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Abstract

This thesis focuses on control of nonholonomic system with particular refer-
ence to the unicycle-like robots. These are common examples of WMRs
(Wheeled Mobile Robots), increasingly present in industrial and service
robotics, particularly when flexible motion capabilities are required.
The major objective of this study is to solve the regulation problem for the
unicycle model while guaranteeing prescribed performance. Different con-
trollers based on either polar coordinates or time-varying laws are proposed.
The main contribution is the combination of the standard control laws (both
with polar coordinates and time-varying laws) that allow to achieve posture
regulation for the unicycle model, with the prescribed performance control
technique that imposes time-varying constraints to the system coordinates.
The study also illustrates two different approaches to bind linear or angular
coordinates, one based on a particular error transformation, and the other
arising from a specific potential function.
Simulations confirm the effectiveness of the proposed solutions.
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Chapter 1

Introduction

Over the past thirty years wheeled mobile robots (WMRs) have become
increasingly important in a wide variety of applications such as transporta-
tion, security, inspection, planetary exploration, etc. WMRs are increasingly
present in industrial and service robotics, particularly when flexible motion
capabilities are required. Several mobility configurations (wheel number and
type, their location and actuation, single- or multi-body vehicle structure)
can be found in the applications. The most common for single-body robots
are differential drive and synchro drive (both kinematically equivalent to a
unicycle), tricycle or car-like drive, and omnidirectional steering.

Beyond the relevance in applications, the problem of autonomous motion
planning and control of WMRs has some theoretical challenges. In particu-
lar, these systems are a typical example of nonholonomic mechanisms due
to the perfect rolling constraints on the wheel motion (no longitudinal or
lateral slipping).

Target problems for WMR are (i) regulation of position and orientation
of the WMR to an arbitrary set point, (ii) tracking of a time-varying ref-
erence trajectory ( the path following problem is a special case), and (iii)
enhance robustness including the effects of the dynamic model during the
control design.

With regard to the control of nonholonomic systems, one of the tech-
nical hurdles often cited is that the regulation problem cannot be solved
via a smooth, time-invariant state feedback law due to the implications of
Brockett’s condition [1]. Brockett’s theorem provides a very useful necessary
condition for asymptotic stabilizability by continuous feedback. Intuitively,
it means that, starting near zero and applying small controls, we must be
able to move in all directions. Also, in other words, Brockett’s condition
states that smooth stabilizability of a driftless regular system requires a
number of inputs equal to the number of states. Thus, to reach stabilization
of these systems we can use either time-varying or discontinuous controllers.

Many solutions can be found in literature. A very common and simple
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4 CHAPTER 1. INTRODUCTION

model to analyze the stabilization of nonholonomic systems is the unicycle.
Many solutions in literature refer to this model and it will be exploited also
in this thesis.

There exist different approaches to control a nonholonomic system, such
as a unicycle-like robot. See for example [2] for discontinuous control, [3] for
dynamic feedback linearization technique, [4] for discontinuous backstep-
ping, [5] for an approach involving potential function, [6] for chained form
systems control and time-varying point-stabilization, [7] for control with po-
lar coordinate, and also [8, 9] for an overview on nonholonomic systems and
control of wheeled robots.

The solution with polar coordinates allows to achieve very natural tra-
jectories for the unicycle vehicle. It is based on the change of variables from
the Cartesian (x, y, θ) to the polar (r, γ, δ) coordinates. With these coor-
dinates, control inputs v (the driving linear velocity) and ω (the steering
angular velocity) can be designed. This type of control will be analyzed in
this thesis, and modification will be made on it in order to achieve better
transient performance.

The time-varying control permits to achieve convergence but the ob-
tained vehicle behavior is characterized by noticeable oscillations around
the desired position. This is an intrinsic issue for this type of controller,
which involves oscillating functions in its design. This thesis will also analyze
and modify the time-varying controller in order to achieve better transient
performance, specifically for the convergence of the unicycle orientation.

The dynamic feedback linearization technique is used to obtain a lin-
ear system starting from the original one. This type of control is briefly
recalled in this thesis as a first example of control combined with prescribed
performance guarantees.

A different approach is the discontinuous control. It involves a different
type of transformation of the nonholonomic system, based on σ-processes.
As for other control techniques, this approach has to deal with singularities
that are intrinsic either in the controller or in the system to be controlled.
This approach is not part of this thesis.

The reader is referred to the literature for further details and other con-
trol techniques.

Prescribed performance controllers have recently been proposed in order
to guarantee the system transient performance. While usually the problems
are solved in the sense of asymptotic convergence of the position errors to
zero, with the prescribed performance approach the aim is also to achieve
system performance in the transient phase. The reader is referred to the
recent literature, e.g. [10], [11], [12], [13].

Prescribed performance guarantees mean that components of the error
evolve within predefined regions that are bounded by decaying functions of
time. A transformation on the error components is applied. This transfor-
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mation consists first on modulating the error through the decaying function
of time, usually chosen as an exponential function; then a logarithmic func-
tion is applied to the modulated error to obtain a transformed error. The
aforementioned transformations are based on preset values of convergence
rate and overshoot of the response. Proving that the transformed error is
bounded, then the error is guaranteed to stay within the predefined limits.

The cited literature is devoted mainly to robot joints or holonomic sys-
tems. This thesis applies the concept of prescribed performance on a non-
holonomic system, namely the unicycle. Controllers based on polar coordi-
nates are proposed. Prescribed performance are imposed to bind the distance
of the unicycle from the desired position, the vehicle orientation, and even-
tually both the position and the orientation. Time-varying controllers are
also designed in order to guarantee prescribed performance on the orien-
tation. In this case, the controller is realized referring to a transformation
of the error vector through a rotation matrix. This implies that not all the
(Cartesian) coordinates are directly accessible, and the binding procedure is
not immediate. The approach is the same used for the orientation bounds
in the case of polar coordinates.

This thesis addresses the regulation problem for a mobile robot of the
type of the unicycle. Different controllers are designed, in order to guarantee
prescribed performance guarantees. The main results are obtained by mean
of the Lyapunov analysis.
The thesis is organized as follows. In Section 2, we briefly recall the back-
ground on which we develop our controllers. In Section 3, we address the
regulation by mean of the polar coordinates. We modify the original control
law in order to achieve prescribed performance on position, orientation and
eventually on both of them at the same time. In Section 4, we design a
time-varying control law to stabilize the unicycle to the desired position and
orientation; the exploited technique is similar to the trajectory tracking one;
we modify the original controller in order to bind the error component into
predefined regions. In Section 5 we present some simulations implemented
in ROS environment. Conclusions follow. All the main proofs can be found
in Appendix.
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Chapter 2

Preliminaries

2.1 Unicycle model and control overview

Literature reference is for example [7]. A unicycle is a vehicle with a single
orientable wheel. The unicycle is the simplest model of a nonholonomic
wheeled mobile robot (WMR) and it corresponds to a single wheel rolling
on the plane. Consider a disk rolling without slipping on the horizontal
plane, while keeping its sagittal plane (the plane that contains the disk) in
the vertical direction. The generalized coordinates are q = (x, y, θ) ∈ Q =
R2×SO1: (x, y) are the Cartesian coordinates of the contact point with the
ground, measured in the fixed reference frame, and θ is the steering angle,
which characterizes the orientation of the disk with respect to the x axis
(Fig. 2.1).

(a) Generalized coordinates (b) Top view of the unicycle

Figure 2.1: Relevant variables for the unicycle
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8 CHAPTER 2. PRELIMINARIES

The pure rolling constraint for the disk can be expressed in the Pfaffian
form as

ẋ sin θ − ẏ cos θ = [sin θ cos θ 0]q̇ = 0.

This constrain is nonholonomic, because it implies no loss of accessibility in
the configuration space of the disk. Thus, the constraints on the wheel state
q = (x, y, θ) are of the type

A(q)q̇ = 0, A(q) =

[
sin θ − cos θ 0

0 0 1

]
Considering the matrix

G(q) = [g1(q) g2(q)] =

cos θ 0
sin θ 0

0 1


whose columns g1(q) and g2(q) are a basis of the null space of the matrix
A(q), the kinematic model of the unicycle can be expressed in the following
form: ẋẏ

θ̇

 =

cos θ
sin θ

0

 v +

0
0
1

ω, (2.1)

where the inputs v and ω are, respectively, the driving velocity (the linear
velocity of the wheel) and the steering velocity (the angular velocity of the
wheel around the vertical axis). This type of system is said to be driftless.
Thus, while there are n = 3 degree of freedom of the considered system,
only m = 2 inputs are assumed as available controls.

2.2 Prescribed performance overview

The prescribed performance control technique has been introduced in [14];
see also [11, 12]. The goal of the prescribed performance controller is to
guarantee that the error e evolves within certain a priori defined performance
bounds defined by a decreasing function and an acceptable overshoot range.
The performance bounds are defined by a function ρ(t), called performance
function.

Given an acceptable overshoot range M , the performance bounds ∀t ≥ 0
for each element ei, i = 1, . . . , n of the error are mathematically defined as:

−Miρi(t) < ei < ρi(t), if e0i ≥ 0,

−ρi(t) < ei < Miρi(t), if e0i ≤ 0,
(2.2)

where e0i = ei(0), i = 1, . . . , n, 0 ≤ M ≤ 1, and ρ(t) is smooth, bounded,
strictly positive decreasing function of time and satisfying limt→∞ ρ(t) =
ρ∞ > 0. The performance function can be defined as:

ρ(t) = (ρ0 − ρ∞) exp(−lt) + ρ∞.



2.2. PRESCRIBED PERFORMANCE OVERVIEW 9

To unify the two control objectives, namely regulation and prescribed
transient and steady state behavioral bounds on the error, an error trans-
formation is used. At first the error is modulated by ρ(t), and then a trans-
formation function T (·) is applied.

The modulated error is defined as follows:

êi(t) ,
ei
ρi(t)

. (2.3)

Then, the transformed error ε(t) ∈ Rn is defined through transformation
functions Ti : Dêi → R, i = 1, . . . , n:

εi(t) , Ti(êi(t)) (2.4)

where the transformations Ti(·), i = 1, . . . , n define increasing bijective map-
pings of the performance domain:

Dêi , {êi : êi ∈ (−Mi, 1)} if e0i ≥ 0,

Dêi , {êi : êi ∈ (−1,Mi)} if e0i ≤ 0.

Differentiating (2.4) with respect to time we obtain:

ε̇i(t) = JT i(t)[ėi + αi(t)ei] (2.5)

where JT i(t) and αi(t) are respectively

JT i(t) ,
∂Ti
∂ê(t)

1

ρi(t)
> 0

αi(t) , −
ρ̇i(t)

ρi(t)
> 0 with lim

t→+∞
αi(t) = 0.

The transformation function is smooth and strictly increasing. Two trans-
formation functions for (2.4) can be defined:

Tai [êi(t)] =

ln
(
Mi+êi(t)
1−êi(t)

)
, if e0i ≥ 0

ln
(

1+êi(t)
Mi−êi(t)

)
, if e0i ≤ 0

Tbi [êi(t)] =

ln
(

Mi+êi(t)
Mi(1−êi(t))

)
, if e0i ≥ 0

ln
(
Mi(1+êi(t))
Mi−êi(t)

)
, if e0i ≤ 0

(2.6)

If from the Lyapunov analysis εi is proved bounded (εi ∈ L∞), then the
aforementioned transformation is bounded as well and this means that ei
stays within the predefined bounds.
One way is to accommodate a potential of the form

1

2
||ε||2. (2.7)
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Prescribed performance can also be defined through a different potential
of the form

ln
(
cos êi

)
, (2.8)

where ei is the error component to bind.
While in the previous case we begin with the error transformation and then
use a potential defined by the square of the transformed error ε, in this
case we start from the potential. This approach is particularly convenient in
the case of bounds on an angle, for example the orientation of the unicycle.
Notice that the potential (2.8) is well defined as

êi ∈
(
−π

2
,
π

2

)
. (2.9)

Employing this potential to define a candidate Lyapunov function V , it is
possible to design a control law such that V̇ is negative semidefinite. Thus,
one can prove that V is bounded and ln

(
cos êi

)
as well, hence ei stays within

the defined bounds.

The first thing to be defined is what we consider as error. Adopting
the aforementioned transformations, the aim is to combine control objective
(regulation) while guaranteeing prescribed performance bounds. In this the-
sis, controllers are designed by mean of polar coordinates and time-varying
laws, while applying prescribed performance control concept. The proof of
convergence of the error e to zero can be achieved by appropriate Lyapunov
functions.

