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Introduction

In financial markets, options are definitely among the most traded financial deriva-
tives. Essentially, an option is a contract which offers the holder the right to buy
or sell an asset at a mutually agreed-upon strike price, while the other counterpart
of the contract is obliged to buy or sell the underlying asset once the option holder
decides to exercise the option. Therefore, the option contract at first turns out to
be an asymmetric opportunity; for such reason, the holder must pay a premium to
the other counterpart in order to keep the risk fair, which is the so called option
price. This raises a question: how can we price an option?
A first approach was developed in 1900 due to L. Bachelier in his thesis [1], whom
proposed the application of a discrete version of a Brownian motion to model the as-
set price. Then, in 1973 the most famous and used model was proposed by Black and
Scholes in [3], whose contribution was identifying a partial differential equation that
could satisfy the fair price of an European option contract, taking into account the
time and risk factors inherent in the fluctuation of the underlying asset. Moreover,
the PDE for this model admits an analytic solution which is called Black and Scholes
formula, but despite its widely usage even today, this model has some well-known
limits. As a consequence, many other alternative models have been developed as
stochastic volatility models (Heston [12], Bates [2]), local volatility models (Dupire
[9]) and jump-diffusion models (Merton [18] and Kou [15]). Some of these methods
can be solved using analytical solutions, more commonly for vanilla-style options.
Nevertheless, numerical methods are still used, since they might perform faster than
the closed formula and also provide a solution over the entire time horizon rather
than just at one point in time.
The main theme of this thesis framework will focus on addressing the problem of
option pricing in a market modelled through jump-diffusion processes, and in par-
ticular we will focus on the Merton jump-diffusion model. In recent years several
numerical methods studies has been carried out to further explore this model, many
of those proposing numerical solutions for PDEs and in particular applying implicit-
explicit finite difference methods as we can see in the framework [4] and [7]. The aim
of this thesis is to approach implicit finite difference schemes and implement an ef-
ficient linear system solver in order to compare the accuracy and the computational
cost between the implicit schemes and the implicit-explicit one. For each scheme
implemented, we will be required to create as many linear systems as the number
of time steps in which the time domain is decomposed; the matrices associated with
such linear systems will be constant, while the other components will vary over time
with reference to the solution of the previous step.
As a means to obtain an efficient solver, it will be given an overview of some of
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the most popular iterative methods and, once the characteristics and properties of
the schemes are determined, we will exploit the most adapted methods, namely the
GMRES method in two different versions, without and with the integration of a
scalable preconditioner to speed up its convergence; finally, a further attempt will
be made implementing a Multigrid V-cycle solver.
The main goals that we would like to achieve are the following:

• Develop implicit schemes for Merton jump-diffusion model, using the finite
differences method to discretize the model PDE; the matrix associated with
the obtained linear system will be dense, hence it will be necessary to develop
iterative methods that exploit preconditioners.

• Experiment the efficiency of different possible preconditioners in order to ac-
celerate the convergence of the mentioned iterative methods.

• Develop an implicit-explicit for Merton jump-diffusion model using finite dif-
ferences method to discretize the model PDE; direct methods will therefore
be applied to tridiagonal linear systems.

The thesis is organized by chapters as follows:

1. In the first chapter, we briefly introduce the Black and Scholes model and
present the Merton jump-diffusion model and its partial differential equation.

2. In the second chapter, we introduce the finite differences method and the
matrix-vector multiplication algorithm with Fast Fourier Transform.

3. In the third chapter, we present the numerical schemes used to discretize the
PDE and the algebraic properties for the linear systems introduced.

4. In the fourth chapter, we study the chosen linear system solvers, which are
GMRES method, Multigrid V-cycle and the direct method for tridiagonal
linear systems.

5. In the last chapter, we show the numerical experiments carried out for all
the analyzed schemes and for each of them the linear system solvers used is
presented and compared with the analytic solution.



Chapter 1

Option pricing models

In this chapter, we will introduce the Black and Scholes model and the main topic
of this thesis that will be the Merton’s jump diffusion model, then we will discuss
their principal features and finally present the equation problem that we are going
to analyze in the next chapters.

1.1 Financial aspects

In order to have a more comprehensive view of the problem at hand, we first intro-
duce the concept of option. Options are indeed one of the most popular and widely
used financial derivatives. It is a contract between two or more parties that gives one
side the right, but not the obligation, to buy or sell the underlying asset to the other
counterparts within a specific time-frame; in particular, there are no restrictions on
the type of underlying asset, it can be represented by a stock, a bond, an interest rate
or even commodities and so on. Intrinsically, the price of an option would be the cost
of neutralizing the risk to which the owner of the right is exposed; in fact, whoever
holds that right pays a premium to exercise the right or to not exercise it. Besides
the price, other fundamental elements of this contract are: the underlying asset value
defined as St, the strike price K which is the price at which the underlying asset will
be sold or bought and the expiration date T which defines the date of maturity of the
option. The most famous options styles are European options, which means that the
derivative can be exercised only at the maturity time specified in the contract as T ,
which is the expiration date of the option as well. Besides European options, there
are many other types of options, such as: American options, Asian options, Barrier
options, Bermudan options and so on. American options, differently from the Eu-
ropean ones, can be exercised at any time before the maturity time. Instead, Asian
options are characterized by having a payoff which depends on the average price of
the underlying. Alternatively, a Barrier option is an option whose payoff strictly
depends on the fact that the underlying reaches or not a certain fixed barrier value.
Finally, Bermudan options can be exercised at specific date or time intervals, which
means they can be formalized as a hybrid between American and European ones.
For the purposes of this analysis we will focus on European style option, which can
be mainly divided in two categories according to the type of right it is given to the
owner as outlined below:
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4 CHAPTER 1. OPTION PRICING MODELS

• Call: allows the holder to buy the asset at the strike price within a specific
time-frame

• Put: allows the holder to sell the asset at the strike price within a specific
time-frame

Let us define the option’s payoff at the maturity date as:

φ(ST , K) =

{

(ST −K)+, (call option)

(K − ST )
+, (put option)

(1.1)

In order to price options, among the set of pricing techniques available in quantitative
finance numerical methods have become a relevant area of development and are
now used for broad applications; therefore, this thesis will hence be focused on
investigating their use for this purpose.
Why are options so used?
Basically, there are two main reasons: they are used as a hedging device, since they
can provide investors risk-reduction strategies for their own portfolio, and secondly
they can also be used for speculative reasons.
Why do they need to be priced?
By its definition as a contract, an option gives to its holder the right, rather than
an obligation, to ”buy/sell” the underlying asset; as we already mentioned, in order
to obtain this entitlement the buyer of the contract must pay a certain amount,
namely the option’s fair value, since otherwise it would be intuitively potentially
unfair for the other counterpart and risk would be unbalanced. Therefore, option
pricing theory consists in evaluating the option by assigning a price which is based
on the calculated probability to create a positive income at the end of the contract,
known as the case where the option will end up to be In-The-Money (ITM). Besides
the terminal case at the maturity, where indeed the price is directly given by the
payoff, during the period that elapses between the date of signature of the contract
and the maturity there is no clue about the price of such instrument. In 1973 the
economists Fischer Black and Myron Scholes developed a fundamental formula in
option pricing theory, namely the Black and Scholes formula [3], which permits the
calculation of the price for European call and put options.

1.2 Toolbox

To deeper analyze the model that will be subsequently presented, it is worth recalling
some useful notions of finance and probability, which can be further explored on [16].
We consider a financial market where the underlying is traded continuously up to
a fixed maturity time T. The market is defined by a probability space (Ω,F ,P)
endowed with a right continuous filtration F = {Ft | t ∈ [0, T ]} where FT = F . Let
us start with the properties of a Stochastic process:

Definition 1 (Stochastic Process). Let T ⊆ [0,∞), a family of random variables
{Xt}t∈T (indexed by T ) is called a stochastic process. When T = N,{Xt}t∈T is said
to be a discrete-time process, while if T = [0,∞) the family of random variable is
called continuous-time process.
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In this thesis we will deal mostly with random variables that will be distributed
following the probability density of a normal distribution; where a random variable
X is said to be normally distributed with mean μ and variance σ2 if its probability
density function is the following:

X ∼ N (μ, σ2) =⇒ f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ (−∞,+∞)

Another important probability distribution used in this framework is the Poisson
distribution which is different from the Gaussian distribution due to the fact it is a
discrete probability distribution defined as:

P(X = n) =
λne−λ

n!

where:

• n is the number of occurrences of an event

• λ is the expected value of event in a interval

Definition 2 (Gaussian process). Let a stochastic process {Xt}, t ∈ [0, T ], it is
called Gaussian process such that the random vectors (Xt0 , Xt1 , . . . , Xtn) have a joint
Gaussian distribution for all n-tuples (t1, t2, . . . , tn) where ti ∈ T .

Another important stochastic process is the Brownian motion, whose definition is
the following:

Definition 3 (Brownian motion). A Brownian motion is a stochastic process Bt, t ∈
[0,∞) such that fulfills the following conditions:

1. B0 = 0

2. With probability 1, t → Bt is continuous on [0,∞)

3. {Bt}t�0 has stationary, independent increment

4. If 0 < s < t then (Bt − Bs) ∼ N(0, t− s)

As by definition the Brownian motion has a stochastic behavior, therefore we are
going to simulate it using Montecarlo simulation. Defining the law of the Brownian
motion we have L(Bt) = N (0, t), let ∆t > 0 be a constant time increment. Now
discretizing the time we have Tj = j∆t the value of Brownian motion Bt can be
written as a series of increments:

Bj∆t =

j
∑

k=1

(Bk∆t − B(k−1)∆t)

The increments can be calculated from a random variable x distributing with normal
distribution, x ∼ N (0, 1), so we have the discrete model for the Brownian process
which will be:

∆Bk = x
√
∆t ∀k



6 CHAPTER 1. OPTION PRICING MODELS

Indeed to simulate the value of Bt we firstly generate a Normal random variable
X and then we evaluate Bt as multiplication of the random variable and the stan-
dard deviation of the Brownian motion which is by the definition

√
t. To simulate

the process Bt we discretize the time domain T = [0, T ] in k steps so we have
Tk = t0 = 0, . . . , tN = T , then using the Forward simulation we get:

B(0) = 0 by the first feature of Brownian motion

and for the rest of element we have:

Btk = Btk−1
+
√

tk − tk−1xk

Here below we are going to show a simulation for the Brownian motion using MAT-
LAB:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

B

Figure 1.1: Simulation Brownian motion.
Number of steps n = 10000.

In the famous Black and Scholes the behavior of asset price (denoted by S)
is shaped under the risk-neutral probability measure P̃ by the following stochastic
differential equation:

dSt = rStdt+ σStdBt

The stochastic process St is sad Geometric Brownian Motion if it satisfies the pre-
vious SDE. Since the asset price in the Merton model is described by Levy process,
let us define this kind of process.

Definition 4 (Levy process). A stochastic process {Xt}t≥0 on (Ω,F ,P) such that
X0 = 0 is called Levy process if it fulfills the following properties:

1. Stationary increments: ∀t ∈ (t1, tn) the random variables Xti+1
−Xti does not

depend on variable t

2. Independent increments: ∀t ∈ (t1, tn) the random variables Xti+1
− Xti are

independent

3. Stochastic continuity: ∀ǫ > 0, limh→0P(|Xt+h −Xt| � ǫ) = 0



1.3. BLACK AND SCHOLES MODEL 7

The most important stochastic formula in quantitative finance is Ito’s formula,
as defined in [16]:

Theorem 1. Let (Xt)t∈[0,T ] be an Ito process:

Xt = X0 +

∫ t

0

Ks ds+

∫ t

0

Hs dBs

where:

Ht(ω) =
n
∑

i=1

φi(ω)1(ti−1,ti](t)

and let f ∈ C1,2. Then

f(Xt) = f(X0) +

∫ t

0

f
′

(Xs)dXs +
1

2

∫ t

0

f
′′

(Xs)HsdBs

where, by definition,

〈X,X〉 =
∫ t

0

H2
sds

Likewise, if (t, x) → f(t, x) ∈ C1,2(t, x), the Ito formula becomes:

f(t,Xt) = f(0, X0) +

∫ t

0

fs(s,Xs)ds+

∫ t

0

fx(s,Xs)dXs +
1

2

∫ t

0

fxx(s,Xs)d〈X,X〉s

1.3 Black and Scholes model

Let us start from the most famous option pricing formula: Black and Scholes. As
[18] states, to define the option pricing formula of Black and Scholes we assume the
following ideal conditions in the market of stocks and derivatives:

• Frictional markets: no transactions or differential taxes costs, trading is con-
tinuously in time and borrowing and short-selling are allowed without restric-
tion. Moreover same rate of borrowing and lending. The assets are perfectly
divisible.

• The short-time interest rate is known and it is constant on time

• The stock does not pay any dividends during the option life

• Only European option

• The stock price behavior is defined by geometric Brownian motion on time,
thus the stock price has a log-normal distribution on time
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Let us consider a financial market defined by the probability space (Ω,F ,P), and
given the standard Brownian motion adapted to the filtration W = (Wt)t∈[0,T ]. We
define two assets: risk-less asset and risky asset. The risk-less asset is a risk-free
bond with price Bt while the other risky asset has St as price value. The two asset
fulfill the following SDE as follows:

{

dBt = rBtdt

dSt = μStdt+ σStdBt0

(1.2)

The interest rate r, the mean rate return of underlying value μ and the volatility of
underlying σ are assumed to be constants. The model is valid on the time domain
[0, T ], the equations on (1.2) thanks Ito’s formula has the following closed-form
solution:

{

Bt = ert

St = S0e
μt−σ2

2
t+σBt

(1.3)

s where S0 is the price got at the initial time in our case t = 0 (spot price), one can
see the result St has a log-normal behavior. Given this formulation for the asset
value St, the main goal is to find the price of a option contract. Let V (St, t) the price
of an option contract, by (1.1) the payoff at expiry date V (ST , T ) is known, to find
the value V (St, t) s.t. t ∈ [0, T ), we need a fundamental result in stochastic calculus:
Ito’s lemma from theorem (1). Through that, given a scalar function f(x, t) and a
process Xt called Ito drift-diffusion process giving by:

dXt = μdt+ σdBt (1.4)

and given a scalar function f(x, t), the Ito’s lemma states in differential terms states:

df(Xt, t) =
(∂f

∂x
μ+

∂f

∂t
+

1

2

∂2f

∂x2
σ2
)

dt+ σ
∂f

∂x
dBt (1.5)

Now, apply this formula to V (St, t) we obtain the following equation:

dV (St, t) =
( ∂V

∂St

μSt +
∂V

∂t
+

1

2

∂2V

∂S2
t

σ2S2
t

)

dt+ σSt
∂V

∂St

dBt (1.6)

As defined by [13], the definition of the portfolio is:

Π = −V +
∂V

∂S
S (1.7)

Thus, the change of portfolio in the time interval is given:

∂Π = −∂V +
∂V

∂S
∂S (1.8)

Substituting equation (1.5) into (1.8) we get:

∂Π =
(

− ∂V

∂t
− 1

2

∂2V

∂S2
σ2S2

)

∂t (1.9)
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Since this equation does not involve ∂S, this leads the portfolio has to be risk-less
on ∂t. Therefore due to the assumptions, the portfolio have to earn the same rate
of return as other short-term risk-less asset instantaneously. It follows:

∂Π = rΠ∂t (1.10)

Substituting the equation (1.7) and (1.9) into (1.10), we get

(∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)

∂t = r
(

V − ∂V

∂S
S
)

∂t

Therefore that:
∂V

∂t
+ rS

∂V

∂S
+

1

2

∂2V

∂S2
σ2S2 = rV (1.11)

This equation above is known as Black-Scholes PDE, with initial condition V (St, t) =
φ(St, t). The option price in Black and Scholes framework V (St, t) can be expressed
by the following theorem in [16, Chapter 4.3.2]:

Theorem 2. In the Black and Scholes model, any option defined by a non-negative,
FT -measurable random variable φ(St, t), which is square-integrable under the prob-
ability P, is replicable and the value at time t of any replicating portfolio is given
by:

V (St, t) = e−r(T−t)EP
[

φ(St, t)|Ft

]

where the function V ∈ C1,2([0, T ]× R) solve the Black and Scholes PDE (1.10).

We recall that the space of square-integrable functions is:

L2(Ω) = {f : Ω �→ R |
∫

Ω

|f(x)|2dΩ < +∞}

As stated in [13, Chapter 15.8], we can write the closed-formulas for European call
and put, as following

V (St, t) =

{

V (St, t) = S0 N (d1)−Ke−r(T−t)N (d2) (Call option)

V (St, t) = Ke−r(T−t)N (d2)− S0 N (d1) (Put option)
(1.12)

where:

d1 =
ln(St

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t (1.13)

1.3.1 Simulation of asset price in Black and Scholes model

The price of the underlying asset St is defined by the geometric Brownian motion
in (1.2), to simulate it we have to discretize the time domain T = [0, T ] in n steps
in order to have Tk = t0 = 0, . . . , tN = T . Then we discretize the variable Stk and
we have:

Stk = Stk−1
e(r−

σ2

2
)(tk−tk−1)+σBtk−tk−1
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Then we discretize with evenly size intervals ∆t = tk − tk−1. Next, we use the
definition of thee simulation for the Brownian motion above, we have for the time
steps k the following value for the underlying:

Stk = Stk−1
e(r−

σ2

2
)∆t+σ

√
∆xk
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Figure 1.2: Simulation of underlying under Black and Scholes model (GMB).
Given the data: S0 = 100, r = 0.02, σ = 0.2 with number of steps equals to 10000.

1.4 Merton model in jump-diffusion market

Most of the literature in quantitative finance mostly for pricing and hedging of
asset is based on the assumption that the price of the underlying assets follow the
process described by Black and Scholes model. As was pointed out in [18] the
critical assumption in Black and Schoels is the trading of the assets is continuously
in time and its dynamics have a continuous sample with probability one. That is
not real behavior for the assets’ price, in fact, some events can lead to instantaneous
variations in the price. Moreover, these assets’ price changes produce a log-normal
distribution for the price in the next price values, some studies of stock price series
show many outliers for simple log-normal distribution. Additionally, as we can see
from the stock price analysis there appear to be ’jumps’. Another fair alternative
is to overlay continuous stock price changes with these sorts of ’jumps’. Moreover,
this model despite the Black and Scholes model has the following properties:

• it is able to reproduce the leptokuric properties of the return distribution and
the volatility smile [15]

• it can produce closed-form solutions for standard European options, and more-
over it has closed formulation for path-dependent options: barriers , America,
look-back options [15]

• one of its motivations comes from behavioral finance, in fact some studies say
that markets tend to react to various news (see, for example, Fama, 1998 and
Barberis et al., 1998). The jump part of the model is the market’s response
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to external news, while in the absence of external news the asset price follows
a GB motion.

