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Abstract

The advent of single-cell RNA sequencing, also known as scRNA-seq, has

revolutionized the study of transcriptomes. Previously, the most used tech-

nology was bulk RNA-seq, where RNA is extracted from a sample made up

of thousands of cells, however the RNA is grouped into one library before

sequencing. This way, bulk RNA-seq data measures the average expression

level of a gene within all the cells of a given sample. Often these bulk mea-

surements work well but there are some cases in which average values are

not enough, such as, for example, when studying complex and heteroge-

neous structures like cancers and for the identification of new cell types. In

these cases gene expression needs to be studied separately for each cell type.

This is possible with scRNA-seq data, which provides information about how

many specific genes are present in each cell for each sample and it is able

to show transcript heterogeneity at single cell level, underlining information

that bulk data would otherwise not show. At the moment, differential anal-

ysis of scRNA-seq data is conducted with similar methods to those used to

analyse bulk RNA-seq data. However, scRNA-seq produces a larger amount

of data than bulk sequencing which leads to new challenges both computa-

tional and interpretation wise. The scRNA-seq count matrix is in fact a lot

bigger than the RNA-seq matrix and it is highly sparse this leads to new

problems that have not been completely solved.
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In the last years many tools have been developed to analyse scRNA-

seq data and some of them have the purpose of identifying genes that are

differentially expressed in two or more groups; this process is in fact useful

for understanding differences between cell groups.

scRNA-seq data are characterized by a highly spare matrix and litera-

ture still does not agree on how to address it; as underlined by Sarkar and

Stephens (2021), this high proportion of zeros has lead to incorrect or impre-

cise terminology. Often zeros are in fact considered as missing values, this is

misleading and incorrect since missing values do not give any information,

whereas zero counts do; for instance they underline the fact that that gene

is unlikely to be expressed.

Traditional scRNA-seq analysis does not account for the fact that genes

that are not highly expressed can also provide useful information. According

to Qiu (2020) zeros are in fact not a problem, but a useful signal; by bina-

rizing counts one can obtain an expression profile which accurately reflects

biological variation. Bouland, Mahfouz, and Reinders (2021) have demon-

strated that the frequencies of zero counts are enough to capture biological

variability and they are able to identify differentially expressed genes in dif-

ferent groups. It is therefore of interest to try and consider the high presence

of zeros not as a problem but as an alternative way to discover information

from scRNA-seq data.

Part of what this work aims to achieve is try and understand if the pro-

portion of zeros alone is capable of capturing the biological variability and

distinguish between differentially expressed groups.

Zimmerman, Espeland, and Langefeld (2021) suggest that there is an-

other aspect that needs to be take into account when analysing scRNA-seq

data: cells from the same individual share common genetic and environmen-
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tal backgrounds, which implies they are not statistically independent and

makes them pseudo-replicates. This means that results obtained with typical

methods that do not account for this aspect are biased, have highly inflated

type 1 error rates and reduced robustness and reproducibility. To account for

these pseudo-replications one can aggregate all the counts of a gene belong-

ing to the same patient, in this way pseudo-bulk counts are obtained. Part

of this work will focus on comparing analysis conducted on single-cell level

data with pseudo-bulk analysis to try and verify how sensitive aggregation

methods are in detecting sub-population level differences.
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Chapter 1

Introduction

1.1 Biological context

De Duve, a Nobel Prize-winning biochemist, hypothesised that life is one,

and it is rooted in chemistry and information (De Duve (2002)). He believed

that all living beings are made of cells, which are the basic unit of life, and

that all living organisms have evolved from a common ancestor. De Duve

emphasized that all living beings are constructed of the same basic biological

building blocks. These building blocks include lipids, which make up the

membranes of cells; carbohydrates, which are used to store energy; amino

acids, which are the building blocks of proteins; and nucleic acids, which

are the building blocks of DeoxyriboNucleic acid (DNA) and RiboNucleic

acid (RNA). These nucleic acids carry information that is used to construct

biomolecules, and to pass information on from generation to generation. De

Duve’s view of the unity of life was grounded in the understanding that all

living beings share a common ancestry, and that the chemical and informa-

tional processes that underlie life are universal.

De Duve believes life is chemistry because a cell is made up of a complex
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Introduction Genome biology

network of interconnected chemical reactions. Most of these chemical reac-

tions are initiated by proteins; this underlines how understanding changes in

the abundance of proteins over time is fundamental in order to understand

important biological processes.

Life can be seen as information because all the information needed for

an organism to be self-organised is passed on from generation to generation

thanks to DNA and RNA.

In this Introduction, DNA and RNA will be explained in further detail

and state-of-the-art technologies for identifying and quantifying DNA and

RNA will be presented. After this, the main bioinformatics data analysis

methods and workflows used to extract knowledge from these technologies

will be described and the data that will be used throughout this dissertation

will be introduced.

1.2 Genome biology

The central paradigm of molecular biology outlines the fundamental pro-

cesses by which genetic information is stored, processed and used to specify

the traits and characteristics of an organism, from physical appearance to

metabolic processes and behaviour (Figure 1.1). The paradigm describes

how in a biological system information is transferred from DNA to RNA

through a process called transcription, and the resulting RNA molecule is

then translated into a protein through a process called translation. The field

that investigates the process of transcription and translation, as described

by the paradigm, is genome biology. In this paragraph, these different steps

will be discussed in more detail.
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Genome biology Introduction

Figure 1.1: The central paradigm of biology describes the flow of genetic

information from DNA to proteins, which are the functional building blocks

of cells. RNA molecules are obtained from the DNA with a process called

transcription. The RNA molecules are then translated into proteins, which

are composed of long chains of amino acids. (Source: yourgenome.org)

1.2.1 Nucleic acids

DNA contains all the genetic information required to specify the traits

and characteristics of an organism, from physical appearance to metabolic

processes and behaviour. DNA is a long, double-stranded molecule that is
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Introduction Genome biology

composed of four nucleotides: adenine (A), cytosine (C), guanine (G), and

thymine (T). These nucleotides are arranged in a specific sequence along the

length of the DNA molecule, and the sequence determines the genetic infor-

mation stored in the DNA. The two strands of DNA are held together by

hydrogen bonds between the nucleotides, forming a double helix structure as

can be seen in Figure 1.2. Both of these strands contain the same biological

information, one is in fact the complementary of the other. The two strands

are parallel but they are in the opposite direction, one is 5′ → 3′ while the

other is 3′ → 5′; 5′ represents the beginning of the strand while 3′ the end.

Every human cell contains about 2 metres of DNA which is compressed in

each cell nucleus. The information necessary to produce a specific protein is

contained in the gene which is a segment of DNA. Each gene contains a unique

sequence of nucleotides, the fundamental elements of DNA, that provides the

instructions for making a specific protein. The information contained in DNA

is transferred into RNA through a process called transcription. Transcription

involves the use of an enzyme called RNA polymerase, which reads the DNA

sequence and synthesizes a complementary RNA molecule. RNA instead is a

single-stranded molecule that is similar in structure to DNA. However, unlike

DNA, RNA is not double-stranded and is typically shorter in length. The

resulting RNA molecule, called pre-messenger RNA (pre-mRNA), contains

the same genetic information as the DNA but in a different form. Messenger

RNA then goes through a series of transformations, including the process

of splicing, which removes non-coding parts of the sequence (introns) while

retaining the coding parts (exons). The coding region contains genes that

are responsible for producing functional products, such as proteins or RNA

molecules, that are essential for various cellular processes whereas the non-

coding region does not encode for proteins or functional RNA molecules.

7



Genome biology Introduction

Instead, this region contains regulatory elements that control gene expres-

sion, such as promoters, enhancers, and silencers. Additionally, non-coding

regions can contain repetitive DNA sequences or transposable elements that

do not have a known function but may contribute to genetic variation and

evolution. In the last step mRNA is transported from the nucleus of the

cell to the cytoplasm, where it is translated into a protein through a pro-

cess called translation. Proteins are important because they are the primary

Figure 1.2: Basic structure of DNA, which consists of two complemen-

tary strands composed of nucleotides, each of which is made up of a base

(adenine, thymine, guanine, or cytosine) attached to a sugar (deoxyribose)

and a phosphate group, with the bases forming specific pairs (adenine with

thymine, and guanine with cytosine) through hydrogen bonds. (Source: the-

ory.labster.com)

functional units of cells and are responsible for a wide range of functions, in-

cluding structural support, metabolic regulation, and communication. The

genome is the full set of DNA molecules in a living organism and genomics is

the study of the genome. The complete collection of all RNA in a cell, tissue
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Introduction Quantification of gene expression

or organism is also called the transcriptome and it’s study is transcriptomics.

The transcriptome reflects which and how active genes are being and is an

important intermediate that determines the abundance of downstream pro-

teins in a cell. In the next section we will introduce the technologies that

can be used to unravel the genome and to quantify the transcriptome.

1.3 Quantification of gene expression

The process during which genetic information is converted into functional

proteins is called gene expression and its quantification is useful in various

biological contexts. Gene expression measurements can be obtained by se-

quencing the RNA molecules present in a sample; the expression levels of

individual genes can then be estimated based on the number of RNA-seq

reads that map to each gene.

There are various sequencing methods, but the most common datasets

are obtained by second generation DNA sequencing machines, also known as

Next Generation sequencing, or third generation sequencing machines. The

second generation sequencing, which emerged in the mid-2000s, is a highly

scalable technology that allows for sequencing the entire genome at once.

There are various types of second generation sequencing technologies, the

most common technology is "sequencing by synthesis" (SBS), commercial-

ized by Illumina. One of the key features of this technology is the use of short

reads. The genome is fragmented into small pieces, after which each piece is

amplified and sequenced separately. This generates millions of small DNA

fragments that are sequenced in parallel, which produces large amounts of

data at a relatively low cost. Then, the RNA fragments are converted into

cDNA (complementary DNA) using reverse transcription. This involves us-
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Quantification of gene expression Introduction

ing an enzyme called reverse transcriptase to synthesize a complementary

DNA strand from the RNA template. The cDNA is then amplified using

PCR (polymerase chain reaction) to create many copies of each cDNA frag-

ment. Once the cDNA fragments have been amplified, they are sequenced

in parallel by first spatially separating them on a solid support such as a

glass slide or a bead. DNA polymerase is then used to incorporate labeled

nucleotides into the growing cDNA strand, one base at a time. The labeled

nucleotides are detected optically, and the process of incorporation typically

happens in cycles. During each cycle, a single base is added to the grow-

ing complementary strand, and the signal intensity of the labeled nucleotide

is detected and converted into the appropriate nucleotide. After multiple

cycles, millions of short DNA sequences are generated. These short DNA

sequences are referred to as reads, and they can be used to assemble the

entire genome or to analyze specific regions of interest. Since one can only

sequence short reads, what has been sequenced has to then be aligned in

order to identify to which gene each read belongs to. After alignment, one

can count the number or reads for every gene, which provides information

on its relative abundance. A general overview of the steps taken to perform

RNA sequencing can be seen in Figure 1.3.
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Figure 1.3: A sequencing protocol starts by extracting RNA from the sample

of interest; the RNA is then fragmented, reversely transcribed and amplified.

These fragments make up the cDNA library which is then sequenced. The

raw RNA reads have to then be mapped on a reference genome and the

number of reads that map on each gene are counted. These counts are then

used to perform data analysis. (Source: Van den Berge et al. (2019))

Third generation sequencing, also known as long-read sequencing, is still

under development and can produce considerably longer reads than second

generation sequencing. This comes with a higher error rate compared to next-

generation sequencers. Having longer reads can help face some computational

challenges regarding genome assembly and transcript reconstruction.

In the next two paragraphs, we discuss the specific characteristics of bulk

and single-cell sequencing in more detail.

