards the first Sustain-
able Goal, reducing poverty requires specific and targeted policies that vary from place to place
and that need to be supported by local authorities and by the local community. This thesis
does not cover the intricate and complex underlying causes of child poverty.
Including local knowledge and being ready to challenge our suppositions are crucial steps in

overseas studies to achieve the goal of ending poverty.
Furthermore, while an uniform hexagonal grid has its advantages, it does not differentiate

more populated places from less populated ones. Hence, this could be something to further
investigate. Moreover, it is important to reflect how standardized procedures of reporting data
may lead to systematic errors, excluding categories of children, such as street children. More-
over, a further point to investigate is differentiate the predictions on gender and age.

In conclusion, the goal of the thesis is to produce finely-grained poverty prediction of mul-
tidimensional child poverty. Different georefenced data are used to fill the missing values of
DHS surveys, used as ground truth for the estimations.
The code can be found in https://github.com/marinavicini/stc_continuing
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