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“When you grow up you tend to get told
that the world is the way it is and your

life is just to live your life inside the world.

Try not to bash into the walls too much.
Try to have a nice family life, have fun,

save a little money.

That’s a very limited life. Life can be much
broader once you discover one simple fact:

Everything around you that you call life
was made up by people

that were no smarter than you.

And you can change it, you can influence it. . .
Once you learn that, you’ll never be the same again.”

Steve Jobs
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Introduction

The present work takes into account the compactness and efficiency of Recurrent
Neural Networks (RNNs) for solving Natural Language Processing (NLP) tasks.

RNNs are a class of Artificial Neural Networks (ANNs). Compared to Feed-
forward Neural Networks (FNNs), RNN architecture is cyclic, i.e. the connection
between nodes form cycles. This subtle difference has actually a huge impact on
solving sequence-based problems, e.g. NLP tasks.

In particular, the first advantage of RNNs regards their ability to model long-
range time dependencies, which is a very desirable property for natural language
data, where word’s meaning is highly dependent on its context. The second
advantage of RNNs is that are flexible and accept as input many different data
types and representation. This is again the case of natural language data, which
can come in different sizes, e.g. words with different lengths, and types, e.g.
sequences or trees.

Having said that, it should be noted though that RNNs’ efficacy and execu-
tion time are dependent on the size of the network. In particular, these models
are often too large in size for deployment on mobile devices with memory and
latency constraints. In practice, this means that many simple NLP tasks can be
performed only by calling an external cloud server infrastructure, i.e. without
the possibility to do the computation offline.

It goes without saying mobile devices are becoming increasignly pervasive in
our everyday life, thanks to enabling technologies such as Augmented and Virtual
Reality (AR/VR) and Internet of Things (IoT ). Moreover, an always increasing
number of deep learning applications on such mobile devices are required to run
in real-time, e.g. pedestrian detection in an autonomous vehicle.

For these reasons, industry practitioners and academic researchers are asked
to design neural network models which can be stored on device (space-efficiency)
and produce fast predictions (time-efficiency) with very little performance loss
(effectiveness). This has started a new research field named model compression
by Bucilua et al. (2006), which has proposed in the recent years solutions coming
from many disciplines, including but not limited to machine learning, optimiza-
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tion, computer architecture, data compression, and hardware design.

The first objective of this work is to understand and categorize the state-of-the-
art neural network compression techniques. Most of these compression methods
have been applied Deep Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs), while only a small attention has been given to compressing RNN
architectures when solving NLP tasks.

Therefore, the second objective is to apply two different compression methods
on a multi-layer RNN architecture, which has been trained to perform a simple
NLP task, i.e. Part-of-Speech Tagging (PoS Tagging). After evaluating a naive
application of these compression methods, we will propose and evaluate more
tailored compression methods, based on the distribution of redundancy in the
LSTM architecture.

The present work is divided in two wide content areas. The first two chapters
of the thesis are a gentle introduction to NLP and Neural Networks, while the
last two chapters are entirely devoted to RNNs.

Chapter 1 gives an overview on the characteristics and challenges of natural
language data when solving NLP tasks. Moreover, an example of the typical
pipeline of feature design and feature embedding in a concrete NLP task will be
provided. A final discussion about the reasons of the success of Deep Learning in
NLP will close the chapter.

Chapter 2 provides an introduction to Supervised Learning and Feedforward
architecture, which will be useful later when considering PoS Tagging as a clas-
sification problem and RNN architectures as a specialized neural network archi-
tecture. After discussing the advantages of Multi Layer Perceptron (MLP) over
Linear Models in terms of representational power, the last part of this chapter
is devoted to optimization and regularization strategies, gradient computations
and best practices when training a neural network.

Chapter 3 presents the RNN high-level abstraction, graphical representations
(recursive and unrolled) and architectural variations (bidirectional RNNs and
deep RNNs). Finally, three concrete recurrent architectures (Simple RNN, LSTM
and GRU) will be described in details.

Chapter 4 firstly conducts a literature review on existing neural network com-
pression methods and metrics and eventually identifies four general approaches,
i.e. Matrix Factorization, Parameter Pruning, Parameter Sharing and Quanti-
zation. After that, the focus goes on an extensive description of the Universal
Dependencies (UD) dataset, which has been used for training and evaluating a
multi-layer LSTM model on a PoS Tagging task. The final part of this chapter
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presents the conclusions and take-home messages, based on the results obtained
from the different compression strategies implemented.
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Mathematical Notation

For the sake of simplicity, we keep the same mathematical notation from Goldberg
(2017):

• Matrices and vectors are represented with capital and lower case bold letters
respectively, e.g. W for matrices and x for vectors.

• Vectors are assumed to be row vectors, i.e. the d-dimensional vector x has
size 1× d.

• The i-th element of vector x is indicated as x[i].

• The element in the i-th row and j-th column of matrix W is indicated as
wij.

• The j-th element of a sequence w1:n = w1, w2, . . . , wn is indicated as wj.

• Vector concatenation of vectors x1 and x2 is written as [x1;x2].

vii





1 What is Natural Language
Processing?

Natural language processing (NLP) is a subfield of computer science, information
engineering, and artificial intelligence concerned with the interactions between
computers and human (natural) languages, in particular how to program com-
puters to process and analyze large amounts of natural language data.

The first consideration regards the definition of NLP. Jurafsky and Martin
(2008) claim that NLP cannot be defined as an independent scientific field, but
it is rather an “interdisciplinary field with many names corresponding to its
many facets, names like speech and language processing, human language tech-
nology, natural language processing, computational linguistics, and speech recog-
nition and synthesis”. In other words, the current NLP methods and algorithms
are nothing but the result of a 50-year research involving experts from linguis-
tics, computer science, electrical engineering and psychology. Given the strong
linguistic component in NLP, in section 1.1 we will present the main linguistic
challenges in common NLP tasks. These have been combined in more complex
tasks and finally deployed by the industry in successful tools that are already
part of our everyday life.

Secondly, NLP has the goal to provide computers with the “knowledge of lan-
guage”(Jurafsky and Martin, 2008). The main obstacle is the nature of the input,
i.e. natural language data, which is by definition ambiguous and variable. In
section 1.2, we will examine in details the characteristics and challenges of pro-
cessing natural language data. Moreover, we will introduce two design approaches
when selecting not only the intrinsic features (single word), but also the extrinsic
features (word in context). Note that such linguistic features have to be first en-
coded into an embedding vector, which can be then given as input to a machine
learning model (in our case a RNN). This process is called feature embedding
and it is described in details by using a concrete example on the Part-of-Speech
Tagging task.

Finally, in this chapter we will talk about the advent of deep learning models for
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1 What is Natural Language Processing?

solving NLP task. Such models are indeed able to spot patterns and regularities
in the training data and, eventually, generalize this ability to a set of previously
unseen data. In section 1.3, we will see not only the reasons behind the success
of deep learning in the NLP domain, but also the advantages of specific deep
learning models, i.e. RNNs, for some specific NLP tasks. This will give the key
ingredients for the next chapter, which will be focused on RNN models.

The reference literature for this chapter is Jurafsky and Martin (2008) regarding
the linguistic challenges in NLP and Goldberg (2017) regarding the mathematical
notation and specific terminology for NLP concepts, which will be also used in
the following chapters.

1.1 NLP in everyday life

Nowadays it is not rare to start a conversation with some virtual assistants
directly on our smartphones: “Hey Siri, what is the weather like today

in Moscow?” could be one of the first questions in the morning. In order to be
able to interact with the user, these complex systems perform several NLP tasks
and have to overcome many linguistic challenges.

The first task these systems perform is called Speech Recognition, i.e. they
should be able to traslate spoken language into a correct sequence of words. In
order to do that, they should have knowledge about how words’s sounds are
pronounced in terms of sequences of sounds. This type of knowledge is called
phonetics in linguistics.

Once the answer has been elaborated by the system, the task of Speech Syn-
thesis consists in organizing the sounds for the answer, i.e. artificially traslate
text to human speech. This ability is studied by phonology in linguistics.

Once the conversation has gone further, the user may ask “What are the

main events in the weekend?”. This type of question assumes that the
dialogue system keeps track of previous parts of the discourse, i.e. we are inter-
ested in the events in the city of Moscow. In NLP this task is called Coreference
Resolution.
Another very likely possibility is that the user’s question may be ambiguous,

i.e. there are many meanings which can be attributed to the same word. “Where

can I eat a pizza with friends?” has a very different meaning from “Where

can I eat a pizza with salami?”, even tough they differ in only one word.
Here lies the ambiguity of human language, which is solved by Disambiguation
tasks. One example of lexical disambiguation in NLP is Part-of-Speech (PoS)
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1.2 Data Preprocessing in NLP

Tagging, which tags each word with a particular part of speech (e.g. noun, verb,
adjective etc.). 1 We will see more about PoS Tagging task in section 1.2.
These are only some examples of the numerous NLP tasks currently studied by
research and industry practitioners. A common pattern in NLP is that simple
(but not trivial) tasks, e.g. PoS Tagging, are used to solve more complex tasks,
e.g. Coreference Resolution. In the next sections we will explore the whole
pipeline of natural language data preprocessing, which is a preliminary step in
all NLP tasks.

1.2 Data Preprocessing in NLP

According to Goldberg (2017), human (natural) language data is very challenging
from a computational point of view, since it is highly discrete, compositional
and sparse.

The property of discreetness regards the nature of input (symbols), which are
not necessary related to the meaning of the word itself. As an example, consider
image data: there exist some filters (i.e. mathematical operators) to convert an
image from color to greyscale. The same continuous relationship cannot be found
between words red and grey.

Having said that, the meaning of individual words and the relationship between
different words can be found by looking at the composition (sequence) of words
in a sentence, in a paragraph or even in the whole document. This arises the
issue of long-range dependencies between words in a document, which led to the
success of RNNs for some specific tasks, e.g. Language Modeling (see section 1.3).

All in all, human language is sparse: it is highly variable, i.e. there are poten-
tially infinite ways to combine words. Moreover, it is hard to generalize, which is
the final goal of all machine learning models.

In the next section we will see firstly the design approaches to select the relevant
features according to the NLP task. Moreover, it will be presented an overview of
the mathematical methods used to convert linguistic features into an embedding
vector x.

Feature Design for NLP Problems

The process of feature selection (also called feature engineering) is one the most
crucial and, at the same time, delicate in any machine learning task. The NLP

1Hereafter we assume that the tokenization task, e.g. separating words from punctuation, has
been already performed
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1 What is Natural Language Processing?

community has tried to design relevant features for textual data, by looking at
the properties of natural language data.

Disclaimer Before starting the discussion on feature design in NLP, here is an
important disclaimer to the reader.

Textual data can come in different forms and sizes: the typical hierarchical
structure is document, paragraph, sentence, word and finally character. A typical
option is to consider word-level models, i.e. the input is a sequence of n words
(w1, . . . , wn). In section 3.4, we will see an alternative character-level model for
RNNs, i.e. the input is a sequence of N characters (c1, . . . , cN).

Intrinsic vs. Extrinsic Features The main idea for feature selection in NLP is
to divide the source of information into two categories: intrinsic features (word-
dependent) and extrinsic features (context-dependent).
Intrinsic features analyse each word individually, i.e. they do not carry any

information about neighbor words. In PoS Tagging task, for example, some useful
intrinsic features are prefixes, suffixes and orthographic shape. For example, if
an English word’s suffix is ing, then it is very likely a present-continuous verb.

However, as we explained in section 1.1, human natural language is by definition
ambiguous and variable. This means that typically the meaning of a word is
not exclusively word-dependent, but its interpretation is also context-dependent.
Having said that, extrinsic features typically focus on the close neighbors of wj,
e.g. a window of k words to each side, centered in position j.
This window-approach is useful to model sequence data because it takes into

account the relative position of the words. However, in NLP community is it
well-known that “sentences in natural language have structures beyond the linear
order of their words. The structure follows an intricate set of rules that are not
directly observable to us”(Goldberg, 2017).
In particular, fixed-sized windows are not able to model long-range dependen-

cies, e.g. a word at the beginning of a sentence is linked with a word at the
end of the sentence. This behavior is actually very common in human language.
Therefore, some alternative models have been proposed: for example, Bidirec-
tional Recurrent Neural Networks (biRNNs) presented in section 3.4 provide a
window with flexible and adaptive size.

Directly Observable vs. Inferred Linguistic Properties Another convenient
feature categorization in NLP is between directly observable and inferred linguistic
properties.

4



1.2 Data Preprocessing in NLP

The first set of properties is derived directly from the input, by following some
predefined algorithmic procedures, which typically involve counting operations,
e.g. word frequency in the bag-of-words (BOW) approach (see section 1.2), and
boolean operations, e.g. word position in a sentence. Other notable examples
are lemmatization and stemming, which are both governed by linguistically-
predefined rules and thus may not produce an appropriate output in all contexts.

The second set of properties is based on well-known concepts in linguistics, e.g.
word classes (e.g. PoS tags), morphology, syntax and semantics. In practice, the
results obtained from some of these specialized NLP tasks, e.g. PoS tags, are first
combined and then used as predictors for solving more sophisticated classification
tasks.

Human vs. Automatic Feature Design The process for getting such human-
designed features can be subject to error and is time-consuming, since it requires
specialized expertise in the linguistics field.

This approach to feature design is actually in contrast with the dominant trend
nowadays in NLP. In fact, deep learning practitioners claim that neural network
are able to automatically represent these linguistic concepts in the intermediate
layers of the network. This aspect will be further discussed in section 1.3.

Feature Embedding: from Linguistic Features to Embedding
Vectors

In the previous section we have discussed the popular approaches when deciding
which linguistic features actually carry useful information for solving our specific
NLP task.

The next step is to represent each of the k liguistic features fi (sparse
sequence of discrete symbols over a vocabulary V ) into an embedding vector
v(fi)

2 (dense and with fixed size d).