In this section, we are going to study the simplest one, the Merton’s jump-diffusion
model.

1.4.1 Asset dynamic

In this subsection, we will describe the dynamic for an asset in Merton model in
jump-diffusion market. In Merton’s study [18], it’s stated that the stock price
changes are the composition of two types of variations:

1. Default change: it is called the normal variation of the price, it happens when
there is a gap between supply and demand, a change in rates or new informa-
tion creating marginal variation in the asset’s price. This type of variation is
modeled by the GMB in Black and Scholes model.

2. Atypical change: it is due to new information on the stock which has more
impact to the asset’s price. This component is modeled by the jump process
reflecting the non-marginal variation.

Therefore it follows that for the first component it can be used the Wiener process
while for the jump component a suitable prototype is the Poison process. Following
Merton’s construction, let the standard Brownian motion (Wt)t ∈ [0, T ], and let
η − 1 be the change from S to ηS when the asset value undergoes a jump, while
dqt is Poisson compounded process and assumed to be independent of the Brownian
motion. For dqt we have:

dqt =

{

0 with probability 1− λdt

1 with probability λdt

Where λ is the average number of events per time interval for Poisson distribution.
The underlying asset price S is given by a process in the form of:

dSt

St

= μdt+ σdBt + (η − 1)dqt (1.14)

Here, the probability distribution of the jump width η is:

J(η) =
1√

2πγjηj
e

−(ln ηj−µj)
2

2γ2
j (1.15)

Therefore for E[η − 1] = κ, where κ using the change of variable x̃ =
(x−μj)

γ2
j

has the

following value:

κ = E[η] =

∫

R

ex − 1dF (x)

=
1√
2π

∫

R

e
x−
(

x−µj
γj

)2

/2dx

γj
− 1

=
1√
2π

∫

R

e−
x̃2

2
+σx̃+μjdx̃− 1

= eμj+
γ2j
2 − 1
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Assuming that the jump activity is finite we define the linear integral-differential
operator:

1

2
σ2S2

t

∂2V

∂S2
t

+ (r − λκ)St
∂V

∂St

− (r + λ)V + λ

∫

R

J(ηt)V (t, ηtSt)dηt = LV (1.16)

Therefore, the evolution of the asset’s price for an European option under this jump-
diffusion model can be defined through the following partial integral-differential
equation:

∂V

∂t
+ LV = 0 (1.17)

The J(y) is the probability density function of the jump κ. The previous PIDE can
be derived by standard no-arbitrage arguments and Ito’s lemma generalization, see
[16] and [18]. With LV we defined the linear integral-differential operator associated
with the jump-diffusion process St, for future convenience. We are going to look for
a solution C1,2 for the Cauchy problem:

⎧

⎨

⎩

∂V (St, t)

∂t
+ LV (St, t) = 0 ∀(St, t) ∈ ×[0, T ),

V (ST , T ) = Φ(St) ∀ST ∈ R

(1.18)

The boundary conditions are defined as following:

Φ(ST , T ) =

{

(ST −K)+ (Call option)

(K − ST )
+ (Put option)

Before delving into the numerical analysis for this problem, we are going to show
the closed formulation for the price of an option developed by Merton in [18], this
formula will be compared to the numerical methods we will have implemented in the
next sections. We try to give an explicit expression for the price of a European call
option or a European put option with the strike price K. The following formulation
found details in the original paper of Merton [18], which is written as:

V (S, t) =
∞
∑

n=0

(λ′t)n

n!
e−λ′τVBS(S, τ,K, rn, σn) (1.19)

where we have:

λ′ = λ(1 + κ) σ2
n = σ2 +

nγ2

t
rn = r − λκ+

n

t

(

μ+
1

2
γ2
)

And where VBS(S, τ,K, rn, σn) is the Black and Scholes formula evaluated with no
jumps which is defined in (1.12).

1.4.2 Simulation underlying price of jump-diffusion in Mer-

ton model

For the simulation of the underlying asset price we follows the idea in [16], we first
defined the price St jumps at random times t1, . . . , tn, . . . and the relative change
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of its value with U1, . . . , Un, . . . . We assume that between two jumps times, the
price St follows the Black and Scholes model; then at time tn is the time jumps of a
Poisson process Nt with magnitude λt. Then, on the intervals [tn, tn+1) be the time
interval where there is a jump, so by the equation

dSt = μStdt+ σStdBt

which is the process with out jumps. Instead, at the time t = tn the jump is given
by:

∆n = Stn − Stn− = UnStn−

So we have:

Stn = (1 + Un)Stn−

We have for t ∈ [0, t1):

St = S0e
(μ−σ2

2
)t+σBt

for t → t−1

St−1
= S0e

(μ−σ2

2
)t1+σBt1

St1 = S0(U1)e
(μ−σ2

2
)t1+σBt1

Moreover, with t ∈ [t1, t2], we have

St = S0(1 + Un)e
(μ−σ2

2
)t+σBt

For the jump part, Un = eγ+δxn where xn ∼ N (0, 1). While for the simulation of
no-jumps part we follows the previous statements in (1.3.1). For this underlying
dynamic we implement a MATLAB simulation in order to show the behavior with
these assumptions in this model:
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Figure 1.3: Simulation of underlying under Black and Scholes model (GMB).
Given the data: S0 = 100, r = 0.02, σ = 0.2, λ = 0.7, δ = 0.3, γ = 0 with number
of steps equal to 10000.
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In this simulation (1.3), the underlying’s price follows the behavior of (1.2) except
on 26 June where we can see a vertical change in the price. This is due to a jump,
in fact at this step the Poisson distribution probability assumed value equals 1, so
in that, we have the jump contribution.

1.5 Merton Jump-Diffusion vs Black and Scholes

In this section, we are going to show a comparison between the Black and Scholes
pricing option and Merton jump diffusion We below we will plot two graphs for
European calls using different λ for the Merton model. We will call ”MDJ-model”
Merton jump diffusion model while ”BS-model” the Black and Scholes model. Now
we define the benchmark parameter in common for the models, and the options we
are going to evaluate:

• Strike price K = 1

• σ = 0.35

• r = 0.5

• Time to maturity T = 1

For the European call option we have:
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Figure 1.4: European call op-
tion.For Merton model: λ = 1,
γ = 0.5
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Figure 1.5: European call op-
tion.For Merton model: λ = 2.5,
γ = 0.5

For the pricing of put option we have:
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Figure 1.6: European put op-
tion.For Merton model: λ = 1,
γ = 0.5
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Figure 1.7: European put op-
tion.For Merton model: λ = 2.5,
γ = 0.5

As we can see from the graphs the option prices in Merton’s model are greater
than Black and Scholes model according to the theoretical results in [18]. Moreover,
the larger the λ, the larger the price; this fact can easily be seen in the closed formula
for Merton model in (1.19). Furthermore from [17], the standard deviation for Black
and Scholes is:

StdBS(St) = σBS

√
t

While for Merton, from the equation (1.14) at t-period it is:

StdMJD(St) =
√

(σ2
MDJ + λκ2 + λμ2)t

This means that if we set σBS = σMDJ , the Merton price is always greater than
Black and Scholes, by the assumption of the parameters.





Chapter 2

Numerical backgrounds

As we will see in Chapter 3, to find the option price for Merton’s jump diffusion
model, we will have to solve the partial integro-differential equation (1.16), which
has been presented in Chapter 1. In this Chapter, we introduce the tools which will
be used: the finite differences schemes we will use and the matrix-vector algorithm
using Fast Fourier Transform (FFT).

2.1 Finite Differences Toolbox

In this section, we present some numerical tools for finite difference schemes. The
main references for the tools used in this chapter is in (see, Chap. 3 and Chap. 8
in [10] and [5]), from which most of information has been taken about these tools.
Since we are going to discretize the PDE using the finite difference method, we
introduce the scheme for ordinary differential equation (ODE) which definition is:

F

(

x,
dy

dx
,
d2y

dx2
, . . . ,

dny

dxn

)

= 0

For purposes of example we focus on first order differential equation, whose Cauchy
problem is the following:

⎧

⎨

⎩

dy

dx
= f(x, y)

y(x0) = y0

(2.1)

For this kind of equation, we are going to describe three famous schemes: Forward
Euler, Backward Euler and Crank-Nicolson. First of starting with scheme, we will
defined an important property for a scheme that is stability which is defined as:

Definition 5 (Stability). Given a scheme (S) it is called stable if and only if a for
a given bounded initial condition, the solution does exist and is bounded along its
variable steps. Considering a domain defined on [0, T ] × R, it has to be bounded
independently in ∆t, ∆x:

∃ C > 0, ∀∆t > 0, ∆x > 0, i ∈ Z, n ∈ {0, . . . ,M} : |un
i | � C

17
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2.1.1 Forward Euler

For the formulation of this scheme for the Cauchy problem (2.1), we discretize the
x domain in order to have: x0 < x < xn where xi+1 = xi+h, where h = (xn−x0)/n
and n are the spatial point we chose in order to divide our x domain. Therefore, we
have in correspondence of the node xn the following formulation:

y(xi+1) = y(xi) + hf(xn, y(xi))

In fact one might view this method as a series of first order Taylor expansion of the
function y, this follows that for the node xi+1 the Taylor series around xi is:

y(xi+1) ≈ y(xi) + y′(xi)(xi+1 − xi) = y(xi) + hf(xn, y(xi))

The solution is an approximation with a polygonal of segment whose slope is defined
by the function. For the convergence of the forward Euler method, we have the
following result from [5]:

Theorem 3. Assuming that for each value of n the initial error |y(x0)− ŷn(x0)| �
Kn where Kn is a constant and the greatest stepsize is bounded by a constant Hn.
Moreover, if n → ∞, Hn → 0 and Kn → 0. Under these condition:

||y(x)− yn̂(x)|| → 0, as → 0

In this method the local error is bounded by a constant which behavior follows
O(h2), while for the global error we have the following theorem:

Lemma 1. For the forward Euler method the global error can be bounded by:

|en| ≤ Ch

where |en| = |x(tn) − yn|, for all n = 0, . . . , N ; where C > 0 is constant that does
not depend on h.

Thus, the global error has a behavior that follows O(n). As last property, this
scheme can be conditional stable, which means that it is stable if and only if the
time step h fulfills a certain condition, which depends on the ODE considered.

2.1.2 Backward Euler

Discretizing the x domain as above, in correspondence of the node xi the formulation
is:

y(xi+1) = y(xi) + hf(xi+1, y(xi+1)) (2.2)

This can be derive considering the equation (2.1) and integrating it from xi to
xi+1 = xi + h which yields:

y(xi+1)− y(xi) =

∫ xi+1

xi

f(x, y(x))dx

Approximating the integral through rectangle method it becomes:

y(xi+1)− y(xi) ≈ hf(xi+1, y(xi+1))
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For the convergence of the backward Euler method, we have the following in:

Theorem 4. Let yh(t) be the piece-wise linear interpolant of the backward Euler
method, in which h is the time step. Then, let x(t) be the actual solution for the
Cauchy problem (2.1). Then there exist a constant C > 0 such that:

||yh − x||∞ ≤ Ch

Therefore, the method converges to the actual solution as h → 0.

Then, the error estimates and the proof of convergence of the implicit Euler are
quite similar to the forward scheme. For the local truncation error in this method,
it can also be bounded by a constant whose behavior follows O(h2). Furthermore,
as the forward Euler’s global error, the backward Euler global error can be bounded
by:

|en| ≤ Ch

where en is the error between the actual solution and the method solution at the n
time step, in addiction C does not depend on the time step h. By this inequality
the global error of this scheme behaves as follows O(n).
Differently, from the explicit method, this method is more expensive in terms of com-
putation since we have to solve the non-linear equation, but it is an unconditionally
stable method and therefore we can choose h larger.

2.1.3 Crank-Nicolson method

Making generalizations, we can computed the arithmetic average of the two method
above in order to have a second-order method: Crank-Nicolson method. It indeed
is based on the trapezoidal rule and it is defined as follows:

y(xn+1) = y(xn) +
h

2

[

f(xn, y(xn)) + f(xn+1, y(xn+1))
]

(2.3)

In this scheme, the local error behaves as O(h3), while the global error is O(h2),
which means that Crank-Nicolson is more accurate than the Forward and the Back-
ward Euler methods.
Likewise the implicit Euler, it is an implicit method to get the yn+1 value. There-
fore, it needs an iterative method to get the value. Nevertheless, it is unconditionally
stable, thus it converges for each choice of the spatial interval h.

2.1.4 Finite Difference Schemes

The basic idea behind the finite difference scheme is to define the derivatives of
the equation by finite differences. The derivatives are approximated by Taylor ex-
pansion. Certainly, the finite differences scheme can be used for every order of
derivatives, for our scope we are going to present the first and the second derivative
approximations. Starting from the first derivative of a function u(x) evaluated at
node xi, there are three main approximations: forward approximation, backward
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approximation and central approximation. The following formulation is for forward
approximation:

∂u

∂x
=

u(x+∆x)− u(x)

∆x
−O(∆x)

In the case we switch −∆x to ∆x it becomes a backward difference approximation
for the first derivative:

∂u

∂x
=

u(x)− u(x−∆x)

∆x
−O(∆x)

For the central approximation we take difference between two x steps, it becomes:

∂u

∂x
=

u(x+∆x)− u(x−∆x)

2∆x
−O(∆x)2

Then for the second derivative, we have:

∂2u

∂x2
≈ u′(x+∆x)− u′(x)

∆x

≈
u(x+∆x)−u(x)

h
− u(x)−u(x−∆x)

h

∆x

=
u(x+∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x2)

All the previous formulation can be easily derived from Taylor’s expansion.

2.1.5 Integral approximation

To resolve an integral numerically we define a formulation belonging to the quadra-
ture class the trapezoidal rule which is defined as:

Proposition 1. Let f(x) be a continuous function on the interval [a, b] we can
split it into n equal sub-interval for each we have the width ∆x = b−a

n
such that

a = x0 < x1 < · · · < xn = b. The approximation of the integral of the function over
the interval is given by:

∫ b

a

f(x)dx ≈ ∆x

2

(N−1
∑

k=1

f(xk) +
fN + f(x0)

2

)

(2.4)

Then if f ∈ C2([a, b]) the computed error is:

E(f) = −(b− a)3

12
f ′′(ξ) with ξ ∈ (a, b) (2.5)

2.2 Matrix-vector multiplication using the FFT

One of the most expensive operation dealing with matrices and vectors is the matrix-
vector product. The algorithm to accelerate this product using the Fast Fourier
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Transform algorithm (FFT), thanks to [8]. Using it we can compute the discrete
Fourier transform in just O(n log n) operator instead of O(n2), the same property
are for the inverse discrete Fourier transform. The definitions for the two transfor-
mations are as follows: Discrete Fourier transform (DFT):

aj =
1

n

n−1
∑

k=0

xke
−2πijk/n j = 0, . . . , n− 1

And for the inverse DFT:

xj =
n−1
∑

k=0

ake
2πijk/n j = 0, . . . , n− 1

Now, we will understand the principle which makes this computational cost reduc-
tion possible. First of all, we can write the inverse DFT, using factorization of the
coefficients as:

xj = xj0,j1 =
n−1
∑

k=0

ake
2πikj/n =

r2−1
∑

k0=0

r1−1
∑

k1=0

ak0,k1e
2πik1r2j/ne2πik0j/n

For the sake of simplicity we call R = e2πi/n By this we can write the previous sum
as:

xj0,j1 =

r2−1
∑

k0=0

Rk0j

r1−1
∑

k1=0

ak0,k1R
j0k1r2

Then, we can reformulate it as:

xj0,j1 =

r2−1
∑

k0=0

Rk0(j1r1+j0)ãj0,k0 (2.6)

The defined the indexes j0 = 0, 1, . . . , r1 − 1 and j1 = 0, . . . , r2 − 1 in the same way
we defined k0 and k1, where r1r2 = n. By this construction the ã has n elements, the
we compute sum ãj0,k0 in r1 operations, likewise x has size n. Thus we compute the
array ã in r1n and x by r2n operations, eventually the amount be T = (r1 + r2)n.
The conclusion is that for any integer factorization of n to m steps, we can reduce
the total number of operation to T = n

∑m
1 ri and have n = rm, so m = logrn which

implies to T = nr logr n. A good choice for the factorization is n = 2m as stated by
the paper we followed.
Now we can introduce the usage of the FFT to the matrix-vector multiplication.
Firstly, two important structures are the Toeplitz matrix and the Circulant matrix.
Let us start with the formal definition of a Toeplitz matrix:

Definition 6. Let T be a matrix, it is called Toeplitz if T is determined by the 2n−1
scalars t−(n−1), . . . , tn−1 with Tij = tj−i for all i and j.
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So we have the matrix T with this form:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t0 t−1 t2 · · · · · · · · · · · · tn−1

t1 t0 t−1 t2
...

a2 t1 t0 t−1
. . .

...
... t2

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . t2

...
...

. . . t1 t0 t−1 t2
... t2 t1 t0 t−1

tn−1 · · · · · · · · · · · · t2 t1 t0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

One can see that for a generic Toeplitz matrix, it is sufficient just to storage the
vector [tn−1, tn−2, . . . , t1−n]

T ∈ R2n−1 instead to storage the whole matrix. Note that
for a Hermitian Toeplitz matrix we can save just the first columns. Then we can
move to the Circulant matrix which is a special case of the Toeplitz matrix that is
defined as:

Definition 7. Let C be a matrix, it is called circulant if it is a Toeplitz matrix where
each column is a circulant shift of its preceding column.

Therefore for a Circulant matrix we have the form:

C =

⎛

⎜

⎜

⎜

⎝

c0 cn−1 · · · c1
c1 c0 · · · c2
...

. . .
...

cn−1 cn−2 · · · c0

⎞

⎟

⎟

⎟

⎠

Additionally , we call the unitary and symmetric matrix Fn the Fourier matrix which
has the form:

FN =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 . . . 1
1 ω1

N ω2
N . . . ωN−1

N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

...
...

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)2

N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.7)

where ω = e−2πi/n. An important relationship between FFT and circulant matrix is
given by the following theorem:

Theorem 5. Let Cn ∈ Rn×n be a circulant matrix. It can be decomposed as:

Cn = F ∗
nΛFn

where Λ = diag(λ0, . . . , λn−1), indicating λj the eigenvalue of Cn.

