
Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE

Corso di Laurea Magistrale in Ingegneria Matematica

Block preconditioners for saddle point linear systems arising in
the FE discretization of the Navier-Stokes equations.

Application to the driven cavity problem.

Candidato:

Filippo Zanetti
Matricola 1179931

Relatore:

Prof. Luca Bergamaschi

Anno Accademico 2018-2019

Contents

Introduction 1

1 Navier-Stokes equations 3
1.1 Mathematical formulation . 3
1.2 Finite element method . 6
1.3 Stability and convergence . 14

2 Saddle point systems 19
2.1 Algebraic formulation . 19
2.2 Properties of saddle point matrices 21
2.3 Singularity of the system . 27

3 Iterative methods for linear systems 33
3.1 Projection methods . 33
3.2 GMRES . 38
3.3 Multigrid . 46

4 Preconditioning techniques 59
4.1 Constraint preconditioner . 59
4.2 Other preconditioners . 70
4.3 Preconditioners for the blocks . 72

5 Numerical results 81
5.1 Problem description . 81
5.2 Stokes problem . 83
5.3 Navier-Stokes problem . 85

Conclusion 99

A Application of Theorem 2.3 101

B Algorithms 105

iii

List of Figures

1.1 Example of subdivision of the domain 8
1.2 Piecewise polynomial basis functions in one dimension 9
1.3 Velocity magnitude for the Stokes problem 13
1.4 Velocity direction for the Stokes problem 13
1.5 Linear and quadratic triangular elements 16
1.6 Linear elements for the P1isoP2 − P1 approximation 16

2.1 Sparsity pattern of matrix A . 21
2.2 Sparsity pattern of matrix B . 21

3.1 Basis function in S2h and Sh . 47
3.2 Weights for P2 triangular elements 48
3.3 V and W cycles for 3 grids . 50
3.4 V and W cycles for 4 grids . 50
3.5 Standard numeration of the nodes 57
3.6 Ordering of the nodes for the Gauss-Seidel smoothing 57

5.1 Sparsity pattern of matrix M10 82
5.2 Spectra of the BFBt-preconditioned Schur complement 87
5.3 Spectra of various Multigrid schemes 91
5.4 Comparison of the spectra of the BFBt and BFBt-c preconditioners 94
5.5 Spectra of the preconditioned (1, 1) block and Schur complement 94
5.6 Time VS unknowns in the scalable case 95
5.7 Comparison of computational times 96
5.8 Convergence profile for the matrix M40 with different viscosities 96
5.9 Convergence profile for various matrices and viscosity 0.005 . . . 97

v

List of Tables

5.1 Properties of the matrices . 82
5.2 Spectral properties for the Stokes problem 83
5.3 Results for the Stokes problem 84
5.4 Results for the Stokes problem with relaxation 84
5.5 Results for the Stokes problem using ECP 85
5.6 Spectral properties of the mass preconditioned Schur complement 85
5.7 Spectral properties for the NS-J-BFBt problem 86
5.8 NS-J-BFBt results for various values of the relaxation parameter 88
5.9 Spectral properties for the NS-sGS-BFBt problem 89
5.10 NS-sGS-BFBt results for various values of the relaxation parameter 89
5.11 Spectral properties for the NS-W2dGS-BFBt problem 90
5.12 Spectral properties of the (1, 1) block without W-cycle 91
5.13 NS-W2dGS-BFBt results for various relaxation parameters . . . 92
5.14 Spectral properties for the NS-W2dGS-BFBt-c problem 93
5.15 NS-W2dGS-BFBt-c results without relaxation 95
5.16 Spectral properties for NS-sGS-BFBt-c problem with low viscosity 97
5.17 Comparison of ICP and TBP . 98

vii

Introduction

The task of solving numerically the Navier-Stokes equations is of fundamental im-
portance in many scientific and industrial applications; the strong nonlinearity of
the equations and the lack of any theoretical result about existence and regularity
of the solutions leaves the scene only to numerical approximations. These have
been developed since the dawn of the computing era, but despite the enormous
efforts put into the development of new algorithms, the problem of finding a good
solver for most of the practical situations involving the Navier-Stokes equations
has always been elusive, particularly when the Reynolds number becomes large.
One of the approaches to the numerical solution of the Navier-Stokes equations is
given by the Finite Element Method, which, after a linearization of the nonlinear
terms, gives rise to a saddle point linear system: this particular system has a
structure that appears in many other problems, but in this context it is possible
to exploit the underlying continuous formulation to develop efficient solvers.

In this work, we focus in finding a scalable preconditioner for these saddle
point linear systems: many preconditioners have already been developed and
tested successfully, for instance in [2, 8, 9, 11, 20]; we choose to use a constraint
preconditioner, already analyzed in all its forms in [3, 4, 12]. This preconditioner
embeds in its structure many information about the matrix of the system, so we
hope that it will provide better results than its competitors. We also employ a
relaxation technique, presented in [5], in order to accelerate its convergence.

In order to obtain an efficient solver, we use the GMRES method and we
look for a scalable preconditioner, i.e. a preconditioner that allows GMRES to
converge in a number of iterations that does not deteriorate as the mesh is refined.
The success of this task lays on finding scalable preconditioners for the (1, 1) block
and the Schur complement of the saddle point system. It is well known that
a Multigrid technique can be used as a scalable preconditioner for the Poisson
problem; the (1, 1) block of our system corresponds to a discrete convection-
diffusion operator, which is a variation of a Poisson problem that involves also
convective processes. The generalization of Multigrid preconditioners to this
kind of situations requires a robust smoother, that can be built using a stationary

1

method involving a pattern that follows the convective flow. This approach has
already been tested in [8, 14, 17].

With regard to the preconditioner for the Schur complement, the possible
approaches are different: some techniques are developed starting from the
preconditioner built for the Stokes problem, while some others follow a more
algebraic approach. We use mainly the preconditioner developed in [7] and
improved in [15]. These techniques are developed assuming that a particular
commutator is sufficiently small to neglect it, while they do not exploit the
particular underlying structure of the problem, as it happens in the Stokes case.

The problem that we use as test is the famous 2-dimensional lid-driven cavity,
discretized using P2 − P1 elements and with values of the viscosity as low as
10−3. The main goals that we want to achieve are:

• Develop a smoother that is able to follow the convective flow in the case of
the recirculating problem considered; this in turn would allow us to build
a scalable Multigrid preconditioner for the (1, 1) block.

• Understand the differences between the Schur complement preconditioners
in the Stokes and Navier-Stokes problems and find a suitable scalable
preconditioner for our test case.

The thesis is structured as follows:

• In the first chapter, we present the finite element method and we derive
the formulation that will lead to the saddle point linear system.

• In the second chapter, we analyze the algebraic properties of saddle point
matrices, underlying the connections with the continuous formulation; we
also set the ground for the introduction of some preconditioning techniques.

• In the third chapter, we study the iterative methods used to solve large
linear systems and in particular the GMRES method; we also introduce
Multigrid methods and show why they are such interesting preconditioners.

• In the fourth chapter, we present the preconditioner that is used; we derive
eigenvalue bounds and talk about the possible implementation strategies.
We then focus in finding suitable preconditioners for the (1, 1) block and
the Schur complement.

• In the last chapter, we report the numerical results for all the combinations
of preconditioners that we tried; we show both spectral information and
convergence results, together with some pictures that clarify the differences
between the various schemes.

2

Chapter 1

Navier-Stokes equations

In this Chapter, we will introduce the Navier-Stokes equations, discuss how to
solve them numerically, underline all the challenges related to this task and
finally present the model problem that will be analyzed in the next Chapters.

1.1 Mathematical formulation

The motion of incompressible newtonian fluids is governed by the well known
Navier-Stokes equations, a system of partial differential equations that arises
from the conservation of mass and momentum. In the general non-stationary
case they take the formρ

∂u

∂t
− µ∆u + ρ(u · ∇)u +∇p = f , x ∈ Ω, t > 0

divu = 0, x ∈ Ω, t > 0

where Ω ⊂ R3 is the domain on which the motion evolves; u = u(x, t) is the
velocity field; p = p(x, t) is the pressure field; ρ and µ are the fluid density and
dynamic viscosity; f is a forcing term.

The first equation is often used in a different form: dividing by the density,
we obtain the following version of the Navier-Stokes equations

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f , x ∈ Ω, t > 0

divu = 0, x ∈ Ω, t > 0
(1.1)

where now ν = µ/ρ is the kinematic viscosity, p is the density-scaled pressure
field and f is a forcing term per unit mass.

The first of the two equations imposes the conservation of momentum; the
term ν∆u takes into account the diffusive processes, while (u · ∇)u describes

3

4 CHAPTER 1. NAVIER-STOKES EQUATIONS

the convective processes. The equation divu = 0 imposes the incompressibility
of the fluid, i.e. the density ρ is a constant, both in space and time.

For the problem to be well posed, equations (1.1) need some initial condition

u(x, 0) = u0(x) ∀x ∈ Ω

and boundary conditions, e.g. ∀t > 0u(x, t) = φ(x, t), ∀x ∈ ΓD(
ν
∂u

∂n
− pn

)
(x, t) = ψ(x, t), ∀x ∈ ΓN

where u0, φ and ψ are given functions, ΓD and ΓN form a partition of the
boundary of Ω and n is the outward-facing unit normal to ∂Ω.

The first kind of boundary condition is said of Dirichlet type, and ΓD will be
addressed as the Dirichlet portion of the boundary, while the second kind is said
of Neumann type, and ΓN will be called the Neumann portion of the boundary.

The Navier-Stokes equations (1.1) are nonlinear, due to the term (u · ∇)u;
moreover, there are no general results about existence, regularity and uniqueness
of the solution, in particular in three dimensions. In fact, this is one of the most
important open problems in mathematics and one of the Millennium problems.

In the following, we will always consider the stationary Navier-Stokes equa-
tions, i.e. equations (1.1) without the time derivative of u.

1.1.1 Stokes equations

Define the Reynolds number as the ratio between inertial and viscous forces,
namely Re = UL

ν , where L is a characteristic length of the domain Ω and U is
a representative velocity scale of the fluid. It turns out that, if the Reynolds
number is sufficiently small (i.e. if the flow is particularly slow or if the viscosity
is high enough), the Navier-Stokes equations can be simplified: in fact, the
term (u · ∇)u is negligible with respect to the viscous term and the nonlinear
equations (1.1) become a linear system of equations, known as the stationary
Stokes equations: −ν∆u +∇p = f , x ∈ Ω, t > 0

divu = 0, x ∈ Ω, t > 0
(1.2)

to which the same previously cited initial and boundary conditions must be
applied. In these equations there is no more the presence of convection, but only
diffusive processes survive.

The Stokes equations (1.2) have the great advantage of being linear, which

1.1. MATHEMATICAL FORMULATION 5

makes them easier to work with, both analytically and numerically.

1.1.2 Weak formulation

The general formulation of equations (1.1) and (1.2), which require as solution a
function u twice differentiable and a function p continuously differentiable, can
be relaxed, allowing for solutions that satisfy weaker requirements. Sometimes
in fact, there does not exist any solution that satisfies the strong form of the
equations, while it is possible to find weak solutions.

Before deriving the weak form of the Navier-Stokes equations, let us define
the space of square-integrable functions

L2(Ω) =
{
f : Ω 7→ R |

∫
Ω

|f(x)|2 dΩ < +∞
}

and the Sobolev Space

Hk(Ω) =
{
f ∈ L2(Ω) | Dαf ∈ L2(Ω) ∀α : |α| ≤ k

}
,

i.e. the space of square integrable functions whose derivatives up to order k are
still square integrable. Here, Dαf represents a weak derivative.

Now, starting from the stationary Navier-Stokes equations, it is possible to
obtain the weak formulation multiplying by a test function v ∈ V , where the
space V will be defined later, and integrating over Ω.

−
∫

Ω

ν∆u · v dΩ +

∫
Ω

[(u · ∇)u] · v dΩ +

∫
Ω

∇p · v dΩ =

∫
Ω

f · v dΩ ∀v ∈ V.

In this form there is still the necessity for the function u to be twice differen-
tiable, which is the condition that we want to relax. In order to do so, we exploit
Green’s formulas (i.e. integration by parts in multiple dimensions) and rewrite
the integral involving ∆u as the sum of an integral involving only ∇u and a
boundary integral. The same can be done for the pressure term. The result is∫

Ω

ν∇u · ∇v dΩ +

∫
Ω

[(u · ∇)u] · v dΩ−
∫

Ω

p divv dΩ =∫
Ω

f · v dΩ +

∫
∂Ω

(
ν
∂u

∂n
− pn

)
· v dS ∀v ∈ V. (1.3)

The same can be done for the second equation, considering a test function
q ∈ Q. The result is ∫

Ω

q divu dΩ = 0 ∀q ∈ Q. (1.4)

So, an alternative version of the Navier-Stokes equations is: find u ∈ V and

6 CHAPTER 1. NAVIER-STOKES EQUATIONS

p ∈ Q such that (1.3) and (1.4), together with the proper initial and boundary
conditions, hold for every possible choice of v ∈ V and q ∈ Q. The couple
(u, p) is then called a weak solution of the Navier-Stokes equations. For this
formulation to make sense, all the integrals involved must be well defined: this is
achieved by choosing properly the spaces V and Q. The correct choice is to set
V equal to the space of functions in H1(Ω) such that they satisfy the Dirichlet
boundary condition on the Dirichlet portion of the boundary; Q should simply
be the space L2(Ω). It can be checked that in this way all the integrals are well
defined (see [16, pp. 431-435]).

With this formulation, the strong requirements about differentiability that
were stated at the beginning are lost; in fact, the solution does not even need to
be continuous. The same thing can be done for the Stokes equations, yielding
the same result, only without the integral containing the convective term. This
formulation will be the basis from which the finite element method is constructed.

1.2 Finite element method

The previously stated weak formulation can be expressed in a more compact
form: suppose to solve a Stokes problem with homogeneous Dirichlet boundary
condition on all the boundary. Then, the weak formulation is equivalent to:

find u ∈ V , p ∈ Q such thata(u,v) + b(v, p) = (f ,v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q
(1.5)

where a : V × V 7→ R and b : V ×Q 7→ R are bilinear forms defined as

a(u,v) =

∫
Ω

ν∇u · ∇v dΩ,

b(u, q) = −
∫

Ω

qdivu dΩ

and
(f ,v) =

∫
Ω

f · v dΩ.

If instead the Navier-Stokes problem is solved, there is one more term in the
left-hand side of the first equation of (1.5): the convective term is represented
with a trilinear form c : V × V × V 7→ R:

c(u,u,v) =

∫
Ω

[(u · ∇)u] · v dΩ.

1.2. FINITE ELEMENT METHOD 7

In the following of this Section, we will consider the formulation for the Stokes
problem, since the theoretical results are easier to understand. Analogous results
hold also for the Navier-Stokes problem.

1.2.1 Galerkin approximation

Equations (1.5) are defined on the spaces V and Q, which are subspaces of H1

and L2 of infinite dimension. To develop a numerical scheme able to approximate
the solution, we need to find an approximate problem defined on spaces of finite
dimension. Consider, Vh ⊂ V and Qh ⊂ Q, both of finite dimension, then the
problem

find uh ∈ Vh, ph ∈ Qh such thata(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh
b(uh, qh) = 0 ∀qh ∈ Qh

(1.6)

is an approximation of the original problem, and it is called Galerkin approxi-
mation.

The ability to solve problem (1.6) then relies on finding a good basis for the
spaces Vh and Qh. Indeed, denote by ϕi, i = 1, . . . , NV a basis of Vh, where NV
is its dimension; denote also by ψi, i = 1, . . . , NQ a basis for Qh. To check that
the first equation of (1.6) holds ∀vh ∈ Vh it is sufficient to check that it holds
∀ϕi, i = 1, . . . , NV . Then, since uh ∈ Vh and ph ∈ Qh, it follows that they can
be written as

uh(x) =

NV∑
j=1

ujϕj(x), ph(x) =

NQ∑
j=1

pjψj(x)

where uj and pj are unknown coefficients.
Therefore, the first equation of (1.6), due to the linearity of a(·, ·) and b(·, ·),

becomes

NV∑
j=1

uja(ϕj , ϕi) +

NQ∑
j=1

pjb(ϕi, ψj) = (f , ϕi) ∀i = 1, . . . , NV . (1.7)

The second equation instead becomes

NV∑
j=1

ujb(ϕj , ψi) = 0 ∀i = 1, . . . , NQ. (1.8)

Once the basis functions are fixed, the previous equations can be expressed as
a linear system of algebraic equations, involving the matrices Aij = a(ϕj , ϕi) and

8 CHAPTER 1. NAVIER-STOKES EQUATIONS

Bij = b(ϕj , ψi), and with unknowns uj and pj . Therefore, using the Galerkin
approximation, it is possible to transform a linear system of partial differential
equations into a linear system of algebraic equations.

The properties of the linear system arising from this approximation depend
greatly on the choice of the basis functions. The Finite Element Method (FEM)
chooses to use very large dimensions for the spaces Vh and Qh, and therefore
very large matrices A and B arise. In order to be able to work with these big
matrices, they must be sparse (a matrix is said to be sparse if only few of its
entries are different from zeros; therefore, the number of its nonzero elements
depends linearly on the dimension of the matrix and not quadratically, as it
happens for the more common dense matrices).

The question now is how to choose ϕj and ψj so that the matrices A and B
are sparse. We start by subdividing the domain Ω in a large number of small
polygonal regions, called elements; Figure 1.1 shows an example of subdivision
of the square [−1, 1]× [−1, 1] into triangular elements.

Figure 1.1: Example of subdivision of the domain.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Let us consider the vertexes of this polygonal regions, we will call them nodes.
The set of all nodes forms a discrete set of points over which the solution will be
approximated. Therefore, we will not be able to know the solution everywhere we
want, but only over the nodes that we decided at the beginning. The unknowns
uj and pj previously defined will thus be the values of the approximated solution
at every node. To do so, we need to build basis functions for every node, for
both the spaces Vh and Qh.

Recall that

Aij = a(ϕj , ϕi) =

∫
Ω

ν∇ϕj · ∇ϕi dΩ =
∑
Ωe

∫
Ωe

ν∇ϕj · ∇ϕi dΩ,

where Ωe represents a single element. This means that the global integral over
Ω can be seen as the sum of the integrals over all the elements. In order for A
to be sparse, these integrals need to be almost always zero. A way to do it, is
to choose ϕj so that is has compact support: in particular, ϕj will be different

1.2. FINITE ELEMENT METHOD 9

from zero only over the elements to which the node j belongs. In this way, the
entry i, j of the matrix will be nonzero only if nodes i and j are adjacent on the
domain. For the triangular discretization of Figure 1.1, every node has at most
7 adjacent nodes, counting also the node itself; thus, every row of matrix A will
have at most 7 entries different from zero, regardless of the dimension of the
matrix. The same reasoning holds for matrix B.

So, the basis functions have to be continuous, with compact support and it
should be easy to evaluate the integrals involved in the weak formulation. A
good idea is to consider piecewise polynomial functions. The simplest choice that
allows continuity is piecewise linear functions (piecewise constants do not permit
continuity, unless the basis function is identically zero). The functions are chosen
in such a way that they attain the value 1 on the node to which they correspond,
while they attain the value 0 on any other node. Figure 1.2 illustrates this
kind of basis functions in one dimension for two different choices: linear and
quadratic polynomials. It can be seen that to define quadratic functions, we
need to consider as nodes also the midpoints of the edges of the discretization.

Figure 1.2: Piecewise polynomial basis functions in one dimension.

(a) Linear.

(b) Quadratic.

In multiple dimensions, the elements can have various shapes and the basis
functions can have various degrees, so there are many possibilities. The most
used choices are triangular or quadrilateral elements, with polynomials of degree
1 or 2. Some care must be put in the determination of the nodes, depending
on the shape of the element and on the degree of the polynomials, in order to
guarantee continuity and uniqueness of the basis functions.

For triangular elements, the choice of using linear basis functions is denoted
as P1, for quadratic functions as P2, and in general using polynomials of degree
k is denoted as Pk. As it is intuitive, the higher the degree of the basis functions,
the better the approximation is; however, also the computational cost and the
dimension of the linear system to solve grow. Accuracy is also strongly related

10 CHAPTER 1. NAVIER-STOKES EQUATIONS

to the number of elements used to discretize the domain: a finer partition gives
more accurate results, but also implies a greater computational cost.

1.2.2 Some grid properties

Let us now state some properties that a generic grid, used to solve the Navier-
Stokes equations with the finite element method, may have. These definitions
will be useful in the later Chapters.

Definition 1.1 (Quasi-uniform subdivision). A sequence of triangular grids
{τh} is said to be quasi-uniform if there exists a constant ρ > 0 such that h ≥ ρh
for every grid in the sequence, where h is the minimum edge among all the
triangles in the triangulation considered and h is the maximum one.

Definition 1.2 (Shape regular elements). A sequence of triangular grids {τh}
is said to be shape regular if there exists a minimum angle θ 6= 0 such that every
element in τh has its minimum angle greater or equal than θ.

Definition 1.3 (H2 regularity). A problem like (1.5) is said to be H2 regular
if, for every f ∈ L2, the solution u ∈ V is also in the space H2 and its H2-norm
is controlled by the L2-norm of f .

In all the problems that we will consider, we will always use quasi-uniform
subdivisions and shape-regular elements; moreover, we will always assume that
the problem is H2 regular.

1.2.3 The Oseen problem

The Galerkin approximation can be formulated also for the Navier-Stokes problem
and it takes the forma(uh,vh) + c(uh,uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Qh
. (1.9)

The problem with this formulation is that, following the same steps as before,
the algebraic system that arises is no more linear, but, due to the trilinear form
c(·, ·, ·), it becomes nonlinear. This complicates enormously the method, since
solving a nonlinear system of equations involves methods far more complicated
and computationally costly (e.g. Newton method). The simplest way to solve
this problem is to use a fixed-point scheme (known also as Picard iteration) and
try to linearize the nonlinear term c(uh,uh,vh). This will require an iterative
scheme: suppose to start from a given velocity field u0

h; to find the next iterate
u1
h one could solve equations (1.9) where, instead of the nonlinear term, there

1.2. FINITE ELEMENT METHOD 11

is the linear term c(u0
h,u

1
h,vh). In this way, the trilinear form that was giving

problems becomes simply a bilinear form and can be treated like the other ones.
So, the method can be formalized as followsa(ukh,vh) + c(uk−1

h ,ukh,vh) + b(vh, p
k
h) = (f ,vh) ∀vh ∈ Vh

b(ukh, qh) = 0 ∀qh ∈ Qh
(1.10)

for k = 1, 2, . . . until convergence. The initial field u0
h must be taken divergence

free, in order to be consistent with the problem. This can be achieved solving a
Stokes problem at the beginning (which assures a divergence-free velocity field)
and then using the solution as initial datum for the iteration. This is consistent
with setting u−1

h = 0 and starting the iterations from k = 0. This formulation
of the Navier-Stokes problem is known as Oseen problem and it is the method
that will be used in this work.

1.2.4 Stabilization of the convection-diffusion term

The first terms in the Oseen problem (1.10) represent a convection-diffusion
operator of the form −ν∆uh+w ·∇uh, where the wind w is given by the solution
of the previous iteration. In the numerical solution of this kind of problems, one
important quantity to estimate the stability of the method is the Péclet number,
defined as the ratio between convective and diffusive forces, i.e. Pe = Lw

ν , where
L is a characteristic length and w is the local wind velocity. When discretizing a
convection-diffusion problem, this number is used considering as characteristic
length the dimension of the elements. In this way, this parameter is able to tell
whether the solution will be stable or not: small values of Pe assure a good
solution, while a large Pe leads to instability.

This can be solved using a finer discretization, but when the viscosity is
very low, the elements would need to be so small that the computational cost
would become enormous. Another option is to use a stabilization technique:
instead of solving the unstable problem, one can solve a slight modification of
the problem that is stable. This is achieved by adding some artificial diffusion
to the problem, which assures that the Péclet number decreases. Of course, the
solution will be slightly different from the real one, but at least it will be stable.
If the stabilization is done correctly, then the solution will not be affected too
much.