1.3.1 Bulk RNA-seq

In bulk RNA extraction, RNA is extracted from a large number of cells

and the resulting RNA mixture is sequenced. This way bulk RNA-seq meth-
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Quantification of gene expression Introduction

ods give quantitative information about the expression of different genes in

a given sample and represents the average expression of the gene in all the

sequenced cells. This approach is useful for studying the RNA of populations

of cells and for obtaining a general overview of the genetic material present

in a sample.

While bulk RNA-seq is an established method for analyzing gene expres-

sion in a mixed population of cells, it may not provide sufficient resolution

or accuracy for certain applications, such as studies of rare cell types or in-

vestigations into cellular heterogeneity, where expression differences between

individual cells may be masked by the averaging effect of bulk analysis, mak-

ing it difficult to identify important cell-to-cell variations or sub-populations

that may play a key role in biological processes. In these scenarios, single-

cell sequencing has emerged as a powerful tool, enabling the analysis of gene

expression in individual cells, thereby providing a more detailed and accu-

rate understanding of gene expression patterns, cell-to-cell variability, and

cellular diversity.

1.3.2 Single-cell RNA sequencing

There are some cases, for example when studying heterogeneous tissues,

where bulk measurements are not enough; single-cell RNA extraction is used

instead and it enables the isolation and sequencing of RNA from individual

cells. As shown in Figure 1.4, in scRNA-seq protocols a cell is extracted from

a tissue and its RNA is retrotranscribed, amplified and then sequenced.

Plate-based protocols

Protocols have been widely available since 2014 and they are being contin-

uously updated thus getting better and cheaper. In 2014 the SMART-seq2

12



Introduction Quantification of gene expression

Figure 1.4: Bulk VS scRNA-seq protocol; the difference between the two

protocols is mainly in the second column which shows how in bulk RNA-seq

data DNA is extracted from all the nuclei whereas in scRNA-seq the DNA

is extracted separately for each cell. (Source: wycho.tistory.com)

protocol was introduced (Picelli et al. (2014)); this protocol adopts man-

ual separation of the cells into compartments and is still considered one of

the most efficient protocols. In the same year Fluidgm C1 was introduced

(Durruthy-Durruthy and Ray (2018)); this technology’s main breakthrough

is the fact that it is capable of automatically separating cells and amplifying

their RNA.

In the micro-wells methods, cells are either isolated manually or sorted

automatically and put into the micro-wells. The advantage of this method

is that cells can be observed at the microscope before being sequenced, this

allows to identify doubelts or cells that are dying. However it is a very hard

and manual work so only few cells can be sequenced at the same time.

13
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Droplet-based protocols

In 2015 there was an ulterior innovation and the Drop-seq technology was

introduced (Macosko et al. (2015)). This method uses droplets to capture

each cell and extract their RNA which allows for sequencing thousands of

cells at the same time. Moreover, in 2017, 10X Genomics released Chromium

(Weisenfeld et al. (2017)), a droplet based technology that allows for simulta-

neously sequencing thousands of cells. Droplet sequencing has indeed allowed

a large profiling of transcriptomes, however assessing differential expression

is hard due to inefficient sample processing and technical batch effects. To

overcome these problems, Kang et al. (2018) proposed the demuxlet proto-

col, which takes advantage of the natural genetic variation to determine to

which sample each cell belongs to and detect droplets containing two cells.

It can sequence together cells of multiple patients, because there is genetic

variation between patients and the sequence of every cell is given a barcode,

as soon as a sequence with certain variability is found, it can be attributed

to the correct patient. Demuxlet in fact implements a statistical model that

uses maximum likelihood to determine the most likely donor for each cell.

All these developments underline how it is getting easier and easier to obtain

a very large amount of data often for a low price.

The Drop-seq method uses a droplet-based technology in which every

cell is encapsulated in a gel drop together with a bead containing a unique

barcode which allows to identify every droplet. The advantage of this method

is that it allows to sequence thousands of cells from a sample, making this

technology very cost-effective. However only few reads per cell are sequenced,

which makes it hard to measure genes that are not highly expressed. These

considerations lead to the conclusion that the method that one has to use

depends on the biological interest; for example if one wants to analyse all the

14
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cell types in a tissue there need to be a lot of cells and so droplet methods

are to be preferred, whereas if one wants to identify all the differentially

expressed genes in a certain cell type there need to be a lot of reads so the

SMART-seq2 method is the one that works better.

Challenges for data analysis

Bulk RNA-seq datasets are characterized by a high sequencing depth,

which means that millions of reads are sequenced for each sample. This

is possible since there are only few samples being sequenced. When dealing

with scRNA-seq data instead, initially the RNA from a single cell is extracted,

which means that there is a lot less RNA compared to the bulk procedure in

which RNA is extracted from all the cells. This implies the need to amplify

RNA, which leads to two consequences:

• Some genes are not amplified, which leads to a very high number of

zeros;

• Some genes are amplified way to much resulting in amplification bias.

This occurs because some genes are easier to amplify than others. Gene

amplification is performed with PCR (polymerase chain reaction) which is a

relatively simple technique that amplifies a DNA template to produce specific

DNA fragments in vitro. These problems result in an increase of the observed

variance of the data.

With the droplet-based methods, it can happen that during the sequenc-

ing process two or more cells can occupy the same droplet, so when analysing

the counts one thinks that they are observing the expression in one cell but in

reality it is the sum of two or more cells. In the same way, it can also happen

that one is sequencing empty droplets and so what is analysed is not the RNA

15
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of a cell but the ambient RNA. A solution to this problem was introduced

by Kivioja et al. (2012) who proposed to insert Unique Molecular Identifiers

(UMI) inside the library. UMI are barcodes made up of nucleotides that are

added to the transcripts during reverse transcription. In this way, after the

amplification, if two sequences with the same barcode are found, one can infer

that they are a copy due to amplification and not two independent molecules

of RNA. This means that one can count the number of UMI associated to

every gene instead of counting the number of reads. The authors assert that

this helps decrease bias and technical variability. However also this approach

has its own problems since it often results in a very low number of counts

and one could potentially remove biologically relevant cells which have low

transcriptome complexity (Lönnberg et al. (2017)).

Another problem that needs to be addressed during the pre-processing of

scRNA-seq data is that some cells can be of poor quality, for example they

can be damaged or stressed. This problem is taken into consideration by

leveraging the expression of mitochondrial genes; it is known that mitochon-

dria are involved in stress response processes and cell death. This means that

high expression of mitochondrial genes could be an indication of damaged or

over-stressed cells.

1.4 Data analysis

Both for bulk and single-cell RNA data, the next step after sequencing

is mapping the raw RNA sequencing reads onto a reference genome. During

this process the reads are aligned to the genome and the number of reads

that map to each gene are counted. The resulting count data represents the

number of RNA molecules that were sequenced for each gene and can be used

16
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to quantify the expression levels of individual genes. It is to be noted that

these counts represent relative abundance rather than absolute abundances;

only a fraction of the RNA is in fact captured and then amplified with PCR,

thus it is not the actual abundances but a proxy. After having mapped

and obtained the counts, these are then normalized in order to account for

technical variability in the sequencing process and differences in the amount

of RNA that was initially isolated from the sample. Normalization methods

such as TMM (trimmed mean of M-values) are commonly used to do so

(Robinson and Oshlack (2010)). TMM normalization works by calculating

a scaling factor for each sample that adjusts the library size to a common

reference value. The effective library size is used to adjust the scaling factor to

account for differences in library size between samples. The effective library

size is calculated as the median of the ratios of the total read count for

each sample to the geometric mean of the read counts across all samples.

The effective library size is a crucial parameter in the TMM normalization

process because it determines the degree of normalization required to adjust

for library size differences between samples. After normalization, the count

data can be used to perform differential expression (DE) analysis, which

involves comparing the expression levels of individual genes across different

samples or conditions. DE analysis can be used to identify genes that are

significantly up- or down-regulated in response to specific conditions.

The main methods used to analyse single-cell RNA-seq data have their

origin in methods developed to analyse bulk RNA-seq data; therefore, con-

ventional methods for bulk RNA-seq data analysis will be first introduced.

17



Data analysis Introduction

1.4.1 Differential expression

The RNA-seq count matrix is a representation of the sequenced reads that

have been aligned to a genome where the entries correspond to the number

of reads that have been assigned to each gene for each sample. In the count

matrix the rows typically represent the genes and the colums the samples

or cells. Robinson, McCarthy, and Smyth (2010) highlight how the count

matrix can be seen as a large multinomial distribution where each column

in the matrix represents a separate trial of a multinomial experiment, with

the number of trials being the total number of reads in the sample, and

the number of categories being the number of genes in the genome. In this

view, each entry in the count matrix is a count of a specific outcome of the

multinomial experiment, and the sum of the entries in a row represents the

total number of trials for that sample. However, because there are so many

counts in the count matrix, often the total number of reads in a sample is

large and this makes it appropriate to model the count data for each gene

as a Poisson distribution, conditioning on the total count. In this way, the

count data for each gene is modeled as a Poisson random variable, with the

mean of the Poisson distribution being proportional to the mean expression

level of the gene across all samples.

An important aspect is that the Poisson distribution assumes that the

variance of the count data is equal to the mean, which is not always the

case in RNA-seq data; the count data for many genes can in fact have a

higher variance than the mean and this means that the data is overdispersed.

Overdispersion is introduced due to biological variability and if not accounted

for can result in incorrect inference and decreased statistical power. To ac-

count for this, it is common in the literature to use the negative binomial

(NB) distribution to model the count data. EdgeR (Robinson, McCarthy,
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and Smyth (2010)) is a widely used software package for the analysis of dif-

ferential gene expression in RNA-seq data.

Precisely, the edgeR method considers every row of the count matrix as a

gene and every column as a sample, which means that given Ygi the number

of counts of gene g in sample i, edgeR fits a Generalized linear model (GLM)

to each gene as follows:

Ygi ∼ NB(µgi, ϕg)

log(µgi) = ηgi

ηgi = β0g +

p∑
j=1

xijβjg +Oi

(1.1)

Where xij with j = 1, ..., p and p the number of variables is the element of

the design matrix made up of variables indicating for example to which group

each observation belongs, and βjg can represent the log2 fold change or the

log2 fold change difference between groups for each variable. Oi represents

an offset term, typically specified as the logarithm of the effective library size

for each sample, and it is used in the model to adjust the mean expression

level for each gene. µgi can also be written as Mipgj where Mi represents

the library size which is the total number of reads and pgj is the relative

abundance of gene g in group j to which sample i belongs. Since we are

dealing with a negative binomial distribution the mean is µgi = Mipgj and

the variance is µgi(1+µgiϕg). In RNA-seq data, the dispersion parameter ϕg

represents the coefficient of biological variation between samples, this allows

the edgeR model to distinguish between technical and biological variation.

edgeR estimates the dispersion parameters with an adjusted profile likelihood

(Cox and Reid (1987)).

Genes are tested to see if they are significantly differentially expressed by
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testing for every gene g the following hypothesis:

H0 : Cβj = 0,∀j ∈ 1, ..., p

H1 : ∃j : Cβj ̸= 0
(1.2)

where C is a vector that allows testing linear combinations of β. Differ-

ential expression is assessed by using likelihood ratio tests (LRT) who are

asymptotically χ2 distributed.

An empirical Bayes procedure is then used to shrink the dispersions to-

wards a consensus value by borrowing information across genes. Shrink-

age is used to avoid the presence off big outliers and because in RNA-

seq data it is common for n − p where p is the number of parameters,

to be small, a quasi-likelihood approach can thus be improved by sharing

information across genes when estimating dispersion parameters. Lund et

al. (2012) show how a scaled-inverse χ2 prior distribution with d0 degrees

of freedom and a scaling factor ω0 is used on each gene’s dispersion obtain-

ing d0ω0/ωg ∼ χ2
d0

. This produces an inverse-gamma posterior distribution

1/ωg|ω̂g ∼ Gamma(0.5(d0 + n − p), 0.5(d0ω0 + (n − p)ω̂g)). The hyper-

parameters are estimated from the distribution of ω̂g by using the method of

moments approach.