Following [11], and using the above theorem, we can efficiently compute the
matrix-product x = Cna = F ∗

nΛFna. It can be done in four step:

1. â = Fna
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2. ĉ =
√
nFnc

3. b = ĉ⊙ â

4. x = F ∗
nb

Where the symbol ⊙ is the element-wise multiplication. Using these kinds of oper-
ations, we compute the matrix-vector product computing three FFT’s and just one
vector multiplication, which leads to O(n log n) operations. Moreover, the matrix-
vector product mo can be extended to Toeplitz matrices, since we can embed a
Toeplitz matrix in a circulant one. Let T be a n × n matrix, for which we have
to compute the matrix-vector multiplication Ty. Firstly, we embed the matrix into
2n× 2n circulant matrix, which is:

Ty =
(

I 0
)

A

(

y
0

)

Where the matrix A is defined as:

A =

(

T B
B T

)

where the matrix B has the following structure:

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 tn−1 · · · t2 t1
t1−n 0 tn−1 · · · t2
... t1−n 0

. . .
...

t−2
. . . . . . tn−1

t−1 t−2 · · · t1−n 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

So using the form, we can compute the matrix-vector product with A, that is a
circulant matrix, which can be performed using the FFT following the four steps
described above.





Chapter 3

Numerical Approximations

This chapter is dedicated to find an approximation of the analytical problem for the
PDE (1.17), this task will be carried out using finite differences and the schemes
described in the previous chapter. First of all, we will present the three kinds of
finite schemes for the Merton model in jump-diffusion PDE, for each type of scheme
we will first use the discretization of the spatial derivatives in such a way we will
obtain a punctual ODE in the time. Then we will use a finite difference scheme
for the time domain; the schema will be named after the type of schema used for
differentiation on the time. The scheme will be the following:

• Implicit Euler

• Crank-Nicolson

• Implicit-Explicit

3.1 Discretization Merton’s PDE

In this section, we present two numerical procedures for solving the PDE of Merton
jump-diffusion model (1.18). Notice that in the case we have St = 0, it leads to a
degeneration at that point for the SDE defined in (1.14), according to [4] one of the
condition for the linear integral-differential problem for the jump-diffusion model is
that σ(S, t) > 0 for all (S, t) ∈ R× [0, T ]. This leads that a good way to express
the option price is to evaluate it in term of logarithmic value of the asset value St.
By making the change of variables, we define:

• x = ln(St)

• y = ln(η)

• τ = T − t

• u(τ, x) = V (T − t, ex)

Using these change of variables in the linear differential-integral operator defined in
(1.16) we obtain:

LV (τ, x) = −1

2
σ2∂

2u

∂x2
−
(

r−1

2
σ2−λκ

)∂u

∂x
+(r+λ)u−λ

∫ +∞

−∞
u(τ, x+y)J(y)dy (3.1)

25
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Where the probability density function of the jumps (1.15) is re-defined as:

J(y) =
1√
2πγ

e
−(y−µ)2

2γ2

Therefore the Cauchy problem defined in (1.18) can be defined as:
⎧

⎨

⎩

∂u(τ, x)

∂τ
+ LV (τ, x) = 0 ∀(x, t) ∈ R× [0, T ),

u(τ, x) = Φ(x) ∀x ∈ R

(3.2)

First of all, we have to define the boundary condition for the PDE (1.18), in fact
for this Cauchy problem we have boundary condition for: European call option and
European put option. Starting from European call option, we get:

Φ(τ, x) =

{

u(τ, x) → 0, when x → −∞
u(τ, x) → ex −Ke−rτ when x → +∞ (3.3)

While for a put option the boundary condition are:

Φ(τ, x) =

{

u(τ, x) → Ke−rτ , when x → −∞
u(τ, x) → 0 when x → +∞ (3.4)

Then given the terminal conditions, the initial condition are evaluated as follows:

u(0, x) = Φ(x) =

{

(ex −K)+, in the European call option

(K − ex)+, in the European put option
(3.5)

As one can see the x domain extends throughout R, thus in order to evaluate nu-
merically the solution of this PDE we have to delimit the relative C domain; thus
we consider a finite domain region.

3.1.1 Definition of bounded spatial domain

For convenience the x variable will be called ”spatial variable”. First of all we
have to truncate the space domain to a bounded domain x ∈ (−x∗, x∗), where the
vale x∗ is has a finite value. As shown in Cont and Voltchkova’s study (see, [7])
an extension the solution beyond the domain can be given by the payoff function,
which is asymptotically close to the solution at the extremes of R. Moreover, we
can see the truncation error goes down exponentially with the dimension of the
domain from the following proposition with the domain size 2x∗. So we can define
the solution ux∗ as the solution of the truncated problem which is localize in the
restricted domain of (−x∗, x∗). Therefore, imposing the payoff function as boundary
conditions we can define the Cauchy problem on the truncated domain:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂ux∗

∂τ
+ Lux∗ = 0 (0, T ]× (−x∗, x∗)

ux∗(0, x) = Φ(x) x ∈ (−x∗, x∗)

ux∗(τ, x) = h(τ, x) x /∈ (−x∗, x∗)

(3.6)
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where h(τ, x) is defined as:

h(τ, x) =

{

0

Φ(τ, x)

Where g(τ, x) is the boundary conditions for call option as defined in (3.3) and
put option in (3.4). Then as in [7], we can provide a proposition stating that the
localization error goes down exponentially in the domain of size 2x∗:

Proposition 2. Let Φ be bounded, so ||Φ||∞ < ∞ and ∃ α > 0 such that
∫

|x|>1

eα|x|νdx < ∞ (3.7)

Let u(τ, x) and ux∗(τ, x) be the solution for the Cauchy problems with boundary
condition defined for h(τ, x), then:

|u(τ, x)− ux∗ | � 2Cτ,α||Φ||∞e−α(A−|x|) ∀ ∈ (−x∗, x∗)

where Cτ,α is a constant not depending on x∗.

Proof. This proof is based on the probabilistic representation of equation’s solution
we are searching for. Let Xt be the Levy process, we define Mx

τ = supt∈0,τ ]|Xt + x|,
then the probabilistic representation of the solutions are the following:

⎧

⎪

⎨

⎪

⎩

u(τ, x) = E[Φ(Xτ + x)]

ux∗(τ, x) =

{

E[Φ(Xτ + x)I{Mx
τ <x∗}], if h(, x) = 0

E[Φ(Xt + x)I{Mx
τ <x∗} + Φ(Xθx + x)I{Mx

τ ≥x∗}], if h(τ, x) = Φ(τ, x)

where θ(x) = inf{τ ≥ 0, |Xt + x| ≥ x∗|} is the hitting time of the process Xt + x
from the domain [−x∗, x∗]. Subtracting the two solution we have for h(τ, x) = 0:

|u(τ, x)− ux∗(τ, x)| = |E[Φ(Xτ − x)I{Mx
τ ≥x∗}]|

� ||Φ||∞Q(Mx
τ ≥ x∗)

while in the case of h(τ, x) = Φ(τ, x) we get:

|u(τ, x)− ux∗(τ, x)| = E[Φ(Xt + x)I{Mx
τ <x∗} + Φ(Xθx + x)I{Mx

τ ≥x∗}]|
� E|Φ(Xt + x)I{Mx

τ ≥x∗}|+ E|Φ(Xθ(x) + x)I{Mx
τ ≥x∗}|

� 2||Φ||∞Q(Mx
τ ≥ x∗)

We can note that in both cases:

|u(τ, x)− ux∗(τ, x)| � 2||Φ||∞Q(Mx
τ ≥ x∗) (3.8)

From theorem 25.18 in [14] and with the definition of (3.7) we get:

Cτ,α = EeαM
0
τ < ∞

Then by Chebyshev’s inequality we have:

Q(M0
τ ≥ x∗) � Cτ,αe

−αx∗
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Then, to get from M0
τ to Mx

τ we follow the implication below:

sup|Xt + x| � sup|Xt|+ |x|
Q(Mx

τ ≥ x∗) � Q(M0
τ ≥ x∗ − |x|)

� Cτ,αe
−α(x∗−|x|)

Then using this on (3.8) we have the desired result.

The above proposition implies that for any point not too much close to the
boundary such that |x| ≤ (1− δ)x∗ where 0 ≤ δ ≤ 1 the localization error decreases
with the domain size:

|u(τ, x)− ux∗(τ, x)| � Ce−αδx∗

3.1.2 Approximation of the integral term

Next step is to approximate the integral operator in the linear operator (3.1) which
is defined as:

I(u(τ, x)) = λ

∫

R

J(y)u(τ, x+ y)dy (3.9)

In order to compute it numerically we have to truncate the integral domain. Firstly,
we assume and consider finite activity which means that given an interval almost all
paths of the Levy process defining the jump have a finite number of jumps. We have
defined the spatial domain as a truncation for R, in fact now we have Ω = (−x∗, x∗);
note that it is not sufficient to impose the payoff function as boundary condition since
the integral operator is a non-local operator, therefore to compute the integral we
need to extend the function beyond the domain on set Ωc = (−∞,−x∗) ∪ (x∗,∞).
To estimate the integral on Ωc we use the extend the boundary condition of the
Cauchy problem, so we have for the European call option:

{

u(τ, x) → 0, when x → (−∞,−x∗)

u(τ, x) → ex −Ke−rτ when x → (x∗,∞)
(3.10)

While for a put option the boundary conditions become:
{

u(τ, x) → Ke−rτ , when x → (−∞,−x∗)

u(τ, x) → 0 when x → (x∗,∞)
(3.11)

After the definition of the integral operator’s domain and its boundary condition we
can start to approximate it. By making the change of variable y = z− x we obtain:

I(u(τ, x)) = λ

∫

R

J(y)u(τ, x+ y)dy =

∫

R

u(τ, z)J(z − x)dz

Under the continuity assumptions of the function u(τ, x) we can use the addictivity
property of integral in order to split the integral domain so we have:

∫

R

u(τ, z)J(z − x)dz =

∫ x∗

−∞
u(τ, z)J(z − x)dz

+

∫ x∗

−x∗

u(τ, z)J(z − x)dz +

∫ +∞

x∗

u(τ, z)f(z − x)dz
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Now to approximate the integral lying on the interval Ω∗ = (−x∗, x∗), we are going
to discretize the interval which becomes −x∗ = x0 < x1 < · · · < xn−1 < xn = x∗

with spatial interval ∆x = (xn − x0)/n. Then we are going to use the composite
trapezoidal rule (2.4) on that interval considering the spatial point x ∈ (−x∗, x∗),
so we obtain the approximation for the integral:

∫ x∗

−x∗

uτ,zJ(z − x)dz ≈ ∆x

2

(

J(x0 − x)uτ,x0

+ J(xN − x)uτ,xN
+ 2

N−1
∑

k=1

J(x− xk)uτ,xk

)

(3.12)

For the other two intervals, since they depends on the boundary conditions, we are
going to consider the European call option boundary conditions. Therefore, using
the (3.10) we can approximate the integral over the set R\Ω∗ as follows:

Icall(τ, x, x
∗) =

∫ x∗

−∞
u(τ, z)J(z − x)dz +

∫ +∞

x∗

u(τ, z)J(z − x)dz

≈
∫ +∞

x∗

(ez −Ke−rτ )J(z − x)dz

=

∫ +∞

x∗

(ez −Ke−rτ )
1√
2πγ

e
− (z−x−µj)

2

2γ2 dz

=
1√
2πγ

(∫ +∞

x∗
e
z− (z−x−µj)

2

2γ2 dz −Ke−rτ

∫ +∞

x∗

e
− (z−x−µj)

2

2γ2 dz

)

Then since for the Merton’s model μj = 0 we obtain:

Icall(τ, x, x
∗) =

1√
2πγ

(∫ +∞

x∗
e
z− (z−x)2

2γ2 dz −Ke−rτ

∫ +∞

x∗

e
− (z−x−)2

2γ2 dz

)

By making a change of variable ξ = x−z+γ2

γ
, so −γdξ = dz, we have:

Icall(τ, x, x
∗) =

1√
2πγ

(

ex+
γ2

2

∫ ∞

x∗

e
− (x−z+γ2)2

2γ2 dz −Ke−rτ

∫ +∞

x∗

e
− (z−x−)2

2γ2 dz

)

=
1√
2πγ

(

ex+
γ2

2

∫ x−x∗+γ2

γ

−∞
e−

ξ2

2 dξ +Kerτ
∫ x−x∗

γ

−∞
e−

ξ2

2 dξ

)

(3.13)

One might see that the integrated functions are equal and moreover they are the
normal probability distribution, so using the cumulative normal distribution func-
tion:

Φ(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ (3.14)

So the integral in (3.13) becomes:

Icall(τ, x, x
∗) = ex+

γ2

2 Φ
(x− x∗ + γ2

γ

)

−Ke−rτΦ
(x− x∗

γ

)

(3.15)
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Adding up the equations (3.12) and (3.15) we obtain the approximation of the
integral over R getting the formulation for the European call option:

I(u(τ, x)) = λIcall(τ, x, x
∗)−∆x

2

(

J(x0−x)uτ,x0+J(xN−x)uτ,xN
+2

N−1
∑

k=1

J(x−xk)uτ,xk

)

In the same way we can get the approximation of the integral in the case of European
put option. In fact in the case of European put option, the integral in the set Ω∗ will
be the same as the equation (3.12), while for the integral in the complementary set
Ωc, as the previous case of European call, we need to extend the boundary condition
in (3.11) becoming:

Iput(τ, x, x
∗) =

∫ x∗

−∞
u(τ, z)J(z − x)dz +

∫ +∞

x∗

u(τ, z)J(z − x)dz

≈
∫ −x∗

−∞
(Ke−rτ − ez)J(z − x)dz

=

∫ −x∗

−∞
(Ke−rτ − ez)

1√
2πγ

e
− (z−x−µj)

2

2γ2 dz

=
1√
2πγ

(∫ −x∗

−∞
Ke−rτdz − e

z− (z−x−µj)
2

2γ2

∫ −x∗

−∞
e
− (z−x−µj)

2

2γ2

)

dz

As we did in the European call option Tcall(τ, x, x
∗) we assume for the Merton’s

model μj = 0, then by making the change of variable ξ = (x − z + γ2)/γ, so
−γdξ = dz, and using the cumulative norm distribution function we obtain the
following definition:

Iput(τ, x, x
∗) = Ke−rτΦ

(−x∗ − x

γ

)

For ease of writing we define J(xj−xi) = Jj,i and eventually we have the numerically
approximation of the integral term which can be generally written at the spatial
point xi as:

I(u(τ, xi)) = λI(τ, xi, x
∗)− λ∆x

2

(

Ji,0u0 + Ji,N + 2
N−1
∑

k=1

Ji,kuk

)

(3.16)

where:

I(τ, xi, x
∗) =

{

Icall(τ, xi, x
∗), in the case of European call option

Iput(τ, xi, x
∗), in the case of European put option

3.2 Finite differences: Implicit Euler

In this section we are going to perform a efficient space integration tool and then
we will be looking for a time integration tool. We start with finite difference dis-
cretization of the spatial derivatives.
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By the construction of Merton’s model we can observe the linear differential-
integral operator in (3.1) as a composition of:

• linear differential operator

• integral operator

Starting from the linear differential operator it has the following formulation:

Ldiffu = −1

2
σ2∂

2u

∂x2
−
(

r − 1

2
σ2 − λκ

)

∂u

∂x
+ (r + λ)u (3.17)

Here below we are going to describe the discretization on the spatial domain of
that linear operator, to do that we are going to truncate the domain of R, which
defines the spatial domain x thank to the section above about the definition of
bounded spatial domain. In fact, the domain we are considering is Ω∗ = (−x∗, x∗);
on this domain we will consider an uniform domain of x, hence −x∗ = x0 < x1 <
· · · < xN−1 < xN = x∗. The spatial derivatives are going to be approximated
with the formulation on section (2.1.4), using the central finite differences we can
write derivatives into play, considering them on the time point τ , as: First order
derivative:

∂u

∂x
(τ, xi) ≈

ui+1(τ)− ui−1(τ)

2∆x
Second order derivative:

∂2u

∂x2
(τ, xi) ≈

ui+1(τ)− 2ui + ui−1(τ)

∆x2

Given u(τ) defined as:

u(τ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

u1(τ)
u2(τ)
...

uN−2(τ)
uN−1(τ)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

defining ∆x = xi+1 − xi, ui(τ) = u(τ, xi), then follows that:

Ldiffu = −1

2
σ2
(ui+1(τ)− 2ui + ui−1(τ)

∆2x

)

−
(

r − 1

2
σ2 − λκ

)(ui+1(τ)− ui−1(τ)

2∆x

)

+ (r + λ)ui(τ)

Summing up all element of i = 1, . . . , N − 1 we get the matrix formulation, which
will bring to a tridiagonal matrix where we can denote it as T . We will denote the
matrix as T whose of-diagonal elements are defined as:

Ti,i−1 =
−σ2 +

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
Ti,i+1 =

−σ2 −
(

r − 1
2
σ2 − λκ

)

∆x

2∆x2

While for the principal diagonal:

Ti,i = r + λ− Ti,i−1 − Ti,i+1
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By the fact that with i = 1 and i = N − 1 there are the presence of the boundary
elements respectively u0 and uN , in these point we have the known value add to the
matrix; thus the matrix form of the linear differential operator will become:

Ldiffu(τ) = Tu(τ) + k (3.18)

where as stated above we have:

k1 =
(

− σ2

2∆x2
+

1

2∆x

(

r − 1

σ2
− λκ

)

∆x
)

u0

kN = −
( σ2

2∆x2
+

1

2∆x

(

r − 1

σ2
− λκ

)

∆x
)

uN

Elsewhere, for i = 2, 3, . . . , N − 2 it will assume values ki = 0. From section (2.1.4)
we can conclude that the finite difference discretization for the linear differential
operator Ldiffu is an approximation of second order with accuracy of O(∆x2). Let
r ≥ 0, for a sufficiently small spatial interval ∆x the off-diagonal elements of T
are non-positive so the matrix will be a M -matrix, but if the spatial interval fulfills
∆x > σ2/|r − 1

2
σ2 − λκ|, the matrix may have positive off-diagonal elements so it

can be a M -matrix. M -matrices can be defined in the following way:

Definition 8. Let A ∈ Rn×n is called an M-matrix if it fulfills the following prop-
erties:

• the main diagonal values are all positive

• the off-diagonal values are all non-positive

• A is non-singular

• A−1 is non-negative

To avoid this we can use an artificial diffusion into the model as was done in [22]
in order to keep the M -matrix properties of the matrix T . Of course this evaluation
often causes an order reduction of accuracy since including artificial volatility is
equivalent to use a combination of central finite difference and an one-sided finite
difference for the first-order spatial derivative. Now, we are going to add that
artificial volatility such that the volatility of the model becomes:

σ̂2 = max

{

σ2,
(

r − 1

2
σ2 −−λκ

)

∆x,−
(

r − 1

2
σ2 − λκ

)

∆x

}

(3.19)

Hence the off-diagonal elements of T will be written with this form:

T̂ i,i−1 =
−σ2̂ +

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
T̂ i,i+1 =

−σ2̂ −
(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
(3.20)

and then the diagonal element assumes this formulation:

T̂ i,i = r + λ− T̂ i,i−1 − T̂ i,i+1 (3.21)

Adding this artificial volatility to the model we define the matrix T with specific
features as we can understand from the theorem from [23] which states:
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Theorem 6. Let r be the interest rate such that r > 0 and let T be the tridiagonal
matrix whose elements are defined in (3.20) and (3.21). Then the matrix T − λI is
a strictly diagonally dominant M-matrix such that:

∑

k

(T − λI)i,k > 0 and Ti,k � 0 ∀k �= i with i = 1, . . . , n− 1

Proof. Firstly we are going to show that the off-diagonal elements T̂ i,i−1 defined in

(3.20) and (3.21) are not positive. By the definition of the elements T̂ i,i−1 and the
definition of the artificial volatility in (3.19) we obtain:

T̂ i,i−1 =

−max

{

σ2,
(

r − 1
2
σ2 − λκ

)

∆x,−
(

r − 1
2
σ2 − λκ

)

∆x

}

+
(

r − 1
2
σ2 − λκ

)

∆x

2∆x2

=

−max

{

σ2 +
(

r − 1
2
σ2 − λκ

)

∆x, 2
(

r − 1
2
σ2 − λκ

)

∆x, 0

}

2∆x2

This formulation leads to the fact that for any value of σ ≥ 0, λ ≥ 0 and κ ≥ 0 the
element will be:

Ti,i−1 =

−max

{

σ2 +
(

r − 1
2
σ2 − λκ

)

∆x, 2
(

r − 1
2
σ2 − λκ

)

∆x, 0

}

2∆x2
� 0

In the same way we can prove that the off-diagonal element Ti,i+1 is non-positive,
consequently from the definition of Ti,i it is easy to see that the matrix T − λI has
a positive diagonal. Moreover, it is strictly diagonal dominant matrix because of:

∑

k

(T − λI)k,j ≥ r > 0

Moving on the integral operator, we can extend the formulation on the equation
(3.12) on every spatial points, hence using the matrix representation we have the
following form for the integral operator:

Lintu = Ju+ f (3.22)

where:

f(τ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−λI(τ, x1, x
∗)− λ∆x

2

(

J1,0u0 + J1,NuN

)

−λI(τ, x2, x
∗)− λ∆x

2

(

J2,0u0 + J2,NuN

)

...

