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Abstract

This Thesis deals with the study of density limit in magnetically confined fusion plasmas. The density
limit causes the termination of the plasma discharge when a threshold value for the electron density
is overcome, the so-called Greenwald density (nG), and thus represents an important operative limit
for fusion devices.
The problem is studied following a multiple point of view approach involving the numerical solution
of a single-fluid model for the plasma, the study of plasma transport theory and the analysis of data
coming from the reversed-field pinch experiment RFX-mod in Padua, Italy.
Analysis of the results from numerical simulations of the reversed-field pinch configuration allows
confirming the role of a dimensionless parameter of the model (the Hartmann number H, related to
plasma resistivity and viscosity) in describing the transition observed in the dynamics of the plasma
and in ruling the behaviour of edge-magnetic field.
Analysis of the plasma transport theory allows writing the Hartmann number in terms of plasma
measurable quantities.
Analysis of a wide set of data coming from the RFX-mod experiment allows linking the trend in edge-
magnetic field observed at the onset of the density limit to the (perpendicular) Hartmann number: this
supports abandoning the phenomenological nG parameter in favor of H. Furthermore, H describes
with a good level of correlation the behaviour of the measured plasma density, temperature and
current.
The work in this Thesis provides an important confirmation to the use of the single-fluid model in
modeling reversed-field pinch plasmas and opens the way towards exploring the possibility that H
could be the order parameter also in the tokamak density limit.



iv



Contents

Ringraziamenti vii

Introduction ix

1 Nuclear fusion as an energy source 1

1.1 Nuclear fission and fusion reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Plasma confining methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Energy balance and expected operational conditions of a fusion reactor . . . . . . . . . 5

1.4 Fusion plasmas instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Magnetohydrodynamics models 11

2.1 Plasma kinetic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Moments of the kinetic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Braginskii equations and transport coefficients . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Electric charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Momentum transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Single fluid MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Visco-resistive MHD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Scaling approach to the visco-resistive model . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Transport coefficients estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Fluid numbers estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Reversed-Field Pinch configuration 25

3.1 Main features of the RFP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Taylor’s relaxation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Magnetic order and high level self-organization . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Wire model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Magneto-fluid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The RFX-mod device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 SpeCyl numerical simulations 35

4.1 The Specyl code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 RFP and 3D MHD simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Simulations database analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Simulations results: magnetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 m = 1 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 m = 0 modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Simulation results: edge magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 RFX-mod shot analysis 49

5.1 Previous experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Scaling studies on RFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2 Study of the edge plasma physics in QSH . . . . . . . . . . . . . . . . . . . . . 52

v



CONTENTS

5.1.3 Previous studies of the density limit . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Hartmann number evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Databases analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Hartmann number calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Scaling laws based on Hartmann number . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Mode calculations: the Newcomb method in toroidal geometry . . . . . . . . . . . . . 61
5.5 Scaling of the m = 0, n = −1 mode with Hartmann number . . . . . . . . . . . . . . . 63
5.6 Comparison between simulations and experimental data: edge radial field . . . . . . . 65

Conclusions 69

A Proofs of theorems 71
A.1 Woltjer’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 MHD visco-resistive equations in Fourier space . . . . . . . . . . . . . . . . . . . . . . 72

vi



Ringraziamenti

Arrivato alla fine fine di questo percorso di studi desidero ringraziare le persone che mi hanno sostenuto
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Introduction

This thesis summarizes the activity of about six months I spent in Consorzio RFX, inside the Padova
CNR research area. The research activity of the Consorzio RFX is aimed at the study of nuclear
fusion as a future energy source able to sustain the growing energy demand, CO2 free and safer than
the actual exploitation of nuclear energy (based on nuclear fission).
Considered the importance of achieving such a goal, this field of research is coordinated at an interna-
tional level. In Europe, a road map based on plasma magnetic confinement is expected to bring the
exploitation of nuclear fusion on a commercial level within the end of this century (shown in Figure
1). The major international project on which fusion scientists are working in these years is ITER (In-
ternational Thermonuclear Experimental Reactor) that is under construction in Cadarache, France.
This experiment is the result of a long series of studies that historically began just after World War
II, at the ”Second United Nations International Conference on the Peaceful uses of Atomic Energy”,
better known as the ”Atoms for Peace” conference (1-13 September 1958). ITER represents the last
step before the construction of a real demonstrative reactor (DEMO), foreseen to start its activity
around 2050.

Figure 1: European research program in fusion science, aimed at the commercial use of fusion.

Consorzio RFX is one of the laboratories that collaborate in this ambitious project, and it hosts two
experiments: NBTF (Neutral Beam Test Facility) to study the ITER neutral beam injector and RFX-
mod (Reversed Field eXperiment) that is an independent fusion experiment that studies the RFP
(reversed field pinch) magnetic configuration.
One of the main difficulties that has to be overcome, is related to plasma instability. In fact, the
conditions at which ITER is expected to work, require to develop control techniques (presently under
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0 Introduction

study) in order to guarantee a proper duty cycle of the device. The plasma instabilities have different
properties and consequences depending on the type of magnetic configuration considered. The physi-
cal phenomena that determine them are not yet entirely understood and explained.
In this work, one of these instability phenomena (common to the three main magnetic configurations)
is studied: the density limit. This limit causes the termination of the plasma discharge, when a
threshold value for the electron density is overcome. So far, many efforts have been spent phenomeno-
logically to predict this threshold value, still lacking a complete physical explanation, based on ’first
principles’. The goal of this thesis is the development of a new approach based both on theoretical
models, numerical simulations and experimental data analysis, aimed at a better understanding of the
density limit, in the case of the RFP configuration. Particular attention has been paid to the role of
edge radial magnetic field instabilities, observed as precursors of such a limit.
More precisely, the nonlinear MHD visco-resistive model is used in simulating RFP plasmas and from
it, the most important parameter that arises is the dimensionless Hartmann number (depending on
resistivity and viscosity), able to describe quite well the behaviour of magnetic energy and edge mag-
netic field. Thanks to the theoretical work of Braginskii transport coefficients and Hartmann number
can be expressed (and evaluated) in terms of plasma parameters. The expressions obtained allow the
description of the density limit and the main plasma parameters in terms of the Hartmann number,
on the basis of RFX-mod experimental measurements on a large database of discharges. Using the
latter, also the role of edge magnetic field instabilities is estimated, followed by a final comparison
with numerical simulations.

The matter introduced in this thesis is organized into five chapters.
Chapter 1 introduces nuclear fusion reactions and the different plasma confining methods that are
used to gain energy from it. Concentrating on magnetic confinement, the favorable conditions for a
future reactor to work are found taking into account the need of a positive gain in energy and the
presence of instabilities that limit the operational space. The focus, in this last part of the chapter, is
particularly addressed to the case of the density limit, that is the starting point of all the thesis work.
Chapter 2 is a theoretical chapter devoted to the description of the theoretical MHD models that are
used in the following chapters. The first topic is the derivation of the Braginskii equations (starting
from the kinetic model), whose closure is found in the context of Chapmann-Enskog and Balescu
procedure. The latter, consisting in an equilibrium perturbation theory, allows the introduction of
transport in plasmas, that is modelled with the introduction of transport coefficients, expressed as
function of plasma parameters.
After that, the single fluid visco-resistive model is presented, with the hypotheses needed in order
to develop it. Then, dimensionless fluid numbers are derived. The main one, which emerges after a
proper variable transformation, is the Hartmann number. To conclude, the dimensionless numbers,
relevant in the adopted fluid model, are finally rewritten as function of the main plasma physical
quantities.
In chapter 3 the reversed field-pinch configuration is described in its features, following the historical
development to which the conception of this configuration undergoes, from the initial studies of the
’70s by J.B. Taylor, up to modern numerical simulations. The RFX-mod device, the largest to work
in RFP configuration, is introduced at the end of the chapter with its main experimental features.
The numerical results obtained during the thesis work are exposed in chapter 4, after a brief pre-
sentation of the SpeCyl 3D non-linear MHD code together with the main results obtained in previous
works by RFX group. The simulation database used is described and all the physical quantities ob-
served are listed. The last sections present the results of the analysis developed for the study of the
density limit issue, i.e. magnetic energy and edge radial magnetic field, which are shown to mainly
depend on the Hartmann number.
Chapter 5 is the one devoted to the experimental data analysis. After introducing the previous works
useful to study the density limit, the databases considered during the analysis are presented as for the
procedure adopted to estimate the Hartmann number, from RFX-mod data. This result is exploited
in the next section that introduces scaling laws based on the use of the Hartmann number to describe
the density limit, but also other important plasma parameters. In this chapter also the mode analysis
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is developed, highlighting the role of the m = 0 modes as precursors of the density limit. As final
section, a comparison between numerical simulations and experimental data is presented in the case
of the edge magnetic field analysis.
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Chapter 1

Nuclear fusion as an energy source

In this chapter, the main features of nuclear fusion reactions used to hopefully provide a future energy
source are exposed. At first, nuclear reactions useful for energy purposes will be introduced. Secondly,
concentrating on fusion, a presentation of the most important plasma confining methods will follow
and then a description of the operational condition at which a future reactor is expected to work.
In particular, attention will be paid to the power balance of the fusion reactor (to determine the
conditions in which a net positive gain in energy is present) and to the operational limits introduced
in order to avoid plasma instabilities.
Among these phenomena, a first look to the case of the density limit is taken, from a phenomenological
point of view.

1.1 Nuclear fission and fusion reactions

The atomic nucleus is composed by protons and neutrons hold together by the nuclear force in a very
small region of space, of the order of 1− 10 fm (depending on the nucleus considered). This quantum
binding state is characterized by a mass lower than the sum of the masses of its smaller constituents:
the difference in mass ∆m is directly related to the binding energy thanks to the famous Einstein
formula E = ∆mc2.
For a nucleus with mass M atomic number Z and mass number A, the binding energy per nucleon B
is given by the following formula (in natural units):

M(A,Z) = Zmp + (A− Z)mn −AB(A,Z). (1.1)

Each nucleus is characterized by its own binding energy: the behaviour of the latter (deduced from
the experimental measures of the masses) with respect to the mass number can be estimated in the
context of the liquid drop model for nuclei and it is shown in figure (1.1).

In a nuclear reaction, a certain amount of energy can be released (as products kinetic energy) when
the mass of the products is lower than the mass of the reactants, that corresponds to the case in which
the products have a higher binding energy than the reactants.
Since the binding energy trend shows a maximum correspondent to A = 56 (iron peak), two very
different types of reactions are available to get energy: fission and fusion.
The reactions of nuclear fission consist in the subdivision of a heavy nucleus into two or more lighter
nuclei and fragments. Such a reaction can be spontaneous or induced by an external projectile (like
proton, neutron and γ photon), as in the following reaction (from [22]):

235
92U + 1

0n
140
58Ce + 94

40Zr + 2 1
0n + 6 e– + 206 MeV. (1.2)

1



1 Nuclear fusion as an energy source

Figure 1.1: Trend of the binding energy per nucleon as function of the atomic mass number.

Nuclear fission has been regularly exploited as a controlled energy source in nuclear power plants since
several decades, during which it has shown the potential to develop enormous amounts of energy.
However, there are also disadvantages in the exploitation of nuclear fission: the production of long-
lasting radioactive waste which requires special storage for a practically infinite time and the awful
accidents that can occur when the chain reaction control fails (Černobyl’ 1986) or the cooling system
does not work properly (Fukushima 2011).
Nuclear fusion is the opposite process: two light nuclei merge together and give rise to a heavier nucleus.
It is the type of reaction powering stars and sustaining their structure against the gravitational force
that, otherwise, would cause them to collapse. Nuclear fusion is also responsible for the generation of
the chemical elements with Z ≤ 26.
The exploitation of nuclear fusion turned out to be much more difficult than in the case of fission and,
despite the efforts made, it does not exist yet a prototype reactor similar to the ”Fermi pile” able
to produce electric power from fusion for commercial purposes: this is mainly due to the fact that
nuclei are positively charged and their fusion requires the overcoming of the Coulomb potential barrier
generated by the nuclei themselves. To build a machine able to exploit controlled nuclear fusion, the
reactions mostly taken into account are the following:

2D + 2D 3T(1.01 MeV) + p(3.02 MeV) (1.3)

2D + 2D 3He(0.82 MeV) + n(2.45 MeV) (1.4)

2D + 3T 4He(3.5 MeV) + n(14.1 MeV) (1.5)

2D + 3He 4He(3.6 MeV) + p(14.7 MeV) (1.6)

where the energy released by the reactions can be found in [31]. As it can be seen, the energy obtained
by means of a nuclear fusion reaction is of the order of 1−10 MeV, one million times the typical value
of 1 − 10 eV that can be obtained by means of chemical combustion of fossil fuels, showing that, if
carried out, fusion could be a promising energy source for the future.
To realize this project, the choice of the reaction is very important because it determines key aspects
of the rest. Nowadays, the reaction candidate is (1.5) because it is the one that maximizes the cross
section (that means the probability of realizing it) at the lowest value of the scattering energy, as it is
evident from figure 1.2.

2



1.2 Plasma confining methods

Figure 1.2: Fusion reactions cross section, as function of the center of mass energy.

However, there are also critical aspects related to it, because a radioactive isotope not present in nature
like tritium is involved and indirectly ionizing radiation (neutron) is produced: for these reasons,
also the other reactions are not completely discarded at least for second generation reactors. The
disadvantages in exploiting nuclear fusion are in any case minor than in the case of nuclear fission
because developing uncontrolled chain reactions is physically impossible and the activation induced in
materials has a duration of about 100 years, with respect to 105-106 years of fission.

1.2 Plasma confining methods

The relatively high collision energies that are required to achieve non-negligible values of the cross
sections in figure 1.2 imply working with matter in the state of plasma, that is a state of matter
characterized by a considerable degree of ionization so that the charged particles that make it up are
able to display a collective behaviour.
In this ionized gas, the encounter of a deuterium and tritium nuclei not always gives rise to a fusion
reaction because the largely dominant outcome of the collision is Coulomb scattering, since its cross
section is approximately two orders of magnitude greater (see figure 1.3).

Figure 1.3: Comparison between Coulomb scattering and deuterium-tritium fusion cross sections.

3



1 Nuclear fusion as an energy source

To realize a sufficient number of fusion reactions, plasma needs to be confined in a finite region of
space for a relatively long time: in this way the number of particle collisions is sufficiently high to
allow fusion to take place and to guarantee a satisfactory gain in energy.
Different confining methods are known (as shown in figure 1.4): first of all, gravitational confinement
(the natural way of confining plasma in stars) has to be mentioned, then the artificial methods of
inertial and magnetic confinement. Inertial confinement basically consists in creating a deuterium-
tritium solid target bombed with high power laser to generate the evaporation of the surface and the
subsequent high pressure compression of the core that forces fusion to take place. The difficulties of
this method are related to the high power management generated by the experiment.

Figure 1.4: Three different confinement methods compared.

But the most promising confining method on which the European research project is centered (and
on which this work is focused) is the magnetic one. The idea at the basis of magnetic confinement
is quite easy: since no material surface able to support direct contact with high temperature plasma
exists, a magnetic field distribution has to be generated in order to confine the plasma, exploiting its
composition of charged particles.
In fact an electric E and magnetic field B affect the motion of a q charged particle with velocity v by
means of a force F, whose expression is given by the Lorentz formula:

F = q (E + v×B) . (1.7)

A complete treatment of charged particles dynamics (including drifts) in presence of an electromagnetic
field can be found in chapters 2 and 3 of Ref. [25]. The motion can be typically divided into two
contributions: a uniform velocity gyro-motion with radius given by the Larmor radius rL and angular
frequency given by cyclotron frequency ωc and a guide-center motion that follows magnetic field lines:

rL =
mv⊥
qB

, ωc =
qB

m
. (1.8)

Using this basic idea, the early linear fusion devices were built exploiting a cylindrical symmetry
magnetic field; the main defects of such a configuration was the lost of particles at the extremes that
could be reduced but not cancelled by magnetic field intensification (”mirrors”).
To overcome this difficulty, toroidal geometry was introduced. This type of geometry solves the prob-
lem of particle loss at the extremes, but introduces unavoidable deflections of particle trajectories with
respect to the magnetic field line, known as ”drifts”. Drifts can be due to magnetic field gradients and
curvature and can be almost completely cancelled (at least for thermal particles) with the introduction
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1.3 Energy balance and expected operational conditions of a fusion reactor

of a poloidal component of the magnetic field.
Three different configurations (compared in figure 1.5) have been studied.

Figure 1.5: Comparison between the three main configurations for the magnetic confinement of fusion plasmas.

The main one is the tokamak, considered the most promising for the realization of the first fusion
reactors. In this configuration, the toroidal component of the magnetic field is obtained thanks to
toroidal magnetic field coils, while the poloidal one is guaranteed by the plasma current flowing in
toroidal direction triggered by the central solenoid. Vertical field coils are instead used to control
shape and positioning of the plasma inside the vacuum chamber. In the tokamak the poloidal field Bθ
is smaller than the toroidal Bφ, Bθ/Bφ << 1.
Alternative configuration to the tokamak are the stellarator, characterized by the absence of plasma
current and by special designed magnetic field coils able to generate both the components of the field,
and the reversed-field pinch (RFP) characterized by high values of the plasma current, and reversed
sign of the toroidal magnetic field in the external region. In the RFP the ordering of the magnetic
field is Bθ ≈ Bφ.
One of these experiments is located in Padova, at the C.N.R. research area and its name is RFX-mod
(Reversed-Field eXperiment modified) and it is operated by Consorzio RFX. This machine can work in
both tokamak and RFP configuration (this is a unique peculiarity) and restricting to the configuration
RFP is the largest machine in the world.

