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Chapter 1

Introduction

Infectious diseases represent a major burden on welfare and society. They directly threaten
human health, and impact economy and development. In developing countries, they
represent the top cause of death [1], and pose a particularly heavy burden on child
health.Even in the developed World, where most deaths are due to non-infectious dis-
eases, the situation may worsen in the near future. Bacteria strains are developing an-
tibiotic resistance at a quicker pace than we can come up with new drugs [3], and vector-
borne diseases (for instance, Dengue Fever [4]) are now reaching areas in which they
were previously absent, as climate change impacts vector ecology. Finally, the ever more
globalized World we live in is prone to breakouts of pathogens with pandemic potential,
like SARS (2003), H1N1 flu (2009)[6], or, more recently MERS CoV and Ebola [7].

In the fight against infectious diseases, mathematical models have become crucial, as
they provide tools to react promptly to emergencies, reduce the number of infections, op-
timally allocate limited resources and also design targeted containment strategies. Ever
since their introduction in 1927 by Kermack & McHendrick [8], these models are based
on the assumption that disease transmission and progression can be translated into a
relative simple set of mechanistic equations that can be adapted to pathogens with very
diverse pathophysiology and causative agents (bacteria, viruses, etc.). The epidemic is
seen as an emerging collective behavior of the “microscopic” interactions among hosts
[9]–[12]. This framework has allowed to tailor for epidemiology several tools and tech-
niques borrowed from mathematics and statistical physics.

Up until two decades ago, however, the effective use of mathematical models in pub-
lic health was limited by the lack of data concerning human interactions. Simplified and
coarse-grained assumptions restricted the applicability to real scenarios. The picture has
dramatically changed in the last years, with the outbreak of data science. The devel-
opment of both new hardware and software technologies has made it possible to track
real contacts and transports relevant for the spread of diseases. We now have detailed
and wide records of how people interact in different settings (from schools to metro
stations), and at different scales (from face-to-face proximity encounters, to mobility pat-
terns ). Detailed data do not concern only human activities: we can now keep track of
livestock displacements between farms, which are spreading routes for many diseases
threatening animal health, economy, but also human health.

This “data deluge” 1 has radically transformed infectious disease modelling, prov-
ing to be both a huge resource and a great challenge. High resolution data have made
it possible to model entire populations down to single individuals [13]-[15], providing
tailored real-time predictions of epidemic outbreaks. However, these schemes perform

1The data deluge, The Economist, 25th February 2010.
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2 CHAPTER 1. INTRODUCTION

well only in specific settings, but cannot provide a general understanding of the un-
folding of epidemic processes. The actual need to generalize epidemiology to realistic
complex population structures has pushed towards the developing of new theoretical
tools.

A very suitable way to represent disease unfolding of complex and highly resolved
contact patterns is treating the disease as a dynamic process on networks [24],[21]. Net-
works have indeed become a common and successful tool to model populations in terms
of nodes (hosts) and links (interactions among hosts) of a graph

Above all, the most challenging feature emerging from the new available data is that
contacts among hosts are not fixed during the spread of the disease, but evolve in time.
When the time scale of the network evolution is comparable to the one of the disease,
the resulting interplay between the two has been proven to impact the outcome of the
epidemic process in many non trivial ways. This is due to time correlations between con-
tacts, that determine the length, shape and amount of routes along which the disease can
spread. Traditional risk proxies, developed for static contact patterns, have shown to be
insufficient to characterize this new phenomenology.Therefore, a methodology that aims
at assessing the real threat a specific pathogen poses to a population must account for
the temporal evolution of contacts within that population. Temporal networks represent
an effective framework to model time-evolving contact patterns [22], but their interplay
with spreading dynamics has been investigated mostly through numerical approaches,
or in controlled settings. Recently a novel theoretical methodology has been developed
to answer the need to use real data of contacts to find the epidemic threshold 2 of a sys-
tem, while by-passing the microscopic simulation process [28]. In the present work we
choose to exploit this methodology.

We study the diffusion of a disease on a data-based temporal network. Epidemiolog-
ically, this network is relevant for the spreading of sexually transmitted disease (STD).
The main aim of our work is to compute the epidemic threshold of a supposed dis-
ease spreading in the community; that is, the critical value of a control parameter that
tunes the phase transition between the over-all infectious/susceptible state of the pop-
ulation in the long time limit. We will firstly address the problem numerically, then
we will correlate the results with the dynamical features of the underlying network and
consequently tailor a theoretical model able to reproduce the above mentioned phase-
transition diagram in the space of the two parameters characterizing the disease. We
will also extend the space of the parameters to account for the possibility that men and
women pass the disease with different probabilities, as it actually is the case of ST dis-
eases.

1.1 Spreading of informations on a targeted population

It is no news that informations can spread among the individuals of a population. We
experience it in our daily life, and we take part in the dynamical process: from the word-
of-mouth going on in the neighbourhood, to the national channels of newspapers, up
to the world-wide network of internet. What governs the diffusion of informations are
actually two interrelated dynamics: how individuals get in touch with each other (we
name it the contact dynamics) and how information is allowed to be transmitted ( the
information dynamics). In order to understand the meaning of these dynamics we can
exploit the following simple example. Let us consider the diffusion of a rumour in a

2The epidemic threshold is the value of the disease contagion parameter above which a non zero fraction
of the population eventually gets infected.
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neighbourhood; for example we can address the following question: supposing that at
instant t0 a single person knows about the rumour, will that information reach a certain
fraction of neighbours in the long time? To answer this question we firstly need to know
the contact dynamics, that is how do individuals get in touch: are all people connected? do
they change contacts over time? etc. Rules can be extracted from averaged observation
of the people’s behaviour, or we can be not interested in generalizing rules and just use
the raw observational data, that is a sample of the detailed real contact pattern. Now, as
we are interested in a rumour spreading among people, we need to know about the infor-
mation dynamics. For instance, does a person tells the ruomur immediately when he/she
knows, or waits a bit? Do men tell to women and vice-versa? Can a single eventually for-
get about the rumour and break the chain? Every study of information spreading needs
to take into account both the contact and information dynamics. Two simple dynamics,
once entangled, can give rise to the most various scenarios of information diffusion. In
this same frame-work, it is possible to consider that the information spreading among
people is a disease. In that case we are entering the field of epidemiology.
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Chapter 2

Epidemiology

2.1 What is mathematical epidemiology?

Since the first mathematical approach to the spread of a disease by Daniel Bernoulli
(1760), epidemic models lie at the core of our understanding about infectious diseases.
As experimenting in vivo epidemics is not a viable option, modelling approaches have
been the main resort to compare and test theories, as well as to gauge uncertainties in
intervention strategies. The acclaimed work of Kermack and McKendrick (1927), defin-
ing the modern mathematical modelling of infectious diseases, has evolved through
the years in an impressive body of work. At the same time, the epidemic modelling
metaphor has been introduced to describe a wide array of different phenomena. The
spread of information, cultural norms, and social behaviour can be conceptually mod-
elled as a contagion process. How blackouts spread on a nationwide scale or how ef-
ficiently memes can spread on social networks are all phenomena whose mathemati-
cal description relies on models akin to classic epidemic models. Although the basic
mechanisms of each phenomenon are different, their effective mathematical description
often defines similar constitutive equations and dynamical behaviours framed in the
general theory of reaction-diffusion processes (van Kampen, 1981). In recent years we
witnessed a second golden age in epidemic modelling. Indeed, the real-world accuracy
of the models used in epidemiology has been considerably improved by the integra-
tion of large-scale data sets and the explicit simulation of entire populations down to
the scale of single individuals. Mathematical models have evolved into microsimula-
tion models that can be computationally implemented by keeping track of billions of
individuals. These models have gained importance in the public-health domain, espe-
cially in infectious disease epidemiology, by providing quantitative analyses in support
of policy-making processes [23].

2.2 Compartmental models

Infectious diseases vary widely in their patho-physiology, clinical symptoms and etiol-
ogy, resulting in diverse progression and transmission patterns. Viral diseases, like in-
fluenza, measles, chicken pox, usually confer permanent immunity after recovery, while
bacterial diseases, like tuberculosis or syphilis, allow multiple re-infections of the same
host. Many diseases are transmitted by direct contact between hosts, while others re-
quire vectors, such as malaria or blue-tongue. Some, like cholera, require the ingestion
of contaminated water and food. Such diversity calls for modelling approaches that are

5



6 CHAPTER 2. EPIDEMIOLOGY

general and versatile enough to be adapted to each specific ailment, and still be a re-
alistic description of its epidemiological features. This is commonly achieved through
compartmental models.
Grouping individuals in health-compartments
Epidemic models generally assume that the population can be divided into different
classes or compartments depending on the stage of the disease. The Susceptible individ-
uals, denoted by S, are those who can contract the infection; the Infectious, I, are those
who contracted the infection and are contagious, and recovered, R, are those who are
no more infectious and cannot spread the disease any more, either because they have
recovered from the disease or because they have died. Additional compartments can be
used to signal other possible states of individuals with respect to the disease, for instance
Exposed individuals, E, which have been infected by the disease but cannot yet transmit
it. This framework can be extended to take into account vectors, such as mosquitoes
for malaria, for diseases propagating through contact with an external carrier. Also, the
total population in the system can be considered as fixed, or demographic process, such
as migrations, births, etc., can be included.
Laws of transition between compartments
Epidemic modelling aims to describe the dynamical evolution of the contagion process
within a population; namely, we are interested in the evolution of the number of in-
fected individuals in the population as a function of time. In order to do so, we have to
define the individual-level processes that govern the transition of individuals from one
compartment to another. One of the simplest compartmentalizations is the SIS model: it
has two states and only two possible transition rules. The first one, denoted S → I, oc-
curs when a susceptible individual interacts with an infectious individual and becomes
infected. The second transition, denoted I → S, occurs when the infectious individ-
ual recovers from the disease and returns to the pool of susceptible individuals. The
SIS model assumes that the disease does not confer immunity and individuals can be
infected over and over again, undergoing a cycle S → I → S, which, under some condi-
tions, can be sustained forever. Another basic model is the classic three-state SIR model.
In the SIR model, the transition I → S of the SIS process is replaced by I → R, which
occurs when an infectious individual recovers from the disease and is assumed to have
acquired a permanent immunity, or is removed (e.g., has died). A diagrammatic repre-
sentation for the major compartmental models is shown in Figure (2.1). The SIR and SIS
models exemplify a basic classification of epidemic models given in terms of their long
time behaviour. In the long time regime, the SIS model can exhibit a stationary state, the
endemic state, characterized by a constant (on average) fraction of infected individuals.
In the SIR model, instead, the number of infected individuals always falls to zero, but
what can vary is the average number of people that contracts the infection in the active
phase of the disease. In order to have a first insight in the typical SIR and SIS evolution
dynamics, we present in Figure(2.2) a sketched behaviour for the density i(t) of infected
individuals in time. In Section (2.4) we will mathematically prove the long time limit of
these results.
Spontaneous transitions and contact-dependent transitions
In the SIS and SIR models, the infection and recovery processes completely determine
the epidemic evolution. The I → R and I → S transitions occur spontaneously after a
certain time the individuals spend fighting the disease or taking medical treatments; the
transition does not depend on any interactions with other individuals in the population.
On the other hand, the S → I transition can occur only if the susceptible individual in-
teracts with an infectious one; this is the point in which the interaction pattern between
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Figure 2.1: Diagrammatic representation of epidemic models. Boxes stand for different com-
partments, while the arrows represent transitions between compartments, happening stochasti-
cally according to their respective rates.

Figure 2.2: Typical profile of the density i(t) of infected individuals vs time in a given epidemic
outbreak, microscopically simulated with a stochastic infection process. In the first regime t < t1,
the outbreak is subject to strong statistical fluctuations. In the second regime t1 < t < t2 , there
is an exponential growth characterized by the details of the epidemic process. In the final regime
(t > t2), the density of infected individuals either converges to zero, for SIR-like models, or to
a constant, possibly zero, for SIS-like models. We notice that at the early stage t < t2 the two
dynamics are not distinguishable.
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hosts enters in the disease spreading study.
The transition probabilities
We have said that each transition between compartments happens probabilistically with
a certain rate (in continuous time) or probability (in discrete time formulation). The two
most relevant rates are the recovery rate µ (that is the inverse of the so called "infectious
period") and the transmission rate β. We explain now how do the values of these quan-
tities are estimated to represent real pathogens.
The distribution of the infectious period, defined as the average time in which an in-
fected person can transmit the disease without recovering, can generally be estimated
from clinical data. In a simplistic modelling scheme, the probability of recovery is often
assumed constant, i.e. not dependent of the stage of the disease for the individual. In this
way, for a discrete-time formulation one defines the recovery probability µ that an indi-
vidual will recover at any time step, and therefore the mean infectious period is equal to
µ−1 time steps. In a continuous-time formulation, and assuming a Poisson process, µ has
to be defined as a rate (probability per unit time) and the probability that an individual
remains infected for a time τ follows an exponential distribution Pinf(τ) = µe−µτ. Thus
the average infection period again is 〈τ〉 = µ−1. We notice that the Poisson assumption
for the processes naturally couples to a Markovian description of epidemic models.

For what concerns the probability of the S→ I transitions, the estimation from data is
more complicated, because it is dependent on two factors: the characteristic infectious-
ness of the disease and the contact pattern. The disease-dependent part of the probability
is called λ: the rate (or probability) of infection per contact in the continuous (or discrete)
time formulation and is known for many diseases thanks to medical studies.The contact
dependent part is the most challenging feature for epidemiologists in order to character-
ize the disease evolution. In the most simplistic case, if all people are in contact with an
average number k of others, than the complete transmission rate S→ I can be written as
β = λk.
The stoichiometric formalism
To scheme of transitions clear and in order to prepare a framework for a quantitative
treatment of disease propagation, the epidemics is rephrased as a reaction process. In-
dividuals belonging to the different compartments can be represented as different kinds
of “particles” or “species” that evolve according to given rules for transitions among
compartments. In total analogy with chemical reaction, this dynamic can be specified by
means of appropriate so-called stoichiometric equations. In the continuum-time limit each
transition is defined by an appropriate reaction rate.

The SIS model is thus governed by the stoichiometric equations:

S+ I
λ−→ 2I

I
µ−→ S

(2.1)

where λ and µ are transition rates for infection per contact and recovery, respectively. In
this model infection can be sustained forever for sufficiently large λ or small µ .

The SIR model is instead characterized by the three compartments S, I, and R, cou-
pled by the reactions

S+ I
λ−→ 2I

I
µ−→ R

(2.2)

For any values of λ and µ, the SIR process will always asymptotically die, after having
affected a certain fraction of the population.
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A useful variant of SIS is the SI model, which allows only for the first transition in
reactions (2.1), i.e. individuals become infected and never leave this state. While the SI
model is a somewhat strong simplification (valid only in cases where the time scale of
recovery is much larger than the time scale of infection), it approximates the initial time
evolution of both SIS and SIR dynamics.

More realistic models are defined in order to better accommodate the biological prop-
erties of real diseases. For instance, the susceptible-infected-recovered-susceptible (SIRS)
model is an epidemic model incorporating a temporary R immunity. It can be defined
from the SIR model by adding a last microscopic transition event:

S+ I
λ−→ 2I

I
µ−→ R

R
η−→ S

(2.3)

where η is the rate at which the immunity of a recovered individual is lost, rendering
him or her susceptible again. Another realistic model is the SEIR model. It includes the
effects of exposed individuals, E, which have been infected by the disease but cannot yet
transmit it, theus slowing down the dynamics with respect to SIR. The SEIR model is
one of the paradigmatic models for the spreading of influenza-like illnesses and in the
compact reaction-diffusion notation reads as

S+ I
λ−→ E+ I

E
γ−→ I

I
µ−→ R

(2.4)

All the above models can be generalized to include demographic effects (birth and death
processes in the population), the age structure of the population other relevant compart-
ments (such as asymptomatic infected individuals, gender category for sexually trans-
mitted diseases), etc. The choice of the specific compartmental model, and the values of
the parameters, are informed by the medical epidemiology of the specific disease under
study.

2.3 Epidemic threshold

When a pathogen is introduced into a susceptible population, either it will cause an
epidemic outbreak, or it will quickly go extinct. As we have already mentioned, the
outcome will depend both on disease features, and on the structure of contacts between
hosts. Researchers in computational epidemiology aim at finding a way of discriminat-
ing these two conditions, in terms of the intrinsic transmissibility λ of the pathogen. Sys-
tems show the existence of a critical value λc of transmissibility, called epidemic thresh-
old, above which the disease is likely to turn epidemic. Conversely, when λ 6 λc, the
outbreak will likely die out after a reasonably long time. Finding λc for a given system
is crucial, as it allows both to predict the outcome of a potential pathogen introduction,
and to assess the performance of prevention strategies. We notice that the choice of λ as
the parameter for the definition of the critical state is arbitrary, given a disease charac-
terized by more than one intrinsic parameter. For example, take SIS with its two tunable
parameters: λ and µ. Finding λc(µ) is totally equivalent to finding µc(λ), once the en-
demic regime is understood for λ > λc or µ < µc.
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The definition of epidemic threshold is intuitively clear and simple; its mathematical for-
mulation, on the contrary, is not always straightforward, and require caution. We need
do distinguish between disease models that allow for an endemic state, and models that
do not. In the former category falls the SIS model and in general all models that do not
confer permanent immunity: after an initial transient, the number of infectious individu-
als will saturate around a steady value. In the latter category we have the SIR model, and
all models giving permanent immunity. Every infectious agent will eventually recover,
until no more infections occur. To address the problem generally, we will talk about
SIS-like and SIR-like models. For SIS-like models the epidemic threshold discriminates
between the existence of an endemic state (above λc threshold), and the condition where
the only stable steady state is the disease-free state, i.e. there are no infectious agents
(below λc threshold). For SIR-like models, instead, a threshold can be defined as related
to the final attack rate, i.e. the total fraction of agents that will have been infected during
the whole course of the epidemic. SIR-like models above threshold will lead to a large
final attack rate, while below threshold the attack rate will be negligible. Despite the
epidemic threshold bearing different meanings in these two different families of models,
conceptually it always discriminate between the epidemic and the extinction scenarios,
and for this reason it represents a valid tool for assessing the vulnerability of a popula-
tion to pathogen introduction. From the mathematical point of view, too, the epidemic
threshold has a unified interpretation in terms of phase transition. The two phases are
clearly disease extinction and epidemic outbreak in the long time limit. By tuning model
transmissibility λ ( the control parameter, in the terminology of statistical mechanics) we
pass from one phase to the other each time we cross the epidemic threshold. As we have
seen, the measure that tells us in which phase we are (the order parameter) is different
for the two families of models. For SIS-like models it is the average fraction of infected
agents once the disease reaches the endemic state (i∞), while for SIR-like models it is the
final attack rate (imax). The generic phase diagram is depicted in Figure (2.3), where the
order parameter is called generically ρ. We observe the typical behaviour of a second-
order phase transition: when one reduces transmissibility, the fraction of infected goes
continuously down, until a tipping point where it becomes zero. Below this point it
continues to be zero.

Figure 2.3: Phase diagram of a typical absorbing state phase transition. Below the critical point
λc, the order parameter is zero (healthy phase in an epidemics interpretation). Above the critical
point, the order parameter attains a non-zero average value in the long time regime.

As above noticed, the phase diagram ρ(λ;µ) for a SIS disease dynamics implicitly
assumes that the recovery rate µ is fixed. We could however consider λ fixed, and find
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the phase diagram ρ(µ; λ) : this time we will find that the order parameter ρ > 0 for
µ < µc, while for µ > µc it goes to zero. Real systems rarely show phase diagrams as
“clean” as the one shown in Fig.(2.3), as finite-size effects affects the system, making the
threshold more difficult to define and compute.

2.4 Basic results from classical epidemiology

The goal of infectious disease modelling is to uncover the macroscopic behaviour result-
ing from the application of an epidemiological-compartmental model to a population
interacting in a certain way. what we still need to address is the structure of contacts
along which the disease spreads. The simplest framework, and the first to have been
developed, is the so-called homogeneous mixing. Despite its simplicity, homogeneous
mixing still represents a successful approximation in many contexts, especially within
patches of meta-population models. The homogeneous mixing states that every host in
the population has the same probability of being in contact with any other host. Therefore, each
susceptible individual has the same probability of meeting an infectious individual and
contract the infection in a single time step, and this probability is clearly proportional to
the number of the presently infected individuals. This readily translates into a simple
form of the force of infection α on an individual, that expresses the probability (also called
the risk) at which one susceptible individual may contract the infection in a single time
step:

α = β
I

N
(2.5)

where β is the rate of infection, I is the number of infected individuals and N the total
size of the population. Thus, α is proportional to the fraction i = I

N of infected individ-
uals in the population. This form of the force of infection corresponds to the mass-action
law, a widely used tool in the mean-field description of many dynamical processes in
chemistry and physics. In some cases β explicitly split in two terms as β = λk, where
λ is the rate of infection per effective contact and k is the number of contacts every host
establishes at each time. Knowing α, we can finally write down the time evolution of
the epidemics via a set of deterministic differential equations. Let s(t), i(t), r(t) be the
densities of susceptible, infectious, recovered individuals at time t. The equations of the
SIS model are : {

ds
dt = −β i s+ µ i
di
dt = +β i s− µ i.

(2.6)

Analogously the SIR is described by:
ds
dt = −β i s
di
dt = +β i s− µ i
dr
dt = +µ i.