A quasi-likelihood approach (Tjur (1998)) is also commonly used when es-

timating the edgeR model; a model is specified for the mean and the variance

for each observation as a function of its mean. Given Ygi the observed count of

gene g in sample i what is modeled is E(Ygi) = µgi and V ar(Ygi) = ω2
gVg(µgi)

where Vg() depends on the fitted distribution (µgi+µ2
giϕg in the NB case and

µgi if it’s a Poisson). Both ω2
g and ϕg are dispersion parameters: the first

one is a proportionality constant used in quasi-likelihood models, while the

second is a parameter of the negative binomial distribution. In this case to

test Equation 1.2 a weighted test is used.
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1.4.2 Differential expression for single-cell RNA-seq

An important feature of single-cell RNA-seq is the possibility of looking at

two aspects of the data distribution. Both differences in mean and differences

in detection can in fact be assessed. By aggregating the data, differences in

mean can in fact be analysed having the same or higher power of looking

at differences in mean with bulk methods. This powerful aspect is currently

not exploited but provides a promising avenue. A commonly used tool for

visualizing differences in mean expression levels between different groups is

the violin plot. A violin plot, like the one shown in Figure 1.5, is a type of

density plot that shows the distribution of expression values for each group

as a function of their density. The width of each violin corresponds to the

density of expression values at different levels, with wider areas indicating

higher densities of expression values. The height of the violin reflects the

range of expression values, with the top and bottom indicating the maximum

and minimum expression levels, respectively. Overall, the violin plot provides

a useful way to compare the distribution of gene expression values between

different groups and patients in single-cell RNA-seq data.

By examining the distribution of gene expression in different ways, scRNA-

seq data can thus provide valuable insights into the biology of individual cells

and the cellular heterogeneity of tissues and organs.

The majority of tools used to assess differential expression have been

developed for bulk data. Single-cell data, however, also presents several

challenges that need to be addressed in order to obtain accurate results.

scRNA-seq typically have a lower sequencing depth compared to bulk RNA-

seq, because the sequencing is performed on individual cells rather than on

a pool of cells; they can have higher technical variability compared to bulk

RNA-seq, due to the increased complexity of the sequencing process. Be-
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Figure 1.5: Violin plot of the expression of gene EIF4A2 in the T4 naive cell

type of the lupus study (see section 1.5) in 5 healthy patients and 5 patients

affected by SLE

cause of both of these aspects, some genes may not be detected in individual

cells. This aspect motivates us to focus on determining whether a gene is

detected in a cell or not, rather than on the actual expression level. This type

of analysis can provide useful insights into the presence or absence of genes

in different cell types or conditions. While it is commonly believed that the

highly sparse matrix, typical of scRNA-seq, is primarily caused by technical

artifacts, there is growing evidence that these zeros also reflect biological vari-

ation. Zeros can in fact occur because of a technical dropout or because there

is no or limited expression of a gene. Qiu (2020) has in fact demonstrated

that by binarizing counts one obtains a binary expression profile of single-cell

data, which accurately reflects biological variation and reveals the relative

abundance of transcripts more robustly than counts; this happens because

different sub-populations may have different dropout patterns and this can

be a basis to detect cell types. Given these facts, part of what this work

aims to do is try and understand if the proportion of zeros alone is capable
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of capturing the biological variability and distinguish between differentially

expressed groups using a similar approach as Qiu (2020). However, the aim

here is not to discover new cell types but to look at differential detection of

genes across cell types or conditions.

As noted by Crowell et al. (2020), there is another aspect that typical

modelling methods do not take into consideration, which is the fact that

cells from the same individual share common genetic and environmental

backgrounds. This implies that they are not statistically independent. In

fact, all cells from the same cell type from the same patient have an expres-

sion more alike than cells from other patient and can therefore be seen as

pseudo-replicates. This means that scRNA-seq data has a hierarchical struc-

ture that many methods do not consider and this leads to biased inference,

highly inflated type 1 error rates and reduced robustness and reproducibil-

ity. Squair et al. (2021) have investigated the results obtained by several

methods and have found that the most frequently used methods will identify

differentially expressed genes even in the absence of biological differences.

However, they conclude that false discoveries can be avoided by accounting

for between-replicate variation. The dependence between cells of the same

patient could be considered by using mixed effect models. This approach

in fact takes into account the relationships between cells and can provide a

more accurate representation of the underlying biology. Despite their poten-

tial advantages, mixed effect models can be computationally challenging to

implement for scRNA-seq data, especially when working with large datasets.

Zimmerman, Espeland, and Langefeld (2021) show that mixed models have

the same performance as using pseudo-bulk data. Pseudo-bulk data refers

to a method of aggregating transcriptomic data from individual cells into

bulk-level expression data for a given cell type. This is accomplished by
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summing the gene expression values across cells within a defined group, such

as cells from the same tissue or cell type. To conduct such analysis one can

aggregate all the counts of a gene belonging to the same patient thus obtain-

ing pseudo-bulk counts. In contrast, using pseudo-bulk data can make the

analysis process quicker, as it reduces the complexity of the data.

1.5 Aims

The goal of this thesis is looking into what is the best approach to study

differential detection is single-cell RNA-seq data. Pseudo-replication will be

addressed as it is of interest to see if aggregating or not the data is of help in

facing this problem; moreover, normalization strategies will be investigated,

evaluating the need of adding an offset, and how data variability should be

modeled will furthermore be taken into consideration.

Initially, the different strategies will be benchmarked on simulated data

in order to assess type 1 error control, sensitivity and specificity. Then,

the top performing methods will be used to analyse a case study; here it is

of interest to see if performing a differential detection analysis can provide

complementary information on top of a differential expression analysis.
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Methods

2.1 Notation

The original counts will be binarized in order to assess differential de-

tection and the binarized counts of the same cell type and patient will be

aggregated. In the coming paragraphs the following notations will be used:

i indicates each of the N patients and g of the G genes. Thus the random

variable Ygi represents the number of times the gene g has been detected in

patient i and ygi its realization. ni represents the number of cells for patient i

and the total number of cells from all patients is M . The number of variables

j is p and xij will be used to define the element of the design matrix.

2.2 Differential detection for single-cell RNA-

seq data

As previously mentioned, scRNA-seq data have a very high amount of zero

counts which can be due both to technical and biological reasons. A large

amount of methods consider these zeros as a problem and aim to remove

25



Differential detection for single-cell RNA-seq data Methods

them from the analysis assuming that the gene in the droplet simply has not

been detected. This procedure is not completely correct because it does not

account for the fact that those zero counts can actually come from a sample

that does not express that gene. Having taken this into consideration it is

of interest to try and treat zeros not as a problem but as useful signal; to

do so, the count matrix is binarized obtaining a matrix whose elements ygi

are equal to 1 if gene g was detected in sample i and equal to 0 if it was not

detected. It is now of interest to see which genes are differentially detected in

different conditions and to see how the results compare to the ones obtained

by conducting a differential expression analysis.

2.2.1 Bernoulli regression

Given the binary nature of the data, it is logical to consider adapting

a Bernoulli model to the binarized count matrix. The Bernoulli model is

a statistical model that is commonly used to model binary outcomes and

is well-suited to data that can be represented as a series of independent

trials with two possible outcomes: success or failure. In the context of bi-

nary scRNA-seq data, the Bernoulli model can in fact be used to model the

presence or absence of gene expression, with success representing the pres-

ence of expression and failure representing the absence of expression. This

can be particularly useful for understanding the relationships between dif-

ferent genes and for identifying patterns of co-expression or co-regulation.

However, as previously mentioned, the independence assumption requested

by the Bernoulli model is violated due to the presence of pseudo-replicates.

Mixed effect models, which account for dependence between observations,

could be used but, as mentioned by Zimmerman, Espeland, and Langefeld

(2021) they produce similar results as using pseudo-bulk data while being
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computationally more challenging.

It should also be taken into consideration that the independence assump-

tion is always violated in transcriptomics data because genes do not act

independently one from each other; however, none of the state-of-the-art

methods account for this and also in this work this aspect is not taken into

consideration.

2.3 Aggregation method

As previously stated, all cells that come from the same cell type and

from the same patient have an expression that is more alike than cells from

other patient and can therefore be seen as pseudo-replicates. When ana-

lyzing scRNA-seq data with pseudo-replicate observations, it’s important to

account for the correlation structure in the data to avoid overestimating the

significance of observed differences. One way to do this is to use statistical

methods that are designed to handle correlated observations, such as mixed-

effects models or hierarchical modeling (Gelman and Hill (2006)). In hierar-

chical modeling, the data is assumed to have a hierarchical structure, where

cells are nested within patients. This allows for the estimation of patient-level

variation, which can be used to account for the correlations in the data. For

example, in a hierarchical model for scRNA-seq data with pseudo-replicate

observations, the expression levels of genes in individual cells are modeled as a

function of patient-level effects and cell-level effects. The patient-level effects

capture the variation between patients, while the cell-level effects capture

the variation within patients. By incorporating patient-level effects into the

model, it is possible to account for the correlation structure in the data and

obtain more accurate estimates of differential gene expression. However, Zim-

27



Aggregation method Methods

merman, Espeland, and Langefeld (2021) show how applying mixed models

to single-cell RNA-seq data has the same performance as analysing pseudo-

bulk data but, aggregating observations from the same cell type from each

patient has a great computational gain. After having conditioned on patient

and cell type, counts are independent and when Bernoulli data is aggregated,

the data will be binomial. As a consequence, if only the mean detection is

analysed there is no information loss and there is a gain in power by aggre-

gating. So, in order to address this dependence, pseudo-bulk data is used.

Pseudo-bulk data is obtained by aggregating all counts coming from the same

patient and same cell type. The purpose of creating pseudo-bulk data is to

account for the dependence between cells coming from the same patient, as

this dependence can impact the validity of the results of traditional RNA-

seq analysis methods. By creating a single sample that represents the entire

sample, the dependence between observations is reduced, and the results of

the analysis are more robust.

In this work, pseudo-bulk data was obtained with the aggregateAcross-

Cells() function from the scuttle package which also aggregates metadata

across cells.

2.3.1 Binomial regression

Given the nature of the observations contained in the newly created ma-

trix, one method that can be used to assess differential detection between

conditions is the Binomial model which is fitted for each gene in this way:
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Ygi ∼ Bin(πgi, ni)

logit(πgi) = log
πgi

1− πgi

= ηgi

ηgi = β0g +

p∑
j=1

xijβjg

(2.1)

Also in this case the regression coefficients β are estimated by using maximum

likelihood. Inference is done with a Wald test which follows a t distribution

with n − p degrees of freedom under the null hypothesis of no association

between the predictor and the outcome variable.

2.3.2 Quasi-binomial regression

Often RNA-seq data are overdispersed, which means that the variance

of the response variable is higher than what is expected by the generalized

linear model; this feature can be held into account by conducting a quasi-

binomial analysis. The quasi-binomial models the first two moments (the

mean and variance) according to the following expression:

E(Ygi) = µgi

V ar(Ygi) = ϕgV (µgi)

µgi = g−1(β0g +

p∑
j=1

xijβjg)

(2.2)

Here V () represents the binomial variance, ϕg is the dispersion parameter,

µgi is the expected value of Ygi and g() is the logistic link function. Infer-

ence is done by using a weighted test that incorporates weights based on

the variance function of the working mode. The weighted test is typically

implemented using a sandwich estimator, which involves estimating the vari-

ance of the estimated coefficients using a weighted sum of squared residuals.
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The sandwich estimator can be used to calculate the standard errors of the

estimated coefficients, which can then be used to perform hypothesis tests

and calculate confidence intervals.

Compared to the canonical binomial GLM, this model adds an additional

parameter ϕg to the binomial model which represents the dispersion parame-

ter. When ϕg → 0 the estimation equations of the quasi-binomial likelihood

coincide with the binomial one.