1.3 Energy balance and expected operational conditions of a fusion
reactor

A fusion reactor is a device able to generate a positive energy output by means of fusion reactions.
Taking into account the main sources of gain and loss of energy, it is possible to predict approximately
the operational conditions of future reactors. A precise analysis about this topic can be found in
chapter 1 of Ref. [55]: only the main results are reported in this section.
The main factors that contribute to the change of the plasma energy density w are: the power heating
input pH which can be injected from outside, the α particles power heating pα produced by fusion
reactions, the power loss related to transport pL and to radiation pR. In one formula (all the powers
involved are expressed per unit of volume):

dw

dt
= pH + pα − pL − pR. (1.9)

With simplifying hypotheses of quasi-neutrality (ne ≈ ni ≈ n), equal ionic and electron temperature
(Te ≈ Ti ≈ T ) and that the plasma can be treated as a monoatomic gas one gets:

w = 3nT, (1.10)
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1 Nuclear fusion as an energy source

where it is customary to express temperature as the associated energy (by means of the Boltzmann
constant kB).
While neutrons cannot be held in the plasma by the magnetic field, alpha particles in principle should
remain trapped thanks to their electric charge and consequently contribute to plasma heating. In
particular, their contribution is proportional to the energy brought by each single particle (Eα =
3.5 MeV) and to the number of reactions realized per unit of time and volume (reaction rate). Here,
an optimized case in which deuterium and tritium have the same density n is considered:

pα =
1

4
n2 〈σv〉Eα, (1.11)

where the symbol 〈σv〉 denotes that the average is computed over the velocity components of the
phase space.
The difficulty in modeling transport phenomena in fusion plasmas is also reflected in the estimate of
the relative losses. Typically, power is expressed through a phenomenological parameter, called energy
confinement time τE , that can be obtained experimentally or by means of scaling formulas:

pL =
w

τE
. (1.12)

Three different phenomena contribute instead to radiation losses: cyclotron radiation, line spectro-
scopic emission and bremsstrahlung. Cyclotron radiation is to be attributed to the helical trajectory
followed by a charged particle in presence of a magnetic field: its contribution is not relevant because
plasma is able to reabsorb radiation at those frequencies. Also the line spectroscopic emission can
be neglected if one considers that its main sources are impurity atoms not completely ionized, whose
concentration should be reduced at the minimum possible level. Finally, the only contribution to
the radiation losses that can not be neglected or reduced is the one related to bremsstrahlung: this
phenomenon consists in the radiation emission due to acceleration that the charged particles undergo
in a magnetized plasma. The power density associated to bremsstrahlung is usually calculated thanks
to the following formula:

pb = αbn
2T 1/2Wm−3, (1.13)

where the constant αb = 5.35× 10−37 Wm3keV−1/2.
The ideal condition to be achieved by a fusion reactor is called ignition: in such a situation, the system
has a positive power balance exploiting the energy generated by α particles, without the addition of
external heating. This condition can be equivalently expressed by the following inequality:

nτE >
12T

〈σv〉Eα − 4αbT 1/2
. (1.14)

However, ignition remains a very difficult target to be achieved because it requires very high temper-
atures (around 25 keV) well beyond the predicted temperature of future reactors that is about 10-15
keV. In this range the reactivity 〈σv〉 is well described by the scaling formula:

〈σv〉 = 1.1× 10−24T 2m3s−1 (1.15)

that implies the achievement of the final condition:

nTτE > 5× 1021 m−3keVs. (1.16)

6



1.4 Fusion plasmas instabilities

Figure 1.6: Achievements of the main fusion devices in terms of triple product.

This value can provide an idea of the target values for each quantity: n ≈ 1020 m3, T ≈ 10 − 15 keV
and τE ≈ 3−5 s. In figure 1.6 the best results achieved by tokamaks in terms of triple product (nTτE)
are exposed.

Since additional external heating is thought to be unavoidable for the next devices it is customary to
define another parameter Q as the ratio between powers produced via thermonuclear reactions and
provided to the plasma from outside. In this way, ignition would correspond to Q = ∞. A value of
Q = 1 (break-even condition) indicates a balance of the powers related to the plasma, but to build a
reactor able to exploit fusion for commercial purposes a value of Q around 50 is required.
The highest value of Q obtained in a fusion device is Q = 0.65, achieved by JET (Joint European
Torus) experiment in 1997 (more details can be found in [30]). This record has not yet been reached
by any other device because, since the 90s, no more performing experiments have been built. However,
the next years will probably be a period of great advances in fusion research, thanks to the ITER
project (International Thermonuclear Experimental Reactor), that will be the largest fusion device
ever built, with operational parameters near the ones needed to reach the condition in equation (1.16)
and a value of Q around 10, and other important devices like JT-60SA (upgrade of JT-60U, in Japan)
and DTT, in Italy (Ref. [2]). ITER experiment is currently under construction at Cadarache, France,
its first plasma is foreseen for 2025, with the most important campaign (in deuterium and tritium)
between 2037-2042.

1.4 Fusion plasmas instabilities

One of the biggest problems affecting magnetic confinement machines is related to instabilities. In
fact, when an equilibrium configuration is explored, the development of instabilities generally has dele-
terious effects, depending on the magnetic configuration considered and on the type of the instability
developed: these effects can span from saturation of the instability up to disruptions (carefully de-
scribed in Ref. [54]), dangerous events which lead to premature discharge termination: in this case the
energy accumulated in the plasma is released in a very small time, and, consequently it is absorbed by
the walls delimiting the plasma, causing damage to them in addition to the generation of high stresses
on the external coils.
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1 Nuclear fusion as an energy source

For these reasons, it is important to understand the physics of the phenomenon and, in particular the
conditions under which it develops. Consequently a deep study of the stability of the configurations
is necessary in order to discovery the origin of these drawbacks and to avoid their development: the
study of instabilities is one of the main open research fields in fusion physics. A complete discussion
about plasma instabilities is carried out in [55], in this section only the main points are reviewed.
From a qualitative point of view, the origin of the vast majority of the instabilities can be attributed
to an initial perturbation with exactly the same periodicity of the magnetic field lines present on a
determined magnetic surface. In this case, the stabilizing action of the magnetic tension (justified by
the Alfvén theorem in hot conductive plasmas) is cancelled, allowing the instability to grow. Instabil-
ities phenomenology strictly depends on the magnetic configuration considered and are divided into
ideal and resistive (based on the role performed by electrical resistivity in its development) and into
pressure driven and current driven (depending on which physical quantity provides free energy for the
instability to develop).
The pressure driven instabilities can often be analyzed using the β parameter, defined as the ratio
between kinetic and magnetic pressure:

β =
p

B2/2µ0
. (1.17)

This parameter quantifies the effectiveness of plasma confinement, given a determined magnetic field.
Since nTτE ∝ B2βτE it is desirable to increase the value of β as much as possible, however the
maximum values achievable are strongly limited by the existence of a limit above which pressure
driven instabilities development is found, called Troyon limit (presented in Ref. [60]):

β (%) < g
I(MA)

a(m)Bφ(T)
, (1.18)

where a, Bφ, I are respectively minor radius, toroidal magnetic field and plasma current, while the
constant g is called Troyon factor (its value is betweeen 2.8 and 3.5).
Among the current driven instabilities (that affect only tokamak and RFP configurations) those ideal
are called kink modes, the resistive tearing mode.
Ideal kink modes are usually explored using the energy principle (introduced in Ref. [5]), by which
instabilities are analyzed. It consists in the evaluation of the energy difference introduced by a spatial
periodic perturbation (with poloidal and toroidal wave numbers m and n) ξ ∝ exp [i (mθ + nφ)]:

δW = −1

2

∫
ξ · FdV, (1.19)

where F is a force per unit of volume evaluated taking into account first order perturbation terms:

F = J1 ×B0 + J0 ×B1 −∇p1, (1.20)

if the gain in energy is positive, the perturbation is disadvantaged in its development, otherwise it’s
advantaged, because the system tends to minimize its energy δW is the opposite of its variation.
Carrying out the calculations related to equation (1.19) an important operational limit related to the
safety factor q(r) is found. This factor is a parameter (dependent on the magnetic surface considered)
defined as the toroidal angle ∆φ necessary to complete an entire poloidal lap (2π), that expressed in
terms of magnetic fields in cylindrical geometry turns out to be:

q(r) =
∆φ(r)

2π
=

rBφ(r)

R0Bθ(r)
, (1.21)

with Bθ(r) poloidal magnetic field and R0 major radius of the torus. The limit given by the magne-
tohydrodynamic analysis is called Kruskal-Shafranov and corresponds to the requirement: q(r) > 1.
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In particular the value q = 1 is reached for tokamak only on the magnetic axis (r = 0), thanks to a
phenomenon called sawtooth oscillations that consists in an oscillation of the central temperature val-
ues connected precisely to a resistive instability, while for the RFP configuration q(0) << 1, typically
q(0) ∼ a/r.
Tearing modes are instabilities ruled by the presence of a non negligible resistivity. In particular, in
fusion plasmas the formation of regions called current sheets characterized by a very strong convex-
ity of the magnetic field (high ∇2B) can occur and, in this case, the role of resistivity is no longer
negligible, Alfvén theorem does not hold anymore and the topology of the magnetic field lines can
vary during the so called reconnection events. Tearing mode instability cause the breaking up of the
current sheet in different regions with separated magnetic topology called magnetic islands (1.7).

Figure 1.7: Magnetic field lines comparison in case of ideal kink and resistive tearing mode instability.

When a non zero resistivity is considered, the result of a stability analysis of the type (1.19) shows the
presence of a singularity in the energy difference introduced by the perturbation when the following
condition is satisfied:

q = −m
n
. (1.22)

It is worth noting that, according to the Fourier expansion used in the code SpeCyl and in this
thesis (see appendix A.2), the wave number of a perturbation is mθ + nφ, and therefore the resonant
condition holds a minus sign, −m/n. If the latter condition is satisfied by the perturbation there
is a resonant magnetic surface where the stabilization effect of the magnetic field is absent and the
perturbation can grow undisturbed. The most dangerous instability are those characterized by low
integer wave numbers value: in particular, for the tokamak configuration, the conditions to avoid are
q(a) = 2 (satisfied by the perturbations with m = 1, n = −2 and its harmonics), q(a) = 3, and more
generally q(a) = m/n with low m, n: in this case the working parameters are chosen in order to obtain
3 < q(a) < 4.
Another very important type of instability introduces the density limit: practically it consists in a
limit related to the number density above which instabilities are found. From a theoretical point of
view a complete explanation of this limit is not yet available. However, a phenomenological law based
on experimental data-sets was found by Greenwald [26]. It states that stability (with respect to the
density limit) is obtained for averaged value of density n̄, such that:
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1 Nuclear fusion as an energy source

n̄
(
1020 m−3

)
<

I (MA)

πa2
(
m2
) , (1.23)

in which the right hand side is called Greenwald density nG. The physical origin of this limit is not
very clear. There are theories which explain the density limit as a fundamental limit based on atomic
processes [13]. One of the most accredited explanation suggests instead the density limit to be linked
with the high concentration of not entirely ionized impurities in the plasma edge: the latter increase
the irradiated power and consequently cause the cooling of the plasma external region and the increase
of the resistivity (because it will be shown in the next chapter that η ∝ T−3/2). As a final result, the
decrease of current causes a contraction of the plasma column that brings to the loss of stability.
Also for the density limit a strong relationship with resonant mode is believed, in particular for the
mode m = 2, n = −1 in the tokamak configuration and m = 0 n = −1 in the RFP configuration.
The operational parameters with respect to the resistive instabilities are well summarized in the so
called Greenwald plot (see figure 1.8): as it is shown the limits are usually relaxed if one increases the
input power.

Figure 1.8: Operational space of RFX-mod in the Greenwald plane: straight lines are interpolation of points
grouped according to values of loop voltage, which is proportional to the ohmic input power. Red points are
discharges at low current and n0 ∼ nG. Picture adapted from Ref. [46].

In this work an interpretation of the density limit (in the case of RFP magnetic configuration) will
be provided, trying to connect it with dimensionless fluid-dynamical numbers defined in the context
of MHD models and with the analysis of experimental data related to measures of the magnetic
turbulence in then edge of RFX-mod plasmas.
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Chapter 2

Magnetohydrodynamics models

The aim of this chapter is the introduction of magneto-fluid models for studying fusion plasmas. This
approach has turned out to be very efficient and useful, despite the high number of hypotheses needed
in order to develop it: here, the most important arguments of the derivation are shown, without
getting into all the mathematical details that were performed in the ’50 and ’60 by brilliant physicists
like Landau, Balescu, Chapman, Enskog and Braginskii. Particular attention will be paid to transport
modeling and the expression of the relative coefficients as functions of the main plasma parameters.
In parallel, the visco-resistive MHD model will be introduced, with its additional and simplified hy-
potheses: in this context, the emergence of dimensionless fluid numbers is shown, and their driving role
in plasma physics is highlighted. Finally, making use of the results obtained for transport modelling
(in the MHD approach) an estimate of the transport coefficients and fluid numbers as function of
plasma parameters will be found. The latter passage is fundamental in order to allow the evaluation
of these quantities using experimental data coming from the RFX-mod experiment.

2.1 Plasma kinetic model

Each time one wants to achieve the comprehension of a complex system by means of a physical model
it is necessary to choose the right level of description of the physical system, taking into account the
specific phenomenon of interest, the physical quantities that can be experimentally measured and that
should be predicted by the model and, finally, the possibility of formulating useful forecasts by means
of analytical calculations or, more likely, numerical simulations requiring an acceptable computing
power.
In the introductory part of [18] an exhaustive and brief description of the different dynamical theories
used to describe fluids and plasmas are shown, pointing out that the basic requirements for this type
of theories are: the mathematical tools and variables to describe a system state and a set of equations
that can be used in order to predict the time evolution of the system given a determined initial state.
Since fusion plasmas are physical systems composed by a huge number of particles (N ≈ Nav),
in this work the construction of macroscopic models will be immediately started (following mainly
the notation and the procedures exposed in [21]) without developing the microscopic approaches
(at quantum or classical level) that require the solution of an extremly high number of differential
equations (Schrödinger’s or Newton’s) and from which it is particularly difficult to draw interesting
conclusions for our purposes.
For these reasons, the system in question is supposed to be such that it can contain a sufficiently
high number of small volumes (to allow a macroscopic differential treatment) and that each small
volume contains an enormous number of particles: this hypothesis holds for all the systems that can
be studied at a thermodynamic level.
Let ρs (x1,u1, . . . ,xN ,uN , t) be the microscopic phase space density of N classical particles of the
species s with positions x1, ..., xN and velocities u1, ..., uN in the Γ space. Than, using Liouville
theorem:
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2 Magnetohydrodynamics models

dρs
dt

(x1,u1, . . . ,xN ,uN , t) = 0, (2.1)

where d
dt denotes the total lagrangian derivative. Liouville theorem expresses the phase space conser-

vation in Γ space. Equation (2.1) is easily rewritten as:

∂ρs
∂t

+

N∑
i=1

ui · ∇xiρs +

N∑
i=1

Fi,s

ms
· ∇uiρs = 0, (2.2)

in which the symbols ∇xi and ∇ui denote the gradients calculated with respect to the spatial coor-
dinates and to the velocities of the i-th particle and the variables ms and Fi,s are respectively the
mass and the force exerted on the i-th particle of the s species. Equation (2.2) is easily derived but
needs a very difficult solution. In fact the ensemble density ρs contains in its argument a dependence
on the trajectories of all the particles considered, whose determination is equivalent to the solution of
the many-body problem.
In order to simplify this problem, the ensemble average of ρs can be calculated, giving origin to the
single particle distribution function:

fs (r,u, t) := 〈ρs (x1,u1, . . . ,xN ,uN , t)〉ens , (2.3)

that has the physical meaning of number of particles with position between r and r + dr, velocity
between u and u+du at the time t, per unit of phase space volume. To find an equation that rules the
evolution of fs, equation (2.2) can be averaged: the only non trivial term is the last adding because the
expression of Fi,s is given by the Lorentz force (in the case of plasmas) where a velocity dependence
is contained, so that a correlation between the two factors is generated and the product average can
not be trivially factorized. In other words, a correlation term Cs(f) has to be introduced:

〈
N∑
i=1

Fi,s

ms
· ∇uiρs

〉
ens

=
Fs

ms
· ∇ufs − Cs(f), (2.4)

where Fs represents an averaged force due to smooth electromagnetic fields generated by all the
particles contribution. The final kinetic equation obtained is:

∂fs
∂t

+ u · ∇fs +
Fs

ms
· ∇ufs = Cs (f) . (2.5)

Cs(f) is usually called collision operator because collisions are the main physical mechanism that
generates non zero correlation terms and it is a very difficult term to be evaluated: this is why, where
possible, such term is neglected (Vlasov limit). However, in literature, expressions for Cs(f) exist:
in the case of neutral gases the operator was calculated by Boltzmann (with the hypotheses of bi-
nary collisions) and it can be found, for example in [18], while for the case of plasmas an expression
was found by Landau under strict hypotheses, including the existence of only two species (ions and
electrons), conservation of particle number for each species (absence of fusion, recombination, charge
exchange, ...) and the dependence only on the one particle distribution function (absence of higher
order correlation). More details about the Landau collision integral can be found in [24] or in the
original paper [32]. For the aim of this work it is sufficient to know that the collisional processes
conserve number of particles, momentum and energy at each point, without entering in the details of
collisions modelling.
The kinetic approach has two decisive disadvantages: from one side the distribution function fs has a
seven dimensional dependence that makes computer simulations more difficult to implement, on the
other side it is not easily measurable experimentally. Despite this disadvantages, the kinetic approach
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2.2 Moments of the kinetic equation

is widely used to simulate plasma turbulence and transport in the so-called gyrokinetic codes (see
Ref. [15] for more details): these codes typically analyze small-scale structures on fast timescales, and
the magnetic field is generally not evolved self-consistently in the code. Modern supercomputers allow
for obtaining more and more efficient gyrokinetic simulations and presently much effort is devoted in
this field of research.

2.2 Moments of the kinetic equation

An approach complementary to that used in gyrokinetic codes is to take the moments of the distri-
bution function: this approach gives rise to the second, large family of codes used in plasma physics,
namely the Magnetohydrodynamic (MHD) codes. The k-th moment of the ensemble averaged distri-
bution function fs (r,u, t) is defined as follows:

Mk (r, t) :=

∫
u · ... · ufs (r,u, t) d3u, (2.6)

repeating the u factors k times. Moments connect the distribution function to easily measurable
physical quantities. In particular, number density ns(r, t), flux density nsvs, stress tensor Ps and
energy flux density Qs can be defined using the moments of the first orders:

ns (r, t) :=

∫
fs (r,u, t) d3u, (2.7)

nsvs (r, t) :=

∫
ufs (r,u, t) d3u, (2.8)

Ps (r, t) :=

∫
msuufs (r,u, t) d3u, (2.9)

Qs (r, t) :=

∫
1

2
msu

2ufs (r,u, t) d3u. (2.10)

In the definition (2.8), a new quantity called flow velocity vs is introduced. Defining also the relative
velocity ws := u− vs and, consequently, pressure tensor ps and heat flux density qs are introduced:

ps (r, t) :=

∫
mswwfs (r,u, t) d3u (2.11)

qs (r, t) :=

∫
1

2
msw

2wfs (r,u, t) d3u (2.12)

Since pressure is a typical scalar quantity, a scalar quantity (scalar pressure ps) can be associated
to the tensor in (2.11) as ps := 1

3Tr (ps) and, finally it is natural to define as kinetic temperature
of equilibrium Ts := ps

ns
. To compute the moments of the kinetic equation, also the moments of the

collision operator have to be found.
To find the moments of the collision operator it is necessary to hypothesize its bilinearity with respect
to the single particle distribution function:

Cs (f) =
∑
s′

Css′ (fs, fs′) , (2.13)
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2 Magnetohydrodynamics models

with Css′ (fs, fs′) bilinear in both its arguments. In this way, it is possible to introduce the friction
force exerted on the species s by the species s′ (Fss′), the total force experienced by the species s (Fs)
and, similarly, the difference in kinetic energy of the species s due to s′ (Wss′) and the total change
in energy of the species s (Ws).
The final steps to get fluid macroscopic equations of the considered system consist in the calculation of
the first three orders moments of the equation (2.5), applying the procedure indicated in the definition
(2.6). Avoiding repeating all the algebraic steps, only the main ideas to get the final result are exposed.
First of all, flow in the velocity space of the Lorentz force F is incompressible:

∇u · F = q∇u · (E + u×B) = q [(∇u × u) ·B− u · (∇u ×B)] = 0, (2.14)

so that the equation (2.5) can be rearranged and the moments calculus (k = 0, 1, 2) can be set up:

∫
ms

k!
u · ... · u

(
∂fs
∂t

+∇ · (ufs) +∇u ·
(

Fs

ms
fs

))
d3u =

∫
ms

k!
u · ... · uCs (f) d3u. (2.15)

Performing the integration, using the Gauss theorem (with the hypothesis that fields vanish as r →∞)
and making use of the definition introduced in this section one finds the continuity equation (k = 0):

∂ns
∂t

+∇ · (nsvs) = 0, (2.16)

the momentum conservation equation (k = 1):

∂ (msnsvs)

∂t
+∇ ·Ps − esns (E + vs ×B) = Fs, (2.17)

and, finally, the energy conservation equation (k = 2):

∂

∂t

(
3

2
ps +

1

2
msnsv

2
s

)
+∇ ·Qs − esnsE · vs = Ws + vs · Fs. (2.18)

The main concept expressed by these equations is the conservation of a physical quantity (at a macro-
scopic) level as consequence of the conservation at the microscopic interaction level: in particular, it is
evident that the time variation of one of these conserved quantities inside a volume has to be balanced
by its flow through the volume surface or by the interaction with other species (terms containing
Fs,Ws) and with the electromagnetic field (terms containing E and B).