(2.7)

Last line in both systems is redundant if we assume a fixed population (dN/dt = 0).
Under this common assumption, correspondent to a closed system, we can express all
remaining equations via the normalization conditions r = (1 − s− i) and s = (1 − i) (for
the SIR and SIS models, respectively), thus getting rid of one variable (r or s).

If we consider the limit i ' 0, valid for example at the early stage of the epidemics,
we can linearize the equations for i(t) obtaining a simple linear expression for both the
SIS and SIR models:

di

dt
= (β− µ) i+ o(i2). (2.8)
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Its solution is the exponential function

i(t) = i(0)e(β−µ)t, (2.9)

that represents the evolution of small i. The early stage of infection is thus driven by a
typical time scale:

τSIS/SIR =
1

|β− µ|
. (2.10)

The number of infectious individuals grows exponentially if β − µ > 0, otherwise it
exponentially decrease to zero. If we define the quantity:

R0 =
β

µ
(2.11)

that is generally known as the basic reproduction number, we see that, in the homogeneous
mixing approximation, the value (R0 − 1) multiplied by µ accounts for the rate at which
the disease grows exponentially the initial stage. There is therefore a condition on R0 that
discriminate the grows or the death of the disease at initial stage. This result allows one
to quantitatively define the concept of epidemic threshold introduced in Section (2.3).
If R0 > 1 an infective agent can cause an outbreak of a finite relative size (in SIR-like
models) or lead to a steady state with a finite average density of infected individuals,
corresponding to an endemic state (in SIS-like models). If R0 6 1, the relative size of
the epidemics is negligibly small, vanishing in the thermodynamic limit of an infinite
population (in SIR-like models) or leading to a unique steady state with all individuals
susceptible (in SIS-like models). Besides the definition of R0 ,that has been sometimes
controversial and depends on the model, we stress again that the related concept of
threshold behaviour is very general and present in all epidemic models .
For completeness, we solve Eqs.(2.6) in general case (i.e. no restriction of small i) and for
fixed total population. The dynamics of infectious density is ruled by a logistic equation:

di

dt
= (β− µ) i−βi2, (2.12)

that allows for analytical solution 1:

i(t) =
istat.

1 + V exp[−(β− µ)(t− t0)]
(2.13)

where istat = (β−µ), and V = istat
i(t0)

− 1. This solution gives a final infectious state i(∞)

that is:

i(∞) =

{
0 ,R0 6 1
istat ,R0 > 1

(2.14)

We make a little remark here, in order to make clear that the deterministic set of equa-
tions we have used are an approximation of the real probabilistic process that governs an
epidemic spreading. A more realistic analysis of epidemic models should in fact consider
explicitly its stochastic nature. Accounting for this stochasticity is particularly important
when dealing with small populations, in which the number of individuals in each com-
partment is reduced. For instance, while the epidemic threshold condition R0 > 1 is a
necessary and sufficient condition for the occurrence of an epidemic outbreak in deter-
ministic systems, in stochastic systems this is just a necessary condition. Indeed, even

1by making a transformation of variables: i = 1/y.
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for R0 > 1, stochastic fluctuations can lead to the epidemic extinction when the number
of infectious individuals is small (see Appendix A). Analogously, all the general results
derived from deterministic mean-field equations can be considered representative of real
systems only when the population size is very large (ideally in the thermodynamic limit)
and the fluctuations in the number of individuals can be considered small. Indeed, most
of the classical results of mathematical epidemiology have been obtained under these
assumptions.

2.5 Connections with statistical physics models

From what we have just seen, it is natural that the statistical physics community has
developed an interest in models for epidemic spreading, due to the close connection be-
tween these models and more standard non-equilibrium problems of statistical physics.
In particular, the epidemic threshold concept is analogous to the concept of phase tran-
sition in non-equilibrium systems. A phase transition is defined as a change in the state
(phase) of a system, characterized by qualitatively different properties, and that is expe-
rienced varying a given control parameter T . The transition is characterized by an order
parameter ρ, which takes (in a system of infinite size) a non-zero value in one phase,
and a zero value in another. The phase transition takes place at a particular value of the
control parameter, the so-called transition point Tc, in such a way that for T > Tc we
have ρ > 0 , while for T < Tc, ρ = 0. The SIS dynamics thus belongs to the wide class
of non-equilibrium statistical models possessing absorbing states, i.e. states in which
the dynamics becomes trapped with no possibility to escape. An example of a system
with an absorbing state is the contact process (CP) (Harris, 1974), where all nodes of a
lattice or network can be either occupied or empty. Occupied nodes annihilate at rate
1; on the other hand, they can reproduce at rate λ , generating one offspring that can
occupy an empty nearest neighbour. Notice that the contact pattern here is fixed and
regular, with every node contacting one of its neighbours at each time step. The contact
process experiences an absorbing state phase transition at a critical point λc between an
active phase, in which activity lasts forever in the thermodynamic limit, implying a finite
average density of occupied nodes, and an absorbing phase, in which activity eventu-
ally vanishes, corresponding to an empty system. Drawing the connection with the SIS
model, the active phase is given by the infected state, and the absorbing phase by the
state where no individual is infected. The order parameter is therefore the density of
infected individuals ρ → istationary, and the control parameter is given by the basic
reproductive number T → R0. The critical point is the epidemic threshold R0,c , that
separates the infected from the healthy phase. It is interesting to note that the dynamics
of the SIS process on lattice is essentially identical to that of the contact process; indeed,
the difference between the SIS and the contact process lies exclusively in the number of
off-springs that an active individual can generate. While in the contact process one par-
ticle generates always on average one offspring per unit time, an infected individual in
the SIS model can infect all his or her nearest neighbours in the same time interval.
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Chapter 3

Epidemics on Static Networks

3.1 The convenient choice of networks

It is easy to understand that the homogeneous mixing assumption, used in the previous
chapter to write the deterministic equations of an epidemic processes, may be inade-
quate in several real-world situations. As one can guess, in the real world individuals
have large heterogeneity in the contact rate (i.e. βi depends on the individual i and takes
wide range of values), or present a specific frozen pattern of interaction (i.e. individuals
do not mix), or are in contact only with a small part of the population (i.e. they do mix,
but inside small subgroups). These features may have different relevance, depending
on the disease or contagion process considered, but usually have an overall non trivial
impact on the behaviour of the epidemics.
To actually capture real features of contacts among humans, epidemiologists have been
reconstructing the net of "who had been in contact with whom" during a particular time
frame through surveys and questionnaires, asking, for instance, to list list all people you
had met that particular day. These data allowed researchers to uncover features of hu-
man interactions, which prompted the need of going beyond the homogeneous mixing
assumption. The data showed clearly that most real-world systems have very complex
connectivity patterns, dominated by large-scale heterogeneities that cannot be captured
by average values and need to be described via heavy-tailed statistical distributions.
Analogous findings concerned also the ecological and biological world. For all these
systems, an averaged or homogeneous approximation of the contact pattern between
individuals dramatically fails in predicting the spreading of epidemics. Therefore it be-
comes necessary to include individuals’ contact pattern structure into the mathematical
modelling approaches. Network theory turned out to be a suitable general framework,
complete with powerful tools, to account for interactions among individuals in detail.

3.2 Mathematical representation

A network is a representation of an interacting population, in terms of a mathematical
entity called the graph. A graph is an object composed of a set of nodes (vertices), and
links (edges) that connect pairs of nodes. In our context, nodes represent the hosts of our
population, and links represent the interactions relevant to the spread of the disease.
Edges can represent a bidirectional interaction between vertices, or indicate a precise di-
rectionality in the interaction. In the first case we talk about undirected networks, and
in the second case about directed networks. From an epidemiological point of view, a
network being directed is indeed relevant, since it imposes restrictions on the possible

15
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paths of propagation of the contagion. Furthermore, links can be binary relationships
(0,1), or weighted, encoding the amount of times the link has activated.
One of the advantages of the network approach is that a graph has a natural algebraic
representation in terms of adjacency matrix. Given a graph of size N (i.e., with N ver-
tices) we can always associate to it its adjacency matrix A. It is the N×N matrix with
elementsAij = 1 if an edge is connecting nodes i and j and zero otherwise. If the network
is undirected, then A is symmetric (A = A†); if the network is weighted, Aij can assume
values other than 0, 1, encoding link weights. The study of properties of a graph in rela-
tionship to the characteristic polynomial, eigenvalues, and eigenvectors of its adjacency
matrix is called spectral theory.The spectrum if a graph is the multiset of its adjacency
matrix eigenvalues. While the adjacency matrix depends on the vertex labelling, its spec-
trum is a graph invariant. An undirected graph, that has a symmetric adjacency matrix,
has real eigenvalues and a complete set of orthonormal eigenvectors.
Degree and degree distribution The first elementary concept that arises when dealing
with networks is the one neighbourhood. Two nodes are neighbours if there is a link
among them, and the neighbourhood of a node is the set of its neighbour nodes. This
results in a theoretical measure called the degree of a node: the number of connections
this node establishes with other nodes (the size of its neighbourhood). In formulas, the
degree ki of node i is therefore

ki =
∑
j|Aij 6=0

1. (3.1)

For directed networks, we discriminate between incoming and outgoing degree. For
weighted networks, we introduce the strength of a node, i.e. the sum of the weights of
its links:

si =
∑
j

Aij (3.2)

Networks are often characterized in terms of their degree distribution: the statistical
distribution of node degrees. When nodes establish links randomly, the resulting degree
distribution is Poisson-like, with small dispersion around a mean value. On the other
hand, networks with deeply non random connection patterns exhibit heterogeneous de-
gree distributions, with large, sometimes diverging, variance. The most popular hetero-
geneous distribution in this context is the power-law P(k) ∼ k−γ, as many real networks
are found to have such a degree distribution. It is often informing to consider the mo-
ments of the degree distribution 〈kn〉 =

∑
k P(k)k

n. The first moment, the average
degree 〈k〉 = 2E/N is twice the ratio between the number E of edges and the number
N of nodes and provides information about the density of the network. A network is
called sparse if its number of edges E grows at most linearly with the network size N
and the mean degree is less than one; otherwise, it is called dense. The second moment
informs on the dispersion of the degree distribution around the mean value, therefore
on the heterogeneity of the number of contacts each node establish.
Degree correlation Two-vertex degree correlations can be conveniently measured by
means of the conditional probability P(k ′|k) that an edge departing from a vertex of de-
gree k is connected to a vertex of degree k ′. A network is called degree-uncorrelated if
this conditional probability is independent on the degree of originating vertex k. In this
case, P(k ′|k) can be simply estimated as the ratio between the number of edges pointing
to vertices of degree k ′ (k ′P(k ′)N/2) and the total number of edges (〈k〉N/2), to yield

P(k ′|k) = k ′P(k ′)/〈k〉. (3.3)
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Figure 3.1: A graph and its adjacency ma-
trix.

Figure 3.2: A bipartite graph.

The empirical evaluation of P(k ′|k) turns out to be quite noisy in real networks, due to
finite-size effects. A related, simpler, measure of correlations is the average degree of the
nearest neighbours of vertices of degree k, knn(k) which is formally defined as

knn(k) =
∑
k ′

k ′P(k ′|k) (3.4)

For degree-uncorrelated networks knn(k) = 〈k2〉/〈k〉 does not depend on k, as P(k ′|k) =
k ′P(k ′)/〈k〉 . Therefore, a varying knn(k) is the signature of degree correlations. The
analysis of empirical networks has suggested a broad classification of networks in two
main classes, according to the nature of their degree correlations. Assortative networks
exhibit an increasing knn(k) with increasing values of k: indicative that high degree
nodes tend to connect to high degree nodes, while low degree nodes are preferentially at-
tached to low degree nodes. Disassortative networks, on the other hand, show a decreas-
ing knn(k) function, suggesting that high degree nodes connect to low degree nodes.
Bipartite graphs A type of graph that will be relevant in this work is the bipartite graph.
In this graph nodes are dived into two groups (A and B for example) and edges can join
only two nodes belonging to different groups.

3.3 Epidemic threshold on static networks

Different approaches have been developed for computing the epidemic threshold on
static networks. Conceptually, they can be classified according to their way of taking
into account the structure of the network:

• quenched network:
The structure of the network is fixed, and expressed in terms of its adjacency matrix
A. The resulting epidemic threshold is characteristic of that particular matrix;

• annealed network:
Only one (or more) statistical property of the network is relevant.
For example, it can be the degree distribution P(k). Therefore an ensemble of ad-
jacency matrices {A} corresponding to the given P(k) are equally probable and the
threshold is computed over that ensemble.

We emphasize that static network means that its edges are fixed in time. Therefore
while the epidemics temporally evolves on the networks by changing the "health" state
of the nodes, the underling network structure does not change. Thus only one dynamics,
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the disease’s, has to be studied.

Here we review two approaches aimed at finding the epidemic threshold in static
networks, because they are instructive for the work we will develop in the following
chapters. The first approach is based on annealed networks, and uses deterministic dif-
ferential equations; the second is based on quenched networks, and uses eigenvalue
analysis of the adjacency matrix .

3.3.1 Annealed network: The degree-block approximation

This approach computes the threshold as a function of a given degree distribution P(k)
that defines the network structure [30]. Its original formulation requires the absence of
degree-degree correlations, but can be generalized to include them. Its core idea is to use
the same differential equation approach that we have seen for homogeneous mixing ( Eq.
(2.6) ), by splitting each compartment by degree. An infectious node of degree k, and one
of degree k ′ are no longer in the same compartment, but in Ik and Ik ′ , respectively. This
approach is called degree-block approximation, or degree-based mean field as it assumes
that all nodes with the same degree are statistically equivalent. Let Sk,Ik be the number
of susceptible and infectious nodes in degree class k. Densities are obtained by dividing
Sk,Ik by the number of nodes with degree k Nk.{

sk = Sk
Nk

ik = Ik
Nk

(3.5)

The average densities are obtained through the degree distribution :

s =
∑
k

skP(k) i =
∑
k

ikP(k)

The system of equations governing SIS dynamics, for small i, is:

dik
dt

=
∑
k ′

[λkP(k ′|k) − µδkk ′ ]ik ′ +O(i2k) =
∑
k ′

Ckk ′ik ′ +O(i2k) (3.6)

in which we have defined matrix Ckk ′ = λkP(k ′|k) − µδkk ′ .
We now assume degree uncorrelation: P(k ′|k) = k ′P(k ′)/〈k〉. If we define two column
matrices: (C1)k = k, and (C2)k = kP(k), we can rewrite the uncorrelated C matrix as
C = λC1C2†/〈k〉 − µI. Therefore, C has rank equal to 1, and its principal eigenvector
is C1, with eigenvalue λ〈k2〉/〈k〉− µ. By setting to zero the maximum eigenvalue , we
recover the epidemic threshold: (

λ

µ

)SIS
critical

=
〈k〉
〈k2〉

. (3.7)

For completeness, we write the threshold for SIR as well:(
λ

µ

)SIR
critical

=
〈k〉

〈k2〉− 〈k〉
. (3.8)

These results are especially interesting in the case of heterogeneous degree distributions.
For common power law P(k) ∼ k−γ, we recall that a well-defined mean over k ∈ [1,+∞]
exists inly when γ > 2, and has a finite second momentum only if γ > 3. Therefore, in
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the thermodynamic limit N→∞, the second moment diverges 〈k2〉 →∞ for 2 < γ < 3.
In this case the epidemic threshold vanishes in the thermodynamic limit: (λ/µ)c → 0,
meaning that every value of λ can give rise to an endemic state. For real systems that are
not infinite, the result of Eq.(3.7) means that heterogeneous static networks (built via the
given P(k)) get indefinitely more vulnerable as they get bigger, because hubs get more
and more connected, and can easily sustain an epidemic.

3.3.2 Quenched network: Spectral theory

We treat this case more in detail, because it will be the starting point for the theory on
temporal networks we will develop in the following Chapter.
A quenched network is a specific fixed network, represented by its adjacency matrix A.
In this case we consider time as discrete, and at each time step a susceptible node can be
infected by an infectious neighbour with probability λ and it can recover with probabil-
ity µ. Each node is assigned a binary variable Xi, corresponding to the infectious status
(Xi = 1) or susceptible status (Xi = 0).
Infection dynamic is translated into a discrete-time Markov process with 2N possible
states, corresponding to the possible infection configurations. The transition matrix
among all these states cannot be written in general. For this reason, it is customary
to neglect correlation among infectious statuses at a given time1, as in general the state
of a node does not influence the state of another, at the same time step. Under this
assumption, it is possible to decompose the joint probabilities in terms of single node
probabilities:

Prob
(
Xi(t) = 1 ∧ Xj(t) = 1 ∧ Xk(t) = 1 . . .

)
= pi(t)pj(t)pk(t) . . . (3.9)

where we define pi(t) = Prob (Xi(t) = 1) as the probability of node i to be in state 1
(infectious) at time t. In this way, the probability of a particular N-nodes configuration
can be written in terms of single-node probabilities pi(t). The advantage is that for these
pi(t) an evolution equation can be written [26] :

pi(t+ 1) = [1 − qi(t)] [1 − pi(t)] + (1 − µ)pi(t) + µ [1 − qi(t)]pi(t) (3.10)

where qi(t) is the probability that node i does not get infected by any of its infectious
neighbours:

qi(t) =

N∏
j=1

(
1 − λrjipj(t)

)
(3.11)

being rij the contact probability and λ the probability of transmit the disease.
Equation(3.10) is composed by three terms, each accounting for a transition probabil-

ity that leads to node i being infected at time t+ 1. The first term is the probability that
node i is susceptible at time t, (1 − pi(t)), and contracts the disease because of contagion
with at least one infectious neighbour, (1 − qi(t)); the second term is the probability that
node i is infectious at previous time step and do not spontaneously recovers (1 − µ); the
third and last is the probability that node i is infectious at time t, recovers and gets re-
infected. What remains to be defined is the contact probability rij: we can picture it as
the transition probability of a random walker between nodes i and j. If a number ni of
r.w. leaves node i at each time step, then:

rij = 1 −

(
1 −

wij

si

)ni
(3.12)

1For a treatment of the two nodes correlation, see [25].
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where wij , si are the weight of link i-j and the strength of node i, respectively. If ni = 1,
that is there is one try for infection per time-step: rij =

wij
si

; if ni → ∞, all reachable
nodes are contacted at each time step, rij = aij, whether the network is weighted or not.
By choosing the second limit rij = Aij, and performing simple algebraic re-arrangement
of Eq.(3.10), we eventually find :

pi(t+ 1) = 1 − [1 − (1 − µ)pi(t)]
∏
j

(
1 − λAjipj(t)

)
. (3.13)

This equation is the key to find the threshold.
We are interested in studying the behaviour of pi around the the disease free state pi = 0,
that is clearly an equilibrium solution of pi(t+ 1) = pi(t). Analogously to what we have
done in the annelaed case, we wish to see if there is a λc for which the zero state passes
from being a stable to an unstable equilibrium, and thus leading to an epidemic outbreak.
In order to do that, we linearize the equation around pi ' 0:

pi(t+ 1) = (1 − µ)pi(t) + λ
∑
j

Ajipj(t) +O(p2
i). (3.14)

This can be rewritten in matrix form, by interpreting pi(t) as the i-th element of a size N
vector ~p(t):

~p(t+ 1) =
[
(1 − µ)I+ λA†

]
~p(t). (3.15)

The above equation is a linear autonomous difference equation, as time is discrete [53].
General theory demonstrates that the zero solutions of Eq.(3.15) is asymptotically stable
if and only if the spectral radius of matrix (1 − µ + λA†) is larger than 1. The spec-
tral radius of a matrix is the largest of the absolute values of the eigenvalues : ρ(M) =
max{|λ| , λ is eigenvalue of M} . This is a fundamental result, that we will use also in
the following chapters 2. The stability condition coincides with the requirement for the
threshold. We have:

ρ
[
(1 − µ)I+ λA†

]
= 1 =⇒

(
λ

µ

)
critical

=
1

ρ(A)
. (3.16)

To derive the above relation we exploit the fact that ρ (aI+B) = a+ ρ(B), when a =
1 − µ > 0 and B = A has all non negative entries, therefore satisfies the Theorem of
Perron-Frobenius 3. Moreover, we use A = A† of undirected graphs.

We recall that Eq.(3.16) for the epidemic threshold (λ/µ)c is true under the indepen-
dence of nodes approximation of Eq.(3.9) and it is known to be a lower bound estimate
of the real epidemic threshold. However this result approaches the real value, com-
puted via microscopic simulations of infection processes, with surprisingly high accu-
racy given the simplicity of the expression. This result, derived for the SIS model, holds
for the SIR model too, as their equations are the same close to pi ' 0.

In conclusion, in the quenched mean field approach, the epidemic threshold on a
generic network of both the SIS and SIR model is completely determined by the maxi-
mum and absolute value of the adjacency matrix’s eigenvalues.

2 See Appendix D for details.
3 See Appendix E for the detailed calculus.



Chapter 4

Epidemics on temporal networks

So far we have assumed that the topology defining the network is static: the set of nodes
and links do not change over time. However, many real networks are far from static,
their links being created, destroyed, and rewired at some intrinsic time scales. When
contact patterns evolve in time, we need to go from a static network representations to
a temporal version, where links activate and deactivate in time. In terms of adjacency
matrix, we go from a single matrix A for a static network, to a matrix which is function
of time A(t). Hence, while static networks are purely topological objects, temporal net-
works have an embedded dynamic process driving link evolution in time. We stress that
while the definition of temporal network is a straightforward extension of the definition
of static network, the emerging properties of this new object are conceptually and phe-
nomenologically different, and cannot be in general recovered as a simple extension of
what we know about static networks.