Instrumental results

We briefly present here some results which will be instrumental for the
convergence proof of the proposed controllers.
A first critical term to be analyzed is the ratio of the transformation of the
error component through the prescribed performance and the error itself:

ε

e

We here briefly show that this term turns out to be limited when choosing
either Ta with M = 0 or Tb for all M ∈ (0, 1).

Let’s consider first T (·) = Ta(·). If we take M = 0, then the error e,
remaining bounded within prescribed performance bounds (PPB) and does
not approach zero, not even asymptotically. Hence, we can have practical
convergence, while avoiding the singularity. If M 6= 0 then calculating the
limit for e→ 0 (e0 ≥ 0), ε

e →∞. The same result is obtained if e0 ≤ 0.
Let’s consider now T (·) = Tb(·). Applying L’Hôpital’s rule, the limit for

e→ 0 (e0 ≥ 0) yields to

E ,
1 +M

ρM
.
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The same result is obtained if e0 ≤ 0.

A graphical representation of this term is drawn in Figure 2.2: it depicts
ε
e with respect to e for a fixed certain time.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

e

ε
/
e

Figure 2.2: The term ε
e is bounded and it is equal to E as e = 0. This plot is

obtained setting ρ0 = 10, ρ∞ = 0.1, L = 2, M = 0.8.

Another relevant expression is the following inequality (see [10]):

εJe ≥ µε2 (2.10)

with µ a positive constant. This relation is instrumental for convergence
proof, in particular see Appendix C.1.

Other motivation

Another motivation for introducing prescribed performance control concept
is that for nonholonomic system, as the unicycle model, it is not possible
to prove exponential convergence. That is there are no guarantees that the
error vanishes with exponential rate. This is related to the fact that the
derivative of the Lyapunov function with respect to the time does not have
all the coordinates as the Lyapunov function has. This means that a relation
of the type V̇ ≤ −νV can not be obtained. Hence, V can not be expressed
as

V ≤ V (0)e−νt

With prescribed performance approach, a predefined behavior can be achieved,
given a maximum overshoot and a desired convergence rate. We design a con-
troller that guarantees the fulfillment of prescribed performance constraints
and the convergence to the desired position (thus solving the regulation
problem), with the required rate of convergence.
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Analysis of the two approaches to impose prescribe performance

This paragraph analyzes the two different approaches that can be followed
in order to impose prescribed performance. One begins with the error trans-
formation and then uses a potential defined by the square of the transformed
error ε, the other starts from the potential of the form (2.8).

Let us call V1 and V2 the defined potentials, and consider e, ê, ε as scalar
quantities: this is reasonable in view of the controllers we will design in this
work. In the first case we have

V1 =
1

2
ε2 (2.11)

and in the second case

V2 = − ln cos ê. (2.12)

Note that this potential corresponds to the case we apply a transformation
of the form

ε = sign(ê)
√

ln(cos ê)−2

As already mentioned, V2 is particularly convenient when binding angle co-
ordinates. Furthermore, following the first approach that yields to V1 to bind
angle coordinates, leads to find controllers which do not guarantee the con-
vergence of all the variables according to Barbalat lemma.

The fact that the first approach does not solve the problem of regulation
while binding an angle coordinate, whereas the second one is successful, is
strictly related to the unicycle model and its dynamics.
We remark that this is a nonholonomic system, and the number of the co-
ordinates is greater than the number of control inputs. In particular notice
also that the steering velocity ω appears only in γ̇ in the case of polar coor-
dinate control and only in ė3 in the case of time-varying control.

Calculating the first derivative with respect to time of the potentials, in
the first case we have:

V̇1 =
∂V1

∂ε
ε̇ = εε̇ = εJ(ė+ αe) = ε

∂T

∂ê

1

ρ
(ė+ αe); (2.13)

in the second case:

V̇2 =
∂V2

∂ê
˙̂e =

sin ê

cos ê
˙̂e = tan ê

1

ρ
(ė+ αe). (2.14)

What differentiates the two cases is related to the terms

ε
∂T

∂ê
and tan ê.
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Also, notice that ė multiplies in (2.13) and (2.14) respectively

ε and tan ê.

In the first derivative of the Lyapunov function the following terms ap-
pear, respectively in the first and in the second case:

ωε and ω tan ê.

In order to design control laws that guarantee convergence to the desired
posture, ω is defined so as to cancel out some spurious terms deriving from
the other coordinates or error components. This implies that the steering
velocity depends on terms of the form

ω̃1 =
e

ε
and ω̃2 =

e

tan ê

in the first and second case respectively.

The convergence proof for the unicycle system is based on Barbalat
lemma; in particular we are interested to prove that the second derivative of
the Lyapunov function is bounded and thus in particular that V̈1 and V̈2 are
bounded. We are now taking into consideration the problem of binding the
orientation of the unicycle, through e = γ in the case of polar coordinates
control, or e = e3 in the case of time-varying control; we also recall that ω
appears exactly only in the first derivative of those terms. Hence, in order
to complete the convergence proof exploiting Barbalat lemma, ω̇ is needed
to be bounded.
In other words, to complete the convergence proof, ˙̃ω1 and ˙̃ω2 have to be
proved bounded. Calculating these first derivatives, in the first case we have

˙̃ω1 =
d

dt

e

ε
=
ė

ε
− e ε̇

ε2
= ė
[1

ε
− eJ

ε2

]
− αJ

(e
ε

)2
(2.15)

while in the second case

˙̃ω2 =
d

dt

e

tan ê
=

ė

tan ê
− e ˙̂e

1 + tan2 ê

tan2 ê
= ė
[
−ê+

tan ê− ê
tan2 ê

]
− αeê. (2.16)

In the first case, the term in the squared brackets is unbounded, and ˙̃ω1 as
well. In the second case, all the terms are bounded and in particular the
term tan ê−ê

tan2 ê
is bounded as long as ê 6= 0 and

lim
ê→0

tan ê− ê
tan2 ê

= 0.

Hence, only ˙̃ω2 is proved bounded, and thus only the second approach is a
feasible way to bind an angle coordinate by prescribed performance.

Details of this reasoning applied to the polar coordinates case and to the
time-varying control one, can be found in Appendix A.



14 CHAPTER 2. PRELIMINARIES

2.3 First example: Dynamic Feedback Lineariza-
tion

This section introduces a first example of application of prescribed per-
formance control to the DFL control technique that solves the regulation
problem of the unicycle.

The reader is referred to [9] for a more detailed treatise of DFL technique.
The unicycle system can always be transformed via feedback into simple
integrators (input- output linearization and decoupling). The choice of the
linearizing outputs is not unique.

Notice that in the case of linear systems, it is possible to prove expo-
nential convergence. Thus, in this case prescribed performance control does
not improve the performance of the obtained controller, unless the system
is affected by disturbances.

Define the linearizing output vector as η = (x, y) and introduce an inte-
grator (whose state is denoted by ξ) on the linear velocity input

v = ξ, ξ̇ = a

being a the linear acceleration, considered as new input.
Provided that ξ 6= 0, the unicycle can be expressed as a linear system.
In the new coordinates it is

z1 = x

z2 = y

z3 = ẋ

z4 = ẏ

⇒

{
z̈1 = u1

z̈2 = u2

and a PD controller on the Cartesian error

u1 = −kp1x− kd1ẋ

u2 = −kp2y − kd2ẏ
(2.17)

can yield exponential convergence, while kp1, kp2, kd1, kd2 are positive con-
stants.

So as to have a more compact notation, define

e =

[
e1

e2

]
=

[
x
y

]
Kp =

[
kp1 0
0 kp2

]
Kv =

[
kd1 0
0 kd2

]
ε =

[
ε1

ε2

]
Kε =

[
kε1 0
0 kε2

]
JT =

[
JT1 0
0 JT2

] (2.18)

where Kp,Kv,Kε, JT are positive definite matrices. Thus,

z̈ =

[
z̈1

z̈2

]
=

[
ẍ
ÿ

]
= ë = u.
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In order to introduce Prescribed performance, define the control law as

u = −Kv

(
ė+ α(t)e

)
−KεJT ε− α̇(t)e− α(t)ė (2.19)

and consider the Lyapunov function

V =
1

2

∣∣∣∣ė+ α(t)e
∣∣∣∣2 +

1

2
εTKεε. (2.20)

Differentiating (2.20) with respect to time, substituting the control law
(2.19) and operating some cancellations we have

dV

dt
= −ėTKv ė− eTα(t)TKvα(t)e ≤ 0. (2.21)

Exploiting Barbalat Lemma, it is possible to prove asymptotic convergence
of (e, ė, ε) to zero. Details can be found in Appendix B.
Figure 2.3.a shows the convergence of e, that is of x and y, to zero, while
Figure 2.3.b-2.3.c display x and y together with their bounds, pointing out
that the prescribed performance limits are fulfilled.
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Figure 2.3: Results of Matlab simulation of the designed controller.
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Chapter 3

Control with Polar
Coordinates

3.1 Control with polar coordinates

A convenient way to formulate the regulation problem for a unicycle is to
express it in polar coordinates. The reader is referred to [7].
Consider then the following change of variables:

r =
√
x2 + y2

γ = atan2(y, x)− θ + π

δ = γ + θ.

(3.1)

A graphical representation is illustrated in Fig. 3.1.

Figure 3.1: Regulation and polar coordinates for the unicycle

17
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The first coordinate, r, represents the distance of the unicycle from the
origin of the fixed world Cartesian frame, or in other words the measure of
the pointing vector individuated from the hub of the vehicle and the origin of
the Cartesian reference; the second one, γ, is the angle between the forward
direction vector of the unicycle and the pointing vector; the third coordinate,
δ, is the angle between the x-axis and the pointing vector.
In these coordinates, the kinematic model is expressed as:

ṙ = −v cos γ

γ̇ =
sin γ

r
v − ω

δ̇ =
sin γ

r
v,

(3.2)

and the control law can be defined as

v = k1r cos γ

ω = k2γ + k1
sin γ cos γ

γ
(γ + k3δ),

(3.3)

where k1 > 0, k2 > 0, k3 > 0. The control inputs are bounded and well
defined for all the values of γ.

Notice that there is a singularity for r = 0. Specifically, the coordinates
γ and δ are not defined for x = y = 0. Also, the control law, once mapped
back to the original coordinates, is discontinuous at the origin of the config-
uration space, and the behavior of the controlled system is not continuous
with respect to the initial state.

The Lyapunov function V = 1
2(r2 + γ2 + k3δ

2) allows to conclude that
the kinematic model (3.2) under the action of the given control law asymp-
totically converges to the desired configuration (r, γ, δ)T = (0, 0, 0)T . In fact,
differentiating V with respect to the time and considering the closed-loop
system with control inputs (3.3), the obtained V̇ is non-increasing:

V̇ = −k1r
2 cos2 γ − k2γ

2 ≤ 0.

Observing the form of V̇ , notice that γ is guaranteed to be bounded and
convergent to zero. Thus the cosine multiplying r2 converges to one, hence
also r is guaranteed to converge to zero.
More analytically, being V̇ ≤ 0, the state is bounded in norm, V̇ (t) is uni-
formly continuous, and V (t) tends to a limit value. Exploiting Barbalat
lemma, it is possible to conclude that V̇ (t) tends to zero and thus also r and
γ do. Also, analyzing the closed-loop system, ṙ and δ̇ converge to zero, δ
converges to some finite limit δ̄ while γ̇ tends to the finite limit −k1k3δ̄ and
is uniformly continuous. This finite limit must be zero according to Barbalat
Lemma and thus also δ converges to zero.
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Matlab simulation

In Figure 3.2 we report the unicycle behavior under the control law designed
by mean of polar coordinates reference system.
One can notice that all the coordinates converge and we obtain a natural
movement for the vehicle.
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(d) Unicycle trajectory

Figure 3.2: Unicycle behavior with initial conditions (x0, y0, θ0) = (−1,−1, 0)
(m,m,rad) and k1 = 1, k2 = 3, k3 = 2.
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3.2 Prescribed performance on the distance vector

In this section, we define a control law for the posture regulation of the uni-
cycle, utilizing polar coordinates while guaranteeing prescribed performance
for the convergence of the first coordinate.

We define the error as e = r and its transformation ε(ê) = T (ê). Consider
the Lyapunov function

V =
1

2
(ε2 + γ2 + k3δ

2). (3.4)

Define the control law

v = k1ε cos γ + k3α(t)e cos γ

ω = k2γ +
(
k1
ε

e
+ k3α(t)

)sin γ cos γ

γ
(γ + k3δ) + k3εJα(t)e

sin2 γ

γ
.