The resulting embedding vectors v(fi) can be later combined (either by con-
catenation, summation or mix of both) into an input vector x using a feature
function φ (·). Now x is a well-defined mathematical object and can be later
given as input to other machine learning models, e.g. neural networks.

2Note that v(·) is a function operator. This is the reason why we will not use bold notation
for embedding vectors, but instead refer to them using the functional notation v(fi).
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1 What is Natural Language Processing?

One-hot Encodings

The first and most elementary way to econde textual data is the Bag-of-words
(BOW) representation, which is widely used for document classification.

The main idea of BOW is to characterize a document by the words contained in
it, i.e. think about indicator functions (which words are present in the document).
The BOW representation does not take into account the order of the words.

For example, if we take the document s1 =“My name is John Smith” over a
vocabulary V of 10,000 items, s1 will be represented by a very sparse 10,000-
dimensional vector in which 5 elements have non-zero entries (in s1 all words are
different3).
Following this representation, if word name has for example position 7332 in

V , then it is mapped into a 10,000-dimensional one-hot vector, where the only
non-zero entry is in position 7332.

One of the weaknesses with such encoding scheme is that features are treated as
fully indipendent from one another, e.g. the dissimilarity between words orange

and lemon is the same as the one between orange and name. Moreover, from
a computational point of view, high-dimensional and sparse vectors are not easily
handled by neural networks.

Dense Econdings

A more convenient representation of any linguistic feature fi is the embedding
vector v(fi), which is dense (not sparse) and has fixed size d� |V |.

It can be easily shown that this representation is actually related to the one-hot
econding seen before. Let fi be the one-hot encoding of the linguistic feature fi,
i.e. a |V |-dimensional vector. If we stack (vertically) the d-dimensional embed-
ding vectors v(fi), we obtain the embedding matrix E with dimension |V | × d.
Now we can establish the equality v(fi) = fiE, i.e. we select the i-th row of E.
The main benefit of such dense representation is the generalization power.
Take as an example the Named-entity Recognition (NER) task. Our goal is to

correctly identify and classify the named entities, e.g. London, Rome, James

Cameron, Federico Fellini, etc. It may happen that in our training set we
have observed many times the words Rome and Federico Fellini, but only
few times London.
A good embedding vector will be able to tell us that London is a city, so it is
like Rome, and that James Cameron is a film director, so it is like Federico

3Note that My and my are considered as different words if capitalization has been removed
or if the capitalization status of word wj has been included in the linguistic features.

6



1.2 Data Preprocessing in NLP

Fellini. Therefore, our model will still be able to generalize, i.e. London will
be correctly labeled as a city in the sentence “James Cameron has made a

great movie in London”.

Learn Embedding Vectors

In practice, we do not learn embedding vectors v(·) for every NLP task. Instead,
we use pre-trained embeddings, which have been already trained on a huge quan-
tities of unannotated text.
The motivation behind such an approach is that words are similar if they appear

in similar context, i.e. according to the context, similar words will have similar
embedding vectors. This assumption is called the distributional hypothesis in the
NLP community.
Having said that, it should be noted that for some NLP tasks the pre-trained

embeddings are not left fixed during the network training process, but instead
they are further-tuned.
The most popular word embedding algorithms available are Word2Vec and

GloVe.

Example: Part-of-Speech Tagging

Here is an example of data preprocessing required for the Part-of-Speech Tagging
task, describing the whole pipeline from the feature design stage to the feature
embedding stage. The example is taken from Goldberg (2017).
Just to refresh memory, PoS Tagging is a lexical Disambiguation task in NLP.

The goal is to tag each word with a particular part of speech (e.g. noun, verb,
adjective etc.). Following what has been done by Goldberg (2017), the tagset
comes from the Universal Treebank Project and contains 17 tags.

Feature Design

We assume that when the classifier has to predict the tag for word wj, it has
access only to a small neighbor, e.g. wj−2,wj−1, wj+1, wj+2, and not to the whole
sentence w1, . . . , wn.
For example, immagine we want to perform PoS Tagging task on the sentence

“Tonight I will have a pizza with my friends”.
For j = 1, . . . , n, we take into account the following intrinsic features

for word wj:

• the word itself wj

7



1 What is Natural Language Processing?

• 2 and 3-letter prefix of wj, i.e. pref(wj, 2) and pref(wj, 3) respectively

• 2 and 3-letter suffix of wj, i.e. suf(wj, 2) and suf(wj, 3) respectively

• vector of boolean variables cj for wj (yes=1, no=0): word-is-capitalized,
word-contains-hyphen and word-contains-digit

We take into account the following extrinsic features for word wj:

• For t = −2,−1,+1,+2 (window of size 2)

– the neighbor word wj+t

– 2 and 3-letter prefix of neighbour wj+t, i.e. pref(wj+t, 2) and pref(wj+t, 3)

respectively

– 2 and 3-letter suffix of neighbour wj+t, i.e. suf(wj+t, 2) and suf(wj+t, 3)

respectively

– vector of boolean variables cj+t for neighbour wj+t: word-is-capitalized,
word-contains-hyphen and word-contains-digit

• For t = −2,−1 (previous 2 words)

– Predicted PoS for word wj+t, i.e. p̂j+t

Feature Embedding

The next step is to encode the linguistic features for word wj into a vector vj ,
which summarizes the information coming from word wj.
We use four different embedding functions with different dimensions4: vw(·) ∈

Rdw for words, vp(·) ∈ Rdp for prefixes, vs(·) ∈ Rds for suffixes and vt(·) ∈ Rdt for
tags.
Overall, vj can be written as a concatenation

vj =

 cj︸︷︷︸
BOOL

; vw(wj)︸ ︷︷ ︸
WORD

; vs(suf(wj, 2)︸ ︷︷ ︸
2−SUFF

; vs(suf(wj, 3)︸ ︷︷ ︸
3−SUFF

; vp(pref(wj, 2)︸ ︷︷ ︸
2−PREF

; vp(pref(wj, 3)︸ ︷︷ ︸
3−PREF


and has dimension

vj ∈ R

BOOL︷︸︸︷
3 +

WORD︷︸︸︷
dw +

SUFF︷︸︸︷
2ds +

PREF︷︸︸︷
2dp .

4This is an example where d can change for different feature types
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1.2 Data Preprocessing in NLP

For example, the information for the word pizza can be summarized in the
vector

vpizza =

(0, 0, 0)︸ ︷︷ ︸
BOOL

; vw(pizza)︸ ︷︷ ︸
WORD

; vs(za)︸ ︷︷ ︸
2−SUFF

; vs(zza)︸ ︷︷ ︸
3−SUFF

; vp(pi)︸ ︷︷ ︸
2−PREF

; vp(piz)︸ ︷︷ ︸
3−PREF


Finally, the input vector x will be the result of the concatenation of the

embedding of extrinsic features, intrinsic features and previous tags

x = φ(s, j) =

vj−2;vj−1︸ ︷︷ ︸
EXTRINSIC

; vj︸︷︷︸
INTRINSIC

; vj+1;vj+2︸ ︷︷ ︸
EXTRINSIC

; vt(p̂j−2); vt(p̂j−1)︸ ︷︷ ︸
PREV IOUS TAG


and dimension

x ∈ R

WINDOW︷︸︸︷
5

1 EMBEDDING︷ ︸︸ ︷
(3 + dw + 2ds + 2dp)+

TAG︷︸︸︷
2dt .

For example, in the sentence “Tonight I will have a pizza with my

friends”, the input vector x for the word pizza is

x = φ(s,pizza) =

 vhave;va︸ ︷︷ ︸
EXTRINSIC

; vpizza︸ ︷︷ ︸
INTRINSIC

; vwith;vmy︸ ︷︷ ︸
EXTRINSIC

; vt(p̂have); vt(p̂a)︸ ︷︷ ︸
PREV IOUS TAG

 .
Discussion

The first consideration when using such an approach regards the computation of
the vectors vj .

Since we use the same embedding function vw(·) for every word wj, we actually
have to learn only one embedding table, i.e. matrix E. Therefore, the computa-
tion vw(wj) is quite cheap, since it is performed only once and the result is reused
for different positions j. Moreover, this approach stores the information about
the relative position of the words in the sentence, i.e. some information is shared
between different input vectors x and therefore their statistical strength in the
model is increased.

The second consideration is about word-capitalization. In the previous example,
the embedding vectors for the words Tonight and tonight are different. Since
we are already take into account the capitalization of word wj in the boolean
vector cj , this information will result to be redundant in the input vector x. If
we decide to keep the vector cj , then it is better to lower-case all words in our
vocabulary and then compute the vectors vj .

9
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Another source of redundancy may be the 2 and 3-letter prefix and suffix
feature. In order to overcome this problem, one possibility is consider character-
level models, instead of word-level models. As we will see in section 3.4 with
character-level RNNs, this approach augments data granularity and is suitable
for spotting specific patterns and regularities in the words.

Finally, we should always take into account that some words, e.g. pizza,
may not be present in our vocabulary V . Such unkown words are called out-of-
vocabulary (OOV) items and they are mapped to the special symbol Unk.

1.3 The Advent of Deep Learning in NLP
It was at the end of the 20th century that NLP experienced the so-called statistical
revolution (Johnson, 2009). According to Jurafsky and Martin (2008), three main
factors determined such a big change in the field:

1. Popularity of probabilistic and data-driven models over knowledge-based
methods.

2. Steady increase of computational power allowed the deployment of commer-
cial NLP tools.

3. The rise of the Web increased data availablity and imposed the need to
develop language-based information retrieval.

Since the beginning of the 21st century, Deep Learning has dramatically changed
again NLP. According to Goldberg (2017), two main factors have determined the
success of deep learning over other machine learning models:

1. The use of the embedding layer to map textual data (discrete and sparse)
to a feature-vector (continuous and low-dimensional).

2. The flexibility of RNNs to model sequence data and consequently the aban-
don of markov assumption.

Embedding Layer and Representational Learning

The concept of embedding layer in NLP is actually an instance of a much more
general concept in machine learning: representational learning (Goodfellow et al.,
2016). In general, this concept means that a machine learning algorithm learns
not only to correctly predict the target output, but learns also how to correctly
represent the data.

10
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In the deep learning domain, such representation is learned by successive ap-
proximations (from the early layers to the last layers) of the input data. In the
last years, this feature has become very popular also in other domains and ac-
tually led to the development of specialized architectures for different tasks,
e.g. Convolutional Neural Networks (CNNs) for Image Recognition tasks and
Recurrent Neural Networks (RNNs) for NLP tasks.

Feedforward Neural Networks

The concept of representational learning can be easily understood when consid-
ering the first and simplest class of artificial neural network architectures, i.e.
Feedforward Neural Networks.

As already mentioned, specialized recurrent architectures are actually a modi-
fication of the feedforward architecture. Therefore, the key intuitions behind the
concept of representational learning can be first derived from feedfoward archi-
tecture and then generalized to the recurrent architecture. Having said that, the
goal of Chapter 2 is to introduce the reader to the key concept of representational
learning, by presenting the Multiple-layer Perceptrons (MLPs) abstraction and
its advantages compared to the traditional linear models, e.g. Logistic Regression.

The first advantage of feedforward neural networks over linear models regards
the representation power. In particular, it has been shown that MLP1(MLP with
a single hidden layer) is a universal approximator, i.e. any input can be mapped
from any finite dimensional discrete space to another.

The second advantage is that MLP architecture implements a trainable non-
linear mapping function, which is a particularly useful feature when the linear-
separability condition does not hold in the training data. This is definitely the
case in NLP, where the input is discrete and highly sparse.

Reccurent Neural Networks

So far we have seen that MLPs are excellent alternatives to the standard linear
models for classification tasks, given their ability to learn in principle any repre-
sentations of the data, regardless the nonlinearity and complexity of the input.
However, MLPs are general-purpose classification architectures and thus they
are not tailored for specific NLP tasks, e.g. Language Modeling.

For this reason, in Chapter 3 we will discuss another class of artificial neural
networks, i.e. RNN architecture. In particular, we will present the RNN high-level
abstraction, graphical representations (recursive and unrolled) and architectural
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variations (biRNNs and deep RNNs). Finally, three concrete recurrent architec-
tures (Simple RNN, LSTM and GRU ) will be presented in details in sections 3.2
and 3.3.

Compact Recurrent Neural Networks

One typical problem of deep neural networks is that their efficacy and execution
time are dependent on the size of the network. In particular, these models are
often too large in size for deployment on mobile devices with memory and latency
constraints.

In our NLP framework, this means that many simple NLP tasks can be per-
formed only by calling an external cloud server infrastructure, i.e. without the
possibility to do the computation offline.

The first objective of Chapter 4 is to understand and categorize the state-of-the-
art compression techniques already available. The goal is firstly to understand
the rationale behind each of these technique and secondly to go through the
mathematical details and implementations of the methods. In the mean time, the
second objective is to apply these compression techniques on some simple NLP
tasks (Language Modeling, Part-of-speech Tagging, Named Entity Recognition,
Chunking), in order to compare the compact model with the full model and
eventually to spot the distribution of redundancy in the RNN architecture.

RNNs and Markov Assumption

One strong prerequisite for any NLP model is the ability to take into account the
dependency structure in sequencial data, e.g. a sentence s made of w1, . . . , wn

words.
In the last decades, the traditional approach in NLP was to restrict the frame-

work and simply to condition the word wt+1 on a fixed-size (e.g. with size k) past
sequence wt−k, . . . , wt. This assumption is called k-th order Markov assumption
in probability theory and generally refers to the memoryless property of stochastic
processes.