2.3 Braginskii equations and transport coefficients

Equations (2.16), (2.17) and (2.18) can be rewritten in a more manageable and useful form, performing
some tensor algebra, introducing the convective derivative d/dt and the tensor operator : ∇ that are
defined in the following way:

d

dt
:=

∂

∂t
+ vs · ∇, S : ∇T = (S)ij

∂Tj
∂xi

, (2.19)

where S, T are rank two tensors and Einstein convention is used. The Braginskii equations thus turn
out to be:

dn

dt
+ n∇ · ve = 0, (2.20)
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men
dve
dt

+∇pe +∇ ·Πe + en (E + ve ×B) = F, (2.21)

3

2

dpe
dt

+
5

2
pe∇ · ve + Πe : ∇ve +∇ · qe = We, (2.22)

for the electrons and similarly for ions:

dn

dt
+ n∇ · vi = 0, (2.23)

min
dvi
dt

+∇pi +∇ ·Πi − en (E + vi ×B) = −F, (2.24)

3

2

dpi
dt

+
5

2
pi∇ · vi + Πi : ∇vi +∇ · qi = Wi, (2.25)

in both cases the pressure tensor is written as a sum of a diagonal part that models the effect of the
isotropic pressure, and an off-diagonal part related to viscous stresses:

ps = ps13 + Πs. (2.26)

Moreover, the quasi-neutrality of the plasma is assumed: ne ≈ Zni ≈ n. In other words, on the macro-
scopic scale to which the plasma is described, the charge unbalance is neglected and the presence of
electric fields is consequently negligible. In fact, if an imbalance of charges develops, the correspond-
ing electric field would move the plasma charges (which are free) in order to eliminate the imbalance
itself, in a very rapid time. Equations (2.20)-(2.25) were introduced for the first time by Braginskii in
1965 [9].
Braginskii equations present a fundamental defect (also common in the case of neutral fluids): the
incompleteness. The number of unknowns largely exceed the number of available equations, because
passing from the kinetic approach to the magneto-fluid approach only three moments of the kinetic
equations are calculated: closure could be restored calculating all of the moments in the kinetic equa-
tion. Such an approach is clearly impractical because the higher order moments have not an evident
physical meaning and the solutions of all the equations involved it is equivalent to solve the many
body problem.
Closure procedures were introduced by Chapmann-Enskog and Balescu respectively in [17] and [4]
and they are based on expansion of the single particle distribution function f (r,u, t) as sum of an
equilibrium term (typically Maxwell-Boltzmann distribution) f0 (r,u) and a small perturbation one:

f (r,u, t) ≈ f0 (r,u) + εf1 (r,u, t) , (2.27)

f0 (r,u) = n(r)

(
m

2πT (r)

)3/2

exp
m (u− v)2

2T (r)
, (2.28)

with f0 and f1 of the same order and ε is a small parameter expansion. The f1 perturbation term allows
the modelling of transport, that otherwise would be set to zero in the case of equilibrium distribution
functions. The choice of ε strongly depends on the fluid considered: in the case of magnetically
confined fusion plasma the parameter can be chosen as the ratio between Larmor radius rL and the
macroscopic scale length of the device L, because in this case the following condition is satisfied:

ε =
rL
L
<< 1. (2.29)
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In particular, in this limit confinement phenomena are dominating over collisional phenomena, being
the Larmor gyro-radius smaller than the mean free path, or, equivalently defining the collisional time
for ions and electrons τi, τe:

ωiτi, ωeτe << 1. (2.30)

Assuming the hypotheses of bi-linearity (2.13) of the collision operator, the closure procedure can
be performed expanding f1 with a polynomial expansion in the velocity space by means of Laguerre
polynomials (as Chapmann-Enskog did) or Hermite polynomials (as Balescu did). It was shown by
Balescu that the relative difference between its method and the Chapmann-Enskog one is below 1%.
Such expansions are fairly prohibitive from the point of view of the calculations because they involve
terms that are tensors of increasing dimension by the term considered. For this reason, in this work
the mathematical steps are not repeated (anyhow they can be found in [17], [4]) but only the final
result with the procedure that gives rise to it will be mentioned. Truncating the f1 expansion at
the second order, replacing it in the moments of the kinetic equation and solving the simplified form
for the moments, one can get the laws that rule transport with its relative coefficients: in the next
subsection the fundamental laws of transport are written and their physical meaning is exposed. Since
one of the aim of this chapter is to derive, as final result, the visco-resistive model, the discussion
is limited to the transport of electric charge and momentum, avoiding to enter in the details of heat
transport in plasmas, that can be anyway found in [21].

2.3.1 Electric charge transport

The strong anisotropy introduced by the magnetic field makes sure that transport physics strictly de-
pends on its direction with respect to the latter. From the closure procedures, an important transport
coefficient arises: it is the electrical conductivity σ (the reciprocal of the resistivity η) that takes on
different values depending on the direction of current with respect to the magnetic field:

σ‖ = 1.96
ne2τe
me

, σ⊥ = 0.51σ‖ =
ne2τe
me

. (2.31)

The dependence in 2.31 is explained by the following consideration: since F is a friction force per unit
of volume, it will be increased by the momentum lost by the electrons (the species that originate the
current) in favour of ions:

F ∝ nme (ve − vi)

τe
=
n2e2 (ve − vi)

ne2τe/me
∝ nej

σ
, (2.32)

that justifies the dependencies in (2.31).

2.3.2 Momentum transport

The case of momentum transport with its relative coefficients (viscosity) is, in general, very difficult,
since the quantity transported is now a vector (no longer a scalar as in the cases of electric charge and
heat). In the simpler case of neutral fluids or, in general, in the case of short range interactions with
a faster fall than the electromagnetic one, the phenomenon can be described using a rate of strain
tensor W that is symmetric and traceless:

Wi,j =
∂vi
∂rj

+
∂vj
∂ri
− 2

3
∇ · vδi,j . (2.33)
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Instead, in a magnetized plasma where the main force on action is the Coulomb interaction, the best
description is given by a tensor that can be split into five different components:

Π =
4∑

n=0

Πn. (2.34)

The first one is related to parallel transport of momentum components parallel to the magnetic field
lines:

Π0 = −3µ0

(
bb− 1

3
1

)(
bb− 1

3
1

)
: ∇v, (2.35)

where the coefficient µ0 is the proportional to the parallel viscosity and it is found to be:

µe0 = 0.73nτeTe, µi0 = 0.96nτiTi. (2.36)

In the perpendicular direction the transport of perpendicular momentum components is ruled by the
sum of two tensors:

Π1 = −µ1
[
1⊥ ·W · 1⊥ +

1

2
1⊥ (b ·W · b)

]
, (2.37)

Π2 = −4µ1 [1⊥ ·W · bb + bb ·W · 1⊥] , (2.38)

where 1⊥ is defined as 1⊥ := 1− bb and the perpendicular viscosity results to be reduced of a factor
(rL/l)

2 by the magnetic confinement:

µe1 = 0.51
nTe
ω2
eτe

, µi1 =
3nTi

10ω2
i τi

. (2.39)

The last contribution comes from the so called gyroviscosity and it describes the dissipation in a direc-
tion perpendicular to the momentum component transported; it is given by a sum of two components:

Π3 =
µ3
2

[b×W · bb− 1⊥ ·W× b] , (2.40)

Π4 = 2µ3 [b×W · bb− bb ·W× b] , (2.41)

where the µ3 coefficient (that is proportional to the gyroviscosity) is given by:

µe3 = − nTe
2 |ωe|

, µi3 =
nTi
2ωi

. (2.42)

The origins of the giroviscosity (see figure 2.1) can be explained in terms of combined effects of the
magnetic field and the presence of a component of the temperature gradient perpendicular to the
magnetic field, due to which particles with a different kinetic energy have to face, generating a friction
in the direction perpendicular to both B and ∇Te.

In general, replacing the values of typical fusion plasma parameter one can find that the higher values
for the viscosity coefficients are related to ion species, so that these particles are determinant in
momentum transport mechanism, thanks to their greater mass that allows a longer collisional time
and a smaller cyclotron frequency with respect to the electrons.
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2 Magnetohydrodynamics models

Figure 2.1: Origin of the gyroviscosity, due to the presence of a gradient in temperature perpendicular to the
magnetic field.

The most important achievement of this paragraph is the modeling (in the context of Braginskii
equations) of transport phenomena by means of coefficients (resistivity and viscosity) expressed in
terms of plasma parameters (like density and pressure) in formulas (2.31), (2.36), (2.39) and (2.42).

2.4 Single fluid MHD equations

A further approximation in the case of magneto-fluid approach consists in the so called single fluid
model. This model is valid only if the plasma is studied on a sufficiently large space-time scale so
that no charge unbalance can be detected experimentally on that macroscopic scale. From a more
quantitative point of view, it means that the space scale L and the time scale t must satisfy the
following relations:

L >> λD, t >> ω−1p , (2.43)

where the Debye length λD and the plasma frequency ωp are defined as follows:

λD :=

√
ε0Te
ne2

, ωp :=

√
ne2

ε0me
. (2.44)

These hypotheses are satisfied in the case of magnetized fusion plasmas and, for this reason, it is
possible to define a single fluid mass density ρ, velocity v, scalar pressure p, viscous stress tensor Π
and the density current j (the latter has already been encountered in the previous paragraph):

ρ := (mi +me)n, v :=
mivi +meve
mi +me

, p := pi + pe, Π := Πi + Πe. (2.45)

The single fluid equations are easily found in terms of linear combinations of the equations (2.20) -
(2.25) with any further simplification hypotheses. They are simply found using simple algebra passages
but, in any case, the explicit derivation is carried out in [25] and [18].
Continuity equation is obtained by means of the combination me (2.20) +mi (2.23) which returns:

∂ρ

∂t
+∇ · (ρv) = 0. (2.46)
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2.5 Visco-resistive MHD model

The single fluid motion equation is instead obtained by means of the sum of the two equations for the
two species ((2.21) + (2.24)):

ρ

(
∂v

∂t
+ (v · ∇) v

)
= j×B−∇p−∇ ·Π. (2.47)

Typically a simplified version of the viscous stress tensor is assumed in order to avoid the very compli-
cated structure in (2.34); in this way Π = −µW, where µ is a single fluid viscosity originated by the
contributions of µe,i0 , µe,i1 and µe,i3 (namely parallel, perpendicular and gyroviscosity) and it is assumed
to be constant. Using the Einstein notation:

(∇ ·Π)j = −µ (∇ ·W)j = −µ
(
∂2vj
∂x2i

+
1

3

∂2vi
∂xi∂xj

)
, (2.48)

and, making the additional simplifying hypothesis ∇ · v = 0, the final form of the momentum conser-
vation equation:

ρ

(
∂v

∂t
+ (v · ∇) v

)
= j×B−∇p+ µ∇2v. (2.49)

Thanks to the combination me(2.24)−mi(2.21) one finds a generalization of the Ohm’s law. However,
since the exact calculations give rise to a very complex equation, approximations are made in order
to keep only the relevant physical terms and to simplify the equation as much as possible. Neglecting
terms related to viscosity, the electron mass, assuming a constant current density j in time and a
simplified form of the friction force F, the equation one can get after some steps of algebra is:

E + v×B− j

σ
=

1

en
(j×B−∇pe) , (2.50)

that is commonly known as generalized Ohm’s law. More complete forms of this equation can be found
in [18] and [21], where less strict assumptions are made. Anyhow, for the vast majority of physical
applications it is common to perform a further simplification by neglecting the right hand side of
(2.50), and obtaining:

j = σ (E + v×B) . (2.51)

For the scope of this work the development of a single fluid energy equation is not necessary. Anyway,
to guarantee the closure of the model, Maxwell’s equations are added, remembering that no charge
imbalance is contemplated in the model resulting, for example, in the absence of the displacement
current term in Faraday’s law:

∇ ·E = 0, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B = µ0j. (2.52)

2.5 Visco-resistive MHD model

Once obtained the single fluid equations, the visco-resistive MHD model is obtained by simply rewriting
them with some additional assumptions. In fact, if pressure can be neglected (valid in case of a low β
plasma), the mass density ρ is constant in time and uniform in space and the only transport coefficients
that determine plasma dynamics are the viscosity µ and the resistivity η, then the model of the plasma
fluid consists in the following equations:
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ρ

(
∂v

∂t
+ (v · ∇) v

)
= j×B + µ∇2v, (2.53)

∂B

∂t
= ∇× (v×B)−∇× (ηj) , (2.54)

∇ ·B = 0, (2.55)

∇×B = µ0j. (2.56)

Before proceeding with further calculations, the physical quantities appearing in the visco-resisitive
model are normalized with respect to their typical scale values. This procedure does not really add
anything related to the physics of the system but it can help you in understanding which are the
mechanisms and the relative terms in the equation that drive the development of plasma dynamics.
The normalizations adopted are:

ρ = ρ0ρ̃, v = vAṽ, t = τAt̃, r = ar̃, B = B0z(0)B̃, (2.57)

where ρ0 = min, vA and τA are the Alfvén velocity and time respectively, that represent the velocity
of propagation of hydromagnetic waves and time needed for these waves to travel along an important
macroscopic distance. a is the minor radius of the toroidal device and B0z(0) is the on-axis toroidal
magnetic field. Thanks to the linearization of MHD equations hydromagnetic waves can be treated,
finding that:

vA =
B

√
µ0ρ0

, τA =
a
√
µ0ρ0

B
. (2.58)

To complete this scheme of normalization, the definition γ = mi/mp is added. The normalizations in
(2.57) also affect the derivatives and the other quantities appearing in the model:

∇ =
∇̃
a
,

∂

∂t
=

∂

τA∂t̃
, j =

B0z(0)

µ0a
j̃. (2.59)

Replacing the normalization scheme (2.57) - (2.59) into the equations of the visco-resistive model
(2.53)-(2.56), after basic algebra steps and the removal of the ˜ symbol the visco-resistive model
equations become:

∂v

∂t
+ (v · ∇) v = j×B +

µτA
a2ρ0

∇2v, (2.60)

∂B

∂t
= ∇× (v×B)−∇×

(
ητA
µ0a2

j

)
, (2.61)

∇ ·B = 0, (2.62)

∇×B = j, (2.63)

in which also the normalization ρ = 1 is considered since mass density is assumed to be constant.
Once equations are written in the form (2.60) - (2.63) , it is quite evident that there are two groupings
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2.6 Scaling approach to the visco-resistive model

of coefficients that contain the unnormalized physical parameters and it is expected that the most
important information about the behaviour of the system could be found in them.
In particular, defining resistive and viscous time τr and τµ as the time scales during which resistive
and viscous phenomena take place:

τr =
a2µ0
η

, τµ =
a2niγmp

µ
, (2.64)

it is possible to introduce two dimensionless fluid numbers that are the viscous Lundquist number M
and the Lundquist number S, defined in terms of resistive, viscous and Alfvén times:

M :=
τµ
τA

=
a2ρ0
µτA

S :=
τr
τA

=
a2µ0
ητA

, (2.65)

that, once replaced in equations (2.60) - (2.61), return:

∂v

∂t
+ (v · ∇) v = j×B +M−1∇2v, (2.66)

∂B

∂t
= ∇× (v×B)−∇×

(
S−1j

)
, (2.67)

that, with equations (2.62) and (2.63), constitute the final form of the visco-resistive model.
The implementation of the visco-resitive model has been done in Padova, and the code bears the name
SpeCyl [10]. In this thesis a large use of outputs from the code SpeCyl is made.

2.6 Scaling approach to the visco-resistive model

As it is shown in [12], it is more convenient to rewrite them as function of the Prandtl P and Hartmann
H numbers, defined as:

P :=
τr
τµ

=
S

M
=
µ0µ

ρ0η
, H :=

√
τrτµ

τA
=
√
SM =

aB
√
ηµ
. (2.68)

This final target can be achieved by means of an additional rescaling in time that consequently affects
also time derivatives and velocities:

t→ t̄ =

√
M

S
t, v → v̄ =

√
S

M
v,

∂

∂t
→ ∂

∂t̄
=

√
S

M

∂

∂t
. (2.69)

The result of the rescaling is a set of differential equations for the normalized variables:

P−1
(
∂v

∂t
+ (v · ∇) v

)
= j×B +H−1∇2v, (2.70)

∂B

∂t
= ∇× (v×B)−∇×

(
H−1j

)
, (2.71)

∇ ·B = 0, ∇×B = j. (2.72)
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The great advantage gained introducing the fluid numbers is that by means of them it is possible to
describe using the same rescaled equations plasma conditions in which, although the fluid numbers
are equal, may differ a lot in terms of plasma physical parameters. In other words the proper values
of pressure, density, temperature, magnetic field and so on do not determine directly the evolution of
the system, but they affect the latter only by means of dimensionless combinations that are precisely
the fluid numbers introduced. This means that if the model is a good description of the real system
one can expect to find the Hartmann number to rule most of the phenomena, since the inertial term
is often less important near the equilibrium.