The first conceptual problem arising from the temporal dimension is the definition of
path. A path on a static network is a set of edges such that an edge ends where the next
edge in the path begins. Paths matter a lot, as far as the spread of disease is concerned,
because if there is a path going from node i to node j, it means that i can affect the state
of j. If the static graph is undirected, then every path connecting i to j will also connect j
to i ; if it is directed, this symmetry is broken and a connection i→ j does not in general
imply j → i. The reachability property "→" is transitive also for directed networks:
if i → j, and j → k, then i → k . Things get more complicated when we deal with
temporal networks. This happens because paths exist only if they are time-respecting.
Two links, connecting i with j and j with k, represent a path from i to k if and only if link
i-j activates before link j-k , otherwise, no information starting in i will be able to reach k.
As a result, a temporal network is always directed, at least in the temporal dimension
that encodes causality, and reachability is in general not transitive, because the chain
i → j → k implies i → k only if paths are arranged in a time-respecting way. These
complex features of temporal networks matter a lot to us, because the spread of a disease
on a network structure can be examined in terms of infection paths, which themselves
must be time-respecting. Time can be treated as a continuous or a discrete variable. If
time is discrete, the temporal network is a sequence of snapshots which themselves can
be seen as static networks. Assuming discrete time can be seen as an approximation, but
it is both practically sound, and theoretically convenient. Indeed, most part of empirical
datasets regarding temporal networks are intrinsically discrete and as a result, discrete
time becomes a natural choice in many empirical settings.

21



22 CHAPTER 4. EPIDEMICS ON TEMPORAL NETWORKS

4.1 Mathematical representations of temporal networks

4.1.1 Lossy representation

The representations of temporal networks are divided into lossless and lossy. Lossless
representations carry all the information about the temporal network, and in practice
we can identify them with the network itself. In lossy representation, instead, some
information about the original temporal network is lost. Here we describe only the rep-
resentations that are relevant for our work.

The most common lossy representation consists in projecting all the temporal dy-
namics onto a static, aggregated, network. Here we consider two aggregation schemes,
which we call HOM and HET. HOM aggregation consists of building a single static net-
work where two nodes are linked if they are in contact at least once in the temporal
network. The weight of links is the same for all and is equal to the average:

Aij
HOM = w =

∑
t

∑
ijAij(t)∑

ij |Aij 6=0
1

. (4.1)

HET’s topology is the same as HOM’s, but HET links are weighted by the number of
times they are in contact in the temporal network, as it is clear from the definition in
Eq.(4.2).

Aij
HET =

T∑
t=1

Aij(t) (4.2)

HET aggregation, despite losing all temporal correlations, can account for the fact that
some ties are stronger than others, i.e. they occur more frequently.
Another static, lossy representation is the accessibility graph: a directed graph in which
a link going from i to j exists if there is a time-respecting path from i to j. Accessibility
graph can be interpreted as a static entity, associated to the accessibility matrix:

PT =

T∏
t=1

[I+At] = I+A1 +A2 + ... +AT

+A1A2 +A1A3 + ...
+ ...
+A1A2A3..AT

(4.3)

where time is assumed discrete, and At is the adjacency matrix of t-th snapshot of the
temporal network. The name of accessibility matrix arises from the fact that [A(t)A(t+
1)]ij counts the number of paths that start at node i at time t and end in node j at time
t+1. The presence of the identity matrix in Equation (4.3) accounts for the fact that paths
can contain waiting times. In other words, if we imagine a path as a route of a walker,
without the identity term such walker would have to move from node to node at each
time step. The identity terms allows it to stay still in one place indefinitely. Interesting
studies on real dataset [46], have shown that the number of time respecting paths are
far less than the number that exist in the HET aggregation scheme, thus proving the
importance of causality in data based temporal network.

4.1.2 Lossless representation

The first, most natural lossless representation is the sequence of snapshots. Given a discrete-
time temporal network of T time steps, we represent the links active at each time step
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as a static graph. The temporal network thus becomes a ordered sequence of graphs, or,
algebraically, an ordered sequence of adjacency matrices:

A = {A1,A2, . . .AT }. (4.4)

The second representation is called multilayer. This retains a special importance for the
understanding of the rest of the work. In general, a multilayer network is just a network
whose nodes can be grouped in different subsets (called layers), with intra-layer and
inter-layer connections. A temporal network can be seen as multilayer when we consider
time snapshots as layers, with a copy of each node appearing in every layer. In Figure
(4.1) we show the three possible "types" of links appearing in a multi-layer network:

• intra-layer: a link whose nodes belong to the same layer (black solid line);

• inter-layers diagonal: a link connecting the copy of the same node in two different
layers (black dashed line);

• inter-layers non-diagonal: a link connecting two different nodes in two different
layers (red dashed line).

Figure 4.1: Temporal network as a multilayer object. We represent a temporal network of 3
nodes and 2 time steps. We picture the three possible types of links. Intra-layer links correspond
to terms Attij of the adjacency tensor. Inter-layer diagonal links correspond to Atsii terms. Inter-
layer non-diagonal correspond to terms Atsij , with both t 6= s and i 6= j.

Now the natural question that arises is how to translate the links of the temporal network
into the multi-layer object and its possible connection. We will use the choice made by
Valdano et al in [28], and call it the inter-layer representation. Let us consider the sequence
of snapshots A in Eq. (4.4). We want to build a corresponding multi-layer structure, that
retains all contacts informations. The multi-layer object is composed of T layers, one for
each snapshot and each containing a copy of all the N nodes. Hence, each node of the
multilayer is identified by a pair (i, t), with i = 1, . . . ,N and t = 1, . . . , T . We now define
links among layers with the following "rules":

• each node in layer t is connected to its own image in layer t+ 1 via a directed link;

• a link between i and j at time t, Aij(t) = 1, translates into a pair of directed links,
one going from i at in layer t to j in layer t+ 1, and one going from j at in layer t to
i in layer t+ 1;
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• we enforce periodic boundary conditions: layer T is connected to layer 1 with the
above rules, assuming the equivalence T + 1 ≡ 1

The multilayer network can therefore be expressed by means of the adjacency tensor A,
with four indices: two temporal and two referring to nodes.1 The generic term is Atsij and
it encodes the "value" of the link between the multi-layer nodes (i, t) and (j, s). Following
the above listed rules, the only non-zero terms are At t+1

ii = 1 and At t+1
ij = Aij(t).

Summarizing, a component of the adjacency tensor is:

Att
′

ij = δt+1,t ′
[
δij +A

(t)
ij

]
. (4.5)

We stress that in this particular multilayer there are no intra-layer links, i.e. no links
among nodes belonging to the same layer, resulting in a multi-partite structure. In Figure
(4.2) we schematically show the structure of our multilayer structure.

Figure 4.2: Multilayer representation of the temporal network. We show the rules to build
the multilayer representation starting from the temporal network described as a time ordered
sequence of snapshots . We focus on 3 nodes and 2 time steps.

4.2 New statistical properties for temporal networks

In many contexts we do not have, or we are not interested in, the exact structure of a
network, but just in the statistical distribution of some microscopic properties, and want
to study how they influence diffusion. In the context of static networks, researchers
have characterized the role of different centrality measures, like degree, betweenness,
clustering [24]. They have shown how different distributions of these quantities alter
the epidemic outcome. Doing the same with temporal networks is not trivial. A simple
generalization of tools used in static network does not always lead to meaningful result.
Let us consider degree, for instance. Defined as the number of contacts a node performs,
now its degree changes in time. Then one can define the aggregated degree, which is
the number of nodes met at least once. These measures, however, have proven to be
ineffective in some contexts, as they say nothing about the epidemic risk. As a result,

1For a detailed description see Appendix B.
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one needs new centrality measures to account for the timely behaviour, and can be used
as simple risk factors. Here we review two of the newly developed statistical measures
for temporal networks.

In the context of information diffusion, we find the social strategy property. It uses
both instantaneous degree and aggregated degree. Let us consider a discrete-time tem-
poral network of T snapshots. We can fix a time window of δ, and a time t. We aggregate
the network in the interval [t, δ + t], following the HET scheme. For every node i we
consider ki and si, its degree and strength, respectively. Social strategy γi of node i at
time t, and with time window δ, is then defined as

γi =
ki
δsi

. (4.6)

When γ → 0 it means that the node makes almost all its contacts always with the same
set of nodes in the time window [t, δ+ t], while the opposite regime, γ→ 1 characterizes
a node which changes its neighbours often. Social strategy is thus able to discriminate
between a memory-driven behaviour, and an exploratory one.

Another temporal measure is called the loyalty [33]. Loyalty, like social strategy, aims
at assessing node memory. However, while social strategy is averaged over a time win-
dow, loyalty quantifies the behaviour of a node from one snapshot to one that imme-
diately follows. Specifically, loyalty measures the fraction of preserved neighbours of a
node for a pair of two consecutive network configurations in time. Let us consider snap-
shots t and t+1, and let νti be the set of neighbours of node i in snapshot t. Then loyalty
Θt,t+1
i of node i from time t to time (t+1) is defined as the Jaccard index between νti and

νt+1
i :

Θt,t+1
i =

|νti ∩ ν
t+1
i |

|νti ∪ ν
t+1
i |

(4.7)

Loyalty takes values in interval [0, 1]. Θ = 0 means no neighbours are retained, while
Θ = 1 means that the node keeps exactly the same neighbours from t to t+1. In the case of
directed networks, loyalty can be defined for in-neighbour or out. In addition to Jaccard
index, loyalty can also be expressed in the adjacency matrix formalism, as follows:

Θt,t+1
i =

∑
j

(
A(t)A(t+ 1)†

)
ji∑

j

[
Aji(t) +Aji(t+ 1) − (A(t)A(t+ 1)†)ji

]
.

(4.8)

The informations that social strategy and loyalty carry regard the time changing dynam-
ics of contacts, and they have been proved to be good estimators of the centrality of a
node in a temporal network; for example they capture node risk with respect to disease
dynamics [48] and can be exploited to design effective vaccination strategies.

4.3 Null models

Given a data-based temporal network, it is important to find out which is the dynamical
feature that mostly impacts on the way an information flows onto it. One can achieve
this knowledge by means of "randomization" of some structure of the original network.
We start with the real temporal network, and design a numerical protocol that destroys
some desired features, obtaining what is commonly called a null model of the original
network. Conceptually, while designing synthetic models allows you to control exactly
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which features you put in, a null model lets you choose what features you take out, leav-
ing all the residual properties untouched. The objective is thus to isolate one specific
temporal feature and to study its impact on, for instance, the disease spreading dynam-
ics. It is often very hard to isolate a single property, as a null model often destroys more
than one feature, being many of them tightly entangled. Therefore, null models have
to be carefully used and understood. We describe here some null models that we have
extensively used in order to characterize our real data-driven network.

• The fist null model is called RESHUFFLE and consists in a simple randomization
of the snapshots’ order.

• The second null model called RECONFIGURE acts instead on single links. Let us
define a timestamped contact as a triplet (i,j;t), i.e., a link between i and j occur-
ring at time step t. RECONFIGURE consists in a random reassignment of contact
timestamps: two contacts (i,j;t), (k,l;s) are randomly selected, and their timestamp
switched: (i,j;s), (k,l;t).

At the macroscopic level, both null models preserve the aggregated network. RESHUF-
FLE clearly destroys the activity timeline, i.e. the time-ordered number of active links,
breaking all possible seasonal patterns. RECONFIGURE , on the other hand, preserves
it. Microscopically, RESHUFFLE preserve link correlations inside each snapshot, while
RECONFIGURE does not. They both destroy all time correlations and self-correlations
in link activation: memory is lost, bursty inter-activation time is lost, time-respecting
paths and temporal motifs, i.e. correlation patterns in link activations, are broken.

• Thirdly, in ANONYMIZE we randomize the identity of the nodes, independently
inside each snapshot.

• Finally, SWAP is a cross-link operation. It picks two random edges inside a snap-
shot and, if they have no common nodes and if the new links do not already exist,
switches the nodes.

SWAP and ANONYMIZE preserve the activity timeline and the "identity time line",
i.e. the stronger request on the "identity" of the active nodes at each time step, while
in turn destroys all correlations in link-activation and the aggregated network. SWAP
moreover preserves the degree of each node at each time step.

• One last null model is RANDOM TIMES (R.T.), that takes the list of all contacts
occurred in the total period and re-assigns each of them to a randomly chosen time
step, therefore not respecting the original daily activity of links. The side effect is
that it actually uniforms the activity time line of edges.

R.T. basically preserves the aggregated network and destroys all temporal correlations.
RECONFIGURE and RESHUFFLE are therefore sub-cases of RANDOM TIMES: in RE-
CONFIGURE we enforce the preservation of the activity time line while in RESHUFFLE
we preserve snapshot topology.
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Table 4.1: Null Models for Temporal Networks

Name activity Aggregated Snapshot microscopic knode(t)
timeline network topology time correlation

RESHUFFLE × X X × ×
RECONFIGURE X X × × ×
ANONYMIZE X × × × ×

SWAP X × × × X
RANDOM TIMES × X × × ×

Tab.(4.1) summarizes the features of all these null models, with ×meaning "the null
model destroys the feature" and X meaning "the null model preserves the feature"
The design of appropriate null models allows to "switch off "selected types of tempo-
ral and topological correlations. To find out the role of those features on the (epidemic)
process spreading on the temporal network, it is necessary to evaluate a spread param-
eter (such as the epidemic threshold) on several null model networks. Then, by contrast
with the original, we deduce whether the "switched off feature" influences or not the
criticality of the information dynamics. We highlight that we cannot tell the role of the
preserved feature, but rather see how strong is the impact of the destroyed one.
It is worth saying that it can be hard to isolate one specific characteristic of the origi-
nal network, because many topological/temporal features are reciprocally "entangled",
meaning that removing one often modifies another. This implies that evaluating the
importance of a single property can be sometimes impossible; other times we can do it
indirectly, by comparing two null models that differ by a specific feature. In this sense,
we see that comparing R.TIMES with RESHUFFLE enlightens on the influence of snap-
shot topology; while comparing R.TIMES with RECONFIGURE informs on the activity
time line.

4.4 The quenched and annealed limits in temporal networks

They key feature that marks the signature between temporal and static networks is the
separation of time scales characterizing the information dynamics and the intrinsic net-
work dynamics. This statement in practice means that the temporality of the network
has a non trivial impact on the spreading of information on top of it only if the time scale
of the changing of network’s configurations τNET is comparable with the time scale at
which the information pervades a fraction of the system τINFO. When this happens, it
is clear that the information, in our case is the disease, can "jump" and propagates from
a node i to another j via a certain link i-j of the network only when the link is active (i,j;t)
, therefore the disease can be slowed down by the necessary waiting time in order to see
i-j active. This means that the two dynamics are strongly bounded and their interplay
cannot be discarded. There are two limiting cases for which an approximation of the
temporal network as a static entity can be still very good and informative. With ana-
logue nomenclature as the one seen in Section 3.3, these limits are called Quenched and
Annealed.

The first limit, the Quenched, takes place when the time scale of the network evolu-
tion is quite slow with respect to τINFO. The information spreading process thus do not
sense the changing of the network topology, and therefore a single static network repre-
sented by a single adjacency matrix AQuen provides a good approximation. AQuen is a
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fixed network that can be one of the original temporal sequence {A(t)}:

τ
INFO

� τ
NET

A(t)
∀t
→ AQuen (4.9)

where and → means "can be substitute with". The opposite limit defines the so-called
Annealed network, and describes the case in which the evolution of the network is much
faster than the dynamical processes. In this limit, the dynamical process unfolds on
a network that is rapidly rewiring so that the dynamics effectively occurs on a time
averaged network. An annealed network is thus described by a temporal average of the
sequence of adjacency matrices:

τ
INFO

� τ
NET

A(t)
∀t
→ AAnn =

T∑
t=1

A(t)

T
(4.10)

The above two cases are relevant to mark the limits of applicability of the most com-
monly used theoretical approaches. For instance, the ones described in Sec. (3.3). For
the quenched limit the spectral theory can be used to asses for the epidemic threshold.
For the annealed one can either use spectral theory on AAnn or interpret each snapshot
as belonging to a certain statistical ensemble ,e.g. the one defined by a degree distribu-
tion P(k), if such ensemble can be meaningfully defined.
There are, however, several other instances of networks, notably in communication and
in social systems, where the connectivity pattern varies over time scales comparable to
those of the information processes. For those it is crucial to explicitly take into account
the concurrent dynamics of the spreading process and the connectivity pattern. It is
worth noticing that here we have not explicitly defined τINFO and τNET . Actually, τNET
can be taken as the time scale intrinsically defined by the time-step of the sampling of
the data describing the temporal network. For a daily varying network the time scale is
one day, and so on. What is more challenging to define is τINFO. In fact, the intrinsic
time-scale of the information, such as the infectious period τu = µ−1 for a SIS disease,
a priori do not say much on the time needed by the disease to spread, as that is highly
dependent on the network dynamics. The time scale of a SIS in an homogeneous mixing
approximation for the contact pattern is τ = |λ− µ|−1, and we can think of this as the
lower bound (faster evolution) of the disease. However it is clear that this is far from
accurate. At a node level, we can think that a fast disease should at least transmit before
the recovery, that is λ/(1 − µ) � 1. However, again this does not necessary mean the
disease spreads fast all over the network. Therefore, given the rates λ and µ of a SIS and
given a temporal network, a priori there is no safe way to asses if the dynamics can be
brought back to one of the above mentioned limits. The only way to study a network
that varies in time is to treat it in the most general way, i.e. considering all its temporal
features. Only the result of microscopic infection simulations will reasonably inform on
whether the system has fallen into one static limit or not.

4.5 Epidemic threshold on temporal networks:
the method of the Infection Propagator [28]

Many contact structures relevant for the spreading of diseases do evolve in time. Human
face-to-face interactions, responsible for the spread of airborne diseases, or sexual inter-
actions, relevant for the diffusion of STDs, all result in highly dynamic contact networks.
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Livestock transport networks, which are responsible for the spread of many animal dis-
eases, exhibit a highly dynamic nature, too. The interaction between network evolution
and disease diffusion is known to influence the dynamics and outcome of the epidemic
process. Specifically, such interaction alters the epidemic threshold, affecting the condi-
tions that lead to the wide-spreading regime. For this reason, being able to compute the
epidemic threshold accounting for network dynamics is a crucial step towards assessing
the vulnerability of the system. In the past years, researchers have analytically com-
puted the epidemic threshold in the two limiting scenarios described in Section 4.4 : the
quenched and annealed limits. These are accurate in the regime of time scale separation,
i.e. when network evolution and disease diffusion occur at very different paces, with
the network evolving much slower than disease (quenched) or much faster (annealed).
When the two time scales are comparable, and thus fully coupled, researchers have so
far resorted to numerical simulations, or provided analytical calculations only for spe-
cific cases. We list here few of the large number of studies in this new born field. One
of the first model has been defined for epidemic spreading on a rewiring (links undergo
a sort of swapping in their tips) network, highlighting that the rewiring process of links
tends to suppress the infection. Similarly, another model has quantified the impact of the
contact duration on the pathogen’s diffusion. More recently, an activity driven model, in
which the instantaneous interaction of agents is defined by a so called activity potential,
has provided an analytical description of the epidemic threshold in such context [45].
Another model has shown the slowing down effect of a time network with weights of
links assigned heterogeneously; this going in the opposite direction of the known accel-
eration of spreading in a static strength- heterogeneous network [47]. All these and other
models have shown a non linear interplay of the disease and network dynamics.

In this section we exploit the intra-layer representation of the multilayer mapping ,
described in Section 4.1, in order to analytically compute the epidemic threshold of a
generic temporal network. We will use this interesting and novel result, found in [28],
in order to rapidly and accurately assess for the vulnerability of data-driven temporal
network. This model in fact allows to numerically evaluate the epidemic threshold of a
temporal network by-passing the usual time-demanding microscopic numerical simula-
tion, while obtaining an exact result as nearly no hypothesis are made on the relevant
features of the network dynamics and all contacts coming from data are included.

4.5.1 The SIS supra-adjacency matrix of a temporal network [28]

Let us recall for a moment the multi-layer defined in Section 4.1. We started from a time
ordered sequence on adjacency matrices and defined a corresponding tensor of rank 4,
thus rephrasing all contact informations into a one static object:

{A(1), . . . ,A(T)}→ Att
′

ij = δt+1,t ′
[
δij +A

(t)
ij

]
. (4.11)

The ratio behind this choice of layer representation lies in the spreading process that
we wish to couple to it. Let us consider a SIS spreading dynamics, with transmission
probability λ and recovery probability µ. Suppose that node i is infectious at time t. If
nodes i and j are connected at time t, there is a chance (λ) that i will infect j, resulting in
an infectious j at time t+ 1. This explains why link i-j at time t is represented through
non-diagonal links going from layer t to t + 1. Moreover, going from t to t + 1, node
i may either recover or remain infectious. We interpret the probability that i does not
recover, as the probability 1 − µ it transmits the disease to its future image at t+ 1. We
implement that through the diagonal inter-layer links. In addition we stress that the
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absence of undirected links and intra-layer links in the multilayer structure guarantees
that causality in temporal evolution is preserved. The mapping we have defined thus
naturally couples network dynamics to disease diffusion, which appears by tuning the
intensity of the different types of links. Non-diagonal links will have a weight λ as they
transmit the pathogen among different nodes, while diagonal links will be weighted by
1 − µ, encoding "missed" recovery dynamics.