2.3.3 Offset

Often when modeling RNA-seq data an offset term is introduced as a

normalization factor for every cell or sample. An offset is an additional term

in a GLM model whose coefficient is not estimated but is considered equal

to 1.

In this study, the impact of including an offset to both the binomial

and quasi-binomial models will be assessed. In the first case we obtain the

following model:

Ygi ∼ Bin(πgi, ni)

logit(πgi) = ηgi = β0g +

p∑
j=1

xijβjg + logit(Oi)

Oi =
1

G

G∑
g=1

ygi
ni

(2.3)

This means that, on pseudo bulk data, the offset is the average detection of

all the genes in one specific patient whereas in scRNA-seq data the offset is

the average detection of all genes in one specific cell.
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2.3.4 Shrinkage

Often in RNA-seq problems the dispersion parameter ϕ is highly variable

between genes and the number of patients is often very small, and this re-

sults in imprecise estimates for ϕ. These problems can be solved by taking

advantage of the fact that we are estimating G, with G the total number of

genes, models at the same time and we can borrow information from other

genes to stabilise the estimation using an empirical Bayes approach.

In an empirical Bayesian framework, statistical inference is performed

using a hierarchical model where the hyper-parameters are estimated from

the data themselves, rather than being priorly specified (George, Casella, et

al. (1989)). Moreover, current methods do not use a posterior distribution,

because this would be slow, they only use the posterior mode to then perform

a frequentist analysis (Smyth (2004)).

In this study it is of interest to squeeze the dispersion parameter; to do

so the squeezeVar function from the limma package is used. After having

obtained the new dispersion estimate ϕ̃g the moderate t-statistic is calculated

tgi =
β̂gi

sg
√
vgiϕ̃g

as proposed by Smyth (2004).

2.3.5 edgeR on binarized counts

A classical edgerR analysis was also conducted on the binarized count

matrix. It was considered in two variants, one in which the dispersion was

estimated resulting in a quasi-negative binomial model and one with ϕ → 0

which is a quasi-Poisson. Both models have a quasi likelihood because the

QLFit function of the edgeR package estimates an additional over dispersion

parameter in order to account for gene-specific biological and technical vari-

ability. Given ygi the number of times gene g is detected in sample i, the
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quasi-negative binomial has the following features:

E(ygi) = µgi

V ar(ygi) = ωg(µgi + µ2
giϕg)

(2.4)

where µgi represents the expected count for gene g in sample i given the se-

quencing depth and treatment conditions, ϕg is the NB dispersion parameter

and ωg is the quasi-likelihood dispersion parameter.

The quasi-Poisson instead has the following features:

E(ygi) = µgi

V ar(ygi) = ωgµgi

(2.5)

where again µgi represents the expected count for gene g in sample i given

the sequencing depth and treatment conditions and ωg is the quasi-likelihood

dispersion parameter.

2.4 Stage-wise analysis

In the case study, a differential detection analysis as well as a differential

expression analysis will be performed on the same data. As such, two hy-

potheses are tested for each gene; is there a difference in detection of the gene

between samples, and is there a shift in mean expression between samples.

To gain statistical power, these two hypotheses can be first tested jointly in

the two stage testing paradigm proposed by Van den Berge et al. (2017).

The first stage, also called screening stage, considers an omnibus test that

aggregates evidence across all the hypotheses that have been tested for every

gene. This test thus indicates if a gene is either differentially expressed, dif-

ferentially detected or both. To do so the p-values coming from the two tests

have to be aggregated; the harmonic mean aggregation strategy, proposed by
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Wilson (2019), was used to aggregate the p-values while accounting for the

fact that the two tests are dependent. This stage increases the sensitivity of

the effects that have a relatively low power by picking up DE and DD genes.

During the second stage, called confirmation stage, one sees if the genes

that passed the screening test are either differentially expressed or differen-

tially detected. This method allows for looking at different aspects of the

distribution, difference in mean and difference in detection, while also con-

trolling the false discovery rate at the gene level.

2.5 Simulation framework

To evaluate the performance of the different methods they were applied

to simulated data obtained with the swapper package developed by Malfait

(2022). swapper simulates differential expression based on feature swapping;

in fact it randomly mixes a subset of features in one group of the data induc-

ing DE signal. A very good feature of this simulation method is that it keeps

the characteristics of the original data and does not rely on any modeling

assumptions. However, a negative side of this approach occurs in extremely

sparse datasets. In fact, if the counts of the two genes for which the counts

are being swapped between samples of groups a and b are primarily zeros,

this will result in only zeros but that gene will still be flagged as differentially

expressed.

The simulation data set originates from the Systemic lupus erythematosus

data analysed by Perez et al. (2022) (see Chapter 4 for further details). The

data set was first filtered in order to obtain a homogeneous sample retaining

only healthy European women who are less than 50 years old. Moreover,

only subjects coming from three sequencing batches were kept and, in order
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to have a more homogeneous sample, only cells coming from T4 lymphocytes

were considered. This leads to a data set with 4767 genes and 44 patients.

Differential expression will be performed by randomly splitting these patients

in two groups and since it is a homogeneous group, no differential detection

or differential expression is expected. Two main cases were considered: one in

which there are no differentially expressed genes and one in which 5% of genes

are DE. Patients were randomly assigned to two mock groups; for the first

case it is expected that, thanks to randomization, there is no DE, while to ob-

tain the second dataset, 5% of gene counts were randomly swapped between

the two mock groups hence introducing differential expression. Moreover,

since 22 vs 22 studies are very rare, the data set was downsampled to obtain

two new data sets in which the are 5 vs 5 and 10 vs 10 comparisons. In

this way, not only is the data more realistic, but one can also see how each

methods’ performance varies according to sample size.

2.6 Evaluation criteria

The performance of each method will be evaluated by calculating both the

True Positive Proportion (TPP) and the False Discovery Proportion (FDP).

The TPP, also known as sensitivity, is a measure of the proportion of

positive cases that are correctly identified as such. In other words, it is the

number of true positive results divided by the number of all positive cases.

The FDP, on the other hand, is a measure of the proportion of false

positive results among all positive results. It is defined as the number of

false positive results divided by the number of all positive results, both true

and false.

Both TPP and FDP are commonly used performance measures in the
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field of statistics and data analysis, particularly in the context of binary

classification problems. They provide complementary information about the

accuracy and reliability of a given method and are used to compare different

methods and select the best one for a particular problem.

In this work both TPP and FDP will be obtained thanks to the iCOBRA

package developed by Lisa and Bot (2017) and will be shown together on

a FDP-TPP curve. Each curve shows the performance of each method by

evaluating the sensitivity with respect to the false discovery proportion. The

three circles on each curve represent the points when the FDP level is set at

nominal levels of 1%, 5% and 10%, respectively.
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Simulation study

In order to benchmark the performance of the different modeling ap-

proaches described in the Methods section, each method will be evaluated

on a simulated data-set with known ground truth. Initially, the ability of

each method to control the type 1 error proportions at the desired level on a

simulated mock data-set without differential expression and differential de-

tection signal will be analysed. Next, the sensitivity and specificity of each

method will be analysed on simulated data in which a differential expression

and detection signal will be introduced artificially.

The methods used to assess differential detection are the binomial regres-

sion (as defined in Equation 2.1), the quasi-binomial regression (as defined

in Equation 2.2), a binomial regression with an offset (as defined in Equation

2.3), a quasi-binomial regression with an offset, a squeezed quasi-binomial

(as defined in Section 2.3.4), a squeezed quasi-binomial with an offset, a

quasi-negative binomial (as defined in Equation 2.4) and a quasi-Poisson (as

defined in Equation 2.5). These methods will be tested on aggregated data

and, as a reference, also on non aggregated data.
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3.1 No differentially expressed genes

The analysed data comes from the Perez et al. (2022) study in which

a filtering procedure was first conducted in order to obtain a homogeneous

sample in which only healthy European women were retained. Patients were

then randomly assigned to two mock groups; thanks to randomization, no

differential expression is expected on average. Assuming that the statistical

assumptions of the statistical model hold, the p-values obtained from the test

should follow a uniform distribution under the null hypothesis. This means

that the probability of obtaining a p-value below the 0.05 threshold is equal

to the threshold itself which is 5% in this case. This means that 5% of the

genes are expected to have a non-adjusted p-value below 0.05.

3.1.1 22 vs 22 patients comparison

Differential detection was initially tested on a data-set containing 22 pa-

tients per group and the methods were applied both on aggregated and non

aggregated binarized counts.

As a reference differential expression was first evaluated by using the

conventional edgeR analysis on the aggregated count matrix which lead to

a p-value distribution shown in Figure 3.1. This analysis detected 3.36% of

differentially expressed genes; this means that the method had a non-adjusted

p-value of 0.05 or smaller for 3.36% of the genes.
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Figure 3.1: p-values of the differential expression analysis conducted with

edgeR on the 22 vs 22 patients comparison in which no differential expression

is expected.

The analysis on non aggregated binarized counts was then conducted

and the resulting p-values of the single-cell level analysis are shown in Figure

3.2. This type of analysis resulted in a higher number of genes found as

differentially detected in all methods compared to the edgeR analysis for

differential expression. The binomial regression finds 7.43% of differentially

detected genes, the quasi-binomial 7.49%, the binomial with an offset 7.34%,

the quasi-binomial with an offset 7.85%, the squeezed quasi-binomial 7.47%

and the the squeezed quasi-binomial with an offset 7.47%. This shows that

the methods have similar type 1 error control but their p-value distribution

are overly liberal. This high amount of genes that are found as differentially

detected is probably due to that fact that pseudo-replication in not take into

account.
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Figure 3.2: p-values of the differential detection analysis conducted on the

non aggregated counts of the 22 vs 22 patients comparison in which no dif-

ferential expression is expected.

The methods were subsequently applied to the binarized aggregated counts;

the resulting p-values are shown in Figure 3.3. Compared to the p-values ob-

tained with the analysis on the non aggregated data, apart from the binomial

distribution, the p-values in Figure 3.3 have a much more uniform distribu-

tion. This can also be noted analysing the percentage of genes with a p-value

smaller than 0.05. With the analysis conducted on the aggregated data, in

fact, the percentages are 7.43 for the binomial model, 4.15 for the quasi-

binomial, 7.15 for the binomial with an offset, 4.45 for the quasi-binomial

with an offset, 4.34 for the squeezed quasi-binomial and 3.04 for the squeezed

quasi-binomial with an offset. From these results, it is clear that account-

ing for overdispersion and aggregating the counts per patient is crucial and

helps reduce the false positive proportion thus obtaining a uniform p-value

39



No differentially expressed genes Simulation study

distribution.

Figure 3.3: p-values of the differential detection analysis conducted on the

aggregated counts of the 22 vs 22 patients comparison in which no differential

expression is expected.

As described in Section 2.3.5, edgeR was further tailored in order to

perform differential detection analyses, by fitting a quasi-negative binomial

and a quasi-Poisson on the binarized aggregated counts. The resulting p-

values are shown in Figure 3.4; the two approaches respectively produce

3.04% and 3.36% of differentially detected genes.

40



Simulation study No differentially expressed genes

Figure 3.4: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 22 vs 22 patients

comparison in which no differential expression is expected.

By looking at the p-value distributions obtained by adapting all methods,

the quasi-binomial with an offset and the shrunken quasi-binomial with an

offset applied on pseudo-bulk level are the methods who produce the most

uniformly distributed p-values.

3.1.2 10 vs 10 patients comparison

To investigate how sample size affects the methods’ results, 10 patients

were sampled and analysed per group. As for the previous case, an edgeR

analysis was conducted on the aggregated counts and the results, as can be

seen in Figure 4.4 in the Appendix, were very similar to the ones obtained

on the 22vs22 data-set.

The analysis was then conducted on single-cell level and resulted in the

p-value distributions that can be seen in Figure 3.5. It is interesting to note

how all the methods have a spike on p-values equal to zero even though,
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since it is assumed there is no signal, their distribution should be uniform.