2.7 Transport coefficients estimates

The aim of this section is the determination of expressions that allow the evaluation of the transport
coefficients introduced in section 2.3 in real experimental conditions in RFX-mod. As a first step,
it is necessary to find and expression for the collisional times, since they are involved in many of
the coefficients of interest. This achievement is not easy because in an ionized plasma, where a
long range (Coulomb) interaction is present, the definition of a collision event is not trivial at all,
contrary to what happens in the case of fluids. According to the preferred definition, a collision is a
particles encounter that produces a considerable trajectory deflection of at least one of the particles:
this implies the momentum exchanged during the collision to be of the same order of the initial
momentum of the particles. Thanks to this consideration it is possible to obtain the most important
physical dependencies of the collisional time.
In fact, considering a particle with charge e, mass m and thermal velocity v, the distance of closest
approach r0 is easily found, evaluating the momentum exchanged ∆p:

∆p ≈ F∆t ≈ e2

4πε0r20

r0
v
, ∆p ≈ mv, → r0 ≈

e2

4πε0mv2
. (2.73)

The number of collisions per units of time (collisional frequency νc) is given counting the number of
encounters for a particle traversing a cylinder with radius r0:

νc ≈ nπr20v ≈
ne4

16πε20m
2v3
∝ ne4

m1/2T 3/2
. (2.74)

This simple reasoning for evaluating the trend of the collisional time, whose exact formulas can be
found carrying out all of the specific calculations:

τei =
12π3/2ε20m

1/2
e T

3/2
e

21/2niZ2e4 ln Λ
, τii =

12π3/2ε20m
1/2
i T

3/2
i

21/2niZ4e4 ln Λ
, (2.75)

where ln Λ represents the Coulomb logarithm, defined as ln Λ := ln (rmax/rmin), being rmax and rmin
the Debye length and the distance of closest approach during particle collisions at the average velocity.
Thanks to this result transport coefficients are easily evaluated replacing formulas (1.8), (2.75) into the
results obtained in section 2.3. The great advantage of this approach is the gain of a set of transport
coefficients that model a different transport type, depending on the direction considered with respect
to the magnetic field.
Using equation (2.31), parallel and perpendicular resistivity are determined:

η‖ = 0.51
me

nee2τei
=

0.06

π3/2
m

1/2
e e2

ε20

Z ln Λ

T
3/2
e

, η⊥ =
me

nee2τei
=

0.118

π3/2
m

1/2
e e2

ε20

Z ln Λ

T
3/2
e

. (2.76)
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2.8 Fluid numbers estimates

About viscosity it is necessary to define, apart from µ‖, the perpendicular µ⊥ and gyro-viscosity µ×,
in terms of µ0, µ1 and µ3. This redefinitions are particularly useful because in the construction of the
MHD models the assumption Π ∝ µW was made.

µi‖ = 3µ0 = 34.6π3/2
ε20m

1/2
p

e4
γ1/2T

5/2
i

Z4 ln Λ
, (2.77)

µi⊥ := µ1 + 4µ1 =
3

2

niTi
ω2
i τii

=
1

8π3/2
m

3/2
p e2

ε20

γ3/2n2e ln Λ

T
1/2
i B2

, (2.78)

µi× :=
1

2
µ3 + 2µ3 =

5

4

niTi
ωi

= 1.25
mp

e

γniTi
ZB

. (2.79)

In this section only the ion viscosity is considered because it gives the great majority of the contribution
to the total viscosity. In fact, it can be seen that each component of the viscosity has a positive scaling
with the mass of the species involved and this justifies the dominance of the ions, since the ratio between
the two masses (me/mi) is at least of the order 10−3, that makes the approximation in which electrons
contribution is neglected reasonable.

2.8 Fluid numbers estimates

In this section, the fluid-dynamical numbers introduced in equations (2.65) and (2.68) are calculated
as a function of the plasma parameters that can be experimentally measured. The procedure simply
consists in the replacement of the result obtained in the previous section in the definition of the fluid-
dynamical numbers. At the end an expression for each fluid number different on the bases of the
direction considered with respect to the magnetic field will be obtained.
The results obtained for the viscous Lundquist number are:

M‖ :=
a2ρ0
µi‖τA

= 5.3× 10−3
e4

µ
1/2
0 ε20

n
1/2
e Z7/2aB ln Λ

T
5/2
i

, (2.80)

M⊥ :=
a2ρ0
µi⊥τA

= 44.5
ε20

µ
1/2
0 mpe2

aB3T
1/2
i

γn
3/2
e Z1/2 ln Λ

, (2.81)

M× :=
a2ρ0
µi×τA

= 0.8
e

m
1/2
e m

1/2
p

Z3/2aB2

γ1/2n
1/2
e Ti

. (2.82)

In the case of Lundquist number only the parallel and the perpendicular one are available (as a
consequence of the absence of a cross resistivity):

S‖ :=
a2µ0
η‖τA

= 16.7π3/2
µ
1/2
0 ε20

m
1/2
p m

1/2
e e2

aBT
3/2
e

Z1/2γ1/2 ln Λn
1/2
e

, (2.83)

S⊥ :=
a2µ0
η⊥τA

=
a2µ0

1.96η‖τA
= 0.51S‖. (2.84)

Repeating a similar procedure for the Prandtl number:
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P‖ :=
µ0µ

i
‖

ρ0η‖
= 576π3

ε40µ0

m
1/2
p m

1/2
e e6

T
5/2
i T

3/2
e

γ1/2Z4ne (ln Λ)2
, (2.85)

P⊥ :=
µ0µ

i
⊥

ρ0η⊥
= 4.08

µ0m
1/2
p

m
1/2
e

γ1/2neT
3/2
e

B2T
1/2
i

, (2.86)

P⊥ :=
µ0µ

i
×

ρ0η‖
= 20.8π3/2

µ0ε
2
0

m
1/2
e e3

TiT
3/2
e

Z2 ln Λ
. (2.87)

And, finally, a similar approach is adopted for the Hartmann number:

H‖ :=
aB√
η‖µ

i
‖

= 0.69
e

m
1/4
e m

1/4
p

Z3/2aBT
3/4
e

γ1/4T
5/4
i

, (2.88)

H⊥ :=
aB√
η⊥µ

i
⊥

= 45.8
ε20

m
1/4
e m

3/4
p e2

aB2T
3/4
e T

1/4
i

γ3/4Z1/2ne ln Λ
, (2.89)

H× :=
aB√
η‖µ

i
×

= 8.61
ε0

m
1/4
e m

1/2
p e1/2

aB3/2T
3/4
e

Z1/2γ1/2n
1/2
e T

1/2
i (ln Λ)1/2

. (2.90)

The latter results are key formulas for the subsequent development of this work, because, on one side,
they allow the evaluation in experimental conditions of the fluid-dynamical numbers that are expected
(in particular the Hartmann number) to drive the physics of the RFP configuration plasmas, as it is
suggested from the visco-resistive model. On the other side, these quantities are also distinct on the
basis of the transport term they model (parallel, perpendicular or cross) and the success of one of them
in describing some of plasma physics phenomena (the density limit in the case of this thesis) would
suggest the validation of the visco-resistive model and the possibility of inserting those phenomena
inside the MHD framework.
In tab. 5.1 the values of the Hartmann number (in particular H⊥) are calculated in the case of typical
values of RFX-mod operations, for three example shots: the range spanned by H⊥ is between 105 and
108.
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Chapter 3

The Reversed-Field Pinch
configuration

This chapter is devoted to the presentation of the reversed-field pinch (RFP) configuration. As a
first approach, the main aspects of such a configuration are exposed with particular attention on the
difference with respect to the tokamak. Secondly, a theoretical approach towards a RFP plasma is
developed, following the historical evolution of the RFP interpretation from the ’70s up to nowadays:
during this path Taylor theory is initially met, followed by more recent achievements in RFP compre-
hension, based on 3D MHD simulations.
Finally the chapter ends with an introduction to the main features of the RFX-mod device.

3.1 Main features of the RFP configuration

The reversed-field pinch magnetic configuration is experimentally induced in a toroidal plasma, gen-
erating a very intense plasma current in the toroidal direction. With respect to the tokamak, toroidal
current in the RFP can be even ten times larger (with the same toroidal magnetic field Bφ). This dif-
ference has important consequences on the magnetic properties of the configuration, since the plasma
current is introduced in toroidal devices to generate the rotational transform of the magnetic field.
In fact, in the tokamak, the toroidal magnetic field is typically one order of magnitude larger than the
poloidal one. In the case of RFP the toroidal and poloidal components are of comparable amplitude.
Indeed, in the outer region of the plasma, the poloidal field is dominant, because the toroidal com-
ponent decreases as one approaches the plasma edge, and changes sign in the outermost region. This
phenomenon, whose explanation is non-trivial, is illustrated in figure 3.1.

Figure 3.1: Toroidal and poloidal magnetic fields for RFP configuration.

The potential advantages obtained with the RFP configuration for a fusion reactor are: the possibility
of avoiding or limiting superconducting coils because the majority of the magnetic field is generated by
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the plasma current, and of simplifying the design of the device thanks to the relatively high resistivity
(with respect to the tokamak configuration) that could allow the entirely ohmic heating of the plasma
without the need of additional heating systems, like neutral beam injection and radio-frequency wave
heating.
However, there are also important disadvantages in exploiting the RFP, that are related to confinement.
This is pointed out by the fact that the energy confinement time τE is at least one order of magnitude
lower in the RFP configuration with respect to the tokamak: the latter result can be attributed to the
more disordered magnetic topology (characterized by the presence of tearing mode instabilities that
generate magnetic islands) that enhance the transport from the central region to the edge, prohibiting
optimal heating of the center of the plasma. The two configurations are compared in figure 3.2.

Figure 3.2: Poloidal projection of RFP and tokamak magnetic field lines: while in the RFP configuration
magnetic islands and chaos arise, the tokamak displays an ordered magnetic topology.

Despite this, both theoretical and experimental studies show the possibility (which will be discussed
further in this chapter) of reaching, under determined conditions, a high level of self-organization, in
which the plasma column spontaneously assumes a helical shape (figure 3.3), transport barriers are
created and also an improved magnetic topology (similar to the tokamak one) is reached.

Figure 3.3: Plasma column self-organization in RFP configuration.

As a consequence of it RFP configuration represents an interesting confining method that could be
successful, according to the current state of the research, at least for a second generation reactor.
There are many experiments devoted to the study of the RFP configuration, generally of smaller
size if compared with the largest tokamaks or stellarators. The main are RFX-mod (Reversed-Field
eXperiment) located in Padova (Italy), the MST (Madison Symmetric Torus) located in Madison,
Wisconsin (USA) [19], and the KTX (Keda Torus eXperiment) in Hefei, China [33].

3.2 Taylor’s relaxation theory

The theoretical explanation of the reversed-field pinch has been developed over the last few decades.
The first milestone in this field is undoubtedly the Taylor’s theory of plasma relaxation that was
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3.2 Taylor’s relaxation theory

enounced for the first time in [51].
To develop it, two requirements (derived by Woltjer in [57]) are essential. These two statements regard
a physical quantity related to the magnetic topology, called magnetic helicity H which is defined as:

H :=

∫
A ·BdV, (3.1)

where the integral is calculated over the volume of the magneto-fluid system considered and A is the
vector potential defined by the relation: B = ∇×A. Although the vector potential depends on the
choice of the gauge, it can be shown that helicity is gauge invariant, that means it is a good physical
quantity. The two Woltjer’s theorems are now enunciated:
First Woltjer’s theorem. If a magneto-fluid has zero resistivity (η = 0), than helicity H is conserved
in time:

dH

dt
= 0. (3.2)

Second Woltjer’s theorem. In a system in which the magnetic helicity H is kept constant, the
minimization of the magnetic energy W =

∫
B2/2µ0dV is obtained for a force-free field defined by the

condition:

∇×B = µB, (3.3)

with µ constant.

The interested reader can find the proof of the two theorems in the appendix A.1, where the approach
of [18] is followed or in the original Woltjer’s article [57].
Taylor considered a magneto-fluid with a small departure from perfect conductivity (the effect of the
resistivity η is not negligible) in toroidal symmetry. When this system is characterized by a high Θ
parameter, a.k.a. ”pinch” parameter, defined as the normalized edge poloidal field Bθ:

Θ :=
Bθ(r = a)

〈Bφ〉
=

µ0Ip
2πa 〈Bφ〉

. (3.4)

Since in Eq. (3.4) Ip represents the plasma current, the initial condition (out of equilibrium) relaxes
towards a ”quiescent” state that is largely stable.
To analyze the phenomenon from a more quantitative point of view, Taylor made the hypothesis that,
although the resistivity is non negligible, the total helicity is conserved, which seems in contradiction
with first Woltjer’s theorem. Actually, the presence of resistivity implies that each magnetic field line
is not frozen inside the fluid flux tube and so the helicity is not anymore constant along each line of
force. However, if the departure from the perfect conduction is slight, the global helicity (evaluated
on the whole fluid volume) is expected to remain practically constant, because the dissipation, while
changing the magnetic topology, does not significantly alter the value of the field. For this reason the
effect of the topological change consists merely in a redistribution of the helicity contributions among
all magnetic field lines.
Since helicity is conserved, the second Woltjer’s theorem can be applied and so one can state that the
system will minimize its magnetic energy in the condition of force-free field. This final state results
to be a ’quiescent’ state because if the minimization of the magnetic energy implies that no magnetic
force can act on the magneto-fluid.
To describe this final state of equilibrium (reached after the relaxation) the equation (3.3) is solved
in cylindrical geometry with periodic boundary conditions. Using the coordinates r, θ and z all the
physical quantities result constant with respect to θ and z because of the symmetry, and the remaining
non trivial equation components are:
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−dBz
dr

= µBθ,
1

r

d

dr
(rBθ) = µBz. (3.5)

If one replaces the first equation in (3.5) in the second one, it is readily obtained:

1

r

d

dr

(
r
dBz
dr

)
+ µ2Bz = 0. (3.6)

Multiplying by r2 one can get:

r
d

dr

(
r
dBz
dr

)
+ µ2r2Bz = 0, (3.7)

which is a Bessel equation in terms of z = µr and ν = 0 and therefore:

Bz = B0J0(µr), (3.8)

with B0 magnetic field on axis. Since J1 = −dJ0
dr , from (3.5) one can readily obtain:

Bθ = B0J1(µr). (3.9)

Equations (3.5) are solved by the lowest order Bessel functions (J0(µr), J1(µr)) that are combinations
of sine and cosine with modulated amplitude (figure 3.4).

Figure 3.4: Equilibrium current and fields in the Bessel Function Model (BFM).

The resulting model is called Bessel Function Model (BFM) and it is still routinely used, in a slightly
modified version, for calculating the equilibrium fields, in the RFX-mod device, [38].
Bessel functions are largely able to reproduce the behaviour of the magnetic field and, in particular,
the reversal of the toroidal magnetic field in the external region. The first experimental measurements
seemed to confirm the BFM predictions, especially those coming from the experiment ZETA, one
of the first to work in the RFP configuration, [40]. An experimental comparison can be made with
measurements of the magnetic field profile and introducing the parameter F , defined as:

F :=
Bφ (r = a)

〈Bφ〉
, (3.10)

that represents the edge toroidal magnetic field normalized to its average. The condition that data
should satisfy (in order to confirm Taylor’s relaxation theory) is the following:
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F

Θ
=
Bφ(a)

Bθ(a)
=
J0(µa)

J1(µa)
. (3.11)

The plot of F as a function of Θ is shown in figure 3.5 with the comparison with experimental data.
It is worth noting that, in the BFM, reversal of the toroidal field happens when the pinch parameters
Θ > 1.2.

Figure 3.5: Comparison between Taylor’s prediction and experimental data in the (Θ, F ) plane. Figure adapted
from Ref. [6].

In this picture, although Taylor’s theory predicts quite well the trend shown by the data, there is still
something missing, since quantitative agreement is not perfect especially at large Θ values (bottom
right corner of Fig. 3.5). Allowing for a variation of µ along the radius (the so called ”µ & p”
model, [38]), helps in fitting data better, although for a more accurate description of the relaxation
mechanism it is necessary to use a more modern MHD approach through numerical simulations.

3.3 Magnetic order and high level self-organization

Understanding of the RFP configuration has greatly improved since 1990s thanks to numerical simu-
lations and to the growing experimental activity in this field.
In particular, thanks to the high computational power it is possible to predict many features of the
reversed-field pinch by numerically simulating MHD models in particular conditions and with the
right hypotheses to study the case. A detailed summary regarding the evolution of RFP configuration
during the years is found in [11], that is broadly followed in the contents of this section.

3.3.1 Wire model

The wire model consists in a really simplified representation (’toy model’) of the reversed-field pinch.
The initial configuration considered (figure 3.6 (a)) has a cylindrical symmetry and is composed by
an external ideal shell that guarantees, thanks to a uniform azimuthal current Ishell, the presence of
an axial magnetic flux Φ(B) and by an axial wire, in which the current I is flowing. It is easily shown
that this system is a magnetic flux conservator because, for the Faraday law:
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3 The Reversed-Field Pinch configuration

−dΦ(B)

dt
= E = R∆I = 0, (3.12)

where E is the induced electromotive force on the shell and R is the resistance of the ideal shell, that
clearly amounts to zero implying the rate of change of the magnetic flux to be zero.
Imaging for simplicity the development of a kink helical perturbation on the wire (figure 3.6 (b)): this
perturbation can bring the wire current to flow parallel with respect to the shell one or anti-parallel
with respect to it. Since parallel currents attract, this type of perturbation is enhanced, while the
other is reduced. Considering, at this point, a perturbation of the ’parallel’ type this will be increased
and will generate an additional magnetic field B′ that is parallel to the original one. To compensate
the increase of magnetic field flux it is necessary to have a decrease or even a sign inversion of the
magnetic field in the edge region not interested by the wire perturbation (figure 3.6 (c)).

Figure 3.6: Graphic representation of the wire model, picture taken from 3.6.

3.3.2 Magneto-fluid model

The upgrade of the previous model towards a magnetohydrodynamic level can be done only by means
of numerical simulations of the differential equations involved. Limited to the reversed-field pinch
configuration the visco-resistive model solution is of particular interest.
Solving 3D nonlinear MHD equations with an initial perturbation gives rise to qualitatively different
solutions, on the basis of the composition of the spectrum of active plasma instabilities (more details
about the Fourier spectrum will be given in the next chapter, especially devoted to numerical solutions
of the MHD model). In fact, there are cases in which there is no clear dominant mode in the Fourier
spectrum. They are defined as turbulent or multiple helicity (MH) regime. In others, instead, the
plasma can reach, after a phase transition, an entirely different state, characterized by the total
dominance of one Fourier mode over all the others. This regime is defined as laminar or single helicity
(SH). Also an intermediate situation exists featured by the presence of a dominant mode end other
modes whose contribution is smaller but not negligible with respect to the dominant one: this regime
is defined as quasi single helicity (QSH).
The different phases are not only predicted by solving the equations, but they have consequences that
are verified during the experiment in the geometry of the plasma self-organization (see figure 3.7) and
in the magnetic topology (see figure 3.8).