The SIS tensor coupled to the network dynamics Att
′

ij therefore results:

Mtt ′
ij = δt+1,t ′

[
δij(1 − µ) + λA

(t)
ij

]
. (4.12)

Dealing with tensors is not very convenient, while matrices would be preferable. Instead
of identifying each node of the multilayer with (i, t), we can consider the whole network
as composed of NT distinct nodes, flattening out the tensor structure. Nodes are now
identified by index α = 1, . . . ,NT , with the one-to-one mapping:

(i, t)→ α = N(t− 1) + i (4.13)

where i = 1, 2, . . . ,N and t = 1, . . . T . Algebraically, we are exploiting the fact that the
tensor space RN⊗RT in which the multilayer node lives, is isomorphic to RNT . Thanks
to this, instead of dealing with a tensor, we can now switch to the supra-adjacency matrix
formalism, by writing the adjacency matrix of the corresponding NT graph. Such matrix
will be of size NT ×NT , and composed of T 2 blocks of size N ×N , representing the
original layers. In addition, given that we already have added disease dynamics with
Eq.(4.12), we weigh links accordingly. The resulting matrix is the SIS supra-adjacency
matrix:

M =


0 1 − µ+ λA(1) 0 .. 0
0 0 1 − µ+ λA(2) .. 0
...

...
...

...
...

0 0 0 .. 1 − µ+ λA(T−1)

1 − µ+ λA(T) 0 0 .. 0

 (4.14)

where each entrance is a N×N block matrix and A(t) is the adjacency matrix of time t.
This matrix M will allow to compute the epidemic threshold of the dynamic network.

4.5.2 The Infection-Propagator matrix and the threshold

From Section (3.3.2) we recall that the SIS propagation on a generic network with N
nodes and adjacency matrix A is given by

pi(t+ 1) = 1 − [1 − (1 − µ)pi(t)]
∏
j

[
1 − λAjipj(t)

]
. (4.15)

where pi(t) is the probability for the node i to be in the infectious state at time t. This
model is Markovian and moreover is based on the mean-field assumption of the absence
of dynamical correlations among the states of neighbouring nodes. In a temporal net-
work, contacts are changing in time therefore one has A(t) and it is easy to see that the
evolution of the vector state of the infection at time t reads:

pi(t+ 1) = 1 − [1 − (1 − µ)pi(t)]
∏
j

[
1 − λAji(t)pj(t)

]
. (4.16)



4.5. EPIDEMIC THRESHOLD : THE INFECTION PROPAGATOR METHOD 31

where we have simply let the adjacency matrix depend on time. In order to ensure
the asymptotic solution of the SIS process in a generic temporal network, we assume
periodic boundary conditions for the network dynamics. With T being the total number
of network time snapshots, we impose A(T + 1) = A(1). This does not imply any loss of
generality given that T may be completely arbitrary. We notice that, as a consequence of
the assumed periodic temporal dynamics of A(t), the asymptotic solution of Eq. (4.16)
is, in principle, periodic of period T.

We are now ready to use the supra adjacency matrix of Eq.(4.12) to re-write the
Markov Equation (4.16). We can describe the Markov process of a period T via a tra-
jectory in RNT where the state vector p̂α(τ), with α = N(t− 1) + i, represents the prob-
ability of each node i to be infected at each time step t included in the interval [τ, τ+ T ] .
In this way Eq. (4.16) can be redrafted as:

p̂α(τ) = 1 −
∏
β

[
1 −Mβαp̂β(τ− 1)

]
. (4.17)

From this result is clear that M provides a network representation of the topological
and temporal dimensions underlying the dynamics of Eq. (4.16), here interrelated and
flattened. Its directed nature preserves the causality of the process, while its weights
account for the SIS transition probabilities.

This equation encodes a one-period configuration, so we can find the T-periodic
asymptotic state of the SIS process by solving the steady state equation

p̂α = 1 −
∏
β

[
1 −Mβαp̂β

]
. (4.18)

As we are interested in the stability of the disease-free state, we can linearize Eq. (4.18)
for small values of p̂ and we find:

p̂α =
∑
β

M
†
αβp̂β. (4.19)

The necessary and sufficient condition for the asymptotically stable zero solution is
therefore ρ(M†) < 1, where ρ stands for the maximum absolute value of the M-eigenvalues.
Considering that the uniform zero solution in the RNT representation is mapped to a
uniform zero solution in the original RN representation, the threshold condition on the
temporal network is:

ρ
[
M†(λ,µ, {At})

]
= 1 (4.20)

from which the critical values of λ or µ are found. Eq.(4.20) is defined the epidemic thresh-
old condition for the temporal sequence of snapshots {A1, . . . ,AT } on which a SIS disease
dynamics unfolds.

We notice that the spectral radius ofM can be simplified with the following relation2:

ρ(M†) = ρ(P)1/T (4.21)

where P is a matrix called the infection propagator [28]:

P =

T∏
t=1

[1 − µ+ λA(T − t)] . (4.22)

2See Appendix C.
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It is worth noticing that P is nothing more than a weighted version of the accessibility
matrix in Eq.(4.3), with the same meaning. Pij is the number of paths that a disease
can take to go from infectious node j at time 1 to node i at time T, each path weighted
with its (1 − µ)nλT−n, for some n ∈ [0, T ] depending on the path. Last Eq.(4.22) is
particularly notable as it ensures a simplification of the numerical computation of the
epidemic threshold, allowing an execution time scaling as ∼ TN5/2 . The full analysis of
the numerical performance of this approach can be found in [29]. In conclusion, given
a recovery probability µ, the threshold is the value of the transmission parameter λ for
which the spectral radius of P is equal to 1 :

ρ [P(λc,µ)]1/T = 1. (4.23)

Conversely, if we fix λ we can find the critical recovery probability µc evaluating the
same spectral radius.

The quenched and annealed regimes can be recovered within this general framework
as particular limiting solutions. In the first case, it is to be noted that the sequence of
temporal snapshots naturally defines the minimum time scale of the process. In order to
consider contagion dynamics that are much faster than the time-varying process of the
network, we thus rely on the commonly adopted assumption regarding the temporal
network as static, so A(t) ≡ A. In this particular case, P = (1 − µ+ λA)T . Therefore,
ρ(M) = ρ (1 − µ+ λA) = 1 − µ+ λρ(A). The requirement ρ(M) = 1 thus recovers the
expression known for the quenched case:(

λ

µ

)
c

=
1

ρ(A)
(4.24)

The study of the annealed regime is less trivial. In the assumption that λ and µ are very
small, corresponding to a very slow disease dynamics with respect to the time scale of
the network evolution (that here is a time step 1), it is possible to replace P with its linear
expansion in λ/(1 − µ), yielding:

Pslow = (1 − µ)T
[

1 +
λ

1 − µ
Aagg

]
(4.25)

where Aagg =
∑T
t=1A(t) is the weighted HET aggregation of the temporal network,

a static network given by the sum of all snapshots. Temporal correlations are lost, and
edges count for the number of times they are active during the whole period T. Equation
(4.21) for the epidemic threshold thus simplifies to(

λ

µ

)
c

=
T

ρ(Aagg)
(4.26)

and the aggregated matrix contains all the relevant information for spreading dynamics.

4.5.3 Weighted matrices

If the contacts are weighted Aij(t) > 1, then the infection propagator matrix has to be
defined as

P =

T∏
t=1

[1 − µ+Λ(T − t)] . (4.27)

with
Λij(t) = 1 − (1 − λ)Aij(t) (4.28)

that gives the probability that at least one of the infected contacts transmits the disease.



Chapter 5

Study of phase transition on a
data-driven temporal network

After an introduction to the concepts and methods involved in the study of an epidemics
unfolding on a temporal network, we are ready to apply this knowledge to a real sce-
nario. We dispose of a data set regarding a human contacts evolving in time. We would
like to assess for the epidemic threshold of this data-driven temporal network, exploiting
both numerical and theoretical analysis. The aim is to understand which are the driving
features of this temporal network with respect to a disease unfolding on it, and to possi-
bly implement them in a theoretical model that is able to reproduce the real trend of the
epidemic threshold in the space of the SIS parameters (λ,µ).

The chapter is divided into three sections. In the first section, we introduce the data-
set and describe the epidemiological relevance of investigating this particular commu-
nity. In the second section, we characterize the topological and temporal features of the
data-driven time-evolving network, exploiting the statistical and mathematical tools de-
scribed in Chapter 4. In the third and last section, we perform a numerical computation
of the epidemic threshold, for a SIS disease dynamics. We use the Infection Propagator
approach of Section 4.5, that allows to explore a wide range of SIS parameters’ values
with low computational cost. Moreover, we exploit the bipartite nature of the popula-
tion described by the data-set to enlarge the space of parameter from two (λ,µ) to three
(λA, λB,µ) , in order to assess for the different spreading potential of each group A and
B of nodes.

5.1 The empirical network
and its relevance in the spreading of ST diseases

The data set we have available is a daily contact list of encounters between female sex-
sellers and male sex-buyers that are part of the escort business in Brazil. This real com-
munity has a Web counterpart based on a forum-like internet page that collects the rates
that sex-buyers attributes to sex-sellers. The forum posts, grouped by day, can be trans-
lated into a daily temporal network of contacts. The analysis of the forum and the ex-
traction of the daily resolved temporal network has been carried out in 2010 by Rocha,
Liljeros and Holme and published in Information dynamics shape the sexual networks of
Internet-mediated prostitution[34]. In the following years, the same data have been ex-
ploited in many others epidemiological and network science works, being this network
relevant both for its time resolution and for the relevance of such community in the epi-
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demiological studies on sexually transmitted diseases.
From the epidemiological point of view, this data set is of major interest because it

allows for an insight in a community that is hard to detect via the usual survey channels.
This is a type of business that can have a strong impact on public health, concerning par-
ticularly the containment of sexually transmitted diseases (STD) inside and outside the
community. In fact, prostitution have long been considered to be reservoir, if not ‘vec-
tor’, for the transmission of STD. Survey records have confirmed this guess, and revealed
a majority of sex sellers had active STD infections, with Gonorrhea and Chlamydia be-
ing the most common bacteria. For others disease, like HIV, the situation is different,
but nevertheless sex workers often share common factors that make them vulnerable to
transmission. Notably, these are: multiple partners, inconsistent condom use, social and
legal factors that make sex workers more exposed to rapes and abuses; in addition in
some communities they are more prone to injecting drug use and lastly they are often
under educated and not aware of the risk connected to unsafe sex. As a result, in low
and middle-income countries, HIV prevalence among sex workers is estimated at 12 %,
even if there are significant variations between regions and countries [36].The clients of
sex workers also act as a ’bridge population’, transmitting HIV between sex workers and
the general population. High HIV prevalence among the male clients of sex workers has
been detected in studies globally [37] [38] [39]. All this considered, being able to study
the dynamics of a real network of contacts in the prostitution business is strategic to
public health policies that aims to prevent a potential spread of STD in the prostitution
community, and consequently in the rest of the civil population outside the business.

Our interest in exploiting this temporal network is twofold. On one hand, it allows to
explore a factual non trivial time-evolving contact dynamics, belonging to a human so-
cial context. On the other hand, it challenges to assess the vulnerability of such network
to an hypothetical ST disease targeting the system.

5.2 Temporal and topological features of the network

The community we study is a Brazilian public on-line forum with free registration, that
is financed by advertisements. In this community, male members grade and categorize
their sexual encounters with female escorts, both using anonymous nicknames. The
visible information of the forum contains anonymous users’ nicknames of sex sellers
and buyers, in which city the activity occurred, and the time of posting (that is taken as
a rough estimate of the actual day-time of the real encounter). From these information,
Rocha et al extracted a daily time evolving web of contacts. For the interest our analysis,
we will focus only on the time evolution of the contacts:

(i, j ; t) (5.1)

with i = 1, ..,NA and j = 1, ..,NB and t = 1, ...T . Index i labels the sex buyer (always
man in our system) and index j labels the sex seller partner (woman) in day t. Given
the list of time-stamped contacts (5.1), we are able to built the networks of contacts for
each day t. All the informations relative to the contact dynamics are so encoded in a
sequence of time ordered networks. For matter of brevity, in the following, we will
refer to this data-driven system as the data-set, while sex-sellers will be addressed as
women and sex-buyers as men. We will rephrase this community an its dynamics in the
mathematical formalism of a time evolving network of contacts, where people are nodes
and their contacts are links.
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Here we report some over all statistics of the network, once considered the total pe-
riod of time covered by the data-set.

• Number of members N = 16 730

• Number of men NA = 10 106

• Number of women NB = 6 624

• Period of observation T = 2 232 (a bit more than six years)

• Number of contacts in the total period Nc = 50 185

• Number of distinct couples NE = 40 895

5.2.1 Growth of the Community

The first characteristic to emphasise about the network is the fact it is bipartite. Women
do not have contacts with other women, and the same is true for men. This results in a
bipartite structure of contacts, where links exist only between members of different gen-
der groups. Our data-set covers the time evolution of a community from its beginning
(at tin = 0 days) up to a stable and vast active state nearly 6 years after (at tfinal = 2 232
days).

In Figure (5.1) we can see the growth of the number of nodes in time. The plot shows
the number of nodes active up to a certain day, separating female nodes from male1.The
x-axis covers from t = 0 days, that corresponds also to the beginning of the Website
activity, up to the end of the available data, at tfinal = 2 232 days. The y-value of each
point in the line is the number of vertices that have been active at least once up to the
day correspondent to the x-value. In other words, the plot shows the cumulated number
of active vertices up to day t. The magenta line corresponds to women and the light-blue
to men. From the figure we notice that the first months see very few nodes active; then,
after around day 500, a marked growth begins and it never stops up to the final day of
the recorded data. At the end, the over all number of nodes that have been active at
least once is Nnodes ∼ 104. The slopes of the lines in Fig.(5.1) encode the amount of new
people entering the system per day. After an initial period of about 1000d, the slopes
stabilize, meaning that membership grows at a fairly constant rate of about 6 new men
and 5 new women per day. Therefore, the community constantly enlarges with new
members entering the system around 11 each day.

The cumulated number of active nodes does not inform on the daily activity of the
system. In Figure (5.2) we therefore show the per-gender activity time line. This quan-
tity is defined as the number of nodes that are involved in at least one link in the day.
It encodes for the daily load of business i.e. not cumulated but instantaneous amount
of active people. The nearly twin-curves for men and women in Fig.(5.2) reproduce the
growth of the system. In addition, they remarkably show a tendency towards a stabi-
lization of the number of active people for t > 1600d. In last 300 days, we can see that
the curves show a little fall followed by a new increase, probably due to "fashion" cycles
in the web activity, or to seasonal behaviour of clients, like holidays. The final stable
situation tells us that, despite of the constant enlarging of the network, the system is
finally approaching a situation of saturation in the daily activity: the stable and sustain-
able business involves approximately 35 to 40 vertices of each kind, with a little higher

1The plot is a running mean of the data. This operation makes the otherwise noisy graphics readable.
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Figure 5.1: Growth of the size of the network

value for women. Remarkably, the average number of women being higher than men’s
shows an unexpected feature: clients performs more contacts than sellers when we look
at them on a daily time window. In more details, comparing the active people with the
cumulated in the same day we see that the ratio Nactive(t)/Ncumul.(t) is around 0.4%
for men and 0.6% for women. In conclusion, the two plots tell us that the nodes do not
remain active continuously after their first appearing in the system, but they have long
periods of inactivity. Otherwise, we could not witness the relatively stable final state
of the daily active people, that is moreover well below the cumulated activity. This be-
havioural feature is usually named turnover; and as one could expect, the turnover is
higher for men while women tend to stay longer in the system.
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Figure 5.2: Activity time line.
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In order to better quantify the turnover of individuals, we evaluate how many repeat
their presence in the system, for instance in two consecutive weeks. This gives an idea
of the variability of the population with weekly resolution; and in order to have an idea
of the magnitude of the phenomenon it must be contrasted with the activity time line
(aggregated in the same interval). Figure (5.3) shows that the permanence of people in

Figure 5.3: Individuals that repeat their presence in consecutive weeks. The y axis is the relative
number of repeated people, normalized on the weekly activity time-line.

the system in very stable across the whole time length of the dataset (after discarding
the first 100 weeks i.e. 600 days). About 40 % of women stay in the system at least two
weeks, while for men the average fraction is 15 %. This difference is expected as women
are the sellers in the business while men are the buyers, therefore a stronger permanence
in the business is expected for sellers, at least in the short time. Complementary, we can
say that the turnover is of 60% for women and 85 % for me.

Considering a smaller time interval (e.g. 2 days) leads to the trivial result than nearly
no node repeat its presence consecutively: this is easily explainable once we recall this
is an escort business so it is unlikely that individuals (especially men) repeat the activity
within one-week time or less (figure not shown).

Finally, we can conclude that the turnover of active nodes is high and stable, confirm-
ing what we could already guess by comparing Figs (5.1-5.2). What we find in addition
is that the daily turnover is nearly 90 % (figure not shown), while on a weekly scale it
is still high but shows a marked difference for men and women. We can conclude that,
despite the over-all continuous growth of the system, the average short term behaviour
is quite stable, especially in the last 700 days.

5.2.2 Edges preservation and Loyalty

Up to now, we have studied the permanence of a group of people in the system for a
period of time. It is clear that this may not mean that the same contacts are iterated over
that period. Actually, besides the individuals’ activity, what can be more epidemiologi-
cally relevant is the temporal dynamics of the links. Iteration of contacts may be a key
feature for the spreading of a disease with a little viral load (like HIV), that needs the
same contacts to happen many times in order for the disease to have a chance to spread.
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We therefore inspect the preservation of edges i.e. when a couple is in contact for subse-
quent intervals of time, for intervals of width of one month ∆ = 28 days and semester
∆ = 168 days. Namely, we evaluate the fraction of preserved couples:

Φt,t+1
∆ =

|Et ∩ Et+1|

|Et ∪ Et+1|
(5.2)

with Et is the set of edges active in the t-th time window of chosen width ∆, and where
|| is the cardinality of the set. Φ can take values between 0 and 1. Low values of Φ mean
that nearly all couples are different with respect to the past interval, high values means
many couples are retained. In Figures (5.4) and (5.5) we plot the fraction of common
edges Φ expressed in %, for pairs of consecutive months and semesters respectively.
Observing the monthly trend, we can see this is quite variable, but after 40th month it
ranges always between 2.5 and 4.5 %. A similar trend emerges also in the semester plot,
with Φ increasing and eventually becoming very stable in last 3 semesters, around the
4%. This mean that the fraction of people that tend to choose the same partner is fairly
constant, and is of course low, as we can understand recalling the inherent high turnover
of nodes. Concluding, around 95 % of the edges are newly formed with respect to the
previous time interval.
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Figure 5.5: Semester common edges.

We can now return to an "egocentric" point of view and consider the behaviour of a
node with respect to the choice of its contacts. Again, we can distinguish between the be-
haviour of men and women. We inspect the distribution probability of the the so-called
loyalty parameter [33]. This variable measures the fraction of preserved neighbours of a
node, for a pair of two consecutive network configurations in time. As before, the net-
work can come from a time-aggregation of width ∆. Let us consider the t-th and t+1
time-windows, and let �ti be the set of neighbours of node i in window t. Then loyalty
Θt,t+1
i of node i from time t to time (t+1) is defined as the Jaccard index between νti and

νt+1
i :

Θt,t+1
i =

|νti ∩ ν
t+1
i |

|νti ∪ ν
t+1
i |

(5.3)

AsΦ, loyalty takes values in [0, 1]. Θ = 0 means no neighbours are retained, whileΘ = 1
means that the node keeps exactly the same neighbours from t to t+1, with no addition.
Once a couple of time steps is fixed, loyalty has to be computed for each node, therefore
it is convenient to show the results using the probability distribution P(Θ). This time,
we consider a width of half semester ∆ = 84 days, so that we can inspect the loyalty
’inside’ a semester. The results are shown in Figure (5.6), for three semesters in the last
part of the dataset. We see that the three plots are quite similar, pointing out a certain
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stability in the loyalty behaviour across time. Focusing, for instance, on the right-most
plot we see that women tend to have low loyalty: they change often partner. Men, on the
other hand, have a more heterogeneous behaviour. Most of them have an exploratory
behaviour (Θ small) but there is a non negligible fraction of very loyal men that repeat
more than 50 % (also 100 %) of their contacts. Notably, we have checked that all people
repeat their presence at least once in the the chosen windows.
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Figure 5.6: Loyalty probability distribution for 8-th,10-th and 13-th semester.

5.2.3 Degree distribution

We can now focus on the most common indicator for the connectedness of a static net-
work: the degree. For a static network, each node i has a fixed degree ki that counts the
number of different links that have a tip in i. The mean degree of the network is therefore
〈k〉 =

∑
i ki/

∑
i 1. For a temporal network, the degree of node i can be defined on each

snapshot t, ki(t); or for the aggregated network of ∆ time-steps starting from snapshot
t0, ki(t0,∆). The mean degree is the average on the different nodes 〈k〉(t0,∆) .
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5.7: Mean aggregated degree for growing aggregation time-window. Normalization is on the
cumulated active population. 5.8: Mean degree per semester, normalized on the current active
population.