(3.5)

Then the first derivative of the Lyapunov function wrt time is:

V̇ = −k1ε
2JT cos2 γ − k2γ

2 − εJα(t)e(k3 − 1). (3.6)

Exploiting the relation εJe ≥ µε2 with µ > 0, and provided that k3 ≥ 1,
it is possible to conclude that V̇ is non-increasing. Details can be found in
Appendix C.1.

Proposition 3.1 Consider the polar coordinate description (3.2) of the uni-
cycle and the feedback control (3.5) with k1, k2, k3 positive constants and
k3 ≥ 1. The closed-loop system (3.2)-(3.5) is then globally asymptotically
driven to the posture (r, γ, δ) = (0, 0, 0). Also, the polar coordinate r respects
the prescribed limits.

Proof. The proof can be found in Appendix C.1.

MatLab simulations

Simulations confirm the analysis developed in the previous paragraph. In
Fig. 3.3 is reported the unicycle behavior with initial conditions (x0, y0, θ0) =
(−1,−1, 0)(m,m,rad).
From Figure 3.3.a one can notice that all the polar coordinates converge to
the desired values, and the convergence is faster than in the previous case.
The input signals vanish in short time as well, although higher values are
required for the initial steering velocity. However, this fact is related to the
control coefficients k1, k2, k3: setting these coefficients equal to those used
for the original controller simulation, the resulting behavior is less regular,
but still faster than the original one. In other words, on equal terms, the
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achieved performance of the modified control law is faster than the original
one. Refer to Figure 3.5 for simulation comparison. In Figure 3.3.d a view
of the vehicle trajectory is depicted.
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(a) Coordinates r, γ, δ
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(d) Unicycle trajectory

Figure 3.3: Unicycle behavior with initial conditions (x0, y0, θ0) = (−1,−1, 0)
(m,m,rad) and k1 = 0.02, k2 = 20, k3 = 2. PP bounds are imposed on r

Figure 3.4 shows that with the designed control law the first coordinate
r evolves within the prescribed performance predefined bounds, modulated
by the function ρ(t).
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Figure 3.4: The error e = r stays within prescribed performance bounds.
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(b) Coordinated with new controller im-
posing PP on r
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Figure 3.5: Simulation comparison: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad), k1 =
3, k2 = 20, k3 = 5.
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3.3 Bounds on the orientation

This section explores the problem of putting prescribed performance bounds
on the angles γ and/or δ.
First of all, we notice that while putting (PP) bounds on r is a reasonable
and intuitive way to proceed, imposing bounds on the angles needs some
more comments. We will first discuss about the angle γ and then we will
briefly comment the case with δ.

3.3.1 Bounds on γ or δ

We recall that γ is the angle that the robot’s frame makes with the envi-
ronment (fixed) frame, i.e. the angle between the vehicle direction and the
pointing vector that connects the unicycle position to the origin of the fixed
frame.

From a physical point of view, imposing bounds on γ for example in
order to keep it in

(
−π

2 ,
π
2

)
implies also that the vehicle has constraints in

its motion. In particular, if γ is constrained to stay in
(
−π

2 ,
π
2

)
, the vehicle

must depart from the 2nd or 3rd quadrant, so that the motion can satisfy
the constraints on γ while exploiting a linear velocity which makes it go
forward. Also, we have to take care of δ in order to make it converge to zero
as well.

From a mathematical point of view, trying to apply the prescribed per-
formance transformation T to the angle coordinates and carrying on an
analysis similar to that presented in the previous sections, yields to an un-
bounded second derivative of γ (or δ). This fact does not allow to conclude
for γ̇ to be uniformly continuous, thus to prove the convergence (exploiting
Barbalat Lemma) of γ̇ to zero, and eventually the convergence of δ to zero.
This analysis is given in Appendix C.2.

Similarly to what said for γ, bounds on δ do not find a trivial physical
motivation, and the effect is to limit the movement of the vehicle.
Analytical details can be found in Appendix C.2.

3.3.2 Overview of a practical possible solution

A reasonable approach to bind angle coordinates implies that we consider
some precise configuration and we have an a priori knowledge of the initial
configuration.
Consider for example the following bounds:

γ ∈
(
−π

2
,
π

2

)
γ̄ ∈

(
−π

2
,
π

2

)
δ ∈

(
−π

2
,
π

2

)
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where γ̄ , γ − π. We can split this constrains as follows:

A′, A′′ : γ, γ̄ ∈
(
−π

2
, 0
)
∪ B′, B′′ : γ, γ̄ ∈

(
0,
π

2

)
C : δ ∈

(
−π

2
, 0
)
∪ D : δ ∈

(
0,
π

2

) (3.7)

and design a driving velocity input that can either drive the vehicle forward
(vF ) or backward (vB).
Notice that C means that the vehicle is in the 2nd or 4th quadrant, while D
means that the vehicle is in the 1st or 3rd.

Thus, we have 16 possible feasible combinations:
− C,A’,vF : 2rd quadrant, forward motion;
− C,A’,vB: 4th quadrant, backward motion;
− C,A”,vB: 2rd quadrant, backward motion;
− C,A”,vF : 4th quadrant, forward motion;
− C,B’,vF : 2rd quadrant, forward motion;
− C,B’,vB: 4th quadrant, backward motion;
− C,B”,vB: 2rd quadrant, backward motion;
− C,B”,vF : 4th quadrant, forward motion;
− D,A’,vF : 3rd quadrant, forward motion;
− D,A’,vB: 1st quadrant, backward motion;
− D,A”,vB: 3rd quadrant, backward motion;
− D,A”,vF : 1st quadrant, forward motion;
− D,B’,vF : 3rd quadrant, forward motion;
− D,B’,vB: 1st quadrant, backward motion;
− D,B”,vB: 3rd quadrant, backward motion;
− D,B”,vF : 1st quadrant, forward motion;

Notice also that not all of this configurations allow to have a final orien-
tation θ = 0: e.g. case (D,B”,vB) where the final vehicle orientation will be
θ = π.

We remark that prescribed performance bounds on the angle variable
(only on γ, only on δ or on both) set by mean of the transformation T (ê),
lead either to find controllers which do not guarantee the convergence of all
the variables, or to have positive terms in the first derivative of the Lyapunov
function.

3.3.3 Bounds on the angle γ through a different Lyapunov
function

As already mentioned in the Preliminaries section, another way to impose
prescribed performance is to use a different Lyapunov function of the form
(2.8). This approach is particularly convenient when dealing with angle co-
ordinates.
We now set bounds on γ, and hence indirectly on the orientation of the
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unicycle, following this different approach.
First we take the candidate Lyapunov function defined as

V =
1

2
r2 − ln cos γ +

k3

2
δ2. (3.8)

This function is positive definite for a specified range of value of γ, namely
γ ∈ (−π/2, π/2). This means that if the vehicle departs from a position with
γ ∈ (−π/2, π/2), then this angle coordinate will evolve within the predefined
set of value, and it will never leave it.
Define the control input as

v = k1r cos γ

ω = k2 tan γ + k1

(
k3δ + tan γ

)
cos2 γ

(3.9)

Then the first derivative of (3.8) is negative semidefinite:

V̇ = −k1r
2 cos2 γ − k2 tan2 γ ≤ 0. (3.10)

Proposition 3.2 Consider the polar coordinate description (3.2) of the uni-
cycle and the feedback control (3.9) with k1, k2, k3 positive constants. The
closed-loop system (3.2)-(3.9) is then globally asymptotically driven to the
posture (r, γ, δ) = (0, 0, 0). Also, the polar coordinate γ respects the pre-
scribed limits.

Note that being γ ∈ (−π/2, π/2), the cosine in V̇ is never zero.
The proof for the coordinates convergence can be carried on adopting LaSalle
theorem and Barbalat lemma, as for the previous designed controllers. The
control law (3.9) designed with the particular Lyapunov function defined by
(3.8) guarantees that the angle coordinate γ stays within the predefined set
(−π/2, π/2), as γ0 is chosen in this range of values.
Details and a sketch of the proof of Proposition 3.2 can be found in Appendix
C.3.

Matlab simulation

Matlab simulations are reported in Figures 3.6-3.7. Note that all the coor-
dinates converge to the desired position and the vehicle performs a natu-
ral maneuver. Also the input controllers vanish in short time and remain
bounded. Moreover, the coordinate γ never leaves the defined set of values,
namely (−π/2, π/2).
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(d) Unicycle trajectory

Figure 3.6: Unicycle behavior. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad).
(k1, k2, k3) = (1, 3, 2).
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Time-varying bounds on γ

In order to achieve faster convergence, we define time-varying bounds on
the orientation. We now introduce a time-varying positive transformation
function, namely ρ(t), such that

γ 7→ γ̂ =
γ

ρ(t)
.

The modulating function is defined, in the same way as in the prescribed
performance analysis, as a smooth, bounded, strictly positive decreasing
function of time and satisfying limt→∞ ρ(t) = ρ∞ > 0:

ρ(t) = (ρ0 − ρ∞) exp(−Lt) + ρ∞. (3.11)

To unify the convergence and the time-varying bounds we consider a Lya-
punov function, defined as in the previous paragraph but depending on γ̂
instead of γ:

V =
1

2
r2 − ln cos γ̂ +

k3

2
δ2, with γ ∈

(
−π

2
ρ(t),

π

2
ρ(t)

)
(3.12)

This function is positive definite in the defined set of values that depends on
time. This fact permits to define more strict bounds, that evolve together
with the coordinate γ.
Define the control velocity input as

v = k1r cos γ

ω = k2 tan γ̂ + γα(t) + k1ρ(t)
(
k3δ +

1

ρ(t)
tan γ

)
cos γ cos γ̂

sin γ

sin γ̂

(3.13)

Then the first derivative of (3.12) wrt to time is negative semidefinite:

V̇ = −k1r
2 cos2 γ − k2

ρ(t)
tan2 γ̂ ≤ 0. (3.14)

The control inputs are bounded and well defined. Details can be found in
Appendix C.4.
The proof for the convergence of the coordinates can be carried on exploiting
LaSalle theorem and Barbalat Lemma. Proving that V is bounded allows
also to conclude that ln cos γ̂ is bounded and hence γ respects the predefined
limits.
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Matlab simulation

Matlab simulations are reported in Figures 3.8-3.9.
One can notice (from Fig. 3.8.a) that the convergence of the γ coordinate
evolves faster than in the previous case, although its maximum oscillating
amplitude is bigger. We also notice that the convergence of δ is slower in this
case, and the control requires higher initial values for the steering velocity
input. These facts are related to the modulating function, which affects also
the evolution of ω. Moreover, since γ is vanishing faster, the coordinate δ
converges later to zero in order to achieve the desired orientation θd = 0.
The performances are also affected by the parameters. Tuning the constant
parameters k1, k2, k3 and especially modifying the requirements for the time-
varying bounds, that is replacing ρ0, ρ∞, L with other values, one can achieve
different behaviors of the unicycle.
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(d) Unicycle trajectory

Figure 3.8: Unicycle behavior. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad).
(k1, k2, k3) = (1, 0.05, 7), ρ0 = π/2, ρ∞ = 0.1, L = 2.
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Figure 3.9 shows the bounded coordinate behavior. Picture 3.9.a plots
the evolution of − ln cos γ̂ in the time: we are confirmed that this part of
Lyapunov function converges to zero and also has a fast dynamics, so that
the bounded coordinate can quickly reach convergence. Picture 3.9.b shows
γ evolution in the time together with the bounds defined by the modulating
function ρ(t), pointing out that this bounds are fully satisfied.
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Figure 3.9: Bounds. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3) =
(1, 0.05, 7), ρ0 = π/2, ρ∞ = 0.1, L = 2.

3.4 Bounds on both radial and angle coordinate

In this paragraph we combine the control laws defined in the previous sec-
tions. The first control law (defined by the equations in (3.5)) allows to set
prescribed performance bounds on r while the second one (defined by the
equations in (3.13)) permits to bind the angle γ and hence, indirectly, the
orientation of the unicycle (θ = δ − γ).

The subscript r will be used for the terms referring to the first polar co-
ordinate transformed by mean of prescribed performance bounds, and the
subscript γ for the terms referring to the homonym angle coordinate, trans-
formed as shown in the previous section.
Let’s consider the transformation for the first coordinate

r 7→ ε(ê) = T (ê), ê =
r

ρr(t)
, ρr(t) = (ρ0r − ρ∞r) exp(−Lrt) + ρ∞r

defined by prescribed performance through the modulating function ρr(t),
and the transformation for the second coordinate

γ 7→ γ̂ =
γ

ργ(t)
, ργ(t) = (ρ0γ − ρ∞γ ) exp(−Lγt) + ρ∞γ
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with the modulating function ργ(t).