There exist various methods of stabilization; in this work the simplest one
will be used, called streamline diffusion (SD), which adds diffusion only in
the direction of the wind. Other methods include SUPG, ASGS, GLS but
their theory and implementation are far more complicated. The SD method

12 CHAPTER 1. NAVIER-STOKES EQUATIONS

introduces another bilinear form in the formulation of the Navier-Stokes equations,
s(·, ·) : Vh × Vh 7→ R defined as

s(uh,vh) =

∫
Ω

τSD(w · uh)(w · vh) dΩ,

where τSD is defined as follows: call Peh = hw
2ν the mesh Péclet number, with

h the local dimension of the element. Then, if Peh < 1, τSD is set to zero, i.e.
no stabilization is performed on those elements where Peh is sufficiently small.
Instead, where Peh ≥ 1

τSD =
h

2w

(
1− 1

Peh

)
.

This choice of the stabilization parameter is taken from [8, p. 253].

This stabilization technique will be useful when solving the Navier-Stokes
equation with low values of viscosity.

1.2.5 Model problem

The model problem used in this work is the famous lid-driven cavity problem.
The source term f is set to zero, the viscosity ν is set to 1 for the Stokes
equations, while it varies between 0.1 and 0.001 for the Navier-Stokes equations.
The domain Ω corresponds to the 2-dimensional square [−1, 1]× [−1, 1]. The
equations, together with the boundary conditions, are

−ν∆u + (u · ∇)u +∇p = 0

divu = 0

u = 0, x ∈ {−1, 1} × [−1, 1] ∪ [−1, 1]× {−1}

uy = 0, x ∈ [−1, 1]× {1}

ux = 1, x ∈ [−1, 1]× {1}

. (1.11)

The problem evolves inside a square domain; on the two lateral sides and on
the bottom side there is a no-slip condition (i.e. the velocity is zero), while on
the top side there is an horizontal velocity imposed. There is no normal velocity
on any portion of the boundary, thus the flow is enclosed (no fluid can enter or
exit the domain).

Figures 1.3 and 1.4 show the velocity magnitude and direction for the Stokes
problem; it is clear the formation of a vortex in the middle. This feature makes
this model problem especially challenging to treat and particularly interesting
to evaluate the robustness of a numerical solver.

1.2. FINITE ELEMENT METHOD 13

Figure 1.3: Velocity magnitude for the Stokes problem.

Figure 1.4: Velocity direction for the Stokes problem.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

14 CHAPTER 1. NAVIER-STOKES EQUATIONS

1.3 Stability and convergence

A bilinear form a : U × V 7→ R is said to be continuous if

∃C > 0: |a(u,v)| ≤ C‖u‖U‖v‖V ∀u ∈ U, v ∈ V

and coercive if
∃C > 0: a(v,v) ≥ C‖v‖2V ∀v ∈ V.

With these definitions, it is now possible to state the following

Theorem 1.1. The Galerkin approximation (1.6) admits one and only one
solution if the following conditions hold:

1. a(·, ·) is continuous on Vh × Vh, with constant γ

2. a(·, ·) is coercive on V 0
h = {vh ∈ Vh : b(vh, qh) = 0, ∀qh ∈ Qh}, with

constant α

3. b(·, ·) is continuous on Vh ×Qh, with constant δ

4. there exists β > 0 such that

inf
qh∈Qh

qh 6=0

sup
vh∈Vh
vh 6=0

b(vh, qh)

‖vh‖H1‖qh‖L2

≥ β. (1.12)

Moreover, the following convergence results hold

‖u− uh‖V ≤
(

1 +
δ

β

)(
1 +

γ

α

)
inf

vh∈Vh

‖u− vh‖V +
δ

α
inf

qh∈Qh

‖p− qh‖Q, (1.13)

‖p− ph‖Q ≤
γ

β

(
1 +

γ

α

)(
1 +

δ

β

)
inf

vh∈Vh

‖u− vh‖V + (1.14)

+
(

1 +
δ

β
+
δγ

αβ

)
inf

qh∈Qh

‖p− qh‖Q

where u and p represent the exact solutions.

The proof of this theorem is very technical and requires some advanced
functional analysis. A sketch of the proof can be found in [16, pp. 441-446]

Theorem 1.1 states the conditions under which the Galerkin approximation
is a well-posed problem; conditions 1, 2 and 3 are in general verified for many
choices of spaces Vh and Qh. The main problem is to be able to satisfy inequality
(1.12), which is usually called inf-sup condition or LBB condition (Ladyzhenskaya-
Babuska-Brezzi).

The convergence results (1.13) and (1.14) allow to bound the overall error
on the velocity (‖u − uh‖V) and pressure fields (‖p − ph‖Q), with the best

1.3. STABILITY AND CONVERGENCE 15

possible approximation of the solution that can be found on the spaces Vh
(infvh∈Vh

‖u − vh‖V) and Qh (infqh∈Qh
‖p − qh‖Q). The constants on which

these bounds depend are greatly influenced by the inf-sup constant β: if it is
very small, the bound on the solution will be very loose. If such a constant does
not exist, i.e. (1.12) is satisfied only for β = 0, then the control on the stability
of the solution is completely lost.

Therefore, it is critical to choose correctly the spaces Vh and Qh, since not
all the possible couples of spaces will provide good solutions. To understand
how condition (1.12) affects the choice of these spaces, let us consider again
problem (1.5), but this time we will use some operators and some basic functional
analysis. First of all, suppose that V and Q are Hilbert spaces; then, define their
dual spaces V ′ and Q′, the spaces of all linear and bounded functionals defined
on V and Q. Define an operator A that maps V into V ′ and that acts as follows

(Aw,v) = a(w,v) ∀w,v ∈ V

i.e. A takes a vector w ∈ V and produces a functional (Aw, ·) ∈ V ′. In the same
way, we define an operator B that maps V into Q′ and that acts as

(Bv, q) = b(v, q) ∀v ∈ V, q ∈ Q.

Its adjoint operator, BT , maps Q into V ′ and acts as

(BT q,v) = (Bv, q) = b(v, q) ∀v ∈ V, q ∈ Q.

Given these definitions, we can write problem (1.5) as(Au,v) + (BT p,v) = (f ,v) ∀v ∈ V

(Bu, q) = 0 ∀q ∈ Q

and therefore also as Au +BT p = f in V ′

Bu = 0 in Q′
.

Define now the kernel of operator B: V 0 = ker(B) = {v ∈ V : b(v, q) =

0, ∀q ∈ Q}. Therefore, a reduced version of the original problem is

find u ∈ V 0 such that a(u,v) = f ∀v ∈ V 0.

It is clear that a solution of the original problem also solves the reduced problem,
but it turns out that also the converse holds, given some suitable conditions. In
particular, we would like B to be an isomorphism between V and Q′, but in

16 CHAPTER 1. NAVIER-STOKES EQUATIONS

general its kernel V 0 will be non empty, so we can only obtain an isomorphism
between (V 0)⊥ and Q′, where (V 0)⊥ is the space orthogonal to V 0. As it turns
out, if there exists an inf-sup condition that links the spaces V and Q, similarly
to the discrete version (1.12), then B is indeed an isomorphism and the reduced
problem is equivalent to the original one. Again, the details have not been
discussed properly and the necessity of the inf-sup condition has not been proved,
since this goes beyond the scope of this work; however, this discussion is useful
to understand that the space V must have larger dimension than the space Q,
since (V 0)⊥, which is a subspace of V , must be isomorphic to Q.

Figure 1.5: Linear and quadratic triangular elements, used in the Taylor-Hood approx-
imation.

This reasoning sets the ground for the difficult task of choosing the correct
spaces Vh and Qh, which should inherit the properties of their continuous
counterparts V and Q. Since Vh must have larger dimension, it is surely not
acceptable to use P1 elements for both spaces, which would have been the easiest
possibility. Luckily, all the couples of spaces of the kind Pk − Pk+1, with k ≥ 1,
do satisfy the inf-sup condition and can then be used in the finite elements
setting. The simplest of these couples is the one which uses P1 functions for the
space Qh and P2 functions for Vh. This type of choice is sometimes referred to as
Taylor-Hood approximation and it will be the one used in this work. Figure 1.5
shows the two kind of elements used for the spaces Qh and Vh.

Figure 1.6: Linear triangular elements, used in the P1isoP2 − P1 approximation.

Another common choice is called P1isoP2 − P1: these spaces are both made
of linear functions, but the velocity basis functions are defined on a mesh that is
finer, so that the dimension of the space Vh is actually bigger than the one of Qh.
This choice simplifies the computation of the basis functions and of the integrals
involved in the formulation, but adds the problem of managing two grids at the

1.3. STABILITY AND CONVERGENCE 17

same time. The elements used for this choice are shown in Figure 1.6.
Another possibility is to use a couple of spaces that would not be stable,

according to Theorem 1.1, but that becomes stable adding another term to the
finite element formulation. This term changes the structure of the linear system
and requires some special care. We will not deal with these stabilized problems,
which are discussed in [8, p. 139] or in [16, p. 451].

Chapter 2

Saddle point systems

In this Chapter, we will discuss the properties of the matrices that arise from the
finite element method; we will also show some results that set the ground for the
preconditioning, that will be presented further on, and finally we will investigate
the singularity of the system and understand that this does not threaten the
performance of the numerical solver.

2.1 Algebraic formulation

In the previous Chapter, we introduced the finite element method and used it to
obtain relations (1.7) and (1.8). We then defined matrices Aij = a(ϕi, ϕj) and
Bij = b(ϕj , ψi). Let us now introduce the vectors u and p, that contain the
unknowns uj and pj , i.e. the values of velocity and pressure of the approximated
solution on the nodes of the grid. With all these concepts, we can now formulate
the linear system of equations that arises from the finite element discretization:[

A BT

B 0

][
u

p

]
=

[
f

0

]
. (2.1)

Linear systems with this particular block structure are usually called saddle
point systems and matrix A is often referred to as the (1, 1) block.

It is important to understand the structure of matrix A, since from its
definition it may not be clear; in fact, the basis functions ϕi involved are
vectorial functions. To simplify things, let us change notation and call φi the
vectorial basis function, which will have two components. The simplest way to
define a vectorial basis function, based on the piecewise polynomial functions

19

20 CHAPTER 2. SADDLE POINT SYSTEMS

that we already introduced, is the following:

φi =

(ϕi 0) 1 ≤ i ≤ nv
(0 ϕi) nv < i ≤ 2nv

where 2nv is the total number of degrees of freedom related to the velocity
components. In this way the first half of the basis functions φi generates only
the first component of the velocity, while the second half generates the second
component.

This choice of φi leads to a simple structure of matrix A: indeed, recall that
Aij = a(φi, φj) =

∫
Ω
ν∇φj ·∇φi dΩ, but now the two gradients have always some

zeros. In particular, if i and j are both less than nv, then the zeros are in the
same places and the scalar product can be nonzero; if instead i ≤ nv and j > nv,
then the zeros are in complementary places and the scalar product vanishes.
Thus, the matrix A has the following block structure

A =

[
A1,1 0

0 A2,2

]
,

where the two diagonal blocks are identical. For the discretization of the Navier-
Stokes equation, an additional term is present, related to convection. However,
the same vectorial basis functions can be used, leading to the same structure of
the matrix. Also for matrix B we can make a similar reasoning, since it uses the
same velocity basis functions; its structure takes the following form

B =
î
B1 B2

ó
.

This structure of the matrices involved can be seen also from Figures 2.1 and 2.2,
which depict the sparsity patterns of matrices A and B for one of the discretiza-
tions that we used: the blocks just described are clearly visible; we can also see
a secondary block structure inside the primary blocks, but this characteristic
depends heavily on the discretization used and on the numeration of the nodes.

In the case of the Stokes equations, the (1, 1) block corresponds to a discrete
Laplacian operator (or diffusion operator), while for the Navier-Stokes equations
it represents a discrete convection-diffusion operator. The matrix BT instead
corresponds to a discrete gradient operator and the matrix B to a discrete
divergence operator.

We will now define some other matrices that will be useful later: first of all,
call n the number of velocity variables and m the number of pressure variables;
the velocity-mass matrix Qv ∈ Rn×n is defined as (Qv)ij =

∫
Ω
φiφj dΩ. The

(pressure-)mass matrix Q ∈ Rm×m is defined as Qij =
∫

Ω
ψiψj dΩ. They are

2.2. PROPERTIES OF SADDLE POINT MATRICES 21

Figure 2.1: Sparsity pattern of matrix A

0 100 200 300 400 500 600 700 800
nz = 7546

0

100

200

300

400

500

600

700

800

Figure 2.2: Sparsity pattern of matrix B

0 100 200 300 400 500 600 700 800
nz = 3367

0

50

100

both square, symmetric and positive definite. Indeed

vTQvv =
n∑
j=1

n∑
i=1

vj(Qv)ijvi

=
n∑
j=1

n∑
i=1

vj

(∫
Ω

φjφi

)
vi

=

∫
Ω

(n∑
j=1

vjφj

)(n∑
i=1

viφi

)
=

∫
Ω

(n∑
j=1

vjφj

)2

≥ 0

and it is equal to 0 only if v = 0. From the point of view of operators, the mass
matrix corresponds to a discrete identity operator.

2.2 Properties of saddle point matrices

Let us underline some of the fundamental properties of the linear system (2.1).
Firstly, it is important to identify the dimensions of the matrices: A ∈ Rn×n,
B ∈ Rm×n, which means that A is a square matrix while B is rectangular. In
the case of a Stokes problem, the matrix A is symmetric, which implies that

22 CHAPTER 2. SADDLE POINT SYSTEMS

the whole system is symmetric. Moreover, A is also positive definite; to see this
consider a vector v that corresponds in the finite element space to a function
v =

∑n
j=1 vjφj , then

vTAv =
n∑
j=1

n∑
i=1

vjAijvi =
n∑
j=1

n∑
i=1

vj

(∫
Ω

ν∇φj · ∇φi
)
vi

=

∫
Ω

ν
(n∑
j=1

vj∇φj
)
·
(n∑
i=1

vi∇φi
)

=

∫
Ω

ν∇v · ∇v ≥ 0.

This proves that A is positive semi-definite. To prove the positive definiteness,
we notice that vTAv = 0 if and only if ∇v = 0, which means that v is constant
in Ω. But v must vanish on the boundary, hence it must be v ≡ 0, which implies
v = 0.

Thus, we have proved that A is positive definite for the Stokes problem. In
the case of the Navier-Stokes problem, the matrix A is no longer symmetric,
but its symmetric part, i.e. 1

2 (A + AT), is positive definite. Moreover, the
matrix A is still “positive definite” (if we accept to extend this concept to non
symmetric matrices), i.e. it satisfies (Av,v) > 0 for all v 6= 0. This can be
proved showing that the bilinear form a(·, ·) is still coercive even in the case of a
convection-diffusion problem (see [16, p. 292]).

Unfortunately, not much can be said about the properties of the saddle point
system in the case of the Navier-Stokes equations; we will now underline some
of the properties of the system for the Stokes problem.

We just showed that the matrix A is positive definite; moreover, it can be
proved that its condition number is proportional to h−2, where h is the dimension
of the mesh used. This means that the (1, 1) block becomes more and more
ill-conditioned as the mesh is refined. To understand something more about
the matrix B, we introduce the concept of generalized singular values, i.e. the
numbers σ which satisfy the following generalized eigenvalue problem:

[
0 BT

B 0

][
v

q

]
= σ

[
A 0

0 Q

][
v

q

]
.

If σ = 0, the corresponding vectors v and q lay in the kernels of B and BT

respectively. Consider σ 6= 0, then

BTq = σAv =⇒ (v, BTq) = σ(v, Av)

Bv = σQq =⇒ (q, Bv) = σ(q, Qq).

2.2. PROPERTIES OF SADDLE POINT MATRICES 23

Subtracting the two equations yields

(v, BTq)− (q, Bv) = σ[(v, Av)− (q, Qq)],

and therefore

(Bv,q)− (q, Bv) = 0 = σ[(v, Av)− (q, Qq)].

So,we have discovered that (v, Av) = (q, Qq).

Now, consider again the first equation: BTq = σAv. It is equivalent to
A−1BTq = σv. Let us take the scalar product of both sides with the vector
BTq, which yields

(A−1BTq, BTq) = σ(v, BTq).

But we already discovered that (v, BTq) = σ(v, Av). Hence

(A−1BTq, BTq) = (BA−1BTq,q) = σ2(v, Av) = σ2(q, Qq).

We have obtained a characterization of σ depending only on q. In the same
way we can eliminate q and obtain a characterization of σ depending only on v.
They read

(BA−1BTq,q)

(Qq,q)
= σ2 =

(BTQ−1Bv,v)

(Av,v)
. (2.2)

With these in mind, we can now give an algebraic characterization to the inf-sup
constant β in(1.12) (we will now use a slightly different, but equivalent, version
of this condition):

inf
qh 6=0

sup
vh 6=0

b(vh, qh)

‖∇vh‖‖qh‖
≥ β.

Recall that b(vh, qh) = (qh, divvh), which can be written using the discrete
divergence operator B as (q, Bv). Moreover, ‖∇vh‖2 = (Av,v) and, due to the
fact that Q represents a discrete identity operator, ‖qh‖2 can be written also as
(Qq,q). Therefore, the inf-sup conditions becomes

β ≤ inf
q6=0

sup
v 6=0

(q, Bv)

(Av,v)1/2(Qq,q)1/2

= inf
q6=0

1

(Qq,q)1/2
sup
v 6=0

(q, BA−1/2A1/2v)

(A1/2v, A1/2v)1/2

= inf
q6=0

1

(Qq,q)1/2
sup

w=A1/2v 6=0

(q, BA−1/2w)

(w,w)1/2

= inf
q6=0

1

(Qq,q)1/2
sup
w 6=0

(A−1/2BTq,w)

(w,w)1/2
.

24 CHAPTER 2. SADDLE POINT SYSTEMS

The supremum is reached for w = A−1/2BTq, hence

β ≤ inf
q6=0

(A−1/2BTq, A−1/2BTq)

(Qq,q)1/2(A−1/2BTq, A−1/2BTq)1/2

= inf
q6=0

(A−1/2BTq, A−1/2BTq)1/2

(Qq,q)1/2

= inf
q6=0

(BA−1BTq,q)1/2

(Qq,q)1/2
. (2.3)

The best possible constant β that satisfies this inequality is exactly β =

infq6=0
(BA−1BTq,q)1/2

(Qq,q)1/2
which is equal to the minimum singular value of the

matrix B from (2.2): β ≡ σmin.
The square matrixBA−1BT is usually called the (pressure-)Schur complement

and plays a fundamental role in the numerical methods used to solve the saddle
point system (2.1). We will now try to understand some of the properties of the
Schur complement.

Let us first give a definition:

Definition 2.1. Consider two sequences of symmetric positive definite matrices
Xn and Yn. Assume that all the eigenvalues λi of Y −1

n Xn satisfy the relation
c1 ≤ λi ≤ c2, with c1 and c2 two positive constants, independent of n. Then Xn

and Yn are said to be spectrally equivalent.

In our case, the sequence of matrices will be the finite element matrices,
indexed by the mesh dimension h used to generate them.

Next, recall the fundamental property of the Rayleigh quotient:

Proposition 2.1. Given a symmetric positive definite matrix M , the field of

values of the Rayleigh quotient
vTMv

vT v
for all v 6= 0 is equal to the spectral

interval of M , [λmin, λmax].

We can now state the following

Proposition 2.2. Given two symmetric positive definite matrices A and B and

a nonzero vector x, the field of values of the function R(x) =
xTAx

xTBx
is equal to

the spectral interval of the matrix B−1A.

Proof. The eigenvalues of B−1A satisfy Av = λBv, for some eigenvector v. Since
the matrix B is positive definite, it can be written as B = CTC with C positive
definite. Let us introduce a new variable y = Cx. The function R(x) then
becomes

R(x) =
xTAx

xTCTCx
=
yTC−TAC−1y

yT y
=
yTDy

yT y
,

where the matrix D = C−TAC−1 is still symmetric positive definite, since C
is. By means of Proposition 2.1, this implies that the field of values of R(x)

2.2. PROPERTIES OF SADDLE POINT MATRICES 25

is equal to the spectral interval of D. The eigenvalues of D satisfy Du = σu.
Substituting the definition of D and using the change of variable w = C−1u, we
obtain

C−TAC−1u = σu

and therefore
Aw = σCTCw = σBw.

which is exactly the characterization of the eigenvalues of B−1A that we stated
at the beginning of the proof. Hence, the spectral interval of D is the same as
the spectral interval of B−1A and therefore the thesis is proved.

This proposition implies that two sequences of matrices Xn and Yn are
spectrally equivalent if and only if the function

R(x) =
xTXnx

xTYnx

is bounded independently of n.
We are now ready for the following

Theorem 2.1. Consider a problem where ∂Ω = ΓD (there are no Neumann
boundary conditions), discretized using a stable approximation on a shape-regular
quasi-uniform subdivision of R2. Then the Schur complement BA−1BT is spec-
trally equivalent to the pressure mass matrix Q:

β2 ≤ (BA−1BTq,q)

(Qq,q)
≤ 1, ∀q 6= 0,q 6= 1

where β is the inf-sup constant.

Proof. The lower bound is a direct consequence of (2.3). To prove the upper
bound, let us consider the term |(qh, divvh)| and let us use the Cauchy-Schwarz
inequality, which yields

|(qh,divvh)| ≤ ‖qh‖ ‖divvh‖.

Consider the vectorial identity ‖∇vh‖2 = ‖divvh‖2 + ‖∇ × vh‖2, which holds
because vh is in H1 and vanishes on the boundary. A trivial consequence of this
identity is that ‖∇vh‖2 ≥ ‖divvh‖2. If we combine this result with the previous
one, we obtain

|(qh, divvh)| ≤ ‖qh‖ ‖∇vh‖,

and therefore
|(qh, divvh)|
‖qh‖ ‖∇vh‖

≤ 1.

26 CHAPTER 2. SADDLE POINT SYSTEMS

We can now write this expression using the discrete operators, as we did to
obtain (2.3). The result is

(BA−1BTq,q)

(Qq,q)
≤ 1,

which is the upper bound.

The technical details, e.g. why the boundary must be all of Dirichlet type or
why the subdivision must be shape-regular and quasi-uniform, have been left
out; for a thorough discussion of this proof see [8, pp. 174-176]. The reason why
q cannot be the vector 1 instead will be clear later.

If we combine this theorem with Proposition 2.2, we obtain an important con-
sequence: regardlessly of how much we refine the mesh, the matrix Q−1BA−1BT

will always have its eigenvalues on a very narrow interval. Moreover, it will
always be positive semi-definite (as we will see later, q = 1 is in the kernel of the
Schur complement, so it is not positive definite) and, since Q is positive definite,
also the Schur complement will always be positive semi-definite. Therefore, the
matrix Q−1BA−1BT has a condition number that can be bounded independently
of h; this is not true for matrix A, which has a condition number that grows
indefinitely as h goes to 0. This fact will play a crucial role in the numerical
solution of the Stokes and Navier-Stokes equations.

A similar result holds also if the Neumann boundary ΓN is non empty; in
this case the upper bound is 2. Again, for all further details see [8].

Now that we have understood the properties of the various blocks of the
system, we are ready to discover some features of the whole system (2.1). We
notice that it admits a factorization of the kind[

A BT

B 0

]
=

[
I 0

BA−1 I

][
A 0

0 −BA−1BT

][
I A−1BT

0 I

]
. (2.4)

Let us now recall the famous Sylvester’s law of inertia:

Theorem 2.2 (Sylvester’s law of inertia). Let M be a symmetric matrix and let
X be a nonsingular matrix of the same dimension of M . Consider the symmetric
matrix N = XMXT , which is said to be congruent to M . Then, M and N have
the same number of positive, zero and negative eigenvalues.

As can be seen in (2.4), the saddle point matrix is congruent to the matrix

D =

[
A 0

0 −BA−1BT

]
,

so they share the same number of positive, zero and negative eigenvalues. The

2.3. SINGULARITY OF THE SYSTEM 27

matrix D is block diagonal, so its eigenvalues are simply the eigenvalues of the
diagonal blocks. We know that the matrix A is positive definite, so its eigenvalues
are all strictly positive. We also discovered that the Schur complement BA−1BT

is positive semi-definite, so the 2, 2−block of D is negative semi-definite. This
means that D has both positive and negative eigenvalues; hence, also the saddle
point matrix has both positive and negative eigenvalues and therefore is indefinite.
Moreover, as the mesh is refined and h is reduced, the number of both positive
and negative eigenvalues increases. This property is sometimes referred to as
strong indefiniteness.