The main issue with the Markov assumption is the nature of the input. As
we have already discussed in section 1.2, textual data is highly ambiguous and
variable. Ambiguity imposes to take into account the context of word wt+1 in a
sentence, e.g. the last k words in the sequence. At first sight, Markov assumption
fits the NLP framework. However, variability of textual data injects randomness
in the input, which consequently makes it difficult to a-priori set a proper value
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for k.
RNNs solve this issue by allowing flexible and trainable windows of arbitrary

size. This feature represented an incredible improvement in many important NLP
tasks, e.g. Language Modeling.
Having said that, simple RNNs architectures have still some issues. In a sen-

tence or in a longer text, the context and consequently the meaning of a word
does not necessarily depend only on the past words. For example, in Handwriting
Recognition task, where the goal is to convert handwritten input (noisy) to letter
codes (bits), the prediction on the target letter can be improved by taking into
account the letters coming after it.
Bidirectional Recurrent Neural Networks (biRNN) modify the training step of

traditional RNNs, by presenting two version of the input sequence (original and
reversed) to two separate RNNs. The final prediction is based on both RNNs
outputs. The details are discussed in section 3.4.

Research Areas

Two promising research areas in the deep learning and NLP domains are Multi-
task Learning (MTL) and Semi-supervised Learning.
MTL has the goal to improve the performance in a given NLP task, by com-

bining the information from other NLP tasks. This approach is motivated by the
intimate relationship between NLP tasks, as already seen in section 1.1.
Semi-supervised Learning wants to improve the accuracy on one task, by ex-

ploting data which have been annotated or unannotated for other tasks. Data
annotation is unfortunately a very delicate, costly and time-consuming process.
MTL and Semi-supervides Learning will not be futher discussed in this work.
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Nowadays, it is extremely popular to see feedforward neural networks in many
machine learning applications both at academic and industrial scale. As already
mentioned in the previous chapter, this increase in popularity led to the devel-
opment of specialized architectures for different tasks, e.g. Convolutional Neural
Networks (CNNs) for Image Recognition tasks and Recurrent Neural Networks
(RNNs) for NLP tasks.

The aim of this Chapter is to take a conceptual step back, before going into
the details of RNNs and their applications to NLP tasks.

In section 2.1 we will review the key concepts behind supervised learning algo-
rithms, which are one of the most used in several machine learning applications.
The theorethical concepts of hypothesis class and inductive bias will be presented
together with a simple example of parametric supervised learning algorithms, i.e.
Linear Models. This will introduce the limits of linear models and so the need to
perform nonlinear transformation on the input, when dealing with linearly non
separable data. Three different startegies will be presented, which will eventu-
aly lead to the choice of Multi Layer Perceptrons (MLPs) due to their univerisal
representation power.

In section 2.2, after describing the differences between recurrent and feedfor-
ward architectures, we will mathematically define Artificial Neuron, Single Layer
and Multi Layer architectures. Moreover, it will be introduced the concept of
activation function and representation power in neural networks.

The last section of this Chapter is devoted to the design choices which have
to be made when training a neural network. The largest difference between lin-
ear models and neural networks is that the neural network nonlinearity causes
most interesting loss functions to become non-convex. Therefore, the optimiza-
tion process is iterative and gradient-based and usually requires computing the
gradients of complicated functions. The popular algorithm is Backpropagation
and its implementation is usually based on the Computation Graph Abstraction.
This algorithm will be extended to RNNs, where it will be called Backpropagation
through time.
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The neural network’s notation and figures of this chapter are taken from Gold-
berg (2017). The exposition of the main ideas from machine learning and neural
network’s training are inspired by the work of Goodfellow et al. (2016).

2.1 Supervised Learning

Consider a functional dependency that maps points from an input space X ∈ Rdin

to an output space Y ∈ Rdout .
In a typical supervised learning task we are given a training set T of n input-

target pairs (xi,yi), i.e.

T = {(xi,yi) : xi ∈ X,yi ∈ Y and i = 1, . . . , n} .

The goal of supervised learning is to define a mapping f and produce a prediction
ŷ = f(x), which correctly predicts the true output y.

When dealing with classification problems, the input space X is divided into K
subsets X1, . . . , XK ∈ X such that Xi ∩Xj = ∅ for all i, j = 1, . . . , K and i 6= j.
Now the task is to assign a given input vector x to the subset it belongs to.
The basic form of any classification task is the binary classification, where there

are two sets X1, X2 ∈ X such that X1∩X2 = ∅ and we want to determine whether
the input vector x belongs to X1 or X2. In this case, the training set is formaly
defined as

Tbinary = {(xi, yi) : xi ∈ X, yi ∈ {−1,+1} and i = 1, . . . , n}

with the two subsets X1 and X2 labelled by +1 and −1, respectively.

Linear Model and Nonlinear Input

It goes without saying that the set of all possible functions f is extremely large.
What is tipically done in practice is to restrict our search only to some families of
functions f , called hypothesis classes, where all the elements in this family share
some propreties, e.g. parametric supervised learning algorithms.
This is the case of Linear Models, which come in the form

f(x; Θ) = xW + b

x ∈ Rdin ,W ∈ Rdin×dout , b ∈ Rdout

Θ = W , b
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Figure 2.1: XOR function: green crosses belong to class -1, while blue circles
belong to class +1.

and we assume that output y can be represented as a linear combination of inputs
x.
For example, in binary classification the linear model assumes that there exists

a hyperplane which can perfectly separate the two set of pointsX1 andX2, i.e. the
linear separability condition holds. In machine learning, this type of assumptions
on the model are called inductive bias.
A simple example where the linear assumption is not verified is the XOR prob-

lem. The XOR function is defined as

XOR(0, 0) = −1

XOR(1, 0) = +1

XOR(0, 1) = +1

XOR(1, 1) = −1

and is graphically represented in Figure 2.1.
In order to make linear models able to represent nonlinear functions of x, one

could apply the linear model to a trasformed input φ(x), where φ(·) is a nonlinear
function.
The question now is how to choose a suitable φ:

1. Use a very generic φ. This is the solution generally proposed by kernel
methods, where x is projected into a high-dimensional (even infinite) space
φ(x), where the linear model can fit well the training data. The main issue
with such an approach is the poor generalization ability of the model.

2. Use a manually-designed φ. This approach belongs to the past and is
definitely not suitable for modern machine learning applications, since it
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Figure 2.2: Feedforward (left) and Recurrent (right) architecture.

is highly dependent on the dataset and does not allow transfer learning
between domains.

3. Use a trainable φ. This is the case of feedforward neural networks and
it represents the core of representational learning. In this case the final
prediction ŷ is based on two steps: the neural network first learns φ from
a broad class of functions and then it maps φ(x) to the desired output
ŷ. As we saw in the previous chapter, representational learning means
that a machine learning algorithm learns not only how to correctly predict
the target output y, but it learns also how to correctly represent the data
through φ(x).

In the next sections we will see in detail the Multilayer Perceptron architecture
and some general ideas about neural network training.

2.2 Feedforward Architecture

Artificial Neural Networks (ANNs) have appeared in the past in different archi-
tectures and related propreties, according to the task they were designed to solve.
The main distinction in ANNs regards the presence or not of cycles in their graph.

ANNs with cycles (see Figure 2.2 on the right) are called Recurrent Neural
Networks (RNNs) and are dealt with in Chapter 3. ANNs without cycles (see
Figure 2.2 on the left) are referred to as feedforward neural networks (FNNs) and
are explored in this section.
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2.2 Feedforward Architecture

Figure 2.3: Single Artificial Neuron with 4 (scalar) inputs x1, x2, x3, x4.

Artificial Neuron

Using a metaphor from the biology and neuroscience field, an artificial neuron is
nothing but the node of an ANN graph. In other words, a neuron represents the
elementary computational unit of a neural network.
For example, the neuron in Figure 2.3 takes 4 scalars x1, x2, x3, x4 as input

with associated weights w1, w2, w3, w4 (not shown in the picture, but graphically
corresponding to the 4 arrows from inputs to the neuron).
The operations performed by the neurons are the following:

• Multiply each input xi by its weight wi

• Sum them up, i.e.
4∑
i=1

xiwi

• Apply a nonlinear function g (called activation function and shown as
∫
in

figure 2.3) to the previous result, i.e. g(
4∑
i=1

xiwi)

• Pass the priovious result to the output, i.e. y1 = g(
4∑
i=1

xiwi)

In ANNs neurons are connected to each other, forming the so-called neural net-
work.

Single Layer Perceptron

As a linear classifier, the simplest feedforward neural network is the single layer
perceptron, which can be written in mathematical terms as
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Figure 2.4: Multi Layer Perceptron with two hidden layers (MLP2).

NNSingle Layer Perceptron(x) = xW + b

x ∈ Rdin ,W ∈ Rdin×dout , b ∈ Rdout

Θ = W , b

and in fact coincides with the linear model introduced in Section 2.1 and therefore
has the same limitations when dealing with nonlinear input.

Multi Layer Perceptron

The limits of linear functions can be overcome by adding one or more non-linear
hidden layers in the network. The result is the Multi Layer Perceptron (MLP)
architecture.

An example of feed-forward neural network with two hidden layers (MLP2) is
represented in Figure 2.4.

More generally, a MLP2 can be mathemathically written as:
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2.2 Feedforward Architecture

NNMLP2(x) = y

h1 = g1(xW 1 + b1)

h2 = g2(h1W 2 + b2)

y = h2W 3

x ∈ Rdin ,y ∈ Rdout

W 1 ∈ Rdin×d1 , b1 ∈ Rd1 ,W 2 ∈ Rd1×d2 , b2 ∈ Rd2 ,W 3 ∈ Rd2×dout

Θ = W 1,W 2,W 3, b1, b2

Compared to the example of Figure 2.3, the network in MLP2 is now described
in terms of vectors and matrices:

• Input x and output y are vectors with dimension din and dout respectively.

• Weights and bias terms of layer l1 are stored in matrices W l and vectors bl

respectively.

• Weight wlij represents the connection from the i-th neuron in layer l to the
j-th neuron in layer l + 1.

• The activation function gl is applied element-wise.

In a multilayer perceptron architecture, neurons are arranged in layers, with
connections feeding forward from one layer to the next. The length of this chain
of connections gives the model’s depth, from which comes the word deep learning.
Input patterns are presented to the input layer, then propagated through the

hidden layers to the output layer. When layer hl in the network is the result
of a linear transformation of the input, then it is called fully-connected layer.
Other types of layers are for example convolutional and pooling layers, which are
particularly useful in immage recognition tasks.
The next parts of this section are devoted to some further discussion on the

MLP architecture.

Activation Functions

In the MLP architecture, the activation function is applied to each neuron’s
value before passing it to the output. Figure 2.5 shows some common choices of
activation functions g and their derivatives g′.

1The input layer has l = 1
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Figure 2.5: Four common Activation Functions (top) and their Derivatives (bot-
tom).

The most popular activation functions are the hyperbolic tangent and the sig-
moid functions, which are differentiable and thus allow the network to be trained
with gradient descent, as we will see in Section 2.3.

Having said that, in general the choice of g is really task-dependent. For
example, for binary classication tasks the standard configuration in the output
layer is a single unit with a sigmoid activation function.

What these activation functions have in common is their nonlinearity. This
is the reason why Multi Layer Perceptron is more powerful than Single Layer
Perceptron, since it can succesfully deal with non-linear classication boundaries
and model non-linear equations. Note that any MLP with linear hidden layers
(i.e. gl is linear for all l) is exactly equivalent to the Single Layer Perceptron,
since any combination of linear operators is itself a linear operator. Here lies the
advantage of using nonlinear activation functions: the neural network can first
learn how to correctly represent the input x at successive hidden layers and then
predict the output y, based on this new representation of x.

Representation Power

Going back to the beginning of this chapter, the goal of supervised learning is to
define a mapping ŷ and produce a prediction ŷ = f(x), which correctly predicts
the true output y.
A MLP can actually provide a wide range of different functions f to map from

input x to the desired output y. In particular, it has been proven that an MLP
with a single hidden layer containing a sufficient number of nonlinear units can
approximate “any Borel measurable function from one finite dimensional space
to another to any desired degree of accuracy” Hornik et al. (1989). This is the
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reason why MLPs are said to be universal function approximators.

From one hand, it seems that the simple MLP1 (only one hidden layer) is
already the best architecture. From the other hand, it should be noted that this
theorem states only the existence of such an universal function approximator and
does not go into the exact configuration of such MLP network, e.g. how many
units are in the hidden layer or how to set the network parameters.

In practice, when working with real-world large datasets, many computation
and optimization problems arise when training a MLP1 neural network. There-
fore, best practices in deep learning reccomend to build more complex and deep
architectures.

2.3 Neural Network Training

The training step for a neural network does not differ so much from what is
done in any other machine learning model. The parameter estimation in neural
networks is also expressed as an optimization problem, which is solved using
gradient descent. For this reason, the first part of this section will give a brief
recap of the key concepts in optimization, i.e. loss function, regularization and
gradient-based optimization.

The main difference in neural networks regards the computation of the gradient,
which is more complicated but can still be done efficiently and exactly. The
second part of this section will describe how to obtain the gradient using the back-
propagation algorithm and how to implement it using the high-level computational
graph abstraction, which is exploited nowadays by dedicated software libraries and
APIs.

The largest difference between linear models and neural networks is the non-
linearity. As we have seen in section 2.2, this represents the main advantage of
using a neural network for modern deep learning applications. However, the non-
linearity of a neural network causes the loss function to become non-convex. In
optimization theory, convexity is used to mathematically proove the convergence
of many optimization algorithms to a global minimum. When the same optimiza-
tion algorithms, e.g. Stochastic Gradient Descent, are applied to non-convex loss
functions, then there is no such convergence guarantee and the final result is sen-
sitive to parameter initialization of the network. In the last part of this section,
we will give an overview on the best practices for training neural networks, which
have emerged among deep learning practitioners in the last years.
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Training as Optimization

The majority of machine learning training algorithms can be seen as optimization
problems. More specifically, an optimization problem consists of maximizing or
minimizing a real function f(x) by systematically choosing input values x from
within an allowed set and computing the value of the function.

Formally, we consider problems of the following form:

min f(x)

x ∈ Rn

where f : Rn → R is a continuous function in Rn.
We tipically define optimization problems by minimizing f(x). Maximization

of f(x) can be obtained by applying the minimization algorithm on −f(x).
Generally, f is called the objective function. In machine learning, f is usally

indicated as L and is called cost function, loss function, or error function.
The minimizer is the value of x which minimizes or maximizes f and it is

indicated as
x̂ = argmin f(x).