An evident difference in the magnetic field configurations is present among the different regimes: in
particular the transition towards the laminar regime is featured with a strong reduction of the magnetic

30



3.3 Magnetic order and high level self-organization

Figure 3.7: Bifurcation dominating RFP plasmas: (a) - (b) is the MH state, while (c) - (d) is the QSH helical
state. (a) and (c) are reconstructions of the plasma shape, while (b) and (d) show the inner magnetic topology,
taken from [45].

Figure 3.8: Magnetic topology reconstructed comparison in RFX-mod: QSH (a) and SH (b) regimes.
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chaos (see frames (b) and (d) in Fig. 3.7), that consists in the disappearance of the magnetic islands
and in the formation of an ordered geometry that entails benefits also for transport, allowing the
formation of a hot plasma helical core, [35].
Thanks to the achievement of the QSH regime, RFP configuration can display interesting properties
about confinement that could in principle be used for a future fusion reactor. The main difficulty for
this purpose is achievement and the maintenance of the single helicity that can be obtained in plasmas
with an Hartmann number above a determined threshold or stimulating it with particular external
perturbations called seed magnetic perturbations (these problems are addressed in the next chapter).
Anyhow, the existence of a spontaneous QSH regime shows that RFP can be described as a self-
organized helical state that displays magnetic order.

3.4 The RFX-mod device

As anticipated in the first chapter, in Padova there is a magnetic confinement fusion experiment that
can work as aflexible device both in tokamak and RFP configurations (more details can be found in
Ref. [39]). The name of this device is RFX-mod (see Ref. [44]) and, since this work is aimed at the
study of phenomena in the case of reversed-field pinch, only the properties in the RFP configuration
are analyzed. In particular the main features of the experiment are reported in Table 3.1.

Table 3.1: RFX-mod device properties in RFP configuration.

Major radius, R0 2.0 m
Minor radius, a 0.459 m
Plasma current, Ip ≤ 2.0 MA
Toroidal field, Bφ ≤ 0.7 T
Flat top time, ∆t ' 250 ms

As already pointed out, the research in the case of RFP is not yet developed at the level of the largest
tokamaks or stellarators, nevertheless RFX-mod is the largest RFP in operation and results obtained
in RFX proved to be of great interest in the fusion community. The machine, that is now facing a
shut down to allow the completion of its second upgrade RFX-mod2 (whose details are referred in
Ref. [36]), is shown in its working phase in figure 3.9.

The toroidal device is composed by the toroidal vacuum vessel (aimed to contain the plasma), magnetic
systems for producing plasma equilibrium and control, power supplies and diagnostics that surround
the machine (figure 3.9).
The internal wall that directly faces the plasma is composed by 2016 trapezoidal graphite tiles, only
1.8 cm thick (to maximize the plasma volume): the composition is chosen in order to sustain high
thermal loads and to get low Z impurities. The vacuum vessel that allows reaching low pressures is
composed by 72 wedge shaped elements that are sustained by the external mechanical structure.
The magnetic system is composed by 3 windings: the toroidal field coils (TF, 48 coils) for producing
Bφ, the poloidal field coils (M, 20 coils) for inducing the plasma current Ip and associated Bθ field,
and the vertical field coils (”field shaping” F, 16 coils), carefully described in Ref. [48]. The main aim
of the latter system is to control, thanks to the generation of magnetic field, the shape and position
of the plasma.
But the flagship of the experiment RFX-mod is a system of 192 saddle coils dedicated to plasma active
control (figure 3.10).

These coils are both in poloidal and toroidal direction (like a saddle) but are used to generate a radial
magnetic field of the order of some mT that can compensate the one generated by helical perturbations.
To optimize the control, each coil has an independent control and power supply.
The control system is one of the modification introduced in the upgrade of the 2000, described in
Ref. [44]. Presently, an upgrade is in program aimed at removing the vacuum vessel, so that the
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3.4 The RFX-mod device

Figure 3.9: the RFX-mod device.

Figure 3.10: Representation of RFX-mod active control saddle coils.
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plasma should be contained by the chamber that up to now had the role of mechanical structure. This
would allow the increase of the minor plasma radius and the generation of a more ideal boundary
condition for the plasma. Operations are expected to resume by the end of 2020, as foreseen in [36].
The diagnostic apparatus is described, limited to the measurements that are of interest for this work
in chapter 5, the one devoted to the analysis of the data coming from RFX-mod.

34



Chapter 4

SpeCyl numerical simulations

This chapter is devoted to the presentation of the results obtained with SpeCyl numerical simulations.
First of all, the code used is introduced, briefly describing the solving procedure of the visco-resistive
model equations. Secondly, the most important results achieved in the past years using the SpeCyl
code are summarized, showing a good agreement between simulations results and experimental mea-
surements. Then, the simulations database considered and the results highlighted are shown, paying
particular attention to the analysis of magnetic energy and edge magnetic field and to the role of the
Hartmann number in determining the trend of the latter quantities.
Finally, after having selected the simulations with more realistic initial conditions among those avail-
able in the dataset, the scaling of the edge radial magnetic field with the Hartmann number is pre-
sented, which will be the result to be compared with experimental data in Chapter 5.

4.1 The Specyl code

The Specyl code is a numerical tool that performs 3D nonlinear magnetohydrodynamics simulations.
The code was introduced for the first time in [10] to study magnetic reconnection phenomena in the
RFP configuration, using properly a MHD approach.
The code carries out the solution of the equations of the visco-resistive model in the form containing
the viscous Lundquist M and Lundquist S numbers shown in Section 2.5, that here are rewritten for
the sake of completeness:

∂v

∂t
+ (v · ∇) v = j×B +M−1∇2v, (4.1)

∂B

∂t
= ∇× (v×B)−∇×

(
S−1j

)
. (4.2)

∇ ·B = 0, (4.3)

∇×B = j. (4.4)

Obviously to obtain the latter equations it is necessary to make some hypotheses that are, in addition
to the usual of the one fluid MHD, the presence of a negligible pressure, constant mass density and
viscosity and resistivity as effective transport coefficients. These hypotheses and the relative validity
regime have already been discussed with the scaling that can bring to equations (4.1) - (4.4) in Section
2.5.
As it frequently happens in physics, the set of equations can be treated more easily in the Fourier
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space: exploiting the cylindrical symmetry (of the θ ∈ [0, 2π] and z ∈ [0, 2πR0] coordinates) with
periodic boundary conditions the main physical quantities can be rewritten as Fourier series. Naming
m and n the poloidal and toroidal wave numbers, a generic function f(r, θ, z, t) of the space and time
coordinates can be rewritten as:

f(r, θ, z, t) =
+∞∑

m=−∞

+∞∑
n=−∞

fm,n (r, t) e
i
(
mθ+ n

R0
z
)
, (4.5)

in which the toroidal angle φ is replaced by the expression z/R0, with R0 major radius of the rectified
torus. To guarantee the function f to be real, a condition on its transform fm,n the following conditions
has to be required:

f ∈ R −→ f∗m,n = f−m,−n. (4.6)

Although from the mathematical point of view all the modes take part to the generation of f , from
the experimental one only the lowest order modes give a non negligible contribution.
The role of the Fourier modes is also fundamental in order to determined the regime to which the
plasma is found. In the numerical simulation only a finite number of Fourier modes is taken into
account. Those considered by the SpeCyl code, chosen after a convergence study described in [10],
are shown in figure 4.1.

Figure 4.1: Fourier modes considered by the SpeCyl code (red dots), from [7].

Working in the Fourier space greatly simplifies the solution of differential equations because deriva-
tives and integrals are transformed into linear algebra operations. Linear differential equations are
transformed in algebraic equations that involve the same mode (the same m and n numbers) of dif-
ferent physical quantities in the Fourier space. Instead, non linearity is translated into convolution of
different Fourier modes. An exemplification of the last statement can be found in the section A.2 of
the Appendix.
From the point of view of transport the SpeCyl code takes into account only the coefficients of resis-
tivity and viscosity (as it happens for the visco-resistive model). They are expressed in a normalized
form as the inverse of the Lundquist number η = S−1 and of the viscous Lundquist number ν = M−1.
These coefficients depend, in principle, on time and space. The dependencies chosen in SpeCyl are
simplified in order to allow the simulation to be made in a reasonable time and also because direct
measurement of the viscosity profile are not available. The coefficients assumed are a constant and
uniform viscosity and a constant resistivity in time. The only non trivial dependence is the radial one
of the resistivity:

ν(r) = ν0, η(r) = η0

(
1 +A

(r
a

)B)
, A = 20, B = 10. (4.7)
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The profile of the resistivity is chosen considering the typical polynomial profiles of the temperature
as function of the cylinder radius and the relations between resistivity and temperature. The choice
of these dependencies is absolutely non trivial, and the verification of the validity of this assumption
is one of the aim of this work.
The initial condition imposed to solve the differential equations can be of two types: ideal shell or
magnetic perturbation. The ideal shell boundary conditions consist in the absence of radial magnetic
field and of poloidal electric field at the boundary:

Br
m,n(a) = 0, Eθm,n(a) = 0, ∀m,n. (4.8)

Additional conditions are the presence of a constant toroidal electric field (Ez = E0) to induce the
plasma current and the no slip condition for two velocity components: vθ(a) = 0, vz(a) = 0. Instead,
magnetic perturbations (MPs) are obtained imposing the presence of a Fourier mode for the radial
magnetic field different from zero at the boundary. This type of simulations is particularly interesting
for the RFP configuration because they can induce the transition to SH or QSH, as it will be explained
in the next chapter.
Another code available for fusion plasmas numerical simulations is PIXIE3D. The code solves a more
complicated set of differential equations because it takes into account the energy balance besides the
visco-resistive model, solved with a finite volume element method.
In [7] a non-linear verification of the two codes is carried out with excellent results, in terms of
agreement between SpeCyl and PIXIE3D simulation predictions. The latter result represents a key
point in favour of the use of the two codes in numerical simulating fusion plasmas.

4.2 RFP and 3D MHD simulations

Since the 90s the SpeCyl code has been used to perform 3D non linear magnetohydrodynamics sim-
ulations that turned out to be of fundamental importance in understanding the RFP configuration,
reproducing or predicting experimental results coming from RFX and RFX-mod devices. In this sec-
tion, the main achievements in this research field are exposed, pointing out the aspects that can be
useful for this work.
The role played by the Hartmann number emerged from the first results of numerical simulations.
In [12], the equations (4.1) - (4.4) are rewritten introducing properly the Hartmann and the Prandtl
numbers, as done in Chapter 2, obtaining the set of equations (2.70) - (2.72), from which it is evident
that the Hartmann number becomes the main plasma parameter when the inertia terms are negligible.
Then, results of MHD numerical simulations are presented with H ≈ 102 − 104 (figure 4.2).

These simulations were made exploring a wide range of the initial parameters, compatibly with the
computational power available in those years. In figure 4.2 the time averaged magnetic energy (in
normalized units) associated with the m = 0 modes as function of the Hartmann number is plotted.
Simulations properties considered are summarized in table 4.1.

Table 4.1: Types of simulations analyzed.

Symbol Simulation settings

4 S = 3.3× 103, P ∈
[
2
3 , 10

]
H S = 3.0× 104, P ∈ [1, 5000]
◦ Slightly perturbed SH initial condition

The results found in 4.2 are: the independence on the Prandtl number and the presence of a phase
transition between H = 2000 and H = 3000 that is pointed out by the discontinuity in the the value
of the m = 0 magnetic energy. At low Hartmann values the magnetic energy related to the m = 0
modes is reduced of some orders of magnitude. Other analyzes show that in these cases the energy
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Figure 4.2: Magnetic energy of the m = 0 modes: a phase transition appears around H = 2500, from [12].

associated to the modes with m/n = 1/11 or m/n = 1/12 is incredibly increased.
The threshold H ≈ 2500 ”separates” the domain into two different regions in which the plasma is found
into two different phases: SH below the Hartmann threshold value (in which the modes m/n = 1/11
and m/n = 1/12 dominate) and MH above the threshold value. The Hartmann number is thus a
fundamental parameter to understand the transition from SH to MH.
In more recent times the modeling activity has been aimed at understanding the role of initial con-
ditions. In particular, in [8], simulations with seed magnetic perturbations (MPs) are presented: a
radial magnetic field of a determined mode (typically the usual dominant mode m = 1, n = −7) of a
relative magnitude of 2% with respect to the edge magnetic field is introduced as initial perturbation.
These values are also the typical one that are involved in the experiment, as it happens in RFX-mod
device.
An important analogy between SpeCyl numerical simulations and the RFX-mod experiment is shown
in [8]: a QSH phase can be stimulated by means of an adequate initial boundary condition of the
radial magnetic field.

Figure 4.3: Comparison between three different simulations and an RFX-mod shot for the F factor and the
toroidal magnetic field, from [8].

More precisely, in figure 4.3, quasi-periodic cycles in QSH phase are repeated: they are characterized
by the dominance of a Fourier mode of the magnetic field followed by a sudden crash in which the
system returns in MH phase. This behaviour is shown for simulations with H ≈ 105, and for RFX-mod
# 24063 shot with Ip ' 1.5 MA, ne ' 2.8× 1019 m−3 and Te ' 750 eV.
The agreement between SpeCyl numerical simulations and RFX-mod experiments finds a further
confirmation in [53]. In this article visco-resistive MHD results predicted experimental measurements,
in the case of seed magnetic perturbation application, possible thanks to the active-feedback control
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system with which RFX-mod device is equipped. The result is shown in Figure 4.4, in which one can
see that stimulating a certain mode by means of a magnetic perturbation it is possible to produce a
helical state in which the considered mode is the dominant one: this behaviour is directly observed in
the experiment and it is reproduced by numerical simulations.

Figure 4.4: Comparison between a Specyl simulation (a) and an RFX-mod shot (b) with the same seed magnetic
perturbation for the radial magnetic field, from [53].

The success obtained by the SpeCyl code in modelling the RFP physics justifies the use of the code and
its future developments and it reveals the visco-resistive model to be the best theoretical framework
available up to now for the purposes of this work.

4.3 Simulations database analysis

In this work, a database composed by 94 numerical simulations made for previous studies (like those
cited in the previous section) are considered. The initial inputs for the central viscosity ν0 and the
central resistivity η0 are chosen in order to cover a range for the Hartmann number as wide as possible
that spans an interval of about four orders of magnitude between 102 and 106.
The region with higher Hartmann numbers (approximately between 5 × 105 and 108) is the one of
major interest from the experimental point of view but it is very difficult to explore by means of
numerical simulations because of computational reasons. In fact, according to equations (2.70) and
(2.71), where terms proportional to H−1 appear, the introduction of a high Hartmann number implies
the coexistence (inside the same differential equation) of terms of order 0 and at least one term of
order H−1 that causes a great increase in the computational time needed, due to the difference in the
magnitude of the two terms.
The geometry used by the SpeCyl code is cylindrical with periodic boundary conditions, fixing the
aspect ratio, i.e. R0/a = 4, the value of RFX-mod device.
In the database, different types of simulations are contained with respect to the initial magnetic
perturbations (MPs) that in the experiment are induced by means of the active control saddle coils:
there are some of them without the initial magnetic perturbations (MP off) and others endowed
with the initial magnetic perturbation, that is obtained imposing a non zero radial magnetic field at
the radial position r = a for a determined Fourier mode at the initial time (MP on). The modes
stimulated in this second case are those that typically dominate the spectrum in the SH or QSH phases
in RFX-mod device: m = 1, n = −5,−6,−7,−8,−9,−10,−11,−12. In particular the most frequent
stimulated mode is the one with m = 1, n = −7, because it was experimentally shown that the latter
plays a fundamental role in RFX-mod QSH phase, although the mechanism by which this particular
mode dominates is not entirely understood. The intensity of the perturbation is usually expressed in
terms of the perturbation normalized to the edge magnetic field (B(a)): the values considered in the
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simulations are 1.3%, 2%, 4%, 6% . The most reliable values (applied in the experiments) are between
2% and 4%. All the simulations in this database are characterized by ideal (zero resistivity) boundary
conditions .
The output of the simulations are three component of the magnetic field (radial, poloidal and toroidal)
and the magnetic energy, obtained integrating, over the plasma volume, B2. Each component of the
magnetic field is found as a four dimensional array that has as entries a time coordinate, a radial
coordinate, a coordinate to indicate the Fourier mode, and one to specify if the modulus or the phase
is taken into account. The magnetic energy is expressed as a two dimensional array with a radial
coordinate and a coordinate that indicates the Fourier mode.
Since a great majority of the discharges simulations are characterized by periodic intervals of single
mode dominance (QSH) separated by sudden crashes of magnetic chaos (MH), it is reasonable to
calculate time averages only in the QSH phase time. To reach this goal, the spectral index Ns is
defined as:

Ns =

 −1∑
n=−N1

(
B2

1,n∑−1
j=−N1

B2
1,j

)2
−1 , (4.9)

where N1 is the maximum n (in modulus) among the m = 1 modes taken into account by the code,
and B1,n is a generic harmonic of the magnetic field. The spectral index Ns was introduced for the
first time in Ref. [27]. A value of Ns = 1 implies the plasma to be in a pure SH. A threshold Nth

for Ns below which the system is considered to be in QSH is usually chosen and, consequently, the
time average is computed only for the instants during which the spectral index is below the threshold
chosen. The choice of this threshold value clearly results to be arbitrary and, from now on, the time
average below the threshold value will be indicated by the symbol 〈〉t|Ns(t)<Nth .

To analyze the simulations database an IDL routine for the analysis was written to calculate a series
of useful physical quantities for the analysis:

• Prandtl number P and Hartmann number H, defined in terms of central ν0 and central resistivity
η0

P =
ν0
η0
, H =

1
√
η0ν0

. (4.10)

• The spectral index as function of time Ns (t).

• Edge magnetic field related to the dominant and the secondaries modes, both for the cases m = 0
and m = 1 and for each of the three components radial Br, poloidal Bθ and toroidal Bz:

〈
Br

0,dom (r = 0.95a)
〉
t|Ns(t)<Nth

,
〈
Bθ,z

0,dom (r = a)
〉
t|Ns(t)<Nth

, (4.11)

〈
Br

0,sec (r = 0.95a)
〉
t|Ns(t)<Nth

,
〈
Bθ,z

0,sec (r = a)
〉
t|Ns(t)<Nth

, (4.12)

〈
Br

1,dom (r = 0.95a)
〉
t|Ns(t)<Nth

,
〈
Bθ,z

1,dom (r = a)
〉
t|Ns(t)<Nth

, (4.13)

〈
Br

1,sec (r = 0.95a)
〉
t|Ns(t)<Nth

,
〈
Bθ,z

1,sec (r = a)
〉
t|Ns(t)<Nth

. (4.14)

It is necessary to point out some details about calculations in formulas (4.11) - (4.14). The edge
radial magnetic fields are evaluated at the radial position r = 0.95a because, since zero resistivity
boundary condition is assumed, the evaluation of the radial field at r = a simply amounts to 0

40



4.4 Simulations results: magnetic energy

and so its calculation is not of particular physical interest. To calculate the secondary modes
contributions the following formula is applied (here written in the case of m = 1 modes):

Bi
1,sec =

√√√√√√
−1∑

j=−N1,
j 6=ndom

(
Bi

1,j

)2
, (4.15)

where i can be r, θ, z. The dominant mode is calculated at each time step and, in principle, it
can be different from time to time.