In Figure(5.7) we show the average degree 〈k〉(0,∆) for increasing time windows ∆ =
1, 2, .., 2232days of aggregation. The average degree grows for both men and women.
This means that our sampling time is shorter than the typical time that a man or woman
has an active presence in the system. Or that the new entries are more and more active.
The curve for the women, however, shows an incipient tendency toward saturation. This
incipient saturation suggests that the timescale of a woman’s activity life-time is not
much longer than the sampling period, and also that men stay in the system longer than
women. For t < 250d, the average degree is approximately the same for both categories
of nodes.
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We can now fix the time width of aggregation ∆ = 168 days, i.e. a semester, and
change the initial day t0 shifting of +168 days. The semester-wide mean degree 〈k〉(t0,168d)

is shown in Figure (5.8). After an initial transient, mostly caused by the enlarging of the
system, the mean degree in a semester becomes very stable; the values are around 2.5
for men and 3.5 for women. These values are quite low, compared to the number of
active men/women. This confirms that the network is very sparse, i.e. among the pos-
sible links only few are active. Moreover, we notice there is no big difference between
the average degree of men and women, pointing out this escort business is actually of a
different kind with respect to what one would expect from prostitution business.

The mean degree cannot inform us on the actual distribution of the degree for the
single nodes, that could be a priori very widely distributed. We focus on one semester
(the last, starting at t0 = 2064d), and we consider the probability distribution P(k) of
the aggregated degrees ki(t0 = 2064,∆ = 168). We plot the distribution in Figure (5.9)
in double log10 scale. Firstly, we see that men and women have different individual
behaviour. In particular, the maximum cumulated degree for women is around 85, while
for men is much lower, around 20. For both categories, the distribution is peaked around
k=1 and decays for higher degrees. It is usual to compare the degree distribution to the
power-law shape P(k) ∼ k−γ, typical if the free-scale network. In this case, we have too
small values of k to go further in this comparison. To our interest, it is enough to notice
the wide and heterogeneous distribution of the degrees. This allows to see that there are
some nodes that can act potentially as major spreaders of disease, and that the contact
pattern is far from homogeneous.
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Figure 5.9: Degree distribution of last semester.

5.2.4 Assortativity

We finally would like to see if the aggregated network of last semester, for instance,
shows the property of assortativity/disassortativity. These properties refer to the fact
that nodes with large degree may preferentially choose to make links with nodes of
large degree (assortative) or of small degree (disassortative). It is interesting to reveal
this network feature because of its renowned non negligible effect on the spreading of
information on top of the network. We thus compute function knn(k) on the network
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corresponding to the aggregation of last 168 days. knn(k) is defined as the mean de-
gree of the nearest neighbours of a node having itself degree k. If the network is neither
assortative nor disassortative, knn(k) would be constant in k. In particular, if we write
P(k|k ′) = kP(k)/〈k〉 we find knn = 〈k2〉/〈k〉. On the other hand, assortativity would
mean knn decreases with increasing k; disassortative would show an opposite tendency.
We plot our results in Figure (5.10) , where we have grouped together values of knn(k)
for k in a range of width 5 and separated men from women. The boxes show with a
dark blue/magenta line the value the median of each group, the top and bottom sides
of the box are the 25 and 75 percentiles and the vertical dashed bars cover from the 5 to
95 percentiles. This type of plot gives us an idea of the distribution of knn inside each
k-group. We see that men make contacts with women of average neighbourhood rang-
ing from 1 to 35. The median is quite stable, thus not showing preferential attachments
to higher or lower degrees. Women behave in a random way as well, with a very stable
value of media across their degree. The green and orange lines mark the uncorrelated
esteem knn = 〈k2〉/〈k〉, and we see that this approximation is quite with our data. We
do not see any marked trend, so no assortativity nor disassortativity is present in here.
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Figure 5.10: Mean degree of nearest neighbours. To make the graph more readable, we group
Knn(k) by the value of k in a range of width 5. The boxes show in dark line the value the median
of each group, the top and bottom sides of the box are the 25 and 75 percentiles and the vertical
dashed bars cover from the 5 to 95 percentiles.
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5.3 Epidemic threshold : a numerical analysis

It is now time to asses for the threshold of a SIS disease dynamics unfolding on our
temporal network. The usual strategy in order to evaluate λc(µ), or equivalently µc(λ),
consists in performing many microscopic simulations of the SIS dynamics on the net-
work. This is done by simulating an infection process starting form a randomly infected
node (the seed) in a completely susceptible population and iterate at each time step the
possibility that the infectious nodes transmit to their neighbours and then possibly re-
cover. At each time step, the number of infected nodes is evaluated and the simulation
is arrested when that value becomes stable, i.e. the "stationary" state is reached. The
final fraction of infected nodes istat for a given couple of parameters (λ,µ) comes from
an average over the many different-seeds simulations. For a temporal network, the only
difference is that at each time step the set of available links must be updated as they
change in time.

In order to evaluate the epidemic threshold, for example with respect to rate λ with
fixed µ , one needs to repeat the above described protocol for various values of λ. For
each λ, a final i∞ is evaluated and the threshold is defined as the value λc such that for
λ > λc the final infection becomes non zero: i∞ > 0. Given the stochasticity of the sim-
ulation, when the transmission rate approaches the critical value there is an high chance
that all infection processes "die out" even if above threshold. Therefore, the number
of simulations to effectively evaluate i∞ has to be very high; otherwise some side-way
strategy, like the Quasi Stationary method [54], has to be used.

It is clear that the threshold computation via microscopic simulation is very labori-
ous and time demanding. For this reason, we will exploit the method of the Infection
Propagator (IP) for temporal networks. We have extensively proven and described it in
Section 4.5 and here we exploit its rapidity in the estimation of the threshold in order to
explore a wide range of the SIS parameters, overcoming the otherwise burdening com-
putational cost. We will not prove herein the accuracy of the threshold esteemed via the
IP, but we refer to [28] for an extensive application of the method to different tempo-
ral network data-set (among which notably we find ours) , contrasted with microscopic
simulation. The method has been proved to be very robust and therefore we will use its
output results as the best esteem of the "true" value of the threshold.

5.3.1 Infection Propagator matrix for bipartite network

In order to evaluate the threshold for a SIS dynamics unfolding on our temporal data-
set, we need to implement the Infection Propagator method. We have already notices
that our data-based network is bipartite. We would like to translate this feature in terms
of a bipartite Infection Propagator matrix (Eq. 4.22), that we have generally defined in
the previous chapter. If a network is bipartite then each node belongs either to Group A
or Group B of nodes, with the condition that nodes from Group A make contacts (links)
only with nodes from Group B, i.e. no contacts are seen between nodes belonging to the
same group. When the underlying network of contacts is bipartite, the SIS becomes a
4-compartments model {

SA → IA → SA

SB → IB → SB

The first arrow stands for the infection process SA
λB−→
IB

IA meaning that a susceptible

node of Group A needs to meet an infectious node from Group B in order to become



5.3. EPIDEMIC THRESHOLD : A NUMERICAL ANALYSIS 43

itself susceptible; the contagion happens with probability λB per contact. Viceversa:

SB
λA−−→
IA

IB . In general the heterogeneity transmission ratio:

ε ≡ λB
λA
6= 1 (5.4)

The second arrow tells that each node can spontaneously heal with probability µA,B:
IA

µA−−→ SA and IB
µB−−→ SB.

Implementing the bipartition of the network, we can write the infection propagator ma-
trix P as:

P =

T∏
t=1

[
1 − µA λBZ(T − t)

λAZ>(T − t) 1 − µB

]
. (5.5)

as the instantaneous adjacency matrix can be written in a block form:

A(t) =

[
0 Z(t)

Z>(t) 0

]
(5.6)

with the rectangular adjacency matrix Zi,α that has indices i = 1, ..,NA and α = 1, ..,NB
, with N = NA +NB. Notably, the instantaneous contact information are all found in a
rectangular "quarter" of the usual adjacency matrix. In the following analysis we will always
consider µA = µB ≡ µ, and possibly variate the value of ε above and under 1.

It is interesting to notice what happens to the I.P. when one of the two transmission
rates is zero. Let us consider for example λ2 = 0, the expression for the infection propa-
gator becomes:

P =

T∏
t=1

[
1 − µ 0

λAZ>(T − t) 1 − µ

]
=

[
(1 − µ)T 0

(1 − µ)T−1λAZ>aggr (1 − µ)T

]
, (5.7)

where Z>aggr =
∑T
t=1 Z>(t). The x eigenvalues of the infection propagator solve the

equation det (P − xI) = 0, that can be conveniently re-written:

0 = det
[

(1 − µ)T − x 0
(1 − µ)T−1λAZ>aggr (1 − µ)T − x

]

= det
((
(1 − µ)T − x

)
IN1xN1

)
det
((
(1 − µ)T − x

)
IN2xN2

)
⇔ x = (1 − µ)T

(5.8)

The x eigenvalue is 0 < x < 1 because µ < 1. Therefore, the threshold value for µ
extracted by ρ(P)1/T = 1 gives:

ρ[P]1/T = 1 − µc = 1⇔ µc = 0, (5.9)

i.e. the system becomes endemic only if µ = 0, meaning that the dynamics is not more a
SIS but a SI. So, when one group of the bipartite network cannot pass the infection, the
disease always eventually disappears for every transmission rate λ and every recovery
rate µ > 0.
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5.3.2 Exploring the stable state respect to SIS threshold

We finally exploit the formula for the epidemic threshold given by Eq.(4.21) : ρ(P)1/T =
1, to compute the epidemic threshold for our data-set. First of all, we need to notice that
the infection propagator matrix depends on two parameters: the initial time t0 of the
considered time-sequence of networks, and the finite period-length T considered:

P =

T+t0∏
t=t0

[1 − µ+ λA(T + t0 − t)] = P(t0, T). (5.10)

Given a data-set corresponding to a sequence of networks {A(t)} with t running from 0
to tfin, there are a variety of possible choices of (t0; T) , corresponding to as many IP
matrices P(t0, T). One therefore needs to make a reasoned choice in the definition of the
period [t0 : t0 + T ]. The first choice one can make is the trivial (0, tfin). However, one can
be interested in isolating some particularly interesting stages of the dynamics that start at
different t0 and that last for specific period T . Moreover, it has been shown for many real
contact networks[28] that, for a fixed t0, the threshold evaluated on increasing T portion
of the time-sequence converges to a final stable value well before the Tmax = tfin − tin
available time window.

All this considered, we address now the problem of defining a reasonable portion
[t0 : t0 + T ] of the complete time sequence of our data-set. For what concerns the choice
of T, we want a time-window that is able to capture the dynamics of the network rel-
evant to the spreading of a disease, but the shortest possible in order to speed up the
computations. For what concerns t0, we want to start considering the system after the
initial phase of growth. In fact, what we aim to define is a temporal portion of the sys-
tem in which the contact dynamics is captured with all its peculiar variability and that
is representative of an over-all stable and "mature" stage in the network history. Epi-
demiologically, this stage is relevant to assess for the vulnerability of a typical and well
affirmed contacts dynamics in a target population. Let us consider three period-lengths
T to test. We choose them according to the network dynamics studied in the previous
section, which pointed out that a reasonable time window can be of one semester or
longer. We take therefore three periods of width T = 168, 336, 672 days, that are respec-
tively one semester, one year, two years (where moths have 28 days). These intervals
encode a long time dynamics, for a human social system based on short term relation-
ships as ours. We numerically compute the threshold for different t0, ranging from the
beginning to the end of the data series. We aim to see how the threshold varies and if it
approaches stability when the undergoing network dynamic does the same. For a matter
of simplicity, for the moment we limit our self to the case of one transmission probability
for both women and men: λA = λB ≡ λ. A priori, we could evaluate the threshold for µ
or λ. At this stage, we evaluate λc because this allows to control the recovery time scale
τµ = 1day/µ and choose it so that τµ < T , i.e. the recovery happens within the time
window considered. Being 1/T ∼ 0.005 for the smaller T=168 days, we can choose as a
good test the value µ = 0.02 , corresponding to τµ ∼ 50 days.

Figure (5.11) shows the critical values of the transmission probability, it is computed
for three time-length of the time sequence encoded in the IP matrix. For each choice of
T, i.e. the color of the curve, and each starting time t0, corresponding to the x-value of
the points plotted minus T/2, the relative y-value is given by:

λc so that ρ [P(λ; t0, T ,µ)] = 1. (5.11)
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Figure 5.11: Epidemic threshold for various T and t0.

The light green boxes in the fore ground are intended to make more clear the time win-
dow t ∈ [t0 : t0 + T ] (readable from the x-axis) whose time-snapshotA(t) have been used
to built the P matrix relative to the central green triangle point. We recall that the time
resolution is always 1 day. Comparing the curves in different colors in Fig.(5.11), we no-
tice a common trend and nearly the same values for λc inside the same green boxes. The
common trend shows initial high values for λc (safe system), that rapidly lower (vulner-
able system) and then stabilize, roughly after day 1000. What happens is that the system
becomes more vulnerable with the passing of time. The stabilization of the threshold
matches with the dynamics of the topological features: those as well stabilize in time,
after a transient growth for days t ∈ [0, ∼ 1000] days.
The fact that the y-values are quite the same across the different size of T shows that the
smaller window T=168 days is actually wide enough to include all the network dynam-
ics that has an impact on the SIS spread. Lastly, we notice that the red curve allow to see
a stable epidemiological situation for t > 1500 days; there are still small fluctuations that
are explained by the small variation in the contact dynamics.

The results shown in Fig.(5.11) justify the choice of a representative period of the
data-set to be taken of width 168 days and starting the first day of last semester:

∆T∗ = [ 2 063 : 2 231 ]days. (5.12)

5.3.3 Transition diagram in parameters’ space (λ,µ)

Let us consider the portion of time ∆T∗ above defined. The temporal network associated
to this interval is represented as a sequence A of 168 time-ordered bipartite adjacency
matrices A(t), each corresponding to the configuration that the network takes at time
t ∈ ∆T∗. The time resolution is of the sequence is 1 day.
The total number of nodes active in this time window is N = 4 403, formed by NA =
2 629 men and NB = 1 774 women. Each A(t) is therefore a square matrix of dimension
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N, formed by blocks Z(t) of size NA ×NB , as described in Eq.(5.6). The network is not
weighted because we find Aij(t) = 0, 1 for every link and day. Thus we can perform the
numerical computation of the threshold using the formula for the un-weighted Infection
Propagator matrix of Eq.(5.10).
Unlike the previous computation of the threshold, this time we assess for the critical
recovery probability:

µc so that ρ [P(µ; t0, T , λ)] = 1. (5.13)

Above µc the system is not endemic istat = 0, while for 0 6 µ 6 µc the system reaches
an endemic state istat > 0. At this stage, where we are considering λ = λA = λB , this
choice seems arbitrary. However it will become necessary in the following section where
we inspect the impact of λA 6= λB. Thus, to present a more linear dissertation, from here
after we will always compute the threshold with respect to µ.

Varying the value of λ, the correspondent µc draws a so-called phase transition dia-
gram in the space of parameters (λ,µ) of the SIS disease. The phase transition regards the
order parameter istat: the Infectious state of the over all system in the long time limit. µc
marks the transition from a situation in which the disease eventually disappears to the
opposite, where the disease reaches a final non zero persistence. For µ 6 µc, the system
is said to be in the endemic state; endemic in fact means that an infection is maintained
in the population without the need for external inputs. The numerical results are shown
in Figure(5.12) where we see the phase transition diagram µc(λ)
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Figure 5.12: Epidemic threshold for time window ∆T∗, computed using the method of the
Infection Propagator.

For every value of λ ∈ [0, 1] there exists a non zero value of the threshold: this means
that there is always a range of recovery probabilities that leads to an endemic state. The
values of the threshold µc are all quite small: µc < 0.12, corresponding to quite long
infectious periods τc > 8.33 days. Given, for example, a small transmission probability
λ = 0.2, only for high mean infectious period τµ > τc ' 33 days the disease becomes
endemic in the population. This means that the system is quite resistant respect to low
viral-load diseases, as normally recoveries happen faster than one per month. If we
consider the total available space of parameters, the coloured endemic region is a small
portion.

5.3.4 Transition diagram in parameters’ space (λ,µ, ε)

We turn now to focus on the impact of the bipartite nature of the network on the epi-
demics. A priori, it is possible that the two categories (men or women) have different
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transmission probabilities. This is actually the case for nearly all sexually transmitted
diseases. Medical studies agree with the finding that men have naturally more chance
to transmit a STD to a partner because of anatomic conformation. Instead, the value of
the real-life recovery probability µ depends mostly on the promptness of the diagnosis
of disease, and on the time of recovering proper of the disease. Therefore, µ depends
on the disease and is also tunable with sanitary policies, while it does not intrinsically
depend on the gender. We will therefore focus on the impact of different ε = λ2/λ1.

Impact of ε

If we allow for ε 6= 1, the space of the SIS parameters enlarges from two to three di-
mensions: (λ,µ, ε), having re-named λ1 = λ and λ2 = ελ. The former phase diagram
of Fig.(5.12) thus projected onto the plane defined by ε = 1. Now we want to explore
the ε dimension while keeping λ fixed, thus projecting this time on the λ = cost plane.
The threshold has to be understood as a two-dimensional object defined by equation
fc(λ,µ, ε) = ρ (P(λ,µ, ε))1/T − 1 = 0 in the three-dimension space of parameters. We
observe that the domain of fc is a region of the 3D space (λ,µ, ε) delimited by:

0 6 µ 6 1
0 6 λ 6 1
0 6 ε 6 1

λ

(5.14)

because the transmission probability λ2 = ελ ∈ [0, 1] needs to have these bounds to
remain meaningful. Fixing a λ , we show the critical function µc(ε) with ε ∈ [10−2, 1/λ]
in Figure(5.13).
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Figure 5.13: Threshold µc in function of
transmission ratio ε = λB/λA. The right
most point for all three curves corresponds
to εmax = 1/λA.
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Figure 5.14: Threshold µc in function of
transmission ratio ε = λA/λB, the inverse
of the one defined for the figure on the left.
The values of µc are the same as in the fig-
ure on the left, up to the 6th decimal posi-
tion.

Observing the plots for three fixed values of λ ∈ {0.01, 0.1, 0.5}, we see that obviously
µc is an increasing function of ε. In fact, given λ fixed, ε tells how much the other λB =
ελ is smaller/bigger than λA. Thus an increase of ε means an over-all increasing of the
transmission probability of nodes, and this makes the system always more vulnerable
(high values of µ). For ε / 10−2, the system approaches a situation where it is always
disease-free µc → 0. This confirms the analytical finding that when one of the two group
cannot transmit the disease, it always eventually dies out.
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We have performed the same calculation inverting the λs in the definition of the ra-
tio ε. The results for µc are reported in Fig.(5.14) and are nearly the same as the ones
reported in the plot on its left (differences arises at order 10−4). From this, we can con-
clude that the two categories of nodes do not have an a different impact on the threshold.
Thus, although having different connectivity patterns, they have an over all symmetric
impact on the spreading of the disease. This points out that an analytical expression of
the threshold should be symmetric for the switching of A and B.

Fixing a mean transmissibility

In the previous paragraph, the effect of one group respect to the other in the spreading
of the disease has been shown to be the symmetric. Now we use another strategy to
explore the impact of ε on the system, and we will see its application to the prediction
of an analytical form of the threshold in the following chapter.
We decide to fix a quantity that accounts for a sort of mean transmission probability of
the population, and inspect in this context the variation of ε. We define as the mean
transmissibility of the network the quantity

〈λ〉 = NAλA +NBλB
NA +NB

. (5.15)

Enforcing 〈λ〉 constant, we have only one degree of freedom in the transmissibility, that
can be either λ or ε. If we choose it to be ε, than λ is determined by

λ (ε; 〈λ〉) = 〈λ〉 NA +NB
εNB +NA

. (5.16)
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Figure 5.15: Threshold 1/muc for fixed mean trasmissibility.
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What can be computed as a threshold is therefore the recovery probability µc. We
fix now 〈λ〉 = 0.3 and ranging with ε ∈ [0.01, 100] we compute the critical recovery
probability 2. We present a plot for the associated infectious period τµ(ε) = 1/µc, be-
cause plotting the infectious period is more effective in order to interpret the result. The
critical curve plotted in Fig.(5.15) discriminates between a system in the endemic state
for τ > τc, and a safe state that lies under the curve. We observe that there exists a τ
minimum: the disease here leads the system to a condition of maximal vulnerability. By
numerical inspection we find that εmin ' 1.482: this value is bigger than 1, thus the most
vulnerable case happens when women have an higher transmission probability respect
to men, provided that a mean transmissibility is fixed. This result from the necessity of
compensate the lower number of women respect to men. In the following chapter we
will be able to connect this minimum value to the analytical form of the threshold as
function of λA , λB , µ.

5.3.5 Risk assessment for real STD

The critical values λc (reversing µc(λ)) of the escort business network can now to be
contrasted with the typical ones of the common sexually transmitted disease that could
actually hit the network under study. We want to see if the system is a feasible root for
the spreading of the most common STD. In Table (5.1) we summarize the per-contact
rate of transmission for some viral and bacterial common diseases: HIV, Gonorrhea, and
Chlamydia. The data are taken by both recent and classical epidemiological studies, and
here we report just the average value of the transmission probability, in order to make
the table more readable.

STD Type of contact λA λB λB/λA
unprotected man→woman woman→man

HIV-1 V. 0.08 10−2 0.04 10−2 0.5
A. 1.4 10−2 0.42 10−2 0.5

Gonorrhea
0.60 0.25 0.4

Chlamydia
0.05 0.05 1

Syphilis
0.01 0.01 1

Table 5.1: Per contact transmission probability for common STD.