In deep learning x are the parameters of the network and are indicated as Θ.

Loss function

In machine learning, the loss function L(ŷ,y) measures the quality of the predic-
tion ŷ given the true expected output y.
The loss function should be bounded from below, with the minimum attained

only for cases where the prediction is correct. The parameters of the model Θ

are then set in order to minimize the loss L over all training examples.
In practice, given the training set input-target pairs (x1:n,y1:n), a mapping

function ŷi = f(xi; Θ) and a per-instance loss function L(ŷi,yi), we tipically
define the overall loss

L(Θ) =
1

n

n∑
i=1

L(ŷi,yi) =
1

n

n∑
i=1

L(f(xi; Θ),yi)

as the average of the loss functions over all training examples.
Now the goal of the training algorithm is to optimize the quantity L(Θ) w.r.t.

parameters Θ. In neural networks, the optimal value of the parameters will be
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therefore
Θ̂ = argmin

Θ
L(Θ). (2.1)

In theory, the loss function can be any function mapping two vectors (ŷ and
y) to a numerical score (scalar). However, in practice we choose loss functions
for which the gradients can be easily computed.
We list here some convex loss functions that are commonly used for NLP clas-

sification problems with neural networks.

Hinge Loss Function In binary classification problem the ouput of the neural
network is tipically the scalar ỹ, but the target output y belongs to the set
{−1,+1}. The prediction rule is then

ŷ = sign(ỹ) =


+1 if ỹ > 0

0 if ỹ = 0

−1 if ỹ < 0

and the hinge-loss function is defined as

Lhinge(binary) (ỹ, y) = max {0, 1− y · ỹ} =| 1− y · ỹ |+ .

Note that the loss is 0 when the prediction is correct, i.e. if y and ỹ share
the same sign and |ỹ| > 1. The loss is linear when the prediction is not correct.
Compared to the 0-1 indicator function, the hinge loss function provides a relative
tight, convex upper bound.
When we deal with multi-class classification problems, y is a K-dimensional

one-hot vector which contains the correct output class t among the K possible
classes.
The output of the classifier is contained in the K-dimensional vector ỹ =

(ỹ1, ỹ2, . . . , ỹK). The prediction rule is then

ŷ = argmax
i∈{1,...,K}

ỹi

and the hinge-loss function is defined as

Lhinge(multi-class) (ỹ,y) = max {0, 1− (ỹt − ỹk)}

where t is the correct output class and k = argmax
i∈{1,...,K}:i 6=t

ỹi is the class with the
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highest predicted score such that k 6= t.
The hinge loss function is generally used for hard decision classification rule,

i.e. when we are interested only in determining the most likely class, without
quantifying our degree of belief on our decision.

Moreover, the binary hinge class is both continous and convex, but it is not dif-
ferentiable at y ·ỹ = 1. This does not allow the use of gradient-based optimization
methods, which require differentiability over the entire domain.

Cross-Entropy Loss Function In classification problems, cross-entropy loss func-
tion is able to model class membership probability.

Let ỹ be the model’s output and y ∈ {0, 1} be the correct class2. We first apply
the sigmoid function to the model’s output ỹ

z = σ (ỹ) =
1

1 + e−ỹ

where z ∈ [0, 1]. The transformation σ(ỹ) can be interpreted as the conditional
probability P (y = 1 | x).
The prediction rule is then

ŷ =

0 if z < 0.5

1 if z ≥ 0.5

and the cross-entropy loss function is defined as

Lcross−entropy(binary)(z, y) = −y log z − (1− y)1 log(1− z).

Similarly to the hinge loss, the cross-entropy loss function can also be applied to
a multi-class classification task.

When we are interested in modeling the probability of the scores, y is assumed
to be a K-dimensional vector which contains the true multinomial distribution
among the K possible classes. In such case, we apply the softmax function to
each element of the network’s output ỹ = (ỹ1, ỹ2, . . . , ỹK)

zi = softmax(ỹi) =
eỹi

K∑
j=1

eỹj

.

Now the vector z can be interpreted as a probability distribution, since its ele-

2This is just a transformation of the previous yold ∈ {−1, 1}. Now ynew = 1+yold

2 ∈ {0, 1}

26



2.3 Neural Network Training

ments are positive and sum to 1. The cross-entropy loss function is then

Lcross−entropy(multi−class)(z,y) = −
K∑
i=1

yi log(zi).

Regularization

The main issue of Equation 2.1 is that it minimizes the loss function by taking
into account only training data. In the long run, this can cause the model to
be very precise on training data (training error), but have poor performance
on previously unseen data (generalization error). The larger the gap between
training and generalization error, the more our model is overfitting training data.
Regularization is any modification we make to a learning algorithm that is

intended to reduce its generalization error but not its training error.
Back to Equation 2.1, we can modify it by adding the regularization term

R (Θ), which quantifies the “complexity” of the model.

Θ̂ = argmin
Θ
L(Θ) + λR(Θ) (2.2)

In the formula above, we have included also a hyper-parameter term λ, which
controls the amount of regularization, i.e. how much simple models have to be
preferred over complex ones. The value of λ is set manually and depends on the
model performance and training/test set.
Now the optimization algorithm will choose the parameter values Θ which have

not only low loss L (Θ), but also low complexity R(Θ).
Talking about the neural network framework, what the regularizer R does in

practice is to quantify the networks’ complexity by first computing the norms of
the weight matrices W and then choose parameters Θ̂ whose matrices have low
norms. The typical regularization strategies involve L2 norm, L1 norm or Elastic-
Net, which combines the previous two. Another common choice of regularization
for neural networks in dropout, which will be discussed in Section 2.3.

Gradient-Based Optimization

The optimization methods which are tipically used to train any machine learn-
ing model, i.e. solve the optimization problem in equation 2.2, involve gradient
computation.
Gradient-based optimization methods can be traced back to Cauchy and rep-

resent the simplest way to minimize a differentiable function g on Rn. Mathe-
matically speaking, the main idea behind gradient descent schemes is to find the
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2 Feedforward Neural Networks

local minimum of g by proportionally moving from the current point xk towards
the opposite directions of the gradient ∇g(xk).

When applying gradient descent methods to neural network training, there
exists many algorithmic variants which have been developed with the goal to
speed up the training phase.

The common point of all these methods is that they compute just an estimate
of the overall loss L. Indeed, they differ on how error estimate is computed, and
how update step is defined.

It should be noted that due to the nonlinearity of neural networks, the objective
function L is not convex and so gradient-based methods may find solutions which
are not global minima. Still, gradient-based methods represent most popular
choice for neural network training.

Gradient Computation in Neural Networks

The main peculiarity for neural network training regards the gradient computa-
tion, which is done automatically and efficiently by the Backpropagation algo-
rithm and is implemented in practice by the Computational Graph Abstraction.
Indeed, this algorithm is nothing but a fancy name for methodically comput-
ing the derivatives of a complex expression using the chainrule, while caching
intermediary results.

Computational Graph Abstraction

Theoretically, the gradient computations of thousands of parameters in a neural
network can be first done by hand and then implemented in code. However,
when deploying or testing a neural network for practical applications, it is much
more convenient to use automatic tools, which minimally reduce the effort and
the probability of errors.

This is the reason why the computational graph abstraction has become the
standard way to build any neural network, evaluate prediction ŷ for given input x
(forward pass), and compute gradient for parameters Θ with respect to arbitrary
scalar loss L (backward pass).
A computation graph is nothing but a way to represent arbitrary mathemat-

ical computations as a graph. There exists many different ways of formalizing
computations as graphs. Following what has been done by Goldberg (2017), in
the present work a computation graph is a directed acyclic graph (DAG) and it
is connected.
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2.3 Neural Network Training

Figure 2.6: Computational Graph for a MLP1 taking three words as input.

Nodes correspond either to mathematical operations (ovals), e.g. SUM, either
to model parameters (shaded rectangles), e.g. weight matrix. Nodes are con-
nected by edges (arrows) and the overall graph structure determines the order of
the computations. The inputs of the networks are considered as constants and
are drawn without any surrounding node.

In Figure 2.6, we see the computation graph for a MLP with one hidden-layer
and a softmax output transformation. This MLP takes as input three words
(e.g. the black dog), converts them into the embedding vector x (using the
embetting matrix E as explained in the previous chapter in section 1.2) and
predicts the part-of-speech tag for the third word (noun is the expected output
for the word dog). Formally the computation graph in Figure 2.6 is defined as
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2 Feedforward Neural Networks

NNMLP1(x) = y

h1 = tanh(xW 1 + b1)

y = softmax(h1W 2 + b2)

x ∈ R150,y ∈ R17

W 1 ∈ R150×20, b1 ∈ R20,W 2 ∈ R20×17, b2 ∈ R17

Θ = W 1,W 2, b1, b2

The computation graph also includes one more node pick, which is responsible
for selecting the entry corresponding to the true part-of-speech tag (noun in this
example) of the output vector y, which contains the probability distribution over
17 part-of-speech tags (noun is in position 5).

Regardless the apparent complexity of this example, the process for building
computation graph is actually very quick and easy by using dedicated software
libraries and APIs.

Best Practices for Training Deep Models

Training a neural network is a very hard task from an optimization point view.

Firstly, the optimization problem is not convex and so optimization theory does
not guarantee us convergence to a global minimum. What happens in practice is
that the optimization algorithm produces different results for different (random
and small) parameter initialization settings. For this reason it is common to
train in parallel different neural networks with different parameter initializations
and eventually choose the one which has the best performance of the development
set. This procedure is known as random restarts. This implies that since different
models have been trained, the final prediction on a specific task can be now based
on the model ensembles, e.g. using the rule of majority vote.

Another issue with very deep models is the number hidden layers and param-
eters, which causes problems when computing the gradient at the first hidden
layers. In this case the backpropagation algorithm suffers from either vanishing
(almost 0) or exploding (very large value) gradient.

It can also happen that layers with tanh and sigmoid activations become satu-
rated, i.e. these neurons produce output values which are all close to 1 and so the
gradient becomes very small. This has a negative effect on the network training,
since the saturated neuron is not contributing to the learning algorithm. At this
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point one could change activation function, e.g. ReLu, which prevents neurons
from “saturating”, but this introduces the problem of “dead” neurons.
Finally, training deep models has become challenging also from a time and

computational point of view. In modern deep learning applications not only it
is crucial to choose a fast-convergence optimization algorithm, e.g. SGD, but
also it is required fine-tune hyperparameters such as learning rate and minibatch
size. A common practice used in the deep learning community to speed up neural
network training is to use the parameter initialization of pre-trained models (e.g.
word embeddings).

31





3 RNN Models

Recurrent Neural Networks (RNNs) are specialized neural network architectures
for processing sequential data x1:n

1. As already mentioned in Chapter 2, RNNs
are a class of ANNs which present cycles in their compuational graph.
The main peculiarity of RNNs in the context of NLP is the ability to share

parameters Θ across different parts of the network. Such parameter sharing
scheme enhances not only the flexibility of the neural network, i.e. the model
can be applied to examples of different lenghts, but also the generalization ability
of the model, i.e. the model provides good results also for previously unseen
instances.
If we think about the variability of natural language data, it is extremely impor-

tant to have a flexible model which is able to recognize a particular information
regardless its absolute position in the sentence. For example, “Yesterday, it

was sunny” and “It was sunny yesterday” should be understood as sen-
tences with the same meaning regardless the position of word yesterday in the
sentence.
The first goal of this chapter (see section 3.1) is to define RNNs high-level

abstraction and to visualize RNNs graphical representation in both folded and
unfolded versions. This will then shed the light on the most popular concrete
RNN architectures, i.e. Simple RNNs (section 3.2) and Gated RNNs (section
3.3), which have been developed with the aim both to avoid vanishing gradient
problems and to model long-range dependencies. Section 3.4 will examine other
two RNN architectural variations, i.e. bidirectional RNNs and deep RNNs, which
have become popular for solving some specific NLP taks.
The high flexibility of RNNs made it possible to exploit RNNs’ output as the

input for other components in a bigger model pipeline architecture. At the end
of section 3.4, we will provide an example of RNNs used as Feature Extractor for
a PoS Tagging task.
The structure, the examples and related figures of this chapter are mostly

taken from Goldberg (2017), in order to be coherent with the notation used in
1Keep in mind the difference of notation between x[1], . . . ,x[n] (enumerating the n elements
of vector x) and x1:n (sequence of n vectors x1,x2, . . . ,xn).
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the previous chapters. A useful source for visualizing and understanding the
vanishing gradient problem in RNNs has been Graves (2012). For the sake of
clarity for Chapter 4, the notation of gated architectures has slightly changed
from Goldberg (2017).

3.1 RNN Abstraction

Let x1:n be a sequence of n vectors x1,x2, . . . ,xn, where each xi ∈ Rdin . Our
goal is to produce an output vector yn ∈ Rdout 2 using the RNN function

yn = RNN(x1:n) (3.1)

which means that a vector yi is produced for each prefix x1:i of sequence x1:n.
So, the output sequence y1:n can be expressed through the RNN∗ function

y1:n = RNN∗(x1:n)

= RNN(x1),RNN(x1:2), . . . ,RNN(x1:i), . . . ,RNN(x1:n)

= y1,y2, . . . ,yi, . . . ,yn

where xi ∈ Rdin ,yi ∈ Rdout for all i = 1, . . . , n.
Note that such formulation provides RNNs with a mathematical framework for

conditioning on the entire history x1:i when predicting yi. This is in contrast
with the traditional Markovian assumption, which assumes a fixed-size window
of past dependence and thus does not allow flexibility, which is actually required
for many NLP tasks.