We define the candidate Lyapunov function, inspired both by (3.4) and
(3.12), as

V =
1

2
ε2 − ln cos γ̂ +

k3

2
δ2. (3.15)

This function is positive definite in a set of value that depends on time:

γ ∈
(
−π

2
ργ(t),

π

2
ργ(t)

)
We design the control law as

v = k1 cos γεrJr + k3αrr cos γ;

ω = k2 tan γ̂ + αγγ + ργ

(
k3δ +

tan γ̂

ργ

)(
k1Jr

εr
r

+ αr

)
cos γ̂ cos γ

sin γ

sin γ̂
(3.16)

Differentiating V wrt to time and substituting the defined controllers we
obtain

V̇ = −k1ε
2J2
r cos2 γ − k2

ργ
tan2 γ̂ ≤ 0 (3.17)

where the time dependence of ργ from the time is implied, that is ργ = ργ(t).

The control inputs (3.16) are well defined and bounded, as shown in
Appendix C.4.

The control law (3.16), designed with the particular Lyapunov function
defined by (3.15) by means also of the prescribed performance transformation
for the first polar coordinate r and the time-varying transformation through
ργ(t) of the first angle coordinate, guarantees the convergence to the desired
position and orientation while satisfying the predefined bounds. Specifically,
proving that V is bounded, it is possible to conclude that ε (as well as the
transformation T (ê) ) and ln cos γ̂ are also bounded. Hence, r and γ respect
the predefined limits.

Proposition 3.3 Consider the polar coordinate description (3.2) of the uni-
cycle and the feedback control (3.16) with k1, k2, k3 positive constants. The
closed-loop system (3.2)-(3.16) is then globally asymptotically driven to the
posture (r, γ, δ) = (0, 0, 0). Also, the polar coordinates r and γ respect the
prescribed limits.

Details and proof of convergence for Proposition 3.3 can be found in
Appendix C.5.
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Matlab simulation

Matlab simulations are reported in Figures 3.10-3.11.
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Figure 3.10: Unicycle behavior. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad).
(k1, k2, k3) = (1, 20, 2), ρ0γ = π/2, ρ∞γ

= 0.01, Lγ = 4; ρ0r = 2|r0|, ρ∞r
=

0.01, Lr = 3, Mr = 0.1;

One can easily observe that the convergence is much faster than in the
previous cases. All the coordinates converge faster; the maximum oscilating
amplitude of γ is bigger in this case with respect to the behavior obtained
with the control law defined in (3.5), but smaller with respect to the case
obtained with the control law (3.13). This controller requires also higher
initial values for the steering velocity input compared to the other cases.
This is due also to the parameters and to the modulating function, which
affects the steering velocity definition.
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Figure 3.11 shows the bounded coordinate behavior. Picture 3.11.a plot
the evolution of − ln cos γ̂ in the time: we are confirmed that this part of
Lyapunov function converges to zero and also has a fast dynamics, so that
the bounded coordinate can quickly reach convergence. Pictures 3.11.b,3.11.c
show γ and r evolution respectively, together with the bounds defined by
the modulating functions ργ(t) and ρr(t), pointing out that these bounds
are fully satisfied.
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Figure 3.11: Bounds. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3) =
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In Figure 3.12 it is possible to compare the inputs needed to drive the
vehicle to the desired posture, on equal convergence rate. Notice that the
initial velocities are greater in the case that the original controller is used.
Also, applying the control law designed in order to guarantee prescribed
performance on both position and orientation, the obtained inputs and co-
ordinates evolutions are smoother and better distributed over the time.
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Figure 3.12: Inputs comparison, on equal convergence rate.
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Chapter 4

Time-varying Control

4.1 Time-varying control

A feasible solution for posture stabilization for nonholonomic WMRs is based
on time-varying feedback. Refer to [7].
The posture stabilization problem can be obtained using a fictitious time-
varying reference asymptotically vanishing at the origin. Asymptotic stabi-
lization of a state tracking error can be achieved provided that the nominal
feedforward commands vd(t) and ωd(t) do not both vanish in finite time. This
two desired inputs introduce a time-varying signal in the feedback control
law:

v = vd cos e3 − u1

ω = ωd − u2,
(4.1)

where
u1 = −k1(vd(t), ωd(t))e1

u2 = −k̄2vd(t)
sin e3

e3
e2 − k3(vd(t), ωd(t))e3,

(4.2)

with constant k̄2 > 0 and positive continuous gain functions k1(·, ·), k3(·, ·),
and e defined as

e =

e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xd − xyd − y
θd − θ

 .
The error dynamics can be expressed as

ė1 = vd cos e3 − v + e2ω

ė2 = vd sin e3 + e1ω

ė3 = ωd − ω
(4.3)

and its derivation is reported extensively in Appendix D.1.

35
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In order to achieve posture stabilization, we set ∀t yd(t) = 0 and θd(t) = 0
(and thus ωd(t) = 0), while vd is defined by

vd(t) = ẋd(t) = −k4xd(t) + g(e, t), (4.4)

being g(e, t) the heating function. This is a C2-function uniformly bounded
with respect to t, together with its partial derivative. For further details
see [7]. The heating function g(e, t) plays a key role in guaranteeing asymp-
totic stability. It sustains motion as long as the error is not zero and also
determines the transient behavior. Possible choices for its definition are:

• g(e, t) = ‖e‖2 sin t

• g(e, t) = exp(k5e2)−1
exp(k5e2)+1 sin t, k5 > 0, if k1(·, ·), k3(·, ·) are strictly posi-

tive.

Merging the previous equations, the resulting control law can also be rewrit-
ten as

v = vd cos(θd − θ) + k1(vd, ωd) [cos θ(xd − x) + sin θ(yd − y)]

ω = ωd + k̄2vd
sin(θd − θ)
θd − θ

[cos θ(xd − x)− sin θ(yd − y)] + k3(vd, ωd)(θd − θ)
(4.5)

The proof for the stabilization related to this controller is based on the use
of the Lyapunov function

V =
k̄2

2

(
e2

1 + e2
2

)
+
e2

3

2
, (4.6)

whose time derivative along the solutions of the closed-loop system is non-
increasing since

V̇ = −k1k̄2e
2
1 − k3e

2
3 ≤ 0. (4.7)

For more details the reader is referred to [7].

We test the time-varying control (4.1), with desired motion given by eq.
(4.4), initialized at xd(0) = 0, and heating function

g(e, t) =
exp(k5e2)− 1

exp(k5e2) + 1
sin t.

Matlab simulation is depicted in Fig. 4.1. The gains has been set as k1 =
0.5, k̄2 = 2, k3 = 1, k4 = 1, k5 = 50 and the initial conditions as q(0) =
(−1,−1, 0) (m,m,rad).
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Figure 4.1: Unicycle behavior with Time-Varying control
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4.2 Time-varying control without heating function

The behavior of the unicycle driven by the time-varying control is intrinsi-
cally oscillating. This is strictly related to the action of the heating function,
which in fact is a modulated sine function.
In order to have different performances, one can change the definition of
the desired driving velocity vd = ẋd, that is to use a different dynamics to
describe the desired behavior of xd.

Define the dynamics of xd as a damped oscillator:

ẍd + k̄dẋd + k̄2
Nxd = 0 (4.8)

where k̄d represents the damping constant, k̄2
N the natural frequency, and

k̄d < 2k̄N (strong damping condition). The second order dynamics can be
rewritten as a first order system:{

ẋd = vdx

v̇dx = −k̄dvdx − k̄2
Nxd

(4.9)

Consider the control inputs

u1 = −k1(vd(t), ωd(t))e1 (4.10)

u2 = −k̄2vd(t)
sin e3

e3
e2 − k3(vd(t), ωd(t))e3 (4.11)

with

k1(vd(t), ωd(t)) = k3(vd(t), ωd(t)) = 2ζ
√
ω2
d(t) + bv2

d(t)

k̄2 = b > 0 ζ ∈ (0, 1)

and set again yd(t) = 0, ẏd(t) = 0 and so ωd(t) = 0.

The unicycle behavior under the defined controller is shown in Fig. 4.2.
With this controller we can achieve a different behavior and get a shorter
transient. The convergence of the error components and of the Cartesian
coordinates is faster. We notice however that we have to use higher gains
to achieve convergence, and hence the required initial values for the input
velocities are higher. The vehicle still needs some settling maneuvers nearby
the desired position, due to the oscillating nature of the designed desired
linear velocity. However, they are less noticeable with respect to the previous
case based on the heating function.
The unicycle behavior can be modified or adapted by tuning the parameters
ζ, b, k̄2, k̄d, k̄

2
N .
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Figure 4.2: Unicycle behavior with Time-Varying control without PP bounds and
without heating function. Settings: ζ = 0.9, b = 18, (x0, y0, θ0) = (−1,−1, 0)
(m,m,rad). k̄d = 0.4, k̄2N = 2
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4.3 Control based on different Lyapunov function

In this section, we adopt a different candidate Lyapunov function to design
a control law guaranteeing a fair solution for the regulation problem. This
approach opens a new way to combine regulation problem and performance
bounds guarantees.

Let’s consider the error dynamics (4.3) and take a different Lyapunov
function, defined as

V =
1

2

(
e2

1 + e2
2

)
+ k3

(
1− cos e3

)
> 0. (4.12)

One can observe that this Lyapunov function is similar to the natural can-
didate Lyapunov function used to describe the pendulum. That is obtained
from the total energy E = Ep+Ek (where Ep is the potential energy and Ek
the kinematic energy). In the pendulum case the Lyapunov function, and
thus the total energy, is given by

E = mgl(1− cosφ) +
1

2
ml2φ2,

where m and l are respectively the mass and the length of the pendulum, g
the gravity acceleration and φ the oscillation amplitude angle. In our case,
the Lyapunov function has not a direct physical interpretation. However, we
can notice that the cosine function acts again on the angle that describes
the system (e3 = θ).
Defining the control inputs as

v = k1e1 + vd cos e3

ω = ωd +
1

k3
vde2 + sin e3

(4.13)

substituting them into the expression of V̇ and canceling out some terms we
obtain

V̇ = −k1e
2
1 − k3 sin2 e3 ≤ 0. (4.14)

Lyapunov analysis allows to prove the convergence of the three error com-
ponents to zero, and thus the convergence of the Cartesian coordinates to
the desired position.
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Matlab simulations

The control law (4.13) has been implemented both with and without the
heating function. In Figure 4.3 we report the unicycle behavior under the
action of the presented controller exploiting the heating function to define
the desired velocity. Notice that in this case the behavior is equivalent to the
original one. In Figure 4.4 we report the unicycle behavior under the action
of the same controller and a desired velocity defined without the heating
function, but the dynamics expressed in (4.9).
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Figure 4.3: Unicycle behavior with Time-Varying control law (4.13), without PP
bounds and with heating function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad).
k1 = 0.5, k̄2 = 2, k3 = 1, k4 = 1, k5 = 50

The convergence of the Cartesian coordinates and of the error vector
components is guaranteed in both cases. The velocity control inputs are
bounded and vanish in short time. The convergence is faster in the case
of the controller without heating function: this is due to the pronounced
oscillating behavior obtained with the heating function. However, different
performance can be achieved modifying or adapting the parameters, namely
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k1, k̄2, k3, k4, k5 in the first case and k1, k̄2, k3, k̄d, k̄
2
N in the second one.
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Figure 4.4: Unicycle behavior with Time-Varying control law (4.13), without PP
bounds and without heating function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad).
k1 = 0.5, k̄2 = 1, k3 = 0.1, k̄d = 0.48, k̄2N = 1.6
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Figure 4.5: Unicycle trajectories.
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4.4 Bounds on orientation

In the previous section we have shown that a candidate Lyapunov function
depending on the cosine of the third error component permits to design a
fair control law to regulate the unicycle to the desired position. We already
revealed also in the Preliminaries section that this kind of Lyapunov function
is a fair approach to bind error components as angles.

In this section we put bounds on the unicycle orientation, exploiting
another different Lyapunov function, similar to that one used in the previous
section, and of the form (2.8).
Consider the error dynamics defined as

ė1 = ωde2 + u1 − e2u2

ė2 = ωde1 + sin e3vd + e1u2

ė3 = u2

(4.15)

with u1, u2 the inputs to design.
Take the Lyapunov function

V =
k2

2

(
e2

1 + e2
2

)
− k3 ln

(
cos e3

)
(4.16)

which is positive definite and well defined in a proper set of values of e3,
namely e3 ∈

(
−π

2 ,
π
2

)
. This Lyapunov function operates so that if e3 starts

within
(
−π

2 ,
π
2

)
then its evolution remains limited by the constraints given

by ln
(
cos e3

)
.