• The time averaged magnetic energy related to the dominant and secondary modes both for the
case m = 0 and m = 1:

〈
WM

0,dom

〉
t|Ns(t)<Nth

,
〈
WM

0,sec

〉
t|Ns(t)<Nth

, (4.16)

〈
WM

1,dom

〉
t|Ns(t)<Nth

,
〈
WM

1,sec

〉
t|Ns(t)<Nth

. (4.17)

In this case the energy of the secondary modes is found, simply summing all the secondary
modes:

WM
1,sec =

−1∑
j=−N1,
j 6=ndom

WM
1,j , (4.18)

because, in the case of energy, all the contributions are positive.

• The Fourier mode m = 0, n = −1 edge magnetic field, that has an important correspondence
with the ratio n/nG, that describes the density limit:

〈
Br

0,1 (r = 0.95a)
〉
t|Ns(t)<Nth

,
〈
Bθ,z

0,1 (r = a)
〉
t|Ns(t)<Nth

. (4.19)

The calculation of all the previous quantities is repeated for all the simulations in the database and
are all dimensionless (because they undergo to a normalization).

4.4 Simulations results: magnetic energy

In this section the results found about the magnetic energy are presented. The interest is addressed
to find clear trends in the behaviour of the magnetic energy and the role that Hartmann number plays
in determining them. In the results presented, it will be evident that the latter parameter is an order
parameter that rules phase transitions of the magnetic energy. To analyze the differences between the
simulations, they are divided on the basis of the initial perturbations (mode stimulated and relative
intensity).

4.4.1 m = 1 modes

The first part of the analysis regards the m = 1 modes magnetic energy. In this case the simulations
are divided into two different sets: the ones with no external magnetic perturbations (MP off) and
those with the presence of the latter (MP on). For the second set an additional selection is made:
only one stimulated mode is chosen, that is the m = 1, n = −7 mode. This is the mode with
the higher number of simulations available and it is the most probable to be stimulated also in the
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experimental conditions, then only the simulations with relative perturbation intensity in the range
2%−4% are considered (that is the more realistic initial condition). The results, in absence of magnetic
perturbations, are shown in figure 4.5:

Figure 4.5: Magnetic energy of the m = 1 modes with no magnetic perturbation (MP off) as function of the
Hartmann number.

As it can be seen, the dominant mode shows a trend (for the magnetic energy) with a slightly negative
slope along all the interval of the Hartmann number considered. The situation related to the secondary
modes is different: in particular a clear change in the behaviour of their magnetic energy (as function of
H) can be seen around H ≈ 103 - 2× 103. Below the threshold the magnetic energy of the secondary
modes is orders of magnitude smaller than the one related to the dominant mode and displays a
positive slope. At the threshold value the energy related to the dominant and the secondary modes
are comparable and for values of Hartmann beyond the threshold they approximately show the same
behaviour. The precise slopes that can be found via a fitting procedure are:

WM
1,sec ∝ H2.7±0.2 H ≤ 2× 103, (4.20)

WM
1,sec ∝ H−0.5±0.1 H > 2× 103. (4.21)

The Hartmann number turns out to be an order parameter that rules a phase transition between a
regime of SH (below H ≈ 2 × 103), where to the dominant mode the great majority of the magnetic
energy is associated, and a regime of MH (for H > 2× 103), where the dominant mode is just the one
with the higher energy but doesn’t assume a dominating part of the magnetic energy. This role of H
has already been shown in Figure 4.2 in the case of m = 0 modes magnetic energy.
In Figure 4.6 the case with the presence of an m = 1, n = −7 mode initial perturbation for the radial
component of the edge magnetic field is instead shown.

Also with the active stimulation, the critical value of H ≈ 2 × 103 is a separating threshold between
different behaviours of the magnetic energy. While below the threshold no significant differences
(between dominant and secondary modes) are found, above it, the dominant mode displays an ap-
proximately constant trend and the secondary modes display a negative slope for the magnetic energy,
until the latter reaches values that are orders of magnitude smaller with respect to the dominant ones.
The fitting procedure returns, in this region:

WM
1,sec ∝ H−0.63±0.05 H > 2× 103, (4.22)
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Figure 4.6: Magnetic energy of the m = 1 mode with magnetic perturbation (MP on) stimulating the m = 1
n = −7 mode as function of the Hartmann number.

the resulting negative slope of the secondary modes is fundamental to allow the rise of the QSH state,
as seen in experiment [34] .

4.4.2 m = 0 modes

The most interesting properties of the magnetic energy related to the m = 0 modes, can be pointed
out comparing their behaviour in presence and in absence of the external magnetic perturbation. In
this case all the m = 0 modes are considered without distinguishing between the dominant one and
the secondary modes. The result found with these prescriptions is shown in figure 4.7.

The figure confirms that, as for the plots about the m = 1 modes, the Hartmann number rules the
trend of the magnetic energy. When the external magnetic perturbation is switched on, the magnetic
energy trend is almost flat. If, instead, the perturbation is switched off, a change in the trend is
evident around the usual critical value of H ≈ 2 × 103. In fact, below the threshold, the magnetic
energy of the non stimulated simulations is smaller than in the case of those stimulated and it displays
a positive slope till it reaches, in correspondence of the Hartmann critical value, the maximum value,
beyond the latter no qualitative difference is found adding an external magnetic perturbation. Also
for the m = 0 modes the fit is calculated in the case of active magnetic perturbation, obtaining:

WM
0,sec ∝ H2.7±0.6 H ≤ 3× 103, (4.23)

WM
0,sec ∝ H−0.57±0.08 H > 3× 103. (4.24)

Concluding this section, one can remark that, in the context of the visco-resistive model numerical
simulations, the Hartmann number reveals to be an order parameter governing transitions between
SH and MH phases and generating different distribution of the magnetic energy among the most
important Fourier modes. On the other side, it is evident that the magnetic energy behaviour is
clearly influenced by the introduction of external magnetic perturbations, which becomes a powerful
instrument to modify the development of a discharge, at a given value of the Hartmann number.
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4 SpeCyl numerical simulations

Figure 4.7: Magnetic energy of the m = 0 modes, comparing the presence of the external stimulation (MP on)
and its absence (MP off).

4.5 Simulation results: edge magnetic field

In this section the simulations results regarding the edge magnetic fields are analyzed: in particular,
the focus will be the Fourier mode m = 0, n = −1 that is predicted to be the best candidate in
describing the density limit: more details about this statement will be given in the next Chapter.
Anyhow, it will be shown that the results found for the m = 0, n = −1 mode are qualitatively similar
to the ones obtained in the case of the m = 0 dominant mode.
The starting point of the analysis is found in figures 4.8, 4.9 and 4.10, where the three components
of the edge magnetic field (normalized to the toroidal field on axis B0) are plot as function of the
Hartmann number for all the simulations of the database analyzed.

The results present a situation similar to the one found for the magnetic energy. As it can be seen
in figures 4.8 - 4.10, all the components of the edge magnetic field undergo an important change of
their behaviour, once reached a threshold value of the Hartmann number. Anyhow, the threshold
value is greater that the once found for the previous case and it is of the order of magnitude H ≈ 104.
The trend is positive for the m = 0 n = −1 mode for Hartmann smaller than the critical value, the
sign of the slope changes for an Hartmann value beyond the threshold. A result that is qualitatively
similar but quantitative different (for the plasma magnetic energy and the edge magnetic field) appears
reasonable, if one takes into account that the global magnetic energy is influenced by the values of the
edge magnetic field but depends also on the field evaluated on the whole plasma volume.
The change in the slope of the m = 0 Fourier modes is not limited to the mode with n = −1 but it
can be found also analyzing the the field Br

0,dom(r = 0.95a) (see figure 4.11).

Although interesting properties are found by analyzing the whole simulation database, to perform
more precise predictions a selection should be done, in order to analyze only those ones that reproduce
conditions as near as possible to the experiment, similarly to what done in the case of the magnetic
energy.
The simulations are selected into two groups depending on the external magnetic perturbation:

• MP off: simulations in the absence of the external magnetic field,

• MP on: simulation with the mode m = 1, n = −7 stimulated, with a relative intensity in the
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4.5 Simulation results: edge magnetic field

Figure 4.8: Edge radial magnetic field as function of the Hartmann number. The red dots represent simulations
with m = 1, n = −7 stimulation in the range of intensity 2%− 4%.

Figure 4.9: Edge poloidal magnetic field as function of the Hartmann number. The red dots represent simulations
with m = 1, n = −7 stimulation in the range of intensity 2%− 4%.
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4 SpeCyl numerical simulations

Figure 4.10: Edge toroidal magnetic field as function of the Hartmann number. The red dots represent simula-
tions with m = 1, n = −7 stimulation in the range of intensity 2%− 4%.

Figure 4.11: Edge magnetic field related to m = 0 dominant mode, as function of the Hartmann number. The
red dots represent simulations with m = 1, n = −7 stimulation in the range of intensity 2%− 4%.
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4.5 Simulation results: edge magnetic field

range 2 - 4 %.

Once the selection is made, it is still evident the presence of a change in the slope of the edge radial
magnetic field around a value of H ≈ 104. In the region with a negative slope a fit procedure can be
made, in preparation for the comparison with experimental data, where the Hartmann number H is
beyond 105. The results are calculated for the edge radial magnetic field both for the case of the mode
m = 0, n = −1 and of the dominant m = 0 mode (shown in figures 4.12 - 4.13).

Figure 4.12: Edge radial magnetic field (related to the m = 0, n = −1 mode) as function of the Hartmann
number. Fit procedure performed for Hartmann values beyond the green line.

The scaling laws found are the following:

• For the mode m = 0, n = −1:

Br
0,−1(r = 0.95a) ∝ H−0.14±0.27, (MP off) (4.25)

Br
0,−1(r = 0.95a) ∝ H−0.40±0.07, (MP on) (4.26)

• For the dominant m = 0 mode:

Br
0,dom(r = 0.95a) ∝ H−0.13±0.40, (MP off) (4.27)

Br
0,dom(r = 0.95a) ∝ H−0.28±0.03, (MP on). (4.28)

The fit results are the basis for the comparison with the experimental data which will be shown in
Chapter 5, but looking at the high values of the errors only the case with active stimulation should
be considered.
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4 SpeCyl numerical simulations

Figure 4.13: Edge radial magnetic field (related to the m = 0 dominant mode) as function of the Hartmann
number. Fit procedure performed for Hartmann values beyond the green lines.
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Chapter 5

RFX-mod shot analysis

In this chapter experimental data coming from the RFX-mod device are analyzed, with the goal of
finding new scaling laws for the density limit, relating it to the Hartmann number and to edge magnetic
field.
The data analyzed in this work were not collected purposely for the present Thesis, but they were
used in several, previous studies on QSH, confinement scalings and the density limit: these studies
are summarized in the first Section of this chapter. After that, a description of the databases is made,
followed by the description of the procedure adopted to evaluate the Hartmann number for RFX-mod
RFP plasmas. Then, the results obtained are introduced, referring to Hartmann scalings and the
m = 0, n = −1 mode analysis. The procedure adopted for this final analysis is based on the Newcomb
method, which is briefly introduced.
The final section is devoted to a first comparison between numerical simulations and experimental
data.

5.1 Previous experimental studies

The experimental data used in this work, carefully introduced in the next section, were collected and
analyzed for previous studies that constitute the basis on which this work is developed. In particular,
three different paths of research, to which they belong, can be identified:

• Scaling studies, in which relations that link different measurable parameters are found using
a fit procedure and evaluating the correlation among the variables involved.

• Study of the edge plasma physics in QSH phase, since it will be shown that edge radial
magnetic field plays a key role in describing the ratio n/nG.

• Study of the density limit, in which physical laws able to predict the behaviour of the ratio
n/nG are found.

• Study of the confinement properties and transport barriers during the QSH.

5.1.1 Scaling studies on RFX

The first scaling of interest for this work presented in 2000 [52], in which a wide database of shots was
considered, including standard shots, QSH shots and shots with particular initial condition to improve
the confinement, in the old RFX machine. The most important result derived was a scaling law that
involved the Lundquist number S (evaluated by means of RFX diagnostics) and the measurements
of the normalized toroidal magnetic field fluctuations (bφ/Bθ(a)). The result was confirmed by a
comparison with SpeCyl numerical simulations, that display a similar scaling. The latter are shown
in figures 5.1 and 5.2.
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5 RFX-mod shot analysis

Figure 5.1: Normalized toroidal field fluctuations, as function of the Lundquist number S (RFX-mod experi-
mental data), from [52]).

Figure 5.2: Normalized magnetic field fluctuations, as function of the Lundquist number S (SpeCyl numerical
simulations), from [52]): different component of the magnetic fluctuations are analyzed: ◦ for br(a/2), � for
btot(a), � for bz(a), N for bθ(a).
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5.1 Previous experimental studies

As it can be seen, although the ranges of S analyzed do not correspond, the agreement of the two
scaling laws is quite good, as it is the correlation coefficient. The agreement, resulting from the fit
procedure, regards also the absolute values of the magnetic perturbations and not only the scaling
laws.
Other scaling laws for the magnetic perturbations were introduced in [52] involving the Prandtl num-
ber P or a multiple regression with plasma current Ip, electric temperature Te, density n and the
effective charge Zeff . However in that work, the results did not significantly improve the previous
one in terms of correlation value, partly because of a slight error in the evaluation of the experimental
value of Prandtl. For this reason, at that time, the Lundquist number S turns out to be a good
parameter that described the magnetic field perturbations, coherently with other works in the same
years on MST [49]. The results presented in [52] are anyway only partly correct, since from Chapter
4 we know that visco-resistive simulations predict a better scaling with H =

√
SM .

Another scaling study of particular interest was presented in Ref. [28], which is a more recent paper
where other useful scaling laws are presented. The wide database considered contains RFX-mod shots
with 0.2 MA < Ip < 1.6 MA , −0.045 < q(a) < 0 and 0.1 < n/nG < 1, in which, to improve statistics
each point of the Thomson scattering measurement for the central electron temperature (regularly
repeated every 25 ms) during the flat top phase of the discharge is considered.
Working on these data, different relations are discovered via a multi-parametric fit procedure of elec-
tron temperature Te, poloidal beta βp and energy confinement time τE as function of plasma current
Ip, central density n, and edge radial field Br(a). Among these laws one of particular interest links
electron temperature and plasma current, as it is shown in figure 5.3:

Figure 5.3: Plot of the the central electron temperature Te0 as function of plasma current Ip, for all the discharges
considered in [28].

The relation exactly obtained is, for the sake of completeness:

Te(r = 0) ∝ I1.09±0.01p 〈ne〉−0.30±0.01
(
bφsec(r = a)

)−0.28±0.01
. (5.1)

Considering the approximated relation Ip ∝ Te, a result is found which turns out to be interesting for
the purposes of this work:

n

nG
=
nπa2

Ip
∝ n

Te
∝ 1

H⊥
, (5.2)

that suggests to investigate scaling laws as a function of the perpendicular Hartmann number.
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5 RFX-mod shot analysis

5.1.2 Study of the edge plasma physics in QSH

The QSH phase is of particular interest for the RFP confinement and this is the reason why it is
studied in many different works. The more recent among these articles is [43], where the role of the
m = 1 secondary modes is discussed with particular interest to plasma wall interactions (PWI).
In RFX-mod the usual dominant mode is the one with m = 1, n = −7, the secondary modes considered
are the m = 1, −23 ≤ n ≤ −8 modes. A displacement ∆m,n is defined in terms of perturbed radial
magnetic fields brm,n, ∆1,sec is obtained summing the secondary modes considered.
The ratio ∆1,sec/∆1,−7 is proved to be an estimator of the strength of plasma wall interactions: the
radiating power is higher in the case of chaotic MH phase with respect to the well ordered SH phase.
To prove this, a comparison with SpeCyl numerical simulations and a prediction for the future RFX-
mod2 experiment are made, envisaging a lower plasma wall interaction for the future experiment.
Finally, one can state that this type of studies are useful to understand the role of the edge magnetic
turbulence in the development of plasma discharges, also in the tokamak configurations.

5.1.3 Previous studies of the density limit

In recent years many articles have been published aimed at better understanding the density limit in
the RFP configuration, using as a starting point the Greenwald limit that was initially formulated for
the tokamak devices (see Section 1.4 and in particular Figure 1.8).
In Ref. [41] it is pointed out that the density limit in the case of RFP configuration does not cause
a disruption, but instead critical phenomena that bring, anyhow, to the discharge termination. In
fact, increasing the density limit up to n/nG & 0.35, the ordered plasma phases (QSH) are lost,
while at values n/nG ≈ 1 localized edge particles accumulations are found, implying an increasing
edge irradiated power, causing the overall temperature decrease and the consequent increase of the
resistivity with deleterious effect on plasma current and loop voltage. The final stage is that, at
extremely high resistivity and loop voltages, the energy stored in the poloidal field winding (M-coils)
is wasted and the discharge terminates. The experimental fact that Vloop ∝ n/nG is also shown in
figure 1.8.
In Ref. [47] the role of the m = 0 modes in determining the density limit is observed: in particular,
analyzing different RFX-mod shots for plasma current Ip and F parameter defined by equation (3.10),
the contribution of the m = 0, −6 ≤ n ≤ −1 modes to the perturbation magnetic field is shown to
considerably increase at n/nG & 0.35 (figure 5.4).

Figure 5.4: Plot of the m = 0, −6 ≤ n ≤ −1 modes normalized magnetic field perturbation as function of the
ratio n/nG: the entity of such modes grows approaching the density limit.
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5.2 Hartmann number evaluation

Among the m = 0 modes, the most dangerous one is shown to be the m = 0, n = −1 mode because
it is responsible for the formation of a magnetic island (due to tearing modes intabilities). The island
X-point corresponds to a stagnation point (found measuring the plasma toroidal flow) with a gas-puff
imaging diagnostic, described in [1], that generates the accumulation of particles, by a modulation of
the radial edge magnetic field. This very localized particle accumulation is at the basis of the density
limit. The considerations are then confirmed by numerical studies of particles trajectory.
The role of the m = 0 modes for the density limit mechanism is confirmed also in [42], that is a study
of the influence of the magnetic topology in the context of plasma wall interactions.
In a more recent study [46], the role of the m = 0, n = −1 mode is instead confirmed by a series of
experiments where the amplitude of the mode was directly controlled with the system of 192 feedback
coils, described in Section 3.4 and shown in Fig. 3.10. The main is shown in Figure 5.5: when the
m = 0, n = −1 mode increases its amplitude, the associated edge island increases its size, up to a
critical value when the field lines intercept the wall. At this point, PWI and density accumulation
take place, triggering the density limit.