−λI(τ, xN−2, x
∗)− λ∆x

2

(

JN−2,0u0 + JN−2,NuN

)

−λI(τ, xN−1, x
∗)− λ∆x

2

(

JN−1,0u0 + JN−1,NuN

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and the J is a matrix defined as:

J = −hλ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

J1,1 J1,2 · · · J1,N−2 J1,N−1

J2,1 J2,2 · · · J2,N−2 J2,N−1
...

...
...

...
...

JN−2,1 JN−2,2 · · · JN−2,N−2 JN−2,N−1

JN−1,1 JN−1,2 · · · JN−1,N−2 JN−1,N−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

As we can see J is assembled with the probability density function of the jump,
thus the more the two points considered are distant the smaller is the value of the
probability this means that the matrix values decay from the principal diagonal. As
the previous matrix T , J has special features as defined in the theorem below stated
in [23]:

Theorem 7. Let ∆x satisfies the condition ∆x ≤ 1, then the matrix (J + λI) is a
diagonally dominant Z-matrix with a non-negative diagonal hence:

∑

k

(J + λI)i,k ≥ 0, and Ji,k � 0 ∀k �= i fori = 1, . . . , N − 1

Proof. By the fact that λ ≥ 0 and given two spatial point xi and xk the probability
density function J(xi − xk) ≥ 0 in fact it has defined as Z-matrix.Then to prove
∑

k(J + λI)i,k ≥ 0 for i = 1, . . . , N − 1 we note that:

∑

k

(J + λI)i,k = λ− λ∆x√
2πγ

∑

k

e
− (xk−xi−µ)2

2γ2

Let (xj−xi) = ∆x → 0, we can write the summation as an integral, thus we obtain:

λ− λ∆x√
2πγ

∑

k

e
− (xk−xi−µ)2

2γ2 = λ− λ∆x√
2πγ

∫ x∗

−x∗

e
− (xk−xi−µ)2

2γ2 dx

= λ− λ∆x√
2πγ

√
2πγ ≥ 0

whenever ∆x � 1.

Adding up the two operator that we have defined as: linear differential operator
in (3.18) and the integral operator (3.22) we obtain in the matrix form:

Lu(τ) = Ldiffu+ Lintu

= (Ldiff + Lint)u

= (T̂ + J)u+ b

Where b = k+ f. It comes up that we obtain a semi-discretize system of the PDE,
which in matrix form is:

∂u

∂τ
+ Lu(τ) = b(τ) τ ∈ (0, T ] (3.23)

As a consequence of the two theorems (Theorem 6) and (Theorem 7) we obtain the
following corollary :
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Corollary 1. Given ∆x ≤ 1 and given the interest rate r > 0, the matrix T̂ + J is
a strictly diagonally dominant M-matrix.

Proof. It is a consequence of theorems: (6) and (7).

After the discretization on the spatial domain of the spatial derivatives term and
then the approximation of the integral term, we have a semi-discrete linear problem
(3.24) which could be handled as an ODE. To discretize it we use the implicit Euler’s
method as defined above in (2.2) so we obtain:

u(τ)− u(τ −∆τ)

∆τ
+ Lu(τ) = b(τ)

For simplicity we write uk
j = uj(τ−∆τ) where j = 1, . . . , N−1 defining the number

of spatial point, while Lj represents the relative matrix row as well as for bk
j is the

relative element of b, we get:

uk+1
j +∆τLju

k+1
j = uk

j +∆τbk
j

Using some easy math, the previous equation will be rewritten for the relative row
j as:

(1 + ∆τL(j))uk+1
j = uk

j +∆τb(τ) (3.24)

Therefore in matrix form we will have:

(I+∆τL)uk+1 = uk +∆τb(τ) (3.25)

The last linear system is the linear system evaluated at the time τ , hence starting
from τ = 0 we resolve m linear system until τ = T since ∆τ = τ/m. The linear
system can be defined in the form

Auk+1 = b̂ (3.26)

where
A = I+∆τL and b̂ = uk +∆τb(τ)

moreover the model has a full matrix. The linear system’s matrix A has the following
properties:

• Toeplitz matrix

• Strictly diagonally dominant

• M-matrix

Let us prove these properties:

Toeplitz property: Starting from the fact that the matrix T is tridiagonal and whose
elements are defined by (3.20) and (3.21), it is defined Toeplitz by construction. The
other matrix J is also toeplitz by the fact:

Ji,j =
1√
2πγ

e
− (xi−xj)

2

2γ2
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Moving along the diagonal the element becomes:

Ji+1,j+1 =
1√
2πγ

e
− (xi+1−xj+1)

2

2γ2

=
1√
2πγ

e
− (xi+∆x−xj−∆x)2

2γ2

=
1√
2πγ

e
− (xi−xj)

2

2γ2 (3.27)

Therefore the two elements along the diagonal have the same value, hence Ji,j =
Ji+1,j+1 which is the definition of Toeplitz matrix. Adding up the two matrices (T )
and (J) the L matrix is still a Toeplitz matrix. Then it is easy to prove that the
final matrix A = I + ∆τL keeps the Toeplitz property of the two matrices I and
∆τL.

Strictly diagonally dominant property: This matrix’s feature is easily proven by the
fact that the matrix I is by definition strictly diagonally dominant and the matrix
L is a sum of strictly diagonal matrix.

M -matrix property: As the previous property, since the matrix I is by definition a
M -matrix and by corollary (1), it follows that A is also an M -matrix.

3.2.1 Consistency

In this subsection we to study the consistency property of the implicit Euler scheme
presented above.

Proposition 3 (Consistency). The finite difference scheme (3.24) is locally consis-
tent with equation (3.2), moreover: ∀ u ∈ C∞

0 ([0, T ]× R) and ∀(τn; xi) ∈ [0, T ]× R

we have:

∣

∣

∣

∣

un+1
j − un

j

∆τ
+ (Lu)n+1

j −
(

∂u

∂τ
+ Lu

)

(τn, xj)

∣

∣

∣

∣

= rnj (∆τ,∆x2) → 0,

when (∆τ,∆x) → 0. Moreover:

∃ c > 0, |rnj (∆τ,∆x)| � c(∆τ,∆x2)

Proof. Considering the first term and the first derivative of the solution in the time,
in the absolute value, we are going to use a second order Taylor series to obtain:

∣

∣

∣

un+1
j − un

j

∆τ
− ∂u

∂τ
(τj, xj)

∣

∣

∣
=
∣

∣

∣

un+1
j − un

j

∆τ
−

un+1
j − un

j

∆τ
− ∆τ

2

∂2u

∂τ 2
(τn, xj)

∣

∣

∣

=
∣

∣

∣

∆τ

2

∂2u

∂τ 2
(τn, xj)

∣

∣

∣

�
∆τ

2

∣

∣

∣

∣

∣

∣

∂2u

∂τ 2

∣

∣

∣

∣

∣

∣

∞
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Now considering the integral term in (Lu)n+1
j called (Ju)n+1

j , while in the linear
operator Lu(τn, xj) the integral term we call it (J u)nj , thus we have:

∣

∣

∣
(Ju)n+1

j − (J u)(τn, xj)
∣

∣

∣ =
∣

∣

∣(Ju)n+1
j − (J u)(τn+1, xj) + ∆t(J u)(τ̂ , xj)

∣

∣

∣

=
∣

∣

∣

xj+1 − xj

2

(

u(τn, xj)J(xj − xi)

+ u(τn, xj+1)J(xj+1 − xi)
)

−
∫ xj+1

xj

u(τn+1, z)J(z − xi)dz

+∆t(J u)(τ̂ , xj)
∣

∣

∣

We already know the local truncation error of the trapezoidal rule from(2.5), so we
can write the equation above as follows:

∣

∣

∣− ∆x3

12

∂u2

∂x
(ξ) + ∆t(J u)(τ̂ , xj)

∣

∣

∣
� C1∆t+ C2∆x3

Then for the spatial derivatives part, we have (Du)n+1
j for the finite difference part,

while for the derivative part we have the differential part of linear operator Lu,
which is can be written by (Du)n+1

j we have:

|(Du)n+1
j − (Du)(τn, xj)| = |(Du)n+1

j − (Du)(τn+1, xj) + ∆τ(Du)(τ̂ , xj)|

=
∣

∣

∣

σ2

2

(un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
− ∆x2

12

∂4u

∂x4
(τn+1, xj)

)

+ (r − 1

2
σ2 − λκ)

(un+1
j+1 − un+1

j−1

2∆x
− ∆x2

6

∂2u

∂x3
(τn+1, xj)

)

− (Du)(τn+1, xj) + ∆τ(Du)(τ̂ , xj)
∣

∣

∣

� C3∆τ + C4∆x2

Therefore these inequality lead to:

rnj (∆,∆x) � Ci∆τ + Cm∆x2 → 0

Since backward Euler stability is a well-known result from the literature (see,
[19] for more details), we can state that the scheme shown is unconditionally stable
for any choice of ∆τ and ∆x, which means the stability zone for the equation in
(3.24) is always included in the stability zone of the numerical method, regardless of
the time step ∆t and also ∆x. Now the main difficulty of solving the linear systems
as (3.25) it that the linear system matrix is full.

3.3 Finite differences: Crank-Nicolson scheme

Since the scheme being used in the previous section is a first order-convergence in
time, in this section we are going to perform a second order-convergence scheme. To
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do this, we are going to use Crank-Nicolson’s method over time domain. Starting
from equation (3.24), we apply the Crank-Nicolson scheme defined in (2.6) in order
to get the equation:

u(τ +∆τ)− u(τ)

∆t
= −1

2

[

Lu(τ +∆τ)− b(τ +∆τ) + Lu(τ)− b(τ)
]

For simplicity we define:

un+1 = u(τ +∆τ) bn+1 = b(τ +∆τ)

using these annotations we can write the linear system in order to get the unknown
un+1 as follows:

un+1 +
∆τ

2
Lun+1 = un − ∆τ

2
Lun +

∆τ

2
bn+1 +

∆τ

2
bn

The we will get the following matrix form:

(

I+
∆τ

2
L
)

un+1 =
(

I− ∆τ

2
L
)

un +
∆τ

2
bn+1 +

∆τ

2
bn

Then we can define:
Aun+1 = b̂ (3.28)

where:

A = I+
∆τ

2
L

and

b̂ =
(

I− ∆τ

2
L
)

un +
∆τ

2
bn+1 +

∆τ

2
bn

The linear system’s matrix holds all the properties of the matrix in the linear system
(3.26). In fact, it is:

• Toeplitz matrix

• Strictly diagonally dominant

• M-matrix

These properties, for the matrix A, can be easily proven by the fact that the matrix
L in (3.28) is divided by the coefficient 2, which holds the properties of the previous
L; therefore the matrix A in (3.28) has the same properties of A of the linear system
(3.26). Since the vector b̂ has the first element defined as multiplication of a Toeplitz
matrix and a vector, this operation can be sped up using the algorithm described
in (2.2). The consistency of the Crank-Nicolson method is known in the literature,
indeed it has a second-order accuracy in time by the construction of the scheme
itself. While for accuracy order in the spatial variable, since we used the finite
difference in the same way we used them in the previous method (Implicit Euler), it
has a second order accuracy. Lastly, the scheme is unconditionally stable as stated
in [10].
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3.4 Finite differences: Implicit-Explicit scheme

As we can see from the previous methods, due to the integral operator, they define
a full matrix A; which has to be inverted at each time step. The simple idea in this
chapter is to define a method in order to avoid the inversion of the full matrix. The
idea behind the next numerical method is based on splitting the L linear differential-
integral operator in (3.1) into two elements employing an IMEX-Euler scheme, in
the following form:

∂u

∂τ
+ Lu = 0 =⇒ ∂u

∂τ
+ T u+ J u = 0

where the new two operators are respectively:

1. T differential operator

2. J integral operator

Then we are going to approximate T u using finite difference approximation, while
J u using the approximation defined in (3.16). In this method, we are going to treat
the integral operator in an explicit time stepping order in that way it leads to avoid
the inversion of the full-dense matrix J . For this model, we are going to assume
that the number of activity case is finite.
The two operators are defined as follows:

T u = −1

2
σ2∂

2u

∂x2
−
(

r − 1

2
σ2 − λκ

)

∂u

∂x

J u = (r + λ)u− λ

∫ +∞

−∞
u(τ, x+ y)J(y)dy

Now, we will introduce an uniform grid on the domain [0, T ]×Ω∗, where for the time
domain we divide it inM time steps, and we define τm = m∆τ , wherem = 0, . . . ,M .
While for the spatial domain we will consider the truncated domain of Ω∗ we split
it in N interval of size ∆x = 2x∗/N considering the two extremes point of the
domain; then the solution vector is defined as u(τ) = (u1(τ), . . . , uN−1(τ))

T . The
space derivatives are approximated by finite differences defined in the section (2.1.4);
using the central finite differences, we can write derivatives considering them on the
time point τ , as :
First order derivative:

∂u

∂x
(τ, xi) ≈

ui+1(τ)− ui−1(τ)

2∆x

Second order derivative:

∂2u

∂x2
(τ, xi) ≈

ui+1(τ)− 2ui + ui−1(τ)

∆x2

Then we can consider the first operator T on the spatial point j for this model being
defined as follows: Linear differential operator explicit considered at time point n+1

Tju
n+1
j = −1

2
σ2
(un+1

i+1 (τ)− 2un+1
i + un+1

i−1 (τ)

∆2x

)

−
(

r − 1

2
σ2 − λκ

)(un+1
i+1 (τ)− un+1

i−1 (τ)

2∆x

)
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Now we are going to define the matrix form for the linear operator defined above.
Therefore, summing up all elements of i = 1, . . . , N − 1 we get the matrix formula-
tion, which will bring to a tridiagonal matrix where we can denote it as D. We will
denote the matrix as D whose off-diagonal elements are defined as:

Di,i−1 =
−σ2 +

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
Di,i+1 =

−σ2 −
(

r − 1
2
σ2 − λκ

)

∆x

2∆x2

While for the principal diagonal:

Di,i = −Di,i−1 −Di,i+1

By the fact that with i = 1 and i = N − 1 there are also the boundary elements
respectively u0 and uN , in these points we have the known value added to the matrix;
thus the matrix form of the linear differential operator will become:

T un+1 = Dun+1 + k (3.29)

where as stated above we have:

k1 =
(

− σ2

2∆x2
+

1

2∆x

(

r − 1

σ2
− λκ

)

∆x
)

u0

kN = −
( σ2

2∆x2
+

1

2∆x

(

r − 1

σ2
− λκ

)

∆x
)

uN

As the previous method defined in section (2.1.4), for i = 2, 3, . . . , N − 2 it will
assume values ki = 0. Moreover, we can conclude that the finite difference dis-
cretization for the linear differential operator T is an approximation of second order
with accuracy of O(∆x2). Let r ≥ 0, for a sufficiently small spatial interval ∆x
the off-diagonal elements of T are non-positive so the matrix will be a M -matrix,
but if the spatial interval fulfills ∆x > σ2/|r − 1

2
σ2 − λκ|, the matrix may have

positive off-diagonal elements so it can be a M -matrix. Now, we are going to add
that artificial volatility such that the volatility of the model becomes:

σ̂2 = max

{

σ2,
(

r − 1

2
σ2 −−λκ

)

∆x,−
(

r − 1

2
σ2 − λκ

)

∆x

}

Hence, the off-diagonal elements of T will be written with this form:

D̂i,i−1 =
−σ2̂ +

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
D̂i,i+1 =

−σ2̂ −
(

r − 1
2
σ2 − λκ

)

∆x

2∆x2
(3.30)

and then the diagonal element assumes this formulation:

D̂i,i = −D̂i,i−1 − D̂i,i+1 (3.31)

Adding this artificial volatility to the model we define the matrix D with specific
features as we can understand from the theorem defined in (1).
Now we are moving on to the integral operator, we can extend the formulation on
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the equation (3.16) on every spatial point, hence using the matrix representation we
have the following form for the integral operator:

Ju(τ) = Ju(τ) + f(τ) + (r + λ)u(τ) (3.32)

where:

f(τ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−λI(τ, x1, x
∗)− λ∆x

2

(

J1,0u0 + J1,NuN

)

−λI(τ, x2, x
∗)− λ∆x

2

(

J2,0u0 + J2,NuN

)

...

−λI(τ, xN−2, x
∗)− λ∆x

2

(

JN−2,0u0 + JN−2,NuN

)

−λI(τ, xN−1, x
∗)− λ∆x

2

(

JN−1,0u0 + JN−1,NuN

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and the J is a matrix defined as:

J = −hλ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

J1,1 J1,2 · · · J1,N−2 J1,N−1

J2,1 J2,2 · · · J2,N−2 J2,N−1
...

...
...

...
...