The binomial model has in fact signaled 26.92% of the genes as differentially

detected, the quasi-binomial 26.92%, the binomial with an offset 13.56%, the

quasi-binomial with an offset 15.18%, the squeezed quasi binomial 26.92%

and the squeezed quasi-binomial with an offset 14.33%. These percentages

are a lot higher than the ones found with the analysis on the 22 vs 22 sample

showing how higher sample size probably produces more accurate estimates.

Figure 3.5: p-values of the differential detection analysis conducted on the

non aggregated counts of the 10 vs 10 patients comparison in which no dif-

ferential expression is expected.

The analysis was then conducted on the aggregated binarized counts;

the resulting p-values can be seen in Figure 3.6. The percentages of genes

flagged by the methods were 26.92% for the binomial model, 3.03% for the

quasi-binomial, 13.33% for the binomial with an offset, 4.90% for the quasi-
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binomial with an offset, 2.20% for the squeezed quasi-binomial and 3.82%

for the squeezed quasi-binomial with an offset. What emerges from these

analysis, just as for the 22 vs 22 case, is that models that account for over-

dispersion have a lower number of differentially detected genes than those

who do not account for it. However, compared to the 22 vs 22 analysis

the quasi-binomial and squeezed quasi-binomial models seem to have a more

conservative p-value distribution while in this case, adding an offset seems to

improve the results; the quasi-binomial model with an offset and the squeezed

quasi-binomial with an offset in fact have a uniform p-value distribution.

Figure 3.6: p-values of the differential detection analysis conducted on the

aggregated counts of the 10 vs 10 patients comparison in which no differential

expression is expected.

Quasi-negative binomial and quasi-Poisson models were fitted on the bi-

narized aggregated count matrix and produced coherent results with the 22 vs
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22 case, their p-value distribution can be seen in Figure 4.5 in the Appendix.

3.1.3 5 vs 5 patients comparison

In order to further investigate the role that sample size has on the results,

5 patients per group were sampled and analysed. The edgeR analysis again

performs similarly to the 22 vs 22 case as can be seen in Figure 4.6 in the

Appendix.

Analysis on single-cell level was again conducted and the p-value dis-

tributions can be seen in Figure 4.7 in the Appendix. As for the previous

data-sets, single-cell level analysis produces a high amount of differentially

detected genes underlining the need of working on pseudo-bulk data. The

methods were then applied to the binarized aggregated matrix and the re-

sulting p-values are shown in Figure 3.7. Like the previous analysis, models

that account for over-dispersion have a lower percentage of DD genes than

those who do not account for it.

A quasi-negative binomial and quasi-Poisson model was adapted on the

binarized aggregated counts and the resulting p-value distributions are simi-

lar to those obtained in the 22 vs 22 analysis; their p-value distributions can

be seen in Figure 4.8 in the Appendix.
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Figure 3.7: p-values of the differential detection analysis conducted on the

aggregated counts of the 5 vs 5 patients comparison in which no differential

expression is expected.

The percentage of differentially detected genes in all methods and of dif-

ferentially expressed genes found by the edgeR model, can be easily seen in

Table 3.1. In all three sample sizes pseudo-bulk level analysis has better re-

sults than the analysis conducted on single-cell level, this is probably due to

the fact that pseudo-replications are take into account. Moreover, accounting

for over dispersion also helps improve results. In all three data-sets the best

performing method is the quasi-binomial with an offset because it has the

best type 1 error control and the p-value distribution is uniform.
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Method 22 vs 22

non agg

22 vs 22

agg

10 vs 10

non agg

10 vs 10

agg

5 vs 5

non agg

5 vs 5

agg

edgeR / 3.36 / 3.32 / 4.09

Binomial 7.43 7.43 26.92 26.92 14.70 14.70

Quasi-binomial 7.49 4.15 26.92 3.03 14.64 2.26

Binomial with offset 7.34 7.15 13.56 13.33 8.18 8.04

Quasi-bin with offset 7.85 4.45 15.18 4.90 8.49 3.99

Squeezed quasi-bin 7.47 4.34 26.92 2.20 14.64 2.10

Sq. quasi-bin with offset 7.47 3.04 14.33 3.82 8.49 4.26

Quasi-NB / 3.04 / 1.72 / 3.16

Quasi-Poisson / 3.36 / 3.63 / 2.62

Table 3.1: Percentage of differentially detected and differentially expressed

(edgeR) genes in all methods according to the various sample sizes. It is

expected that 5% of genes have a p-value below 0.05.

3.2 Differentially expressed genes

The analysis will now be repeated on the data coming from the Perez et

al. (2022) study in which a filtering procedure was first conducted in order to

obtain a homogeneous sample in which only healthy European women were

retained. Patients were then randomly assigned to two mock groups and

thanks to randomization, no differential expression is expected on average.

Signal was then induced in 5% of the genes by randomly swapping them

between the two groups as described in the Section 2.5. It is expected that

the p-value distribution has a spike on zero but, apart from that, it has a

uniform distribution. This means that, if we start from a mock comparison

with 4767 genes and 5% of them are then swapped (238 genes), 4529 non-

swapped genes are left. It is expected to have 5% of the p-values below 0.05

due to random chance (226 genes) which means that 464 genes are expected

to be found with a p-value below 0.05. This means that a non-adjusted
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p-value below 0.05 is expected in 9.73% of genes.

The performance of each method will be evaluated by calculating TPP

and FDP as explained in Section 2.6.

3.2.1 22 vs 22 patients comparison

A differential expression analysis initially was conducted on the aggre-

gated count matrix of the 22 vs 22 data-set with the edgeR method; the

resulting p-value distribution can be seen in Figure 3.8 and the percentage

of genes that the method found as differentially expressed is 7.30%.

Figure 3.8: p-values of the differential expression analysis conducted with

edgeR on the 22 vs 22 patients comparison in which differential expression

is expected in 5% of genes.

The analysis was then conducted on single-cell level on the binarized

counts; the p-value distributions can be seen in Figure 3.9. The binomial re-

gression flagged 11.41% of genes as differentially detected, the quasi-binomial

11.47%, the binomial with an offset 11.22%, the quasi-binomial with an off-

set 11.73% and both the squeezed quasi-binomial and the squeezed quasi-

binomial with an offset 11.45%.
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Figure 3.9: p-values of the differential detection analysis conducted on the

non aggregated counts of the 22 vs 22 patients comparison in which differ-

ential expression is expected in 5% of genes.

The performance of each method was then evaluated by comparing each

model’s False Discovery Proportion - True Positive Proportion curves. As

mentioned in Section 2.6, a method performs well if it has low levels of and

high levels of TPP, this means that the curves in the corresponding plot

should be in the top-left part. The edgeR analysis is shown as a benchmark

to see how single-cell level analysis compare to it. It is clear that there is more

statistical power to detect differential expression than differential detection.

The methods applied to the binarized non aggregated count matrix all have

similar perfromance with the squeezed quasi-binomial performing marginally

better.
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Figure 3.10: Performance evaluation of the methods with false discovery pro-

portion and true positive proportion curves. Differential detection results ap-

plied to non aggregated data and differential expression assessed with edgeR

are compared in the 22 vs 22 patients comparison.

The analysis was then conducted on the aggregated binarized counts; the

p-value distributions can be seen in Figure 3.11. The binomial model presents

11.41% of genes as differentially detected, the quasi-binomial 8.03%, the bi-

nomial with an offset 11.08%, the quasi-binomial with an offset 8.31%, the

squeezed quasi-binomial 7.64% and the squeezed quasi-binomial with an off-

set 7.89%. As already suggested by the analysis conducted on the data sets

with no differentially expressed genes, it is clear that analysis conducted on

aggregated counts have lower percentages of genes that are found as differen-

tially detected than the analysis on single-cell level, thus likely having better

type 1 error control. Moreover, methods that account for over-dispersion

help reduce this percentage.
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Figure 3.11: p-values of the differential detection analysis conducted on the

aggregated counts of the 22 vs 22 patients comparison in which differential

expression is expected in 5% of genes.

Both the quasi-negative binomial and the quasi-Poisson were fitted to

the aggregated binarized data and the p-values shown in Figure 3.12 were

obtained. The quasi-negative binomial produced 6.96% of differentially de-

tected genes whereas the quasi-Poisson 7.32%.
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Figure 3.12: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 22 vs 22 patients

comparison in which no differential expression is expected.

The performance of each method was evaluated by comparing the False-

Discovery Proportion - True Positive Proportion curves shown in Figure 3.13.

As for the non aggregated data, also in this case all methods seem to have

similar performances except for the binomial regression strategy that has

a higher False Discovery Proportion. Methods that have the highest True

Positive Proportions and lowest False Discovery Proportions are the quasi-

negative binomial and quasi-Poisson.
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Figure 3.13: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Differential detection results

applied to aggregated data and differential expression assessed with edgeR

are compared in the 22 vs 22 patients comparison.

To see how the methods compare on aggregated and non aggregated data

a FDP-TPP curve was obtained with the top performers of both cases. Since

quasi-Poisson and quasi-negative binomial had the same performance, the

quasi-binomial model with an offset was considered for the aggregated data.

The quasi-Poisson model has a slightly better TPP and . Both edgeR and

the quasi-binomial with an offset adapted on pseudo-bulk level have in fact

very similar results suggesting that if aggregation and over-dispersion are

take into account the performance is good. The squeezed quasi-binomial

adapted on non aggregated data has a higher FDP compared to the other

methods. These results seem to indicate that aggregation helps to control

false discovery proportion without losing the ability of detecting true positive

genes.
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Figure 3.14: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Methods with the best per-

formance at single-cell level and at pseudo-bulk level were compared in the

22 vs 22 patients comparison. The quasi-binomial with an offset and quasi-

Poisson were modeled on the binarized aggregated counts, the squeezed quasi-

binomial was modeled on the binarized count matrix and edegR was used to

assess differential expression on the pseudo-bulk data.

3.2.2 10 vs 10 patients comparison

10 patients per group were sampled in order to obtain a smaller data set

and see how the methods perform with a smaller sample size. As a bench-

mark, differential expression was analysed with edgeR on the aggregated

count matrix producing similar results as for the 22 vs 22 case.

The methods were then applied to the binarized count matrix. Like in

the analysis on the 10 vs 10 data-set in which no differential expression

was assumed, the analysis on single-cell level produces a high peak on zero

p-values as shown in Figure 4.10 in the Appendix, thus suggesting these
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methods provide overly liberal results. The performance of the methods

(Figure 4.11 in Appendix) was similar to the one obtained in the 22 vs 22

study underlining how the edgeR method performs better then those applied

on single-cell level; amongst the models fitted on the aggregated data the

quasi-binomial regression seems to have better true positive proportions and

lower false discovery proportions than the remaining methods.

The methods were then applied to the binarized aggregated matrix and

the resulting p-values can be seen in Figure 3.15. Also in this case, it is clear

that accounting for over-dispersion and working on pseudo-bulk data helps

reduce the proportion of differentially detected genes.

Figure 3.15: p-values of the differential detection analysis conducted on the

non aggregated counts of the 10 vs 10 patients comparison in which differ-

ential expression is expected in 5% of genes.

The quasi-negative binomial and the quasi-Poisson were also fitted to the

binarized aggregated matrix and produced similar results to those obtained
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in the 22 vs 22 case. Their p-value distributions can be seen in Figure 4.12

in the Appendix.

Each method’s performance was evaluated with the FDP-TPP curve

shown in Figure 3.16; also in this case the performance was coherent with

what emerged in the 22 vs 22 analysis where the edgeR is the method with the

best TPP even though it just slightly over-performs both the quasi-binomial

model with an offset and the squeezed quasi-binomial with an offset. Also in

this case, aggregation based methods have both better FDP and TPP than

analysis conducted on single-cell level.

Figure 3.16: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Differential detection results

applied to aggregated data and differential expression assessed with edgeR

are compared in the 10 vs 10 patients comparison.