Define now
u1 = −k1e1

u2 = −k2

k3
vde2 cos e3 − tan e3

(4.17)

Substituting the designed controllers in the expression of V̇ and canceling
out some terms we obtain

V̇ = −k1k2e
2
1 − k3 tan2 e3 ≤ 0. (4.18)

Proposition 4.1 Consider the unicycle description (2.1), the error dynam-
ics (4.3) and the feedback control (4.1) with control inputs defined as (4.17)
and k1, k2, k3 positive constants. The closed-loop system (2.1)-(4.1) is then
globally asymptotically driven to the posture (x, y, θ) = (0, 0, 0). Also, the
error component e3 respects the prescribed limits.

The proof for convergence of Proposition 4.1 can be carried on adopting
LaSalle theorem and Barbalat lemma, as previously done for other con-
trollers and system of coordinates.
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Matlab simulation

Figures 4.6-4.8 show the unicycle behavior under the action of the designed
control law. For the simulation represented in Fig. 4.12 and Fig. 4.13, the
heating function and the dumped oscillator dynamics are exploited respec-
tively.
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Figure 4.6: Unicycle behavior. Desired linear velocity designed with heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k4, k5) =
(0.5, 1, 0.1, 1, 50).

Notice that in the second case a faster convergence is achieved but the
initial values of velocity inputs are higher. The convergence in both cases
is faster than in the very first presented time-varying controller, and also
the pronounced oscillating behavior is less evident. The unicycle presents
the best behavior under the time-varying control law designed by mean of
the different Lyapunov function and without the heating function: it is not
affected by high oscillations, the achieved movement is quite natural and the
convergence is pretty fast. However, notice that the achieved performances
can be modified or adapted tuning the parameters which regulate the uni-
cycle behavior. Namely, k1, k2, k3, k4, k5 in the case with heating function,
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and k1, k2, k3, k̄d, k̄
2
N in the case without heating function.
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Figure 4.7: Unicycle behavior. Desired linear velocity designed without heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k̄d, k̄

2
N ) =

(2, 2, 0.08, 1, 2) .
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Figure 4.8: Unicycle trajectories.
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4.4.1 Time invariant bounds on the orientation

Given that adopting the candidate Lyapunov function (4.16) we are guar-
anteed that e3 stays within the range (−π/2, π/2), the next step consists to
reduce this interval by mean of a time invariant error transformation.
We introduce a time-invariant (constant) positive coefficient, namely ρ̄, such
that

e3 7→ ê3 =
e3

ρ̄

This transformation allows to define more strict bounds on the interval of
variation of e3, and hence of the vehicle orientation. In particular now we
have

e3 ∈
(
−π

2
ρ̄,
π

2
ρ̄
)
.

Notice that this interval of values is still constant.
Define the Lyapunov function as

V =
k2

2

(
e2

1 + e2
2

)
− k3 ln

(
cos ê3

)
(4.19)

which is positive definite for a specified range of value of e3, namely e3 ∈
(−π

2 ρ̄,
π
2 ρ̄). This means that if we start from a position with e3 ∈ (−π

2 ρ̄,
π
2 ρ̄),

then this angle coordinate will evolve within the predefined set of value,
without ever leaving it.
Define the input controllers

u1 = −k1e1

u2 = −k2ρ̄

k3
vde2

cos ê3

sin ê3
sin e3 − tan ê3

(4.20)

Differentiating V wrt time and substituting u1 and u2 with the expressions
in (4.20) we obtain

V̇ = −k1k2e
2
1 −

k3

ρ̄
tan2 ê3 ≤ 0. (4.21)

Note that u2 is bounded and well defined.

Proposition 4.2 Consider the unicycle description (2.1), the error dynam-
ics (4.3) and the feedback control (4.1) with control inputs defined as (4.20)
and k1, k2, k3 positive constants. The closed-loop system (2.1)-(4.1) is then
globally asymptotically driven to the posture (x, y, θ) = (0, 0, 0). Also, the
error component e3 respects the prescribed limits.

As in the previous case, the proof for the convergence of the error compo-
nents and for the Cartesian coordinates can be carried on exploiting LaSalle
theorem and Barbalat Lemma. Details and convergence proof for Proposi-
tion 4.2 can be found in Appendix D.2.
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Matlab simulation

Figures 4.9-4.11 show the unicycle behavior under the designed control
law. For this simulation we set the departure position as (x0, y0, θ0) =
(−1,−1, 0)(m,m,rad) and ρ̄ = 0.5. For the simulation represented in Fig.
4.9 the heating function is exploited to define the desired linear velocity.
Fig. 4.10 the dumped oscillator dynamics has been used.
In both cases the convergence of coordinates and error components is guar-
anteed. Also the control inputs vanish and are bounded.
The initial steering velocity values are higher compared to the unbounded
case. The bounded term presents now lower oscillating amplitude, but the
convergence is not faster than the one achieved without the constant ρ̄ trans-
formation. In the next section we will enhance this performance by mean of
a time-varying transformation.
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Figure 4.9: Unicycle behavior. Desired linear velocity designed with heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k4, k5) =
(1, 5, 0.1, 1, 50).
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Figure 4.10: Unicycle behavior. Desired linear velocity designed without heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k̄d, k̄

2
N ) =

(2, 3, 0.7, 0.2ρ̄, 0.4ρ̄).
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(a) Control designed with heating func-
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Figure 4.11: Unicycle trajectories.
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4.4.2 Time-varying bounds on the orientation

In order to achieve faster convergence and set more narrow bounds on the
orientation, we introduce a time varying transformation through the modu-
lating function ρ(t), such that

e3 7→ ê3 =
e3

ρ(t)
, ρ(t) = (ρ0 − ρ∞) exp(−Lt) + ρ∞.

Define the Lyapunov function as

V =
k2

2

(
e2

1 + e2
2

)
− k3 ln

(
cos ê3

)
. (4.22)

This Lyapunov function is positive definite for a specified range of value of
e3, namely

e3 ∈
(
−π

2
ρ(t),

π

2
ρ(t)

)
.

Notice that the interval of values is now time-varying.
If e30 ∈ (−π

2ρ(0), π2ρ(0)), then this angle coordinate will evolve within the
predefined set of value, without ever leaving it.

Define the input controllers

u1 = −k1e1

u2 = −e3α(t)− k2ρ(t)

k3
vde2

cos ê3

sin ê3
sin e3 − tan ê3

(4.23)

Differentiating V wrt time, substituting the the designed controllers in (4.23)
and canceling out some terms we obtain

V̇ = −k1k2e
2
1 −

k3

ρ(t)
tan2 ê3 ≤ 0. (4.24)

Proposition 4.3 Consider the unicycle description (2.1), the error dynam-
ics (4.3) and the feedback control (4.1) with control inputs defined as (4.23)
and k1, k2, k3 positive constants. The closed-loop system (2.1)-(4.1) is then
globally asymptotically driven to the posture (x, y, θ) = (0, 0, 0). Also, the
error component e3 respects the prescribed limits.

As in the previous case, the proof for the convergence of the error compo-
nents and of the Cartesian coordinates can be carried on exploiting LaSalle
theorem and Barbalat Lemma. Details can be found in Appendix D.3.
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Matlab simulation

Figures 4.12-4.14 show the unicycle behavior under the designed control law.
For this simulation we set the departure position as (x0, y0, θ0) = (−1,−1, 0)
(m,m,rad), ρ0 = π

2 , ρ∞ = 0.1, L = 3, and the coefficient are set as k1 =
2, k2 = 8.5, k3 = 0.2, k4 = 0.5/ρ0, k5 = 50 and k̄d = ρ0k4, k̄

2
N = 2ρ0k4.

For the simulation represented in Fig. 4.12 and Fig. 4.13, the heating func-
tion and the dumped oscillator dynamics are exploited respectively.
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Figure 4.12: Unicycle behavior. Desired linear velocity designed with heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k4, k5) =
(10, 50, 0.1, 0.8, 70).

Notice that in this case the convergence is achieved faster than in the
previous attempts, even if the oscillating amplitude is slightly higher. The
values of the controller inputs are initially high, and then they vanish re-
maining bounded. The vehicle performs more natural maneuvers for parking,
even if it still requires some settling steps.
Finally, we remark that the performances are also affected by the param-
eters we use to design the control laws. Indeed, modifying or adapting
k1, k2, k3, k4, k5 in the case exploiting the heating function and k1, k2, k3, k̄d, k̄

2
N
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in the other one, it is possible to achieve different performances.
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Figure 4.13: Unicycle behavior. Desired linear velocity designed without heat-
ing function. Settings: (x0, y0, θ0) = (−1,−1, 0) (m,m,rad). (k1, k2, k3, k̄d, k̄
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N ) =

(7, 15, 0.4, 0.8ρ0, 1.6ρ0).
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(a) Control designed with heating func-
tion.
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Figure 4.14: Unicycle trajectories.
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4.4.3 Performances of the designed time-varying controllers

In this section we report some figures depicting performances and in par-
ticular the transient of the error component e3 when adopting the three
designed time-varying controllers that guarantee prescribed bounds on e3.

It is not possible to directly make a fair comparison between the afore-
mentioned controllers, since their reliance on parameters (e.g. k1, k2, ... etc.)
is critical. Hence, we compare the performances of the proposed controllers
in the event that they achieve fair convergence. This means that the follow-
ing figures refer to controllers which have been properly tuned.
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Figure 4.15: Comparison of the three designed control law.
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Figure 4.15 plots the bounded error component e3 evolution in the time:
notice in particular that the convergence achieved by mean of time-varying
bounds is much faster than the other cases. In figure 4.15 the bounding term
“− ln cos(e3)” (or “− ln cos(ê3)”) with respect to the time are also reported:
we are confirmed that this part of Lyapunov function converges to zero and
also has a fast dynamics, so that the bounded coordinate can quickly reach
convergence.
Figure 4.15.a refers to the control adopting the heating function, and 4.15.b
the other one. One can notice that we achieve better results in the second
case, both in term of speed of convergence and in term of oscillating am-
plitude. We recall that the performances are affected from the choice of the
parameters.

A measure of the results obtained by binding e3 by mean of a time-
varying function ρ(t) is reported in Figure 4.16. This picture plots the
bounded error component e3 evolution in the time together with the bounds
defined by the modulating function ρ(t), pointing out that this bounds are
fully satisfied.
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Figure 4.16: Time-varying bounds case: the error e3 stays within the specified
range of value, defined by the ρ(t) function.
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Chapter 5

ROS Simulations

This section presents the simulations developed in ROS, Robot Operating
System. A brief introduction to the ROS framework is here reported. For
more details the reader is referred to the wiki available in Internet [15].
ROS is a powerful and current tool to simulate robot behavior.

5.1 Brief introduction to ROS

ROS is an open-source, meta-operating system for robots. It provides the
services of an operating system, including hardware abstraction, low-level
device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools
and libraries for obtaining, building, writing, and running code across mul-
tiple computers.
ROS supports code reuse in robotics research and development. It is a dis-
tributed framework of processes (called Nodes) that can be grouped into
Packages and Stacks, which can be easily shared and distributed. Also it is
language neutral and supports various modern programming languages as
C++, Python, Lisp.
There exists several releases of ROS: Electric, Fuerte, Groovy, Hydro.
ROS currently only runs on Unix-based platforms. Software for ROS is tested
on Ubuntu and Mac OS X systems. A list of robots that can be used with
ROS software can be found at http://www.ros.org/wiki/Robots.
The peer-to-peer network of ROS processes is the Computation Graph. The
basic Computation Graph concepts of ROS are Nodes, Master, Parameter
Server, messages, services, topics, and bags. The ROS Master stores topics
and services registration information for ROS nodes. Nodes connect to each
other directly while the Master only provides lookup information. Nodes
communicate with the Master to report their information and to receive in-
formation about other registered nodes and make connections. The Master
will also make callbacks to these nodes when informations change, allowing
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dynamic connections between nodes.
Topics are named buses over which nodes exchange messages, and they are
intended for unidirectional, streaming communication. Topics have anony-
mous publish/subscribe semantics, which decouples the production of infor-
mation from its consumption. There can be multiple publishers and sub-
scribers to a topic. A schematic representation is depicted in Figure 5.1.