JN−2,1 JN−2,2 · · · JN−2,N−2 JN−2,N−1

JN−1,1 JN−1,2 · · · JN−1,N−2 JN−1,N−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

As we can see J is assembled with the probability density function of the jump, so the
more the two points considered are distant the smaller the value of the probability,
this means that the matrix values decay from the principal diagonal. The integral
operator J will be:

Jun = Jun + f(τ) + (r + λ)un = (J + (r + λ)I)un + f(τ) = Ĵun + f(τ)

As the previous matrix T , J has special features as defined in the theorem (7). Using
(3.29) and (3.32) we obtain the spatial discretization of the equation we have been
looking for with form:

∂u

∂τ
+ T un+1 + Jun = 0

Now we have to approximate the previous model in time using the implicit Euler’s
method, which becomes:

un+1 − un

∆τ
+ T un+1 + Jun = 0

Using some easy math we isolate variable in time, picking up the two vector k and
f as b = −k− f we get:

(I+∆τD)un+1 = (I−∆τ Ĵ)un +∆τb

which can be written as:
Aun+1 = Sun +∆τb (3.33)
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In this matrix form, the matrix A is a tridiagonal matrix and also a M -matrix and
also strictly dominant matrix as a consequence of Theorem 6. As already proven
in (3.27) the matrix J is a Toeplitz matrix, consequently the matrix S is also a
Toeplitz matrix, and by that the multiplication between Sun can be accelerated by
FFT algorithm.

3.4.1 Consistency

In this subsection, we are going to study the consistency property of the IMEX-Euler
scheme presented above.

Proposition 4 (Consistency). The finite difference scheme (3.32) is locally con-
sistent with equation (3.15): ∀ u ∈ C∞

0 ([0, T ] × R) and ∀(τn, xi) ∈ [0, T ] × R we
have:

∣

∣

∣

∣

un+1
j − un

j

∆τ
+ (T u)n+1

j + (J u)nj −
(

∂u

∂τ
+ Lu

)

(τn, xj)

∣

∣

∣

∣

= rnj (∆τ,∆x2) → 0,

when (∆τ,∆x) → 0. Moreover:

∃ c > 0, |rnj (∆τ,∆x)| � c(∆τ,∆x2)

Proof. Considering the first term and the first derivative of solution in the time, in
the absolute value, we are going to use a second order Taylor series to obtain:

∣

∣

∣

un+1
j − un

j

∆τ
− ∂u

∂τ
(τj, xj)

∣

∣

∣
=
∣

∣

∣

un+1
j − un

j

∆τ
−

un+1
j − un

j

∆τ
− ∆τ

2

∂2u

∂τ 2
(τn, xj)

∣

∣

∣

=
∣

∣

∣

∆τ

2

∂2u

∂τ 2
(τn, xj)

∣

∣

∣

�
∆τ

2

∣

∣

∣

∣

∣

∣

∂2u

∂τ 2

∣

∣

∣

∣

∣

∣

∞

Now considering the term in J u, by the fact we used the trapezoidal rule we can
easily write the trapezoid inequality:

∣

∣

∣

∫ xj+1

xj

u(τ, z)J(z − xi)dz −
xj+1 − xj

2

(

u(τ, xj)J(xj − xi) + u(τ, xj+1)J(xj+1 − xi)
)∣

∣

∣

�
∆x3

12
||(u(τ, z)J(z − xi))

′′||∞

Then for the (Du)n+1
j we have:

|(Du)n+1
j − (Du)(τn, xj)| = |(Du)n+1

j − (Du)(τn+1, xj) + ∆τ(Du)(τ̂ , xj)|

=
∣

∣

∣

σ2

2

(un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
− ∆x2

12

∂4u

∂x4
(τn+1, xj)

)

+ (r − 1

2
σ2 − λκ)

(un+1
j+1 − un+1

j−1

2∆x
− ∆x2

6

∂2u

∂x3
(τn+1, xj)

)

− (Du)(τn+1, xj) + ∆τ(Du)(τ̂ , xj)
∣

∣

∣

� C3∆τ + C4∆x2
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Therefore these inequality lead to:

rnj (∆,∆x) � C1∆τ + C2∆x2 → 0

3.4.2 Monotonicity and Stability

In this section we are going to show other two important properties for the implicit-
explicit scheme the monotonicity and the stability of it, following the idea in the
work of Rama Cont and Ekaterina Voltchkova in [6, Chapter 4.2].

Proposition 5. If ∆τ ≤ 1/λ̂, the scheme ”Implicit-Explicit” used is stable and ver-
ifies the discrete comparison principle: if u0 and v0 are two bounded initial condition
then:

u0 ≥ v0 =⇒ [∀n ≥ 1, un ≥ vn]

Proof. We start with rewriting the equation (3.32) in the following form:

c∆τun+1
i−1 + (1 + a∆τ)un+1

i + b∆τun+1
i+1 =(1−∆τ(r + λ))un

i

− λ∆τ
∆x

2

[

Ji,0u
n
0 + Ji,Nu

n
N

+ 2
N−1
∑

j=1

fi,ju
n
j

]

(3.34)

where we denote:

b =
−σ2̂ −

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2

c =
−σ2̂ +

(

r − 1
2
σ2 − λκ

)

∆x

2∆x2

a = −b− c

Note that (1−∆τ(r + λ)) ≥ 0 by hypothesis.
Stability We have a tri-diagonal linear system on un+1 = (un+1

1 , . . . , un+1
N−1)

T . It has
a unique solution since the main diagonal is dominant in fact: 1+∆τa ≥ c∆τ+b∆τ .
We are going to show that, if Φ is bounded: ||Φ||∞ < ∞, then ∀n,

||un||∞ ≤ ||Φ||∞.

Let us proceed by induction, thus by the definition of u0 we have ||u0||∞ ≤ |Φ||∞. Let
us suppose ||un+1||∞ > ||Φ||∞, it means that ∃i0 ∈ {0, . . . , N}, such that |un+1

i0
| =

||un+1||∞, and ∀i ∈ Z, |un+1
i | � |un+1

i0
| therefore we have:

||un+1||∞ = |un+1
i0

| = −c∆τ |un+1
i0

|+ (1 + a∆τ)|un+1
i0

| − b∆τ |un+1
i0

|
≤ −c∆τ |ui0−1|+ (1 + a∆τ)|un+1

i0
| − b∆τn+1

i0+1|
� | − c∆τun+1

i0−1 + (1 + a∆τ)un+1
i0

− b∆τun+1
i0+1|
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With (3.34) this gets:

||un+1||∞ � (1−∆τ(r + λ))||un||∞ − λ∆τ
∆x

2

[

Ji,0|un
0 |+ Ji,N |un

N |+ 2J ||un||∞
]

≤ ||u||∞
≤ ||Φ||∞

Which it is a contraction over our assumption. Therefore ||un+1||∞ ≤ ||Φ||∞.
Monotonicity. Let un and vn be two solution of the scheme which has ini-
tial condition h(x) and g(x) in order to have h(x) ≥ g(x), ∀x ∈ R. Let us de-
fine wn = un − vn, we have to prove wn ≥ 0, ∀n ≥ 0. By definition we have
w0

i = h(xi) − g(xi) ≥ 0, ∀i ∈ Z. Let wn ≥ 0 and suppose that infi∈Zw
n+1
i < 0.

By the fact that ∀i ∈ Z\{0, . . . , N}, wn+1
i = h(xi) − g(xi) ≥ 0, we have that

∃i0 ∈ {0, . . . , N}, s.t wi
n+1
0 = infi∈Zw

n+1
i . Then using the previous definition for

the scheme in (3.34) we get:

inf
i∈Z

wn+1
i = wn+1

i0
= −c∆τwn+1

i0
+ (1 + a∆τ)wn+1

i0
− b∆τwn+1

i0

≥ −c∆τwn+1
i0−1 + (1 + a∆τ)wn+1

i0
− b∆τwn+1

i0+1

= (1−∆τ(r + λ))||wn
0 ||∞ − λ∆τ

∆x

2

[

Ji,0w
n
0 + Ji,Nw

n
N + 2J ||wn||

]

≥ 0

it is a contradiction of the assumption, so infi∈Z w
n+1
i ≥ 0 and consequently wn+1 ≥

0.



Chapter 4

Methods for solving linear systems

In this chapter, we will present the solving methods that will be used to solve lin-
ear systems. First of all, we will develop the algorithm and understand the main
properties of the speed of convergence of the main method we will use: GMRES.
Explaining this method we briefly present the projection method and Krylov sub-
space method, since they are fundamental concepts in theGMRES method. After
that, we will introduce the Multigrid method being used. Lastly, we will introduce
the tridiagonal linear system algorithm known also as Thomas’ algorithm.

4.1 Projection methods

A projection method is to find an approximation to the solution of the linear system.
The problem of solving the linear system Ax = b, where A ∈ Rn×n and b ∈ Rn. Now
we have to find an approximation of the solution x ⊆ Rn being called K. An easy
way to find it let us suppose the dimension of K is m < n, m conditions are needed
to determinate the approximation inside the subspace. These constraints impose
the residual given as b−Ax is orthogonal to another subspace L with dimension m
which is called Petrov-Galerkin condition. Starting from the initial approximation
x0 the problem is:

x̂ ∈ x0 +K | b− Ax̂ ⊥ L

Then, supposing the bases for the sub-spaces K and L being called:

• B ∈ Rn×m containing the m vectors of the K basis

• F ∈ Rn×m containing the m vectors of the L basis

The approximation can be expressed by:

x̂ = x0 +By

with y ∈ Rm. Imposing the orthogonality condition, it leads to the residual being
able to be written as:

r = b− Ax̂ = b− Ax0 − ABy

while the for the orthogonality to L we have:

F T r = F Tb− F TAx0 − F TABy = F T r0 − F TABy = 0

45
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Hence, we have the expression of y and we can write the approximation as:

x̂ = x0 +B(F TAB)−1F T r0

Then for the given the equation above, we have the projection method that can be
presented by the algorithm in [21]:

Algorithm 1 Projection Method

1: repeat

2: Select subspace L and K;
3: Choose bases B = [b1, b2, . . . , bm] and F = [f1, f2, . . . , fm] for L and K;
4: r := b− Ax;
5: y := (F TAB)−1F T r;
6: x := x+By;
7: until Convergence

The condition for this algorithm is that the matrix F TAB has to be nonsingular.
The projection method minimizes the 2-norm of the residual, so we have the result
formalized in [21] as follows:

Proposition 6. If A is an arbitrary square matrix and L = AK, then x̂ is the result
of a projection method onto K, orthogonally to L, if and only if it minimized the
2-norm of the residual over x0 +K, i.e.

||b− Ax̂||2 = min
x∈x0+K

||b− Ax||2 (4.1)

4.1.1 Krylov subspaces

Starting from the definition for these subspaces, we have:

Definition 9. Given a nonsingular A ∈ Rn×n and y ∈ Rn and an integer m ≤ n, a
Krylov subspace is:

Km = Km(A,y) = span(y, Ay, A2y, . . . , Am−1y)

This means, Km is the subspace of all the vectors of zR which can be written in
the form:

z = p(A)y

where p(A) belongs to the set of the polynomial of degree at most m−1. Of course,
K1 ⊆ K2 ⊆ . . . , the dimension increases at most by one dimension in each step. It is
clear to choose the approximate solution xn ∈ x0 +Kn(A, r0. We have to define the
minimal polynomial of y as the nonzero monic polynomial p such that p(A)y = 0
with the lowest degree and where the degree of the y as the degree of p. Therefore,
let us define the following propositions:

Proposition 7. Let ν be a positive integer defined as ν := ν(y, A) which is called
grade of y w.r.t matrix A, such that:

dim Km(A,y) = min{m, ν}
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Proof. Given the subspace Km, the constraint to be m-dimension subspace is that
vectors y, Ay, . . . , Am−1y have to be linear independent. This means that can not
exist any nonzero polynomial deg(q) ≤ m− 1 such that q(A)y = 0 and so we have
that degree of (y) is at least m. Calling ν = deg(y), we have ν ≥ m, then we
consider the definition of grade of y, so there exists coefficients ci such that:

ν
∑

i=0

ciA
iy = 0

This means, using the linear independence:

ν−1
∑

i=0

ciA
iy+ cνA

νy = 0 =⇒ Aνy = −
ν−1
∑

i=0

ci
cν
Aiy

As one can see Aνy is linear combination of vectors in the subspace Kν . Then, let
us consider a vector z ∈ Kν+1, it can be expressed by:

z =
ν
∑

i=0

βiA
iy = βνA

νy+
ν−1
∑

i=0

βiA
iy

The two terms belongs to the subspace Kν . This implies that z ∈ Kν , and that also
implies that the two subspaces Kν and Kν+1 are the same subspace. Eventually, it
m ≤ ν, the dimension is m, while if m ≥ ν the dimension is ν which can be defined
as min{m, ν}.

Corollary 2. Kν(A,y) is the smallest A-invariant subspace that contains y.

One can see that starting with the vector y which is an eigenvector of A, the on
the subspace Km any other vector will be written as zi = Aiy which leads to any zi
being parallel to y. Therefore, the dimension m = 1 of the subspace. Moreover, if y
is a linear combination of some eigenvectors this leads to the maximum dimension
of any Krylov subspace using y will be the number of eigenvectors making y up.
We now introduce the Krylov subspace methods, which are defined as a projection
method where the subspaces K and L are Krylov subspaces. Now, we need to build
a good basis for the space Km. We can note that for a large value of m, most of
the vectors in the Krylov basis are parallel that leads to an ill-conditioned basis. A
great choice from the standpoint of numerical stability could be the Arnoldi process,
which produces an orthonormal basis, which is simply the modified Gram-Schmidt
iteration.
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Let us introduce the Arnoldi’s process algorithm:

Algorithm 2 Arnoldi process

1: Arbitrary y1, s.t ||y|| = 1;
2: for i = 1, 2, . . . ,m do;
3: for j = 1, 2, . . . , i do
4: hj,i = (Ai)

Tyj;
5: end for

6: wi = Ayi −
∑i

a=1 haiya;
7: hi+1, i = ||wi||2;
8: if hi+1,i = 0 then

9: Break;
10: else

11: yi+1 = wi/hi+1,i;
12: end if

13: end for

So for this algorithm, there is an important proposition that states:

Proposition 8. Algorithm 2 stops at step i, so that hi+1,i = 0, if and only if the
deg(y1) = i

From the proposition (8) the Arnoldi succeeds to find a full orthonormal basis for
Km; in fact, it either computes all the m vectors or it stops reaching the dimension
of the subspace. Therefore, in the case m increases we have two possible ways. In
the first one, the dimension of the space grows and the Arnoldi process is able to
compute the vector for the basis. This means that the next approximation found is
for sure more accurate than the previous one and since the residual is minimized on
a subspace with a larger dimension it will be smaller. For the second case, we have
that the maximum dimension is reached and the algorithm stops. In this case, the
solution of any projection method is exact and this leads to an iterative procedure in
which for each iterationm increases in order to find a good approximation. Practical
speaking the method has to be stopped regarding to a threshold on the residual since
the exact solution will be never reached. For this algorithm there are some notable
notes. The mostly memory space is for the (m + 1)n for storing Arnoldi vectors
yi. Then the matrix A is referenced through the matrix-vector multiplication, so it
is ideal for large scale matrices; furthermore, these kinds of operations are between
O(m) and O(m2) while it takes O(mn) operations plus. Moreover, this method has
a straight property which in fact is that the computational cost of a single iteration
increase as the iteration count proceeds, by the fact that each time there is an extra
vector with respect to which the new vectors have to be orthonormalized. Despite
that, there are also some special cases which reduce the vector number to which
the new vector is orthogonalized, this leads to a short recurrence for the properties
of the linear system matrix. A notable example of this is the Conjugate Gradient.
For a generic non-symmetric matrix we can not benefit from a short recurrence, so
the cost of the Arnoldi process is raw every time. This conducts two categories for
iterative methods. The first one performs fully Arnoldi method, the second type is a
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variation for the Arnoldi method where there is a fixed maximum number of vectors
against which to orthogonalize. The last one is a non-optimal computation for the
solution but since the number is fixed the computational cost does not increase and
an example of this kind of method is the GMRES. Lastly, for this algorithm, the
outputs are two matrices:

• Vm ∈ Rn×m containing the orthonormal vectors for the basis of Km

• H̄m ∈ R(m+1)×m containing the coefficients hn, j

We defined in addiction the matrix Hm ∈ Rm×m which is defined taking H̄ and
removing its last row. We obtain a relationship for those matrices:

AVm = Vm + H̄m

V T
mAVm = Hm (4.2)

4.1.2 GMRES

One of the most known projection methods is the Generalized Minimum Residual
Method (GMRES) developed by Yousef Saad and Martin H. Schultz in 1986, it
found more details on [20]. This iterative method has K = Km and L = AKm. It is
a method of solving linear systems working with general systems of linear equations.
The method involved starts with an initial guess x0, where the first vector for the
Krylov space is taken to be the normalized initial residual y1 = r0/||r0||. As we
already saw in the Krylov subspace method, an approximation for the solution x at
the iteration m has to belong to the space x0 +Km. After that, knowing a basis for
the space we stored the vectors of the basis in the columns of the matrix Vm, so we
can define the solution as:

x = x0 + Vmv

Now we have to find the vector y ∈ Rm which minimizes the residual among all the
vectors in that space, where the residual can be evaluated as follows:

r = b− Ax

= b− Ax0 − AVmv

= r0 − Vm+1H̄mv

This derives from the relationships on (4.2). Now, we define the norm of the initial
residual β and calling e1 the first vector of the canonical basis we have:

y1 = Vm+1e1

Using the equation above we have:

b− Ax = βy1 − Vm+1H̄mv

= Vm+1(βe1 − H̄mv)

After that, in order to optimize the problem, we have to minimize the norm of the
residual and by the fact that the columns of the matrix with the vector stored Vm+1

are orthonormal by construction we obtain:

||b− Ax|| = ||βe1 − H̄mv||
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Hence, the approximation xm can be found with the equation below:

xm = x0 + Vmvm

where vm can be defined as:

vm = min ||βe1 + H̄mv||
In order to evaluate the vector v, let us consider the QR decomposition of the matrix
H̄m, which means that any square or rectangular matrix can be decomposed into
a multiplication of orthogonal matrix Q and another upper triangular matrix R.
In the problem considered we have H̄m ∈ R(m+1)×m whose last row is a zero-row.
Hence, we have:

βe1 − H̄mv = βe1 −QRv

= Q(Te1 +Rv)

Let us define gk = βQTe1 and Rk as the m × m sub-matrix of R which can be
obtained removing the last row full of zeros. Then defining g1 the first m elements
of g and gm+1 the last one we have:

βQTe1 −Ry =

[

g1
gm+1

]