Figure 3.17 shows the FDP-TPP curves of the differential detection anal-

ysis conducted on single-cell level with a squeezed quasi-binomial and on

pseudo-bulk level with both a quasi-Poisson and a quasi-binomial with an
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offset. The differential expression analysis assesses with edgeR was also con-

ducted as a reference. It is clear how pseudo-bulk analysis has a much better

performance that differential detection analysis conducted on single-cell level

since it has much higher FDP; this happens because pseudo-replicates are not

taken into consideration. As for the 22 vs 22 comparison, the three methods

applied on pseudo-bulk level have very similar performances; in this case for

the differential detection analysis the quasi-binomial with an offset is to be

preferred to the quasi-Poisson.

Figure 3.17: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Differential detection was

obtained in the 10 vs 10 patients comparison with a quasi-Poisson and a

quasi-binomial with an offset on pseudo-bulk level and with a squeezed quasi-

binomial on single-cell level and differential expression was assessed with

edgeR.
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3.2.3 5 vs 5 patients comparison

To further investigate the role played by sample size, 5 patients were sam-

pled per group and then analysed. Differential expression was first analysed

with the edgeR model adapted on the aggregated count matrix and similar

results to the 22 vs 22 analysis were obtained. The binarized aggregated ma-

trix was then analysed and, as for the bigger sample sizes, all methods found

a high percentage of differentially detected genes between the two groups. As

can be seen in Table 3.2 adding an offset helps reduce the percentage of DD

genes. FDP-TPP curves were used to compare each model’s performance

and, as for the previous analysis conducted on single-cell level, edgeR over

performs the other models; amongst the methods applied to the binarized

count matrix binomial with an offset and the quasi-binomial with an offset

have the best results both as regards the true positive proportion and the

false discovery proportion (Figure 4.15 in Appendix).

The analysis was then conducted on pseudo-bulk level; the p-value distri-

butions can be seen in Figure 3.18. These results underline the importance

of aggregation and how, with a low sample size, it it fundamental to account

for both over-dispersion and normalization.
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Figure 3.18: p-values of the differential detection analysis conducted on the

aggregated counts of the 5 vs 5 patients comparison in which differential

expression is expected in 5% of genes.

Both the quasi-negative binomial and the quasi-Poisson were fitted to the

aggregated binarized data and have similar p-value distributions as in the 22

vs 22 case (Figure 4.16 in Appendix).

The performance of each method was evaluated by comparing the false-

discovery proportion - true positive proportion curves shown in Figure 3.19.

The edgeR analysis slightly performs better than the other methods. Apart

from the binomial model and the quasi-binomial model, all methods seem to

have similar performances.
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Figure 3.19: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Differential detection results

applied to aggregated data and differential expression assessed with edgeR

are compared in the 5 vs 5 patients comparison.

Methods applied on single-cell level and on pseudo-bulk level are com-

pared in Figure 3.20. Differential detection was asses on non aggregated data

with a squeezed quasi-binomial whereas on aggregated data a quasi-Poisson

and a quasi-binomial with an offset were used. Differential expression was

also tested with the edgeR model. It can clearly be seen how not accounting

for the presence of pseudo-replicates in the data leads to a high false dis-

covery proportion which indicates that the analysis should be conducted on

pseudo-bulk level. Also in this case the methods adapted on aggregated data

have a very similar performance.
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Figure 3.20: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. Differential detection was

obtained in the 5 vs 5 patients comparison with a quasi-Poisson and a quasi-

binomial with an offset on pseudo-bulk level and with a squeezed quasi-

binomial on single-cell level and differential expression was assessed with

edgeR.

The percentage of differentially detected genes in all methods and of dif-

ferentially expressed genes found by the edgeR model, can be easily seen in

Table 3.2. Since the information of 5% of genes was swapped, 5% of genes

are expected to be found on average as differentially expressed. As for the

analysis conducted on the data-set in which no differential expression was

induced, pseudo-bulk level analysis has a better type 1 error control than the

analysis performed on single-cell level, this is probably due to the fact that

pseudo-replication is accounted for. In the 10 vs 10 patient comparison the

quasi-binomial with an offset was the top performing method whereas in the
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22 vs 22 and 5 vs 5 comparisons it was the quasi-Poisson. This suggests that

they probably have a similar performance in general.

Method 22 vs 22

non agg

22 vs 22

agg

10 vs 10

non agg

10 vs 10

agg

5 vs 5

non agg

5 vs 5

agg

edgeR / 7.30 / 8.47 / 7.43

Binomial 11.41 11.41 28.72 28.72 38.14 38.14

Quasi-binomial 11.47 8.03 28.72 7.11 37.99 8.27

Binomial with offset 11.22 11.08 17.64 17.47 15.84 15.61

Quasi-bin with offset 11.73 8.31 18.25 8.50 16.55 7.70

Squeezed quasi-bin 11.45 7.64 28.72 4.85 37.99 7.36

Sq. quasi-bin with offset 11.45 7.89 18.27 6.10 16.34 6.65

Quasi-NB / 6.96 / 8.77 / 8.03

Quasi-Poisson / 7.32 / 7.30 / 9.08

Table 3.2: Percentage of differentially detected and differentially expressed

(edgeR) genes in all methods according to the various sample sizes. It is

expected that 9.73% of genes have a p-value below 0.05.

3.3 Stage-wise analysis

As mentioned throughout this work, single-cell RNA-seq data allows to

look at two aspects of the distribution: differences in mean and in detection.

Thanks to this, both differential detection and differential expression were

tested on the genes. It is now of interest to try and aggregate the information

obtained by both methods in order to try and increase power. To do so

a stage-wise analysis was implemented as proposed by Van den Berge et

al. (2017). This analysis was conducted twice for every data-set, one time

in which differential detection was assessed by the best performing model

on the non aggregated data and once with the model that resulted the best

on the aggregated data. Differential expression, in both cases, was obtained

with the edgeR analysis.
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For the 22 vs 22 analysis differential detection on single-cell level was

assessed with the squeezed quasi-binomial. 214 genes (4.50%) resulted as

having difference in signal between the two groups, of these 211 were differ-

entially detected and 183 differentially expressed. The overlap between the

results can be seen in Figure 4.19; the majority of genes were detected by the

three methods. It can also be seen that the squeezed quasi-binomial picks-up

a higher number of genes than the edgeR model, this result was to be ex-

pected since, as can be seen in the first plot of Figure 3.9, it is overly liberal,

thus producing many false positives. Furthermore, 53 genes that are known

to be differentially expressed, were not identified by any model. Analysing

these specific genes it shows that they mainly have zero counts and so, even

though the counts were swapped between the two conditions, they will essen-

tially remain unaltered. Looking at the first FDP-TPP curve in Figure 4.20,

it emerges that the edgeR analysis still has the lowest false discovery pro-

portion and the stage-wise analysis does not seem to improve either FDP or

TPP. This, and the fact that methods do not have a big difference, can be due

to the fact that the simulation strategy induces big differences between the

groups so the effect is easy to detect. The stage-wise analysis does not help

because, with swapping, usually both differential detection and expression is

induced.

Differential detection was then tested with the quasi-binomial on the ag-

gregated binarized data. In this case the stage-wise analysis determined that

there is signal in 186 genes, 181 of which are differentially detected and 182

differentially expressed. The fact that modeling pseudo-bulk data helps re-

duce the number of false positive genes can be seen in Figure 4.20, where

the number of these genes is a lot lower than the ones found in the previous

analysis. Figure 4.20 shows that the screening analysis, in this case, manages
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to detect a higher number of genes while controlling FDP.

The analysis were also performed on the 10 vs 10 and 5 vs 5 data-sets

(see Appendix) which gave similar results therefore suggesting that, due to

the strong signal produced by swapping genes, stage-wise analysis does not

result in an increased performance compared to testing for DE and DD with

separate tests.

Figure 3.21: The graphs show Venn diagrams in which the overlap of the

methods analysed are shown. In the left panel the overlap between differential

detection assessed with the squeezed quasi-binomial on non aggregated data,

differential expression tested with edgeR, the screening results and the real

DE genes is shown. In the right panel differential detection is instead assessed

with the quasi-binomial adapted on pseudo-bulk level.
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Figure 3.22: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves. The left panel compares the

screening result with differential expression assessed with edgeR and differ-

ential detection tested with a squeezed quasi-binomial adapted on single-cell

level. The right panel instead used a quasi-binomial adapted on pseudo-bulk

level to assess differential detection.
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Chapter 4

Application on real data

4.1 Reference data

Systemic lupus erythematosus (SLE) is the most common type of lupus;

it is an autoimmune disease which causes the immune system to attack its

own tissues, causing tissue inflammation and organ damage. SLE can affect

joints, skin, brain, lungs, kidneys and blood vessels. To date, there still is no

cure for this disease but there are medical interventions that can help control

it (Carter, Barr, and Clarke (2016)). Moreover SLE is hard to diagnose

because it has a wide range of symptoms. As such, it is of interest to try and

identify a genetic component linked to lupus susceptibility.

Different approaches have been used to try and identify the genetic com-

ponent linked to SLE. Flow cytometry analysis was applied to quantify the

composition on the basis of known cell surface markers; this approach re-

ported B and T cell lymphopenia (a disorder in which the blood does not

have enough white blood cells Ducloux et al. (2010)). Moreover, a bulk

trascriptomic analysis was preformed on peripheral blood mononuclear cells

(PBMCs), which reported elevated expression of interferon-stimulated genes.

65



Reference data Application on real data

However, neither methods are considered optimal since flow cytometry is bi-

ased, as it uses a limited set of markers, whereas bulk trascriptomic analysis

does is not able to detect cell type specific differences in expression. This

implies that single-cell RNA sequencing could provide an unbiased approach

for detecting cell type specific transcriptional states of circulating immune

cells.

The data that will be used throughout this dissertation was collected from

systemic lupus erythematosus cases in the California Lupus Epidemiological

Study (CLUES) cohort, matching healthy controls from the UCSF Rheuma-

tology Clinic, and additional controls from the Immune Variation Project

(ImmVar). As described by Perez et al. (2022), mux-seq was used to profile

1.2 million human peripheral blood mononuclear cells (PBMCs) coming from

264 samples, of which 162 corresponded to SLE cases and the remaining were

healthy controls. The majority of patients were women either of European

or Asian descent. This is because it is known that SLE mainly affects women

and those with Asian, African, and Hispanic ancestries (Carter, Barr, and

Clarke (2016)).

PBMCs were pooled and profiled using 10x Genomics’ Chromium Sin-

gle Cell 3’ V2 chemistry and processed using the 10x Cell Ranger pipeline.

The cells were assigned to their donor with the Freemuxlet technology (Kang

et al. (2018)) and quality control and doublet removal was performed with

Scrublet (McGinnis, Murrow, and Gartner (2019)). Moreover platelets, megakary-

ocytes and red blood cells were removed using gene markers yielding a total

of 1,263,676 cells remaining in the final dataset. Cell types were annotated

using canonical marker genes and for each cell type, a percentage was calcu-

lated as the number of cells divided by the total number of cells assigned to

the sample.
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The analysis conducted by Perez et al. (2022) suggests that the decrease

of CD4+T cells in Asian women explains the lymphopenia observed in pa-

tients with SLE and was not associated with immunosuppressant treatment.

Moreover ncMs (non-classical myeloid cells) produced the biggest type 1 sig-

nature. Although cDCs (classical dendritical cells) and pDCs (plasmacytoid

dendritic cells) expressed interferon signaling, their scarcity in circulation

limited their contribution to the overall signal. IFNB1 and IFNA were nei-

ther detected in pDCs nor in other myeloid cell types which underlines how

type 1 interferons are likely not among circulating immune cells. An intere-

seting result is the expansion of GZMH+ but not GZMK+ cytotoxic CD8+

T cells in SLE. The significant expansion of GZMH+ CD8+ T cells suggests

a pathogenic role for these cells in SLE. These results allow the authors to

hypothesize a model for the initiation and worsening of SLE: an adaptive im-

mune response is initiated by foreign and auto-antigens followed by chronic

exposure to antigens in damaged tissue. This results in epitope spreading,

where new auto-antigens are introduced into the immune system and become

future targets of the autoimmune response.