Recalling Fig.(5.12) and focusing on λ values, we conclude that for HIV-1 the network
is in a region where it is nearly always safe. For the portion of parameter-space around
those λ, the endemic (coloured) region is very small. Our type of contact dynamics is
not effective for low viral-load disease, for which the spreading needs repeated contacts
between the same individuals in order to diffuse. This result founds support in the
analysis carried out by Rocha et al. [40] on the same network. They found that this
network is not a major reservoir for HVI-1 and that pathways other than his type of
commercial sex are needed to explain the endemic state of HIV-1 epidemics in Brazil.

2We notice that this time the values that we can take, keeping λ1,2 < 1 are in the interval [(〈λ〉N −
N2)/N1 : N2/(〈λ〉N−N1)].
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The same can be stated for Chlamydia and Syphilis: this network is not vulnerable for
these diseases.

For Gonorrhea instead, the high per-contact probability of transmission makes the
disease endemic for our system, when µ < 0.07 i.e. when the infectious period is τµ > 15
days. This means that if people do not recover within 15 days, the disease becomes
endemic.



Chapter 6

Epidemic threshold: a theoretical
analysis

After having computed the threshold for our network using the Infection Propagator
approach, we would like to find a theoretical model that reproduces to some degree of
approximation the phase transition diagram, for both the case ε = 1 and ε 6= 1. We firstly
inspect if any of the main theoretical models present in literature of mathematical mod-
elling for epidemiology suits our case. The test of all the models is infeasible, and goes
way beyond our scope. What is more interesting is to test some simple yet powerful an-
alytical approaches that are usually claimed to give good results in real-world network.
It is important to recall that most of those accepted and robust models apply to static
networks (both quenched and annealed), therefore their straight forward application to
our case-study is likely not to give the wished results. It is nevertheless interesting to
see to what extent the model-based prediction differs for the true threshold µc, and if its
value is smaller or bigger.

In the following chapter we present three analytical models that we found most in-
teresting to test on our temporal network.

• The first one is the already mentioned degree-block approximation: it is based on the
guess that the main feature characterizing the contacts of nodes is their degree-
degree contact distribution P(k|k ′). Therefore each node in placed in its degree
class and makes contacts with the other on the basis of P(k|k ′). The system of
deterministic equations for the evolution of the infected nodes in each k-class is
easy to write. This model comes from the field of static annealed networks, but
we can tailor it to the temporal case with some suitable hypothesis. This has been
proved to be a good model for real static network with heterogeneous degree, for
which often P(k) is a power-law, i.e. the network is called free-scale (Section 3.3.1).
Here the task will be to generalize the equations to a bipartite population and to
interpret the P(k) for a temporal sequence of networks.

• The second approach we investigate comes from the field of epidemics on temporal
networks. It is actually one of the few works that gives an explicit formula for the
epidemic threshold of a SIS dynamics. Is is called the Activity Driven model, and
describes each node of the system in terms of its class of temporal activity a. The
system of deterministic equations for this models are written in total analogy with
the degree-block, but this time the k-classes are substituted by a-classes.

• The third and last approach is what we call the annealed approximation of the tem-

51
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poral network. It consist in the approximation of each snapshot with the time
average of the sequence. As we pointed out in Section 4.5.2 , this approximation
is very good in the case of slow disease respect to the network dynamics; however
nothing ensures that for other ranges of the disease parameters this approximation
still holds.

6.1 Bipartite Degree-Block model

To apply this model to a temporal network, we can consider each of our snapshots as
belonging to the same statistical ensemble of graphs defined by a common degree distri-
bution. In this sense, the degree-block is an ensemble view of the temporal network, as
we guess that the disease sees an average network structure described by a P(k).

In detail, we guess that an annealed approximation of our network can be described
under the following assumptions:

• the degree-degree contact distribution P(k|k ′) of the network is the only relevant
statistical property needed to describe the contacts

• there is homogeneous mixing inside each sub-group of individuals with the same
degree (called the degree-block approximation). It means that all nodes with the same
degree are assumed to be statistically equivalent.

• there is no degree-degree correlation. This last hypothesis is not necessary, but is
justified by the analysis on the degree-degree uncorrelation of our data-set, per-
formed in Section 5.2.4 .

The calculation for a bipartite network is here developed extending the one found in the
classical text Dynamical Processes on Complex networks[24]. Our result is confirmed by an
analogous derivation found in an article about the spreading of sexual disease among
an heterosexual population [31].

Let SGk ,IGk (with G=A,B that identify each group of the bipartite net) be the number of
susceptible and infectious individuals in degree class k. Densities sGk , iGk are obtained by
dividing SGk , IGk by the number of nodes with degree k: NGk = SGk + IGk , that is constant
being the system closed.
Thanks to the degree-block approximation, we can use a system of differential equations
to describe the SAIASA,SBIBSB dynamics1:

diAk
dt

= −µiAk(t) + λBk
(
1 − iAk(t)

)
ΘBk (t)

diBk
dt

= −µiBk(t) + λAk
(
1 − iBk(t)

)
ΘAk (t)

(6.1)

with {
ΘAk (t) =

∑
l P(l|k)i

A
l (t)

ΘBk (t) =
∑
lQ(l|k)iBl (t)

(6.2)

where ΘAk is the fraction of infected nodes of group A in contact with a node of degree k

belonging to group B. As we assume degree-uncorrelated networks, P(l|k) = lPA(l)

〈l〉A
and

Q(l|k) =
lPB(l)

〈l〉B
, so the ΘGk (t) becomes k-independent.

1Time is considered continuous.
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We impose now the stationary condition for each equation in the system Eq.(6.1) and
find 

(iAk )
stat ≡ iA∗k = f(ΘB) =

λBkΘ
B∗

µ+ λBkΘB∗

(iBk )
stat ≡ iB∗k = f(ΘA) =

λAkΘ
A∗

µ+ λAkΘA∗

(6.3)

Now, by substitution of (6.3) in Eq.(6.2), we find the system of equations :
ΘA∗ = g(ΘB∗) =

1
〈k〉A

∑
m

mPA(m)
λBmΘ

B∗

µ+ λBmΘB∗

ΘB∗ = g ′(ΘA∗) =
1
〈k〉B

∑
l

lPB(l)
λAlΘ

A∗

µ+ λAlΘA∗

(6.4)

The system can be solved substituting ΘB∗ into ΘA∗ = g(ΘB∗), that gives finally

ΘA∗ = ψ(ΘA∗). (6.5)

We are interested in finding the condition for which a solutionΘA∗ > 0 of Eq.(6.5) exists,
because ΘA∗ is the fraction of infectious nodes of type A that are in contact with at least
one node of type B and a non zero stationary value implies an endemic stationary state
for the whole system. We notice that the zero solution always holds, while a non zero can
be found, by geometrical consideration on the slopes and convexity of curves y1 = ΘA∗

and y2 = ψ(ΘA∗) , by imposing : (
d

dΘA∗
ψ

)
ΘA∗ =0

= 1. (6.6)

Omitting long calculations, the left side of Equation (6.6) is found:(
d

dΘA∗
ψ

)
ΘA∗ =0

=

〈
k2
〉
A

〈
k2
〉
B

〈k〉A 〈k〉B
λAλB
µ2 , (6.7)

that finally gives the threshold condition:

(
µ2

λAλB

)
c

=

〈
k2
〉
A

〈
k2
〉
B

〈k〉A 〈k〉B
. (6.8)

We notice that this expression is symmetric in the exchange of A and B: this is consistent
with the findings of Section 5.3.4.
We now want to contrast the degree-block theoretical prediction for the threshold given
by Eq.(6.8) with the real values of the temporal-network threshold. The right hand coef-
ficients of Eq.(6.8) are extracted from the data using the formulas:

〈kG〉 =
1
T

T∑
t=1

NG∑
i=1

ki(t)

NG(t)

〈
k2
G

〉
=

1
T

T∑
t=1

NG∑
i=1

k2
i(t)

NG(t)
. (6.9)

whereNG(t) is the number of people in group G active at time t. This mean we consider
each snapshot as coming from a given ensemble of PA(k) and PB(k). The moments of the
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A B
women men

〈k〉 1.059 1.106〈
k2
〉

1.231 1.461

degree distribution extracted by data in the time window of last semester ∆t∗ = [2 063 :
2 231] are:

It is interesting to notice that the daily behaviour of men and women with respect
to k is very similar. It is quite surprising that the daily mean degree of men is higher
that women’s. This means that a man usually has more than one encounter when he
decides to be active in the business. However, in the long time behaviour (e.g. one
semester) women have higher cumulated degree (kAmax = 85) then men (kBmax = 20),
thus restoring the expected sellers-buyers asymmetry that was showed in Section 5.2.3

Same transmission probability

Firstly, we consider the homogeneous transmission λA = λB. We check the theoretical
prediction

µc = mkλ with mk ≡

√
〈k2〉A 〈k2〉B
〈k〉A 〈k〉B

' 1.239 (6.10)

contrasting it with µc values obtained with the Infection Propagator. From plots (6.1)
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Figure 6.1: Degree block threshold vs true
threshold.
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Figure 6.2: Ratio of the degree-block thresh-
old over the true threshold.

and (6.2) we see that the degree-block approximation gives an about ten times higher
recovery probability threshold. Thus it largely over-estimates the vulnerability of the
network, as the endemic area (between the curve µc and the x-axis) is much wider than
for true dynamics. The true temporally-changing network is much safer than the degree-
approximation. We can understand this overestimation of vulnerability by the degree-
block because it approximates each node of the network as having an average daily de-
gree around 1. In the temporal network this is true, but only for the nodes that are active
at that time step, which are a minority with respect to the total population (recalling that
the daily network is very sparse). This result shows the temporal features of the network,
or some topological properties other than P(k), are the responsible for the behaviour of
the empirical network.
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Different transmission probability

Even if we have just proved that the degree-block approximation fails in this context, it
is still interesting to see how it behaves with respect to an allowed heterogeneity in the
transmission probability: λA 6= λB. Following the same analysis we have performed via
numerical computation in Sec. 5.3.4, we can impose the constraint 〈λ〉 = cost on Eq.(6.8)
and express the threshold τµc in function of ε :

τµ,c(ε; 〈λ〉) = 1
mk 〈λ〉

nA + εnB√
ε

(6.11)

where nA = NA/(NA +NB) and nB = NB/(NA +NB). The function (6.11) has a mini-
mum value, that we find by setting the derivative in ε equal to zero 2, and we get:

ε
Deg.Block
min =

NB
NA
' 1.4819 (6.12)

This result shows that the critical τc(ε; 〈λ〉) is asymmetric for the switch of A and B,
with the point of maximal vulnerability εmin that depends only on the number of nodes
of each group. If we contrast this result with the numerical true value εtruemin ' 1.4825 we
find a very good agreement, as we can see graphically see from Fig.(6.3). What can we
learn from this?
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Figure 6.3: Minimum value of τµ threshold, when we fix the mean transmissibility.

It is important to notice that the value of εmin equal to NB/NA depends on the
functional form of τc we see in Eq.(6.11) regardless for the value of the coefficient mk.
Equivalently, every other theoretical model that gives a threshold for a bipartite network
with the same functional form as Eq.(6.8) will have the same minimum ε:(

µ2

λAλB

)
c

= cost =⇒ εmin =
NB
NA

(6.13)

Therefore, the agreement we find with εtruemin tells us that every such model is ap-
proximately a good representation of our phase-transition diagram. Then, if λ is equal
for both groups, then this means a linear approximation of the diagram µc(λ) is good, as
it is confirmed by Figure (5.12).

2The second derivative positive is checked as well.
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6.2 Bipartite Activity Driven model

The second model we inspect is the so called activity-driven. The activity-driven net-
work class of models (Perra, Gonçalves et al., 2012; Starnini and Pastor-Satorras, 2013)
is based on the concept of activity rate, defined as the probability per unit time that an
individual engages in a social activity. All dynamics of the networks is encoded in the
function F(a) that characterizes the probability for a node to have an activity rate a. To
better understand it, we describe how a synthetic activity-driven network can be built.
The model considers N nodes whose activity ai is assigned randomly according to the
distribution F(a). During each time step the node i is considered active with probabil-
ity ai. Active nodes generate u links that are connected to as many individuals chosen
uniformly at random. Finally, time is updated t → t+ 1 and the model is iterated with
no memory of past configuration. The model output is a sequence of graphs, depend-
ing on the distribution F(a), which is updated at every time step t. F(a) can be very
broad as empirical evidence shows that the activity rate varies considerably from indi-
vidual to individual. An important result given by this model is that the aggregated net-
work after time T has a degree distribution which depends on the activity distribution as
PT (k) = (1/T)F(k/T − 〈a〉). The empirically observed power-law activity distributions
F(a) can thus explain the long tails in the real-life degree distribution of social networks.
We will focus here of the work of Perra, Gonçalves et al. [45]. They considered the
behaviour of the SIS model in activity-driven networks, writing dynamical mean-field
equations for the infected individuals in the class of activity rate a, at time t, namely,
Ita. The discrete-time dynamical evolution considers concurrently the dynamics of the
network and the epidemic model, yielding

Ia
t+∆t = −µ∆tIa

t + Ia
t

+ λu(Na
t − Ia

t)a∆t

∫
da ′

Ia ′
t

N

+ λu(Na
t − Ia

t)

∫
da ′

a ′∆tIa ′
t

N

(6.14)

whereNat is the total number of individuals with activity a at time t, λ is the probability
with which infected individuals can propagate the disease to healthy neighbours per
contact, µ is the rate of recovery of individuals. The first two terms on the right side of
Eq.(6.14) accounts for the probability of a node in activity class a being infectious at time
t and not to recover in the time step ∆t, the third term takes into account the probability
that a susceptible of class a is active and acquires the infection getting a connection from
any other infected individual (summing over all different classes), while the last term
takes into account the probability that a susceptible, independently of his activity, gets
a connection from any infected active individual. We remember that a node i in class a
cannot change its class of activity potential, meaning at every time step it will have the
same probability a of activate/not activate. A linear stability analysis of Eq. (6.14) leads
to the epidemic threshold for the activity driven model:

(µ
λ

)
c
= u

(
〈a〉+

√
〈a2〉

)
(6.15)

We generalize this approach to a bipartite network and find the relative threshold.
The evolution equations for IaA and IaB are:
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

Ia
A(t+∆t) = (−µ∆t+ 1)IaA(t) + λBu

(
Na

A(t) − Ia
A(t)

)
a∆t

∫
da ′

Ia ′
B(t)

NB
+

+λBu
(
Na

A(t) − Ia
A(t)

) ∫
da ′

a ′∆tIa ′
B(t)

NB

Ia
B(t+∆t) = (−µ∆t+ 1)IaB(t) + λAu

(
Na

B(t) − Ia
B(t)

)
a∆t

∫
da ′

Ia ′
A(t)

NA
+

+λAu
(
Na

B(t) − Ia
B(t)

) ∫
da ′

a ′∆tIa ′
A(t)

NA
(6.16)

These equations can be integrated in a and then coupled with another pair of equa-
tions coming from the above multiplied by a and integrated as well. By defining i(t) =∫
daIa(t)/N and θ(t) =

∫
daaIa(t)/N, and neglecting terms o(i2) one finds:



d

dt
iA(t) = −µiA(t) + λBu 〈a〉A i

B(t) + λBuθ
B(t)

d

dt
iB(t) = −µiB(t) + λAu 〈a〉B i

A(t) + λAuθ
A(t)

d

dt
θA(t) = −µθA(t) + λBu

〈
a2〉

A
iB(t) + λBu 〈a〉A θ

B(t)

d

dt
θB(t) = −µθB(t) + λAu

〈
a2〉

B
iA(t) + λAu 〈a〉B θ

A(t)

(6.17)

where we have also performed a limit to the continuous time. The max eigenvalue of
the Jacobian matrix associated to the system gives the threshold condition, once we set
it equal to zero. Thus we find:(

µ2

λBλB

)
c

=
u2

2
(〈
a2〉

A
+ 2 〈a〉A 〈a〉B +

〈
a2〉

B

)
+

u2

2

√
〈a2〉2A + 〈a2〉2B + 4 〈a〉A 〈a〉B (〈a2〉A + 〈a2〉B) + 4 〈a2〉A 〈a〉

2
B + 4 〈a2〉B 〈a〉

2
A − 2 〈a2〉A 〈a2〉B

(6.18)

Given a data-set, the activity aAi of node i from group A from a data set can be eval-
uated by counting the number of contacts that involve node i in the typical time-step
window ∆t, and divided by the number of all contacts Ne(∆t) involving all nodes of
group A, in the same interval. What remains undefined is u. As described in the arti-
cle, if each active nodes creates u links, then the total average edges per unit time are
Et = u

2 (〈a〉ANA + 〈a〉BNB) yielding u = 2Et
(〈a〉ANA+〈a〉BNB)

. Applying this model to
our temporal network, we have the intrinsic ∆t = 1 day. Therefore the activity rate of
node i at time t is ai(t) =

∑
jA(t)ij/Ne(t) = si(t)/Ne(t) it is actually the strength of

node i at that time. Being the networks un-weighted,in our case is moreover true that
ai(t) = ki(t)/Ne(t) is the instantaneous degree of node i over the number of edges ac-
tive at time t. Thus, the average activity associated to a node of group A is evaluated
via:

〈a〉A =

NA∑
i=1

T∑
t=1

ai(t)

TNA(t)
, (6.19)
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where NA(t) is the number of active nodes of group A at time t. Moreover Et =∑
tNcontacts(t)/T = Ncontacts/T . The moments of the activity distribution extracted

by data in the time window of last semester ∆t∗ = [2 063 : 2 231] are: Plugging the data

A B
women men

〈a〉 0.0277 0.0289〈
a2
〉

0.0011627 0.00124488
u 0.7243 0.7243

of Table in Eq.(6.18) we find: (
µ√
λAλB

)data
c

' 0.0456 (6.20)

Considering the simple case λA = λB, we see that this value is way too small respect to
the true value of the threshold, as we can see from Fig.(6.4). Notably, this model pushes
the threshold in the opposite direction with respect to the degree-block: the system for
this activity pattern is more safe than the true temporal one. This is probably due to
the fact that the heterogeneity of the connection pattern here is not considered. We also
notice that this threshold gives again εmin = NB/NA.
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Figure 6.4: Activity driven threshold vs true threshold.
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6.3 Average Temporal network

For the third and last analytical model, we consider what we call the annealed approxi-
mation of the temporal network. It consists in the approximation of each snapshot with the
time average of the sequence:

A(t) ∼ Ā ∀t where Ā ≡
∑T
t=1A(t)

T
(6.21)

and each A(t) is the N×N adjacency bipartite matrix of the network at time step t.
Let us consider λA = λB. By means of this approximation, the SIS equation for the

N-vector p(t) describing probability of each node to be infectious at time t reads:

p(t+ 1) = (1 − µ)p(t) + λĀp(t), (6.22)

where we have already performed the linearization for small p. The threshold condition,
given by the instability of the zero solution, is :(µ

λ

)
c
= ρ

(
Ā
)

(6.23)

where ρ has the usual meaning of spectral radius of the matrix. As we found in Sec.
4.5.2, this threshold is the same we recover starting from the Infection Propagator matrix
P =

∏T
t=1 (1 − µ+ λA(T − t)) and considering the threshold condition ρ(P)1/T = 1 in

the limit case λ/(1 − µ)� 1. We therefore expect to find a good accordance for the time-
average threshold µAnn and the temporal µtrue when λc/(1 − µ)� 1.
Figure (6.5) shows that the the time-average threshold µAnn is a good approximation
of the true value of the threshold, throughout all the values of λ. As λ goes from 0 to
1, the value of λ/(1 − µc

true) rises from o(10−2) to o(1), thus explaining the increasing
distance between the annealed approximation and the true threshold. Remarkably, the
fact λ/(1 − µc

true) < 1 demonstrates that our temporal network is close to an annealed
regime.

Lastly, if we consider λA 6= λB, equation (6.22) reads:

p(t+ 1) = (1 − µ)

[
I 0
0 I

]
p(t) + λ

[
0 εZ̄

Z̄> 0

]
p(t), (6.24)

thus yielding a threshold (µ
λ

)
c
= ρ

[
0 εZ̄

Z̄> 0

]
. (6.25)

We can conclude that the time-average network is a good approximation of the time
evolving sequence. We will delve into the discovery of the reason behind this evidence
in the following section.

6.4 Null models and the importance of the aggregated network

In the previous chapter we tested some well accounted models to reproduce the epi-
demic threshold of our temporal network. Only the time average approximation was
able to get close to the true phase transition diagram, however we do not know the rea-
son why this happens, besides the a posteriori finding that the threshold values of the
SIS disease actually are in the region of the parameters (λ,µ, ε = 1) in which the an-
nealed approximation (λ/(1 − µ) � 1) holds. We therefore want to inspect which is the
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Figure 6.5: Annealed threshold vs true threshold.

main feature driving the epidemics on our system, and to do so we exploit the powerful
numerical method of the null models.