Sylvester’s law of inertia can be applied only when the system is symmetric,
so it does not hold for the matrices arising from the Navier-Stokes problem.
However, as stated in [1, p. 22], for the Navier-Stokes equations the symmetric
part of the saddle point system is indefinite and therefore the whole system has
eigenvalues with both positive and negative real part.

2.3 Singularity of the system

We will now derive some results which will show that, under some hypothesis,
the saddle point linear system (2.1) is singular. We will then understand that
this is not a problem when using a numerical solver like the GMRES method,
that will be introduced in the next Chapter.

The model problem that we use has ∂Ω = ΓD and is an enclosed flow, which
means that there are no points on the boundary where the normal component
of the velocity is different from zero. Intuitively, this means that the flow
can’t communicate with the outside of the domain. The Dirichlet boundary
conditions impose the velocity solution, but there are no boundary conditions for
the pressure. Again by intuition, we can assume that the pressure may not be
uniquely defined, since in the original formulation of the equations, the pressure
appears only with its derivatives. Thus, the pressure field may be defined only
up to a constant in an enclosed flow. Let us try to formally show this concept.

First of all, for an enclosed flow the inf-sup condition is valid in a slightly
different form:

inf
q 6=constant

sup
v 6=0

|(q,divv)|
‖v‖H1‖q‖0

≥ β > 0 (2.5)

where we have used a new norm defined as ‖q‖0 = ‖q − q̄‖L2 , with q̄ being the
average of q over Ω, i.e. q̄ = 1

|Ω|
∫

Ω
q (to be precise, this is not a norm, but a

semi-norm).

Let us now try to address the problem of the uniqueness of the solution
for the weak formulation of the Stokes equations. To do so, we consider the

28 CHAPTER 2. SADDLE POINT SYSTEMS

homogeneous weak formulation∫
Ω

ν∇u · ∇v dΩ−
∫

Ω

p divv dΩ = 0 ∀v ∈ V (2.6)∫
Ω

q divu = 0 ∀q ∈ Q. (2.7)

Equation (2.6) holds for all v ∈ V , so also for v = u. Equation (2.7) holds
for all q ∈ Q, so also for q = p. This immediately leads to the equation∫

Ω

ν∇u · ∇u dΩ = ν‖∇u‖2L2 = 0,

which implies that u = 0 due to the Poincarè-Friedrichs inequality (see [8, p. 35]).

Substituting u = 0 in (2.6) yields
∫

Ω
p divv = 0 for all v ∈ V . Moreover, the

inf-sup condition (2.5) can be equivalently stated as: for any non constant q ∈ Q,
there exists v ∈ V such that

(q,divv)

‖v‖H1

≥ β‖q‖0.

Choosing q = p, the numerator goes to zero, as we just proved, and this means
that ‖p‖0 must be zero. In turn, this means that the pressure field is identically
equal to the mean pressure field p̄, hence it is constant.

Now, suppose there exist two solutions to the same Stokes equations (i.e. with
the same physical constants, same forcing term and same boundary conditions),
(u1, p1) and (u2, p2). Their difference (u1−u2, p1−p2) satisfies the homogeneous
equation. We just proved that the only solution to the homogeneous problem is
u = 0 and p = constant; thus, it must be u1−u2 = 0 and p1−p2 = constant. This
shows that the velocity field u is uniquely defined by the boundary conditions,
while the pressure field p is defined only up to a constant.

Let us now try to understand how this non uniqueness in the pressure affects
the properties of the saddle point system. Of course, we would like to obtain a
non singular matrix; to understand whether the system is singular or not, let us
study the homogeneous saddle point system, which can be explicitly expressed
as Au +BTp = 0

Bu = 0
.

The matrix is non singular if and only if this system has only the trivial solution.
Premultiply the first equation by uT to obtain

uTAu + uTBTp = 0.

2.3. SINGULARITY OF THE SYSTEM 29

Premultiply the second equation by pT , to obtain

pTBu = 0.

This second equation implies that the first one reduces to uTAu = 0. Since A is
positive definite, this means that u = 0, which is what we wanted. Therefore,
the velocity discrete solution is unique.

Now, substitute u = 0 into the original system, which yields

BTp = 0.

This means that the pressure discrete solution is unique only up to the null space
of BT , which may be non trivial.

To find out the vectors p in ker(BT), we use the reasoning developed before
to show that the pressure field is not unique. Indeed, we proved that∫

Ω

p divv = 0 ∀v ∈ V =⇒ p = constant.

Some care must be put in the next passages: recall that here p represents the
scalar pressure field, while p is the discrete vector containing the values of p in
the nodes of the discretization. Moreover, when talking about the continuous
formulation, v represents the vectorial velocity field, while when talking about
the saddle point system v is the discrete vector containing the values of the
components of the velocity field in the nodes of the discretization.

Therefore, the condition that we just wrote can be expressed in discrete form
as

(p, Bv) = (BTp,v) = 0 ∀v ∈ Rn =⇒ p = constant.

The null space of BT contains only constant vectors, hence ker(BT) = {1}. In
turn, this means that the kernel of the Schur complement BA−1BT is non trivial
and therefore the factorization (2.4) suggests that the saddle point system has a
zero eigenvalue and is singular.

We have developed this theoretical result for the Stokes problem, but the
matrix B does not change if we solve the Navier-Stokes equations. Thus, if
BT has non trivial kernel for the Stokes problem, it will be the same in the
Navier-Stokes case. Therefore, in both the situations the saddle point system is
singular.

We are actually able to characterize in a precise way the singularity of a
generic saddle point system, with the following

30 CHAPTER 2. SADDLE POINT SYSTEMS

Proposition 2.3. Consider the generic matrix

M =

[
A BT

B 0

]
,

if (Av,v) > 0 for all v 6= 0, then

ker(M) =

{[
0

p

] ∣∣∣∣∣p ∈ ker(BA−1BT)

}
.

Proof. We already saw that a generic vector in the kernel of M has a first block
equal to 0 and a second block p which belongs to the kernel of BT . Therefore,
we just need to prove that the kernel of the Schur complement is the same as
the one of BT . Trivially, all the vectors in ker(BT) are also in ker(BA−1BT).

Suppose that there exists a vector v in ker(BA−1BT) but not in ker(BT)

BA−1BTv = 0.

Since BTv 6= 0, call it u; then, since A is invertible, also A−1u 6= 0, call it w.
Thus

BA−1BTv = BA−1u = Bw = 0.

Therefore, w must be in ker(B). Basic linear algebra tells us ker(B) = im(BT)⊥;
w is in the kernel of B, u instead is a generic vector in the range of BT , therefore
w and u must be orthogonal:

0 = (w,u) = (A−1u,u).

Since (Av,v) 6= 0 for all v 6= 0, and the same holds also for the inverse A−1,
this implies that u = 0, which is a contradiction since we supposed that v is not
in ker(BT).

Now that we know that the system is singular, we want to discover how we
can solve such a system. We want the system to be consistent, which means
that a solution exists. Consider a generic linear system Mx = b; to be sure of
the existence of a solution x, it is sufficient to have b ∈ im(M). In our case, the
load vector is b =

î
f 0

óT
.

We know that im(M) = ker(MT)⊥, but MT is very similar to the original
saddle point system, with the only difference that the (1, 1) block is transposed.
However, the kernel depends only on the matrix BT and not on the (1, 1) block,
so in our case ker(MT) = ker(M) =

î
0 1

óT
. The structure of the kernel and

of the load vector imply that b is always orthogonal to ker(MT) and hence the
system is consistent.

2.3. SINGULARITY OF THE SYSTEM 31

The method that will be used to solve the system is the GMRES method,
that will be described in the next Chapter. However, at the moment we want
to know only if this method will be able to find a solution for this particular
singular system. A result from [6] states that GMRES finds a solution of the
system Mx = b for all load vectors and for all starting vectors, if and only if the
null spaces of M and MT are the same. Here, the matrix M is not exactly the
saddle point matrix, but it is the preconditioned matrix, that will be presented
later in this work. To check the previously cited condition is not easy, since the
preconditioned matrix has a very complicated structure. However, we are not
interested in finding out if GMRES converges for all b, but only for those for
which the system is consistent. The next theorem, taken again from [6], helps us
in this sense:

Theorem 2.3. Suppose the linear system Mx = b is consistent, with M a
singular square matrix. If ker(M) ∩ im(M) = {0}, then GMRES is able to
construct a solution without breaking down.

Unfortunately, this condition is very difficult to check, due to the great
complexity of the structure of the matrix involved. In [8, pp. 396-397], this
condition is checked for a preconditioner different from the one that will be used
in this work, but that allows simpler computations. In Appendix A, we present
a proof of the check of this condition for the preconditioner that we used.

Chapter 3

Iterative methods for linear
systems

In this Chapter, we will present the main method that will be used to solve
linear systems, GMRES; we will develop the algorithm and understand its main
properties about the speed of convergence. Then, we will introduce Multigrid
methods and we will try to show that they can be excellent preconditioners for
our systems.

3.1 Projection methods

We now address the problem of solving the linear system Ax = b, where A ∈ Rn×n

and b ∈ Rn; there exist many methods to do so, but very few of them are suitable
if the dimension of the matrix if very large. Indeed, for a large sparse matrix,
it is not possible to exploit methods which factorize the matrix (like Gaussian
elimination), since they would destroy the sparsity, producing dense matrices
of the same dimension of A. Instead, there are methods that approximate the
solution without factorizing the matrix or even without knowing its explicit
expression, but only accessing it through matrix-vector products (i.e. the matrix
A is not known, but it is known its action on any vector). These methods
represent the state-of-the-art in terms of algorithms to solve large linear systems.

To start, let us assume that we want to find an approximation of the solution
x in a subspace of Rn, that we will call K. In order to find it easily, let us suppose
that the dimension of K is m� n. m conditions are needed to determine the
approximation inside K: these constraints are given imposing that the residual
b−Ax is orthogonal to another subspace L of dimension m. This condition is
known as Petrov-Galerkin condition. So, starting from an initial approximation

33

34 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

x0, the problem reduces to

find x̃ ∈ x0 +K, such that b−Ax̃ ⊥ L. (3.1)

Suppose to know a basis for K and L: V ∈ Rn×m contains the m vectors of
the basis of K, while W ∈ Rn×m the ones for L. The approximation sought can
then be written as x̃ = x0 + V y, for some vector of coordinates y ∈ Rm to be
found. Let us try to impose the condition of orthogonality: the residual can be
written as

r = b−Ax̃ = b−Ax0 −AV y

and the orthogonality to L is written as

0 = WT r = WT b−WTAx0 −WTAV y = WT r0 −WTAV y.

Therefore, y is found as
y = (WTAV)−1WT r0

and the approximation searched is

x̃ = x0 + V y = x0 + V (WTAV)−1WT r0. (3.2)

From (3.2), it is possible to construct an iterative method: take an initial
guess x0, choose the spaces K and L and calculate a basis; then calculate x̃
and evaluate its residual. If the approximation is sufficiently good then stop,
otherwise repeat the same steps starting with x0 = x̃ and enlarging the spaces.

For this method to be well defined, the matrixWTAV needs to be nonsingular,
but this is not always true, even if A is nonsingular. However, the following
result holds

Proposition 3.1. If A is positive definite and L = K, or if A is nonsingular
and L = AK, then the matrix WTAV is nonsingular for every choice of bases
V and W of K and L respectively.

Let us try to understand whether the approximation given by (3.2) is a good
one or not. It turns out that, due to the orthogonal projection involved in the
process, this is the best possible approximation, in some precise sense, that can
be found in the space K. This result is formalized in the following

Proposition 3.2. If A is an arbitrary square matrix and L = AK, then x̃ is
the result of a projection method onto K, orthogonally to L, starting from x0, if
and only if it minimizes the norm of the residual onto x0 +K, i.e.

R(x̃) = min
x∈x0+K

R(x) where R(x) = ‖b−Ax‖2.

3.1. PROJECTION METHODS 35

A similar result holds also in the case of a symmetric positive definite matrix
A and with L = K, only that in this case the quantity minimized is the error
instead of the residual.

This means that the approximation x̃ is close to the exact value if the spaces
K and L are chosen properly and if they get better and better when their
dimension increases. It is therefore crucial to choose these spaces appropriately.

3.1.1 Krylov subspaces

A Krylov subspace Km is defined as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}.

It is immediately clear that Km is the space of all the vectors of Rn that can be
written as p(A)v, where p is a polynomial of degree at most m− 1.

Let us define the minimal polynomial of v as the nonzero monic polynomial
p of lowest degree such that p(A)v = 0 and the grade of v as the degree of p.
Obviously, the grade of v is smaller or equal than the degree of the minimal
polynomial of the matrix A, and therefore it is smaller or equal than n.

Let us now see some important properties that will be useful when using
Krylov subspaces for projection methods.

Proposition 3.3. Call µ the grade of v, then

dim(Km) = min{m,µ}.

Proof. For Km to have dimension m, the vectors v,Av, . . . , Am−1v must be
linearly independent, which means that, for any choice of m scalars αi, i =

0, . . . ,m− 1 not all vanishing, it must be
∑m−1
i=0 αiA

iv 6= 0. This implies that
there does not exist any nonzero polynomial q of degree smaller or equal than
m − 1 such that q(A)v = 0, hence v has grade at least m, i.e. µ ≥ m. So, if
m ≤ µ, the space Km has dimension m.

Let us consider the definition of grade of v: there exists a sequence of
coefficients ci such that

∑µ
i=0 ciA

iv = 0, which implies that

µ−1∑
i=0

ciA
iv + cµA

µv = 0 =⇒ Aµv = −
µ−1∑
i=0

ci
cµ
Aiv.

The important conclusion is that Aµv is a linear combination of vectors in Kµ.

36 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

Now, consider a vector z ∈ Kµ+1: it can be written as

z =

µ∑
i=0

βiA
iv =

µ−1∑
i=0

βiA
iv + βµA

µv.

The term with the sum belongs to Kµ following from the definition, while the
term βµA

µv ∈ Kµ due to the previous observation. Hence, z ∈ Kµ, which means
that Kµ+1 and Kµ are the same space and Kµ+1 has dimension µ and not µ+ 1.

Thus, if m ≤ µ, the dimension is m, while if m > µ, the dimension is µ,
which is the thesis.

So, if for example the starting vector v is an eigenvector of A, then any
vector of the form Aiv will be parallel to v, yielding a space Km of dimension 1,
regardlessly of m. Indeed, if Av = λv, then the minimal polynomial is simply
p(x) = x− λ, which has degree 1. A generalization of this observation is that if
the starting vector v is a combination of l eigenvectors of A, then the grade of v
and the maximum dimension of any Krylov subspace starting from v will be l.

A projection method where the spaces K and L are Krylov subspaces is called
Krylov subspace method ; the most used methods to solve large linear systems all
belong to this class. In order to build such methods, we need a good basis for
Km: due to the properties of power iteration, the vectors Aiv tend to become
parallel and therefore the generating vectors of the Krylov subspace are not a
good basis to use. Instead, we can try to produce an orthonormal basis, using
the Gram-Schmidt procedure, which in this context takes the name of Arnoldi
procedure. Algorithm 3.1 illustrates the method.

Algorithm 3.1 Arnoldi procedure
1: Choose v1 such that ‖v1‖ = 1
2: for j=1,. . . ,m do
3: for i=1,. . . , j do
4: Compute hij = (Avj)

T vi
5: end for
6: Compute wj = Avj −

∑j
i=1 hijvi

7: hj+1,j = ‖wj‖2
8: if hj+1,j = 0, stop
9: vj+1 = wj/hj+1,j

10: end for

Let us underline some of the fundamental properties of this algorithm. First
of all, the outputs of the procedure are two matrices: Vm ∈ Rn×m, the matrix
containing the orthonormal vectors that form the basis for Km, and H̄m ∈
R(m+1)×m, the matrix built with the coefficients hij , which is a Hessenberg
matrix by construction. Define also the matrix Hm ∈ Rm×m, obtained from H̄m

3.1. PROJECTION METHODS 37

by deleting its last row. Following from the orthogonalization procedure, these
matrices obey to the following relations:

AVm = Vm+1H̄m V TmAVm = Hm. (3.3)

The following proposition is important to understand Krylov subspace meth-
ods:

Proposition 3.4. Algorithm 3.1 breaks down at step j, meaning that hj+1,j = 0

in line 8, if and only if the grade of v1 is j.

This means that the Arnoldi procedure is always able to compute a full
orthonormal basis for the space Km, since either the algorithm does not break
down and computes all the m vectors, or it stops when the value of j has reached
the dimension of the space. Therefore, increasing m it will happen that either
the dimension of the space grows (and the Arnoldi procedure will be able to
compute a new vector for the basis) or that the maximum dimension is reached
(and Arnoldi breaks down). In the first case, the next approximation found will
surely be more precise than the previous one, meaning that the residual will
not be larger, since it is minimized over a space of larger dimension. In the
second case, it can be proved that the space Km of largest possible dimension is
invariant under A (it follows from the proof of Proposition 3.3) and in this case
the solution of any projection method is exact. Thus, the solution either improves
or is exact. This leads to an iterative procedure, where at each iteration the
value of m is increased, until either the exact solution is reached or a sufficiently
good approximation is found. Of course, in finite precision arithmetic, the exact
solution will never be found and the method will have to be stopped according
to a threshold on the residual.

A straightforward property of the method just described is that the compu-
tational cost of a single iteration grows as the iterations count proceeds, since
every time there is one more vector against which the new vectors must be
orthonormalized. There are though some lucky cases, where the properties
of the matrix of the system allow for a short recurrence: this means that at
every iteration, the new vector must be orthogonalized only against some of
the previously calculated vectors. The most famous example is the Conjugate
Gradient, where a 3-term recurrence holds for matrices that are symmetric
positive definite. Also for indefinite symmetric matrices there are methods which
allow short recurrence.

Therefore, in some cases, the Arnoldi algorithm may be simplified, leading
to a simpler method to solve the linear system. The Faber-Manteuffel theorem
characterizes all the matrices for which a short recurrence is possible: this

38 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

property is in some sense related to a generalized concept of symmetry of the
matrix, meaning that the transpose matrix does not need to be equal to the
matrix itself, but it must hold that AT = q(A), where q is a polynomial of
low degree; the smallest the degree of q, the shortest the recurrence will be.
This of course includes the case of symmetric matrices, as we already knew. A
more detailed discussion of the Faber-Manteuffel Theorem can be found in [18,
pp. 206-208].

Therefore, a generic non-symmetric matrix will not benefit of a short recur-
rence in the Arnoldi procedure and the cost per iteration will grow every time.
This fact leads to two classes of iterative methods: the ones which perform the
complete Arnoldi procedure and therefore satisfy an optimality property like
the one defined in Proposition 3.2, and the ones which perform a variation of
the Arnoldi procedure where the maximum number of vectors against which to
orthogonalize is fixed, which leads to non-optimality but to a computational cost
that does not grow as the iterations proceed. The most known methods of each
class are GMRES and BiCGSTAB respectively. In this work we will use only
the GMRES method, which is presented in the next Section.

3.2 GMRES

The Generalized Minimum Residual method (GMRES) is a projection method
that takes K = Km and L = AKm. As stated in Proposition 3.2, a method
that uses such spaces will minimize the residual over K at every iteration. The
method starts with an initial guess of the solution, x0; the first vector for the
Krylov space is chosen to be the normalized initial residual v1 = r0/‖r0‖.

We will now derive the method using the optimality condition. A generic
approximation of the solution x at the m−th iteration will belong to the space
x0 +Km. If we suppose to know a basis for Km, whose vectors are stored in the
matrix Vm as columns, then x can be expressed as

x = x0 + Vmy,

where y is a vector that represents the coordinates of x in the space Km. We
want to find y ∈ Rm such that x minimizes the residual among all the vectors in

3.2. GMRES 39

x0 +Km. The residual can be expressed as follows, exploiting relations (3.3)

b−Ax =b−A(x0 + Vmy)

=b−Ax0 −AVmy

=r0 − Vm+1H̄my.

(3.4)

Define β as the norm of the initial residual. If we call e1 the first vector of the
canonical basis, then v1 = Vm+1e1 and so

b−Ax = βv1 − Vm+1H̄my = Vm+1(βe1 − H̄my).

The quantity to be minimized is the norm of the residual, but since the columns
of Vm+1 are orthonormal, it follows that ‖b−Ax‖ = ‖βe1 − H̄my‖. Therefore,
the m−th iterate xm can be found as

xm = x0 + Vmym

where ym is found as
ym = argmin‖βe1 − H̄my‖.

The question now is how to determine such y. In order to do so, let us consider
the QR decomposition of the matrix H̄m. Recall that any square or rectangular
matrix can be decomposed into the product of an orthogonal matrix Q and an
upper triangular matrix R. In our case, H̄m has dimensions (m+ 1)×m, hence
Q will be a matrix (m+ 1)× (m+ 1) and R will be (m+ 1)×m, with the last
row made entirely of zeros. With this in mind, we can say that

βe1 − H̄my = βe1 −QRy = Q(βQT e1 −Ry).

Define g = βQT e1 and R1 as the m×m submatrix of R, obtained eliminating
the last row, made of zeros. In the same way, call g1 the first m components of
g and g̃ the last component. Then

βQT e1 −Ry =

[
g1

g̃

]
−

[
R1

0

]
y.

The quantity that we want to minimize is ‖βe1 − H̄m‖, which is equal to
‖g−Ry‖, since the matrix Q is orthogonal and does not change the value of the
Euclidean norm. The minimum is achieved when R1y = g1, since in this way
the quantity inside the norm has m components that are zero and only the last

40 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

component different from zero. Therefore, the vector that we were looking for is
y = R−1

1 g1. Moreover, the norm of the residual is just equal to g̃, since all the
other components vanish.

All the steps that we have described so far are not computationally expensive:
the QR decomposition has a computational cost that grows as O(m3), but the
value of m is usually very small compared to the dimension of the matrix of the
system; the solution of the linear system needed to calculate y is very cheap, since
the matrix R1 is triangular, moreover, this computation is not required at every
iteration, since the residual is known even without knowing the approximation x.
Thus, the vectors y and x can be calculated only at the last iteration, when the
residual is below the required tolerance. The steps that are instead very costly
are the ones needed to determine the basis of the Krylov space: indeed, we need
to use the Arnoldi procedure, which requires matrix-vector products involving
the large matrix of the system. Moreover, the procedure does not need to be
repeated every time, since at every iteration we can just update the matrices V
and H previously calculated, saving a lot of time.

We will now show that the same method can be derived using equation (3.2).
In our case, V = Vm and W = AVm. Hence, the solution is

x = x0 + Vm(V TmA
TAVm)−1V TmA

T r0.

This means that the vector y can be written as (V TmA
TAVm)−1V TmA

T r0. We
now use again relations (3.3), to simplify this expression:

y = (H̄T
mV

T
m+1Vm+1H̄m)−1H̄T

mV
T
m+1r0.

The columns of Vm+1 are orthonormal, therefore the matrix V Tm+1Vm+1 is equal
to the identity matrix of dimension m+ 1. Recall that r0 can be expressed as
βv1.

y = (H̄T
mH̄m)−1H̄T

mV
T
m+1βv1.

For the same reason as before, V Tm+1v1 = e1. Hence

y = (H̄T
mH̄m)−1H̄T

mβe1.

This is a system of normal equations that finds the least square minimizer y of
the function H̄my − βe1. Therefore, we have proved that using the theory of
projection methods with spaces K = Km and L = AKm, we obtain the same
method as before.

Having in mind how the method works, we can now try to understand the
requirements of Theorem 2.3: indeed, if the kernel and the range of the system

3.2. GMRES 41

matrix have trivial intersection, then every generating vector of the Krylov
subspace is different from zero. To explain this take Ajv, which is obviously in
im(A) and thus cannot be in ker(A); the next vector, Aj+1v, cannot be zero
then, and the sequence is well defined (up to the break down point) even if the
matrix is singular.