Figure 5.1: Nodes connection: communication structure. Figure source:
//http://www.ros.org/wiki/ROS/Concepts

TurtleSim

TurtleSim is a ROS simulator for teaching. It is a simple tool, but effective
for the purpose of testing and simulating the designed controllers for the
unicycle-like robot.
ROS structures are used to implement the controllers. Turtlesim node per-
mits to visualize the moving vehicle, which in this case is a turtle. With
a view to future implementations, it is possible to reuse the code imple-
menting the controller (control Node) and apply it on different models of
unicycle-like robot: as an example Pioneer.

5.2 Implementation

We perform simulations for the controllers designed by mean of polar coor-
dinates. We use ROS Fuerte release and C++ language.
A package turtle unicycle has been created. It contains a single Node
called /controller node. There are two classes: UnicycleVelocity and
UnicycleVelocityControllerNode. The first one is responsible for calcu-
lating the unicycle velocity while implementing the designed control laws
and the error transformations for prescribed performance constraints. The
second one implements all the necessary ROS components. For code docu-
mentation see Appendix E.
The main() function creates and initializes the Control Node. During the
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simulations, the Control Node receives as input the unicycle position, that
is the Cartesian coordinates x, y, θ, and calculates the unicycle velocities
exploiting UnicycleVelocity class methods. The velocities are then used to
visualize the turtle movements. Figure 5.2 depicts what explained. In partic-
ular note the three topics related to /turtlesim node: /command velocity,
/pose, /color sensor. The position of the turtle is used to calculate the
velocities, which are given in input to the turtle node to generate its move-
ment.

Figure 5.2: Graph obtained from ROS rqt graph: it shows topics flowing in and
out of the /controller node and the /turtlesim node.

Simulation 1.

In the first simulation, we implement the standard control law with polar
coordinates, namely (3.3). The initial position of the turtle is (x, y, θ) =
(5.544445, 5.544445, 0) while the goal position is set to (x, y, θ) = (9, 9, 0).
Figure 5.3 shows the turtle behavior and the evolution in the time of the
three coordinates x, y, θ.
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Figure 5.3: Turtle behavior under the original control law (3.3) and time evolution
of the turtle coordinates.
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Simulation 2.

In this simulation, we implement the control law (3.5), that is the controller
that guarantees prescribed performance on the radial coordinate. The turtle
departs from the position (x, y, θ) = (5.544445, 5.544445, 0). The goal po-
sition is set to (x, y, θ) = (9, 9, 0). The movement performed by the turtle
in its window fit with that one obtained with Matlab simulations, and it is
reported in Figure 5.4.a. Figure 5.4.b shows the evolution in the time of the
three coordinates x, y, θ.

(a) Turtle movement
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Figure 5.4: Turtle behavior under the control law (3.5) and time evolution of the
turtle coordinates.

Simulation 3.

Figure 5.5 shows the turtle behavior under the action of the control law
(3.13), that is the controller that guarantees prescribed bounds on the ori-
entation of the unicycle. The initial and goal positions are the same as in
the previous simulations.
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Figure 5.5: Turtle behavior under the control law (3.13) and time evolution of the
turtle coordinates.
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Simulation 4.

Eventually, this simulation implements the controller that permits to bind
both radial and angle coordinate. Figure 5.6 shows the turtle behavior under
the action of the control law (3.16). The initial and goal positions are the
same as in the previous simulations. Note that in this case the convergence
to the desired posture is much faster than in the previous simulations.
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Figure 5.6: Turtle behavior under the control law (3.16) and time evolution of the
turtle coordinates.
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Chapter 6

Conclusion

This thesis addresses the regulation problem for mobile robots of the type of
the unicycle. Different controllers have been designed, in order to guarantee
prescribed performances. The main results and proofs of convergence have
been obtained by mean of the Lyapunov analysis.
WMRs are nonholonomic system, thus the regulation problem cannot be
solved via a smooth, time-invariant state feedback law due to the implica-
tions of Brockett’s condition.

The unicycle model has been introduced and two main approaches to
its regulation have been examined: control with polar coordinates and time-
varying control.
The prescribed performance control concept has also been analyzed and
employed to design controllers that solve the regulation problem while guar-
anteeing prescribed bounds.
A first example of solution combining the regulation aim and the prescribed
performance control concepts has been given by the Dynamic Feedback Lin-
earization.

The best performing presented control law has been designed by mean
of polar coordinates. Prescribed performances have been imposed in order
to bind both the position and the orientation of the vehicle. The controller
based on polar coordinates transformation performs very well. The resulting
vehicle path is very natural and convergence is quite fast. This is one of the
main result of this study. The convergence to the desired position is achieved
with natural maneuvers, while the polar coordinates r and γ are guaranteed
to respect the predefined limits. This result also points out a relevant dif-
ference between the approach followed to bind the distance r and the one
used to bind the orientation (through the angle γ). While in the first case
we begin with the error transformation and exploit the transformed error
in the potential to define the Lyapunov function, in the latter we bind the
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coordinate starting from the definition of a different potential depending
from the cosine of the coordinate to bind.

Then, time-varying control laws has been introduced. Prescribed per-
formances have been imposed to bind the vehicle orientation. The desired
driving velocity is defined by mean of oscillating functions: in the original
case a heating function designed as a modulated sine function is exploited;
a different solution is give defining the driving velocity with a dumped oscil-
lator dynamics. Controllers have been tested both with and without heating
function. Different types of Lyapunov functions have been used. A control
law as been designed exploiting a Lyapunov function recalling the pendu-
lum candidate Lyapunov function. Also, a Lyapunov function including a
potential term depending from the cosine of the component to bind e3 has
been employed to impose prescribed performance on the vehicle orientation.
Time-varying controllers, both with and without heating function, exhibit a
rather slow final convergence to the goal. The dependence of the convergence
rate on the available gains is critical. The oscillatory behavior of the vehicle
is an intrinsic characteristic.

The last Section presented simulations implemented in ROS environ-
ment. The controllers designed by mean of polar coordinates have been
tested, exploiting the Turtlesim simulator.

Future work

Future directions of work should consider also different approaches to the
regulation problem for the unicycle. For example discontinuous or non-
smooth time-varying controllers can be analyzed in order to introduce pre-
scribed performance.
The prescribed performance control concept can be applied for the control
problem of other type of nonholonomic systems, such as the car-like mobile
robot or more complex structures.
Prescribed performance can be imposed also in the trajectory tracking prob-
lem, and in the robust control approach.
Time-varying controllers can be tested in ROS environment and simulations
can be also implemented employing real robot models, as for example Pio-
neer.
Also, the proposed control laws could be implemented on a real mobile
unicycle-like robots.
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Appendix A

Two approaches to impose
PP bounds

Polar coordinate control case

Being e = γ,

ė = γ̇ =
sin γ

r
v − ω;

thus, in the first derivative of the Lyapunov function there are terms of the
form

ε
(sin γ

r
v − ω

)
and tan ê

(sin γ

r
v − ω

)
.

Given the polar description of the unicycle and its dynamics, the driving
velocity is designed as

v = k1r cos γ.

This input allows to have a square term of r multiplied for a cos2 γ in the
first derivative of the Lyapunov function. This is needed for the convergence
proof.
Given this driving velocity and the δ dynamics, in the first derivative of the
Lyapunov function appears a term of the form

δ
sin γ

r
v = δ

sin γ

r
[k1r cos γ] = k1δ sin γ cos γ (A.1)

which is the derivative of the quadratic term 1
2δ

2 in the Lyapunov function.
The steering velocity is designed in order to cancel out the term in (A.1),
thus ω will depend on a term of the form

ω̃1 =
1

ε
k1δ sin γ cos γ and ω̃2 =

1

tan ê
k1δ sin γ cos γ (A.2)

in the first and second approach respectively.
Observe that in both the expression in (A.2) the terms δ/ε and δ/ tan γ̂ are
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unbounded, since both ε and ê vanish faster than δ, due to the prescribed
performance bounds.
The previous equations can be rewritten as

ω̃1 = k1δ

sin γ cos γ
γ
ε
γ

and ω̃2 = k1δ

sin γ cos γ
γ

tan γ̂
γ

(A.3)

which are well defined terms.
The convergence proof for the unicycle system is based on Barbalat lemma;
in particular we are interested to prove that γ̇ is uniformly continuous. To
do that we check the boundedness of the second derivative γ̈.
In the first case, the lack of convergence is related to the fact that ˙̃ω1 is not
bounded and thus γ̈ is not uniformly continuous, while in the second case
˙̃ω2 is proved to be bounded and it is possible to conclude the convergence
proof. In details, ˙̃ω1 is given by

˙̃ω1 = k1

[
δ̇
sγcγ/γ

ε/γ
+ δ
( d
dt

(sγcγ
γ

))γ
ε

+ δ
sγcγ
γ

d

dt

(γ
ε

)]
(A.4)

where sγ , cγ indicate sin γ, cos γ. The only unbounded term in (A.4) is

d

dt

γ

ε
=
(sin γ

r
v − ω

)(1

ε
− Jγ

ε2

)
︸ ︷︷ ︸
unbounded

−αJ
(γ
ε

)2
. (A.5)

In the second case, ˙̃ω2 is given by

˙̃ω1 = k1

[
δ̇
sγcγ/γ

tan γ̂/γ
+ δ
( d
dt

(sγcγ
γ

)) γ

tan γ̂
+ δ

sγcγ
γ

d

dt

( γ

tan γ̂

)]
(A.6)

All the terms are well defined and bounded. In particular now

d

dt

γ

tan γ̂
=
(sin γ

r
v − ω

)( 1

tan γ̂
− γ

ρ

1 + tan2 γ̂

tan2 γ̂

)
− α

ρ
γ2

=
(sin γ

r
v − ω

)(
−γ̂ +

tan γ̂ − γ̂
tan2 γ̂

)
− α

ρ
γ2

(A.7)

where the term tan γ̂−γ̂
tan2 γ̂

is bounded as long as γ̂ is not null, and as γ̂ → 0 the
limit gives

lim
γ̂→0

tan γ̂ − γ̂
tan2 γ̂

= 0. (A.8)

Being ˙̃ω2 bounded, then also the derivative of the steering velocity is bounded
and this fact allows to conclude the convergence proof.
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We remark that this issue is not arising in the case we bind the radial
coordinate r. This is still related to the unicycle dynamics definition with
polar coordinates. The original Lyapunov function can be modified just sub-
stituting e with ε = T (r/ρ), that is adopting a potential of the form (2.11).
In this case the driving velocity v acts directly on ε, so that we have a square
term ε2 needed for convergence proof. Then the steering velocity can easily
compensate the term deriving from 1

2δ
2 and no unbounded terms arise: the

term ε/e appears, but this term is proved to be bounded.

Time-varying control case

In the case of time-varying control, the reasoning is analogous: a potential
defined as in (2.12) allows to conclude the convergence proof according to
Barbalat lemma.
In the case of time-varying control we define the error through a rotation of
the Cartesian error:

e =

e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xd − xyd − y
θd − θ

 .
The orientation of the unicycle is directly linked with the third error com-
ponent e3, which is now the coordinate to bind. After some simplifications,
the error dynamics can be written as

ė1 = u1 − e2u2

ė2 = sin e3vd + e1u2

ė3 = u2

(A.9)

The input control u1 is designed in order to obtain a square term e2
1, needed

for the convergence proof. This input is defined as u1 = −k1e1 and does not
compensate the sinusoidal term related to e2.
Considering the dynamics of e2, in the first derivative of the Lyapunov func-
tion appears a term of the form

e2 sin e3vd (A.10)

The second input velocity u2 is designed in order to cancel out the term in
(A.10), thus u2 will depend on a term of the form

ũ2 =
1

ε
e2 sin e3vd and ũ2 =

1

tan ê
e2 sin e3vd (A.11)

in the first and second approach respectively.
Observe that in both the expression in (A.11) the terms e2/ε and e2/ tan ê
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are unbounded, since both ε and ê vanish faster than e2, due to the pre-
scribed performance bounds.
The first approach, based on defining the transformed error ε and employing
a potential of the form (2.11), yields also in this case to unbounded terms
that cause the lack of convergence. On the other hand, the second approach
is successful, since we can prove that the first derivative of ũ2 is bounded
and ë3 as well. This allows to conclude the convergence proof.



Appendix B

DFL: details and
convergence proof.