−
[

R1

0

]

v

Using these kinds of annotation, we have to minimize ||g−Rv, moreover the matrix
Q is orthogonal. In this case the minimum is reached when R1v = g1, in such a way
that the argument of the norm has m components that are zero and only the last
one different from zero, this leads to the fact that v = R−1

1 g1. For all these steps
we have that: QR decomposition has a computational cost asymptotic to O(m3)
but despite that, the value of m is usually way too smaller than the dimension of
the linear system matrix; the solution of the linear system y actually is really cheap
since the matrix R1 is triangular. The most expensive operations are the ones to
determine the basis of the Krylov space. In fact, to do that we will use Arnoldi
process which requires matrix-vector products involving a large matrix size, even
though the procedure need not be repeated each time since for each iteration we can
just upgrade the matrices V and H.
The GMRES method can be implemented in an alternative way by imposing the
orthogonality condition Lm = AKm ⊥ rm, which is defined as:

V T
mAT (r0 − AVmv) = 0

Hence, the solution can be written as:

x = x0 + Vm(V
T
mATAVm)

−1V T
mAT r0

It leads to the vector v to be written as:

v = (V T
mATAVm)

−1V T
mAT r0

= (H̄
T
m+1,mV

T
m+1Vm+1H̄m+1,m)

−1H̄
T
m+1,mV

T
m+1r0

= (H̄
T
m+1,mV

T
m+1Vm+1H̄m+1,m)

−1H̄m+1,mV
T
m+1r0

= (H̄
T
m+1,mH̄m+1,m)

−1H̄
T
m+1,mVm+1r0
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the columns of the matrix Vm+1 are orthonormal, so the matrix V T
m+1Vm+1 is equal

to the identity matrix with dimension m+1. Then, the residual r0 can be expressed
by r0 = βy1

v = (H̄
T
m+1,mH̄m+1,m)

−1H̄m+1,mβy1

Then the product V T
m+1y1 = βe1

v = (H̄
T
m+1,mH̄m+1,m)

−1Hm+1,mβe1

Therefore, we have a system of normal equation for which finds the least square
solution for v of the function:

H̄m+1,mv = βe1

In fact if we multiply the previous system by the matrix H̄
T
m+1,m we can get:

H̄
T
m+1,mH̄m+1,mv = H̄

T
m+1,mβe1

whose solution is the previous system. Using that we have proven using the projec-
tion methods and we obtain the same result. Since using a non-symmetric matrix
at each iteration the method require to orthonormalize the new vector with the pre-
vious ones, to improve that we can use the restarted GMRES for which we can fix
the maximum number of vector that can be memorized. Applying this method of
course we lost the accuracy but we can improve the computational cost it needs to
compute. There is also another version for GMRES which is the Truncated GMRES
which may save computations costs but not storage costs. Regarding the GMRES
method’s breakdown, it can happen if and only if the Arnoldi process stops. In fact
it stops when wj = 0 so, when hj+1,j = 0 at a given step j. This might leads to a
not exact solution, instead, the residual vector is zero and this leads to the exact
solution. This is stated by the following proposition:

Proposition 9. Given the nonsingular matrix A, the GMRES algorithm breaks
down at step j, i.e. hj+1,j = 0 if and only if the approximate solution xj is exact.
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Here below, we present the algorithm for the GMRES:

Algorithm 3 GMRES

Input: A,b,x0, kmax tol;

1: r0 = b− Ax0, k = 0, ρ0 = ||r0||2, β = ρ, v1 =
r0
β
;

2: while ρk > tol||b||2 AND k < kmax do

3: vk+1 = Avk;
4: for j = 1, 2, 3 . . . , k do

5: hj,k = vTk+1vj;
6: vk+1 = vk+1 − hj,kvj;
7: end for

8: hk+1,k = ||vk+1||2;
9: vk+1 = vk+1/hk+1,k;
10: QR(Hk+1,k) =⇒ H̄k+1 = QR;
11: ρk = |βq1,k+1|;
12: k = k + 1;
13: end while

14: yk = argmin||βe1 −QR(H̄k+1,k)y||;
15: xk = x0 + Vkyk;

4.1.3 GMRES: Theoretical features

Following Y. Saad and M.H. Schultz [21], we are going to show some theoretical
fundamental features of the GMRES. So now we will study the convergence of the
GMRES method:

Theorem 8. Let A ∈ Rn×n be the matrix of nonsingular system; the GMRES
method fins the solution in at most n steps.

Proof. Considering the charatetistic polynomial of A defining asp(x) = det(A−xI);
it has degree n, p(0) �= 0 and p(A) = 0 by the Cayley-Hamilton theorem. Let the

polynomial p̄(x) be defined as p̄(x) = p(x)
p(0)

, therefore p̄(0) = 1. Since the generic
approximation of x belongs to the space defined by x0 + Km it can be evaluated
following the definition of Krylov subspace as:

x = x0 +
m−1
∑

i=0

αiA
ir0

Having above definition, we can also express the generic residual as:

r = b− Ax

= b− Ax0 −
m−1
∑

i=0

αiA
i+1r0

The GMRES method by its properties of minimization generates a residual at the
generic step m and by the previous polynomial of degreem with p(0) = 1, we obtain:

||rm|| = min
pm∈Πm

pm(0)=1

||pm(A)r0||



4.1. PROJECTION METHODS 53

From that, we have:

||rn||
||r0||

≤ ||q(A)|| ∀ q ∈ Pn | q(0) = 1

From that, we choose q = p̂ in order to get ||rn|| ≤ 0 =⇒ rn = 0 and so we get the
exact approximation.

By the construction of the generic non-symmetric matrix in the GMRES method,
there can be found a generic and simple result that describe the relationship between
the residual and the condition number as in the case of CG, example in (Theorem
6.29 in [21]). This kind of result can be achieved in GMRES if the matrix A is
diagonalizable. In fact we have this fundamental result about speed of convergence
of the GMRES method:

Theorem 9. Let A be a nonsingular diagonalizable matrix, i.e. A = V DV −1. where
V = diag{λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues. Then, the residual
reached on the i− th steps of GMRES fulfills the following:

||ri||
||r0||

≤ κ(V ) min
p∈Π

p(0)=1

max
j=1,...,n

|p(λj)|

Proof. Since, we already know that ∀p ∈ Πi s.t. p(0) = 1 we have:

||ri||
||r0||

≤ ||p(A)||

The norm of p(A) can be estimated as:

||p(A)|| ≤ ||V || ||V −1|| ||p(D)||
One can note that the term ||V || is the condition number of the matrix V and
since D is diagonal with values equals to the eigenvalues of the initial matrix A, we
observe that:

||p(D)|| = max
j=1,...,n

|p(λj)|

Since with the definition of matrix norm for D the combination of the n− th power
of the eigenvalues of A which is a convex combination, thus we have that:

||p(D)|| ≤ max
j=1,...,n

|p(λj)|

So we have:

||ri||
||r0||

≤ ||p(A)||

≤ ||V || ||V −1|| max
j=1,...,n

|p(λj)|

Since the solution minimizes the residual, the polynomial p which minimizes the
second part of inequality can be used, this leads to:

||ri||
||r0||

≤ κ(V ) min
p∈Π

p(0)=1

max
j=1,...,n

|p(λj)|

Which is the result required and the thesis is proven.
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Unfortunately, we can not simply relate the speed of convergence of GMRES
to the eigenvalue distribution of the matrix A. Moreover, the matrix V might be
ill-conditioned.

Preconditioned GMRES

Sometimes, we have to face really ill-conditioned systems, thus in these cases the
GMRES method could be really slow to converge or in other case it can not even
converge. For those kinds of problem, we might use a technique called Precondi-
tioner. In fact, we can precondition the matrix of linear system in order to improve
the performance of the GMRES method. Given the linear system in the classic
form:

Ax = b

Then, suppose it is an ill-conditioned problem, a preconditioner is a matrix M which
is applied to the linear system and somehow we have to obtain an equivalent system
for which the iterative method converges faster and reduce the condition number.
Moreover, a significant result is given by the more the preconditioner gets close to A,
the more the eigenvalues cluster around the value 1; and by the Theorem ([?]) faster
is the convergence of the GMRES method. The intuition behind the preconditioner
is to find a matrix M which is similar to A, but it is cheap to compute and invert as
well. There are three options to precondition a linear system: left preconditioning,
right preconditioning and split preconditioning.
Starting from the left preconditioning, it is equivalent to apply the GMRES to the
system and we obtain this construction:

M−1Ax = M−1b

Therefore in this case, the left preconditioned GMRES has to minimizes the following
residual:

||M−1b−M−1Axm|| = ||M−1rm||
The left preconditioned GMRES is quite different from the GMRES algorithm de-
fined in (3), in fact it is different in the following two steps:

• r0 = M−1(b− Ax0), so the initial residual

• in the third step which vk+1 = M−1Avk

The Arnoldi process building the orthogonal basis of the left preconditioned Krylov
subspace has this form:

span{r0,M−1Ar0, . . . , (M
−1A)m−1r0}

For the right preconditioning, we have to solve the following linear system:

AM−1y = b

where y is the new variable that need not to be computed explicitly, it is defined as:

x = M−1y
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In this kind of problem, the residual is defined as

||rm|| = ||b− AM−1ym||
Then it has to be minimized among all the vectors:

ym = y0 + span{r0, AM−1r0, . . . , (AM
−1)m−1r0}

For the algorithm of the right preconditioned GMRES is slightly different from the
algorithm (3) in the following steps:

• vk+1 = AM−1vk

• In this case the initial residual for solution y0 and x0 are computed as r′0 =
b− AM−1y0 and r0 = b− AM−1x0

• The final approximation is obtained with the equation xm = x0 +M−1Vmvm

The split preconditioning, in many cases M is the result of a decomposition of the
form:

M = LU

Therefore, we can use the GMRES on the split-preconditioned problem defined in
the following structure:

L−1AU−1y = L−1b

x = U−1y

In this case, we need to compute the initial residual by L−1 when we start the
algorithm and by U−1 on the linear combination Vmvm in forming the approximate
result. In this situation, the differences with the GMRES algorithm in (3) are the
following:

• the initial residual defined as r0 = L−1(b− Ax0)

• vm+1 = L−1AU−1vk at the step 3

• The approximate that we obtain at the last step as xm = x0 + U−1Vmvm

In this case, there are different types of residuals and this fact might lead to a neg-
ative effect on the stopping criterion for the algorithm, and furthermore, it can be
stopped too soon or later. In addiction, a bad choice of M , thus ill-conditioned,
can corrupt the process’ performance. Between the left and right preconditioned
problem, the choice could be not particularly significant, the only exception is when
M is ill-conditioned. As stated in [21] in the case of A nearly symmetric a split
preconditioned may be much more performing. One of the simplest and most used
preconditioner techniques is to factorize the matrix. Pointing out that an exact
factorization for a large sparse matrix would not produce another sparse matrix,
but it could produce large dense matrix and it leads to an increase in the computa-
tional and storage cost. Another way is to use incomplete factorization which can
preserve sparsity. There are: incomplete LU factorization and incomplete Cholesky
factorization. Even though they are not equal to the previous matrix, the inverses
of these decompositions are easy to compute, since the matrices that we obtain are
triangular. The most used ILU variant in Y. Saad. is based on two parameters:
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• p, the maximum number of non-zero elements allowed in rows of L and U

• τ (drop tolerance), threshold below which elements in matrix L are discarded

Preconditioner: matrix splitting

A preconditioning technique we are going to use in our linear systems will be the
splitting matrix. Let us define the splitting process in a matrix. First of all, we
define the linear system:

Ax = b

where A ∈ Rn×n is a nonsingular matrix and x,b ∈ Rn. By matrix splitting we refer
to the definition of the matrix A as:

A = M −N

with M nonsingular. A large number of iterative methods to solve the linear system
above can be composed through the splitting and it can be rearranged in order to
approximate the solution xn+1, as follows:

Mxn+1 = Nxn + b (4.3)

where n are the iteration steps to compute the approximation. The starting vector
is x(0); as such the iterative method is convergent to the unique solution:

x = A−1b

for every initial guess x(0) if and only if ρ(M−1N) < 1, this means that the splitting
we used for A is convergent, by definition:

Definition 10. Let A,M,N be matrix belong Rn×n, where M is nonsingular. The
decomposition for A = M −N is a convergent splitting of A if:

ρ(M−1N) < 1 or, equivalently ρ(NM−1) < 1

For a large value of n the solution error decreases in magnitude by approximately
a factor of ρ(M−1N) at every iteration. Thus, the smaller the ρ(M−1N) the quicker
convergence of the method. A general property for the splitting of A is the following
theorem:

Theorem 10. Let A = M − N be a splitting of A. If A and M are nonsingular
then:

M−1NA−1 = A−1NM−1

By that, the matrices M−1N and A−1N commute and also the matrices NM−1 and
NA−1 commute.

Proof. Using the definition of splitting of A, we obtain this:

M−1 = (A+N)−1

= A−1(I +NA−1)−1

= (I + A−1N)−1A−1
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and we have also:

A−1 = M−1 +M−1NA−1

= M−1 + A−1NM−1

which implies the thesis and so:

M−1NA−1N = A−1NM−1N

and

NM−1NA−1 = NA−1NM−1

By the above theorem, we can deduce the following result:

Corollary 3. Let A = M − N be a splitting of A, with A and M nonsingular
matrices. Then by the theorem (10), both matrices A−1N and M−1N have the
same eigenvectors; and in addiction both matrices NM−1 and NA−1 have the same
eigenvectors.

Having in mind the above process described, by the equation 4.5 and the initial
guess x0 = 0, we have to solve this system that is in the form:

Mun
k+1 = Nun

k +M−1b

= Nun
k + b̂

To solve it we use the GMRES method. A fundamental insight is to note that a
suitable choice of M can lead to a good approximation of A, because we can see
M as a preconditioner of A and we can use the matrix M as preconditioner for
the linear system. Aiming to solve the preconditioned problem, let us denote the
solution as xSol, then we can rewrite the equation (4.5) as follows:

uSol = M−1NuSol +M−1b̂

(I −M−1N)uSol = M−1b̂

(I − I +M−1)AuSol = M−1b̂

M−1AuSol = M−1b̂ (4.4)

By this formulation, the fixed point iteration in (4.5) can be seen as a left-preconditioned
system, alternatively using the Theorem (10) the formulation can be expressed as
a right-preconditioned system. Thereby, we are expecting to the more M is a good
preconditioner of A the that faster the iterative method used converges. Since the
convergence speed relies on the spectral radius ρ(M−1N), and also for the splitting
method converges if and only if the spectral radius ρ(M−1N) < 1.



58 CHAPTER 4. METHODS FOR SOLVING LINEAR SYSTEMS

4.2 Multigrid

In this section, we present a method which does not belong to Krylov space methods,
indeed it is a Multigrid method; where one can find more details in [24]. The Multi-
grid methods are a class of methods that are used for solving or preconditioning.
The description of the Multigrid method will concern the one-dimensional problem,
furthermore, we will implement the Multigrid V-cycle. Under careful choice of the
parameters involved, these methods can produce a convergence rate which does not
depend on the problem’s dimension. In fact, another kinds of solvers or precon-
ditioners usually have an increment of the number of iterations as the interval of
the grid considered becomes smaller; this leads to a computational cost which does
have a super-linear behavior. Instead using the Multigrid method we can reach a
computational cost that follows O(n). To understand the idea behind the Multigrid
method we consider the two-level method, in which we have two grids, a fine one
and a coarse one, and then move from one another using some operators. These
operators are:

• restriction going to the finer grid to coarser one

• prolongation or interpolation going from the coarser grid to the finer one

Using these operators we can use the coarser grid in order to compute a better initial
guess for the finer grid. This is an advantage since the solution computed in the
coarser grid is much cheaper due to the reduction of the problem size. The two-level
method has the following steps:

1. Resolve on the finer grid the linear system Ahuh = bh on Ωh. This operation is
called smoothing or relaxation. This step given just an rough approximation
of uh equals to vh

2. Compute the residual rh = bh − Ahvh

3. Restrict the residual to Ωh, the result will be denoted by R(rh)

4. Solve directly A2he2h = R(rh), to have an approximation of the error e2h

5. Interpolate the error e2h to Ωh, the result will be called P (e2h)

6. Update the approximation of the solution on Ωh through vh = vh + P (e2h)

Now, we defined the space S2h as the space of function defined in the coarser grid,
which is the space of linear combinations of basis functions defined on the coarser
grid; while with Sh we defined the space of functions belonging to the fine grid.
Defining the space of function on the nodes that are just in the finer grid with Bh,
by its construction the space Sh = S2h + Bh and so S2h ⊆ Sh. As such, before we
can pass from the finer to the coarse grid, we have to apply a sort of reduction to
the coarser grid elements called. In the next few pages, we will discuss the definition
of the system on the coarse grid, how to restrict the residual to the coarse grid and
how to interpolate the correction to the fine grid.
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4.2.1 Restriction

The simplest restriction we will describe is the restriction by injection. It is defined
by a restriction operator denoted by I2hh which:

I2hh : Ωh → Ω2h

The operator I2hh apply on the residual vh, we obtain:

v2h = I2hh vh =⇒ v2hj = vh2j, j = 1, . . . ,
N

2
− 1

Where in fact we have that Ωh ⊆ RN−1 and Ω2h ⊆ RN/2−1. Basically, this form
of restriction takes for each node on the coarser grid the value of the grid function
at the relative node on the finer grid. As such, using the restriction operator R by
injection, it turns out that we will ignore the values of the residual in the nodes
which belong to Bh, which leads to an inefficient method.
A solution for that can be the weighted restriction that uses all nodes on the finer
grid. Now we will define the weight restriction operator that is defined as follows:

v2h = I2hh =⇒ v2hj =
1

4
(vh2j−1 + 2vh2j + vh2j+1) j = 1, . . . ,

N

2
− 1

In the case the space Ωh and Ω2h have standard bases, the matrix representation for
the weighted restriction operator has the following structure:

I2hh =
1

4

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 2 1
1 2 1

. . . . . . . . .
. . . . . . . . .

1 2 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where I2hh ∈ Ω(N/2−1)×(N−1).

4.2.2 Prolongation or Interpolation

The other operator we will introduce is the interpolation operator, which transfer
the correction from the coarser grid to the finer one. For our Multigrid imple-
mentation we will just consider the linear interpolation, which is defined as a local
averaging. Let the residual value solved in the coarser grid v2h belongs to Ω2h, then
the interpolation operator is defined as:

Ih2h : Ω2h → Ωh

Having this operator, we apply it to the vector v2h. The definition of the linear
operator is given by:

vh2j = v2hj , j = 1,
. . . , N/2− 1

vh2j+1 =
1

2
(v2hj + v2hj+1), j = 0,

. . . , N/2− 1
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The operator can be expressed in matrix form, for which we use the standard basis
for RN/2−1 and RN−1 to obtain:

I2hh =
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
2
1 1

2

1
. . .
. . .
. . . 1

2
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where Ih2h ∈ Ω(N−1)×(N/2−1). Moreover this operator is a linear operator. For these
representations for the interpolation and the restriction operators, one might note
a relationship between the weighted restriction and the interpolation:

Ih2h = 2(I2hh )T

In fact, which relationship comes out from the relationship between the coarser grid
and the finer one. The interpolation operator will be denoted as P .