3.2.1 Properties

As we said in the previous Section, for a generic non symmetric matrix, the
GMRES method have a long recurrence, which means that at every iteration it
is required to orthonormalize the new vector against all the previous ones. To
bound the computational cost of the method, the GMRES is sometimes used in
its restarted version: we fix a maximum number of vectors that can be stored, p,
and when p iterations are complete, the method deletes all the vectors saved in
the memory and restarts using as initial vector the last computed approximation.
Obviously, in this way the optimality property is lost, but at least we can bound
the computational cost.

We will now present some of the fundamental properties of the GMRES
method. As a first guess, we may think that the method can stop too early if
the Arnoldi procedure breaks down, leaving us with a poor solution. Instead,
the following proposition assures us that this cannot happen.

Proposition 3.5. Suppose to use the GMRES method on a nonsingular matrix.
Then the algorithm breaks down at step j, i.e. hj+1,j = 0, if and only if the
approximate solution xj is exact.

Let us now try to understand the speed of convergence of the GMRES method.
First of all, we notice that a generic approximation x, since it belongs to x0 +Km,
can be expressed as

x = x0 +
m−1∑
j=0

αjA
jr0,

following from the definition of Krylov subspace. Therefore, also the residual
can be expressed in terms of powers of A:

r = b−Ax = b−Ax0 −
m−1∑
j=0

αjA
j+1r0 = r0 −

m∑
j=1

αj−1A
jr0.

Hence, the residual can be written as r = p̄(A)r0, with p̄(x) a polynomial of
degree m such that p(0) = 1. Due to the minimization property of GMRES, the

42 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

polynomial p̄(x) is the one which minimizes the residual and therefore

‖rm‖ = min
p∈Pm

p(0)=1

‖p(A)r0‖. (3.5)

We can now prove the following important result

Theorem 3.1 (Finite termination property). Consider a nonsingular system
with matrix A ∈ Rn×n; the GMRES method finds the solution within n iterations.

Proof. Define p(x) = det(A− xI), the characteristic polynomial of A. We know
that p(x) has degree n, p(0) 6= 0 since A is nonsingular and p(A) = 0 from the
Cayley-Hamilton theorem.

Build the polynomial p̄(x) =
p(x)

p(0)
, so that p̄(0) = 1. From (3.5), it follows

that
‖rn‖
‖r0‖

≤ ‖q(A)‖ ∀q ∈ Pn such that q(0) = 1.

Choosing q = p̄, we obtain that ‖rn‖ ≤ 0, which implies that rn = 0 and that
the approximation xn is exact.

Thus, in the worst case the method will converge in a number of iterations
equal to the dimension of the matrix. However, if the matrix is very large, this
result is not very useful. Luckily, under some hypothesis, the convergence can
be much faster.

Suppose that the matrix A is diagonalizable; then, there exist a nonsingular
matrix V and a diagonal matrix D such that A = V DV −1. Moreover, given
a polynomial p, p(A) = V p(D)V −1, because any power of A will have the
form V DV −1V DV −1V . . . V −1V DV −1, but V −1V = I and what remains is
V DD . . .DV −1.

Theorem 3.2. Consider a nonsingular diagonalizable matrix A = V DV −1. Let
xk be the kth approximation found by GMRES, then for all p ∈ Pk such that
p(0) = 1

‖rk‖
‖r0‖

≤ κ(V) max
z∈σ(A)

|p(z)| (3.6)

where σ(A) is the spectrum of A.

Proof. We already know that, for all p ∈ Pk such that p(0) = 1

‖rk‖
‖r0‖

≤ ‖p(A)‖.

We can estimate the norm of p(A) as follows

‖p(A)‖ ≤ ‖V ‖‖V −1‖‖p(D)‖.

3.2. GMRES 43

The term ‖V ‖‖V −1‖ is the condition number of the matrix V , κ(V).
D is diagonal with entries equal to the eigenvalues of A; it follows from

the definition of matrix norm that ‖Dn‖, for a generic power n, is a convex
combination of the n−th powers of the eigenvalues of A. Hence, it is smaller
than maxz∈σ(A) |zn|. Therefore, also ‖p(D)‖ ≤ maxz∈σ(A) |p(z)| and the thesis
is proved.

With this result in mind, we can now state the following fundamental result
about the speed of convergence of the GMRES method.

Theorem 3.3. Consider a nonsingular diagonalizable matrix A. If it has only k
distinct eigenvalues, then GMRES finds the exact solution in at most k iterations.

Proof. Let us use equation (3.6). Since it holds for all the polynomials, then it
holds also for the minimum over the polynomials:

‖rk‖
‖r0‖

≤ κ(V) min
p∈Pk

p(0)=1

max
z∈σ(A)

|p(z)|.

If we can find a suitable polynomial of degree k that is equal to zero if evaluated
on all the eigenvalues of A, then maxz∈σ(A) |p(z)| = 0 and we have proved that
‖rk‖ = 0 and that the approximation xk is exact. Such a polynomial certainly
exists, since we are looking for a polynomial that passes through the point
(0, 1) and that passes through another k points of the kind (λ, 0), with λ the
eigenvalues of A. Thus, this polynomial must satisfy k + 1 conditions and since
it has degree k, such a polynomial is uniquely determined.

Another similar result states that, if b is a linear combination of k eigenvectors
of A, then GMRES will find the exact solution in at most k iterations. For
more details about the speed of convergence of GMRES, see [18, p. 171] and [13,
p. 33].

Unfortunately, the eigenvalues of the matrix of the system are not always the
best indicator of the speed of convergence of GMRES: indeed, in [10] it is shown
that, given a nonincreasing positive sequence of numbers fk, there always exists
a matrix A and a vector r0 such that ‖rk‖ = fk, where rk is the residual at the
k−th iteration of GMRES applied to the system Ax = b, with initial residual
r0. Moreover, the matrix A can be chosen to have any eigenvalues. Therefore,
there are matrices with very nice spectral properties which produce a sequence
of residual norms that is slowly decreasing. The problem of finding a better
indicator for the speed of convergence is still not well understood; however, for
the matrices that we used, the eigenvalues were able to predict accurately the
behavior of GMRES.

44 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

3.2.2 Preconditioning

We have seen some important properties about the speed of convergence of
GMRES. Sometimes however, for some very ill-conditioned systems, this method
can become extremely slow or may even fail to converge. In these situations, a
commonly used technique to enhance the performance of the method is to pre-
condition the matrix. Suppose that we want to solve the extremely complicated
system Ax = b; instead, we can solve the preconditioned system P−1Ax = P−1b,
which has the same solution, where the matrix P is called the preconditioner.

For some particular choices of P , the matrix P−1A has properties that
allow for a much faster solution than the original system. Intuitively, the
matrix P should approximate in the best possible way A, but it should also
be computationally cheap to compute and to invert. In this way, the condition
number of the system is reduced and the system is easier to solve. The more
P gets close to A, the more the eigenvalues will cluster around the value 1;
in turn, exploiting Theorem 3.3, this means that GMRES will converge faster.
Therefore, one of the possible ways to assess the quality of a preconditioner is to
evaluate how many eigenvalues are clustered around 1 and how many clusters of
eigenvalues are present.

One of the simplest and most frequent choices for preconditioners is given
by an incomplete factorization: computing the exact factorization of a large
sparse matrix is not feasible, since it would produce dense matrices; it is instead
possible to produce an inexact factorization that preserves sparsity. These are
called incomplete LU factorization or incomplete Cholesky factorization, they
are cheap to compute but approximate well the original matrix. The inverses
of these factorizations are easy to compute, since the matrices obtained are
triangular. This simple technique unfortunately does not work well in the case
of saddle point systems. It is better to use block preconditioners, in which every
block of the system is preconditioned in a proper way.

The preconditioned GMRES method has an algorithm that is almost identical
to the original one, as it is shown in [18, p. 282]. The preconditioning can be done
in two ways, left and right: left preconditioning solves the system P−1Ax = P−1b,
while right preconditioning solves the system AP−1y = b and then finds x as
x = P−1y. Algorithm 3.2 presents the left preconditioned GMRES method.

In the next Chapter we will discuss more in detail how to build efficient
preconditioners for saddle point problems.

3.2.3 Arnoldi method for eigenvalues

We will now illustrate a method to find a large number of eigenvalues of a matrix,
which is based on Krylov subspaces and the Arnoldi procedure. We will use this

3.2. GMRES 45

Algorithm 3.2 Left-preconditioned GMRES
Compute r0 = P−1(b−Ax0), β = ‖r0‖ and v1 = r0/β
Choose the restart parameter p
for j=1,. . . , p do

Compute w = P−1Avj
for i=1,. . . , j do

hi,j = (w, vi)
w = w − hi,jvi

end for
Compute hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

Update matrices V and H̄
Compute the minimizer yj and the approximation xj = x0 + V yj
If satisfied Stop, else continue

end for
If satisfied Stop, else Restart with x0 = xp

method to obtain useful information about the spectrum of the matrices of the
saddle point systems that we want to solve.

The problem that we want to address is to find an eigenvalue λ and an
eigenvector u such that Au = λu. We will discuss projection methods, as in the
case of the solution of linear systems. Suppose then to have an m−dimensional
subspace of Rn and call it K; we want to find an approximate eigenpair λ̃, ũ ∈ K
such that the residual Aũ− λ̃ũ is orthogonal to the space K:

(Aũ− λ̃ũ, v) = 0 ∀v ∈ K.

Suppose to know a basis forK, stored in the columns of the matrix V = [v1 . . . vm].
The vector ũ can be expressed as V y, for some coordinate vector y. Then, the
orthogonality condition can be written as

(AV y − λ̃V y, vj) = 0 ∀j = 1, . . . ,m

which in a more compact form becomes

V T (AV y − λ̃V y) = 0.

Let us call Bm = V TAV ; then, since V TV = I, we obtain an eigenrelation for
the matrix Bm

Bmy = λ̃y.

Therefore, instead of computing the eigenvalues of A, which is a large sparse
matrix, we just compute the eigenvalues of Bm, which is a smaller dense matrix.
The eigenvectors of A are then found by ũ = V y. This method is known as

46 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

Rayleigh-Ritz procedure. Many convergence results can be found in [19, pp. 97-
105].

This technique can be used choosing K to be a Krylov subspace. In this
case, the basis V must be computed using the Arnoldi procedure; the matrix
Bm does not need to be computed explicitly, since from relations (3.3) it follows
that Bm = Hm, and so at the end of the iterations of Arnoldi we already know
this matrix.

3.3 Multigrid

We now present a class of methods completely different from the Krylov space
methods, but with very interesting properties. Indeed, Multigrid methods are
among the most efficient solvers or preconditioners known in numerical linear
algebra; under suitable assumptions on the problem to be solved and under careful
choice of the parameters involved, these methods can produce a convergence
rate that does not depend on the dimension of the problem. This means that, if
we are trying to solve a linear system arising from PDE discretization with mesh
size h, using a Multigrid scheme as preconditioner, then the number of iterations
of GMRES will be independent of h. Other solvers (or preconditioners) usually
experience an increment of the number of iterations as h becomes smaller and
smaller; this leads to a computational cost that grows faster than O(n). With
multigrid methods instead, a linear growth of the computation cost is achievable.

To understand the main idea of Multigrid, consider a problem to be solved
on a mesh of size h. If the same problem were to be solved on a mesh of size 2h,
the linear system would be smaller (in two dimensions approximately four times
smaller) and thus easier to solve. The idea behind Multigrid methods is to have
two grids, a coarse one and a fine one, and to pass from one another using some
suitable operators, called prolongation operator (going from the coarse grid to
the fine one) and restriction operator; in this way, the problem can be solved on
the coarse grid and then taken back to the fine mesh.

Call S2h the space of functions defined on the coarse grid (i.e. the space of
linear combinations of basis functions defined on the coarse grid) and Sh the
space of functions defined on the fine grid. Obviously, Sh = S2h + Bh, where
Bh represents the space of functions defined on the nodes that belong to the
fine grid but not to the coarse one. Therefore, a general function in Sh has
some components that can be represented in the coarse grid and some other that
would be lost passing from one grid to the other. Thus, before moving from the
fine to the coarse grid, these latter components must be reduced, so that the
representation in S2h will be close to the original one in Sh. This is done using
a smoothing operator. All these steps will now be explained in detail.

3.3. MULTIGRID 47

3.3.1 Prolongation and restriction

To understand how prolongation and restriction work, it is important to under-
stand that S2h is included in Sh, meaning that every function in S2h can be
represented exactly in Sh. Figure 3.1 explains this idea: the basis function in
the coarse grid can be represented as the superposition of three basis functions
in the fine grid.

Figure 3.1: Basis function in S2h and Sh.

Define Ih2h as the prolongation operator that maps S2h into Sh. Obviously,
for what we just said, if v2h ∈ S2h then Ih2hv2h = v2h. This means that S2h ⊂ Sh.
To determine an expression for Ih2h, consider φ

2h
j , a basis for S2h, and φhj , a basis

for Sh. Due to the inclusion of the spaces, it must be

φ2h
j =

nh∑
i=1

pijφ
h
i ,

where nh is the dimension of Sh and pij are coefficients to be determined.
Since v2h ∈ S2h, it can be written as

v2h =

n2h∑
j=1

v2h
j φ

2h
j =

n2h∑
j=1

(
v2h
j

nh∑
i=1

pijφ
h
i

)
=

=

nh∑
i=1

(n2h∑
j=1

pijv
2h
j

)
φhi =

nh∑
i=1

vhi φ
h
i , (3.7)

where v2h
i and vhi are the coefficients that represent the function in S2h and Sh

respectively. From (3.7) it can be seen that the vector of coefficients vh can be
expressed as Pv2h, where P is the matrix with coefficients pij . Following from
the choice of basis functions in the finite elements setting, the coefficients pij
must be the values of the coarse grid basis functions on the fine grid nodes. In
the case of Figure 3.1, the values would be 0, 1/2, 1, 1/2, 0. With the same
reasoning, it is easy to understand that the restriction operator I2h

h , that maps
Sh into S2h, is described by the matrix R = PT .

As stated in Chapter 1, the FEM discretization chosen for the velocity space
is P2: for this particular choice, the construction of the prolongation matrix P
is particularly complex. Indeed, going from the coarse to the fine grid, there

48 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

are a lot of nodes which give contribution to the matrix. Figure 3.2 shows the
interpolation weights to use to calculate the prolongation matrix (they all have
to be divided by 8); the weights depend on the position of the node considered,
as it can be a vertex node or a mid-edge node.

Figure 3.2: Weights for P2 triangular elements (multiplied by 8). In red the reference
node; in white the nodes of the coarse grid; in grey the nodes added in the fine grid.

(a) Vertex node (b) Mid-edge node

Note that this is only one of the possible definitions for prolongation and
restriction operators: it is the easiest definition since it arises from the natural
inclusion of S2h into Sh, but there are also more complicated ways of defining
these operators. However, the natural definition will be the only one used in this
work.

In general, the linear system to solve will have the form Ax = f . To use a
Multigrid technique, it will be necessary to represent the matrix A and the load
vector f in the coarse grid space. This is easily done exploiting the operators
just defined:

f2h = Rfh = PT fh, (3.8)

Ā = PTAP. (3.9)

The expression (3.9), called Galerkin coarse grid operator, is only one of the
possibilities to represent the matrix A in the coarse grid: indeed, one could just
use the exact matrix calculated on the corresponding mesh. In the following,
both these techniques will be used, since each of them has advantages and
disadvantages, depending on which problem is to be solved.

3.3. MULTIGRID 49

3.3.2 Smoothing

The second fundamental ingredient of Multigrid is a smoothing operator: a classic
choice for this operator is given by a stationary iterative method, like Jacobi or
Gauss-Seidel. These methods perform a splitting of the matrix A = M −N and
then define the iterates as Mxk = Nxk−1 + f for k starting from 0. The Jacobi
method chooses M as the diagonal of the matrix A, while the Gauss-Seidel
method sets M equal to the lower triangular part of A. An alternative version
of Jacobi, called damped Jacobi, multiplies the diagonal of A by a parameter θ.

Using these methods, and calling ek the error at the k-th iteration, it is
easy to see that ek = (I −M−1A)ke0. It turns out that, after just a couple
of iterations of one of these stationary methods, the component of the error
vector in the space Bh is almost zero. This means that ek can be restricted to
the coarse grid with very little loss of information. Of course, in reality it is
impossible to work with the error, since the real solution is not known. Instead,
the residual must be used: rk = f −Axk = Aek.

The restricted residual will be r̄ = PT r and the error will be e = P ē.
Therefore

r̄ = PT r = PTAe = PTAP ē.

This suggests the way in which to proceed: knowing the current approximation
x, apply a few iterations of a smoother; compute the residual r and its restricted
version r̄ and then solve the coarse grid correction r̄ = PTAP ē to find the vector
ē. This vector then needs to be prolonged and summed to the smoothed approx-
imation, to obtain the next iterate of the Multigrid method. This procedure is
summarized in Algorithm 3.3.

Algorithm 3.3 Two-grid cycle
1: Choose u0

2: repeat
3: apply smoother (I −M−1A)ui +M−1f → ui
4: restrict residual r̄ = PT (f −Aui)
5: solve coarse grid correction r̄ = Āē
6: prolong error and update ui + P ē→ ui+1

7: until convergence

3.3.3 V and W cycles

The first improvement that can be done to Algorithm 3.3 is to symmetrize it,
adding at the end of each iteration another application of the smoother. The
two smoothing steps will then be called pre-smoothing and post-smoothing. The
next obvious thing to do is to generalize the two grid cycle to a generic number

50 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

of grids. This can be done recursively, since the previously formulated algorithm
is able to pass from one grid to the next, even amongst a large number of grids.

The easiest implementation of this idea is the V-cycle: starting from the
finest grid, the residual is restricted from one grid to the next and the coarse
grid correction is solved only when the coarsest grid available is reached. This is
summarized in Algorithm 3.4.

Algorithm 3.4 V-cycle
u =V-cycle (A,u0, f)

1: Pre-smooth (I −M−1A)u +M−1f → u
2: Restrict residual r̄ = PT (f −Au)
3: if coarsest level then
4: Solve coarse grid correction r̄ = Āē
5: else
6: Recursion ē =V-cycle (Ā,0, r̄)
7: end if
8: Prolong error and correct u + P ē→ u
9: Post-smooth (I −M−1A)u +M−1f → u

A variation of this algorithm, called W-cycle, can be obtained with a slight
modification: when applying the recursion, instead of doing it only one time, it is
performed two times. The names for these algorithms are clearly understandable
once they are represented in a diagram: suppose that a dot represents a grid and
a line represent a prolongation or restriction. Then the V-cycles and W-cycles
for a system of 3 grids are drawn in Figure 3.3 and for 4 grids in Figure 3.4; the
fine grid is the one on top, while the coarse grid is on the bottom.

Figure 3.3: V and W cycles for 3 grids.

Figure 3.4: V and W cycles for 4 grids.

Intuitively, the W-cycle will be more costly from the computational point of

3.3. MULTIGRID 51

view, but it will also be more accurate: indeed, this cycle spends definitely more
time in the coarser grids, solving the coarse grid correction multiple times.

3.3.4 Properties

We will now prove some important results for Multigrid methods applied to a
standard Poisson problem (i.e. a problem which involves only diffusion) with a
two-grid cycle. Then, we will discuss how to generalize the method in order to
get the same properties for a convection-diffusion problem, like the one that is
involved in solving the Navier-Stokes equations. These properties will all rely on
some common assumptions: the grids used are quasi-uniform (see Definition 1.1)
and are made of shape regular elements (Definition 1.2); moreover, the Poisson
problem considered is H2 regular (Definition 1.3). This last requirement is
achieved, for instance, if the boundary of the domain is C2, i.e. it is locally the
graph of a C2 function.

Let us start by stating some useful results to prove the main theorems: the
problem to be solved is of the form −∆u = f , with f ∈ L2. u and f are the
coefficient vectors that represent the function u and f in the finite element space.
The following results hold

Lemma 3.1. If linear finite elements are used to solve a Poisson problem and
u is regular enough, then there exists a constant C such that

‖∇(uh − u)‖L2 ≤ Ch‖u‖H2 .

Due to H2 regularity, this lemma implies that the L2 norm of ∇(uh − u) can
be controlled with the L2 norm of f .

Lemma 3.2. The norm of f can be controlled by the norm of f with a constant
C as follows

h‖f‖L2 ≤ C‖f‖.

With these two results, it is now possible to state the following important
properties.

Theorem 3.4 (Approximation property). Under the previously cited hypothesis,
the approximation property holds:

‖(A−1 − PĀ−1PT)y‖A ≤ C‖y‖ ∀y ∈ Rn (3.10)

52 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

where ‖·‖A is the norm induced by the matrix A and the constant C is independent
of the grid size h.

Proof. Consider uh ∈ Sh and its coefficient vector u, that satisfies u = A−1f .
The same solution in S2h is u2h; its coefficient vector ū satisfies ū = Ā−1f2h =

Ā−1PT f . Now, it can be proved that there is a correspondence between the
A-norm and the bilinear form a(·, ·): ‖x‖2A = a(x, x), where x is the coefficient
vector of the function x.

Consider (3.10) with y = f :

‖(A−1 − PĀ−1PT)f‖A = ‖u− P ū‖A = a(uh − Ih2hu2h, uh − Ih2hu2h)1/2,

but Ih2hu2h = u2h, so

‖(A−1 − PĀ−1PT)f‖A = a(uh − u2h, uh − u2h)1/2.

Now, remember that a(u, u) =
∫

Ω
(∇u)2 dΩ = ‖∇u‖2; sum and subtract the

exact solution u and use the triangular inequality to obtain

‖(A−1 − PĀ−1PT)f‖A = ‖∇uh −∇u2h‖ ≤ ‖∇(uh − u)‖+ ‖∇(u− u2h)‖.

Using Lemma 3.1 and H2 regularity, we can bound these terms as follows

‖(A−1 − PĀ−1PT)f‖A ≤ ‖∇(uh − u)‖+ ‖∇(u− u2h)‖

≤ C1h‖u‖H2 + C12h‖u‖H2

≤ 3C1h‖u‖H2 ≤ 3C1hC2‖f‖.

Finally, we use Lemma 3.2. Hence

‖(A−1 − PĀ−1PT)f‖A ≤ 3C1hC2‖f‖ ≤ 3C1C2C3‖f‖,

which proves the theorem, since the constant 3C1C2C3 is independent of h.

Theorem 3.5 (Smoothing property). Consider a smoother with M = θI, θ ∈ R
and with the eigenvalues of I −M−1A in the interval [−σ, 1], with 0 ≤ σ < 1,
independently of h. Then the approximation property holds

‖A(I −M−1A)ky‖ ≤ η(k)‖y‖A ∀y ∈ Rn (3.11)

where η(k)→ 0 as k →∞

Proof. Consider the matrix I −M−1A = I −A/θ, which is symmetric, since A
is; its orthogonal eigenvectors are denoted by zi, with corresponding eigenvalues

3.3. MULTIGRID 53

λi. Therefore, every y can be written as y =
∑
i cizi. From the definition of zi,

it follows that

(I −A/θ)zi = λizi =⇒ Azi = θ(1− λi)zi

and so

‖A(I −M−1A)ky‖2 =
∥∥∥∑

i

ciA(I −A/θ)kzi
∥∥∥2

=
∥∥∥∑

i

ciλ
k
iAzi

∥∥∥2

=
∥∥∥∑

i

ciλ
k
i θ(1− λi)zi

∥∥∥2

=
∑
i

c2iλ
2k
i θ

2(1− λi)2(zi, zi)

≤ max
λi∈[−σ,1]

(
λ2k
i (1− λi)

)
θ
∑
i

c2i θ(1− λi)(zi, zi). (3.12)

The quantity λ2k(1−λ) as a function of λ has derivative 2kλ2k−1−(2k+1)λ2k

and, in the interval [−σ, 1] is maximized either for λ = −σ or for λ = 2k/(2k+1),
i.e. the point where the derivative vanishes. For this second value

λ2k(1− λ) =
(2k

2k + 1

)2k 1

2k + 1
=

1

2k
(
1 + 1

2k

)2k+1
≤ 1

2ke
,

since for k →∞, (1 + 1
2k)2k+1 → e monotonically. Hence

max
λ∈[−σ,1]

λ2k(1− λ) ≤ max
[1

2ke
, σ2k(1 + σ)

]
.