We would like to analyse the impact of each specific temporal property of our net-
work, disentangling it from the others. We recall briefly the description of the null mod-
els of Section 4.3 and summarize it in Table (6.1). Firstly, we have RESHUFFLE, that
is a randomization of snapshots order. Secondly, RECONFIGURE consists in a ran-
dom reassignment of contact timestamps: two contacts (i, j; t1) , (k, l; t2) are randomly
selected, and their time-stamp switched: (i, j; t2) , (k, l; t1). Thirdly, in the ANONYMIZE
null model we randomize the identity of the nodes, independently inside each snapshot.
Finally, null model SWAP picks two random edges inside a snapshot and, if they have
no common nodes and if the new links do not already exist, switches the nodes from one
group of the bipartite network (cross-links) (a1,b1; t)(a2,b2; t) → (a1,b2; t)(a2,b1; t).
One last null model is RANDOM TIMES (R.T.), that takes the complete list of all links
occurred in the total period (with eventual repetitions) and re-assigns each of them to a
randomly chosen time step, therefore not respecting the original daily activity of links. It
basically preserves the aggregated network and destroys all temporal correlations. The
random assignment actually results in a more uniform activity time-line.

Table 6.1: Null Models for Temporal Networks

Name activity Aggregated Snapshot microscopic knode(t)
timeline network topology time correlation

RESHUFFLE × X X × ×
RECONFIGURE X X × × ×

RANDOM TIMES × X × × ×
ANONYMIZE X × × × ×

SWAP X × × × X

In table, × means "the null model destroys the feature" and X means "the null model
preserves the feature". The markers with same colour emphasize which feature can be
studied by contrasting the relative null models. We test the effect of each null model on
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the epidemic spreading, by evaluating the threshold on each null model. The results are
presented in Fig.(6.6). The shaded areas represents the values that lies between the 25%
and the 75% percentiles of the 300 realizations we performed for each null model.
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Figure 6.6: Threshold computed on Null Models

Before drawing conclusions from the plots presented in Fig.(6.6), we recall that the
comparison between two models that differ for a single broken feature informs on the
role of that feature on the threshold. We highlight that we cannot tell the role of the pre-
served feature, but rather see how strong is the impact of the destroyed one. It is worth
saying that it can be hard to isolate one specific characteristic of the original tempo-
ral network, because many topological/temporal features are reciprocally "entangled",
meaning that removing one often modifies another. This implies that evaluating the
importance of a single property can be sometimes impossible; other times we can do it
indirectly, by comparing two null models that differ by a that specific feature. In this
sense: comparing R.TIMES with RESHUFFLE enlightens on the influence of snapshot
topology (red markers in the Table); comparing R.TIMES with RECONFIGURE informs
on the activity time line (orange markers) .
We can now observe Fig.(6.6): the first thing we notice is that all null models give a lower
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value of the threshold µc, thus making the system safer. This shows that the original net-
work is the most vulnerable. Going further in the comparisons, we find the following
main results:

• The similarity of RESHUFFLE , RECONFIGURE and RANDOM TIMES with the
original threshold tells that destroying the activity time line and the single snapshot
topology do not impact much on the spreading dynamics. Notably, these features are
related to temporal correlations. In particular, let us contrast R.T. vs RESHUFFLE
and R.T. vs RECONFIGURE to test respectively the snapshot topology and the
activity time line.

R.T. breaks snapshot topology while RESHUFFLE preserves it: the results are al-
most equal, therefore the snapshot topology does not impact the spreading dynam-
ics.

R.T. breaks the activity time line while RECONFIGURE preserves it: the plots are
very close, thus the original activity time line makes no difference respect to the
spreading of the disease.

• ANONYMIZE and SWAP are the worst performing null models respect to the orig-
inal network, meaning that breaking the aggregated network has a strong impact
on the disease dynamics. ANONY-
MIZE is like SWAP, with the additional breaking of the degree distribution: this
further lowers the threshold value.

To be more precise in our conclusions, we compare RECONFIGURE and ANONYMIZE
and their marked difference states that the relevant feature of the network with respect
to a SIS dynamics is the aggregated graph. This finds a sustain in the goodness of the
time-average Ā approximation for the temporal network. In fact Ā is the aggregated
network with the weight of each link divided by the period T .
Notably, our finding is confirmed by a different analysis carried out by Rocha and Del-
venne in Diffusion on networked systems is a question of time or structure [49]. In this work
the time-dependence and the topology-dependence of the diffusion of a random walker
on an empirical network is evaluated both numerically and analytically. The authors
test their model on some empirical temporal networks, among which there is ours. The
authors find that for our network is topology to be the responsible of the time scale of
the stationary state of the R.W. . 3

3In the work, topology is encoded by the spectral radius of the aggregated network, while the time-
dependence in evaluated via the inter-contact waiting time distribution.



Chapter 7

Stochastic correction to the average
temporal network

In the previous chapter, via Fig.(6.5), it has been numerically shown that the epidemic
threshold for the sequence {A(t)} does not differ much from the so-called annealed
approximation, where each snapshot A(t) is approximated with the temporal mean
Ā =

∑
tA(t)/T . Therefore we try to find a better esteem of the threshold by exploiting

Ā, while also including the fluctuations of real A(t) with respect to Ā. We will encode
them into a stochastic noise matrix.

Let us start from recalling that the SIS spreading on a temporal network is described
by a system of equations:

pi(t+ 1) = 1 − [1 − (1 − µ)pi(t)]
∏
j

[
1 − λAji(t)pj(t)

]
. (7.1)

for i = 1, ..,N with N the number of nodes in the network. When pi ∼ 0, equation (7.1)
can be linearized in pi as:

pi(t+ 1) = (1 − µ)pi(t) + λ
∑
j

Aji(t)pj(t) + o(p
2). (7.2)

Considering vector formalism, Eq.(7.2) reads:

p(t+ 1) = [(1 − µ)I+ λA(t)]p(t). (7.3)

with p(t) ∈ RN and each A(t) is a N×N real valued non negative and symmetric ma-
trix (A†(t) = A(t)), encoding the contacts between individuals. Being our population
formed by men (N1) and women (N2, with N = N1 +N2), and provided that interac-
tions can happen only between a man and a woman, we recall that we have arranged
the contact matrix to take a convenient block form. If the vector p is defined to encode
for men in the firstN1 components and for women in the lastN2, each matrix A(t) takes
the form:

A(t) =

[
0 Z(t)

Z†(t) 0

]
(7.4)

with the rectangular N1 ×N2 adjacency matrix Z of components (Z)ij where indices
span respectively: i ∈ I1 = {1, ..,N1} and i ∈ I2 = {N1 + 1, ..,N}. In the following we
will address equivalently to this as block-form or bipartite. Moreover, the function A(t) is
considered periodic A(t+ T) = A(t) considering that the period T is representative of a
stable contact dynamics.

63
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With an algebraic manipulation, we include the dependence on matrix Ā, by re-
writing Eq.(7.3) as follows:

p(t+ 1) = (1 − µ)p(t) + λ
(
A(t) + Ā− Ā

)
p(t)

= (1 − µ)p(t) + λĀp(t) + λ
(
A(t) − Ā

)
p(t)

=
[
(1 − µ)I+ λĀ

]
p(t) + λ δA(t)p(t)

p(t+ 1) = [I+M]p(t) + λ δA(t)p(t)

(7.5)

with the definition of the deterministic constant matrix :

M = −µI+ λĀ, (7.6)

In square brackets we have isolated a time-independent and deterministic evolution ma-
trix, while in the right-most side there is a time dependent matrix δA(t) that we call fluc-
tuation matrix, encoding the time heterogeneous behaviour of contacts. We recall that
δA(t) = δA†(t), being the network undirected; moreover δAii(t) = 0, because for every
t is clearly Aii(t) = 0; lastly δA(t) has the same block form as A(t).
We make now the strong hypothesis that the fluctuation matrix can be considered as a
noise matrix, with each entry being an independent Wiener process of mean 0 and vari-
ance σ2

ij. Of course, being the fluctuation matrix non zero only in those entries where
Ā is non zero, the independent Wiener processes are a total of NE, that is the number
of occupied links in matrix Z̄. Therefore, the noise matrix is defined as having entries
Wij(t) ∼ N(0,σ2

ij) with i ∈ I1 and j ∈ I2 when Āij > 0, otherwise entries are 0. We
require W to be symmetric as δA(t) is: a "noise" contact happening on link (i,j) must be
the same on link (j,i). Thus, Eq.(7.5) can be written as a stochastic linear vector difference
equation:

p(t+ 1) = [(1 − µ)I+ λĀ]p(t) + λW(t)p(t) (7.7)

7.1 Geometric Brownian motion, one dimension

We notice that Equation (7.7) is the vectorial and discrete time version of the well known
geometric brownian motion. The Geometric Brownian motion X = {Xt : t ∈ [0,∞),Xt ∈
R} satisfies the stochastic differential equation

dXt = γXt + σXt dξt , (7.8)

in the Ito prescription, where = {ξt : t ∈ [0,∞)} is a standard Brownian motion and
γ ∈ R and σ ∈ (0,∞). The solution of Eq.(7.8), with initial condition X0 = x0, is given
by:

Xt = x0 exp
[(
γ−

σ2

2

)
t+ σξt

]
, t ∈ [0,+∞). (7.9)

The stochastic process X is called Geometric Brownian motion with drift parameter γ
and volatility parameter σ. The stochastic process at the exponent is itself a Brownian
motion. We notice that the GBM is never negative, thus it will be in accord with our
interpretation of X as a probability of infection. The distribution of Xt is lognormal, with
parameters

(
γ− σ2

2

)
t and σ

√
t. The probability density function ft is given by:

ft(x) =
1

σx
√

2πt
exp

(
−

[
ln(x) − (γ− σ2/2)t

]2
2σ2t

)
, x ∈ (0,∞) (7.10)
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for each t ∈ (0,∞). The expectation values of moments are E (Xt
n) = e

nt
[
γ−σ2

2 (n−1)
]
,

so :

E (Xt) = eγt

Var (Xt) = e2γt
(
eσ

2t − 1
) (7.11)

and we note that the mean function m(t) = E (Xt) = eγt for t ∈ (0,∞) satisfies the
deterministic part of the stochastic differential equation above (7.8).
An important property, that is especially relevant to our study, is the fact that the param-
eter (γ− σ2/2) establishes the asymptotic behaviour of the geometric Brownian motion.
In fact:

Ifγ > σ2/2 thenXt →∞ as t→∞;

Ifγ < σ2/2 thenXt → 0 as t→∞;

Ifγ = σ2/2 thenXt has no limit as t→∞.

(7.12)

This follows from the law of the iterative logarithm: asymptotically, the term (γ−σ2/2)t
dominates the term σξt as t → ∞. In fact the precise growth rate of a Brownian motion
ξt is given by

lim
t→∞ sup

ξt√
2t ln ln t

= 1,

called law of iterated logarithm [50]. This result, applied to Eq.(7.9), gives the asymptotic
behaviour. We can understand the long time limit by looking at the probability density
function on Eq. 7.10): a log-normal distribution can be strongly skewed, with the mode
is quite smaller than the mean. More precisely, mode(Xt) = exp

(
γ− 3σ2

2

)
t and it is

therefore clear that the mode approaches 0 when (γ−σ2/2) < 0, while the mean follows
a very different course exp(γt). Thus the mean value is not very informative on the long
time limit of the single stochastic process.
Therefore, it is the sign of (γ− σ2/2) to define the threshold condition for a GBM: dis-
criminating between the zero final state or the infinite final state. This parameter is the
one we find at the exponent of the "deterministic part" of the solution in Eq.(7.9).

We can recover the same parameter (γ− σ2/2) if we consider the associated Fokker
Plank equation:

dP(x, t)
dt

=
d

dx

[
−γxP(x, t) +

σ2

2
d

dx

(
x2P(x, t)

)]
=
d

dx
J(x, t). (7.13)

The stationary probability distribution P∗(x) that sets to zero the current J takes the form

P∗(x) ∼ x
2
(
γ

σ2 −1
)
. To account for its normalization, we firstly recall that in our interpre-

tation of the random variable. To us Xt is a probability, therefore Xt ∈ [0, 1]. Thus, we
take Eq.(7.8) to be valid for small X and therefore we see that the previous expression for
P∗(x) may have problem of normalization only in the neighbourhood of 0. To ensure its
normalizability, the stationary probability distribution finally reads:

P∗(x) =

δ(x) ifγ 6 σ2/2

∼ x
2
(
γ

σ2 −1
)

ifγ > σ2/2
(7.14)

for x ∈ [0, 1]. This results confirms the threshold role of (γ− σ2/2) = 0.
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7.2 Multi-dimensional geometric Brownian motion

We would like to rephrase the above result for the asymptotic behaviour of the one di-
mensional GBM to our N dimensional problem. First of all, we need to write the Ito
Eq.(7.7) as a vector stochastic differential equation with independent gaussian noises.
Then we can write it in the Stratonovich prescription, so that the usual rules of differen-
tial calculus are restored and a formal solution in the sense on Eq.(7.9) can be written. By
inspecting the "deterministic part" of the exponent, we can guess we find the threshold
coefficient for the asymptotic stability of the zero vector solution.
Let us consider the continuous time analogue of Eq.(7.7):

dp =Mp(t)dt+ λW(t)p(t), (7.15)

with the symmetric noiseWij(t) ∼ N(0,σ2
ij dt) for the (i,j) so that Āij > 0, and where the

derivative is understood in the Ito prescription. We need do write it in the classical form

dxi = Aijxj dt+B
ν
ijxjξ

ν(t) Ito (7.16)

where ξν(t) are independent Wiener processes with ν = 1, ..,M and i = 1, ..,N [51]. Re-
peated indices are understood in Einstein notation, i.e. as summed. With some algebraic
manipulation, we can rewrite Eq.(7.15) as:

dpi =Mijpj dt+D
ν
ijpjξ

ν(t) (7.17)

with
ν = (k, l) k ∈ I1 , l ∈ I2 | δAkl(t) 6= 0

D(k,l)
ij = λσij

(
δk,iδl,j + δk,jδl,i

)
ξ(k,l)(t) ∼ N(0,dt)

(7.18)

Now, we want to translate this into the the Stratonovich prescription, because we aim to
integrate, at least formally, the vector Equation (7.17) using the usual rules of calculus.
The Stratonovich formalism for differential equation

dxi = Âijxj dt+ B̂
ν
ijxj ◦ ξν(t) Stratonovich (7.19)

can be derived from Ito’s Eq.( 7.16) using the following relations:{
Â = A− 1

2
∑
ν (B

ν)2

B̂ν = Bν
(7.20)

We apply these equations to our case, and explicitly compute M̂ =M− 1
2
∑
ν (D

ν)2. We
consider for simplicity that σ2

ij = σ2 is unique : we will see this is a necessary approxi-
mation due to the low statistics of the data from which we extract the σ value. Thus we
compute

1
2

∑
ν

(Dν)2 =
1
2
λ2σ2Dk, (7.21)

where matrix Dk is the diagonal square matrix with entries :

dii =
∑

j | Āij 6=0

1 = ki(Ā), (7.22)
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where ki(Ā) is the degree of node i in the network associated to Ā. Therefore the
Stratonovich matrix M̂ reads:

M̂ = −µI+ λĀ−
1
2
λ2σ2Dk. (7.23)

The evolution equation of vector p in the Stratonovich sense is :

dpi = M̂ijpj dt+D
ν
ijpj ◦ ξν(t). (7.24)

We make now a guess: that the analogy with the one dimensional geometric Brown-
ian motion holds, so that the condition for which p(t) → 0 as t → ∞ is simply that
Re
[
λ(M̂)

]
< 0, λ(M̂) being an eigenvalue of M̂. Rephrasing it in the discrete time for-

malism, we guess that the threshold for the recovery probability µc is the one such that
:

ρ

(
1 − µc + λĀ−

1
2
λ2σ2Dk

)
= 1. (7.25)

where ρ is the usual spectral radius of the matrix.
To have an idea of what this correction roughly means, we can imagine to have a sym-
metric matrix Ā , with the only zero entries being the diagonals’. In this simple case, we
have Dk = (N− 1)I, therefore the threshold is simply:

µstochc = µAnnealedc −
1
2
λ2σ2(N− 1), (7.26)

where µAnnealedc = λρ(Ā) 1. This means that the annealed approximation is cor-
rected with a term (λ2σ2/2) for every of the (N-1) contacts a single node performs. So
here we have shown that the stochastic correction tends to lower the value of the an-
nealed threshold µAnnealedc , thus moving in the wished direction towards the temporal
phase-transition line. Epidemiologically, the stochastic system is safer (i.e. lower µc)
than the annealed approximation.

7.2.1 Numerical estimation of the stochastic correction

Now we want to test the new threshold found in Eq.(7.25) and see if it ameliorates the
annealed approximation, with respect to the true temporal threshold.

What we need to extract from the data set is a value for σ2, the variance of the noise
matrix W(t). We recall that by means of W(t) we want to approximate the behaviour
of δA(t) = A(t) − Ā. The first main guess on this matrix has been that all entries are
uncorrelated at every time. We can test the reliability of this hypothesis from the com-
putation of 〈δAij(t)δAlm(t ′)〉 and looking for correlations between different links at the
same time (uncorrelation of noises) and between same link at different time. As usually
defined, the average should be computed on many realizations δA(

ijr)(t) of the process

〈δAij(t)δAlm(t ′)〉 =
∑R
r=1A

(r)
ij (t)δA

(r)
lm(t ′)

R
. (7.27)

1To be precise, we can extract 1 − µ from the spectral radius only if λĀ − 1
2λ

2σ2Dk is a non-negative
matrix.
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However, we do not dispose of such data, having only one realization of the contacts
dynamics {A(1)(t)}. We can overcome this problem by guessing that 〈δAij(t)δAlm(t ′)〉 ≡
G(|t− t ′|, ij, lm), therefore ensemble average Eq.(7.27) can be rewritten as:

G(|t− t ′|, ij, lm) = 〈δAij(t)δAlm(t ′ = t±τ)〉 =
∑R
r=1A

(r)
ij (t)δA

(r)
lm(t+ τ) +A

(r)
ij (t)δA

(r)
lm(t− τ)

2R
.

(7.28)
This function should be the same (i.e independent) for every t:

G(τ, ij, lm) = 〈δAij(t1)δAlm(t1 ± τ)〉 = 〈δAij(t2)δAlm(t2 ± τ)〉

=
1

(T − τ)

T−τ∑
t=1

〈δAij(t)δAlm(t+ τ)〉+ 〈δAlm(t)δAij(t+ τ)〉
2

.
(7.29)

In conclusion, we can exploit the above equation to evaluate G(τ, ij, lm) by using one
realization {A(1)(t)}, discarding the ensemble average in favour of the temporal average.
When all ensemble averages equal the corresponding time averages the signal is called
ergodic.

Gij,lm(τ)data =

T−τ∑
t=1

δAij(t)δAlm(t+ τ) + δAlm(t)δAij(t+ τ)

2(T − τ)
(7.30)

With formula in Eq.(7.30) we have an approximation of 〈δAij(t)δAlm(t ± τ)〉 that we
can extract from our data. Numerical calculations show that the correlation function can
reasonably be approximated with the following form:

Gij,lm(τ)data = σ2
ij δ(τ)

(
δ(ij),(lm) + δ(ij),(ml)

)
, (7.31)

for ij and lm so that Āij > 0 and Ālm > 0. We can understand it by looking at Figures
(7.2) and (7.1).
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Figure 7.1: Gij−lm(τ = 0day)
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Figure 7.2: Gij−lm(τ = 1)

The x and y axis represent the links (i,j) and (l,m) for which the value Gij,lm(τ) is com-
puted; the figure on the left is for τ = 0 and the other on the right is for τ = 1. The
intensity of the colour is log-proportional to the value of the correlation. We see that a
strong colouring is found only along the diagonal of the plot with τ = 0. This explains
the form of function in Eq.(7.31), and its meaning: at each "noise process" δAij(t) is un-
correlated with any other happening at the same time in another link, or in the same link
but at different time (here we see for τ = 1 day). Therefore, comparing Eq.(7.30) and
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Eq.(7.31), it is easy to see that σ2
ij is found by computing:

σ2
ijdata

= Gij,ij(0)data =

∑T
t=1 δA

2
ij(t)

T
. (7.32)

More explicitly :

σ2
ijdata

=

∑
tA

2
ij(t)

T
−

(∑
tAij(t)

T

)2

. (7.33)

The specific data set has an extremely poor statistics for a single link (i,j): many of the
links activate only one time in the whole period T, thus resulting in the impossibility of
assessing for the variance σ2

ij of such a sparse noise. Therefore, to find a meaningful
value we need make the hypothesis that each noise is statistically equivalent, so that we
compute an average noise variance as the mean of all σ2

ij:

σ2
data =

∑
i∈I1

∑
j∈I2

σ2
ij

NE
≡ Σ2

NE
. (7.34)

where Σ2 ≡
∑
i∈I1

∑
j∈I2

σ2
ij andNE = 6401 is the number of edges that are found active

in the period. The value obtained from the data is Σ2
data ' 44.837266, giving the mean

variance equal to:
σ2
data ' 0.0070 . (7.35)

In conclusion, what we assume is that the fluctuation matrix δA(t) is a block matrix with
NE independent Wiener processes of mean 0 (by definition) and variance σ2

data, and
Wij(t) =Wji(t) is symmetric.

Now we need to compute numerically if the stochastic correction is sensible and
to what extent. In Fig.(7.3) we report the stochastic threshold computed via formula
Eq.(7.25) , i.e. with the diagonal degree matrix Dk. We notice that the stochastic correc-
tion goes much closer to the temporal that the annealed approximation, although being
a little lower.
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Figure 7.3: Stochastic correction of the annealed approximation.

We can contrast the result with the Reshuffle null-model. This null-model consists in
reordering in a completely random fashion the sequence of snapshots {A(t)}, therefore
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maintaining the average matrix Ā, the average number of active links per day but loos-
ing all time-correlation among link activation at different times. We show the relation
between stochastic correction and Reshuffle in Figure (7.4).2
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Figure 7.4: Stochastic correction contrasted with the Reshuffle null model.