4.2.3 Smoothing

The other fundamental key of Multigrid is a smoothing operator, a classical choice
for this operator is a stationary iterative method: Jacobi or Gauss-Seidel. These
kinds of methods perform splitting of the linear matrix. The Jacobi method takes a
M matrix as the diagonal of the matrix A. Besides, the Gauss-Siedel method takes
M equals the lower triangular of A. To these smoother operators there are other
alternatives, in our implementation we chose Gauss-Seidel. Applying the smoother,
we call the residual rk = b − Axk = Aek the residual at the k-th step. Then after
just a few iterations the component of the error vector ek is almost zero. It follows
the residual rk can be restricted to a coarser grid, so we have:

rh = Rr2h = RAe2h

Now we have all the operator we can summarize the algorithm for the two-grid cycle:

Algorithm 4 Two-grid

Input: Choose u0

1: repeat

2: Smooth Ahuh
i = bh:

3: Restrict residual r2h = R(b− Auh
i );

4: Solve the coarser grid correction r2h = A2he2h

5: Interpolate the error and update uh
i + Pe2h → ui+1

6: until Convergence
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4.2.4 Multigrid V-cycles

Now, a great improvement for this algorithm to do is to generalize the two-grid
cycle to a generic number grids. First of all, we can improve the two-cycle adding
at the end of every iteration another step for the smoother, in order to improve the
solution. The easiest implementation of this idea is the V-cycle: we suppose we have
l + 1 grids, starting from the finest grid, the residual is restricted from one grid to
the next and the coarse grid correction is solved only when the coarsest grid. The
finest grid step is h and going down in coarser grids the grid spacing increase by the
coefficient 2. We summarize the algorithm for the V-cycle iteration here below:

Algorithm 5 Multigrid V-cycle

Input: Aii = 1, ..., l + 1; b1

Output: u1

1: Initialize ui to zero vectors;
2: Initialize Ri to zero vectors;
3: for i = 1, . . . , l do
4: Relax Aiui = bi, set solution equals to variable vi

5: Reduction b(i+1) = I2hh rh = Ih(b
i − Aivi)

6: end for

7: Solve A(l+1)u(l+1) = b(l+1)

8: for i = l, . . . , 1 do

9: Interpolation vi = vi + I i(i+1)v
(i+1)

10: Relax Aiui = bi

11: end for

The correct choice of the parameters in the relaxation operation can lead the
method as a solver of a linear system that always converges in the same number of
iteration that does not depend on the dimension of the problem. the algorithm in
(5) is for a V-cycle iteration, then setting a tolerance, we will solve the linear system
using several iterations of V-cycles one after the other until the error of the solution
satisfies the chosen tolerance.

4.3 Tridiagonal Solver

Despite the other method presented in this chapter, the next method is a direct
solver, which means that it finds the exact solution, which can be performed only
with a tridiagonal linear system and it is also called Thomas algorithm. Furthermore,
it is a simplified method of the more famous Gaussian Elimination method. The
linear system, in this case, is in this form:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b1 c1 0
a2 b2 c2

. . . . . . . . .
. . . . . . cn−1

0 an bn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x1

x2
...

xn−1

xn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y1
y2
...

yn−1

yn

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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In this case the matrix of linear system if tri-diagonal, keeping in mind the notation
before, we define the matrix A in which aii = bi, i = 1, 2, . . . , n; ai,i−1 = ai i =
2, 3, . . . , n and ai+1,i = ci i = 1, 2, . . . , n− 1. At the k-row we have:

xk = Akxk+1 + Yk, k = 1, 2, . . . , n− 1,

While for the last row we have:
xn = Yn

Where the coefficient Ak and Yk are coefficients found in the forward step, for which
we define An = 0 and we then get that:

xk = Akxk+1 + Yk, k = 1, 2, . . . , n (4.5)

Now, for the first equation of the linear system, the coefficients in the equation above
become:

A1 = −c1
b1

Y1 =
y1
b1

(4.6)

Then, computing all the other coefficient Ak and Yk until to fixed 1 ≤ k ≤ n − 1;
we can substitute in the equation xk = Akxk+1Fk the equation number k + 1 of the
linear system, which becomes:

xk+1 = Ak+1xk+2 + Yk (4.7)

where the two coefficients Ak and Yk for k = 1, 2, . . . , n− 1 are:

Ak+1 = − ck+1

bk+1 + ak+1Ak

Yk+1 =
yk+1 − ak+1Yk

bk+1 + ak+1Ak

As one can see, this algorithm gets split into two stages: the first one we compute
the coefficients Ak and Yk for the steps k = 1, 2, . . . , n using the equation (4.6) and
(4.7), while for the second we solve backward elimination for the actual unknowns
xn, xn−1, . . . , x1 using the equation (4.5). Here below, we are show the pseudo-code
for the tridiagonal-solver:

Algorithm 6 Tridiagonal matrix Algorithm

Input: A ∈ Rn×n, y ∈ Rn;

1: b1 = A1,1

2: for i = 2, 3,
. . . , n do

3: ai−1 = Ai,i−1;
4: bi = Ai,i;
5: ci−1 = Ai,i−1;
6: w = ai−1

bi−1
;

7: bi = bi − wci−1;
8: yi = yi − wdi−1;
9: end for

10: xn = yn
bn
;

11: for i = n− 1, . . . , 1 do

12: xi =
yi−cixi+1

bi
;

13: end for
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The algorithm can be unstable, the condition to be stable is the diagonal domi-
nance of the linear system matrix:

||bi|| ≥ ||ai||+ ||ci||

For all i which are the row of the matrix. If the algorithm is numerically unstable
then we have to rearrange the equation that is known as pivoting. We can also
estimate the computational complexity of this algorithm: for the forward step the
elimination according the equation in (4.6) and (4.7) are O(n) arithmetic operation;
for the backward step the equation in (4.5) also requires O(n) arithmetic operation.
Therefore, the complexity of the above algorithm is O(n). Comparing it with the
classical Gaussian elimination that is O(n3), for large matrix the tridiagonal solver
is way faster than that one.





Chapter 5

Numerical results

In this last chapter, we are going to illustrate the results of the numerical experiments
carried out. The properties of the matrices will be described and used in order to find
numerical results, which will be subsequently compared with the actual solutions
found using the closed formula in (1.19) for Merton model in jump-diffusion. For our
implementation, we used the programming language MATLAB. We also compared
the implemented solving methods with MATLAB’s function ”\”. The financial
option problems usually comprehend two main categories: European call option
and European put option. From the definition of the underlying PDE in (1.18),
the difference between the two options only relies on the definition of the boundary
conditions. Due to this fact, for our purpose, we are going to consider the European
call option. In the following presented numerical examples, the results are considered
at x = ln(K) and τ = T ; furthermore, in order to obtain information on the accuracy
of the scheme used to find the numerical solution, we define the ”Error between
iterative method and closed formula”, which can be expressed as:

EI,C(x, τ) = |uI(x, τ)− uC(x, τ)| (5.1)

where we have labeled: uI(x, τ) as the solution found using the iterative method,
while with uC(x, τ) the analytic solution using the analytic formula defined in (1.19).
To check the accuracy of the finite difference schemes used, iterative methods, and
their implementation, we will compare the iterative method with the MATLAB
function ”\”. Hence, we define the error between them as:

EI,B(x, τ) = |uI(x, τ)− uB(x, τ)| (5.2)

With x ∈ (− ln(Smax), ln(Smax)) and τ = T .

65
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In the equation above, we have labeled uB(x, τ) the price function found using
the MATLAB ”Backslash” method. The numerical experiments we will conduct are
the following:

Option Schema Methods

Call

Implicit Euler

Multigrid
No-Preconditioned GMRES
Preconditioned GMRES

Crank-Nicolson
No-Preconditioned GMRES
Preconditioned GMRES

Implicit-Explicit
Thomas tridiagonal solver
Backslash solver

Table 5.1: Discretization schemes and methods

Now, we define the numerical example for a European call option. To this aim,
we have chosen the following benchmark values:

σ = 0.25, r = 0.025, T = 1, K = 1, λ = 0.2, γ = 0.5.

In order to compare the different exposed schemes with one other, we define some
default space-time grids, namely:

Grid
Spatial

points

Time

points

G65 65 9
G129 129 17
G257 257 33
G513 513 65
G1025 1025 129
G2049 2049 257
G4097 4097 513
G8193 8193 1025
G16385 16385 2049

Table 5.2: Properties of the grids

We have taken into account the computed price and the pricing error at the
strike price (S = K = 1 → x = 0, in our grid setting) for each implemented
method. To perform our schemes we have to truncate the underlying’s domain to
set S ∈ (Smin, Smax), where for the next implementations Smax = 5 and Smin = 0.2
are chosen. Then using the change of variable in the equation (1.18), we obtain
x ∈ [ln(Smin), ln(Smax)]. In the considered grids, we have not taken into account the
two extremes nodes in the spatial domain, which represent the boundary conditions
of our problem; the reason is given by the fact that for those nodes we already know
the resulting price value obtained from the boundary conditions themselves on (3.3)
and (3.5).
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5.1 Implicit Euler scheme

As first discretization scheme, we perform the implicit Euler scheme following the
framework in (3.2), using benchmark values. Based on the implicit Euler scheme
approximations for time integration, we get a full discrete linear system as follows:

Aun = b (5.3)

which is a recall for the linear system in (3.26). The linear system involved is
represented by the unknown term un and the matrix A. Through the boundary
conditions for τ = 0, we start solving the first linear system at this point. We lead
back the algorithm to a N linear system, each one depending on the previous step
as stated in (5.3). In the next table, we are going to recall two important properties
of the linear system matrix, which are critical for the resolution of the linear system
using iterative methods. The two properties are the following: condition number
and spectral radius.

Spatial

points

Time

points

Spectral

radius

Condition

number

65 9 7.592 7.524
129 17 13.754 13.692
257 33 26.101 26.041
513 65 50.805 50.747
1025 129 100.218 100.161
2049 257 199.048 198.991
4097 513 396.708 396.652
8193 1025 792.031 791.974

Table 5.3: For each spatial point and time point, the table provides the correspond-
ing spectral radius ρ(A) and the condition number related to the linear system
matrix. The condition number has been computed with the MATLAB function
cond(A).

5.1.1 Multigrid V-cycle

The first iterative method we will show is the Multigrid method. For the Multigrid
has been used the Multigrid V-cycle. We followed the algorithm in (5). For this
algorithm we used as relaxation the Jacobi-Seidel algorithm. Since the Multigrid
travels down the various grid, using the V-cycle Multigrid the grid interval doubles
itself, the value L becomes the number of points to travel down the coarsest grid
which depends on the number of points, it is defined as L = 1 . . . 2n−1. For this
method, we have tuned the parameters related to: the numbers of relaxation, num-
bers of V-cycle, and the level for the method; this has been done in order to get
computational cost behaved following O(n). By doing this, the computational cost
does not depends on the problem size. The tolerance chosen is 1e − 06, to satisfy
the Multigrid exit condition. Here below a table will show the results using the
Multigrid method:
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Spatial

points

Time

points

Multigrid

error

Iterative

vs.

direct

Total

iterations

Iterative

time

65 9 2.569e-03 2.233e-10 24 0.020
129 17 1.178e-03 1.795e-10 48 0.084
257 33 5.626e-04 4.850e-10 96 0.295
513 65 2.747e-04 8.775e-10 256 1.644
1025 129 1.357e-04 7.866e-10 640 12.677
2049 257 6.749e-05 7.816e-09 1280 145.289

Table 5.4: Implicit-scheme Multigrid V-cycles. The tolerance value of Multigrid is
1e− 06. ”Iterative error” is the error defined in (5.1), which is computed at K = 1
at T = 1, while ”Iterative vs. Direct” is given by 5.2 with K = 1 at T = 1. ”Total
iterations” is the number of the V-cycles of Multigrid for all time steps. ”Iterative
time” is the required time to solve all the linear systems.

Here below, we will show the profile convergence of this Multigrid method:
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(b) Multigrid with grid of: spatial points 257
and time points 33.

Figure 5.1: Implicit Euler scheme with Multigrid method V-cycles with different
grids.

As we can see, for the first three grids G65, G129 and G257, the number of
V-cycles and so the number of operations have a behavior following O(n). In fact,
the parameters related to the Jacobi relaxation have been tuned to keep the number
of operations the same despite the increase in problem size. This kind of behavior
has not held for the grid G513, while it has held in the last two grids considered.
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5.1.2 GMRES no-Preconditioned

According to the discretization scheme, the linear system matrix is a non-symmetric
full matrix. Hence, an optimal iterative method to solve this kind of matrix would
be GMRES method for these types of linear system, which is described in (4.1.2).
Moreover, we are looking for a scalable preconditioner that allows GMRES to con-
verge in a low number of iterations that does not get worse whereas the grid becomes
finer. First of all, we will solve those linear systems without any preconditioners. In
the following table we show the results for the GMRES with no preconditioner:

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Iterative

time

65 9 2.568e-03 2.095e-10 248 0.022
129 17 1.178e-03 1.158e-09 688 0.053
257 33 5.626e-04 2.436e-09 1888 0.231
513 65 2.747e-04 3.632e-09 5248 0.644
1025 129 1.356e-04 6.575e-09 14464 9.049
2049 257 6.740e-05 1.030e-08 40192 75.161

Table 5.5: Implicit-scheme solved with GMRES with no-preconditioner, the toler-
ance is 1e − 10. ”Iterative error” is the error defined in (5.1), which is computed
at K = 1 and T = 1, while ”Iterative vs. Direct” is given by (5.2) with K = 1 at
maturity time T = 1. ”Total iterations” are the iterations of GMRES for all time
steps. ”Iterative time” is the required time to solve all the linear systems.

5.1.3 GMRES preconditioned

Before all else, we define the matrix of our linear systems’ problem: A which has
the following properties:

• Toeplitz matrix

• Non-Symmetric matrix

• Diagonally dominant

• M-matrix

• Values off the three-main diagonal going to zero
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The matrix A, having these properties coming from section (3.2), has the follow-
ing structure:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 a−1 a2 · · · · · · · · · · · · an−1

a1 a0 a−1 a2
...

a2 a1 a0 a−1
. . .

...
... a2

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . a2

...
...

. . . a1 a0 a−1 a2
... a2 a1 a0 a−1

an−1 · · · · · · · · · · · · a2 a1 a0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

For the given problem, a solution for the GMRES is to find a preconditioner M ,
thereby we are expecting the moreM is a good preconditioner of A the that faster the
iterative method used converges. As we have seen in Chapter 3 in the section (5.1.3),
an option for preconditioner is to use the matrix splitting. Therefore, using that,
we will find a perconditioner for the given problem. According to the implicit Euler
scheme, the linear system matrix off three main diagonal values are close to zero.
This is proven by the fact that the elements out the main three diagonals are the
values of the matrix T̂ in (3.19). Subsequently, we have chosen two preconditioners
M for the splitting problem as follows: We implemented two left preconditioners M
for this splitting problems:

• M is a n-diagonal matrix, whose diagonals are taken by a tolerance from A

• M is a tridiagonal matrix, whose diagonals are the main three diagonal of A

Since the spectral radius and the condition number are particularly important when
we are dealing with an iterative method for linear system, and also for the splitting
method converges if and only if the spectral radius ρ(M−1N) < 1; thereby we show
below these matrix properties for the left-preconditioned problem, for the grid, we
have considered:

Spatial

points

Time

points

Spectral Radius Condition number

n-Diagonal Tridiagonal n-Diagonal Tridiagonal
257 33 1.000 1.000 1.000 1.024
513 65 1.000 1.000 1.000 1.012
1025 129 1.000 1.000 1.000 1.006
2049 257 1.000 1.000 1.000 1.003
4097 513 1.000 1.000 1.000 1.001
8193 1025 1.000 1.000 1.000 1.000

Table 5.6: Spectral number and condition number consider the two splitting prob-
lems as preconditioners. We computed the spectral radius of ρ(M−1A) and the
condition number as cond(M−1A); the values are approximated at the sixth digits
with a tolerance of ±1e− 07.
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As can be seen from the table above the two preconditioners both significantly
reduced the spectral radius and the condition number compared to the results in
the no-preconditioned problem (5.3). This leads to the fact that the two precondi-
tioners are good preconditioners for the linear system matrix A. For the n-diagonals
preconditioner we chose tol = 1e− 06 for the grids G257, G513, G1015 and G2049;
for G4097 and G8193 tol = 1e− 07, while for the last grid G16385 tol = 1e− 08.

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Tolerance

diagonals

Iterative

time

257 33 5.626e-04 2.546e-13 64 1e-06 0.163
513 65 2.747e-04 1.081e-11 128 1e-06 0.670
1025 129 1.356e-04 4.949e-11 256 1e-06 2.720
2049 257 6.739e-05 5.979e-12 632 1e-06 9.952
4097 513 6.739e-05 8.286e-12 1536 1e-07 56.410
8193 1025 1.672e-05 6.272e-11 3072 1e-07 306.004
16385 2049 8.321e-06 1.511e-11 6144 1e-08 1839.300

Table 5.7: Implicit-scheme with preconditioned GMRES, the preconditioner is the
n-diagonals, taken from the linear system matrix greater than a tolerance, which
is factorized with ILU. GMRES tolerance 1e − 10. ”Iterative error” is the error in
the formula (5.1), which is computed at K = 1 and T = 1.”Iterative vs. Direct”
is given by (5.2) at K = 1 and T = 1. ”Total iterations” are the iterations of
GMRES for all time steps. ”Tolerance diagonals” is the tolerance chosen to draw
the matrix diagonal elements for the n-diagonals preconditioner. ”Iterative time” is
the required time to solve all the linear systems.

In the next table, we show the results of the second preconditioner M , which is
composed of the three diagonals of the linear system matrix.