Looking more carefully at equation 3.1, the RNN function operates in two steps
to produce output yi:

si = R(si−1,xi) (3.2)

yi = O(si) (3.3)

where the RNN first applies function R(·) to a state vector si−1 (containing
the history x1:i−1) and to the new input vector xi and returns as output a new
state vector si3. The second step is to apply the function O(·) to the previously
obtained state vector si and finally obtain the output yi, which is then used for
further prediction.

2The subscript n means that yn has been computed based on the whole sequence x1:n.
3Note that it is conventional to start the recursion with an initial state vector s0.
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3.1 RNN Abstraction

Figure 3.1: Recursive (top) and Unfolded (bottom) RNN abstraction.

Looking at equation 3.2, we can notice an interesting recursion

si = R(si−1,xi)

= R(R(si−2,xi−1)︸ ︷︷ ︸
si−1

,xi)

...

= R(R(. . . (R(s0,x1)︸ ︷︷ ︸
s1

,x2) . . .),xi) (3.4)

where each new state vector si is obtained as combination of the same func-
tion R(·) applied recursively to different inputs. Moreover, also the output yi is
obtained using always the same function O(·).
This recurrent formulation is the key part to understand how RNNs implement

such parameter sharing mechanism at different time steps.

The recursive formulation of RNNs (equation 3.2) is graphically represented in
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Figure 3.1 (top). On the other hand, in Figure 3.1 (bottom) we see the RNNs
unflolded formulation (equation 3.4).
It goes without saying that network’s parameters Θ are implicitely contained

in the functions R(·) and O(·). As we will see in the next sections, the different
types of RNNs actually depend on the choice of functions R(·) and O(·), i.e. on
how we design the computations inside the RNN’s node.

In a typical RNN architecture, parameters Θ and related computations can be
divided into three blocks (as shown in Figure 3.1) at each network’s node i:

1. Block U (input-state): from the input vector xi to the state vector si

2. Block W (state-state): from the previous state vector si−1 to the next
state vector si

3. Block V (state-output): from the state vector si to the output vector
yi.

Using this notation, weight matrices in the following RNN architectures will be
indicated as U ,W or V (except for subscripts and superscripts) according to the
building block they belong to. This notation will be extremely useful for Chapter
4, where we will put our focus on making RNNs compact, i.e. operating on weight
matrices with the aim to reduce the number of computations.

3.2 Simple RNN

The first concrete example of RNN architectures is the Simple RNN (S-RNN),
also known as Elman or Vanilla Network (see Elman (1990)). Mathematically,
S-RNN is defined as

si = RS−RNN(xi, si−1) = g(ai)

where ai = si−1W + xiU + b (3.5)

yi = OS−RNN(si) = si

xi ∈ Rdin , si,yi ∈ Rdout ,U ∈ Rdin×dout ,W ∈ Rdout×dout , b ∈ Rdout

Θ = U ,W , b

where g(·) is a nonlinear activation function.
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Figure 3.2: Vanishing Gradient in S-RNN (top) and LSTM (bottom).

Note first that the nonlinearity of function g allows the network to keep track
of the order of the elements in x1:n. Note also that the output yi is considered
to be equal to the state si, since further computations useful for solving the NLP
tasks (e.g. linear transformations of MLP taking as input RNN’s output) are not
considered part of the RNN network and so are not explicitely mentioned in the
RNN model’s specification above.

3.3 Gated RNNs
We have seen in section 3.1 how RNNs are extremely flexible tools for mapping
input and output sequences, since they do not make any Markovian assumption
and thus take into account contextual information when predicting yi.
However, when using standard RNN architectures (e.g. S-RNN), such theoret-

ical advantage does not exist in practice. What happens is that the influence of
a given input xi on the state vector sj , and so also on the network’s output yi,
either decays or blows up exponentially as it cycles around the network’s recur-
rent connections. In other words, the sensitivity of node j decays as new inputs
overwrite the memory state vector sj and the network forgets input xi as j � i.
This effect is graphically represented in Figure 3.2, which shows two unfolded

RNNs with S-RNN (top) and LSTM (bottom) architectures. The shade of the
network’s nodes graphically indicates the different nodes’ sensitivity yj and sj
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(j = 1, . . . 7) to the first input x1. So, the black nodes are maximally sensitive
and the white nodes are entirely insensitive. In the picture, the gate is binary, i.e.
it is either opened © or closed −. This is a simplicistic assumption, since gated
RNNs discussed below have instead differentiable gates, which make possible for
the neural network to learn them.

In the literature, this neural network’s behavior is called vanishing gradient
problem and it has been already mentioned in section 2.3 for Feed Forward
architectures.

The main intuition behind gated architectures is to provide a more controlled
access to the memory state vector si, by introducing a gating mechanism, which
is automatically learned by the neural network. In practice, as we will see in
the following subsections, gated RNN architecture get rid of the repeated multi-
plication of a single matrix W in S-RNN (see equation 3.5), which is the main
responsible for the vanishing (or exploding) gradient effect.

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) architecture has been historically the
first attempt to solve the vanishing gradient problem and to design the idea of
gating mechanism (see Hochreiter and Schmidhuber (1997)). Mathematically,
the LSTM architecture is defined as

si = RLSTM(xi, si−1) = [ci;hi]

where ci︸︷︷︸
MEMORY

= Γu︸︷︷︸
UPDATE

� c̃i︸︷︷︸
CANDIDATE

+ Γf︸︷︷︸
FORGET

� ci−1 (3.6)

c̃i = tanh (xiU + hi−1W + b)

Γu = σ (xiU
u + hi−1W

u + bu)

Γf = σ
(
xiU

f + hi−1W
f + bf

)
and hi = Γo︸︷︷︸

OUTPUT

� tanh (ci)

Γo = σ (xiU
o + hi−1W

o + bo)

yi = OLSTM(si) = hi
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xi ∈ Rdin ,yi ∈ Rdout , si ∈ R2·dout

U ,Uu,Uf ,Uo ∈ Rdin×dout ,W ,W u,W f ,W o ∈ Rdout×dout , b, bu, bf , bo ∈ Rdout

Θ = U ,Uu,Uf ,Uo,W ,W u,W f ,W o, b, bu, bf , bo

where � indicates the Hadamard Product (element-wise product) and Γ indicates
a gate.

Note that the state vector si has been splitted into two dout-dimensional vectors
ci (memory cell) and hi (output cell).

The memory cell ci is designed to keep the information from the past x1:i−1.
At each step, the new memory cell ci is computed given the new input xi as
written down in equation 3.6:

• A new candidate update c̃i is proposed.

• The update gate Γu controls how much of the candidate update c̃i to keep.

• The forget gate Γf controls how much of the previous memory cell ci−1 to
keep.

Finally, the output cell hi is computed based on the on the new ci and the output
gate Γo.

From a practical point of view, the first advantage of LSTM architecture is
that they avoid the vanishing gradient effect by introducing a gating mechanism.
When applying LTSM models for solving NLP tasks, this architecture has also the
advantage to allow the neural network to be more flexible in terms of modeling
succesfully long-range dependencies between words.

Note that there exists many variants of LSTM architecture, which slightly differ
from our definition above, e.g. peephole connection and gate-typing.

Gated Recurrent Unit (GRU)

A simplification of the LSTM architecture is the Gated Recurrent Unit (GRU)
architecture, which has been more recently introduced by Cho et al. (2014). Math-
ematically speaking, the GRU architecture is defined as
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si = RGRU(xi, si−1) = hi

where hi = ci = Γu︸︷︷︸
UPDATE

� c̃i︸︷︷︸
CANDIDATE

+ (1− Γu)� ci−1

c̃i = tanh

xiU +

 Γr︸︷︷︸
RESET

� hi−1

W + b


Γr = σ (xiU

r + hi−1W
r + br)

Γu = σ (xiU
u + hi−1W

u + bu)

yi = OGRU(si) = hi

xi ∈ Rdin ,yi ∈ Rdout , si ∈ Rdout

U ,Uu,U r ∈ Rdin×dout ,W ,W u,W r ∈ Rdout×dout , b, bu, br ∈ Rdout

Θ = U ,Uu,U r,W ,W u,W r, b, bu, br

The first simplification in GRU regards the absence of a separate memory cell ci
(in GRU ci = hi) for storing past information x1:i−1, i.e. the output is only one
state vector si = hi = ci as in S-RNN.

Secondly, GRU architecture reduces the number of gates: the update of state
si is now entirely governed by gate Γu, i.e. there is not a forget gate Γf for the
previous state si−1.

Nevertheless, the fully-gated variant introduces a new reset gate Γr, that con-
trols which parts of the previous state si−1 will be used to compute the next
candidate state c̃i. This introduces an additional nonlinear effect in the relation-
ship between past and future state.

Finally, if we compare the two presented gated architectures from the point of
view of number of parameters Θ, we find out that the LSTM architecture has

4×

din · dout︸ ︷︷ ︸
U

+ d2
out︸︷︷︸
W

+ dout︸︷︷︸
b
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parameters, while the (fully-gated) GRU architecture has

3×

din · dout︸ ︷︷ ︸
U

+ d2
out︸︷︷︸
W

+ dout︸︷︷︸
b


parameters. In other words, the GRU architecture has 25% less parameters than
the LSTM architecture, which makes GRU much more preferable from a compu-
tational point of view.

3.4 Architectural Variations

Up to this point, our focus has been put only on modifying the computations
inside the S-RNN node, but keeping the network structure as the one in Figure
3.1. However, in RNN literature there exists many architectural variations, which
propose alternative connections between input, state and output vectors.

In this section we explore deep-RNN (dRNN) and bidirectional-RNN (biRNN)
architectures. We will also provide a concrete example of a character-level biRNNs
used for solving a PoS-Tagging task, which has been already explored in section
1.2.

Deep RNNs

The analogous of MLP for feedforward architectures is deep-RNN for recurrent
architectures.

The idea of dRNNs is to stack k RNNs (RNN1, . . . ,RNNk) such that the input
of RNN1 is x1:n, while the input of RNNj (j = 2, . . . , k) is the output of the
previous RNN, i.e. yj−1

1:n
4. The final output is then yk

1:n.

Many architectural design of dRNNs exist in the literature and usually are
task-specific. For example, in the end of this section we will see an example of a
deep bidirectional RNN (deep-biRNN), which is used in the intermediate step of
a pipeline for solving PoS tagging task.

The main advantage of using a dRNN is the representation power: we can
think of the lower layers in the hierarchy shown in Figure 3.3 as playing a role in
transforming the raw input x1:n into a representation that is more appropriate,
at the higher levels of the hidden state.

4The superscript indicates the j-th layer.
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Figure 3.3: Deep-RNN with 3 layers.

Bidirectional RNNs

All RNN architectures we have considered so far process past information x1:i−1

and present input xi to predict output yi. However, there are many sequence
labelling tasks where it may be useful to access both past and future information.
For example, in the handwriting recognition task, the correct classification of the
current written letter may depend not only on the previous letters, but also on
those coming after it.

Having said that, the main idea behind biRNNs is to present each training
example xi forwards and backwards to two separate recurrent hidden layers,
both of which are connected to the same output layer. This structure provides
the output layer with complete past and future context for every point in
the input sequence, without displacing the inputs from the relevant targets.

In practice, for every input position i, biRNNs keep in memory two separate
states sfi (forward state) and sbi (backward state), which are generated by two
separate RNNs, i.e. RNNf and RNNb respectively. Note that the two RNNs run
forward and backward indipendently of each other.

Similarly to the high-level definition of RNNs (see equation 3.1), the output
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Figure 3.4: Bidirectional RNN for s = “the brown fox jumped.”.

yi ∈ R2×dout is obtained in biRNNs as

yi = biRNN (x1:n, i) (3.7)

=
[
RNNf (x1:i) ;RNNb (xn:i)

]
=

[
yf
i ;yb

i

]
=

[
Of
(
sfi

)
;Ob

(
sbi
)]

where the output yi is the concatenation of the vectors yf
i and yb

i , which are
obtained from the output functions Of and Ob of the two RNNs.
The entire sequence y1:n is mathematically defined using the biRNN∗ function

as

y1:n = biRNN∗ (x1:n)

= biRNN (x1:n, 1) , . . . , biRNN (x1:n, n)

= [yf
1 ,y

b
1], . . . , [yf

n,y
b
n]

= y1, . . . ,yn

which is graphically represented in Figure 3.4.

Character-level biRNN for PoS Tagging

This example is taken from Goldberg (2017), but it is very useful to extend the
example on PoS tagging (see section 1.2) where we discussed about the Feature
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Design and Feature Embedding stages.
Here we introduce a character-level model, which uses RNNs used as automatic

feature extractors and thus replaces the manually-designed features (e.g. suffixes,
prefixes, capitalization) required by word-level models.

We assume that each sentence s is a sequence of w1:n words and each word wi
(i = 1, . . . , n) is made of N characters c1, . . . , cN .

Feature Extraction and Embedding: from Characters to Word Our first goal
is to map each character cj (j = 1, . . . , N) of word wi to a corresponding character
embedding vector cj , which is then given as input to a biRNN. The output of the
biRNN is then contatenated to the word embedding vector vi (see section 1.2)
and the result is the feature vector

xi = φ (s, i) = φ (w1:n, i) = [vi; biRNN (c1:N )]

=
[
E[wi];RNN

f (c1:N ) ;RNNb (cN :1)
]

where E[wi] is the row of the embedding matrix E corresponding to word wi.
Note also that here we use a forward (RNNf ) and backward (RNNb) model

each reading the entire sequence c1:N in different directions. Plank et al. (2016)
call sequence biRNN this type of biRNN, compared to the context biRNN, which
has been defined in equation 3.7.

The main advantage of using bidirectional RNN in this problem setting is the
automatic (learnable) and granular (character-level) feature extraction process,
which was manual and subjective as defined in section 1.2.

Here the forward-running RNN focuses on detecting suffixes, while the backward-
running RNN focuses on prefixes. The biRNN model overall is able to capture
also capitalization, hypens and other word features.

Contextual Information Extraction: from Words to Sentence At this point
the feature vector xi contains information at word-level, but lacks contextual
information about word wi in sentence s.