Now, recall (3.12), which then becomes

‖A(I −M−1A)ky‖2 ≤ max
[1

2ke
, σ2k(1 + σ)

]
θ
∑
i

c2i θ(1− λi)〈zi, zi〉

= max
[θ

2ke
, θσ2k(1 + σ)

]∑
i

c2i θ(1− λi)〈zi, zi〉

= max
[θ

2ke
, θσ2k(1 + σ)

]
〈Ay,y〉

= max
[θ

2ke
, θσ2k(1 + σ)

]
‖y‖2A.

This proves the theorem with η(k) =
(
max[θ

2ke , θσ
2k(1 + σ)]

)1/2, which goes
to 0 as k →∞, since 0 ≤ σ < 1.

Theorem 3.5 can be generalized to other smoothers, but the proof is more
complicated. For a precise discussion of this theorem, see [21] and [22].

Theorems 3.4 and 3.5 allow us to prove the fundamental result of Multigrid
methods, which is the following

54 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

Theorem 3.6. If both the approximation and smoothing property hold, then the
two-grid cycle described by Algorithm 3.3 converges and the contraction rate is
independent of h.

Proof. Consider the steps in Algorithm 3.3 and remember that f = Au, with u

being the exact solution. To study convergence, we are interested in the behavior
of the error ei+1 = u− ui+1. Define as us the result of k smoothing steps on
the current iterate ui. Then, the next iterate is equal to

ui+1 = us + P ē = us + PĀ−1r̄ = us + PĀ−1PT (f −Aus). (3.13)

Let us try to calculate the term f −Aus = Au−Aus for a generic number of
smoothing steps k. Define as us− the result of k− 1 smoothing steps to ui; then
clearly

us = (I −M−1A)us− +M−1f .

Hence

u− us = u− [(I −M−1A)us− +M−1Au]

= u− (I −M−1A)us− −M−1Au

= (I −M−1A)u− (I −M−1A)us−

= (I −M−1A)(u− us−).

Iterating this procedure k times yields

u− us = (I −M−1A)k(u− ui) = (I −M−1A)kei,

us = u− (I −M−1A)kei.

Let us now go back to (3.13)

ui+1 = us + PĀ−1PTA(u− us)

= u− (I −M−1A)kei + PĀ−1PTA(I −M−1A)kei

= u− (I − PĀ−1PTA)(I −M−1A)kei.

So, it is now possible to calculate the error of the next iterate

ei+1 = u− ui+1 = (I − PĀ−1PTA)(I −M−1A)kei

= (A−1 − PĀ−1PT)A(I −M−1A)kei. (3.14)

Equation (3.14) shows that the error can be expressed using the matrices
involved in the Theorems 3.4 and 3.5. Therefore, exploiting the approximation

3.3. MULTIGRID 55

and smoothing properties

‖ei+1‖A = ‖(A−1 − PĀ−1PT)A(I −M−1A)kei‖A
≤ C‖A(I −M−1A)kei‖A
≤ Cη(k)‖ei‖A.

Since η(k) → 0 as k → ∞, there exists a minimal number of smoothing steps
k̄ such that ‖ei+1‖A ≤ γ‖ei‖A, where the factor γ is smaller than one and
independent of h, meaning that the method converges and with a contraction
rate independent of h.

This important result relies on the hypothesis that the eigenvalues of the
smoothing matrix are bounded away from −1 independently of h. It is known
that stationary methods converge if and only if the spectral radius of the
iteration matrix is less that 1, but this is not enough to satisfy the hypothesis of
Theorem 3.5; indeed, one eigenvalue could tend to −1 while always remaining
in modulus smaller than 1. To avoid this phenomenon, the smoother must be
tuned carefully: in particular, for damped Jacobi smoothing (i.e. a stationary
method where M is the diagonal of A multiplied by θ), the optimal parameter θ
is 9/8.

If we manage to choose the correct parameters for the smoother, then we
obtain a method to solve or precondition a linear system that will always converge
in the same number of iterations, regardlessly of the dimension of the problem.
This means that solving the same problem in a finer mesh, will produce the same
number of iterations and therefore the growth of the computational time will
be linear with respect to the number of nodes of the mesh. This property of a
numerical method is referrer to as scalability.

The results derived in this Section for the simple two-grid cycle are still valid
also for the more complex V and W cycles, but the proofs are more difficult and
technical.

3.3.5 Multigrid for convection-diffusion problems

All the results derived in the previous Sections, although they can be generalized
to a generic V or W cycle and with other smoothers, hold in the case of
a Poisson problem. The process of solving (or preconditioning) the Navier-
Stokes equations involves solving linear systems related to the discretization of a
convection-diffusion operator. This fact changes the way in which the Multigrid
method should be used, in order to obtain the desired scalability.

When solving a Stokes problem, there is no convection involved, hence the
Multigrid is indeed applied only to a diffusion problem and it can be used

56 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

as described up to this point. However, when it comes to the Navier-Stokes
equations, there are some major changes to make. These modifications involve
essentially three features of the method: the coarse grid approximation, the
smoother and the cycle to use. Let us now discuss how all these aspects need to
be treated.

Concerning the coarse grid approximation, we should avoid the use of the
Galerkin coarse grid operator: indeed, we will start from a very fine grid, for which
the mesh Péclet number is sufficiently small to avoid the use of a stabilization
technique, like streamline diffusion; but, when we will get to the coarser grids,
their Pe will be much larger and will require some stabilization. Using the
Galerkin coarse grid operator to generate the matrices for all the grids does not
add any stabilization terms and this will lead to a very unstable problem in the
coarse grids. This means that the coarse grid correction will be solved in a poor
way, leading to poor results also in the fine grids. The best way to proceed is
to directly compute the matrices for all the grids, i.e. calculate the matrices
using the finite elements routine and not approximate them with the Galerkin
operator. In this way, it is possible to add the stabilization term for the meshes
that have a large Péclet number.

The next fundamental problem to address is the choice of the smoother; let
us first review some basics about the iterative schemes used as smoothers. Both
Jacobi and Gauss-Seidel methods start from an initial vector and progressively
update the components in order to get closer to the exact solution of the linear
system. The main difference is that for Jacobi-like methods, every component
is updated considering only the old values of the approximation. Gauss-Seidel,
instead, updates the components following an order and for each one considers
also the new values already computed. So, the first component will be updated
considering all the components of the old approximation. The second component
will take into account also the new value of the first component and so on. The
k-th component will then have k − 1 newly calculated components to exploit in
order to update the value.

This implies that the Gauss-Seidel method is more accurate; moreover, while
Jacobi updates the components "all at the same time", Gauss-Seidel updates
them following a specific pattern. This means also that the properties of the
smoother can vary according to which pattern is used. Indeed, for convection
dominated problems, some patterns work better than others, and some simply do
not work at all; in particular, the smoothing scheme should follow the convection
process, meaning that the components of the solution should be updated in an
order that follows the direction of the main flow.

In a problem with a simple structure, this is easy to achieve: e.g. if the flow
flows unidirectionally from the left to the right of the domain, then the smoother

3.3. MULTIGRID 57

Figure 3.5: Standard numeration of the nodes.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819 20

21

2223 24

25

2627 28

29

30

31 32

33

34 35

36

37 38

39

40

41 42

43

44 45

46

47 48

49

should update first the nodes on the left and then proceed towards the right. In
more complicated problems, where the flow recirculates, like the lid-driven cavity
problem that is considered in this work, there are two options, as suggested in [8]:
build a pattern that follows the circulating flow (which is extremely complicated
to achieve), or apply multiple simple patterns in succession, in order to capture
in the best possible way the features of the convective flow. This means that
every smoothing step will consist of multiple Gauss-Seidel iterations, each one
sweeping through the domain in a different direction. This approach has already
been tested, for instance in [17].

Figure 3.6: Ordering of the nodes for the Gauss-Seidel smoothing.

(a) First iteration (b) Second iteration

To better understand how this works, consider Figure 3.5 and Figure 3.6: the
first one shows the node ordering that arises from the natural construction of
the mesh; Gauss-Seidel applied using this pattern will be referred to as Simple-
Gauss-Seidel and will definitely not follow the direction of the flow. Figure 3.6
instead shows two patterns, one sweeping through the nodes from left to right

58 CHAPTER 3. ITERATIVE METHODS FOR LINEAR SYSTEMS

and one from top to bottom. This approach tries to follows the flow, but is
inevitably more computationally expensive. We could also perform Gauss-Seidel
with four directions of sweeping, making the method more accurate but even
more time consuming. It is important to remember that, in order to maintain
the symmetry in a Multigrid solver or preconditioner, the various sweeping of
Gauss-Seidel in the pre-smoothing must be applied in the opposite order in the
post-smoothing.

The last feature of Multigrid to modify is the cycle: it has been noticed that
using the W-cycle instead of V-cycle produces a method that is more stable and
performs better, even though it requires more computational time. This was
already noticed in [14], where it was applied to a different kind of discretization.

To summarize, the important features to modify in the standard Multigrid
method in order to use it for convection-diffusion problems are the following:

• calculate directly all the matrices involved, using stabilization when needed,
and not use the Galerkin approach;

• use a smoother that follows the flow, like Gauss-Seidel with proper ordering,
and not Jacobi-like methods;

• use a W-cycle instead of a V-cycle.

Chapter 4

Preconditioning techniques

We will now describe the preconditioner that have been used in this work. We
will show some of its properties and how it can be implemented. Then, we will
go into the details of how to precondition the various blocks of the system and
in particular, how the Schur complement preconditioner changes passing from
the Stokes equations to the Navier-Stokes equations.

4.1 Constraint preconditioner

The preconditioner that we used is known as constraint preconditioner. This
names comes from the fact the this particular preconditioner keeps in its structure
both the blocks BT and B, which in optimization are related to the constraint
of the problem; saddle point systems indeed appear in numerous applications,
including constrained optimization. This particular preconditioner can be used
in all these applications, since it does not exploit any underlying structure of
the blocks.

The constraint preconditioner P takes the form

P =

[
PA BT

B 0

]
, (4.1)

where PA is a preconditioner for the (1, 1) block A. The application of this
preconditioner will require its inversion, which can be done in various ways, as
we will see later. For the moment, we focus on evaluating the eigenvalues of
the preconditioned matrix P−1M , where M is the matrix of the saddle point
system in (2.1). Indeed, we discovered that the number of different eigenvalues,
or clusters of eigenvalues, is fundamental to determine the speed of convergence
of a method like GMRES. At the moment, we will discuss this preconditioner

59

60 CHAPTER 4. PRECONDITIONING TECHNIQUES

under the assumptions that A and PA are symmetric and nonsingular and that
B has full rank.

4.1.1 Eigenvalues distribution

Let us now try to determine the eigenvalues of the preconditioned matrix, i.e.
the numbers λ and the vectors that satisfy[

PA BT

B 0

]−1 [
A BT

B 0

][
x

y

]
= λ

[
x

y

]
.

Instead of solving this problem, which requires the inverse of P , we will study
the following generalized eigenvalue problem, which has the same eigenvalues:[

A BT

B 0

][
x

y

]
= λ

[
PA BT

B 0

][
x

y

]
. (4.2)

Let us start by taking the QR factorization of the matrix BT

BT =
î
Y Z

ó[R
0

]
,

where Y ∈ Rn×m, Z ∈ Rn×(n−m), R ∈ Rm×m and the zero block has dimensions
(n−m)×m. The next proposition will be useful in the following steps:

Proposition 4.1. The columns of Z form a basis for the null space of B.

Proof. Consider a generic orthogonal matrix Q =
î
Q1 Q2

ó
. Due to its orthog-

onality, im(Q1) = im(Q2)⊥.
The matrix B can be written as

B =
î
RT 0T

ó[Y T
ZT

]
.

A generic vector y ∈ ker(B) then satisfies

By = 0 =⇒ RTY T y = 0 =⇒ Y T y = 0.

The last implication comes from the fact that R has full rank, since B has full
rank.

Therefore y is in the kernel of Y T , which is also the orthogonal complement
to the range of Y . But im(Y)⊥ = im(Z), for what has been said at the beginning
of the proof. Therefore, y belongs to the range of Z and so ker(B) = im(Z),
which proves the thesis.

4.1. CONSTRAINT PRECONDITIONER 61

Let us now pre-multiply the left-hand side of equation (4.2) by the matrixZT 0

Y T 0

0 I

 (4.3)

which is nonsingular since the first two blocks form an orthogonal matrix; the
identity matrix is of dimension m×m to get the correct dimensions. We then
obtain ZTA ZTBT

Y TA Y TBT

B 0

 .
Now, we make the following change of variable

[
x

y

]
=

[
Z Y 0

0 0 I

]xzxy
y

 ,
so that x = Zxx + Y xy. In this way, the matrix in the left-hand side of (4.2)
gets post-multiplied by the transpose of matrix (4.3), to obtainZTAZ ZTAY ZTBT

Y TAZ Y TAY Y TBT

BZ BY 0

 .
Exploiting Proposition 4.1, we can say that BZ = 0. Moreover, from the QR
decomposition of BT , it follows that BT = Y R and so, since Y has orthogonal
columns, R = Y TBT . With this in mind, the previous matrix can be simplified.
The same procedure can be carried out for the right-hand side of equation (4.2),
yielding the following problemZTAZ ZTAY 0

Y TAZ Y TAY R

0 RT 0

xzxy
y

 = λ

ZTPAZ ZTPAY 0

Y TPAZ Y TPAY R

0 RT 0

xzxy
y

 .
Exchanging row and column blocks, the previous matrices can be put into
triangular form RT 0 0

ZTAY ZTAZ 0

Y TAY Y TAZ R

xyxz
y

 = λ

 RT 0 0

ZTPAY ZTPAZ 0

Y TPAY Y TPAZ R

xyxz
y

 .

62 CHAPTER 4. PRECONDITIONING TECHNIQUES

Therefore, the preconditioned matrix P−1M , is similar to the following
matrix, up to a permutation of rows and columns I 0 0

N (ZTPAZ)−1(ZTAZ) 0

S T I

 . (4.4)

The structure of matrices N , S and T is not relevant, since we are only interested
in finding the eigenvalues of this matrix. The three diagonal blocks are of
dimensions m×m, (n−m)× (n−m) and m×m respectively. Therefore, we
can say that the preconditioned matrix has 2m eigenvalues equal to 1 and n−m
eigenvalues given by the eigenvalues of the matrix (ZTPAZ)−1(ZTAZ). We
summarize the results of these last pages in the following

Theorem 4.1. Consider a symmetric nonsingular matrix A ∈ Rn×n and a
matrix B ∈ Rm×n of full rank which form a saddle point system. Assume
Z ∈ Rn×(n−m) is a basis for the kernel of B. If a preconditioner like (4.1) is
used, with PA symmetric, then the preconditioned matrix has a unit eigenvalue,
with multiplicity 2m, and n−m eigenvalues defined by the generalized eigenvalue
problem ZTAZxz = λZTPAZxz.

We can thus appreciate how the constraint preconditioner is able to cluster
2m eigenvalues at 1. If the matrix B does not have full rank, like in the driven
cavity problem that we will solve, then in the QR decomposition the matrix R
will have the last rows made of zeros, while matrix Z will have larger dimension.
The rest of the reasoning remains the same though, so a large part of the
eigenvalues will still be clustered at 1.

We now want to understand more about the n−m eigenvalues that are not 1.
In order to do so, let us suppose that the preconditioner PA is positive definite.
In this case we can use the following

Theorem 4.2 (Cauchy’s interlace theorem). Consider T ∈ Rn×n symmetric
and H ∈ Rm×m, with m < n and H a principal submatrix of T . Consider the
eigenvalues of these matrices labeled as

Tzi = αizi, i = 1, . . . , n, α1 ≤ α2 ≤ · · · ≤ αn,

Hyi = λiyi, i = 1, . . . ,m, λ1 ≤ λ2 ≤ · · · ≤ λm.

Then
αk ≤ λk ≤ αk+n−m, k = 1, . . . ,m.

4.1. CONSTRAINT PRECONDITIONER 63

Now, recall that Q =
î
Y Z

ó
is an orthogonal matrix and consider the

following two eigenvalue problems

QTAQv = αQTPAQv, (4.5)

ZTAZw = λZTPAZw. (4.6)

Since PA is positive definite, also QTPAQ is, and so we can write its Cholesky
decomposition

QTPAQ =

[
ZTPAZ ZTPAY

Y TPAZ Y TPAY

]
=

[
L 0

R S

][
LT RT

0 ST

]
= NNT .

It is easy to check that LLT = ZTPAZ, R = Y TPAZL
−T and SST = Y TPAY −

RRT . We can therefore rewrite problems (4.5) and (4.6) as

QTAQv = αNNT v, ZTAZw = λLLTw.

We use the change of variable u = NT v and z = LTw, to obtain

N−1QTAQN−Tu = αu, L−1ZTAZL−T z = λz.

If we pre-multiply the matrix N−1QTAQN−T by N−T and post-multiply
by NT , we obtain P−1

A QTAQ, so the two are similar; moreover, QTAQ is
trivially similar to A, hence N−1QTAQN−T is similar to P−1

A A and so the αi
are also the eigenvalues of P−1

A A. In the same way, L−1ZTAZL−T is similar to
(ZTPAZ)−1(ZTAZ) and therefore the λi are exactly the non unitary eigenvalues
of the preconditioned saddle point system. We can now use Theorem 4.2 to
say that αk ≤ λk ≤ αk+m, k = 1, . . . , n − m. In turn, this means that the
eigenvalues λi are all bounded by the extremal eigenvalues of P−1

A A; so, if PA
is a good preconditioner for A, then the λi will be clustered and the constraint
preconditioner will produce a preconditioned matrix with eigenvalues very well
clustered around 1.

These results hold under some strong hypothesis, which will not be verified
for the system arising from the Navier-Stokes equations, that is not even sym-
metric; however, these properties are useful to show how powerful the constraint
preconditioner can be in the best case scenario.

Also the distribution of eigenvectors can be analyzed in a similar way, as it
is done in [12]; the important result to notice is that, in general, the number
of linearly independent eigenvectors of the preconditioned saddle point linear
system is not n + m and thus the matrix is not diagonalizable. This implies

64 CHAPTER 4. PRECONDITIONING TECHNIQUES

that Theorem 3.3 does not hold and so at this point we cannot be sure that
the clustering of eigenvalues corresponds to a rapid convergence of the GMRES
method.

Luckily, GMRES still converges in a number of iterations related to the
number of eigenvalues, as stated in the following

Theorem 4.3. Consider a symmetric nonsingular matrix A ∈ Rn×n and a
matrix B ∈ Rm×n of full rank that form a saddle point system M . Assume
Z ∈ Rn×(n−m) is a basis for the kernel of B. Suppose a preconditioner P like (4.1)
is used, with PA symmetric. If the matrix (ZTPAZ)−1(ZTAZ) has k distinct
eigenvalues λi, with multiplicity µi, then the Krylov subspace Kd(P

−1M, b) has
dimension at most k + 2 for any b.

Proof. (sketch, the full proof is available in [12])

The dimension of a Krylov subspace is bounded by the degree of the minimal
polynomial of the vector b, which in turn is bounded by the degree of the minimal
polynomial of the matrix of the system. Let us start by writing the characteristic
polynomial of P−1M , which is easily derived from Theorem 4.1:

(P − I)2m
k∏
i=1

(P − λiI)µi .

This polynomial has degree n+m. Let us now consider the polynomial of degree
k + 1

(P − I)
k∏
i=1

(P − λiI).

If we substitute the structure of the preconditioner from (4.4) and we expand
all the terms, we get to a matrix with only the (3, 1) block different from zero.
Multiplying again by (P − I) yields the zero matrix, suggesting that the minimal
polynomial, in the worst case, is

(P − I)2
k∏
i=1

(P − λiI),

which has degree k + 2.

Since we know that GMRES terminates when the Krylov subspace reaches
its maximum dimension, we can be sure that the number of iterations required
to converge will be at most k + 2. This result is almost as powerful as the one
in Theorem 3.3, since in that case convergence would occur in k + 1 iterations,
only one less.

4.1. CONSTRAINT PRECONDITIONER 65

4.1.2 Implementation

We will now present different techniques that allow us to efficiently implement
the constraint preconditioner. The first one is known as Exact Constraint
Preconditioner (ECP) and it consists in applying the preconditioner exactly as
it is presented at the beginning of this Chapter. In Algorithm 3.2, we can see
that, at some point, we will need to take the inverse of the preconditioner or, in
other words, to solve a system like Py = r:[

PA BT

B 0

][
y1

y2

]
=

[
r1

r2

]
, (4.7)

which corresponds to the equationsPAy1 +BT y2 = r1

By1 = r2

.

The first equation yields y1 = P−1
A (r1 −BT y2), that can be substituted into the

second equation to give BP−1
A (r1 − BT y2) = r2. It is thus possible to find y2,

solving the system
BP−1

A BT y2 = BP−1
A r1 − r2 (4.8)

and then y1 comes from the system

PAy1 = r1 −BT y2. (4.9)

To find the solution, it is now fundamental to solve these two linear systems,
which have as matrices PA and PS = BP−1

A BT , the Schur complement of the
preconditioner P . The techniques that we will present all differ in how to solve
these two linear systems, and in particular in how system (4.8) is solved.

The first possibility that we considered for the Stokes problem, was to use
as PA the incomplete Cholesky factorization of matrix A; this is not possible
for the Navier-Stokes problem, since the matrix in no longer symmetric. Thus
PA = LLT and the application of P−1

A is very cheap, since it is obtained through
the solution of two triangular linear systems. In [4], it is explained that the
preconditioned conjugate gradient (PCG) can be used successfully even if the
system is indefinite, provided that the initial residual has a particular structure.
Therefore, we decided to use the PCG; moreover, we chose to use the PCG
also to solve system (4.8), since the Schur complement is symmetric positive
semi-definite. Therefore, we have two PCG cycles: each one needs a routine
to apply the matrix of the system and a routine to apply the preconditioner.
For the outer PCG, we used the exact constraint preconditioner just described;

66 CHAPTER 4. PRECONDITIONING TECHNIQUES

for the inner PCG cycle, we applied the matrix simply by multiplying by all
its constitutive blocks (PS = BL−TL−1BT) and we used as preconditioner the
mass matrix Q. Indeed, Theorem 2.1 assures us that the mass matrix is a
good preconditioner for the Schur complement, since all the eigenvalues are well
clustered in a narrow interval.

The ECP technique therefore has a complicated structure, since it has nested
PCG iterations and it requires multiple external routines to apply the matrices
and the preconditioners. The advantage is that this procedure solves exactly
the problem and therefore achieves all the theoretical properties that have been
derived in the previous Section. However, the exact solution of system (4.8) at
every iteration is in general very expensive and affects badly the performance of
the whole method.

For the exact constraint preconditioner, we tried to apply Theorem 2.3: we
calculated the exact structure of the preconditioned matrix and tried to find
the vectors in the kernel and in the range. The computations are shown in
Appendix A.

Another possibility is to approximate PS in order to solve system (4.8) quickly,
for instance by means of an incomplete Cholesky factorization; this approach
is known as Inexact Constraint Preconditioner (ICP). Clearly, the eigenvalues
distribution that we found for the ECP does not hold anymore in the case of
the ICP, but still the preconditioner is robust and performs much better than a
standard preconditioner based on incomplete factorization of the whole system.
A particular case of inexact constraint preconditioner is obtained considering
two different preconditioners for the (1, 1) block, PA and P̃A: the first is used to
solve system (4.9), while the second one is used to build the Schur complement
preconditioner, i.e. PS = BP̃−1

A BT . This technique goes under the name of
Mixed Constraint Preconditioner (MCP).

In this work we will mainly use an inexact constraint preconditioner, so let
us try to understand its properties. As we did with the saddle point matrix, also
the preconditioner can be factorized in the following way

P =

[
I 0

BP−1
A I

][
PA 0

0 −PS

][
I −P−1

A BT

0 I

]
=

[
PA BT

B BP−1
A BT − PS

]
.