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Iterative

time

257 33 5.626e-04 2.306e-10 128 0.185
513 65 2.747e-04 2.877e-11 256 0.593
1025 129 1.356e-04 5.869e-09 384 2.456
2049 257 6.739e-05 1.374e-09 768 9.963
4097 513 3.356e-05 3.195e-10 1536 46.603
8193 1025 1.672e-05 6.272e-11 3072 213.041
16385 2049 8.321e-06 1.354e-10 6144 1216.538

Table 5.8: Implicit-scheme GMRES preconditioned, the preconditioner is the tridi-
agonal matrix of the linear system matrix and factorized with ILU. GMRES is the
iterative method used with tolerance tol= 1e − 10. ”Iterative error” is the error
formula in (5.1), which is computed as K = 1 at T = 1, while ”Iterative vs. Direct”
is given by (5.2) with K = 1 at T = 1. ”Total iterations” are the iterations for all
time steps. ”Iterative time” is the required time to solve all the linear systems.
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We are also going to report the convergence profile of implicit-scheme of GM-
RES comparing the no-preconditioned GMRES to the two preconditioners we have
applied using the splitting-problem. For sake of visualization we took two grids with
not many iterations: G129 and G257.
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(a) Grid G129. GMRES with no-
preconditioner compared with N-diagonal
preconditioner with ILU facotrization.
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(b) Grid G129. GMRES with no-
preconditioner compared with tridiagonal
preconditioner with ILU facotrization.
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(c) Grid G257. GMRES with no-
preconditioner compared with N-diagonal
preconditioner with ILU facotrization.
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(d) Grid G257. GMRES with no-
preconditioner compared with tridiagonal
preconditioner with ILU facotrization.

Figure 5.2: Comparison of iteration numbers for: GMRES with no preconditioner,
preconditioned GMRES splitting problem. The preconditioners are: N-diagonal
(a),(c) and Tridiagonal (b),(d). The preconditioners are both factorized using ILU
factorization. The computations are at maturity time T = 1.

Comparing the results on the table (5.6) and the others from (5.7) and (5.8),
we notice different performances. Indeed, using the preconditioner we have reduced
the condition number of the matrix. Therefore, it has led to a relevant reduction
of the number of total iterations for the two preconditioned GMRES in tables (5.7)
and (5.8). As the last result, there has been a reduction in the computation time
in both of them. Analyzing the two preconditioned problems, we can notice that
the average number of iterations for each time step using the n-diagonal precondi-
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tioner and the three-diagonal preconditioner tend to be the same fining the grid.
Despite the number of iterations for the finest grids are equals for the two types
of preconditioned problem, the error with the closed formula is slightly higher for
the tridiagonal preconditioner since it approximates slightly less accurate the linear
system matrix by the fact that in this preconditioner we have just the tri-main di-
agonals. Moreover from (5.6), the condition number for tridiagonal preconditioner
is quite bigger than the n-diagonal preconditioner and as we can see it leads to a
less accurate tridiagonal-preconditioned problem. In addition, the more element has
the matrix, the more the iterative time increase for the n-diagonal preconditioned
problem; in fact the memory cost and the multiplication cost is greater for the n-
diagonal preconditioned matrix, by the construction of the preconditioned, than the
tridiagonal preconditioned problem. From the results, we deduce that the tridiago-
nals preconditioner is better than n-diagonals preconditioner for memory cost and
the errors are almost the same. Lastly, the two preconditioners are both good pre-
conditioners since the results with the MATLAB function ”\” are almost the same,
but as we can guess the n-diagonal preconditioned problem is more accurate than
the tridiagonal preconditioned.

5.2 Crank-Nicolson scheme

The next approximation method we are going to perform is the Crank-Nicolson
scheme, whose implementation is related to section (3.3) of Chapter 2. The linear
system’s matrix has the formulation in (3.33), which has the same features of the
Euler implicit scheme, as we have proven in the relative theoretical section. In the
right-hand vector b̂ is defined as:

b̂ =
(

I− ∆τ

2
L
)

un +
∆τ

2
bn+1 +

∆τ

2
bn

The multiplication between the matrix
(

I− ∆τ
2
L
)

and the vector un can be sped up

using the Fast-Fourier Transform since the matrix has a Toeplitz structure. Using
FFT algorithm, the product can be computed in O(n log n) time.
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In the next table, we are going to show, as in the previous section, two key
features: condition number and spectral radius.

Spatial

points

Time

points

Spectral

radius

Condition

number

65 9 4.296 4.277
129 17 7.377 7.360
257 33 13.550 13.535
513 65 25.902 25.887
1025 129 50.609 50.594
2049 257 100.024 100.009
4097 513 198.854 198.840
8193 1025 396.515 396.501
16385 2049 791.838 791.823

Table 5.9: For each spatial point and time point spectral radius ρ(A) and condition
number related to the linear system matrix, the condition number has been com-
puted with MATLAB function cond(A) for Crank-Nicolson scheme.

As we can find in these results, comparing to the results in the table (5.3), the
condition number and as well as the spectral radius are halved. This fact leads to
more accuracy and well-conditioned problem.

5.2.1 Multigrid V-cycle

As in the previous scheme, the first iterative method we show is the Multigrid
method which has the same algorithm as the Multigrid shown in the (5.1.1), in fact
we used the V-cycle Multigrid. The Multigrid’s exit condition is the tolerance of
1e− 06. Here below a table will show out the results using the Multigrid method.

Spatial

points

Time

points

Multigrid

error

Iterative

vs.

direct

Total

iterations

Iterative

time

65 9 3.854e-04 1.911e-10 24 0.021
129 17 1.041e-04 6.042e-10 48 0.078
257 33 2.872e-05 7.373e-11 96 0.290
513 65 8.362e-06 2.335e-11 192 1.370
1025 129 2.673e-06 1.978e-09 384 16.579
2049 257 9.673e-07 2.462e-09 1536 137.568

Table 5.10: Implicit-scheme Multigrid V-cycles.
The tolerance value of Multigrid method is 1e − 06. ”Iterative error” is the error
between iterative method and closed formula defined in 5.1, which is computed at
K = 1 and T = 1, while ”Iterative vs. Direct” is given by 5.2 with K = 1 at T = 1.
”Total iterations” are the iterations of Multigrid for all time step. ”Iterative time”
the time for all linear systems.
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Here below we will show the profile convergence of this Multigrid method:
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(a) Multigrid with grid of: spatial points
129 and time points 17.
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(b) Multigrid with grid of: spatial points
257 and time points 33.

Figure 5.3: Implicit Euler scheme with Multigrid method V-cycles in different grids.

As we can see, in this scheme, for the first five grids the number of V-cycles and
so the number of operations have a behavior following O(n). In fact, the parameters
related to the Jacobi relaxation have been tuned to keep the number of operations
the same despite the increase in problem size. This kind of behavior has not held
for the last grid, for which the number of operations has increased drastically.

5.2.2 GMRES no-Preconditioned

According to scheme used, in this linear system, the matrix is a non-symmetric
full matrix as well as the Implicit Euler method (3.2). Therefore, we will use the
GMRES to compute the solutions for this scheme. Firstly, we show the results for
the GMRES without a preconditioner:

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Iterative

time

65 9 3.853e-04 4.193e-10 184 0.069
129 17 1.040e-04 7.330e-10 496 0.043
257 33 2.862e-05 1.415e-09 1344 0.192
513 65 8.261e-06 1.421e-09 3776 0.802
1025 129 2.572e-06 2.063e-09 10496 6.957
2049 257 8.715e-07 3.928e-09 28928 52.632

Table 5.11: Crank-Nicolson scheme computed using GMRES with no-
preconditioner. GMRES is the iterative method used with tolerance tol = 1e− 10.
”Iterative error” is the error defined in (5.1), which is computed at K = 1 and
T = 1, while ”Iterative vs. Direct” is given by (5.2) with K = 1 at T = 1. ”Total
iterations” are the iteration of GMRES for all time step. ”Iterative time” is the
time for all linear systems.
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5.2.3 GMRES Preconditioned

By the construction of the matrix in (3.28), it has the properties stated in Section
(3.3) and furthermore, it contains the larger modules values in the three main diago-
nal as well as the implicit Euler scheme. By that, following the splitting iteration in
section (5.1.3), we will use the three main diagonals of A as preconditioner. Here is
the calculus of the spectral radius and condition number for the left-preconditioned
problem, for the grids we have considered:

Spatial

points

Time

points

Spectral

radius

Condition

number

257 33 1.000 1.012
513 65 1.000 1.010
1025 129 1.000 1.008
2049 257 1.000 1.006
4097 513 1.000 1.005
8193 1025 1.000 1.003
16385 2049 1.000 1.002

Table 5.12: Spectral number and condition number for the left-preconditioned for
the Implicit scheme. We computed the spectral radius of ρ(M−1A) and the condition
number as cond(M−1A).

As can be seen from the table above the preconditioner significantly reduced
the spectral radius and the condition number compared to the results in the no-
preconditioned problem (5.3). This leads to the fact that the preconditioner is a
good preconditioner for the linear system matrix A. In the next table we will show
the result for the Crank-Nicolson scheme using GMRES preconditioned:

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Iterative

time

257 33 2.862e-05 2.251e-10 144 0.159
513 65 8.362e-06 5.740e-11 262 0.335
1025 129 2.674e-06 1.635e-09 514 2.449
2049 257 9.703e-07 5.135e-10 814 10.328
4097 513 4.064e-07 1.562e-10 1552 48.204
8193 1025 1.967e-07 4.001e-11 3077 253.147
16385 2049 1.110e-07 3.908e-10 6145 1250.747

Table 5.13: Crank-Nicolson scheme computed using GMRES with preconditioner,
the preconditioner is the tridiagonal matrix of the linear system matrix with ILU
decomposition. GMRES is the iterative method used with tolerance tol= 1e − 10.
”Iterative error” is the error defined in (5.1), which is computed at K = 1 and
T = 1, while ”Iterative vs. Direct” is given by (5.2) with K = 1 and T = 1. ”Total
iterations” are the iteration of GMRES for all time steps. ”Iterative time” is the
time for all linear systems.
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The results in the table (5.13) show that the preconditioner used has improved
the problem and so the number of iterations has significantly decreased. Conse-
quently, the computation times of the iterative method have decreased. The iter-
ative error along the grids is reduced by a larger factor than in the first scheme
used, it is due to the fact that the second-order accuracy over the time. We show
below, the convergence profiles of two grids considered with a comparison between
the no-preconditioned and the preconditioned GMRES.
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(a) Crank-Nicolson with grid G129. GMRES
with no-preconditioner compared with tridi-
agonal preconditioner with ILU factorization
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Figure 5.4: Crank-Nicolson scheme, comparison with different grids.
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5.2.4 GMRES preconditioned: halved time steps

By the construction of the Crank-Nicolson scheme, we can halve the time steps
keeping a good level of accuracy for that and moreover the iterative time will be
halved. Here below, we will halve the time steps and use the GMRES preconditioned:

Spatial

points

Time

points

Iterative

error

Iterative

vs.

direct

Total

iterations

Iterative

time

257 17 4.472e-04 3.335e-11 82 0.078
513 33 2.187e-04 2.719e-10 142 0.300
1025 65 1.080e-04 6.024e-11 261 1.259
2049 129 5.372e-05 9.334e-12 513 5.139
4097 257 2.679e-05 1.793e-09 814 22.404
8193 513 1.339e-05 1.012e-09 1552 110.055
16385 1025 6.710e-06 7.941e-10 3077 608.353

Table 5.14: Crank-Nicolson scheme, time steps halved, computed using GMRES
with preconditioner, the preconditioner is the tridiagonal matrix of the linear system
matrix with ILU decomposition. GMRES is the iterative method used with tolerance
tol= 1e − 10. ”Iterative error” is the error between iterative method and closed
formula defined in (5.1), which is computed as K = 1 at maturity time T = 1, while
”Iterative vs. Direct” is given by (5.2) with K = 1 at maturity time T = 1. ”Total
iterations” are the iterations of GMRES for all time steps. ”Iterative time” is the
required time to solve all the linear systems.

Comparing the two tables (5.13) and (5.14), we can see that halving the time
steps has decreased the total iterations for the grids in table with half time steps.
From the point of view of accuracy, in this case, the iterative error has increased
as expected. Nevertheless, the grade of accuracy can be compared to the Implicit
scheme one, however, keeping a great level of error.
Important fact is that the iterative time for this case has halved as well, leading to
a good trade-off between accuracy and computational cost.

5.3 Implicit-Explicit scheme

In this sections, we are going to put into practice the implicit-explicit discretiza-
tion schema, which has been introduced in the Chapter 2 in (3.4). This type of
discretization avoids dense linear system that arises from the integral discretization
by approximating it explicitly, and it uses implicit schemes for the second order
differential term in the equation. The linear system for this scheme is defined in
(3.33), in this equation the right-hand vector label with rn+1 has the following form:

rn+1 = Sun +∆τb

By the construction of the S matrix, it is a Toeplitz matrix. Therefore, the product
between S and un can be sped up using FFT algorithm.
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In the next table, we are going to show the condition number and the spectral
radius.

Spatial

points

Time

points

Spectral

radius

Condition

number

65 9 7.564 7.569
129 17 13.740 13.742
257 33 26.094 26.095
513 65 50.801 50.802
1025 129 100.216 100.217
2049 257 199.047 199.047
4097 513 396.708 396.708
8193 1025 792.031 792.031
16385 2049 1582.675 1582.675

Table 5.15: For each spatial point and time point spectral radius ρ(A) and con-
dition number related to the linear system matrix, the condition number has been
computed with MATLAB function cond(A), for the IM-EX scheme.

The linear system, in this case, has a non-symmetric tridiagonal Toeplitz matrix,
for this kind of matrix we have chosen to use two different types of linear system
solver:

• Tridiagonal matrix algorithm ( also known as Thomas algorithm)

• MATLAB function backslash (defined as ”\”)

5.3.1 Tridiagonal Solver

As first one solver, we have implemented the Tridiagonal algorithm described in
(5). As mentioned in Chapter 4 in section (4.3), the convergence condition for this
algorithm is that the matrix A of the linear system has to be diagonal dominant.
This condition is fulfilled for the numerical approximation method we used. In
fact, by the equation (3.33), we can understand that the matrix A is a diagonally
dominant matrix. Thus, the tridiagonal solver converges to the solution.
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Here below, we present the results for Tridiagonal solver in Im-Ex scheme:

5.3.2 MATLAB: Backslash Solver

As second method we will use MATLAB function ”\”. Since the documentation it
has multiple checks and calculation. To speed up this function and avoid these kinds
of checks, we use LU factorization to define two matrices (L is the lower-tridiagonal
of A while U is the upper-tridiagonal of A) reducing the linear systems in two linear
system as follows:

Ax = b

{

Ly = b

Ux = y
(5.4)

These kinds of linear systems (Triangular linear system) lead to the MATLAB func-
tion ”\ a cheaper computation cost, since it checks for the triangularity of the matrix
and therefore it solves the linear system using triangular solver, avoiding permuted
triangular and other expensive operations in the case the matrices would be non-
triangular. Moreover, the LU decomposition has been computed only once and uses
L and U at every time step. Here below, the results using the ”\” of MATLAB:

Spatial

Steps

Time

Steps

Back-Slash

error

Iterative

Time

257 33 3.079e-04 0.129
513 65 1.472e-04 0.504
1025 129 7.195e-05 2.025
2049 257 3.557e-05 8.103
4097 513 1.769e-05 32.210
8197 1025 8.840e-06 130.251
16385 2049 4.431e-06 511.499

Table 5.16: Implicit-explicit scheme computed using MATLAB function backslash.
”Back-Slash error” is the error defined in (5.1), computed at K = 1 and T = 1.
”Iterative time” is the required time to solve all the linear systems.
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Now, we will show below the price function an a three-dimensional reference
system, where we have the corresponding definition: (x, y, z) → (ln(S), t, price),
computed using Im-Ex scheme.

Figure 5.5: The price of European call option under Merton’s jump diffusion using
the Im-Ex scheme with grid G129

5.4 Schemes comparison

After the implementation of the various scheme, we will compare the distributions of
schemes’ errors depending on the number of spatial points and time points. Firstly
in the next two charts, we will fix the time steps and increase the spatial node in
order to display the performance of each discretization over the space domain.
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(a) Spatial points: 4097. Evaluation at time
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Figure 5.6: Comparison of error distribution with fixed spatial nodes and various
time steps. The errors are computed at S = K at T = 1, using the formula in (5.1).
The charts are log-log-plot.
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As expected, the implicit error distribution follows a straight line since it is a
first order accuracy in time by the definition of the implicit Euler scheme. Likewise,
the implicit-explicit method has a first order accuracy in time as proven in the
section (3.4). Moreover, the IM-EX is more accurate than the implicit as we can
see from the results in the table (5.13) and (5.14) than the implicit. Besides, the
Crank-Nicolson scheme since has a second order accuracy in time so it converges
faster. Moreover, for middle spatial steps, the Crank-Nicolson has a more accurate
solution than the other schemes used. As concerns the evaluation of the schemes’
errors depending on the spatial points, we display two other plots where for those
we will fix the numbers of time nodes and range the spatial nodes.
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Figure 5.7: Comparison of errors’ distributions with fixed time nodes and various
spatial steps. The errors are computed at S = K and T = 1, using the value of
(5.1). Time points: 8193. Evaluation at spatial points: 9,17, 33, 65, 129, 257, 513,
1025, 2049, 4097. The chart is a log-log-plot.

Visualizing the chart above (5.6), we can see the Crank-Nicolson scheme performs
better in terms of accuracy than the other two schemes. It is due to the second-
order accuracy of the Crank-Nicolson scheme over time. In fact it as well as having
slightly better results for the first half of the x-axis. Moreover, it reaches the limit of
accuracy, for this spatial point, with larger time points than the other two schemes.



Conclusion

The main purpose of this thesis was to study the Merton jump-diffusion model, in
particular, it focused on the implementation of a numerical solution for evaluating
the fair price of a European call option deriving from the PDE that describes the
model studied.
We developed an implicit scheme using Backward Euler that led to a full linear
system, for which we applied a Multigrid V-cycle method. Unfortunately, we did
not perform a Multigrid scheme that could maintain scalability in terms of compu-
tational cost since, especially for large problems, this metric increased considerably
when rising the grid size. On the other hand, using the Preconditioned GMRES we
were able to obtain restrained computational costs for very large dimension prob-
lems; between the two studied preconditioners, the one that resulted in the most
satisfactory outcome was the tridiagonal preconditioner; the reason lies in the fact
that it was able to correctly approximate the underlying matrix and bring low stor-
age costs, as one can see for instance for grid G8193 and for the largest one G16385.
The second scheme we implemented was the Crank-Nicolson scheme, which is a
method that leads to a great level of accuracy both in time and spatial domain. Fol-
lowing the same approach adopted in the previous implicit scheme, we performed
the Multigrid V-cycle method that again could not preserve scalability given the
high resulting computational costs. Nevertheless, we managed to perform the anal-
ysis even for very large problem sizes using the preconditioned GMRES method and
also performed the matrix-vector multiplication thanks to the Fast Fourier Trans-
form (FFT) algorithm given the matrix properties.
The last scheme implemented was the Implicit-Explicit one, which accomplished a
great level of accuracy and low computational time, due to the tridiagonal linear
matrix, using both the tridiagonal and the MATLAB ”\” solver. Moreover, we were
able to perform the Crank-Nicolson scheme halving the time nodes on the grid in
order to obtain comparable results with the Implicit-Explicit scheme from the point
of view of accuracy and computational cost.
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