Figure 5.5: Plot of the m = 0, n = −1 mode normalized radial magnetic field as function of the ratio n/nG:
the entity of such mode grows approaching the density limit; (b) - (d) Magnetic topology of the m = 0, n = −1
island, for three discharges marked as circles in frame (a). The critical size of the island is reached when the
flux surfaces intercept the first wall.

Also in the present work, the role of the m = 0 modes and, in particular the m = 0, n = −1, in
understanding the density limit will be investigated on a wide database, described in the next section.

5.2 Hartmann number evaluation

In this section, the databases analyzed are described and the procedure followed to calculate the
Hartmann number, starting from the experimental data, is presented.
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5 RFX-mod shot analysis

5.2.1 Databases analyzed

The database of all the shots considered in this work is composed by five initial databases made up by
RFX-mod shots (all in the RFP configuration) performed in different campaigns in between 2006 and
2016, before the shutdown phase. The discharges are chosen in order to scan a wide intervall in the
density ratio n/nG: 0.05 < n/nG < 1, that allows a study of the density limit on RFX-mod device.
After the initial choice of the shots, only the discharges with incomplete data (that do not allow the
Hartmann evaluation) were discarded and no further selections of data were made.
The first database considered is composed by discharges # 35836 - #35851, #35883 - #35894 , #35902
- #35914 performed in year 2014. It was selected for a previous study regarding the density limit [46]
and it is a scan in the plasma current into three intervals: 600 kA, 800 kA, 1 MA, with a careful control
of the m = 0, n = −1 mode via the feedback system.
The second database is composed by shots in the intervals: #19911 - #19960 and #26303 - #26351.
The first ones are old 2006 stimulated discharges for the first studies on the density limit, while the
second were used in a subsequent campaign in 2009, also for density limit studies [47]. These shots
are characterized by high electron density. The properties of the databases considered to study the
density limit in terms of plasma current and F parameter are shown in figure 5.6.

Figure 5.6: Representation of the shots databases used in the previous studies for the density limit, classified
using plasma current and the F factor.

The third database was considered in [43] and it is composed by QSH low density shots, useful to
explore transport barriers in the region with n/nG ∼ 0.15.
The fourth database contains various discharges in the interval # 26317 - # 36059 aimed at studying
scaling laws on RFX-mod.
Finally, to increase the statistics, a fifth database was added, containing shots for the study related
to the m = 0 modes that include the following shots: # 35920 - # 35936, # 35937, # 35942, # 35943
and # 35959 - # 35976 These shots were also performed in the 2014 campaign, but were not included
in publication [46]. The final database is composed by 196 shots, allowing in this way a wide scan to
study the density limit and also a scan on a very wide interval in the Hartmann number.

5.2.2 Hartmann number calculations

As it was previously shown, the Hartmann number H turns out to be a fundamental parameter to
describe magnetic energy and edge magnetic field in numerical simulations and it is also the only
dimensionless number that rules the equations of the visco-resistive model when the inertia terms are
negligible. In addition relation (5.2) suggests the possibility of linking the ratio n/nG with the value
of H⊥. For these reasons, the Hartmann number, in all its three possible definitions (‖, ⊥, ×), is
evaluated for all the database shots using formulas (2.88), (2.89) and (2.90).
To compute the Hartmann number, various plasma parameters need to be evaluated. The evaluation
of the plasma parameters from the data directly collected by RFX-mod diagnostics is carried out by
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means of an IDL routine, called extcalc.pro. The main results obtained using this program are
the evaluation of: plasma current Ip, voltage toroidal loop Vloop, electronic density ne and the ratio
n/nG, electron temperature Te, and magnetic fields profiles. Given an initial threshold input for the
plasma current, the routine calculates the extremes of the flat top current phase (central part of the
plasma current signal, where the current is approximately constant in time). For each time instant, the
density and the temperature profiles are averaged over the central region within a radius r that satisfies:
−0.15 cm ≤ r ≤ 0.15 cm. Density profiles are measured via a 16-chord interferometer (described in
Ref. [29]), while temperature profiles are measured in 84 positions with 7 mm spatial resolution by
a Thomson scattering diagnostic which uses a custom built Nd:YLF (described in Ref. [3]). Time
instants are based on the Thomson scattering measurements which are repeated at regular intervals
of 25 ms. An example of the output of the routine extcalc.pro is shown in figure 5.7.

Figure 5.7: Graphical representation of the routine output, for shot # 31882. From top to bottom: the plasma
current (with flat top phase), F parameter, toroidal loop voltage, density and Thomson scattering measurements
of electron temperature, as a function of time [ms] and radiated power.

H‖, H⊥ and H× are evaluated modifying the program extcalc.pro. The criteria used for estimating
the parameters that appear in formulas (2.88)-(2.90) are here explained.

• The atomic number of the ions Z is replaced by the effective charge Zeff , that takes into account
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the composition of the plasma. RFX-mod discharges are made with hydrogen or deuterium, with
impurities that are mainly constitute by carbon. The conventional value chosen is Zeff = 1.5.
This value has been chosen on the basis of previous studies on RFX, where Zeff varied in the
range 1.2 ≤ Zeff ≤ 2 as a function of the loop voltage in the range 30 V ≤ Vloop ≤ 50 V, [14].

• The parameter γ = mi/mp is easily obtained: γ = 1 (hydrogen), γ = 2 (deuterium). In this
way, possible isotopic effects are fully taken into account in the present calculation.

• The minor radius a is already calculated by the routine, for the vast majority of the discharges
a = 0.459 m.

• Regarding the magnetic field, the toroidal field on axis is chosen, B = Bφ(r = 0) because it
is the reference value used in the codes, like SpeCyl. Since in many publications (see e.g. [52])
magnetic fluctuations are normalized to the edge poloidal field, Bθ(r = a), we recall here that in
the BFM the ratio B0/Bθ(a) = 1/J1(2θ) ≈ 3 for a typical value of the pinch parameter Θ ≈ 1.5.

• The electron temperature Te is averaged on the central region (as it was explained) and each
instant of the Thomson scattering diagnostic is considered. The evaluation of the Hartmann
number will be repeated at each temperature data point. In this way, for each shot, many final
values for H‖,⊥,× are obtained. From the initial database of 196 shots, about 1700 Thomson
scattering measurements, that implies about 1700 Hartmann number evaluations.

• Unfortunately no ion temperature Ti diagnostic is still available on the RFX-mod device. Stud-
ies of the ion temperature behaviour are carried out, for example, on the MST device [19] that
is very similar to RFX-mod, because it works in the RFP configuration and it has comparable
dimensions. MST is equipped with a spectroscopic system based on carbon impurities spectro-
scopic emission that allows for the evaluation of the ion temperature. The results are highlighted,
for example, in [16], where it is shown that it is particularly difficult to model Ti in the RFP
configuration. The ion temperature is of the same order of magnitude of the electron, but it is
usually smaller, except for the instants in which the QSH phase is interrupted, in the so-called
relaxation events: in these cases Ti > Te. Since these time intervals are usually quite small, in
this work the well accepted convention that Ti = 0.5Te is used without further considerations.

• The density is evaluated (considering the quasi neutrality hypothesis), in the central region, at
the time of the Thomson scattering.

• The Coulomb logarithm ln Λ is treated as in [37]: We recall here that Coulomb logarithm is
defined as ln Λ := ln (rmax/rmin), being rmax and rmin the Debye length and the distance of
closest approach during particle collisions at the average velocity.

These criteria allow for the evaluation of the Hartmann number and the possibility of connecting it
with plasma parameters and the phenomenological parameter n/nG.

5.3 Scaling laws based on Hartmann number

Using the results obtained in Section (5.2) one expects to find a good scaling relation of the type
n/nG = A×HB, where A and B are coefficients to be determined by means of the fit procedure.
To verify the existence of such relations the ratio n/nG is plotted as a function of H‖, H⊥ and H×.
The results are shown in figures 5.8, 5.9 and 5.10.

As you can see, no evident relation is found using H‖ because the data do not display any correlation
(r = 0.15). The results are different when H⊥ and H× are considered, higher correlation values are
obtained: r = −0.75 (for H×) and r = −0.82 (for H⊥). The fit results are here reported:

n

nG
= (210± 30)H−0.386±0.008× , (5.3)
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Figure 5.8: n/nG as function of H‖, RFX-mod data.

Figure 5.9: n/nG as function of H⊥, RFX-mod data. Data are fitted following three different procedures. Solid
red line indicates the scaling law n/nG as a function of H⊥, dashed red line the one with the exchanged axes,
the blue line the one with the additive constant.
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Figure 5.10: n/nG as function of H×, RFX-mod data.

n

nG
= (120± 10)H−0.387±0.007⊥ . (5.4)

On the basis of these fits, the parameter that maximizes the correlation is the perpendicular Hartmann
H⊥, and therefore it will be closer to describe the density limit phenomenology. Other fit procedures
can be considered: since the uncertainty estimate of the single points is quite difficult to obtain, a fit
with exchanged axis, or a fit with an additive constant can be calculated, to try a different scaling law
dependence. The results are:

H⊥ = (80± 4)× 104 ×
(
n

nG

)−1.74±0.03
, (5.5)

n

nG
= (31± 28)×H−0.28±0.08⊥ − 0.10± 0.14. (5.6)

These additional fits add some details to the results obtained so far: in particular no additive constant
is needed because it is zero within the errors.
As it is evident from the plot, a wide range in the Hartmann number H⊥ is covered (more than three
orders of magnitude), that is different with respect to one covered by the numerical simulations. To
exemplify the different types of discharges considered in the database (and the relative Hartmann
number), in table 5.1, H⊥ is calculated for three typical discharges.

Table 5.1: H⊥ calculation examples for three representative shots.

shot B0[T ] Te [eV] γ ne [1019m−3] ln Λ H⊥ n/nG

# 19956 0.427 110 1 4.84 14.3 7.95 ×105 0.739
# 26303 0.784 314 1 2.31 16.3 1.42 ×107 0.202
# 30775 1.69 664 1 2.35 17.4 1.27 ×108 0.093

From figure 5.9 it seems clear that, although H⊥ well describes the density limit, there are values
of H⊥ like 107 corresponding to quite different values of n/nG. To highlight particular trends the
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5.3 Scaling laws based on Hartmann number

data-points are divided into three different subsets, based on the plasma current value: Ip < 0.75 MA,
0.75 MA ≤ Ip < 1.25 MA and Ip ≥ 1.25MA, shown in figure 5.11.

Figure 5.11: n/nG as function of H⊥. Different ranges of current are shown: low current (black points), medium
current (blue points), high current (red points).

If the fits are restricted to the three subsets, the values in table 5.2 are found:

Table 5.2: Fit results of the plot n/nG Vs H⊥: data subdivided in three subsets on the basis of plasma current.

Plasma current Fit relations Correlation

Ip < 0.75 MA n/nG = (3100± 500)H−0.62±0.01⊥ r = −0.91

0.75 MA ≤ Ip < 1.25 MA n/nG = (8000± 2000)H−0.64±0.02⊥ r = −0.88

Ip ≥ 1.25 MA n/nG = (14000± 3000)H−0.64±0.02⊥ r = −0.94

The final coefficients reported in table 5.2 point out that, once fixed a current interval, the ratio n/nG
is very well described by the dimensionless number H⊥, because the correlation coefficients assume
a relatively high value r ' 0.9 and the slopes of the lines (that represent a power law in log scale),
are almost the same for the three current intervals. The interpretation of this result is still work
in progress, but it is well known that in RFX-mod different currents correspond to different wall
conditions and also different Zeff , [14].
However, the most interesting aspect of this result is that the description of a phenomenological
parameter (n/nG) is obtained in terms of the Hartmann number, that is naturally introduced in the
theoretical framework that was developed in Chapter 2 with quite restrictive hypotheses, that turns
out to be rather good in reaching a satisfying description of the density limit in the RFP configuration.
So far, the approach based on the Hartmann number has succeeded in describing: magnetic fields and
magnetic energy (in SpeCyl numerical simulations) and the ratio n/nG (using RFX-mod data). Since
Hartmann is the key parameter of the visco-resistive model, that in past works achieved great results in
describing the RFP physics, as further verification, in this work, scaling relations of plasma parameters
like plasma current Ip, magnetic field on axis Bφ(r = 0), and the electron temperature in the central
region Te are shown.
In figures 5.12, 5.13 the results of the plots, limited to Ip and Bφ(r = 0) are shown.

The scaling relations obtained display a satisfying value of the correlation coefficient: r = 0.83 (for
the plasma current) and r = 0.85 (for the magnetic field on axis). The numerical results are:
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Figure 5.12: Plasma current Ip, as function of H⊥.

Figure 5.13: Toroidal magnetic field on axis, as function of H⊥.
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Ip [A] = (12500± 800)H0.262±0.004
⊥ , (5.7)

Bφ(r = 0) [T] = (0.0124± 0.0008)H0.263±0.004
⊥ . (5.8)

that confirm H⊥ to be a good parameter in describing the electromagnetic properties of RFP plasmas,
as it was highlighted by numerical simulations.
The scaling law of Te as function of H⊥ is even more interesting because it reaches a very high value
for the correlation coefficient: r = 0.96. The high level of correlation is also clear from the plot (shown
in figure 5.14) and from the low relative entity of the uncertainty in the relation obtained:

Te [eV] = (0.76± 0.03)H0.371±0.003
⊥ . (5.9)

Figure 5.14: Electron temperature (averaged on the central plasma region) Ip, as function of H⊥.

It is worth noting that the empirical scaling of Te shown by Innocente et al. [28] reproduces the
exponents that link Hartmann to the macroscopic plasma parameters in Eq. (2.89).
The satisfying results obtained by the use of H⊥ in describing measurements of plasma parameters
on RFX-mod device can be considered as a further confirmation of the role of transport physics in
the direction perpendicular to the magnetic field and of the validity of the visco-resistive model, and
consequently of its implementations (like SpeCyl), in modelling many aspects of RFP plasmas.

5.4 Mode calculations: the Newcomb method in toroidal geometry

The second part of the data analysis is aimed at investigating the role of the m = 0 modes (and
particularly the m = 0, n = −1) in describing the density limit. Consequently, this section is devoted
to briefly explain how the different modes contributions to the magnetic field are calculated in toroidal
geometry, by means of the Newcomb’s equations.
Details about such a method can be found in Ref. [59]. In this section only the main results are
reviewed, without any demonstration, just to describe how the modes analyzed in the next sections
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are calculated, starting from the experimental pick-up probe data.
The starting point is given by the ideal force-balance conditions, determined at the MHD equilibrium.
Also the hypothesis of negligible pressure is made (low β plasma), obtaining:

j×B = 0, ∇×B = µ0j, ∇ ·B = 0. (5.10)

These equations are solved in toroidal geometry with its coordinates: radius r, poloidal angle θ and
toroidal angle φ. The change of coordinates is ruled by the modulus of the determinant of the Jacobian
matrix, that is defined as:

1
√
g

:= ∇r ×∇θ · ∇φ. (5.11)

The magnetic field can be expressed by two flux functions, here introduced as F and ψ:

B = ∇F ×∇θ −∇ψ ×∇φ. (5.12)

Consequently to this definition, the magnetic field components (toroidal, poloidal) and the radial
perturbation are expressed in terms of flux functions:

Bθ =
1
√
g

∂ψ

∂r
, Bφ =

1
√
g

∂F

∂r
, br =

1
√
g

(
∂F

∂φ
+
∂ψ

∂θ

)
. (5.13)

The equation is solved using a perturbation approach: each physical quantity X(r, θ, φ) is written as
sum of an equilibrium term (dominant and axisymmetric) and a perturbed one (non axisymmetric)
as in:

X(r, θ, φ) = X0(r, θ) + x(r, θ, φ). (5.14)

In this way flux functions are rewritten as sum of the Fourier modes contributions, similarly to SpeCyl,
but now in toroidal geometry. The mode with m = 0, n = 0 corresponds to the equilibrium term.

ψ (r, θ, φ) = ψ0(r) +
∑
m,n 6=0

ψm,n(r)ei(mθ+nφ), (5.15)

F (r, θ, φ) = F0(r) +
∑
m,n 6=0

fm,n(r)ei(mθ+nφ). (5.16)

Replacing equations (5.15) and (5.16) one can get a set of differential equation with unknowns ψm,n(r)
and fm,n(r) that are Newcomb equations:

− n
(
gθ,θ√
g

)
0,0

dψm,n
dr

+mK(r)
dfm,n
dr

+ σ (nfm,n +mψm,n) +

+ in

(
gr,θ√
g

)
0,1

× [−nfm+1,n − (m+ 1)ψm+1,n + nfm−1,n + (m− 1)ψm−1,n] +

− n
(
gθ,θ√
g

)
1,0

×
[
dψm−1,n
dr

+
dψm+1,n

dr

]
= 0,

(5.17)
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− d

dr

(
K(r)

dfm,n
dr

)
+

(
gr,r√
g

)
0,0

[
mnψm,n + n2fm,n

]
− σdψm,n

dr
− nfm,n +mψm,n

m+ nq

dσ

dr
+

+ n

(
gr,r√
g

)
0,0

× [(m− 1)ψm−1,n + nfm−1,n + (m+ 1)ψm+1,n + nfm+1,n] +

− in
(
gr,θ√
g

)
1,0

×
[
dψm+1,n

dr
− dψm−1,n

dr

]
= 0, (5.18)

in which g represents the metric tensor in toroidal geometry, the factor K(r) := R2
√
g , and the function

σ(r) = µ0
jrm,n
brm,n

. Solving the Newcomb equations allows for the evaluation of the magnetic field modes,

because the solutions for Fm,n and ψm,n can be used to evaluate br in (5.13).
The computational procedure to find the eigenfunctions and the modes of the magnetic field is made
using Fortran routines written for this aim: first of all, the toroidal equilibrium is calculated; then,
the Newcomb equations are solved, using a basis of six functions (Y1, ..., Y6), defined on three different
domains of the radius (internal, medium and external): the solution for the flux function is given
by a linear combination of the Y functions, that needs the determination of six coefficients c1, ..., c6.
The modes considered in RFX-mod are the ones with m = −1, 0, 1, 2 and low |n|. The boundary
conditions to solve Newcomb equations are found imposing zero resistivity at r = b (that is the
position of the external vessel) and fitting a number of experimental measurements of the magnetic
field harmonics: nφ for the toroidal component, nθ for the poloidal one and nr for the radial one,
satisfying the condition: N = nφ + nθ + nr, in which N is the number of independent functions to be
determined.
The resulting code is called NCT (NewComb Toroidal) and it is described in Ref. [59]. The routine
that makes use of NCT on a selected shot and time is written in IDL and it is called m0ave.pro. The
advantage of NCT with respect to SpeCyl is that it is toroidal, it is directly linked to experimental
measurements, allows for a realistic boundary condition (better than that of SpeCyl described by Eq.
(4.7)) and it is rather fast. The drawbacks is that the Newcomb approach is intrinsically linear and
ideal MHD, with a perturbative approach at the first order (see Eq. (5.14)), while SpeCyl is fully
non-linear.