If we use an exact constraint preconditioner, then PS = BP−1
A BT and we

recover preconditioner (4.1); if instead PS is approximated, then the 2, 2−block
of the preconditioner is no longer zero, but it is equal to BP−1

A BT − PS . This
preconditioner can be applied in the same way described before for the ECP,
with the difference that now the matrix for the system (4.8) is different.

To summarize, suppose that to apply the preconditioner we need to solve a

4.1. CONSTRAINT PRECONDITIONER 67

system like (4.7), using an approximation of the Schur complement PS , then the
main steps are shown in Algorithm 4.1.

Algorithm 4.1 Application of ICP
1: Compute x: PAx = r1

2: Compute f : f = Bx− r2

3: Compute y2: PSy2 = f
4: Compute g: g = r1 −BT y2

5: Compute y1: PAy1 = g.

We would now like to understand the distribution of the eigenvalues of the
inexact constraint preconditioner. To do so, we will continue to suppose that
A is symmetric and we will also consider PA and PS to be symmetric positive
definite. Then, we can define the following preconditioned matrices

AP = P
−1/2
A AP

−1/2
A , SP = P

−1/2
S BA−1BTP

−1/2
S .

We will denote their eigenvalues as follows: αA and αS will be the minimum
eigenvalues in modulus of AP and SP , while βA and βS will be their maximum
eigenvalues in modulus.

Let us now make the following assumptions

0 < αA < 1 < βA,

0 < αS < 1 < βS .

These conditions are often fulfilled; to see this, let us first notice that AP has
the same eigenvalues as P−1

A A: indeed, the eigenvalues and eigenvectors of AP
are defined as

P
−1/2
A AP

−1/2
A v = λv.

If we pre-multiply by P−1/2
A , we get

P−1
A AP

−1/2
A v = λP

−1/2
A v,

and changing the variable to w = P
−1/2
A v, we obtain

P−1
A Aw = λw.

Therefore, P−1
A A and AP share the same eigenvalues but not the same eigenvec-

tors. Thus, if PA is a good preconditioner for A, meaning that is clusters the
eigenvalues around 1, then the same holds for the eigenvalues of AP . Hence, it is
reasonable to assume that αA and βA lay on different sides of unity. The same
holds for SP .

68 CHAPTER 4. PRECONDITIONING TECHNIQUES

We will also make the further assumption that βA < 2; then, the following
theorem holds

Theorem 4.4. Assuming the previously stated hypothesis, the real eigenvalues
of an ICP preconditioned saddle point system satisfy

min
{
αA,

αS
βA

}
≤ λ ≤ max{βA, (2− αA)βS}.

The complex eigenvalues λ = λR + iλI satisfy

αA + αS(2− βA)

2
≤ λR ≤

βA + βS(2− αA)

2
,

|λI | ≤
√
βS max{1− αA, βA − 1}.

The proof of this theorem can be found in [3], together with some numerical
tests confirming that these bounds are tight, especially for the real eigenvalues.
This result is a generalization of what we found previously: indeed, we discovered
that for ECP, the non unitary eigenvalues are confined in the interval [αA, βA];
in this case this interval is possibly enlarged by the presence of some other terms.

In any case, if PA and PS are good preconditioners for A and S = BA−1BT ,
then Theorem 4.4 assures us that the eigenvalues of the preconditioned matrix
will be clustered around 1. The important question now it how to find a scalable
preconditioner: recall that a preconditioner is scalable if, as the mesh is refined,
the computational cost to solve the system grows linearly. This means that the
eigenvalues and the condition number of the matrix should not change much from
one matrix to the next, so that the only added computational cost is given by
the larger dimension of the problem. Thus, the eigenvalues of the preconditioned
matrix need to be uniformly bounded, i.e. they should not grow too much or
tend to zero as the mesh is refined. If we are able to find scalable preconditioners
for the (1, 1) block and the Schur complement, then αA, βA, αS and βS will not
depend on the mesh size h and so, due to Theorem 4.4, also the eigenvalues
of the preconditioned saddle point system will be bounded independently of h,
meaning that the ICP will be scalable.

4.1.3 Relaxation

The inexact constraint preconditioner can be accelerated by means of a relaxation
parameter ω, as it is shown in [5]; the new preconditioner obtained is built in

4.1. CONSTRAINT PRECONDITIONER 69

this way

P (ω) =

[
I 0

BP−1
A I

][
PA 0

0 −ωPS

][
I −P−1

A BT

0 I

]
=

[
PA BT

B BP−1
A BT − ωPS

]
.

For some values of ω, this preconditioner will produce better convergence rates
than the standard inexact constraint preconditioner. Indeed, the following
theorem holds

Theorem 4.5. Under the same hypothesis of Theorem 4.4, the real eigenvalues
of P (ω)−1M satisfy

min
{
αA,

ωαS
2

}
≤ λ ≤ max{βA, 2ωβS}.

The complex eigenvalues λ = λR + iλI satisfy

αA
2
≤ λR ≤ βA +

ωβS
2
, |λI | ≤

√
ωβS max{1, βA − 1}.

The proof of this theorem can be found in [5], where it is also noticed that
the speed of convergence of this preconditioner is influenced by the ratio between
the largest and smallest real eigenvalue of the preconditioned matrix. Therefore,
the optimal value of ω is the one which minimizes this ratio; calling Rmax and
Rmin the largest and smallest real eigenvalues of the preconditioned matrix, their
ratio can be estimated according to Theorem 4.5:

κ =
Rmax

Rmin
≤ max{βA, 2ωβS}

min{αA, 1
2ωαS}

.

It is computationally cheap to calculate the largest eigenvalues, but it is
very expensive to compute the smallest ones; therefore, the next result gives
an approximation of the optimal ω based only on the knowledge of the largest
eigenvalues.

Theorem 4.6. Let ω = βA

βS
, then the ratio between the largest and smallest

eigenvalue of the preconditioned matrix is bounded by

Rmax

Rmin
≤ max{2cA, 4cS},

where cA = βA

αA
and cS = βS

αS
are the condition numbers of AP and SP respectively.

Proof. Considering the results of the previous theorems, the following bounds

70 CHAPTER 4. PRECONDITIONING TECHNIQUES

hold
Rmax ≤ max{βA, 2ωβS} = max{βA, 2βA} = 2βA,

Rmin ≥ min
{
αA,

ωαS
2

}
= min

{
αA,

αSβA
2βS

}
= min

{
αA,

βA
2cS

}
.

Therefore
Rmax

Rmin
≤ max

{2βA
αA

, 2βA
2cS
βA

}
= max{2cA, 4cS}.

Therefore, without having to compute the smallest eigenvalues, we are able
to obtain a value of ω for which the value of κ is close to the optimal one. This
specific value ω = βA

βS
has a particular interpretation: the matrix ωSP has the

largest eigenvalue equal to ωβS = βA, which is the spectral radius of AP . Then,
this relaxation technique can be seen as a shift in the spectral interval of SP ,
in order to match the spectral radii of these two preconditioned blocks. This
method can produce an actual acceleration in the convergence rate only if there
is a significant shift between the two spectra of AP and SP , and will instead
have no effect if one spectrum is fully contained in the other or if the two largest
eigenvalues are very close. In some cases, the relaxation can also have negative
effects, since it can push some eigenvalues closer to zero, worsening the condition
number of the problem.

4.2 Other preconditioners

Besides the constraint preconditioner, many other preconditioners for saddle
point systems have been developed. We will now present a few of them, showing
some of their basic properties.

In [8, p. 195], a block diagonal preconditioner was used to solve the Stokes
problem; its structure is the following

P =

[
PA 0

0 T

]
,

where PA is a preconditioner for the (1, 1) block and T is an approximation of the
Schur complement. In some particular cases, the preconditioned matrix has only
three eigenvalues λ = 1, 1/2±

√
5/2. With some more practical choices of the

matrices involved, the eigenvalues lay in the union of three narrow intervals, with
bounds that are independent of the mesh size. This means that the convergence
will happen fast and the number of iterations will not grow as the problem
becomes larger. However, for the Navier-Stokes problem, the choice of a block
diagonal preconditioner is not particularly good; keeping in the structure one

4.2. OTHER PRECONDITIONERS 71

or both the blocks B, BT yields better clustering of the eigenvalues and thus a
better performance of the solver.

In [20], a triangular block preconditioner (TBP) was used to solve the Navier-
Stokes problem and in [3] some eigenvalue bounds were developed; the structure
is

P =

[
PA 0

0 −PS

][
I P−1

A BT

0 I

]
=

[
PA BT

0 −PS

]
,

which is derived from the constraint preconditioner previously presented. The
real eigenvalues then satisfy

min
{
αA,

αS
βS + αS

}
≤ λ ≤ βS + βA.

These bounds are similar to the ones for the inexact constraint preconditioner,
in the sense that they still depend only on the spectral properties of the precon-
ditioners used for the (1, 1) block and the Schur complement. Computationally,
its application is slightly cheaper that the one of ICP: Algorithm 4.2 indeed
shows that we need to solve one system with matrix PA, one with matrix PS
and perform a matrix-vector product. In Algorithm 4.1 instead, we need to solve
two systems with matrix PA, one with matrix PS and perform two matrix-vector
products. This means that surely the computational time per iteration of GM-
RES with TBP will be smaller than the one with ICP; however, TBP is likely to
produce a larger number of iterations, since it embeds less information about the
matrix in its structure. It is impossible to tell a priori which one of these effects
will prevail and so which of the two preconditioners will perform better. In the
next Chapter, we present the results of a comparison between ICP and TBP.

Algorithm 4.2 Application of TBP
1: Compute y2: PSy2 = −r2

2: Compute g: g = r1 −BT y2

3: Compute y1: PAy1 = g.

A completely different approach is given in [2] and [9]: the preconditioner
used is essentially the same triangular block preconditioner as before, only that
now the linear system solved is different. The original system is replaced with[

A+ γBTW−1B BT

B 0

][
u

p

]
=

[
f

0

]
,

where W is usually chosen to be equal to Q and γ is a constant with value close
to the intensity of the wind. This system has the same solution as the original
one, since in the (1, 1) block we have added something that vanishes if multiplied
by u. The advantage in using this augmented Lagrangian approach is that the

72 CHAPTER 4. PRECONDITIONING TECHNIQUES

Schur complement preconditioner to be used with any block preconditioner is
extremely simple: indeed, the Schur complement now takes the form

S = B(A+ γBTQ−1B)−1BT ,

which can be simplified using the matrix inversion lemma. The final result is

S−1 = (BA−1BT)−1 + γQ−1,

and therefore, since the scaled mass matrix is a preconditioner for the term
BA−1BT , then a good preconditioner for the Schur complement of the augmented
system is

S̃−1 = (ν + γ)Q−1,

which can even become a diagonal matrix if Q is replaced by a diagonal ap-
proximation. Thus, there is no need to find a suitable approximation for the
Schur complement, which is, as we will see later, one of the main challenges
when preconditioning the Navier-Stokes equations. The price to pay is that the
preconditioner for the (1, 1) block is an extremely complicated Multigrid scheme,
very different from what has been presented in the previous Chapter; this is
because the (1, 1) block now contains a term with a large null space, since matrix
B has a large kernel.

Moreover, as analyzed in [9], this preconditioner works well only for some
particular discretization techniques, which may need to be developed precisely
for this task and its extension to three dimensional problems is even more
complicated.

4.3 Preconditioners for the blocks

Previously, we showed that a block preconditioner for a saddle point linear system,
like the inexact constraint preconditioner, is only as good as the preconditioners
used to approximate the (1, 1) block and the Schur complement. Therefore, we
now try to find scalable preconditioners for these two blocks.

Let us start from the (1, 1) block: we have seen, with Theorem 3.6, that the
Multigrid method is able to solve a linear system involving a Poisson problem in
a number of iterations that does not depend on the mesh size; we have then tried
to generalize this property for a convection-diffusion problem. The question now
might be how to use such a technique as a preconditioner: indeed, we are not
able to write down explicitly the matrix associated to a Multigrid scheme, but it
turns out that to apply a preconditioner we only need the action of its inverse.
This means that we do not have to know P−1

A in explicit form, but we just need

4.3. PRECONDITIONERS FOR THE BLOCKS 73

to have a routine that applies P−1
A to a vector. This is easily done with the

algorithms that were presented when talking about V and W cycles. Therefore,
when in Algorithm 4.1 we need to solve a linear system with matrix PA, we will
just employ a Multigrid scheme, without actually knowing the matrix.

The big problem is to choose the right Multigrid scheme to use, since only
some of them are scalable. For the Stokes problem, it is sufficient to use the
easiest version of Multigrid, since the (1, 1) block represents a standard Poisson
problem; we will then use a damped Jacobi smoother, we will use the Galerkin
coarse grid operator and we will apply a V-cycle. For the Navier-Stokes problem,
the (1, 1) block represents a convection-diffusion operator and so we will need to
take this into account; hence, we will employ a Gauss-Seidel smoother and we
will try different possibilities for the ordering of the nodes. We will calculate
all the matrices involved exactly, without using the Galerkin approach, and
we will use a W-cycle. We hope that all these changes will produce a scalable
preconditioner, but there are no theoretical results like the ones for the Poisson
problem, so we will not be sure about the behavior of the preconditioner until
we actually test it. For very low viscosities, it is possible that even the more
complicated Multigrid scheme that we can produce will not be sufficient to assure
scalability.

4.3.1 Schur complement preconditioner

Let us now focus in finding a scalable preconditioner for the Schur complement,
PS . We will start from the Stokes problem. In this case, we can exploit a
result that we proved previously: Theorem 2.1 states the fact that the matrix
Q−1BA−1BT has eigenvalues that are bounded independently of the mesh size;
moreover the upper bound is 1, so the spectrum will be clustered close to 1.
This condition obviously holds as long as the inf-sup constant β is different from
zero, which is the case since our choice of the finite element spaces is stable.

Therefore, using PS = Q is a choice that assures scalability; we then expect
that a constraint preconditioner using a Multigrid scheme for the (1, 1) block and
the mass matrix Q for the Schur complement, applied to the Stokes problem, will
be scalable. In Section 5.2 we checked this condition, both with the eigenvalues
distribution and with the iterations count. The mass matrix is actually such a
good preconditioner for the Schur complement, that the relaxation has no effect
at all, since the two spectra are very tight.

Solving a linear system with the mass matrix is very cheap, since in most
cases it has a particular structure (tridiagonal, pentadiagonal or similar) and it
is symmetric positive definite: this means that we can either solve directly the
system with the backslash operator of Matlab, which is extremely efficient in

74 CHAPTER 4. PRECONDITIONING TECHNIQUES

exploiting such particular structures, or we can perform a Cholesky factorization.
Another possibility is to substitute the full mass matrix Q with a diagonal
approximation D, i.e. a diagonal matrix that approximates, in some sense, the
mass matrix. The easiest choice is to use exactly the diagonal of Q, but there
are more sophisticated techniques like the mass lumping. In [8, p. 199], it is
proved that choosing for D the diagonal of Q produces a preconditioner for the
Schur complement that is spectrally equivalent to the mass matrix. Thus, we
can use this D to simplify the computations even more, but without losing the
scalability of the preconditioner. As it turns out, this method does not yield
better results, as it is shown again in Section 5.2.

The question now is how to find a suitable PS for the Navier-Stokes problem.
The first guess would be to use again the mass matrix, but unfortunately this
method is not scalable anymore. For high viscosities (i.e. for problems close to
the Stokes one), the results are still acceptable, but for lower viscosities Q does
not represent anymore a viable choice. The first improvement that can be done
is to use the scaled mass matrix, i.e. the mass matrix divided by the viscosity:
this improves the results, but still it is not a scalable preconditioner, as it is
shown in Section 5.3. We then need to find different strategies to precondition
the Schur complement.

Let us start with an intuitive explanation of why the mass matrix works so well
for the Stokes problem. The Schur complement BA−1BT represent the discrete
version of the action of three operators: a gradient, given by B, the inverse of a
Laplacian, given by A−1, and a divergence, given by BT . We can then think that
the Schur complement is related to the operator (div∆−1∇); recalling that ∆

acts as (div∇), it is intuitively clear that the Schur complement is equivalent to
an identity operator. The mass matrix, following from its definition, represents
a discrete identity operator and so it is the perfect candidate as preconditioner
for the Schur complement.

In the Navier-Stokes problem, however, the matrix A is no longer a Laplace
operator, but it represents a convection-diffusion operator and hence this reason-
ing does not hold anymore. Nonetheless, we can proceed with a slightly different
reasoning, to produce a suitable preconditioner for the Schur complement in
the Navier-Stokes case. In [11], all the technical details of the derivation of
this preconditioner are carried out exactly, using Green’s functions and Fourier
transforms; here we will just give the intuitive interpretation. The main idea
is given by two points: firstly, if the convective processes tend to zero (and
so the problem tends to a Stokes problem), the preconditioner should default
to the mass matrix, which is the optimal preconditioner in the Stokes case;
secondly, we should build the preconditioner considering that A now represents
an operator of the kind −ν∆ + w · ∇, where w is the local wind, that in the

4.3. PRECONDITIONERS FOR THE BLOCKS 75

Oseen problem is given by the solution of the previous iteration. Therefore, the
Schur complement is now equivalent to the operator div (−ν∆ + w · ∇)−1∇.
Its inverse can be viewed as the application of −ν∆ + w · ∇ together with the
inverse of both the divergence and the gradient; we can think of these last two
operators as the action of the inverse of a Laplacian. Thus, an approximation to
the inverse of the Schur complement is given by the operator (−ν∆ +w ·∇)∆−1.
In matrix notation, this is written as ApL−1

p , where Ap has the same structure
of matrix A, but it is build using the basis functions of the pressure space, and
Lp is the Laplacian matrix built on the pressure space. We need to consider the
pressure version of these matrices in order to match the dimensions to those of
the Schur complement. ApL−1

p does not default to Q−1 as w → 0, so we just
pre-multiply by Q−1. The final preconditioner is then P−1

S = Q−1ApL
−1
p . Since

this preconditioner uses a convection-diffusion operator built on the pressure
space, it is usually called pressure convection-diffusion (PCD) preconditioner.

PCD has been successfully tested in a wide range of situations and it showed
mesh-independent convergence rates for moderate values of ν; moreover, the
dependence of the convergence rate on ν is improved in comparison to the
scaled mass matrix. However, when the viscosity gets low, the convergence rates
can deteriorate even for the simplest flows. The matrices involved Ap and Lp
are not readily available from the finite elements discretization, but they must
be calculated separately; moreover, they need the proper boundary conditions
for the preconditioner to work at its best. The issue of choosing the right
boundary conditions for these matrices is not yet well understood, since for many
situations they have to be different from the boundary conditions prescribed on
the underlying differential problem, they may depend on the viscosity and on
the type of convective flow and they may even differ on different portions of the
boundary. In [15], a theorem is proved stating that the eigenvalues of the PCD
preconditioned Schur complement are uniformly bounded.

Let us now derive another Schur complement preconditioner, originally
proposed in [7]. This formulation starts from the following simple result of linear
algebra.

Proposition 4.2. Consider two matrices G and K of dimensions m×n, n > m,
of full rank. The matrix

KT (GKT)−1G (4.10)

represents an identity operator over range(KT).

Proof. Take a vector x ∈ range(KT); it can be written as x = KT y, for some

76 CHAPTER 4. PRECONDITIONING TECHNIQUES

vector y ∈ Rm. The application of KT (GKT)−1G to x yields

KT (GKT)−1Gx = KT (GKT)−1GKT y

= KT y = x.

Therefore, KT (GKT)−1G is an operator that maps range(KT) into itself and
moreover it is the identity operator.

To apply this result, assume that B has full rank and consider G = BA−1

and K = B. They are both of dimension m×n and so we can apply the previous
proposition. The operator (4.10) then becomes BT (BA−1BT)−1BA−1 and we
can say that

BT (BA−1BT)−1BA−1 = I on range(BT),

which means that

BT (BA−1BT)−1BA−1x = x ∀x ∈ range(BT).

Equivalently, considering a vector y = A−1x, we can say that

BT (BA−1BT)−1By = Ay ∀y ∈ range(A−1BT). (4.11)

Let us now make the following assumption

range(BT) ⊂ range(A−1BT). (4.12)

Consider a vector u ∈ range(BT); due to assumption (4.12), u is also in
range(A−1BT) and so we can use equation (4.11) with y = u:

BT (BA−1BT)−1Bu = Au ∀u ∈ range(BT).

Since u is in the range of BT , we can write it as u = BT v, for some vector
v ∈ Rm

BT (BA−1BT)−1BBT v = ABT v ∀v ∈ Rm.

We can now pre-multiply this expression by B, to get

BBT (BA−1BT)−1BBT v = BABT v ∀v ∈ Rm,

or equivalently

(BA−1BT)−1BBT v = (BBT)−1(BABT)v ∀v ∈ Rm.

4.3. PRECONDITIONERS FOR THE BLOCKS 77

We can now change variable to w = BBT v and obtain

(BA−1BT)−1w = (BBT)−1(BABT)(BBT)−1w ∀w ∈ Rm.

This expression implies that (BBT)−1(BABT)(BBT)−1 and (BA−1BT)−1 are
the same matrix: indeed, if the expression holds for every vector w, in particular
it holds for the canonical basis. Using the k−th vector of the canonical basis
yields the k−th column of the matrix, which means that every column of the
first matrix is equal to the corresponding column of the second matrix. Thus,
the two matrices are equal.

Therefore, we have found an expression for the inverse of the Schur com-
plement that does not involve the inverse of matrix A. We can then say that

P−1
S = (BBT)−1BABT (BBT)−1 (4.13)

is a good preconditioner for the Schur complement. In the original formulation,
matrix A was called F and so this method took the name of BFBt preconditioner,
since if involved the term BFBT .

Since this preconditioner represents the exact inverse of the Schur complement,
it would produce a preconditioned matrix with all eigenvalues equal to 1. In
practice, it is not possible to invert exactly the matrix BBT and moreover
assumption (4.12) does not hold perfectly. In [7], there is an example of a
problem for which the assumption hold, but for generic scenarios with generic
boundary conditions this will not be the case.

Preconditioner (4.13) can be modified in a simple way to improve its perfor-
mance; the final form of the BFBt preconditioner is

P−1
S = (BQ−1

v BT)−1BQ−1
v AQ−1

v BT (BQ−1
v BT)−1, (4.14)

where Qv is either the exact velocity mass matrix or a diagonal approximation.

The application of (4.14) requires the solution of two systems with matrix
BQ−1

v BT ; this can be done either with an inexact factorization or reformulating
this term using the pressure Laplacian matrix. Besides this, the application
requires three matrix-vector products and the solution of two linear systems
involving Qv, which are easy to solve. Therefore, it seems that the computational
cost of a single application of this preconditioner is higher in comparison to the
PCD preconditioner. However, there are some advantages: this technique is
build using only the matrices that are already present in the original problem;
for simple flows, the robustness with respect to ν is improved and mesh size
independence is observed; there is no more the necessity to impose the proper
boundary conditions on the matrices, which was a difficult problem to deal

78 CHAPTER 4. PRECONDITIONING TECHNIQUES

with. Unfortunately, for complicated flows, like the one that we will use, this
preconditioner shows some dependence on ν and on the mesh size h.

In Section 5.3, we present the results of the use of the BFBt preconditioner,
together with various Multigrid schemes, for the Navier-Stokes problem. The
results shown are again related to the spectral properties and the number of
iterations of GMRES. We chose to use the BFBt preconditioner in our application
and not the PCD, so that we did not have to deal with the unknown boundary
conditions to be applied in the latter. Moreover, we wanted to compare the
BFBt preconditioner to another preconditioner that is derived directly from it
and that we are now going to introduce.

The BFBt preconditioner can be thought, neglecting the mass matrix scaling,
as the discrete version of the operator

∆−1
p div (−ν∆ + w · ∇)∇∆−1

p ,

where we have indicated with ∆p the operator related to a pressure Laplace
problem. In [15], some critical issues of this approach are underlined: they
derive mainly from the difference between the boundary conditions that such an
operator is able to apply, in comparison to the boundary conditions required for
the underlying problem. The suggested solution to this problem is to commute
the operators ∇ and div with ∆−1

p ; after adjusting the operators so that the
dimensions match, the result is

div∆−1(−ν∆ + w · ∇)∆−1∇,

where this time we have used the standard velocity Laplace problem. The
preconditioner that comes out of this operator is given by

P−1
S = Q−1BL−1AL−1BTQ−1, (4.15)

where the matrix L is the Laplacian matrix, that corresponds to the matrix A
used in the Stokes problem. We have also introduced a scaling given by Q−1, as
was done in the case of the BFBt preconditioner.