The first derivative of the Lyapunov function (2.20) is calculated as follow:

V̇ =
(
ė+ αe

)T (
ë+ α̇e+ αė

)
+ εTKεε̇

=
(
ė+ αe

)T (
u+ α̇e+ αė

)
+ εTKεJT

(
ė+ αe

)
=
(
ė+ αe

)T (−Kv

(
ė+ αe

)
−KεJT ε−��̇αe−��αė+��̇αe+��αė

)
+ εTKεJT

(
ė+ αe

)
= −ėTKv ė−�����

ėTKvαe−�����
ėTKεJT ε−�����

eTαTKv ė− eTαTKvαe+

−������
eTαTKεJT ε+�����

εTKεJT ė+������
εTKεJTαe

= −ėTKv ė− eTα(t)TKvα(t)e

(B.1)

where the input control law (2.19) has been substituted.
Being V̇ ≤ 0, the state is bounded in norm, V̇ is uniformly continuous,
and V tends to a limit value. Exploiting Barbalat lemma, it is possible to
conclude that V̇ tends to zero and thus ė and αe tend to zero as well. Hence
ε tends to a finite value ε̄ since

ε̇ = JT
(
ė+ αe

)
→ 0 ⇒ ε→ ε̄.

The control input is bounded, since all its components are bounded. Also,
ë = u tends to the finite limit −KεJT ε̄ and it is uniformly continuous, as
u̇ is bounded. Hence, the finite limit −KεJT ε̄ must be zero, according to
Barbalat Lemma and thus also ε→ 0. �
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Appendix C

Control with Polar
Coordinates: details and
proofs.

C.1 Details for section Prescribed performance on
the distance vector

Substituting (3.5) in (3.4) we obtain

V̇ = −k1ε
2JT cos2 γ − εJTα(t)e

(
k3 cos2 γ − 1

)
+

+
(
k1
ε

e
+ k3α(t)

)
sin γ cos γ(γ + k3δ)− k2γ

2+

−
(
k1
ε

e
+ k3α(t)

)
sin γ cos γ(γ + k3δ)− k3εJTα(t)e sin2 γ

= −k1ε
2JT cos2 γ − k2γ

2 − εJα(t)e
(
k3(sin2 γ + cos2 γ)− 1

)
= −k1ε

2JT cos2 γ − k2γ
2 − εJα(t)e(k3 − 1)

The following inequality holds (see [10]):

εJe ≥ µε2 (C.1)

with µ a positive constant. Hence, provided that k3 ≥ 1 and taking µ > 0,
then

V̇ = −k1ε
2JT cos2 γ − k2γ

2 − εJTα(t)e(k3 − 1)

≤ −k1ε
2JT cos2 γ − k2γ

2 − µε2α(t)(k3 − 1)

≤ −k1ε
2JT cos2 γ − k2γ

2 ≤ 0. (C.2)
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Proof of Proposition 3.1

Since (3.6) holds, the state is bounded in norm, V̇ (t) is uniformly continuous,
and V (t) tends to a limit value. By Barbalat lemma, V̇ (t) tends to zero and

thus also ε and γ do: q(t)→
{
q : V̇ (x) = 0

}
= {ε = 0, γ = 0, ∀δ}.

Analyzing the closed-loop system, we note that ṙ and δ̇ converge to zero.

In fact,
ṙ = −v cos γ = −k1ε cos2 γ − k3α(t)e cos2 γ → 0

as ε→ 0 (and consequently also e→ 0), and also

ṙ = −v cos γ = −k1ε cos2 γ − k3α(t)e→ 0

as ε→ 0 (and consequently also e→ 0), and also

δ̇ =
sin γ

r
v = k1

ε

e
sin γ cos γ + k3α(t) sin γ cos γ → 0

by the fact that, as γ → 0 then sin γ → 0, cos γ → 1.
Also, δ converges to some finite limit δ̄.
Then, substituting the expression of v and ω in the evolution equation

of γ we have

γ̇ =
sin γ

r
v − ω

= k1
ε

e
sin γ cos γ + k3α(t) sin γ cos γ+

− k2γ −
(
k1
ε

e
+ k3α(t)

)sin γ cos γ

γ
(γ + k3δ)+

− k3εJα(t)e
sin2 γ

γ

As δ → δ̄, γ̇ tends to the finite limit

γ̇ → −k1k3
ε

e
δ̄ − k2

3α(t)δ̄

provided that T (·) = Tb(·) or also T (·) = Ta(·) but choosing M = 0 (see
section 2.2). Since α(t)→ 0 and choosing T (·) = Tb(·)

γ̇ → −k1k3
M + 1

Mρ
δ̄

Also, γ̇ is uniformly continuous since γ̈ is bounded.
Taking the second derivative of γ we obtain:

γ̈ = − ṙ

r2
sin γv +

cos γγ̇

r
v +

sin γ

r
v̇ − ω̇.
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Both v and ω are bounded; hence ṙ = −v cos γ is still bounded (and thus
also ε̇). If r 6= 0, also γ̇ = sin γ

r v − ω is bounded. We can observe that r = 0
is a singularity which intrinsically exists from the definition of the polar
coordinates system.
Thus, also

v̇ = k1εJ(ṙ + αe) cos γ − k1ε sin γγ̇ + k3α̇e cos γ + k3αė cos γ − k3αe sin γγ̇

is bounded. The last term to be checked is then ω̇. Writing extensively the
expression of ω̇ we have:

ω̇ = k2γ̇ +
(
k1
ε̇e− εė
e2

+ k3α̇
)sin γ cos γ

γ
(γ + k3δ)+

+
(
k1
ε

e
+ k3α

)(
−1

γ
+

2 cos2 γ

γ
− sin γ cos γ

γ2

)
γ̇(γ + k3δ)+

+
(
k1
ε

e
+ k3α

)sin γ cos γ

γ
(γ̇ + k3δ̇) + k3ε̇Jαe

sin2 γ

γ
+

+ k3εJα̇e
sin2 γ

γ
+ k3εJαė

sin2 γ

γ
+ k3εJαe

2 sin γ cos γ − sin2 γ

γ2
γ̇.

(C.3)

All the terms are bounded or vanish as γ goes to zero. In particular,(
− 1
γ + 2 cos2 γ

γ − sin γ cos γ
γ2

)
and 2 sin γ cos γ−sin2 γ

γ2
remain bounded as long as γ

stays away from zero and tend to zero and 1 respectively as γ → 0.
Eventually, γ̈ is bounded.

According to the theoretical analysis carried out so far, since γ has a
finite limit as t → ∞ and γ̇ is uniformly continuous, then γ̇ tends to zero.
Being E 6= 0, it follows that δ̄ must be zero, so that δ converges to zero.

From the previous analysis, ε is proved bounded, thus the transforma-
tion T (ê) is bounded. Hence, it is possible to conclude that r respects the
predefined limits. �

C.2 Details for bounds on the angles

Bounds on γ

If we bind γ and put prescribed performance on it, exploiting the transfor-
mation

e = γ 7→ ε = T
(e
ρ

)
and consider the Lyapunov function

V =
1

2

(
r2 + ε2 + δ2

)
, (C.4)
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differentiating (C.4) wrt to time and substituting the dynamics of the model
written with polar coordinates (3.2) we have

V̇ = r(−v cos γ) + εJ
(sin γ

r
v − ω + αγ

)
+ δ

sin γ

r
v. (C.5)

We can define the following control law

v = k1r cos γ

ω = k2εJ + αγ +
sin γ

r
v + ω̃

(C.6)

with

ω̃ =
k1

J
δ

sin γ cos γ
γ
ε
γ

. (C.7)

We notice that (C.7) is well defined and the inputs are bounded.
With this control law we have

V̇ = −k1r
2 cos2 γ − k2ε

2J2 ≤ 0. (C.8)

However, when we try to calculate the second derivative of γ we find

γ̈ =
d

dt

(sin γ

r
v − ω

)
=

d

dt

(sin γ

r

)
v +

(sin γ

r

)
v̇ − ω̇.

(C.9)

All the terms are well defined and bounded, except for ω̇. In particular, the
critical term is ˙̃ω:

˙̃ω =
k1

J

[
δ̇
sγcγ/γ

ε/γ
+ δ
( d
dt

(sγcγ
γ

))γ
ε

+ δ
sγcγ
γ

d

dt

(γ
ε

)]
(C.10)

where sγ , cγ indicate sin γ, cos γ. The only unbounded term in (C.10) is

d

dt

γ

ε
=
(sin γ

r
v − ω

)(1

ε
− Jγ

ε2

)
︸ ︷︷ ︸
unbounded

−αJ
(γ
ε

)2
. (C.11)

The analysis carried on so far points out that with the control law (C.6) δ
does not converge to zero but it settles on another value.

It is possible to reach practical convergence, since δ multiplies sin γ.
Hence, the only quadratic term that we can have for γ will always be mul-
tiplied by (at least) a square sine. Namely, we are referring to a controller
of the form

v = k1r cos γ − k3δr sin γ

ω = k2εJ + αγ +
sin γ

r
v + ω̃

(C.12)
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with
ω̃ = (k1 − k3r

2)
sγcγ
εJ

δ

With this control law we have

V̇ = −k1r
2 cos2 γ − k2ε

2J2 − k3δ
2 sin2 γ ≤ 0 (C.13)

An alternative to this solution could be to define the linear velocity input
with a component of the form

ṽ = kδ
r

sin γ
δ. (C.14)

This would allow to have a square δ term in V̇ , but we have to guarantee
that γ always remains away from zero (that is actually our initial goal).

Bounds on δ

From an analytical point of view, if we put PP bounds on δ exploiting the
transformation

e = δ 7→ ε = T
(e
ρ

)
and consider the Lyapunov function

V =
1

2

(
r2 + γ2 + ε2

)
, (C.15)

differentiating (C.15) wrt to time and substituting the dynamics of the model
written with polar coordinates (3.2) we have

V̇ = r(−v cos γ) + γ
(sin γ

r
v − ω

)
+ εJ

(sin γ

r
v + αδ

)
. (C.16)

Notice that we have a term εJαδ that we can not cancel out: in order to
cancel out this term we would define the following control law

v = k3rεJ sin γ

ω = k2γ + εJα
δ

γ
+ k3r

2 sγcγ
γ

εJ − k3rεJ sin2 γ,
(C.17)

but in this way we would have a critical term δ
γ .

Substituting (C.17) in (C.16) we have

V̇ = −k2γ
2 − k3ε

2J2 sin2 γ ≤ 0. (C.18)

However, this result does not guarantee the convergence of r and allow to
conclude just for a practical convergence of ε, by tuning k2, k3.
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If we define a control law as

v = k3rεJ sin γ

ω = k2γ + k3r
2 sγcγ
γ

εJ − k3rεJ sin2 γ,
(C.19)

substituting (C.19) in (C.16) we have

V̇ = −k2γ
2 − k3ε

2J2 sin2 γ + εJαδ. (C.20)

Recalling that the following inequality holds:

εJe ≥ µε2

with µ a positive constant, it is easy to see that (C.20) can just be

V̇ ≤ V̄ ,

with V̄ = εJαδ ≥ 0.

C.3 Details and proof for section Bounds on the
angle γ through a different Lyapunov func-
tion

Differentiating (3.8) wrt to time we obtain

V̇ = r(−v cos γ) + tan γ
(sin γ

r
v − ω

)
+ k3δ

sin γ

r
v

= r(−v cos γ) + tan γ(−ω) +
(
k3δ + tan γ

)sin γ

r
v.

(C.21)

Substituting the control inputs defined by eq. 3.9, one can easily obtain the
expression 3.10.

Proof of Convergence: [Sketch] Equation (3.10) implies that the state is
bounded in norm, V̇ (t) is uniformly continuous, and V (t) tends to a limit
value. By Barbalat lemma, V̇ (t) tends to zero and thus also r and γ do.
Analyzing the closed-loop system, we note that ṙ and δ̇ converge to zero
and δ converges to a finite limit; γ̇ tends to a finite limit also and it is uni-
formly continuous since γ̈ is bounded. Hence we can conclude that all the
coordinates converge to zero.

Also, from this analysis, we know that − ln(cos(γ̂)) is bounded. Hence,
γ is guaranteed to respect the predefined bounds. �
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C.4 Details for section Time-varying bounds on γ

The first derivative of γ̂ is

˙̂γ =
γ̇ρ(t) + γρ̇(t)

ρ2(t)
=

γ̇

ρ(t)
− γ

ρ(t)

ρ̇(t)

ρ(t)
=

1

ρ(t)
γ̇ + α(t)γ̂

So, differentiating V wrt to time we obtain

V̇ = r(−v cos γ) + tan γ̂
( 1

ρ(t)
γ̇ + α(t)γ̂

)
+ k3δ

sin γ

r
v

= r(−v cos γ) + tan γ̂
( 1

ρ(t)

(sin γ

r
v − ω

)
+ α(t)γ̂

)
+ k3δ

sin γ

r
v

= r(−v cos γ) + tan γ̂
(
− 1

ρ(t)
ω + α(t)γ̂

)
+
(
k3δ +

tan γ̂

ρ(t)

)sin γ

r
v.