5.5 Scaling of the m = 0, n = −1 mode with Hartmann number

In this section the analysis of the role of the m = 0, n = −1 mode in describing the density limit is
investigated. To reach this goal the routine m0ave.pro was modified during this work to calculate the
m = 0, n = −1 mode and the eigenfunction Br

0,−1(r).
Since in works like [47] and [46] a clear role of the quantity Br

0,−1(r = a) is highlighted, after estimating
the edge radial magnetic field of the mode m = 0, n = −1 for all the shots belonging to the initial
database, and for each Thomson scattering measurement instant, the eigenfunctions are evaluated at
r = a (at the the plasma boundary), obtaining about 1700 measurements.
To confirm the results determined in previous works, the plot 5.5 is repeated, but this time the number
of points available is clearly higher, because a much wider database is analyzed (see figure 5.15).

As additional result, one can claim the m = 0, n = −1 mode to be linked to the value of the
perpendicular Hartmann number H⊥, since it is turned out to be a good parameter in describing the
ratio n/nG from the plots in figures 5.9 and 5.11. For this reason Br

0,−1(a)/Bθ(a) is plotted as function
of H⊥ (5.16):

The general trend found in this case is a decrease of the m = 0, n = −1 mode contribution in increasing
H⊥. In particular, one can notice that the radial field is particularly important for H⊥ < 107, the
region in which the density limit is approached, suggesting the importance of the role played by the
mode considered for the plasma stability.
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Figure 5.15: Normalized edge radial magnetic field for the m = 0, n = −1 mode, as function of n/nG, RFX-mod
data.

Figure 5.16: Normalized edge radial magnetic field for the m = 0, n = −1 mode, as function of H⊥, RFX-mod
data.
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5.6 Comparison between simulations and experimental data: edge
radial field

So far, the role of the edge magnetic field in triggering the density limit was investigated from the point
of view of numerical simulations and analyzing the experimental data. In both cases the dimensionless
Hartmann number (H or H⊥) turned out to be a good parameter in determining the trends, providing
the validity of the visco-resistive MHD in modelling tearing mode dynamics in the RFP.
In this final section a comparison between numerical simulations and experimental measurements is
made, highlighting the aspects in common and the differences among them.
First of all, it is easily noted that the two ranges of the domain in H and H⊥ are different, due to
the fact that simulations with high H are really time consuming. Secondly, the ideal zero resistivity
hypothesis of the SpeCyl code implies Br(r = a) = 0. Although in this work the value Br

0,−1(r = 0.95a)
is taken into account, one cannot expect good quantitative agreement observing the amplitude of one
single mode, although the two slopes are compatible. This is the reason why the dominant (among
the m = 0) modes is considered in comparison with the experimental measurements of the m = 0,
n = −1 mode, that is known to be the most important, in this second case. The comparison can be
carried out observing figures 5.17 and 5.18: in both cases the field is normalized to the magnetic field
on axis.

Figure 5.17: Edge radial magnetic field m = 0 n = −1 mode (numerical simulations).

Numerical simulations are relevant (for the comparison) only beyond the threshold for H, where the
field displays a negative trend. To make a quantitative comparison the two slopes with which the
magnetic field decreases are obtained via fit procedure and compared:

Br
SIM (r = 0.95a) ∝ H−0.28±0.03, Br

EXP (r = a) ∝ H−0.53±0.01⊥ (5.19)

about numerical simulations, only those with a stimulation of 2 - 4 % of the mode m = 1, n = −7 are
taken into account because they constitute a populated and realistic sample.
Comparing the result, that is qualitatively similar (negative slope), the two trends do not result
compatible making difficult a quantitative comparison. Many aspects contribute to this difference
and, among them, the following have to be noticed:
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Figure 5.18: Edge radial magnetic field for the dominant m = 0, mode, experimental data.

• the zero resistivity boundary condition imposed in the simulations is not satisfied in the experi-
mental conditions,

• in the two cases different intervals for H and H⊥ are covered,

• H and H⊥ are now defined in terms of central plasma parameters (different choices in the
definition could be taken),

• resistivity η(r) and viscosity ν(r) assume (in Specyl) a simplified space-time dependence and are
not evolved self-consistently.

To complete this comparison, in figure 5.19 the amplitude and the trends of the radial edge magnetic
field are shown, considering both numerical simulations and experimental data in a single figure. The
points are obtained by averaging the initial data over equal logarithmic intervals, and associating to
the average its uncertainty. In this case also the simulations with absence of stimulation are added to
the sample.

This figure provides an interesting scan over a very wide range of the Hartmann number (considering
H for the simulations and H⊥ for the experimental measurements) that, using the scaling law (5.4),
is converted in the correspondent value of the ratio n/nG. As in figure 5.18, the mode considered in
the simulation is the dominant one evaluated at r = 0.95a, due to the reasons mentioned above.
In the region characterized by the lowest values of H (102 - 103), corresponding to a high value of n/nG,
(which does not allow, at the moment, the comparison with the data) the simulations are characterized
by an increasing trend of the magnetic field. This behaviour abruptly changes at H ≈ 104, where
the slope of the magnetic field becomes negative, displaying a similar behaviour to the one shown by
experimental data, simply shifted to lower Hartmann values. The origins of this shift may be found
both in the definitions considered for H and H⊥ and in the initial zero resistivity boundary conditions,
that strongly affects the behaviour of edge radial magnetic field.
The region with higher H⊥ (characterized by a low n/nG ratio) can not be explored using numerical
simulations and so there are only experimental data available, that keep the negative trend for the
magnetic field.
To conclude, the agreement found between numerical simulations and experimental data is quite
satisfying, considering the region of the domain (in H and H⊥) in which they are both available.
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Figure 5.19: Comparison of normalized edge radial magnetic field between numerical simulations and experi-
mental data (blue color). The points are obtained averaging data over equal logarithmic intervals.
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Conclusions

In this Thesis the density limit was studied, following a multiple point of view approach, that involves
theory of transport, visco-resistive MHD numerical simulations and RFX-mod data analysis. The goal
stated at the beginning was to provide a better understanding of the density limit, with particular
regard to the role of edge magnetic field instabilities.
Until now, the most accredited interpretation in the study of the density limit, due to Greenwald,
is exclusively a phenomenolgical one based on experimental data, without a reference to a precise
theoretical context.
The present work, on the other hand, aims at understanding such a phenomenon in the context of
visco-resistive magnetohydrodynamics, limited to the RFP configuration, only.
To achieve this goal, following the derivation of Braginskii equations, transport coefficients were pre-
sented, introducing their dependence on plasma physical quantities and the visco-resistive model was
derived. The fundamental parameter of the latter turns out to be the Hartmann number, obtained
using a proper change of coordinates.
A second phase of the study consisted in the analysis of a database composed by 95 simulations
performed using the visco-resistive model by means of the SpeCyl code (and spanning a range of
Hartmann number values from 102 to 106), together with a set of five databases that globally consist
in 196 RFX-mod shots, whose Hartmann number was evaluated. The most significant results obtained
are summarized in the following points:

• In SpeCyl numerical simulations, the Hartmann number H turns out to be a good parameter in
the description of magnetic energy and edge magnetic field. In particular, H was confirmed to be
an order parameter that rules the transition between different plasma states (MH and SH/QSH),
with threshold values for the transition of about 103 - 104. In particular, at H > 104 a decreasing
trend of magnetic energy and m=0 modes intensity with H was found, to be compared with data
from RFX-mod shots.

• Using RFX-mod shots data, a scaling law that links the value of the ratio n/nG with the
parameter H⊥ is found with a satisfactory value for the correlation (r = −0.82) that can be
further improved if the discharge current is selected.

• The Hartmann number H⊥ is found to be a good parameter in the description of plasma physical
quantities (directly evaluated from the experimental measurements) like the plasma current Ip,
the toroidal magnetic field on axis B0 and the electron temperature Te (averaged over the central
region), providing an important confirmation to the use of the visco-resistive model in modeling
RFP plasmas.

• From the mode analysis, the role of the m = 0 modes and, in particular, of the m = 0, n = −1
mode clearly emerges from the observation of the edge radial magnetic field. The particular
growth of Br

0,−1(r = a) in fact is considered as a precursor of the density limit.

• As final result, a comparison between numerical simulations and experimental data is made,
finding a general qualitative agreement analyzing the m = 0 edge radial magnetic field. To
be more precise, a similar negative trend of the edge radial magnetic field with respect to the
Hartmann number and comparable amplitudes are found between the dominant mode (evaluated
at r = 0.95a) in the simulations and the n = −1 (evaluated at r = a) for the experimental
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measurements.

The results just mentioned suggest future developments for this research, in particular to improve the
agreement between simulations and experimental data, overcoming the difficulties expressed at the
end of Chapter 5.
One of the most important difficulties that prevent the agreement is related to the ideal boundary
conditions implemented in the SpeCyl code, that particularly affect the study of the edge radial
magnetic field. This problem could be faced analyzing, first of all, also the other components of the
edge magnetic field and trying to directly implement, in the future, a more realistic boundary condition.
Another possibility to reduce the gap could come from experimental campaign of the future upgraded
experiment RFX-mod2, in which the removal of the resistive vessel is foreseen, providing a reduction
of the boundary resistivity.
Another important improvement could be found introducing (in the SpeCyl code) a self consistent
evolution of resistivity and viscosity and a realistic profile for the viscosity. Useful expressions to
implement could be those derived by Braginskii for the transport coefficients in the perpendicular
direction with respect to the magnetic field (that were shown to model the majority of the physical
phenomena analyzed by means of H⊥).
Despite these possible improvements, from the final comparison between numerical simulations and
experimental data (Fig. 5.19) some important results can be drawn:

• the QSH branch of SpeCyl simulations (negative slope for H) describes quite well both the MH
to QSH transition in experiment, and the associated onset of the density limit for H⊥ < 107,
which corresponds to the well-known threshold value of n/nG = 0.35− 0.4, [43] - [46].

• Given the above result, at least in the RFP case, when treating the density limit one should
abandon the phenomenological nG parameter in favor of H⊥. Since the growth of the m = 0,
n = −1 island is the element in linking the visco-resistive MHD Hartmann parameter to the
density limit, it is worth exploring the possibility that H⊥ could be the order parameter also
in the tokamak density limit, where a similar role is played by the m = 2, n = −1 mode [50].
In this respect, a recent theory of the density limit on the NSTX tokamak (USA) involves a
thermal destabilization of edge islands prior to the density limit, similar to what observed in
RFX-mod [23], [56]: this would suggest a critical role of H⊥ also in tokamaks.

• The SH branch of SpeCyl simulations (positive slope of H), which was the original which helical
state described in the first papers on QSH [12], [20], is still far from the experimental domain.
To obtain the pure theoretical Single Helicity one should push density beyond n/nG ≥ 5, which
appears to be rather difficult from an experimental point of view, and maybe beyond the full
radiative collapse of the RFP, [58].
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Appendix A

Proofs of theorems

A.1 Woltjer’s theorems

First Woltjer’s theorem. If a magneto-fluid has zero resistivity (η = 0), then helicity H is conserved
in time:

dH

dt
= 0. (A.1)

Proof. The proof of this theorem simply consists in the evaluation of the rate of change in time of the
helicity:

dH

dt
=

∫
∂

∂t
(A ·B) dV =

∫
∂A

∂t
·BdV +

∫
A · ∂B

∂t
dV. (A.2)

In case of zero resistivity the diffusive term in the induction equation is absent and this determines
the time variation of B and considering that B = ∇×A also the time variation of the vector potential
A is determined:

∂B

∂t
= ∇× (v×B) ,

∂A

∂t
= v×B. (A.3)

Replacing equations (A.3) in equation (A.2), a null term is obtained because (v×B) ·B = 0, while
the remaining term can be evaluated by means of the following vector identity ∇ · (V×W) = W ·
(∇×V)−V · (∇×W) (that holds for any couple of vectors), obtaining:

dH

dt
=

∫
A · ∇ × (v×B) dV =

∫
∇ · [(v×B)×A] dV +

∫
(v×B) · (∇×A) dV. (A.4)

In equation (A.4) the second term in the sum is zero, while the first can be evaluated using the Gauss
theorem:

dH

dt
=

∮
∂V

[(v×B)×A] · dS, (A.5)

Here ∂V represents the surface of the magneto-fluid system and dS is a vector element perpendicular
to the surface differential element dS. Since v and B are parallel to the boundary of the magneto-
fluid, the whole integrand has zero component perpendicular to the surface and so the total integral
contribution is zero, thus proving the theorem.
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Second Woltjer’s theorem. In a system in which the magnetic helicity H is kept constant, the
minimization of the magnetic energy W =

∫
B2/2µ0dV is obtained for a force-free field defined by the

condition:

∇×B = µB, (A.6)

with µ = constant.

Proof. To find the minimum of the magnetic energy in presence of constant helicity constraint the
Lagrange multipliers method is applied. It consists in solving the following equation:

δW − µ

2µ0
δH = 0, (A.7)

where the constant µ/2µ0 is chosen as Lagrange multiplier. Replacing the definitions of magnetic and
helicity one can get:

δW − µ

2µ0
δH =

∫ (
B · δB
µ0

− µδA ·B
2µ0

− µA · δB
2µ0

)
dV. (A.8)

The last term in the sum in (A.8) can be rewritten, remembering that δB = ∇× δA, and making use
of the vector identity ∇ · (V×W) = W · (∇×V)−V · (∇×W) that has already been met:

∫
A · δB

2µ0
dV =

∫
A · (∇× δA)

2µ0
dV =

∫ [
∇ · (δA×A)

2µ0
+
δA · (∇×A)

2µ0

]
dV. (A.9)

The first term in the sum is evaluated by means of the Gauss theorem as surface integral on the
magneto-fluid boundary, where variations are expected to be exactly zero. Therefore, the only surviv-
ing term is the second:

∫
A · δB

2µ0
dV =

∫
δA ·B

2µ0
dV. (A.10)

Replacing the previous result in (A.8) the proof is obtained. In fact:

0 = δW − µ

2µ0
δH =

∫
B

2µ0
(δB− µδA) dV ⇐⇒ B = µA. (A.11)

After taking the curl on both sides, (A.11) exactly becomes: ∇×B = µB, the condition that defines
force free fields.

A.2 MHD visco-resistive equations in Fourier space

The aim of this section is to explain how the differential equations of the magnetohydrodynamics are
commuted passing to the Fourier space. The entire section is performed in cylindrical geometry with
periodic boundary conditions.
Linearity in the real space. A linear differential equation is transformed, in the Fourier space, in an
algebraic equation that involves relationship only between the same Fourier mode.
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This can be evident analyzing, as example, the Ampère-Maxwell that in the last form is reduced to:

∇×B = j. (A.12)

In the Fourier space, the fields B and j are rewritten as:

B(r, θ, z, t) =

+Nθ∑
m=−Nθ

+Nz∑
n=−Nz

Bm,n (r, t) e
i
(
mθ+ n

R0
z
)
, (A.13)

J(r, θ, z, t) =

+Nθ∑
m′=−Nθ

+Nz∑
n′=−Nz

Jm′,n′ (r, t) e
i
(
m′θ+ n′

R0
z
)
. (A.14)

Using the well known expression for the curl in cylindrical coordinates and calculating the deriva-
tives an equation about the modes is obtained since the exponential function is not altered by the
derivations, unless the addition of multiplicative constants:

jm,n(r, t) =


im
r B

θ
m,n(r, t)− inz

R0
Bz
m,n(r, t)

inz
R0
Br
m,n(r, t)− ∂

∂rB
z
m,n(r, t)

Bθm,n(r,t)

r +
∂Bθm,n(r,t)

∂r − im
r B

r
m,n(r, t)

 . (A.15)

Non linearity in the real space. A non linear differential equation is transformed, in the Fourier space,
in an algebraic equations that involves relationship only between different Fourier modes.

To exemplify this concept it’s enough to evaluate a typical term of the MHD equations: j×B. Since
j×B = (∇×B)×B, the calculation can be carried out in cylindrical coordinates:

j×B =

Bzjθ −BθjzBrjz − jrBz
Bθjr −Brjθ.

 (A.16)

If the previous result for j is replaced, interaction terms between different modes arise as it can be
seen calculating, for example, the radial component:

(j×B)r =
∑
m,n

∑
m′,n′

Bz
m,n(r, t)

(
in′z

R0
Br
m′,n′(r, t)−

∂Bz
m′,n′(r, t)

∂r

)
e
i
(
mθ+ n

R0
z
)
e
i
(
m′θ+ n′

R0
z
)
+

−
∑
m,n

∑
m′,n′

Bθ
m,n(r, t)

(
Bθ
m′,n′(r, t)

r
+
∂Bθ

m′,n′(r, t)

∂r
− im′

r
Br
m′,n′(r, t)

)
e
i
(
mθ+ n

R0
z
)
e
i
(
m′θ+ n′

R0
z
)
. (A.17)

Fourier series of the product of two physical quantities in the real space. The Fourier mode of the
product of two physical quantities can be written as convolution of different modes in the real space.
In formulas:

[
BiBj (r, t)

]
m̃,ñ

=
∑
m,n

Bi
m,n(r, t)

(
Bj
m−m̃,n−ñ(r, t)

)∗
e
i
(
m̃θ+ ñ

R0
z
)
, (A.18)

where i, j are two general dimensions in cylindrical coordinates and the magnetic field is chosen,
without loss of generality.
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Proof. Rewriting the product of magnetic field in Fourier series:

BiBj =
∑
m,n

∑
m′,n′

Bi
m,n(r, t)Bj

m′,n′(r, t)e
i(m+m′)θe

in+n
′

R0
z
. (A.19)

To prove the thesis the following identities about the Kronecker δ are used:

ei(m+m′)θ =
∑
m̃

eim̃θδm̃,m+m′ , e
in+n

′
R0

z
=
∑
ñ

e
i ñ
R0
z
δñ,n+n′ , (A.20)

that, once replaced in (A.19), gives the following equation obtained using the Kronecker δ properties:

BiBj =
∑
m̃,ñ

[∑
m,n

Bi
m,n(r, t)Bj

m̃−m,ñ−n′(r, t)e
im̃θe

i ñ
R0
z

]
e
i
(
m̃θ+ ñ

R0
z
)
. (A.21)

Subsequently, using the condition for reality B−m,−n = B∗m,n, to match the definition of the Fourier
series one can get the thesis:

[
BiBj (r, t)

]
m̃,ñ

=
∑
m,n

Bi
m,n(r, t)

(
Bj
m−m̃,n−ñ(r, t)

)∗
e
i
(
m̃θ+ ñ

R0
z
)
. (A.22)
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