The commutation that was performed is formally correct only for some
particular cases with special boundary conditions; however, arguments based on
inexact commutators are often used in the derivation of both PCD and BFBt
preconditioners. Thus, we do not expect it to be a problem.

Let us see some of the advantages of this formulation:

1. Preconditioner (4.15) is built using the matrices already available from the
finite element routines; indeed, matrix L corresponds to the diffusive part

4.3. PRECONDITIONERS FOR THE BLOCKS 79

of A.

2. There is no more the issue of inverting the matrix BBT : this could have
been done using a Multigrid scheme, but it would have required a different
technique, since this matrix acts on the pressure space, which has linear
basis functions and therefore the prolongation and restriction operators
would have been different from the ones used in the main Multigrid routine.
Moreover, such a method requires to impose some boundary conditions on
the pressure Laplacian and again we have the problem of which boundary
conditions to apply.

3. The action of L−1 instead can be performed using the same Multigrid that
we use for matrix A, since it is an operator that works on the velocity
space.

4. None of the matrices involved require the application of specially developed
boundary conditions, which was a problem with the PCD preconditioner.

5. For a wider set of cases, this method showed convergence independent of
the mesh size and of the viscosity, as shown by the results in [15].

On the other hand, there are still some critical points:

1. For complicated flows, like the one that we will investigate, some depen-
dence on ν was observed.

2. This preconditioner is not particularly effective for diffusion dominated
flows; indeed, for the limit case in which A becomes exactly L (which is the
Stokes problem), then the preconditioned Schur complement becomes just
(Q−1S)2. We already know that in this case the optimal preconditioner is
Q−1 and this means that this approach produces a preconditioned matrix
with a condition number that is the square of what we would get in the
optimal case. This in turn means that the number of iterations will nearly
double.

3. Compared with the BFBt preconditioner, we still have to perform three
matrix-vector products and solve a couple of systems involving Q; however,
now we have to solve two systems with matrix L, that compared to BBT

has a much larger dimension.

For preconditioner (4.15), the following theorem holds

Theorem 4.7. Consider a quasi uniform discretization and suppose that the bi-
linear forms involved in the finite elements approximation satisfy the assumptions

80 CHAPTER 4. PRECONDITIONING TECHNIQUES

of Theorem 1.1. Then, the eigenvalues λ of the Schur complement, preconditioned
using (4.15), satisfy

c ≤ λ ≤ C,

where c and C are positive constants independent of the mesh size h.

The proof of this theorem is extremely technical and can be found in [15].
Notice that the constants c and C could still depend on other parameters, like
the viscosity. However, we hope that this result will allow us to obtain a scalable
preconditioner for the Schur complement.

Since this preconditioner is obtained from the BFBt one, by means of a
commutation, it will be referred to as BFBt-c preconditioner. The results of its
application are shown in Section 5.3.

In Appendix B we report the various algorithms that have been used to apply
the constraint preconditioner.

Chapter 5

Numerical results

In this last Chapter, we will show the results of the numerical experiments
performed; the spectral properties of the matrices will be used to predict the
behavior of a certain technique and we will then compare the predictions with
the actual results. Some plots will be used to compare the spectra of different
preconditioners and to show convergence profiles of GMRES.

5.1 Problem description

The discretization chosen for the finite elements is of second order for the velocity
and first order for the pressure. Therefore, calling n the number of intervals
on each side of the squared domain, the number of degrees of freedom for the
pressure variables is (n+ 1)2, while for the velocity we must take into account
also the midpoints of the edges of the triangles; moreover, for every node, there
are two unknowns, since the velocity is a vectorial quantity. Therefore, the
number of degrees of freedom for the velocity is 2(2n+ 1)2. Making the sum,
the total variables are 9n2 + 10n+ 3. Considering a refinement of the mesh with
a number of intervals 2n, the number of variables becomes 36n2 + 20n+ 3. It is
important to notice that the ratio between the number of degrees of freedom in
these two cases approaches 4 from below as n increases.

The matrices used for the numerical tests are generated using values of n from
10 to 320. In particular, Table 5.1 illustrates all the matrices used, showing their
dimension and number of nonzero entries, while Figure 5.1 shows the sparsity
pattern the matrix M10.

It can be seen that the number of nonzero entries per row is varying between
14 and 18 and the density increases as n grows. The ratio of the dimensions
goes from 3.8 for the small matrices to 3.99 for the bigger ones, which agrees
with what has been said before. The smaller matrices M10 and M20 will be used

81

82 CHAPTER 5. NUMERICAL RESULTS

Table 5.1: Properties of the matrices

Matrix Dimension NNZ

M10 1 003 14 280
M20 3 803 62 008
M40 14 803 258 268
M80 58 403 1 054 076
M160 232 003 4 258 388
M320 924 803 17 118 310

Figure 5.1: Sparsity pattern of matrix M10

0 200 400 600 800 1000
nz = 14280

0

100

200

300

400

500

600

700

800

900

1000

only in the layer of the Multigrid preconditioner, while the other will be actually
used as matrices for the saddle point system.

Concerning the Navier-Stokes equations, the matrices used are obtained after
five iterations of a Picard scheme, which ensures that the nonlinear phenomena
are well represented. The value of the viscosity is set to 1 for the Stokes problem.
For the Navier-Stokes equations, it will assume the values 10−1, 10−2, 5 · 10−3

and 10−3. Lowering the viscosity, the system will become more asymmetric,
which is expected to worsen the properties of the preconditioner.

The numerical results that will be presented will regard firstly the Stokes
problem, that will asses if the basic Multigrid scheme works as expected. Then,
different strategies to precondition the Navier-Stokes equations will be inves-
tigated, analyzing both the spectral properties and the number of iterations
required for the GMRES to converge. The notation will be the following: αA
and βA represent the maximum and minimum eigenvalues in modulus of the
preconditioned (1, 1) block; αS and βS represent the maximum and minimum
eigenvalues in modulus of the preconditioned Schur complement (obviously,
the zero eigenvalue of the Schur complement is not considered, since it is al-

5.2. STOKES PROBLEM 83

ways present); ω∗ represents the optimal value of the relaxation parameter, as
formulated in Theorem 4.6.

Some details on implementation

All the results have been obtained using codes written in Matlab. The finite
elements have been implemented using a four-point Gaussian quadrature scheme.
The eigenvalue estimates are obtained using the Arnoldi method. The solver used
is left-preconditioned GMRES with a tolerance of 10−10 and without restart.

The preconditioner used is the inexact constraint preconditioner (ICP), unless
otherwise specified, sometimes used with relaxation. The coarsest mesh for the
Multigrid schemes is always the one corresponding to the matrix M10. So, if
we are solving the problem with matrix M160, the Multigrid will have 5 levels,
relative to the matrices M160, M80, M40, M20, M10, and the system will be
solved exactly only in the coarsest level. To solve this small system, we used the
backslash command of Matlab.

We noticed that an enormous quantity of time was lost to extract the proper
matrices in the smoothing phase (diagonal or triangular parts); so, we decided
to extract all these matrices in advance, store them and rewrite the smoothers
so that they choose the correct matrix to use. This requires some preprocessing
time, which varies from some hundredths of a second (M40) to 2-3 seconds
(M320). Anyway, this time grows linearly with respect to the dimension of the
matrix, so it will never represent a problem.

All the times reported are in seconds.

5.2 Stokes problem

The Stokes problem is symmetric, so we used a simple Multigrid V-cycle with
one iteration of pre and post smoothing, using a damped Jacobi smoother. The
preconditioner for the Schur complement is either the mass matrix (Q) or its
diagonal (diagQ). These two preconditioners for the (1, 1) block and for the
Schur complement have been analyzed and studied, even if using a different
block preconditioner, in [8, pp. 189-211].

The spectral properties of the preconditioned matrices are reported in Ta-
ble 5.2, together with the optimal value of the parameter ω for both cases.

Table 5.2: Spectral properties of the preconditioned matrices for the Stokes problem.

Matrix αA βA αS(Q) βS(Q) βS(diagQ) ω∗(Q) ω∗(diagQ)

M40 0.8606 1.0002 0.0968 0.9921 1.7290 1.0082 0.5809
M80 0.8496 1.0000 0.1333 0.9941 1.7690 1.0060 0.5652

84 CHAPTER 5. NUMERICAL RESULTS

It is clear that the Multigrid works as expected, since the eigenvalues are
clustered around 1, in a tight interval. Moreover, the eigenvalues do not degrade
refining the mesh. The same holds for the Schur complement preconditioner, in
both cases. Therefore we expect a number of iterations almost constant and a
computational time that grows linearly as the mesh is refined. This is confirmed
by Table 5.3, which also shows that the mass matrix is a better preconditioner
than its diagonal.

Table 5.3: Results for the Stokes problem.

Matrix Q diagQ

iterations time iterations time

M40 31 5.57 46 8.31
M80 33 18.79 47 29.37
M160 34 93.29 48 148.60

Since both the Multigrid preconditioner and the Schur complement precon-
ditioner work very well, we expect not to gain anything using the relaxation
parameter. Indeed, Table 5.4 proves this fact.

Table 5.4: Results for the Stokes problem with relaxation.

Matrix ω iter with Q iter with diagQ

M40
1 31 46

1.0082 31 −
0.5809 − 46

M80
1 33 47

1.0060 33 −
0.5652 − 47

M160
1 34 48

1.01 34 −
0.55 − 47

We solved the Stokes problem also using the exact constraint preconditioner
(ECP) presented in Algorithm B.1, in order to evaluate its performance relative
to the inexact constraint preconditioner. The results with ECP are shown in
Table 5.5.

This preconditioner is clearly not scalable; for the matrix M40, ECP is
much faster that ICP, but then the number of iterations grows rapidly and the
computational time consequently becomes much grater than the one required to
the ICP. Therefore, it is clear that ICP is superior to ECP.

Now that we have assessed that the preconditioners behave as expected in
the well known Stokes problem, we can try to solve the Navier-Stokes equations.

5.3. NAVIER-STOKES PROBLEM 85

Table 5.5: Results for the Stokes problem using ECP, with inner tolerance 10−6, outer
tolerance 10−10, droptol 10−3.

Matrix iter time

M20 7 0.08
M40 40 1.52
M80 97 28.19
M160 >200 >423

5.3 Navier-Stokes problem

The Navier-Stokes equations involve a system that is no more symmetric, due
to the presence of the convection. We therefore expect the Jacobi smoother
to behave badly, leading to a non-scalable preconditioner. Moreover, the mass
matrix is no longer a viable preconditioner for the Schur complement. Table 5.6
shows the eigenvalues of the Schur complement preconditioned with the scaled
mass matrix (mass matrix divided by the viscosity) for a low viscosity (0.005).
It is clear that all the nice properties that the mass matrix had in the Stokes
problem are lost: the spectral radius increases as the mesh refines and the
eigenvalues are no longer well clustered around one.

Table 5.6: Spectral properties of the Schur complement, preconditioned with the scaled
mass matrix, for the Navier-Stokes problem with ν = 0.005.

Matrix αS βS

M40 0.3753 12.1965
M80 0.2423 16.8846
M160 0.2431 22.9679

It is therefore fundamental to find different preconditioners. We tested
three Multigrid schemes, using Jacobi and Gauss-Seidel smoothers, and two
preconditioners for the Schur complement, namely the BFBt preconditioner and
the BFBt-c preconditioner. We used Algorithms B.3 and B.4. The following
Sections present the various combinations of the two preconditioners.

5.3.1 Jacobi Multigrid / BFBt

The combination of Multigrid with damped Jacobi smoothing and BFBt to solve
the Navier-Stokes equations will be referred to as NS-J-BFBt. The Multigrid
is executed using 5 iterations of a V-cycle with one pre and post smoothing
step; the BFBt preconditioner is implemented using an ILU factorization with
threshold 10−5. This combination has not been studied a lot since, as it will
be clear, it is not a good choice. The Multigrid is the same as for the Stokes

86 CHAPTER 5. NUMERICAL RESULTS

problem, while the Schur complement preconditioner has been analyzed in [7].

The spectral properties of the preconditioned matrices are reported in Ta-
ble 5.7. The value ω∗ is approximately 0.05.

Table 5.7: Spectral properties of the preconditioned matrices for the NS-J-BFBt
problem.

Matrix Viscosity αA βA αS βS

M40 0.1 0.4256 1.261 0.6926 25.86
0.01 0.4251 1.905 0.4746 21.87

M80 0.1 0.3555 1.442 0.2107 26.62
0.01 0.3588 2.911 0.1494 25.92

M160 0.1 0.3371 1.700 0.0557 39.41
0.01 0.3383 5.013 0.1744 28.97

The eigenvalues of the preconditioned (1, 1) block show a slight dependence
on the mesh size (αA is decreasing, βA is increasing) even for the highest viscosity,
which represents a problem similar to the Stokes one. The smallest eigenvalue
αA does not seem to be affected by the value of the viscosity, while the biggest
one βA grows substantially with the viscosity, getting in the worst case to a value
larger than 5. The fact that the spectral properties deteriorate as the viscosity
grows is perfectly in line with the fact that this Multigrid preconditioner was
built for a symmetric problem, while lowering the viscosity makes the problem
more and more asymmetric. For an even lower viscosity (0.005), the eigenvalues
become negative, leading to a complete failure of the preconditioner.

The situation is not better for the Schur complement preconditioner: even
in this case, the spectral interval widens as the mesh is refined. Moreover, the
eigenvalues are less clustered around 1, as the spectral radius is always above 20.

Figure 5.2 illustrates the spectrum of the preconditioned Schur complement
for various values of the viscosity. Every dot represents an eigenvalue in the
complex plane (only the first 100 eigenvalues found by Arnoldi are represented).
These spectra do not depend on the Multigrid scheme used, so they would be
the same even using a different Multigrid. It is clear that, as the viscosity gets
lower, the system becomes more asymmetric, and as a consequence the imaginary
part of the eigenvalues becomes bigger. Moreover, as ν decreases, most of the
eigenvalues tend to have a smaller real part; this leads to a better clustering of
the eigenvalues around 1 when the viscosity is low.

The poor spectral properties lead us to think that the NS-J-BFBt precon-
ditioner will not be scalable. The evident difference in the spectrum of the
(1, 1) block and of the Schur complement hints that the relaxation may produce
a benefit; however, since the spectra have very different width, its effect will not

5.3. NAVIER-STOKES PROBLEM 87

Figure 5.2: Spectra of the BFBt-preconditioned Schur complement for different values
of viscosity.

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

(a) ν = 0.1

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

(b) ν = 0.01

0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

6

8

(c) ν = 0.005

be too significant.
Table 5.8 reports the results obtained with this preconditioners, in terms of

iterations and computational time for various values of the relaxation parameter
ω between 0.05 and 1.

The results are not surprising: the preconditioner is not scalable, indeed the
number of iterations grows vary rapidly as the mesh is refined. The iterations
count increases also as the viscosity gets lower, showing a lack of robustness in
this sense. The relaxation produces some small benefits, however the optimal
ω appears not to coincide with the estimated ω∗: this is due to the fact that
the system is no longer symmetric and hence the theoretical results previously
developed may not hold anymore in the same way.

Using a lower viscosity of 0.005, the matrix M40 fails to converge within 300

iterations, emphasizing the lack of robustness of the Jacobi-BFBt combination.
In order to improve the performance of the preconditioner, we implemented
a Multigrid scheme using simple-Gauss-Seidel as smoother, keeping the same

88 CHAPTER 5. NUMERICAL RESULTS

Table 5.8: NS-J-BFBt results for various values of the relaxation parameter.

Matrix ω
ν = 0.1 ν = 0.01

iter time iter time

M40

1 67 4.10 110 6.89
1/2 62 3.82 107 6.55
1/4 61 3.73 105 6.41
1/10 59 3.63 107 6.64
1/20 60 3.67 127 7.85

M80

1 97 14.01 195 29.34
1/2 88 12.58 183 27.95
1/4 86 12.26 180 26.99
1/10 83 11.84 177 26.97
1/20 81 11.52 184 27.83

M160

1 141 79.23 336 233.8
1/2 135 75.10 332 233.7
1/4 133 74.92 329 228.0
1/10 130 72.56 324 223.6
1/20 128 71.48 325 225.0

Schur complement preconditioner.

5.3.2 Simple-GS Multigrid / BFBt

The combination of Multigrid with simple-Gauss-Seidel and BFBt preconditioners
will be referred to as NS-sGS-BFBt. All the details of the implementation of the
preconditioner (number of V-cycle...) remain the same as before.

Simple-Gauss-Seidel smoothing performs the Gauss-Seidel method keeping
the original numeration of the nodes, hence without following the convection
flow. This is expected to produce better results than the Jacobi Multigrid
preconditioner, but still it should not be scalable as it does not follow the
direction of the flow. Table 5.9 shows the spectral properties of the preconditioned
(1, 1) block and Schur complement.

There is a great improvement in the eigenvalue bounds of the preconditioned
(1, 1) block for the highest viscosity: indeed the spectral interval is extremely
narrow and focused around 1. However, this nice property disappears for the
lowest viscosity, leading even to negative eigenvalues for the matrix M80. That
is exactly what we expected: for high viscosities, the convection phenomena are
not relevant, hence there is not much difference between smoothers that follow
or not the flow. Instead, for low viscosities, the convection process must be taken
into account to produce a suitable smoother.

It can be noticed that the eigenvalue bounds for the preconditioned Schur

5.3. NAVIER-STOKES PROBLEM 89

Table 5.9: Spectral properties of the preconditioned matrices for the NS-sGS-BFBt
problem.

Matrix Viscosity αA βA αS βS

M40
0.1 1.0000 1.002 0.6966 25.44
0.01 0.9784 1.006 0.4527 21.83
0.005 0.6591 1.422 0.2522 25.15

M80
0.1 1.0000 1.003 0.2159 26.47
0.01 0.9984 1.015 0.1290 25.82
0.005 <0 19.35 0.0349 27.95

complement are slightly different from the previous ones: indeed, in order to
apply the Arnoldi method to the Schur complement, there is the necessity to use
a Multigrid scheme to produce an approximation of the inverse of the (1, 1) block.
These differences however are very small, since a change in the Multigrid affects
the eigenvalue estimates of the Schur complement far less than the eigenvalues
of the (1, 1) block.

Table 5.10 shows the results obtained for some values of the relaxation
parameter.

Table 5.10: NS-sGS-BFBt results for various values of the relaxation parameter.

Matrix ω
ν = 0.1 ν = 0.01

iter time iter time

M40
1 64 3.90 107 6.75
1/2 62 3.84 105 6.68
1/4 61 3.80 104 6.57

M80
1 87 12.92 183 28.36
1/2 86 12.60 178 28.58
1/4 84 12.11 176 27.97

M160
1 135 80.40 334 250.8
1/2 133 79.91 328 244.0
1/4 131 79.12 323 237.8

There is a slight improvement in the number of iterations, but overall the
preconditioner remains not scalable. The computational time slightly grows,
since the application of the Gauss-Seidel method is more costly in comparison
to the Jacobi smoother (indeed the first requires the solution of a triangular
system, while the second of a diagonal system). The relaxation parameter again
shows some effectiveness, but the reduction is of just a couple of iterations.

In order to find a Multigrid scheme that allows for scalability, we tried to
perform the smoothing in two directions that follow the flow.

90 CHAPTER 5. NUMERICAL RESULTS

5.3.3 Two directions GS Multigrid / BFBt

We implemented a smoother that performs two sweeps of Gauss-Seidel in two
orthogonal directions, trying to follow the direction of the convective processes,
as shown in Figure 3.6. This technique has been proposed in [8, pp. 314-317].
Moreover, we tried to apply the Multigrid using a W-cycle instead of a V-cycle,
since it may yield more accurate results, as shown in [14]. These two modifications
will produce an increment in the computational time per iteration, i.e. a single
application of the preconditioner will be far more time consuming, but hopefully
they will make the Multigrid scalable. This combination will be referred to as
NS-W2dGS-BFBt. The implementation details are the same as before, except
for the number of W-cycles used, which in this case is just 2. Table 5.11 shows
the spectral properties of the preconditioned (1, 1) block and Schur complement.

Table 5.11: Spectral properties of the preconditioned matrices for the NS-W2dGS-BFBt
problem.

Matrix Viscosity αA βA αS βS

M40
0.1 0.9907 1.022 0.6973 25.46
0.01 0.9912 1.133 0.4899 21.84
0.005 0.9153 1.291 0.1962 25.20

M80
0.1 0.9907 1.027 0.2159 26.55
0.01 0.9889 1.032 0.1242 25.83
0.005 0.9619 1.130 0.0350 25.25

M160
0.1 0.9908 1.036 0.0554 27.20
0.01 0.9874 1.036 0.0315 26.68
0.005 0.9859 1.050 0.0283 26.46

The results are promising, at least for the Multigrid preconditioner: the
smallest eigenvalue αA is very close to 1 and does not suffer from refinement of
the mesh or reduction in the viscosity. The spectral radius βA is slightly above 1

and again does not deteriorate too much changing the properties of the problem:
there is a little growth when the viscosity is reduced and there is a decrease
when the mesh is refined (this can be explained noticing that the convective
phenomena are better represented when the matrix is larger, therefore improving
the efficiency of this Multigrid scheme which is based on these phenomena).

A spectral interval so narrow and so stable for the Multigrid preconditioner
suggests that this method might produce a scalable preconditioner. To see the
improvements with respect to the previous choices, Figure 5.3 shows the spectra
of the (1, 1) block preconditioned with three Multigrid schemes, using damped
Jacobi, simple Gauss-Seidel and the final smoother, for the matrix M40 and
viscosity 0.005. It is immediately clear how the last choice of smoother keeps

5.3. NAVIER-STOKES PROBLEM 91

Figure 5.3: Spectra of various Multigrid schemes for the matrix M40 and ν = 0.005.

-0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Jacobi
simple-GS
W-2dir-GS

almost all the eigenvalues very well clustered around 1 even for a low value of
the viscosity. This task is instead failed by the other two possibilities.

In order to understand why the W-cycle is useful, we present the spectral
properties obtained with the same (1, 1) block preconditioner, only using a
V-cycle instead of W. The results are shown in Table 5.12.

Table 5.12: Spectral properties of the (1, 1) block without W-cycle.

Matrix Viscosity αA βA

M40
0.1 0.9916 1.029
0.01 0.7948 1.330
0.005 0.8967 2.577

M80
0.1 0.9912 1.049
0.01 0.5789 1.491
0.005 0.9548 4.637

M160
0.1 0.9891 1.090
0.01 0.3433 1.730
0.005 0.9163 8.074

It is clear how, without the W-cycle, the preconditioner does not work prop-
erly: the spectral radius grows rapidly and is sensible both to mesh refinements
and to viscosity changes. It is therefore fundamental to use a W-cycle in order

92 CHAPTER 5. NUMERICAL RESULTS

to get a scalable (1, 1) block preconditioner.
We have found a Multigrid scheme that is likely to be scalable, but unfortu-

nately the BFBt preconditioner shows poor spectral properties. From Table 5.11,
we can notice that the spectral radius βS does not deteriorate much, but the
minimum eigenvalue in modulus αS approaches 0 as the mesh is refined. This
behavior will surely lead to non-scalability of the whole preconditioner.

Table 5.13: NS-W2dGS-BFBt results for various values of the relaxation parameter.