For this reason, an intermediate step is to feed the feature vector xi into a
biRNN and obtain a context vector

yi = biRNN (x1:n, i)

for each word wi. Note that Goldberg (2017) propose a deep-biRNN architecture
with 3 hidden layers. The mathematical details are not provided by the author.
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Figure 3.5: Example of an RNN Pipeline Architecture for PoS Tagging.

Tag Prediction The next step is to use the new feature representation yi for
word wi as input for a predicting network (MLP 5 followed by a softmax layer).
The final output is the probability that word wi is associated with tag k 6

P (ti = k|w1, . . . , wn) = softmax (MLP (yi))[k] .

The whole pipeline is graphically represented in Figure 3.5, starting from char-
acter embedding vectors c1:N , passing through feature vectors x1:n and context
vectors y1:n, ending with the tag prediction ti for word wi.
Another possible way to predict the tag for word wi is to use the information on

how MLP classified either previous k words wi−k:i−1 or all previous words w1:i−1.

5The number of hidden layers is not specified by the author.
6The Universal Treebank Project contains 17 tags, i.e. k = 1, . . . , 17.
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When considering performance just as a matter of prediction accuracy, it goes
without saying that deep neural networks have achieved outstanding results in a
wide range of machine learning tasks, including for example object classification
Krizhevsky et al. (2012) and speech recognition (Hinton et al. (2012)). However,
it should be noted that the architectures proposed in these and similar works rely
not only on deep networks with millions or even billions of parameters, but also
on the availability of GPUs with very high computation capability. This might
be not the case when deploying deep learning systems on portable devices with
limited resources, for example in terms of memory, CPU, energy and bandwidth.

For these reasons, in recent years both academia and industry have recognized
the serious drawbacks of applying traditional deep neural networks in emerging
fields, such as Augmented and Virtual Reality (AR/VR), Internet of Things (IoT)
and Smart Wearable Devices. This has started a new research field namedmodel
compression by Bucilua et al. (2006), which has proposed in the recent years
solutions coming from many disciplines, including but not limited to machine
learning, optimization, computer architecture, data compression, indexing, and
hardware design.

In particular, two research trends have emerged in the model compression lit-
erature.

The first trend originates from the field of Continual Learning, i.e. “the ability
to continually learn over time by accommodating new knowledge while retaining
previously learned experiences” Parisi et al. (2019). Without going into the details
of this new field, such (desired) ability implicitly makes training and updating an
iterative process and thus pose the question of how an ongoing series of updates
can be performed robustly and efficiently on mobile devices with limited hardware
resources and power budgets. This is where model compression techniques can
help to design neural network models which are compact a priori, i.e. during
training phase.

The second research trend is motivated by Real-Time Deep Learning applica-
tions, e.g. pedestrian detection in an autonomous vehicle (Lane and Georgiev
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(2015)). The goal here is for example fast inference, i.e. minimize the network’s
end-to-end response time (latency) required to predict an output ŷ, e.g. the prob-
ability that the self-driving car has encountered a pedestrian, given a new input x,
e.g. a real-time image of a pedestrian. In other words, these model compression
techniques are focused on making compact a posteriori very large neural network
models, which have been trained for long time on powerful clusters and have a
huge number of parameters.

In this chapter we will present in detail compression methods belonging to
both research trends, but practical experiments will be conducted using only the
compression methods belonging to the a posteriori approach.

The chapter is organized as follows. Section 4.1 gives an overview of the main
methods for neural networks compression, including Matrix Factorization, Pa-
rameter Pruning, Parameter Sharing and Quantization. For each compression
scheme, we provide a rigorous definition of the method, together with the current
state-of-the-art results and applications in the deep learning community, with a
focus on RNN architecture and NLP tasks.

Section 4.2 contains the empirical results of the experiment of PoS Tagging
conducted on the Universal Dependencies dataset using a 3-layer LSTM archi-
tecture. The first part of the section will introduce the dataset and the data
preprocessing step. After that, we will give a formal definition of PoS Tagging
task and define in details the proposed LSTM architecture. Finally, the perfor-
mance of the traditional LSTM model will be compared with the compact LSTM
model, together with a discussion on the trade-off between accuracy and model
size.

4.1 Neural Network Compression Methods

Neural network compression methods and approaches are somehow all motivated
by the consideration that there is a large amount of redundancy in the parame-
ters of a neural network. One of the first works in this research field is by Bucilua
et al. (2006), who showed that the output distribution learned by a larger neu-
ral network can be approximated by a neural network with fewer parameters by
training the smaller network to directly predict the outputs of the larger network.
More recently, Hinton et al. (2015) proposed a similar approach named knowledge
distillation.
There have been many solutions proposed to compress such large, over-parameterized

neural networks including Matrix Factorization, Parameter Pruning, Parameter
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Sharing and Quantization. In the literature, most of these approaches have been
applied to Feed-forward Neural Networks and Convolutional Neural Networks,
while only a small attention has been given to compressing LSTM architectures
and even less in NLP tasks.
For the sake of simplicity, in this chapter compression methods will focus on

matrix W of size m× n. The goal of these compression schemes is to reduce the
number of parameters of W , namely mn.

Matrix Factorization

In a matrix-factorization scheme, we assume that matrix W has rank r. The
rank factorization result from linear algebra guarantees that there exists a (non-
unique) factorization W = UV , where U is a full-rank matrix of size m× r and
V is a full-rank matrix of size r × n. For example, if W is a 6 × 4 matrix, the
rank factorization with r = 2 is

W = UV =



u11 u12

u21 u22

u31 u32

u41 u42

u51 u52

u61 u62


︸ ︷︷ ︸

6×2

×

[
v11 v12 v13 v14

v21 v22 v23 v24

]
︸ ︷︷ ︸

2×4

. (4.1)

Note that the number of parameters of W will be reduced by a fraction p if

mr + rn < pmn

r < p
mn

m+ n
.

A priori matrix factorization The first strategy in matrix factorization is to
learn U and V during training, i.e. a priori. From the point of view of the
performances, this approach firstly reduces the number of network’s parameters
and consequently speeds up the training phase.
This approach was applied to a 5-layer DNN architecture in acoustic and lan-

guage modeling by Sainath et al. (2013). The motivation was the extremely slow
training phase, which was due to a large number of parameters, especially in
the final layer matrix, which had m = 1024 and n = 2220. Authors success-
fully applied matrix factorization to the matrix of the final layer and found that
the number of parameters and also training time could be reduced by a fraction
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p =30-50% with no signficant loss in accuracy, by setting r = 128.

The same approach has been applied by Lu et al. (2016) to multi-layer S-RNN
and LSTM architecture for a speech recognition task. The factorization regarded
input-state matrices U and state-state matrices W.

In the one-layer S-RNN model, equation 3.5 becomes

hi = si−1WaWb + xiUaUb + b

and in the one-layer LSTM case, equation 3.6 is now

c̃i = tanh

(
xi UaUb︸ ︷︷ ︸+ hi−1WaWb︸ ︷︷ ︸+b

)
Γu = σ

(
xi U

u
b U

u
b︸ ︷︷ ︸+ hi−1 W

u
a W

u
b︸ ︷︷ ︸+ bu

)
Γf = σ

(
xi U

f
aU

f
b︸ ︷︷ ︸+ hi−1W

f
a W

f
b︸ ︷︷ ︸+bf

)
Γo = σ

(
xi U

o
aU

o
b︸ ︷︷ ︸+ hi−1 W

o
aW

o
b︸ ︷︷ ︸+bo

)

where Wa ∈ Rdout×r,Wb ∈ Rr×dout and Ua ∈ Rdin×r,Ub ∈ Rr×dout for all gates.

The hyperparameter r controls the level of compression, e.g. authors report
that when r = 5, the number of parameters is reduced by p = 40%. Researchers
found out that the best compression was obtained by using matrix factorization
(moderate compression) in the top-layers and structured matrices1 (aggressive
compression) in the bottom layers.

Authors show that the number of parameters in the final LSTM model was
reduced by p = 75% with a slight decrease in the prediction performances. More-
over, they find that compressing input-state matrices U or state-state matrices
W in gates Γu, Γf or Γo does not have a significant impact on the prediction
performance. However, compressing the candidate c̃i has a negative impact on
the prediction performance.

In a multi-layer RNN architecture, Sak et al. (2014) proposed a projection
model where low-rank matrices are shared across layers of the recurrent architec-
ture.

An extension of the matrix factorization scheme in 4.1 is Tensor-Train decom-
position, which has been applied by Grachev et al. (2019) for Language Modeling
task. We refer the reader to Grachev et al. (2019) for more details.

1See Paragraph 4.1
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A posteriori matrix factorization The second approach is to apply low-rank
matrix factorization as a post-processing compression method. In other words, we
are given the full matrix W and we would like to compute U and V by solving
the following optimization problem

min
U ,V
‖W −UV ‖F (4.2)

where ‖ · ‖F is the Frobenius norm, which is essentially the generalization of the
Euclidean norm for matrices.

There exist many constrained version of the optimization problem in 4.2. For
example, assuming that U and V are orthogonal matrices and that W can be
reconstructed as USV , where S is a diagonal matrix, then we have an analytical
solution to the problem

min
U ,S,V

‖W −USV ‖F s.t. U ,V orthogonal and S diagonal

in terms of Singular Value Decomposition (SVD) of W . In other words, the
optimal values Ur,Sr and Vr for U ,S and V are obtained by taking the top r
singular values from the diagonal matrix S and the corresponding singular vectors
from U and V .

For example, if W is again a 6× 4 matrix, its reduced form SVD is expressed
as

W = USV =



u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

u51 u52 u53 u54

u61 u62 u63 u64


︸ ︷︷ ︸

6×4

×


s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 s4


︸ ︷︷ ︸

4×4

×


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44


︸ ︷︷ ︸

4×4

and the compact matrix W̃2, i.e. setting r = 2, is obtained by Truncated SVD

51



4 Compact RNNs

as

W ' W̃2 = U2S2V2 =



u11 u12

u21 u22

u31 u32

u41 u42

u51 u52

u61 u62


︸ ︷︷ ︸

6×2

×

[
s1 0

0 s2

]
︸ ︷︷ ︸

2×2

×

[
v11 v12 v13 v14

v21 v22 v23 v24

]
︸ ︷︷ ︸

2×4

.

The SVD reduction has been applied to DNNs by Xue et al. (2013) on two
large vocabulary continuous speech recognition (LVCSR) tasks. After applying
the SVD reduction (more or less aggresively) on different weight matrices in the
network, authors also fine-tune the reduced model, in order to get back the lost
accuracy. The final model has been reduced in size by 73% and has less than 1%
relative accuracy loss.

The experimental analysis will focus on SVD reduction on the weight matrices
in the LSTM architecture.

Parameter Pruning

Given a trained neural network, we can visualize the distribution of the weights
using a histogram. For example, in Figure 4.11 we can clearly notice that the
majority of these weights are really close to zero. In other words, these weights
do not to provide a valuable contribution for producing the final neural network’s
output and thus can be pruned from the network. For example, in a feedforward
architecture, pruning consists in removing the connections between neurons from
one layer to another.

The main point of pruning is how to decide which weights have to be set to
zero. In literature there have been proposed many approaches which can be more
or less expensive from a computational point of view.

The first approach is the naive magnitude-based approach, which first sets a
threshold qα and then removes all the weights whose absolute value is below
that threshold. The quantity qα is usually obtained as the α-th percentile of the
distribution of the absolute values of the weights in matrix W , i.e. the size of the
network is reduced by a fraction p = 1−α. Finally, the network is fine-tuned, so
that the remaning parameter weights are adjusted with the new network sparse
architecture.

Other popular pruning techniques are the hessian-based approaches (LeCun
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et al. (1990), Hassibi and Stork (1993)) and thus are computationally more ex-
pensive, especially for deep learning tasks. The pruning strategy consists in com-
puting the Hessian matrix of the loss function and then derive a saliency value
for each parameter in the network: parameters whose saliency is low are removed
and finally the network is fine-tuned.
Most of the applications of pruning techniques in deep learning use the magnitude-

based approach, due to the high computational cost of the hessian-based ap-
proaches.
In particular, successful application regard mainly computer vision tasks and

thus involve CNNs. For example in the ImageNet task, Collins and Kohli (2014)
and Han et al. (2015b) report that 75% and 89% of the parameters in AlexNet
has been pruned with a small loss in accuracy, respectively.
Pruning methods have been applied to RNNs by See et al. (2016), who ex-

tended the approach of Han et al. (2015b) to an LSTM architecture for Neural
Machine Translation (NMT) task, by implementing three different magnitude-
based pruning schemes.
The first result by See et al. (2016) regards the amount of compression which

can be applied to an LSTM network. From one hand, authors show that without
fine-tuning 40% of the parameter weights can be pruned with a small loss in
performance. On the other hand, if the pruning strategy also includes a retraining
step, then up to 80% of the parameters can be removed from the network, with
again no loss in performance.
Their second result regards the distribution of redundancy across layers in the

neural network. In particular, authors find that lower layers, e.g. embedding
layer, carry a lot of redundancy, while higher layers, e.g. output layer, provide
a valuable contribution in terms of performance. This is result is actually very
similar with the one from Lu et al. (2016), who chose to use aggressive compression
for bottom layers (more need to sparsifyW ) and moderate compression for higher
layers (less need to sparsify W ).

Parameter Sharing

Another possibility to shrink the number of parameters in matrix W (mn) is
to allow some forms of parameter-sharing mechanisms, so that the compressed
matrix has k unique parameters.

Hashing The first possibility is to exploit a (cheap) hash function that uniformly
randomly groups parameters wij and then maps each group to one of the k hash
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buckets.

Formally, each wij = vh(i,j), where

h (i, j) : N× N→ {1, . . . , k}

is a predefined hashing function and so v is a k-dimensional vector.