(C.22)

Substituting the controllers defined by eq. (3.13) one can easily obtain

V̇ = −k1r
2 cos2 γ − k2

ρ(t)
tan2 γ̂ ≤ 0.

Notice that the control inputs are well defined and bounded. In particular,
the term sin γ

sin γ̂ , which appears in the steering velocity input, is bounded as
long as γ̂ stays away from zero, and as γ̂ → 0 we have

lim
γ̂→0

sin γ

sin γ̂
= lim

γ→0

sin γ

sin
( γ
ρ(t)

) = ρ(t).

C.5 Details and proof for section Bounds on both
radial and angle coordinate

The control inputs (3.16) are well defined and bounded.

In details:

• εr
r is bounded as long as r stays away from zero and converge to the

finite value Er = 1+M
ρrM

as r → 0 (see Section 2);

• sin γ
sin γ̂ is bounded as long as γ̂ stays away from zero and converge to the
finite value ργ(t) as γ (or in the same way γ̂) tends to zero (see Section
3.3.3).

Substituting the designed controller in V̇ we have

V̇ = −k1ε
2J2
r cos2 γ − k2

ργ
tan2 γ̂ ≤ 0. (C.23)
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The proof for the convergence of the coordinates can be carried out exploit-
ing LaSalle theorem and Barbalat Lemma.
[Sketch] Equation (C.23) implies that the state is bounded in norm, V̇ (t) is
uniformly continuous, and V (t) tends to a limit value. By Barbalat lemma,
V̇ (t) tends to zero and thus also ε and γ̂ do (and hence r and γ also). Ana-
lyzing the closed-loop system, we note that ṙ and δ̇ converge to zero and δ
converges to a finite limit; γ̇ tends to a finite limit also and it is uniformly
continuous since γ̈ is bounded. To prove that γ̈ is bounded we notice that
all its terms are bounded and in particular also ω̇. This term requires more
attention: specifically we have that

d

dt

sin γ

sin
( γ
ρ(t)

) =
d

dt

sin γ

sin γ̂
=

cos γ sin γ̂γ̇ − sin γ cos γ̂ ˙̂γ

sin2 γ̂
=

=
cos γ

sin γ̂
γ̇ − sin γ

sin γ̂

cos γ̂

sin γ̂

[ 1

ρ(t)
γ̇ + α(t)γ̂

]
=

=
[cos γ

sin γ̂
− 1

ρ(t)

sin γ

sin γ̂

cos γ̂

sin γ̂

]
γ̇ + αγ̂

sin γ

sin γ̂

cos γ̂

sin γ̂
=

=
[cos γ

sin γ̂
− 1

ρ(t)

sin γ

sin γ̂

cos γ̂

sin γ̂

]
γ̇ + α

γ̂

sin γ̂

sin γ

sin γ̂
cos γ̂

(C.24)

The second term is well defined and bounded, while term in the squared
brackets

cos γ

sin γ̂
− 1

ρ(t)

sin γ

sin γ̂

cos γ̂

sin γ̂

is bounded as γ̂ 6= 0, and it tends to zero as γ̂ → 0. Eventually, γ̈ is bounded,
γ̇ is uniformly continuous and tends to zero. Hence we can conclude that all
the coordinates converge to zero. �



Appendix D

Time-varying control: details
and proofs.

D.1 Details on the error definition

The error vector is defined as

e =

e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xd − xyd − y
θd − θ


The expression for ė is here obtained: first we can rewrite e as

e =

[
R 0
0 1

]xd − xyd − y
θd − θ

 (D.1)

where

R =

[
cos θ sin θ
− sin θ cos θ

]
and then we have

ė =

Ṙ [xd − xyd − y

]
+R d

dt

[
xd − x
yd − y

]
ωd − ω


=

ṘRT e+Rvd

[
cos θd
sin θd

]
−R

[
ẋ
ẏ

]
ωd − ω


=

S(ω)e+

[
cos e3

sin e3

]
vd −

[
1
0

]
v

ωd − ω

 .
(D.2)
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The last equality derives from the following relation:[
cos θ sin θ
− sin θ cos θ

] [
cos θd
sin θd

]
=

[
cos(θ − θd)
sin(θd − θ)

]
(D.3)

and S(ω) is a skew-symmetric matrix:

S(ω) =

[
0 ω
−ω 0

]
Substituting the defined inputs:

v = cos e3vd − u1

ω = ωd − u2

we find

ė =

S(ωd)e− S(u2)e+

[
0

sin e3

]
vd +

[
1
0

]
u1

u2


=

 0 ωd 0
−ωd 0 0

0 0 0

e1

e2

e3

−
 0 u2 0
−u2 0 0

0 0 0

e1

e2

e3

+

 0
sin e3

0

 vd +

1 0
0 0
0 1

[u1

u2

]

=

 0 ωd 0
−ωd 0 0

0 0 0

e1

e2

e3

+

 0
sin e3

0

 vd +

1 −e2

0 e1

0 1

[u1

u2

]
.

(D.4)

D.2 Details and proof for section Time invariant
bounds on the orientation

The input u2 is bounded and well defined. Indeed, it is bounded as long as
ê3 stays away from zero, and as ê3 → 0 we have

lim
ê3→0

sin e3

sin ê3
= lim

e3→0

sin e3

sin
(
e3
ρ̄

) = ρ̄.

In order to exploit Barbalat Lemma, we need e3 to be uniformly continuous,
so we have to check if its second derivative is bounded.
The full expression for the second derivative of e3 is

ë3 = u̇2 = −k2ρ̄

k3

[
v̇de2

se3
tê3

+ vdė2
se3
tê3

+ vde2

( d
dt

se3
tê3

)]
−
(
1 + t2ê3

)
˙̂e3

where se3 = sin e3, te3 = tan e3 and the underlined term can be written as

d

dt

se3
tê3

=
d

dt

(se3
sê3

)
cê3 −

se3
sê3

sê3
˙̂e3
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In particular, we have to carry about the term

d

dt

sin e3

sin
(
e3
ρ̄

)
which appears in the first derivative of u2 (i.e. in the second derivative of
e3): in detail we have

d

dt

sin e3

sin
(
e3
ρ̄

) =
d

dt

sin e3

sin ê3
=

cos e3 sin ê3ė3 − sin e3 cos ê3
˙̂e3

sin2 ê3
=

=
cos e3 sin ê3ė3 − sin e3 cos ê3ė3/ρ̄

sin2 ê3
=

=
[cos e3

sin ê3
− 1

ρ̄

sin e3

sin ê3

cos ê3

sin ê3

]
ė3.

(D.5)

The term
cos e3

sin ê3
− 1

ρ̄

sin e3

sin ê3

cos ê3

sin ê3

is bounded as ê3 6= 0, and it tends to zero as ê3 → 0. Also, ė3 = u2 is
bounded, as previously discussed.
Hence we can conclude that all the coordinates and the error components
converge to zero. �

D.3 Details for section Time-varying bounds on
the orientation

The first derivative of the Lyapunov function (4.22) is

V̇ = k2e1

(
ωde2 + u1 − e2u2

)
+ k2e2

(
ωde1 sin e3vd + e1u2

)
+ k3

sin ê3

cos ê3

(u2ρ(t)− e3ρ̇(t)

ρ2(t)

)
= k2e1

(
u1

)
+ k2e2

(
sin e3vd

)
+ k3

sin ê3

cos ê3

(u2 + e3α(t)

ρ(t)

)
(D.6)

where α(t) = − ρ̇(t)
ρ(t) > 0.

Substituting the designed controllers (4.23) in (4.24) and canceling out some
terms we obtain (4.24). As in the previous case, the proof for the convergence
of the error components and for the Cartesian coordinates can be carried on
exploiting LaSalle theorem and Barbalat Lemma.
In order to exploit Barbalat Lemma, we would need e3 to be uniformly
continuous, so we have to check if its second derivative is bounded.
The full expression for the second derivative of e3 differ from the previous
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case because of the term which derive from the derivative of ρ = ρ(t) (now
time-dependent):

ë3 = u̇2 = −e3α̇(t)− k2ρ(t)

k3

[
v̇de2

se3
tê3

+ vdė2
se3
tê3

+ vde2

( d
dt

se3
tê3

)]
−
(
1 + t2ê3

)
˙̂e3+

− k2ρ̇(t)

k3
vde2

cos ê3

sin ê3
sin e3 −

(
1 + tan2 ê3) ˙̂e3.

The derivative of ê3 is

˙̂e3 =
ė3ρ(t) + e3ρ̇(t)

ρ2(t)
=

u2

ρ(t)
− e3

ρ(t)

ρ̇(t)

ρ(t)
=

1

ρ(t)
u2 + α(t)ê3

and the underlined term, in this case, can be written as

d

dt

(sin e3

sin ê3
cos ê3

)
while

d

dt

sin e3

sin
(
e3
ρ(t)

) =
d

dt

sin e3

sin ê3
=

cos e3 sin ê3ė3 − sin e3 cos ê3
˙̂e3

sin2 ê3
=

=
cos e3

sin ê3
u2 −

sin e3

sin ê3

cos ê3

sin ê3

[ 1

ρ(t)
u2 + α(t)ê3

]
=

=
[cos e3

sin ê3
− 1

ρ(t)

sin e3

sin ê3

cos ê3

sin ê3

]
u2 + αê3

sin e3

sin ê3

cos ê3

sin ê3

(D.7)

The term
cos e3

sin ê3
− 1

ρ(t)

sin e3

sin ê3

cos ê3

sin ê3

is bounded as ê3 6= 0, and it tends to zero as ê3 → 0. Also, ė3 = u2 is
bounded, as previously discussed. Also the term

ê3
sin e3

sin ê3

cos ê3

sin ê3
=

ê3

sin ê3

sin e3

sin ê3
cos ê3

is well defined and bounded.



Appendix E

ROS Simulations: Code.

This appendix reports a brief description of the main parts of the code that
implements the control laws in ROS environment.

E.1 Class UnicycleVelocityControllerNode

The UnicycleVelocityControllerNode class implements the controller node.

#include <ros/ros.h>

#include <turtlesim/Pose.h>

#include <turtlesim/Velocity.h>

#include "unicycle_velocity.hh"

Public Member Functions

• void getROSParameters()

gets all required parameters from the Parameter Server;

• void topicCallbackUnicycleStates(const turtlesim::Pose::ConstPtr&

msg): this is the call back, assuming that the node subscribes the uni-
cycle states, that is the position;

• bool calculateUnicycleVel()

calculates the unicycle velocities and updates the unicycle position;

• void publishControlVel()

published the turtlesim::Velocity;

• std::vector<double> get unicycle pos()

returns the unicycle position, that is the Cartesian coordinates x, y, θ;

• std::vector<double> get unicycle vel()

returns the unicycle velocities v, ω.
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Public Attributes

• ros::NodeHandle n :
this is the main access point to communications with the ROS system;

• ros::Publisher pub:
topic to publish;

• ros::Subscriber sub:
topic to subscribe;

• ros::Time last publish time:
variable to stamp the last publish time;

• UnicycleVelocity unicycleVel:
object instance of type UnicycleVelocity;

• bool initialized unicycleVel:
set to true when unicycleVel is initialized;

• bool params OK:
set to true if all required parameters are in the Parameter Server.

This documentation refers to the following files:

• include/unicycle velocity controller.hh

• src/unicycle velocity controller.cpp

E.2 Class UnicycleVelocity

The UnicycleVelocity class is responsible for calculating the unicycle velocity
while implementing the designed control laws and the error transformations
for prescribed performance constraints.

Public Member Functions

• void init(vector<double> initPos, vector<double> goalPos,

vector<double> controller parameters)

initializes the initial and goal unicycle positions, calculates the corre-
sponding polar coordinates and initialized the tuning parameters;
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• vector<double> calculateUnicycleVelocity(vector<double>

unicycle pose, double realTime)

calculates and returns the unicycle velocities implementing the control
laws designed with polar coordinates. This function calculates also
the ρ function, the error transformation for prescribed performance
constraints. It also performs the conversion to the polar coordinates
in order to define the input controllers v, ω;

• double getRho()

returns the ρ function;

• double getError()

return the error;

• bool isGoalReached()

returns true if the goal position is achieved.

This documentation refers to the following files:

• include/unicycle velocity.hh

• src/unicycle velocity.cpp
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