Matrix ω
ν = 0.1 ν = 0.01 ν = 0.005

iter time iter time iter time

M40

1 64 5.90 107 10.25 118 11.43
1/2 62 5.92 104 9.83 115 10.98
1/4 61 5.88 102 9.80 111 10.64
1/10 59 5.60 100 9.61 112 10.50
1/20 59 5.53 113 10.82 134 12.89

M80

1 88 22.88 181 48.74 253 69.37
1/2 86 22.23 177 47.31 249 67.28
1/4 85 22.08 174 46.51 246 65.82
1/10 82 21.28 171 45.45 242 64.67
1/20 81 21.17 174 46.02 265 71.95

M160

1 136 126.87 330 346.33 > 400 −
1/2 135 124.55 328 345.82 > 400 −
1/4 133 122.58 325 338.70 > 400 −
1/10 129 118.47 321 331.83 > 400 −
1/20 128 118.50 319 323.42 > 400 −

Table 5.13 presents the results using the NS-W2dGS-BFBt preconditioner,
with various values of the relaxation parameter. It is immediately clear that
this combination is not scalable, since the results are almost exactly the ones
obtained previously. For the matrix M160 and viscosity 0.005, convergence is
not reached within 400 GMRES iterations. The relaxation continues to produce
a slight improvement.

It can also be observed a clear growth in the computational time per iteration:
with the previous preconditioner, for the M160 matrix, the time per iteration
was between 0.6s and 0.7s. In this case it reaches the value of 1s, emphasizing
how the smoother used is far more complex.

5.3.4 Two directions GS Multigrid / BFBt-c

The Multigrid scheme using two sweeps of Gauss-Seidel seems to be the good
choice to precondition the (1, 1) block. In order to obtain a fully scalable
method, we implemented the BFBt-c preconditioner, which might behave better

5.3. NAVIER-STOKES PROBLEM 93

in situations with recirculating flows. This preconditioner has been analyzed
in [15]. This combination will be referred to as NS-W2dGS-BFBt-c. The details
of the Multigrid implementation are the same as before; moreover, the same
Multigrid scheme is used inside the Schur complement preconditioner, to produce
the inverse of the Laplacian matrix; the only difference is that 4 W-cycles are
used instead of 2 for this task. The spectral properties are shown in Table 5.14;
the eigenvalues of the preconditioned (1, 1) block are the same as before, since
the Multigrid scheme did not change, so they are not reported.

Table 5.14: Spectral properties of the preconditioned matrices for the NS-W2dGS-
BFBt-c problem.

Matrix Viscosity αS βS

M40
0.1 0.0178 1.0592
0.01 0.0177 1.0732
0.005 0.0177 1.5929

M80
0.1 0.0178 1.1514
0.01 0.0177 1.0732
0.005 0.0175 1.7966

M160
0.1 0.0178 1.3970
0.01 0.0177 1.0750
0.005 0.0176 1.8484

These eigenvalue bounds are promising: the smallest one is constant indepen-
dently of the mesh size and of the viscosity. The spectral radius shows a slight
dependence on these factors, but overall the behavior is definitely better than
the BFBt preconditioner. Such a method is likely to produce scalable results.
To see the improvement with respect to the previous choice, Figure 5.4 shows
the spectra in the complex plane of the BFBt and BFBt-c preconditioned Schur
complement, for the matrix M40 and viscosity 0.005.

However, we expect the time per iteration to grow substantially, since various
Multigrid iterations are required also inside the Schur complement preconditioner.
This means that, if the method is scalable, there will be a gain in the total
computational time only if the gain in the number of iterations is large. Moreover,
the current situation suggests that the relaxation will not have any effect on the
speed of convergence, since the two spectra now have almost the same spectral
radius and the preconditioned (1, 1) block spectrum is fully contained in the
preconditioned Schur complement spectrum. This fact is illustrated in Figure 5.5,
which shows the two spectra overlapping, for the matrix M40 and ν = 0.005.

The results obtained are shown in Table 5.15, for values of the viscosity up
to 0.005 and also for matrix M320, which is the largest one that we used.

These results confirm what we already anticipated: the NS-W2dGS-BFBt-c

94 CHAPTER 5. NUMERICAL RESULTS

Figure 5.4: Comparison of the spectra of the preconditioned Schur complement for
BFBt and BFBt-c preconditioners, for matrix M40 and ν = 0.005.

0 5 10 15
-5

-4

-3

-2

-1

0

1

2

3

4

5
BFBt-c
BFBt

Figure 5.5: Spectra of the preconditioned (1, 1) block and Schur complement.

0 0.2 0.4 0.6 0.8 1 1.2
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Schur complement
1,1-block

preconditioner is scalable. The number of iterations increases very slowly and the
computational time grows linearly for all the viscosities. Moreover, the speed of
convergence is just slightly dependent on the viscosity, showing good robustness
in this sense.

The time per iteration is definitely larger than before; for the matrix M160,

5.3. NAVIER-STOKES PROBLEM 95

Table 5.15: NS-W2dGS-BFBt-c results without relaxation.

Matrix ν = 0.1 ν = 0.01 ν = 0.005

iter time iter time iter time

M40 52 16.49 62 20.09 68 21.91
M80 57 47.88 65 54.13 70 57.87
M160 61 173.08 66 189.71 77 217.99
M320 64 677.26 69 729.35 79 830.51

it has risen to more than 2.80 seconds per GMRES iteration. Concerning the
matrix M40, the final computational time is more than the double of the one
obtained with the previous preconditioner, since the gain in the number of
iterations is not sufficiently high; with the matrix M80, some time advantage
begins to arise with the lowest viscosity; for the matrix M160 the advantage is
clear, since the iterations count goes from more than 400 to just 77. The results
for the matrix M320 emphasize how the nice behavior of this preconditioner is
preserved refining the mesh even further.

Figure 5.6: Computational time with respect to number of unknowns in the system,
for various viscosity values, using the scalable preconditioner.

0 1 2 3 4 5 6 7 8 9 10
Unknowns 105

0

100

200

300

400

500

600

700

800

900

Ti
m
e

0.1
0.01
0.005

Figure 5.6 plots the computational time needed against the number of un-
knowns of the system for the scalable preconditioner. It is clear that the growth
is linear and the viscosity does not affect too much the results. Figure 5.7 instead
plots a comparison of the behavior of the computational time in the case of
scalable and non scalable preconditioners; all the three viscosities are shown, for
matrices up to M160. We can clearly see that for the non scalable preconditioner,
the computational time grows quadratically; for the highest viscosity, there is

96 CHAPTER 5. NUMERICAL RESULTS

not much difference between the behavior in the scalable and non scalable case,
since this situation is the closest one to the Stokes problem. We report also the
convergence profile of GMRES: Figure 5.8 shows the absolute residual for matrix
M40 and different values of viscosity. Figure 5.9 instead shows the convergence
profile for matrices M40, M80 and M160 with the lowest viscosity.

Figure 5.7: Comparison of the growth rate of the computational time for the scalable
and non scalable preconditioners, for various viscosities and matrices up to M160.

0 0.5 1 1.5 2 2.5
Unknowns 105

0

50

100

150

200

250

300

350

400

Ti
m

e

non scalable
scalable

Figure 5.8: Convergence profile for the matrix M40 with different viscosities.

0 10 20 30 40 50 60 70
10-10

10-8

10-6

10-4

10-2

100

102

0.1
0.01
0.005

We also checked whether the relaxation had any effect on the speed of
convergence, but we could not find any value of ω able to produce an improvement.
This fact, again, is in accordance with what we expected, given the spectral

5.3. NAVIER-STOKES PROBLEM 97

Figure 5.9: Convergence profile for various matrices and viscosity 0.005.

0 10 20 30 40 50 60 70 80
10-10

10-8

10-6

10-4

10-2

100

102

M40
M80
M160

properties of the preconditioner used.
We then proceeded to test the NS-W2dGS-BFBt-c preconditioner with

viscosity 0.001, to see if the scalability is preserved even for lower viscosities.
Unfortunately, the spectral properties deteriorate enormously, as shown in
Table 5.16

Table 5.16: Spectral properties of the preconditioned matrices for the NS-sGS-BFBt-c
problem with viscosity 0.001.

Matrix αA βA αS βS

M40 0.3812 24.11 0.0176 3.252
M80 0.7775 465.1 0.0178 40.37

It is clear how the eigenvalues are completely different from the ones found
for previous viscosities: the Multigrid preconditioner fails completely for the
matrix M80 and the spectral radius goes beyond 400. The Schur complement
preconditioner does not behave too badly: indeed the eigenvalue with minimum
modulus remains the same as before, while the spectral radius grows. However,
this growth may be dictated by the fact that, in order to apply the Arnoldi
procedure to the Schur complement, a Multigrid scheme is used to invert the
(1, 1) block. Therefore, it may be that the Multigrid works so badly in this case
that it affects the eigenvalues of the Schur complement found with the Arnoldi
method.

Thus, the best guess that we can make is that from a viscosity between 0.005

and 0.001, the Multigrid scheme suddenly fails completely to follow the convective
flux, leading to poor spectral properties, which in turn produce a non scalable

98 CHAPTER 5. NUMERICAL RESULTS

preconditioner. To overcome this problem, we tried different strategies: we
improved the number of W-cycles applied at any iteration, but the improvement
was very slight, definitely not enough to produce scalability; we then tried to use
more smoothing steps, but this did not produce any progress; we recalculated
the matrices, using more stabilization for the convection-diffusion operator, but
this still was not showing progresses; we then modified the smoother so that the
Gauss-Seidel sweeps were four and not two, hoping to follow better the flow, but
this still did not improve the results.

Table 5.17: Comparison of inexact constraint preconditioner and triangular block
preconditioner for viscosity 0.005.

Matrix ICP TBP

iter time iter time

M40 68 21.91 79 21.18
M80 70 57.87 83 57.86
M160 77 217.99 85 198.02
M320 79 830.51 82 734.62

We then proceeded to compare the inexact constraint preconditioner (ICP)
to the triangular block preconditioner (TBP) presented in [20] and implemented
using Algorithm B.5, in order to assess which one behaves better. We used the
same Multigrid scheme and Schur complement preconditioner that we tested in
the NS-W2dGS-BFBt-c case. Since the preconditioner structure is simpler, we
expect a smaller time per iteration, but a higher iteration count, thus it is not
possible to tell a priori which preconditioner will behave better. For this test,
we used a viscosity of 0.005 and matrices up to M320. The results are shown in
Table 5.17.

It is clear that the number of iterations for the constraint preconditioner is
smaller, but the TBP seems to be more scalable, since the iteration count is
more stable, leading to a computational time significantly smaller for the larger
matrices. However, also the TBP fails to provide good results for a viscosity of
0.001, since the preconditioners for the blocks are the same as before.

Conclusion

Concerning the goals that we set in the introduction of this work, we have been
able to develop a smoother that follows the convective flux, at least up to values
of the viscosity of 0.005; we also realized that such a smoother is fundamental
for the scalability of the whole process, since standard smoothers present bad
spectral properties already with a viscosity of 0.01. We have also discovered
that the preconditioner for the Schur complement changes completely from the
Stokes to the Navier-Stokes problem, due to the presence of convection; for the
Navier-Stokes equations, we have been able to build a preconditioner for the
Schur complement that remains scalable even for viscosities below 0.005.

For values of ν lower than 0.005, unfortunately we could not find a Multigrid
scheme capable of maintaining scalability: the problem is likely to be related
to the smoothing phase, however using a different discretization strategy or
employing a more complicated stabilization technique for the convective operator
might lead to more promising results; in case a more robust smoother cannot
be found, the augmented Lagrangian approach presented in [2] has been tested
successfully for very low viscosities and surely represents the most promising
approach, despite the extreme complexity of the algorithms involved.

We also showed that for very large problems, the inexact approach is far more
efficient than the exact one, since the requirement of solving exactly the Schur
complement system is a task so complicated that it destroys the performance of
the method. Moreover, we came to the conclusion that for this problems, the
relaxation has almost no effect and the small benefit that sometimes appears is
surely not enough to justify the expensive procedure of computing the eigenvalues.

99

Appendix A

Application of Theorem 2.3

We will prove that the kernel and the range of the preconditioned matrix have
trivial intersection. We will consider the right-preconditioned matrix, since the
computations are easier. Let us start recalling that the matrix used is

M =

[
A BT

B 0

]
.

The preconditioner instead is the Exact Constraint Preconditioner

P =

[
I 0

BP−1
A I

][
PA 0

0 −PS

][
I P−1

A BT

0 I

]
,

with PS = BP−1
A BT .

First of all, we need to compute the inverse of the preconditioner. The inverse
of the diagonal block is easy, let us try to invert the triangular blocks. We
suppose that the inverse is still block-triangular; moreover, the diagonal blocks
must remain identities. To find out the remaining block of the inverse, that we
will call X, we proceed as follows[

I 0

BP−1
A I

][
I 0

X I

]
=

[
I 0

BP−1
A +X I

]
=

[
I 0

0 I

]
.

Therefore it follows that X = −BP−1
A . So, the inverse of the preconditioner is

P−1 =

[
I −P−1

A BT

0 I

][
P−1
A 0

0 −P−1
S

][
I 0

−BP−1
A I

]

=

[
P−1
A − P−1

A BTP−1
S BP−1

A P−1
A BTP−1

S

P−1
S BP−1

A −P−1
S

]
.

101

102 APPENDIX A. APPLICATION OF THEOREM 2.3

The preconditioner PS is singular, so it is not correct to consider its inverse.
Let us define the space S⊥ as the orthogonal complement of the vector 1. We
can show that PS is a well-defined nonsingular operator from S⊥ to itself. In
this way, we can define P−1

S onto S⊥.

Proposition A.1. The Schur complement S = BA−1BT and its exact precon-
ditioner PS = BP−1

A BT are nonsingular operators from S⊥ to itself.

Proof. We already know that the kernel of S and PS is of dimension one and
contains only the vector 1. Therefore we just need to show that the range of S
and PS does not contain the vector 1.

Suppose there is a vector v ∈ S⊥ such that

BA−1BT v = 1.

Since v cannot be the vector 1, then BT v is a nonzero vector; thus, also A−1BT v

is a nonzero vector. Define w = A−1BT v, then

Bw = 1,

but this is a contradiction: indeed, the range of B is the orthogonal complement
to the kernel of BT , and thus cannot contain 1.

The same holds similarly for PS .

We can therefore define P−1
S as a nonsingular operator that maps S⊥ to itself

and 1 to 0.
We can now compute the preconditioned matrix MP−1:

MP−1 =

[
AP−1

A −AP−1
A BTP−1

S BP−1
A +BTP−1

S BP−1
A AP−1

A BTP−1
S −BTP−1

S

BP−1
A −BP−1

A BTP−1
S BP−1

A BP−1
A BTP−1

S

]

=

[
AP−1

A + (I −AP−1
A)BTP−1

S BP−1
A (AP−1

A − I)BTP−1
S

(I − PSP−1
S)BP−1

A PSP
−1
S

]
.

Due to the nonstandard definition of P−1
S that we saw before, we cannot say

that PSP−1
S = I; however, we can state the following

Proposition A.2.
(I − PSP−1

S)B = 0.

Proof. Let us analyze the action of (I − PSP−1
S) on a generic vector x ∈ Rm:

if x 6= 1, then PS can be inverted and PSP−1
S x = x, so (I − PSP−1

S)x = 0. If
instead x = 1, then P−1

S x = 0 and so (I − PSP−1
S)x = x.

Take now a vector y ∈ Rn and consider By: as we saw before, 1 is not in
the range of B, so By is surely a vector different from 1. Thus, is we consider

103

the expression (I − PSP−1
S)By, we can be sure that it will be well defined and

the result will be the zero vector, for any y ∈ Rn. This in turn proves that
(I − PSP−1

S)B is the zero matrix.

Therefore we can simplify the preconditioned matrix, which becomes

MP−1 =

[
AP−1

A + (I −AP−1
A)BTP−1

S BP−1
A (AP−1

A − I)BTP−1
S

0 PSP
−1
S

]
.

Define F = AP−1
A + (I −AP−1

A)BTP−1
S BP−1

A . Let us look for the kernel of
MP−1, i.e. the vectors v and q such that[

F (AP−1
A − I)BTP−1

S

0 PSP
−1
S

][
v

q

]
=

[
0

0

]
.

The second block of equations reads

PSP
−1
S q = 0.

This is satisfied if either P−1
S q = 0 or P−1

S q = 1. Since 1 is not in the range of
P−1
S , it must be P−1

S q = 0 and thus q = 1.

The first block of equations instead reads

Fv + (AP−1
A − I)BTP−1

S q = 0.

Substituting q = 1 yields
Fv = 0.

So v lays in the kernel of F , which we do not need to characterize. Therefore
the kernel of the preconditioned matrix is

ker(MP−1) =

{[
v

q

] ∣∣∣v ∈ ker(F), q = 1

}
.

Now, we want to understand if these vectors can lay also in the range of
MP−1: let us look for vectors w and s such that

MP−1

[
w

s

]
=

[
v

q

]
.

The second block of equations reads

PSP
−1
S s = q.

104 APPENDIX A. APPLICATION OF THEOREM 2.3

Suppose that s 6= 1, since otherwise the result would be 0. Then, for such a
vector s, it holds that PSP−1

S s = s, since PS is invertible on S⊥. This means
that s = q, but since q = 1, this is a contradiction.

Therefore, there cannot exist vectors that lay both in the kernel and in the
range of MP−1.

Appendix B

Algorithms

We will now report the algorithms that have been used. They apply the exact
constraint preconditioner (Algorithm B.1), the inexact constraint preconditioner
(Algorithms B.2, B.3 and B.4) and the triangular block preconditioner (Algo-
rithm B.5). They are slightly different from the ones presented before, since they
have been optimized to reduce the number of operations. In all the algorithms,
we suppose that the application of the preconditioner requires the solution of
the linear system [

PA BT

B 0

][
y1

y2

]
=

[
r1

r2

]
.

Algorithm B.1 Application of ECP
A ≈ LLT using incomplete Cholesky factorization
Lx1 = r1 using a direct solver
LTx2 = x1 using a direct solver
f = B x2 − r2

(B(LLT)−1BT)y2 = f using PCG with Q as preconditioner
g = BT y2

Lw1 = g using a direct solver
LTw2 = w1 using a direct solver
y1 = x2 − w2

Algorithm B.2 Application of ICP with Multigrid and mass matrix
PAx = r1 using Multigrid
f = Bx− r2

Qy2 = f using a direct solver
g = BT y2

PAw = g using Multigrid
y1 = x− w

105

106 APPENDIX B. ALGORITHMS

Algorithm B.3 Application of ICP with Multigrid and BFBt
PAx = r1 using Multigrid
f = Bx− r2

PSy2 = f using BFBt:
(BQ−1

v BT)y2,1 = f using factorization or Multigrid
y2,2 = BT y2,1

Qvy2,3 = y2,2 using a direct solver
y2,4 = Ay2,3

Qvy2,5 = y2,4 using a direct solver
y2,6 = B y2,5

(BQ−1
v BT)y2,7 = y2,6 using factorization or Multigrid

y2 = ω y2,7

g = BT y2

PAw = g using Multigrid
y1 = x− w

Algorithm B.4 Application of ICP with Multigrid and BFBt-c
PAx = r1 using Multigrid
f = Bx− r2

PSy2 = f using BFBt-c:
Qy2,1 = f using a direct solver
y2,2 = BT y2,1

Ly2,3 = y2,2 using Multigrid
y2,4 = Ay2,3

Ly2,5 = y2,4 using Multigrid
y2,6 = B y2,5

Qy2,7 = y2,6 using a direct solver
y2 = ω y2,7

g = BT y2

PAw = g using Multigrid
y1 = x− w

Algorithm B.5 Application of TBP with Multigrid and BFBt-c
PSy2 = r2 using BFBt-c:

Qy2,1 = r2 using a direct solver
y2,2 = BT y2,1

Ly2,3 = y2,2 using Multigrid
y2,4 = Ay2,3

Ly2,5 = y2,4 using Multigrid
y2,6 = B y2,5

Qy2,7 = y2,6 using a direct solver
y2 = ω y2,7

g = r1 +BT y2

PAy1 = g using Multigrid

Bibliography

[1] Michele Benzi, Gene H Golub, and Jorg Liesen. “Numerical Solution of
Saddle Point Problems”. In: Acta Numerica 14 (2005), pp. 1–137.

[2] Michele Benzi and Maxim Olshanskii. “An augmented Lagrangian-based
approach to the Oseen problem”. In: SIAM Journal on Scientific Computing
28 (2006), pp. 2095–2113.

[3] Luca Bergamaschi. “On eigenvalue distribution of constraint-preconditioned
symmetric saddle point matrices”. In: Numerical Linear Algebra with
Applications 194 (2010), pp. 754–772.

[4] Luca Bergamaschi, Massimiliano Ferronato, and Giuseppe Gambolati.
“Novel preconditioners for the iterative solution to FE-discretized coupled
consolidation equations”. In: Computer Methods in Applied Mechanics and
Engineering 196 (2007), pp. 2647–2656.

[5] Luca Bergamaschi and Angeles Martinez. “RMCP: Relazed Mixed Con-
straint Preconditioners for saddle point linear systems arising in geome-
chanics”. In: Computer Methods in Applied Mechanics and Engineering
221-222 (2012), pp. 54–62.

[6] Peter Brown and Homer Walker. “GMRES on (nearly) singular systems”.
In: SIAM Journal on Matrix Analysis and Applications 18 (1997), pp. 37–
51.

[7] Howard Elman. “Preconditioning For The Steady-State Navier-Stokes
Equations With Low Viscosity”. In: SIAM Journal on Scientific Computing
20 (2001), pp. 1299–1316.

[8] Howard Elman, David Sylvester, and Andy Wathen. Finite Elements and
Fast Iterative Solvers. 2nd ed. Oxford University Press, 2014.

[9] Patrick Farrell, Lawrence Mitchell, and Florian Wechsung. “An augmented
Lagrangian preconditioner for the 3D stationary incompressible Navier-
Stokes equations at high Reynolds number”. In: (2019). arXiv:1810.03315v2
[math.NA].

107

108 BIBLIOGRAPHY

[10] Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos. “Any nonincreasing
convergence curve is possible for GMRES”. In: SIAM Journal on Matrix
Analysis and Applications (1996), pp. 465–469.

[11] David Kay, Daniel Loghin, and Andrew Wathen. “A Preconditioner for the
Steady-State Navier-Stokes Equations”. In: SIAM Journal on Scientific
Computing 24 (2002), pp. 237–256.

[12] Carsten Keller, Nicholas Gould, and Andrew Wathen. “Constraint Pre-
conditioning for Indefinite Linear Systems”. In: SIAM Journal on Matrix
Analysis and Application 21.4 (2000), pp. 1300–1317.

[13] Tim Kelley. Iterative Methods for Linear and Nonlinear Equations. Society
for Industrial and Applied Mathematics, 1995.

[14] Maxim Olshanskii and Arnold Reusken. “Convergence analysis of a multi-
grid method for a convection-dominated model problem”. In: SIAM Journal
on Numerical Analysis 42 (2004), pp. 1261–1291.

[15] Maxim Olshanskii and Yuri Vassilevski. “Pressure Schur Complement
Preconditioners for the Discrete Oseen Problem”. In: SIAM Journal on
Scientific Computing 29.6 (2007), pp. 2686–2704.

[16] Alfio Quarteroni. Numerical Models for Differential Problems. 2nd ed.
Vol. 8. Springer, 2012.

[17] Alison Ramage. “A multigrid preconditioner for stabilised discretisations of
advection-diffusion problems”. In: Journal of Computational and Applied
Mathematics 110 (1999), pp. 187–203.

[18] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. PWS,
1996.

[19] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. 2nd ed.
SIAM, 2011.

[20] David Silvester et al. “Efficient preconditioning of the linearized Navier-
Stokes equations for incompressible flow”. In: Journal of Computational
and Applied Mathematics 128 (2001), pp. 261–279.

[21] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schuller. Multigrid.
Academic Press, 2001.

[22] Pieter Wesseling. An Introduction to Multigrid Methods. John Wiley and
Sons, 1992.

	Introduction
	Navier-Stokes equations
	Mathematical formulation
	Finite element method
	Stability and convergence

	Saddle point systems
	Algebraic formulation
	Properties of saddle point matrices
	Singularity of the system

	Iterative methods for linear systems
	Projection methods
	GMRES
	Multigrid

	Preconditioning techniques
	Constraint preconditioner
	Other preconditioners
	Preconditioners for the blocks

	Numerical results
	Problem description
	Stokes problem
	Navier-Stokes problem

	Conclusion
	Application of Theorem 2.3
	Algorithms