For example, if matrix W has size 4× 4, one possible random weight sharing
initialization can be 

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44


where the colours determine which parameters wij share the same value. For
example, w11 = w22 = w32 = w43 = w34 = v1.

Note that the bucket assignment is kept during both feedforward and back-
propagation.

This compression approach has been named HashedNets by Chen et al. (2015)
and applied for computer vision tasks involving DNN architecture.

Structured Matrices Structured matrices represent another mathematical trick
to enable parameter sharing mechanism is our neural network model. The main
idea is to exploit the structure of well-known matrices in linear algebra with
desirable propreties. For example, Sindhwani et al. (2015) introduced the use
of Toeplitz matrices for achieving model compression when performing speech
recognition on mobile devices.

For example, a 4× 4 Toeplitz matrix is defined as
t0 t−1 t−2 t−3

t1 t0 t−1 t−2

t2 t1 t0 t−1

t3 t2 t1 t0

 .

The first property of such matrix structure regards the efficiency in linear alge-
braic operation.

For example, consider the matrix-vector multiplication xW , where x is a n-
dimensional vector and W is a n× n square matrix.

If W is a dense matrix, i.e. it has n2 parameters, the cost for computing
matrix-vector multiplication is O (n2). On the other hand, if W is a structured
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matrix, e.g. Toeplitz, the matrix-vector multiplication costs O (n log n).
This means that using structured matrices in our neural network model can

significantly speed up both training and inference phase, since n is usually very
large in deep learning.
The second property is that any Toeplitz matrix T can be linearly transformed

into matrices of rank less than or equal to 2, by using a suitable transformation
called displacement operator.
Since our goal is to find a trade-off between compression rate and model’s

performance, we would like to approximate matrix T with matrics of rank r >
2. For this reason, Sindhwani et al. (2015) introduced Toeplitz-like matrices,
which are a generalization of Toeplitz matrices. The main differences is that with
Toeplitz-like it is allowed to perform nonlinear transformations, e.g. inversion
and product, on Toepliz matrices T .
In their experiment on speech recognition, Lu et al. (2016) applied Toeplitz-like

structured matrices on input-state matrices U and state-state matrices W in the
bottom layers of a 3-layer RNN and LSTM architecture. Authors report that
this approach provided a much more aggressive compression than hashing and
low-rank schemes.

Quantization

Another popular approach in neural network’s compression literature is quanti-
zation. Quantization methods aim to reduce the size of the network a posteriori
by reducing the number of bits required to represent each weight wij.
From engineering point of view, each weight is represented in memory as

floating-point value with a fixed precision, e.g. 64-bit. Quantization techniques
pack each weight into a lower-space, e.g. 8-bit. The extreme case is the binary
weight neural networks, which have a 1-bit representation of each weight.
Han et al. (2015a) propose a three stage pipeline called “deep compression”.

First they perform Parameter Pruning (with fine-tuning) on the network, in order
to learn only the important connections. After that, they operate Quantization
(from 32-bit to 5-bit representation) on the remaining weights. Finally, they apply
Huffman coding, which is a well-known compression algorithm in information
theory.
The compression rate gradually increases in the proposed compression pipeline.
Considering the average results obtained with different deep learning models

using the ImageNet dataset, the compression rate is at first between 9× and 13×
(pruning), then between 27× and 31× (quantization) and finally between 35×
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and 49× (huffman coding).
Specifically, AlexNet was overall compressed by 35×, from 240MB to 6.9MB,

without loss of accuracy; VGG-16’s size has been reduced by 49×, from 552MB
to 11.3MB, again with no loss of accuracy.

Metrics

In general, it is common to compare compression methods in terms of effective-
ness and efficiency (see Cheng et al. (2017)).
The former is a measure of the performance of our compressed neural network
model, compared to the performance of the full model. Therefore, model’s per-
formance really depends on the nature of the task at hand.
The latter is usually considered in the dimensions of space (memory footprint)
and time (latency).

Space-Efficiency Space-efficiency takes into account the amount of memory
footprint of the compressed model, e.g. number of parameters. If we assume that
|Θ| is the number of the parameters in the full model M and |Θ∗| is that of the
compressed model M∗ , then the compression rate CR (M,M∗) of M∗ over M is

CR (M,M∗) =
|Θ|
|Θ∗|

and for example CR (M,M∗) = 1.5 is usually indicated as 1.5×.

Time-Efficiency Time-efficiency deals with model’s ability to perform fast com-
putations either in training, either in inference phase. In neural network archi-
tectures, the bottleneck is usually represented by matrix-vector multiplications.
As we have seen in section 4.1, Structured Matrices have desirable properties in
terms of fast algebraic operations.

If we consider only inference phase, one typical metric for time-efficiency is
inference time, i.e. the latency s required by the neural network M to perform a
forward pass given a new input. Therefore, we measure the improvement in time
using the speedup rate

SR (M,M∗) =
s

s∗

which is usually computed as an average of multiple runs.

Chosen metrics In our experiment we measure compression effectiveness in
terms of accuracy and f1-score, since PoS Tagging is essentially a multi-class
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classification problem.
Moreover, we consider only compression methods which have an impact on

space-efficiency and thus we consider the number of parameters.
In particular, Matrix Factorization using Truncated SVD reduction (4.1) re-

duces the number of parameters in matrix W by a fraction

pSV D = r
m+ n

m× n

by taking only the top r singular values in matrix S.
Moreover, magnitude-based Pruning (4.1) reduces the number of parameters

in W by a fraction
pPRUN = 1− α

by setting to zero the weights in W whose absolute value is below qα, which is
obtained as the α-th percentile of the distribution of the absolute values of the
weights in W .

4.2 Experiment

This aim of this section is to present the main results obtained when apply-
ing Truncated SVD and Magnitude-based Pruning compression methods on a
multi-layer LSTM architecture, trained on the Universal Dependencies dataset
for performing PoS Tagging.
The first part of this section will provide a description and some summary

statistics on the dataset. After that, we will describe in detail the whole model’s
pipeline (see Figure 4.1), i.e. preprocessing sentences and tags (4.2), passing them
through the network and finally ending with a prediction (4.2). In order to help
the reader, the description of all steps will be combined with a proof-of-concept
visual representation.
The whole experiment has been conducted using Pytorch, given its ease of use

compared to other deep learning frameworks, especially when dealing with RNN
architectures and NLP taks.

Dataset

The dataset used is the Universal Dependencies - English Dependency Treebank
dataset, a corpus of sentences annotated using Universal Dependencies annota-
tion. In particular we use v2 (17 Part-of-Speech Tags) with the given data splits
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INDEXING
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Figure 4.1: Model Pipeline.

2.
The whole corpus comprises 254,850 words and 16,622 sentences, taken from

various web media including weblogs, newsgroups, emails, reviews, and Yahoo!
answers. The training set comprises 204,605 words3 and 12,543 sentences. The
dev set comprises 25,148 words and 2002 sentences. The test set comprises 25,097
words 4 and 2077 sentences.

The histogram in Figure 4.2 shows the relative frequency of the 17 PoS Tags in
the corpus. The tags most present in the corpus are NOUN, PUNCT and VERB,
but overall the dataset does not show any serious class unbalance.

Figure 4.3 shows the distribution of sentence lengths for the three sets in the
corpus. We notice that it highly asymmetric, i.e. the majority of sentences has
few words. The average sentence length is equal to 16 words for the training set
and 12 for the dev and test set.

Another interesting statistics on the corpus regards the number of lemmas,
i.e. the canonical form, dictionary form, or citation form of a set of words For

2See the Pytorch class torchnlp.datasets.ud_pos.
3The number of words in the training set is 204,585 according to
https://github.com/UniversalDependencies/UD_English-EWT/blob/master/stats.xml

4The number of words in the test set is 25,096 according to
https://github.com/UniversalDependencies/UD_English-EWT/blob/master/stats.xml
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Figure 4.2: Distribution of the 17 PoS Tags in the corpus.
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Figure 4.3: Sentence Lengths Distribution, Mean (red) and Median (green).
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# sentences # words # unique words # unique lemmas
Total Corpus 16,622 254,850 30,797 24,796

Train 12,543 204,605 19,672 15,594
Dev 2,002 25,148 5,495 4,482
Test 2,077 25,097 5,630 4,720

Table 4.1: Summary Statistics on Universal Dependencies dataset.

example, in the training set, the number of (unique) words is equal to 19,672,
while 15,594 is the number of (unique) lemmas5. This suggest that many words
belong to the same lemma, e.g. run, runs, ran and running are forms of the
same lemma run. This means that when performing PoS Tagging on words, the
relevant information in most of the cases is contained in the lemma.

Table 4.1 summarizes the statistics about the whole UD dataset and its three
data splits.

Data Preprocessing

The steps of data preprocessing can be summarized as follows:

1. Create Vocabulary of Words and PoS Tags

2. Map Words and PoS Tags to Index Vectors

3. Create Mini-Batches

Create Dictionary of Words and PoS Tags

Our training set hasN sentences S1, S2, . . . , SN andN sequences of tags T1, . . . , TN .
Each sentence has w1, w2, . . . , wni

words tagged with correspondent tags t1, . . . , tni
,

for i = 1, . . . , N .
We would like now to create a dictionary that maps each (unique) word wj to

an index, i.e.
vocabulary =

{
w0 : 0, w1 : 1, . . . w|V | : |V |

}
where |V | represents the size of vocabulary V .
In our training set, after lower-casing the sentences, the vocabulary size is

16,654 and the vocabulary is

{<PAD> : 0, al : 1, - : 2, . . . , ordeal : 16652, apathetic : 16653, <UNK> : 16654} .
5Lemmatization was performed using the Spacy Lemmatizer.
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Note that element w0 is set to be the padding symbol <PAD>, which will be
useful for creating mini-batches of equal sizes.

The vocabulary has been created using only the training set and we assume
that it is not exhaustive for representing also the dev and test set, i.e. not all
words in the dev and test set have appeared (at least once) in the training set.
For this reason, we added the special symbol <UNK> at the end of the vocabulary,
which represents out-of- vocabulary (OOV ) items. In our case, there are 1709
(∼6%) and 1882 (∼7%) unkown words in the dev and test set respectively.

Another dictionary is created also for tags, so that each tag is assigned an
index, i.e.

{<PAD> : 0, ADJ : 1, ADP : 2, . . . , VERB : 16, X : 17}

where the padding symbol is used here for assigning a tag to the elements which
have been padded.

Map Words and PoS Tags to Index Vectors

The next step of data preprocessing pipeline is Indexing, i.e. map each sentence
Si and tag sequence Ti to index vectors vi and zi respectively.

For example, given our vocabulary, the sentence

S4 = two of them were being run by 2 officials

of the ministry of the interior !

is mapped into the index vector

v4 = [54, 18, 55, 56, 57, 58, 59, 60, 61, 18, 12, 62, 18, 12, 63, 64] .

The same operation is performed with tags, e.g. T4 is mapped to index vector
z4.

Create Mini-Batches

The last step is to create mini-batches, which will be finally given as input to the
neural network.

As mentioned before, mini-batches are obtained by concatenating a fixed amount
sentences, which may different in length, i.e. in number of words.

Our goal is to make all sequences in the mini-batch have the same length by
performing Padding.
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two of them were being run by two officials of the ministry of the interior !

can you reccomend where these companies each fit within the new organization ?

 

 

INDEXING

54 18 55 56 57 58 59 60 61 18 12 62 18 12 63 64

467 92 4925 413 869 6112 559 4632 323 12 337 987 499

PADDING

54 18 55 56 57 58 59 60 61 18 12 62 18 12 63 64

467 92 4925 413 869 6112 559 4632 323 12 337 987 499 0 0 0

Figure 4.4: Indexing and Padding Steps.

For instance, the old index vector v4 (see above) becomes the padded index
vector

v∗
4 = [54, 18, . . . , 64, 0, 0, . . . , 0]

where the length of every v∗
i ∈ batch is equal to maxj∈batch length(vj).

The same operation is done with index vectors zi that turn into z∗
i .

After that, we have to sort the index vectors in the batch by their length, so
that they can be packed later.

Figure 4.4 summarizes the data preprocessing steps taking as example two
sentences in the corpus. Colors will be useful for further visualizations.

Architecture

Part-of-Speech (PoS) Tagging is a lexical Disambiguation task in NLP. The goal
is to tag each word with a particular part of speech (e.g. noun, verb, adjective
etc.), i.e. to predict tag t or a given input word w. In machine learning, this
corresponds to a multi-class (17 classes) classification problem.

The prediction in our experiment is performed using an RNN architecture with
3 hidden layers and a Long Short-Term Memory (LSTM) recurrent unit.

Mathematically, the network is the same as the one defined in 3.4.
The network’s input xi is obtained from the padded index vector v∗

i using an
Embedding matrix E of size |V | × din, e.g. the first element of the padded

62



4.2 Experiment

54 18 55 56 57 58 59 60 61 18 12 62 18 12 63 64

467 92 4925 413 869 6112 559 4632 323 12 337 987 499

EMBEDDING

0 0 0

PACKING

...

16 + 16 - 3 = 29

Figure 4.5: Embedding and Packing Steps.
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LSTM LSTM LSTM... LSTM LSTM LSTM

LSTM LSTM LSTM... LSTM LSTM LSTM

LSTM LSTM LSTM... LSTM LSTM LSTM

Figure 4.6: LSTM Network.

index vector v∗
4 (54) is mapped into a din-dimensional vector, corresponding to

the 54-th row of matrix E.
After passing through the LSTM network by performing the Packing and

Unpacking operations, the output oi ∈ Rdhidd 6 is passed first to a Linear
Layer and then to a LogSoftmax Layer. This transforms oi into ỹi ∈ R18,
where the sum of the elements of ỹi sum to 1.
The final network’s prediction ŷi is obtained by taking the tag with the

highest predicted probability in ỹi.
Figures 4.5, 4.6 and 4.7 summarize the whole LSTM architecture by using the

same two sentences as in Figure 4.4 and taking din = 128, dhidd = 100 and batch
size equal to 2.