The analysed data comes from the study conducted by Perez et al. (2022)

on systemic lupus erythematosus. The original data-set contains information

about 32738 genes and 1263676 cells coming from 261 patients of which 149

are European women, 107 are Asian and the remaining are African American.

Before being analysed, we filtered the data-set in order to account for

possible confounders. Only European women were retained because they

were the largest group. Moreover, samples of only five particular batches

were retained, so that all data comes from either the CLUES or LupCon

study and each batch has cells of either study allowing for incorporating the

batch variable in the model. Gene level filtering was subsequently applied:
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only genes that have some expression in at least 200 cells per cell type were

retained. A differential detection analysis was conducted separately for each

cell type: B memory cells, T4 naive and non-classical myeloid cells. These

three cell types were selected because the study contains a high number of

cells coming from the T4 naive cell type, a medium number of B memory

cells and a relatively low number of non-classical myeloid cells.

Due to the high dimensions of the data set and because all methods

performed better on aggregated data in the simulation study, only pseudo-

bulk analysis were conducted on the lupus data set.

4.2 B memory cell type

The first cell type to be analysed are memory B cells (Bmem). B cells are

a type of white blood cells that are crucial for the immune system; they are

responsible for producing antibodies which help to identify and neutralize

foreign substances but also recognize and remember specific antigens; this

allows a more rapid and effective immune response to subsequent infections.

B memory cells specifically have the function of memorizing the characteris-

tics of the antigen that activated their parent B cell during initial infection

allowing the immune system to recognize it in case another infection occurs.

The data-set contains 13596 cells coming from 47 patients of which 22 are

healthy and 25 are affected by lupus. After gene-level filtering 2556 genes

are retained.

As a reference, a differential expression analysis was conducted on the

aggregated counts with edgeR and 19.01% of genes resulted differentially

expressed between healthy women and those with lupus.

A differential detection analysis was then conducted on the binarized
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aggregated counts; the binomial regression found 34.59% of genes to be dif-

ferentially detected, the quasi-binomial 21.67%, the binomial with an off-

set 30.59%, the quasi-binomial with an offset 20.62%, the squeezed quasi-

binomial 21.99%, the squeezed quasi-binomial with an offset 20.74%, the

quasi-negative binomial 16.16% and the quasi-Poisson 20.66%. The p-value

distributions of each method can be seen in Figure 4.1.

Figure 4.1: p-value distribution of the differential detection analysis con-

ducted on pseudo-bulk level on the B memory cell type. Differential expres-

sion results assess with edgeR are added as a reference.

It can be seen how both the binomial regression and the quasi-binomial

with an offset have found a higher number of genes as differentially detected

compared to the other methods. This is coherent with the results of the

simulation study and thus underlining how these two models have a worse

control of type 1 error rate. The remaining methods instead have similar

percentages and, as suggested by the simulation study results, similar type

1 error rate control.

For this cell type, both the quasi-Poisson and the quasi-binomial with an
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offset have very similar percentages of genes that are found as differentially

detected. These two methods were the ones that resulted as top performing

in the simulation study both in term of of TPP and FDP. Since the two

methods have a very similar performance but the quasi-Poisson is faster, it

will be here used to compare differentially detected genes with those found as

differentially expressed by the edgeR model. As previously mentioned in fact,

single-cell RNA-seq data provides the opportunity to examine two different

aspects of gene expression distributions: differences in mean expression levels,

which are here assessed using edgeR, and differences in detection rates, which

are here analyzed by using the quasi-Poisson model. Combining these two

aspects can provide a more comprehensive understanding of gene expression

patterns and their biological significance. Therefore, these two analyses will

be integrated in order to gain further biological knowledge and to do so a

stage-wise analysis is conducted. 146 genes resulted as having difference in

signal between the two groups, of these 113 are differentially detected and

103 differentially expressed. It is therefore clear that by looking at these

two aspects a greater number of genes is taken into consideration therefore

gaining additional biological insights.

4.3 T4 naive cell type

T4 cells, also known as CD4+ T cells, are a type of T cell (a type of

white blood cell) that are present in the adaptive immune system. T4 cells

play a role in the regulation of other immune cells and in the development

of immunity and tolerance of self-antigens (Caza and Landas (2015)). Naive

T4 cells are a sub-population of CD4+T cells that have not yet encountered

antigens; it is believed that they play a key role in the initiation of the
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adaptive immune response since they have the potential to differentiate into

different sub-types of T cells (Young and Geha (1986)).

The data-set contains 18959 T4 naive cells, originating from 48 patients of

which 22 are healthy and 26 are affected by lupus. After gene-level filtering,

3870 genes are retained.

As a reference, differential expression analysis was conducted on the ag-

gregated counts with edgeR and 15.87% of genes resulted differentially ex-

pressed between healthy women and those with lupus.

A differential detection analysis was then conducted on the binarized

aggregated counts; the binomial regression found 38.48% of genes to be dif-

ferentially detected, the quasi-binomial 26.05%, the binomial with an off-

set 25.25%, the quasi-binomial with an offset 16.64%, the squeezed quasi-

binomial 25.99%, the squeezed quasi-binomial with an offset 16.82%, the

quasi-negative binomial 26.05% and the quasi-Poisson 25.25%. The p-value

distributions of each method can be seen in Figure 4.2.
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Figure 4.2: p-value distribution of the differential detection analysis con-

ducted on pseudo-bulk level on the T4 naive cell type. Differential expression

results assess with edgeR are added as a reference.

It can be seen how the binomial regression has a much higher percentage

of differentially detected genes than the other methods. As shown in the

simulation study, it is very likely that these genes are false positives since the

binomial model alone can not control type 1 error rate. As for the previous

cell type, since the quasi-Poisson is faster than the quasi-binomial with an

offset it will be used during the upcoming analysis. A stage-wise procedure

will in fact be implemented in order to combine the results obtained when

looking at differences in mean and when looking at differences in detection.

319 genes resulted as having difference in signal between the two groups, of

these 233 are differentially detected and 176 differentially expressed.

72



Application on real data Non-classical myeloid cells

4.4 Non-classical myeloid cells

Non-classical myeloid cells (ncMs) are a group of immune cells that are

distinct from classical myeloid cells, such as neutrophils, monocytes, and

macrophages. They are heterogeneous and include a variety of cell types,

such as dendritic cells, eosinophils, basophils, and mast cells, as well as sub-

sets of monocytes and macrophages. ncMs are involved in various physio-

logical and pathological processes, such as tissue repair, immune regulation,

and inflammation. They have unique functional properties that allow them

to perform specialized roles in these processes. For example, dendritic cells

are specialized in presenting antigens to T cells, eosinophils and basophils are

important in allergic responses, and mast cells are involved in host defense

against parasites and in allergic reactions.

The data-set contains 7020 ncM cells coming from 48 patients of which

22 are healthy and 26 are affected by lupus. After gene-level filtering, 2270

genes are retained.

As a reference, differential expression analysis was conducted on the ag-

gregated counts with edgeR and 22.37% of genes were flagged as being dif-

ferentially expressed between healthy women and those with lupus.

Differential detection analysis was then conducted on the binarized ag-

gregated counts; the binomial regression found 33.29% of genes to be dif-

ferentially detected, the quasi-binomial 22.11%, the binomial with an off-

set 30.18%, the quasi-binomial with an offset 21.87%, the squeezed quasi-

binomial 22.00%, the squeezed quasi-binomial with an offset 21.90%, the

quasi-negative binomial 19.41% and the quasi-Poisson 20.00%. The p-value

distributions of each method can be seen in Figure 4.3.
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Figure 4.3: p-value distribution of the differential detection analysis con-

ducted on pseudo-bulk level on the non-classical myeloid cell type. Differen-

tial expression results assess with edgeR are added as a reference.

Since both differences in mean and in detection were assessed it is of inter-

est to combine these results in order to obtain further biological knowledge.

Differential expression was assessed with edgeR whereas for differential de-

tection numerous methods were applied. Again, the quasi-Poisson model will

be used during the stage-wise analysis. 355 genes were found as presenting

differences between healthy women and those affected by lupus. Of these

genes, 275 are differentially detected and 316 are differentially expressed. It

can clearly be seen that if both aspects of the distribution are taken into

consideration a much higher number of genes who present differences be-

tween the two health statuses are found, potentially resulting in additional

biological insights.

The resulting percentage of genes found as differentially detected by all
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methods and the percentage of differentially expressed genes in all cell types

are summarized in Table 4.1.

Cell type Bin Quasi-bin Offset Quasi+off Sq. quasi Sq.quasi+off Quasi-NB Quasi-Pois edgeR

B memory 34.59 21.67 30.59 20.62 21.99 20.74 16.16 20.66 19.01

T4 naive 38.48 26.05 25.25 16.64 25.99 16.82 26.05 25.25 15.87

ncM 33.29 22.11 30.18 21.87 22.00 21.90 19.41 20.00 22.37

Table 4.1: Percentage of genes found as differentially detected and differen-

tially expressed (edgeR) for every method in all cell types.

Table 4.1 shows how the binomial regression and the binomial regression

with an offset have a much higher percentage of genes, this is however coher-

ent with what had emerged in the simulation study. Methods that do not

account for over-dispersion have in fact a higher rate of differentially detected

genes thus having worse control of type 1 error rate.

4.5 Biological interpretation

A gene set enrichment analysis (GSEA) will be conducted to determine

whether a set of genes is significantly enriched in a particular biological func-

tion, pathway, or phenotype. GSEA can be used to identify biologically

relevant pathways or processes that are differentially expressed in two or

more groups of samples, such as disease vs. control. In this master thesis,

the online platform MSigDB (Molecular Signaltures Database, Subramanian

et al. (2005)) was used to perform GSEA.

The Gene Set Enrichment Analysis procedure involves comparing a user-

supplied set of genes with the gene sets in MSigDB, which contains pre-

defined sets of genes that are associated with various biological processes,

pathways, and diseases. The goal is to identify whether the user-supplied

set of genes is significantly enriched in any of the pre-defined gene sets. To
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perform GSEA, the expression data for the user-supplied set of genes and the

gene sets in MSigDB are first ranked based on their correlation with a specific

phenotype, such as disease status. An enrichment score is then computed

for each gene set in MSigDB, reflecting the degree to which the genes in the

set are overrepresented at the top or bottom of the ranked list. To assess

the statistical significance of the enrichment score, a Fisher’s exact test is

performed to determine the probability of observing the overlap between the

user-supplied gene set and the gene set in MSigDB by chance. The p-value

obtained from the Fisher’s exact test measures the probability of observing

an overlap as extreme or more extreme than the observed overlap, assuming

that there is no true association between the user-supplied gene set and the

gene set in MSigDB.

In this study, Gene Set Enrichment Analysis will be performed separately

for each cell type. First, GSEA will be performed using the set of genes that

resulted significantly different with the stage-wise procedure. Additionally,

GSEA will be performed on the genes that resulted differentially expressed

with the edgeR analysis. The results of the two GSEA analyses will be

compared to determine if performing stage-wise testing provides additional

biological insight.

4.5.1 B memory cells

In the GSEA analysis performed using the set of differentially expressed

genes, the three most significant gene sets are cytosolic ribosome, cytoplasmic

translation and the ribosome. Instead, when conducting GSEA on the genes

found with the stage-wise testing analysis, the top three gene sets identified

were those related to immune response, RNA binding and innate immune

response. These differences underline how stage-wise testing provides further
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biological knowledge than only performing a differential expression analysis.