From a compression point of view, the goal is to make the neural network com-
pact by reducing the number of parameters Θ , which consist of the embedding
matrix (denoted with letter E), 4 × 3 input-state matrices (denoted with letter
U), 4 × 3 state-state matrices (denoted with letter W) and 8 × 3 bias vectors
7(denoted with letter b).

Experimental Setup

The aim of the experiment is to validate the efficacy of 2 Compression Methods
(Matrix Factorization and Pruning) on an RNN architecture (3-layer LSTM) with
3 different sizes (Small, Medium, Large) when performing an NLP task (PoS Tag-
ging). We compare full and compact models in terms of two quality metrics (see

6Note that in Chapter 3 the output of the RNN was indicated as yi ∈ Rdout . Here the output
of the RNN is oi ∈ Rdhidd , which becomes after ỹi ∈ Rdout , where dout = 18.

7Note that the LSTM definition in 3.6 has 4 bias terms, while the Pytorch implementation
has 8 bias terms.
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Figure 4.7: Upacking, Linear Layer, LogSoftmax and Prediction steps.
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section 4.1): accuracy (effectiveness) and number of parameters (space-efficiency).
Below we motivate the experimental choices.

Compression Methods Among the neural network compression approaches dis-
cussed in section 4.1, we successfully implemented a posteriori Matrix Factor-
ization using Truncated SVD reduction (4.1) and magnitude-based Parameter
Pruning (4.1). A fine-tuning step has been implemented for both compression
methods.

Architecture Investigating the compressed architectures proposed in the neu-
ral network compression literature for solving various NLP tasks, we chose an
LSTM architecture. The majority of works on neural network compression in
NLP tasks has been performed using LSTM architectures on Speech Recognition
(Lu et al. (2016) and Sak et al. (2014)), Machine Translation (See et al. (2016))
and Language Modeling (Grachev et al. (2019)). A typical starting architecture
in many works on LSTM compression is the 3-layer LSTM proposed by Merity
et al. (2017). Therefore, we decide to keep also this multi-layer configuration.
At best of our knowledge no work has considered recurrent architectures for solv-
ing simpler NLP tasks, e.g. PoS Tagging. Therefore, the architecture choice
has been based more on the compression litterature, instead of the PoS Tagging
litterature. The approaches tailored for PoS Tagging exploit more complex archi-
tectures (Heinzerling and Strube (2019)) and thus will lead us out of the scope
of the present work, i.e. evaluate compression methods on RNN models.

Having said that, we should remark that our compression methods are agnos-
tic to the particular architecture configuration. Therefore, our results could be
potentially generalized to any feedforward and recurrent architecture.

Network Size Since our main focus is to reduce the number of parameters in
the neural network, we noticed that parameter density in the network varies
in a multiplicative way. In particular, given the large vocabulary size |V |, the
largest number of parameters is present in the embedding matrix E. However,
when increasing the input dimension din and the hidden size dhidd, an increasingly
larger number of parameters is present in the input-state matrices U and state-
state matrices W. In other words, we should keep in mind that the compression
rate p could change for different matrices in the model, according either to the
layer they belong to, either to the relative number of parameters they occupy in
the model.
Therefore, in our experiment we choose to evaluate compression methods on three
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4.2 Experiment

Model E W U
Full 100× 100 87% 6% 6%
Full 150× 150 82% 8.8% 8.8%
Full 200× 200 77% 11% 11%

Table 4.2: Relative number of parameters with different din×dhidd configurations.

identical LSTM networks with different values for din and dhidd. Such approach
can represent a reasonable use-case where high compression rate or aggressive
compression methods are applied to large models, which hold perhaps a higher
redundancy in the parameters.
In particular, in our experiment we consider Small (100×100), Medium (150×150)
and Large (200 × 200) LSTM models, where din × dhidd defines the size of the
model. The range of values for din and dhidd is chosen emperically. From one hand,
models larger than 200 do not provide a significant benefit to the performance,
actually leading to overfitting training data. On the other hand, models smaller
than 100 do not have enough parameters, i.e. they underfit training data.
Table 4.2 summarizes the relative number of parameters occupied by the main
parameter blocks in our model, i.e. the embedding matrix E, the input-state
matrices U and the state-state matrices W.

Optimization In order to obtain the best accuracy on the full models, we per-
form training using the Adagrad optimizer with batch size equal to 16 and default
starting learning rate (0.01). Adagrad automatically adapts the learning rate for
each parameter according to its frequency. Therefore, this optimizer is well-suited
for application with sparse data, which is typical when dealing with natural lan-
guage data.

The same optimization setting is used also for the fine-tuning step.

Model overfitting is prevented by applying early stopping, i.e. the training pro-
cedure is stopped when the validation accuracy starts to decrease. No additional
regularization techniques, such as dropout, are applied for training the model.

Full Model Analysis

After estimating the 3 full models, we conduct an empirical analysis of them.
The goal of this section is to investigate the distribution of redundancy among
different sizes, layers and matrices.
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Figure 4.8: Eigenvalue Distribution for input-state matrices U across layers.

Singular Values Distribution

Before applying SVD reduction on our full models, it is convenient to visualize the
cumulative distribution of singular values in the different matrices, which have
been estimated in our models. Our goal is to spot the distribution of redundancy
among matrices and layers.

Figures 4.8 and 4.9 show for model 100×100 the eigenvalues cumulative distri-
butions of U and W respectively. We notice that for matrices U and W around
15−20% of singular values contribute 40−50% of total values, and around 40% of
singular values contribute 70−80% of total values. So, if we set those small values
to 0, this will not considerably change the values of elements in these matrices.
Moreover, we notice an interesting behavior in matrices U: the cumulative

distribution of singular values for the first layer is lower. In other words, input-
state matrices in the first hidden layer store more relevant information than input-
state matrices in the upper layers. This suggests that compression rate should
be higher in the matrics U located in the upper layers.
Looking at Figure 4.10, the SVD is not able to capture any distribution of

redundancy in the embedding matrix E.
These patterns are suprisingly identical also in the other two full models.

Weight Distribution

Another useful analysis consists in visualizing the distribution of weights in ma-
trices E, U and W.
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Figure 4.9: Eigenvalue Distribution for state-state matrices W across layers.
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Figure 4.11: Weight Distribution for the embedding matrix E Before (Top) and
After (Bottom) Pruning.

Figures 4.12 and 4.13 show for model 100 × 100 the weight distribution in U

and W among different layers and gates, respectively. The first consideration is
that state-state matrices U at the bottom layer have more weights close to zero,
i.e. they are more sparse. This pattern for U is present also in the other full
models. However, looking at the weight distribution in W, we notice that there
is no such clear pattern among layers and model sizes.

Figure 4.11 shows the distribution of the weights for the embedding matrix
E. Compared to the eigenvalue distribution in 4.10, here the distribution of
redundancy is much clearer. As we will see in the next section, SVD Matrix
Factorization will be improved by applying Pruning to the embedding matrix E,
instead of the Truncated SVD reduction.

The bottom parts of Figures 4.12, 4.13 and 4.11 show also the distribution of
weights after pruning them with α = 0.3. The pruning technique used here is the
magnitude-based approach, which has been explained in detail in section 4.1.

Results and Discussion

In a neural network compression framework, there are two main variables involved
in the process of experimental design:

• The Method chosen for reducing the size of the i-th parameter block8.
This means that a neural network model can be compressed by using one

8Keep in mind that in our discussion the minimal level of granularity is matrix.
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Figure 4.14: Compression Rate vs. Test Accuracy in Naive SVD model.

or multiple methods for different parts of the model, according to some
properties of the model or of the method.

• The Amount of compression applied to the i-th parameter block. In other
words, each matrix in the model is assigned a value pi ∈ (0, 1), which
determines how many parameters will be left after the compression.

Having said that, we have experimented three different scenarios, by testing model
performance (test accuracy) under different compression rates (from 1.1× to 3×).

Baseline

SVD Matrix Factorization and Pruning have been applied separately to the neu-
ral network model, by keeping the amount of compression pi equal for all matrices
E, U and W. We called this types of reductions Naive SVD Matrix Factor-
ization and Naive Pruning.

Figures 4.14 and 4.15 show model’s performance (accuracy) without compres-
sion (red line), before fine-tuning (blue line) and after fine-tuning (green line).

Firstly, we notice that there is a huge difference in terms of performance be-
tween before and after fine-tuning. It should be noted that fine-tuning is a very
cheap operation in our case, i.e. only 1 epoch is performed.
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Figure 4.15: Compression Rate vs. Test Accuracy in Naive Pruning model.

Secondly, Pruning technique provides much better predictive performances
than Matrix Factorization, especially without applying fine-tuning. Without re-
training the model, we can compress the Naive Pruning model up to 1.5× without
any significant loss in accuracy.

After fine-tuning, model’s performance is restored and we can compress up to
2× without losing any accuracy. Even a large compression (3×) on the 200×200

model leads to a loss of less than 2% of accuracy for both Naive compression
techniques.

These two compressed models represent a baseline for the other two customized
compression approches.

Hybrid Compression

Given the results emerged from the full model analysis (see section 4.2), we have
tried to use Parameter Pruning only for the embedding matrix E, and keeping
the SVD Matrix Factorization for U and W matrices. In other words, we have
found a suitable combination of the compression methods, keeping the amount
of compression pi equal for all matrices. This compression method was named
Hybrid Compression.

Figure 4.16 shows the results of this hybrid approach. This compression method
has a significant approach on model’s performance before fine-tuning, which
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Figure 4.16: Compression Rate vs. Test Accuracy in Hybrid Compression.

was the main weakness of Naive SVD MF. The best result before fine-tuning
is achieved by the 200×200 model, which can keep test accuracy above 0.80 even
with a 1.5× compression rate.
There are small improvements also on model’s performance after fine-tuning,

but it is not evident any clear pattern.

Tailored Compression

The third and final compression approach has the goal to improve the performance
of Naive Pruning compression method. Looking at the weight distributions of
state-state matrices U, it has been noted in section 4.2 that matrices in the
bottom layer (U1) had a larger density of parameters close to zero, compared to
matrices in the second and third layer (U2 and U3).
This empirical information has been validated by trying to compress matrices

U1 more aggressively (between 10% and 30% more) than U2, U3 and other
matrices in the model. Looking at Figure 4.17 we can see the results of this
compression strategy, which has been named Tailored Compression.
We note that this strategy is not helpful without fine-tuning the model, i.e.

aggressiveness requires a retraining step for obtaining more trustful predictions.
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Figure 4.17: Compression Rate vs. Test Accuracy in Tailored Pruning.

In fact, after fine-tuning with moderate aggressiveness (below 20%), model’s ac-
curacy is very similar to the baseline and even higher for the 100× 100 model for
moderate compression rate (around 2×).

Summary of Results

Overall, Table 4.3 summarizes the results obtained using different compression
approaches. In particular, we compare compressed and full models in terms of test
accuracy and f1-score (effectiveness) and number of parameters (space-efficacy).
For the sake of simplicity, the summary results regard only the Large LSTM
200× 200. However, looking at the plots of Compression Rate vs. Test Accuracy
the pattern observed on the Large model is very similar also for the Small and
Medium sized models.

Best Compression Method When trying to score the best compression meth-
ods, it goes without saying that Pruning and its variants produce the most effec-
tive (accuracy and f1-score) and efficient (number of parameters). In particular,
the Tailored approach is able to save additional 10% parameters with a decrease
of only 1% in accuracy, compared to the Naive Pruning. This approach can ac-
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tually aggressively compress the 200 × 200 model to approximately 833 Milion
parameters, which is 19% of the original model size.

Best Compression Strategy On one hand, for high compression rates, e.g. 3×,
both these methods require a fine-tuning step, in order to obtain satisfactory
performance results, especially for the Naive SVD method. On the other hand,
when applying medium compression rage, e.g. 1.5×, the fine-tuning step could
be avoided and the Naive pruning strategy can be the best result among other
compression methods.
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The rise of new technological trends such as AR/VR and IoT is promising to
revolutionize our user-experience by providing us with a set of incredible smart
devices, which will assist us everywhere and at any time. From a data science
point of view, this characteristics of ubiquity and pervasivity of technology sets
industry practitioners and academic researchers both effectiveness and efficiency
challenges.

From one hand, it is required to design machine learning models with high
predictive performances (effectiveness) on a given set of tasks. On the other
hand, these models are required to be stored on device (space-efficiency) and
produce fast predictions (time-efficiency).

In the recent years, Neural Networks have proven to be extremely powerful
and flexible tools for solving an incredible wide range of machine learning tasks.
However, neural network models are often too large in size for deployment on
mobile devices with memory and latency constraints. In practice, this means that
many tasks from the user can actually be performed only by calling an external
cloud server infrastructure, i.e. without the possibility to do the computation
offline.

On this premise, the present work had the goal to first provide an overview of
the state-of-the-art results and methods on Neural Network Compression. After
that, the second goal was to have hands-on experience of two of these compression
methods, i.e. SVD Matrix Factorization and Parameter Pruning. In particular,
we chose to compress an RNN architecture which has been trained for solving an
NLP task, i.e. PoS Tagging, using the Universal Dependencies dataset.

Compression results are based on three compression strategies, which apply
different methods with a different amount of compression on different parts of
the model.

The first compression scheme is a naive implementation of the methods on
all matrices. The second and third compression schemes instead adopt data-
driven compression approaches, based on simple but effective visualizations of
eigenvalues and parameter distribution across different model sizes, layers and
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matrices. The goal of such data-driven approach is first to spot the distribution
of redundancy among the bilions of parameters inside the neural network, and
then to operate a selective compression only on these redudant parameter blocks.

Empirical results validate the effectiveness of such approach. The size of a
multi-layer LSTM network with more than 4 milions of parameters can be com-
pressed by 1.5× (moderate compression) with no significant loss in accuracy.
Adopting a 3× compression rate (aggressive compression), the size of the full
model can be compressed by more than 80%, with only a 5% loss in test accu-
racy.
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