The immune response gene set can be related to lupus because lupus is an

autoimmune disease that occurs when the immune system attacks healthy

tissues in the body. In lupus, there is often an overactive immune response

and dysregulation of immune cells and molecules. The immune response gene

set identified in GSEA analysis may contain genes involved in various aspects

of the immune response, such as immune cell activation, inflammation, and

cytokine signaling, that are known to play a role in the pathogenesis of lupus

(Rönnblom and Pascual (2008)). Therefore, the identification of the immune

response gene set in GSEA analysis suggests a potential association with the

pathogenesis of lupus.

4.5.2 T4 naive cells

In the T4 naive cell type instead, there were no differences between the

gene sets obtained when performing GSEA on the genes found with the

stage-wise testing analysis and those differentially expressed. This highlights

how stage-wise testing does not give substantially different results than those

obtained with edgeR.

4.5.3 Non-classical myeloid cells

GSEA was performed separately for two groups of genes, those obtained

with stage-wise testing and those resulting differentially expressed with edgeR.

Upon comparing the gene sets obtained from the two groups using GSEA,

they were found to be similar. However, the results based on the genes from

stage-wise analysis contained the peptide biosynthetic process gene set, which

was not present in the results based on the genes that were only differentially

expressed. This result is of interest because there is evidence suggesting that
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peptide biosynthesis may be involved in the pathogenesis of lupus. Peptides

derived from self-antigens can be presented to T cells by antigen-presenting

cells, leading to the activation of autoreactive B cells and the production of

autoantibodies. In particular, there is some evidence that abnormal peptide

biosynthesis and presentation may contribute to the development of lupus.

For example, studies have shown that autoantibodies in lupus patients can

recognize and bind to peptides derived from self-antigens, suggesting a role

for abnormal peptide presentation in the pathogenesis of the disease. Ad-

ditionally, genetic variations in genes involved in peptide biosynthesis and

processing, such as the HLA genes, have been associated with an increased

risk of developing lupus (Klein and Sato (2000)). While the relationship

between peptide biosynthesis and lupus is not yet fully understood, these

findings suggest that abnormal peptide presentation may play a role in the

development of autoimmunity and the pathogenesis of lupus and stage-wise

testing provides further biological knowledge than simply performing and

edgeR analysis.
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The aim of this master dissertation was to leverage single-cell RNA-seq

data to examine two distinct aspects of the distribution, i.e., differences in

mean and in detection. Canonical, differential expression analyses were per-

formed using the popular edgeR package. To additionally test for differential

detection in scRNA-seq data multiple techniques were implemented and com-

pared. The outcomes of the differential expression and differential detection

analysis were then integrated by using a stage-wise testing procedure, to gain

more statistical power and yield a more comprehensive understanding of the

biological mechanisms involved. Furthermore, an additional aim of the study

was to address the problem of the presence of pseudo-replicates present in

scRNA-seq data by aggregating single-cells for each cell type and patient

combination, thus creating pseudo-bulk data.

Various methods were presented for assessing differential detection at

both the single-cell and pseudo-bulk levels. To assess differential detection,

we first binarise the count data, and given the binary nature of the data, it

is logical to consider applying a logistic regression. However, as discussed

below, the logistic model alone did not account for certain aspects of the

data, which led to the proposal of modifications. These included the use of

a quasi-likelihood approach that accounts for over-dispersion, the inclusion

of an offset term that acts as a normalization factor, and adopting a quasi-
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binomial model with a shrunk dispersion parameter; this last modification

allows for borrowing information between genes and shrinks the dispersion

parameter towards a common value using an empirical Bayesian approach. In

addition, two modifications of the edgeR method were implemented allowing

to fit a quasi-Poisson and quasi-negative binomial to the data.

To evaluate the performance of each method, a simulation study was car-

ried out. The simulated data was based on a real case study conducted by

Perez et al. (2022) on lupus. A differential detection analysis was performed

on two datasets: one in which it was assumed that there was no differential

expression, and another in which 5% of genes were assumed to be differen-

tially expressed. By comparing the results obtained from the simulated data

to the ground truth, the performance of each method was assessed.

In order to investigate the need of accounting for the presence of pseudo-

replicates, the analysis was conducted both on single-cell level and on pseudo-

bulk level. The results of the simulation study show that not accounting for

the presence of pseudo-replicates leads to an inability to control type 1 error

thus leading to a high presence of false positive genes. Additionally, account-

ing for over-dispersion using quasi-likelihood further improved controlling the

type 1 error. This is probably due to the fact that the data is over-dispersed

and not accounting for this aspect lead to an incorrect statistical inference

and the model will not be able to capture all the variability in the data, thus

leading to inaccurate predictions. Moreover, the insertion of an offset param-

eter, which serves as a normalization factor, helps both in terms of FDP and

TPP. These results therefore underline the need to account for differences in

sequencing depth. The top performing methods in terms of TPP and FDP

are the quasi-binomial with an offset and the quasi-Poisson both adapted on

pseudo-bulk level.
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In the simulation study, the usage of a stage-wise testing paradigm did

not improve the performance; we hypothesise that this is due to the fact

that the simulation strategy introduced a very strong signal, thus inducing

both differences in mean and in detection. In the case study however, using

stage-wise testing did seem to provide further biological information given

that the differential detection analysis provided complementary information

to the differential expression analysis.

In order to further investigate the performance of each method it would

be useful to conduct the analysis also on an imbalanced data-set where the

imbalance can be both between the number of patients in each mock group

and in the number of cells per patient. This analysis is more challenging so it

will highlight further problems and probably major differences between the

performance of the different strategies to test for differential detection.

Another aspect that should be taken into consideration in order to im-

prove the results is the development of a different simulation strategy. In this

thesis, data were simulated by simply swapping the original counts between

two genes in one of the treatment arms. However, given the sparsity of the

data, this may induce limited changes for some genes. Indeed, if the counts

of the two genes for which the counts are being swapped between samples

of groups a and b are primarily zeros, this will result in only zeros but that

gene will still be flagged as differentially expressed.

In conclusion, this study highlights the importance of accounting for

pseudo-replication and over-dispersion in scRNA-seq data analysis. The

study recommends the use of either a quasi-Poisson model or a quasi-binomial

model with an offset to assess differential detection, as these were found to

have the best balance of true positive rate and false discovery rate. Further-

more, the study demonstrates the potential benefits of a stage-wise testing

81



Discussion

procedure in scRNA-seq data analysis, which allows for examining differ-

ences in mean and detection while controlling the false discovery rate at the

gene level. This approach provides a more comprehensive analysis of the

differences in gene expression between healthy individuals and those with lu-

pus, and can facilitate a deeper understanding of the biological mechanisms

underlying the disease. Overall, this master dissertation provides valuable in-

sights and recommendations for scRNA-seq data analysis, which can help to

improve the accuracy and robustness of differential gene expression analysis

in complex diseases such as lupus.
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4.6 Simulation study

Figure 4.4: p-values of the differential expression analysis conducted with

edgeR on the 10 vs 10 patients comparison in which no differential expression

in expected.
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Figure 4.5: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 10 vs 10 patients

comparison in which no differential expression is expected.

Figure 4.6: p-values of the differential expression analysis conducted with

edgeR on the 5 vs 5 patients comparison in which no differential expression

is expected.
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Figure 4.7: p-values of the differential detection analysis conducted on the

non aggregated counts of the 5 vs 5 patients comparison in which no differ-

ential expression is expected.

Figure 4.8: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 5 vs 5 patients

comparison in which no differential expression in expected.
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Figure 4.9: p-values of the differential expression analysis conducted with

edgeR on the 10 vs 10 patients comparison in which differential expression

in expected in 5% of genes.

Figure 4.10: p-values of the differential detection analysis conducted on the

non aggregated counts of the 10 vs 10 patients comparison in which differ-

ential expression in expected in 5% of genes.
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Figure 4.11: Performance evaluation of the methods with false discovery pro-

portion and true positive proportion curves. Differential detection results ap-

plied to non aggregated data and differential expression assessed with edgeR

are compared in the 10 vs 10 patients comparison.

Figure 4.12: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 10 vs 10 patients

comparison in which no differential expression in expected.
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Figure 4.13: p-values of the differential expression analysis conducted with

edgeR on the 5 vs 5 patients comparison in which differential expression in

expected in 5% of genes.

Figure 4.14: p-values of the differential detection analysis conducted on the

non aggregated counts of the 5 vs 5 patients comparison in which differential

expression in expected in 5% of genes.
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Figure 4.15: Performance evaluation of the methods with false discovery pro-

portion and true positive proportion curves. Differential detection results ap-

plied to non aggregated data and differential expression assessed with edgeR

are compared in the 5 vs 5 patients comparison.

Figure 4.16: p-values of the differential detection analysis conducted with

Quasi-NB and quasi-Poisson on the aggregated counts of the 5 vs 5 patients

comparison in which no differential expression in expected.
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4.6.1 Stage-wise analysis

Stage-wise analysis was then performed on the 10vs10 data-set; initially

differential detection was assessed with the quasi-binomial adapted on single-

cell level. The screening stage flagged 574 genes, 566 of which were differ-

entially detected and 178 differentially expressed. It is clear how, with low

sample size, models fitted at single-cell level have a huge amount of false

positive genes as can be seen in Figure 4.19. Also in this case there are some

differentially expressed genes that are not picked up by any method this is,

as previously explained, because only zero counts were swapped. FDP-TPP

curves were used to assess the method’s power and it can be seen that the

edgeR analysis clearly has higher TPP and better false discovery propor-

tions. Differential detection was then investigated by adapting a squeezed

quasi-binomial with an offset on the binarized aggregated counts. The stage-

wise analysis picked-up 163 genes, 144 of which are differentially detected

and 160 differentially expressed. Aggregation helps contain the number of

false positive genes, as can be seen in Figure 4.19. Figure 4.20 shows how

stage-wise analysis does not add any power since it again performs like the

edgeR analysis.
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Figure 4.17: The graphs show Venn diagrams in which the overlap of the

methods analysed on the 10 vs 10 comparison are shown. In the left panel

the overlap between differential detection assessed with the quasi-binomial

on non aggregated data, differential expression tested with edgeR, the screen-

ing results and the real DE genes is shown. In the right panel differential

detection is instead assessed with the quasi-binomial with an offset adapted

on pseudo-bulk level.

Figure 4.18: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves in the 10 vs 10 comparison

. The left panel compares the screening result with differential expression

assessed with edgeR and differential detection tested with a quasi-binomial

adapted on single-cell level. The right panel instead used a quasi-binomial

with an offset adapted on pseudo-bulk level to assess differential detection.
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In the 5vs5 data-set the stage wise-analysis was first conducted by using

the quasi-binomial with an offset to evaluate differential detection on single-

cell level. The screening stage picked-up 292 genes, 286 of which resulted

as differentially detected and 149 differentially expressed. Just like in the

analysis conducted on larger sample sizes, the single-cell level analysis has

a large amount of false positive genes. The FDP-TPP curves show how the

edgeR analysis over performs both the screening methods and the quasi-

binomial with an offset. To evaluate differential detection on the binarized

aggregated matrix, a quasi-Poisson model was used. In this case the screening

stage signaled 138 genes, 115 of which are differentially detected and 137

differentially expressed. In this case aggregation did not help reduce the

number of false positive genes detected by the quasi-Poisson. Also in this

case the screening method does not help to gain power and performs as the

edgeR model.
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Figure 4.19: The graphs show Venn diagrams in which the overlap of the

methods analysed on the 5 vs 5 comparison are shown. In the left panel the

overlap between differential detection assessed with the quasi-binomial with

an offset on non aggregated data, differential expression tested with edgeR,

the screening results and the real DE genes is shown. In the right panel

differential detection is instead assessed with the quasi-Poisson adapted on

pseudo-bulk level.

Figure 4.20: Performance evaluation of the methods with false discovery

proportion and true positive proportion curves in the 5 vs 5 comparison

. The left panel compares the screening result with differential expression

assessed with edgeR and differential detection tested with a quasi-binomial

with an offset adapted on single-cell level. The right panel instead used a

quasi-Poisson adapted on pseudo-bulk level to assess differential detection.
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