What we would expect is a close relation of the stochastic critical line with the reshuf-
fled, being all consequential information lost in the stochastic approximation. In fact, this
is what we find in Figure (7.4).
The result we find really seems to capture the main features of the temporal network.
However, we do not rely too much on the closeness of the stochastic curve with the true
and reshuffled: that could be a on some extent a lucky coincidence between the evalu-
ated σ2

data and the needed distance to cover between the annealed and the true value.
Moreover, we know that the perturbations of links are far from Gaussian: they may re-
semble more to shot noise or Poisson like activation but in any case we are very limited
by the low statistic of the data. Nevertheless, what we can learn from this approach is
the qualitative impact of randomness in the activation of links on the epidemic threshold.
We can interpret the variance of the noise as a degree of heterogeneity in the activation
of links in time: the bigger σ2, the more oscillating is the activity time lime of a link with
respect to the annealed case, in which the link is always active at each time step with
same "probability" Āij. The heterogeneity in the activation of links is known [47] to be a
factor that slows down the diffusion of a disease in a temporal network (µc ↓). In fact,
this implies that the number of available paths are less with respect to the annealed case,
because at each time step some links decrease their activation probability. Our analytic
result points in the same direction, giving a quantitative esteem of this lowering of the
threshold proportional to the noise variance.

2We have performed 300 reshuffles and the plot is the median of those iterations, with the error evaluated
via the 25th and the 75th percentiles values of µc.
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Conclusions

In this work we have addressed the problem of assessing the vulnerability for a system
of interacting individuals targeted with a disease. The disease has been modelled using
the SIS compartmental model, for which people can be either susceptible S or infectious
I. The transition S→ I takes place with probability λ, if a S. meets an I. Each I. can recover
spontaneously with probability µ, giving the transition I → S . For what concerns the
population, we dispose of a data-set [34] regarding the interactions of a bipartite commu-
nity, whose contacts change in time. We therefore exploited the formalism of temporal
networks to encode this dynamics. We have focused on the so called epidemic threshold,
e.t., in order to give a quantification of the vulnerability of the system. The epidemic
threshold is the value of disease’s parameters µc(λ) so that: for µ 6 µc the number of
infectious people in the asymptotic state is non zero, while for µ > µc it is zero.

We have carried out the analysis of the threshold both numerically and analytically.
In the numerical analysis, in order to fasten the computation of the e.t., we have ex-
ploited the findings of a recent work on temporal networks coupled with disease dy-
namics ([28],2015). This article shows that, when it comes to the determination of the
epidemic threshold on a temporal network, the microscopic stochastic simulation of a
disease-spreading can be replaced with a simpler and much faster computation of the
spectral radius of a suitable matrix. This matrix encodes the coupled dynamics of dis-
ease and network: P(t0, T) =

∏T
t=t0

[1 − µ+ λA(T − t)], where the only additional guess
is that the dynamics of the network is periodic of arbitrary period T. Using this approach,
we have explored the threshold µc in various portion of the temporal data set and for
varying λ. As this system regards a woman-man interaction relative to sexual contacts,
we have allowed for men and women to have different λs probability of transmission of
disease, as it is actually the case of most STDs. We have found that the impact of the two
categories on the threshold is symmetric, with very good approximation, and that the
present system is largely non vulnerable with respect to the most common STDs.

We have then addressed the question of which is the main temporal or topological
feature that drives the disease on the network. By means of null models [4.3] we have
broken various properties of the network in order to see their impact on the e.t. . We
have concluded that the aggregated network is the structure one needs to preserve in
order to capture the dynamic of the disease, even regardless of the time sequence of
links activation.

To tackle the problem analytically, we have tested on our network three already de-
veloped analytical models that allow to write an explicit expression for the e.t. . We
have generalized them to a bipartite network structure. Only one of these worked fine,
namely the annealed approximation on the temporal network as an average network.

71
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Lastly, we have tried to ameliorate the annealed approximation introducing a stochastic
correction. We have written a N-dimensional Langevin equation for the vector state of
nodes’ infection probability ~p(t), when it is close to the disease-free state , i.e. ~p(t) ' ~0.
The deterministic part of the equation is the same that describes the annealed regime.
The stochastic part includes a Wiener noise-matrix, that aims to reproduce the fluctua-
tions of the original temporal contact matrices respect to the annealed matrix. The result-
ing equation is a N-dimensional geometric Brownian motion. By extending the findings
for the asymptotic state of a one dimensional GBM, we have found a correction to the
epidemic threshold µc. The result shows good agreement with the "true" threshold.

For the future, it would be interesting to delve more into this stochastic approach we
have addressed only in the last part of the work. For example, we would like to test
its validity on other networks and on synthetic models. Moreover, some of the analysis
we carried out aside suggest that it would be a good idea to test other types of noises,
such as the Poissonian or shot noise. These are more resembling of the real behaviour of
human contact dynamics with respect to gaussians’.
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Appendix A

The effect of stochasticity on the
meaning of R0

We have shown that the framework of deterministic differential equations allows a for-
mal definition of epidemic threshold, in terms of basic reproductive number. We learn
that for R0 > 1 the disease will certainly turn epidemic, while when R0 < 1 the growth
is exponentially suppressed. We have already seen, however, that this kind of approach
does not account for stochastic effects, and this qualitatively changes the definition itself
of epidemic threshold. Let us examine this point through a Galton-Watson branching
process. Let In be the number of (infectious) agents in generation n. Also let X = 0, 1, 2..
be the number of secondary cases each case generates. P(X) be the probability distribu-
tion of such variable, with probability generating function g(s). By definition of basic
reproductive number, E[X] = R0. Let gn(s) be the probability generating function of In.
Clearly, the following relation holds

gn+1(s) = gn(g(s)). (A.1)

From this relation we can compute the expectation values:

E[In] = g
′
n(1) = g

′
n−1(g(1))g

′(1) = g ′n−1(1)g
′(1) = E[In−1]R0 = I0R

n
0 . (A.2)

Where I0 is the initial number of infected. Analogously to differential equations, R0 = 1
is a threshold value in the sense that discriminates the case when the average number of
infected grows or decays exponentially. These are however only expectation values, and
do not account for stochastic fluctuations. These fluctuations influence the extinction
probability, i.e. the probability that the disease will at some point stop due to lack of
infectious hosts.

Let us call qn = Prob[In = 0], i.e. the probability of extinction by the n-th generation.
Clearly qn = gn(0). For simplicity, we assume just one initial infected: I0 = 1. Then
the following relation holds gn(g(s)) = g(gn(s)), and we can use it to get a recurrence
relation for qn:

qn+1 = g(qn). (A.3)

We can find the limiting value q∞ as the smallest positive root of

q = g(q) (A.4)

q = 1 is always a solution of this equation. One can show that for R0 < 1 this is also
the smallest solution q∞(R0 < 1) = 1. When the disease is below threshold, the disease
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always goes extinct, as we already know from expectation values. In order to see what
happens above threshold, we assume X ∼ Poisson(R0). Then the above equation reads

q = eR0(q−1) (A.5)

When R0 > 1, this equation has a solution in (0,1): this means that the extinction probabil-
ity is non zero even above threshold. As a result, if you run your epidemic long enough,
it will always goes extinct. Therefore the epidemic threshold in stochastic models for-
mally does not discriminate between extinction and no extinction, but between a phase
where the disease goes extinct exponentially fast (R0 < 1), and a regime where the time
to extinction is long, and increases with R0 (above threshold). In practice the extinction
time often becomes so long, that can be considered as infinite, recovering the meaning of
the threshold found with differential equations. Formally, however, the active endemic
state is always metastable, as fluctuations can always bring it to the absorbing state of
no infected, which the system cannot then leave. These fluctuations become extremely
suppressed only when R0 is high, and/or the population is large.



Appendix B

Tensor representation of a temporal
network

The tensor formulation of multilayer networks has been put forward in [27]. Here we
restrict it to temporal networks. Let us assume a network of N nodes. We start by
assuming it does not evolve in time. Let V be the vector space spanned by the basis
{e1, e2, . . . , eN} which is in one-to-one correspondence with the nodes in the network. In
particular, V ' RN. We consider the dual space V∗ as the vector space spanned by the
linear maps {e∗1 , e∗2 , . . . , e∗N}. They are defined as follows:

e∗1 : V → R and e∗i (ej) = δij. (B.1)

This is a traditional definition of dual space of a vector space. Then, we can define the
adjacency matrix A as a multi-linear map (i.e., a tensor) A : V∗ ⊗ V → R ,defined as:

A =
∑
i

∑
j

Aije
∗
i ⊗ ej, (B.2)

with component Aij = A(e∗i , ej) encoding the value of link i-j. A thus becomes a rank 2
tensor.
The generalization to the temporal case is now straightforward. Let us assume we have
T snapshots. We then consider the space W ' RT spanned by the basis {f1, f2, . . . , fT }
which is in one-to-one correspondence with the snapshots. Then we define the adjacency
tensor A as a rank 4 tensor

A =

T∑
t=1

T∑
s=1

N∑
i=1

N∑
j=1

Ats,ijf
∗
t ⊗ fs ⊗ e∗i ⊗ ej (B.3)

with component Ats,ij = A(f∗t , fs, e
∗
i , ej) encoding the value of link from node i at time t,

to node j at time s. This allows for both intra-layer (same time) and inter-layer (different
times) links.

For a matter of convenience of representation, we will use high indices for time and
low for nodes, therefore Atsij .
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Appendix C

Maximum eigenvalue of M block
matrix

Computing the eigenvalues ofM† in Eq.(4.12) means solving the equation

det
(
xI−M†

)
= 0, (C.1)

where the determinant is computed on the RNT space (detNT ). Given that xI−M† is
composed of T 2 blocks of size N×N, we can use the findings in Ref. [52] to reduce the
dimensionality of the problem, i.e., detNT → detN. Moreover, given that several blocks
of xI−M† are zero, the general result simplifies to

detNT
(
xI−M†

)
= (−1)NTdetN (xI− P) , (C.2)

where P is the Infection Propagator matrix of Eq.(4.22).
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Appendix D

Theory of Linear Difference
Equation

In the present work we make an extensive use of equations describing the evolution of a
certain quantity over time, with time considered discrete. This is the best choice when we
deal with data-driven equations, with data collected in discrete time (e.g. each minute,
hour, day, etc.). The mathematical representation of such dynamics is called a difference
equation, For example, if a certain population has discrete generations n, the size of the
(n + 1)st generation x(n + 1) is a function of the n-th generation x(n). This relation
expresses itself in the difference equation

x(n+ 1) = f(x(n)). (D.1)

If the function f in Eq.(D.1) is replaced by a function g of both x and time n, that is
g : Z+ ×R → R, where Z+ is the set of non negative integers and R is the set of real
numbers, then we have

x(n+ 1) = g(n, x(n)) (D.2)

Equation (D.2) is called non autonomous or time-variant, whereas (D.1) is called au-
tonomous or time-invariant. If an initial condition x(n0) = x0 is given, then for n > n0
there is a unique solution x(n) = x(n,n0, x0) of D.2) such that x(n0,n0, x0) = x0, shown
easily by iteration.

Linear First-Order Difference Equations The simplest special cases of (D.1) and (D.2)
are linear equations. A typical linear homogeneous first-order equation is given by:

x(n+ 1) = a(n)x(n) , x(n0) = x0 , n > n0 > 0, (D.3)

and the associated non homogeneous equation is given by

y(n+ 1) = a(n)y(n) + g(n) , y(n0) = y0 , n > n0 > 0, (D.4)

where in both equations it is assumed that a(n) 6= 0, and a(n) and g(n) are real-valued
functions defined for n > n0 > 0.

One may obtain the solution of (D.3) by a simple iteration, that leads to:

x(n) =

n−1∏
i=n0

a(i)x0 (D.5)
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Analogously, the unique solution of the non homogeneous (D.4) is:

y(n) =

n−1∏
i=n0

a(i)y0 +

n−1∑
r=n0

[
n−1∏
i=r+1

a(i)

]
g(r) (D.6)

An important special case of (D.4) is for a time independent:

y(n+ 1) = ay(n) + g(n), y(0) = y0 (D.7)

Using formula (D.6) one may establish that

y(n) = any0 +

n−1∑
k=0

an−k−1g(k) (D.8)

Notice that the solution of the non homogeneous differential equation

dy

dt
= ay(t) + g(t), y(0) = y0 (D.9)

is given by:

y(t) = eaty0 +

∫t
0
ea(t−s)g(s)ds (D.10)

Thus the exponential eat in differential equation corresponds to the exponential an and
the integral

∫t
0 e
a(t−s)g(s)ds corresponds to the summation

∑n−1
k=0 a

n−k−1g(k).

D.1 Linear system of difference equation

The above equations take values in R. We can consider a generalization to Rk, that is a
system of difference equations where there are k dependent variables that evolve together.
Systems of difference equations arise in various fields of scientific endeavour, like biol-
ogy (the study of competitive species in population dynamics), physics (the study of the
motions of interacting bodies), the study of control systems, neurology, and electricity,
and in our thesis as well. More precisely, for our work we can restrict the study to the
case of a linear system of difference equation.

Autonomous system

An autonomous and homogeneous system of difference of k linear equations is the following:

x1(n+ 1) = a11x1(n) + a12x2(n) + · · ·+ a1kxk(n),
x2(n+ 1) = a21x1(n) + a22x2(n) + · · ·+ a2kxk(n),

...
...

...
...

xk(n+ 1) = ak1x1(n) + ak2x2(n) + · · ·+ akkxk(n),

(D.11)

This system may be written in the vector form

x(n+ 1) = Ax(n) (D.12)

where x(n) = (x1(n), x2(n), ..., xk(n))> ∈ Rk, and A = (aij) is a k× k real non singular
matrix.
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Here > indicates the transpose of a vector. System (D.11) is considered autonomous, or
time-invariant, since the values of A are all constants. Non-autonomous, or time-variant,
systems have A(n).
If for some n0 > 0, x(n0) = x0 is specified, then system (D.12) is called an initial value
problem. With no loss of generality we take n0 = 0. Then, by simple iteration (or by
direct substitution into the equation), one may show that the solution is given by

x(n, x0) = A
nx0 (D.13)

where A0 = I, the k× k identity matrix.
A fundamental result is that it is possible to express the solution of (D.12) in terms of
eigenvalues and eigenvectors of A ([53], pg:135-137):

x(n) =

k∑
i=1

ciλ
n
i ξi (D.14)

where ci ∈ R and
Aξi = λiξi i = 1, . . . ,k. (D.15)

This holds for A diagonalizable. A sufficient condition is to have k distinct eigenvalues.
When the matrix A has repeated roots, then it is diagonalizable if it is normal, that is
to say, if A>A = AA> . Examples of normal matrices are symmetric matrices, anti-
symmetric and unitary.

We recall that a parallel theory exist for systems of linear differential equations. The
solution of the initial value problem

dx

dt
= Ax(t), x(t0) = x0 (D.16)

where x ∈ Rk and A is a k× kmatrix, is given by:

x(t) = eA(t−t0)x0 (D.17)

with the usual definition of exponential matrix.

Non autonomous system

The non autonomous case of an homogeneous linear system is:

x(n+ 1) = A(n)x(n) (D.18)

where A(n) = (aij(n)) is a k× k non singular 1 matrix function. The solution of the
initial value problem x(n0) = x0 is proved to be unique for every choice of x0 and takes
the form:

x(n) =

n−1∏
i=n0

A(i)

 x0, (D.19)

where the product is ordered as
∏n−1
i=n0

A(i) = A(n− 1)A(n− 2) . . .A(n0), n > n0.
An important case is for A(n) periodic, i.e. A(n+N) = A(n) for a certain positive

integer N, called the period. For long time behaviour, the periodic system behaves like
an autonomous with matrixA =

∏N
k=1A(k). This will be exploited in the determination

of the stability conditions for the zero solution.
1Matrix M is non singular when it in invertible i.e. detM 6 0.



84 APPENDIX D. THEORY OF LINEAR DIFFERENCE EQUATION

Figure D.1: Hierarchy of stability

D.2 Fixed point and stability

It is trivial to see that the vector 0 is a fixed point (or equilibrium) of system (D.12). Now
we would like to see if the equilibrium is stable or not.

To do so, we first revise the definitions of equilibrium and stability.
A point x∗ ∈ Rk is called an equilibrium point of (D.2) if g(n, x∗) = x∗ for all n > n0.
We are now ready to introduce the various stability notions of the equilibrium point x∗:
Definition : The equilibrium point x∗ of (D.2) is said to be:

• Stable S if given ε > 0 and n0 > 0 there exists δ = δ(ε,n0) such that ‖x0 − x‖ < δ
implies ‖x(n,n0, x0) − x‖ < ε for all n > n0, uniformly stable (US) if δ may be
chosen independent of n0, unstable if it is not stable.

• Attractive A if there exists µ(n0) such that ‖x0 −x‖ < µ implies limn→∞ x(n,n0, x0) =
x∗, uniformly attracting (UA) if the choice of µ is independent of n0.

• Asymptotically Stable AS if it is stable and attracting.

• Exponentially Stable ES if there exist δ > 0,M > 0, and η ∈ (0, 1) such that
‖x(n,n0, x0) − x‖ 6M‖x0 − x‖ηn−n0 , whenever ‖x0 − x‖ < δ.

The various definitions are placed in a hierarchic structure, exemplified if figure D.1:
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When the system in autonomous and linear, Asymptotically stable and Exponentially
are equivalent.

Now , we need to revise some linear algebra results that will help us in the stability
analysis.

Theorem D.2.1 (The Jordan Canonical Form) Any k × k matrix A is similar to a Jordan
form given by the formula (D.20), where each Ji is an si × si matrix of the form (D.21), and∑r
i=1 si = k.

with
J = diag (J1, J2, . . . Jr) , 1 6 r 6 k (D.20)

and each Ji

Ji =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . . . . . 1

0 0 . . . . . . λi

 (D.21)

is called a Jordan block, and λi are the eigenvalues of A.
We can now substantiate that the general solution of system (D.12) is

x(n) = Anc = PJnP−1c, (D.22)

where P = [ξ1, . . . ξk] the matrix with columns given by the eigenvectors of A.
The following corollary arises directly from an immediate consequence of the for-

mula for Jni :

Corollary D.2.1.1 Assuming that A is any k× k matrix, then limn→∞An = 0
if and only if |λ| < 1 , for all eigenvalues λ of A.

The importance of the preceding corollary lies in the fact that if limn→∞An = 0 ,
then

lim
n→∞ x(n) = lim

n→∞Anx(0) = 0 (D.23)

that is if |λ| < 1 then all solutions x(n) of (D.12) tend toward the zero vector as n→∞.
In the next theorem we summarize the main stability results for the linear autonomous

systems (D.12).

Theorem D.2.2 The following statements hold:
(i) The zero solution of (D.12) is stable if and only if ρ(A) 6 1 and the eigenvalues of unit
modulus are semi-simple.
(ii) The zero solution of (D.12) is asymptotically stable if and only if ρ(A) < 1 .

where ρ is the spectral radius of the matrix: ρ(A) = max{|λ|, λ is eigenvalue of A}. A
similar stability condition holds also for non autonomous linear systems (D.18) that are
also periodic. The asymptotic stability is recovered when

ρ(C) < 1 , C =

N∏
i=1

A(N− i) (D.24)

with N the period so that A(n) = A(n+N).
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Appendix E

Perron-Frobenius theorem and its
applications

E.1 The theorem

The Perron-Frobenius theorem is an important result about eigenvalues of real positive,
or more general, non negative, matrices. These matrices are the ones corresponding to
linear functions φ : Cn → Cn so that φ(Π) ⊆ Π , where the subset Π is Π = {x ∈
Rn|xi > 0}. We define also the subset of strictly positive vectors Π0 = {x ∈ Rn|xi > 0},
and the absolute value of a vector | | : Cn → Π so that v = x1e1 + · · ·+ xnen → |v| =
|x1|e1 + · · ·+ |xn|en. The theorem says:

Theorem E.1.1 (Perron’s Theorem) Be φ : Cn → Cn a linear function so that φ(Π \ {0}) ⊆
Π0 and we denote by r = ρ(φ) the spectral radius of φ. The following statements hold true:
(i) r is en eigenvalue of φ and if v is an eigenvector relative to an eigenvalue of modulus r, then
|v| ⊆ Π0 and it is eigenvector relative to the eigenvalue r.
(ii) r is the only eigenvalue with modulus equal to ρ(φ).
(iii)The exponent of (x− r) in the minimal polynomial of φ is equal to 1.
(iv) The algebraic multiplicity of r is 1.
(v) No other eigenvalue of φ has eigenvectors belonging to Π0.
(vi) Be f : Π \ {0} → R defined by f(v) = min

i=1,..n

e∗i◦φ(v)
e∗i◦v

, with e∗i ◦ v 6= 0. Then r =

max
v∈Π\{0}

f(v). f is called the Collatz-Wielandt function.

The request of φ (Π \ {0}) ⊆ Π0, i.e. that the associated matrix A has aij > 0, can be
weakened by letting aij > 0 (non negative matrix). In this case, that is also the most
common in statistical physics and stochastic processes, some of the above properties are
lost, while some others resist.

Corollary E.1.1.1 Be φ : Cn → Cn a linear function so that φ(Π) ⊆ Π. The following condi-
tions hold true:
(i) r = ρ(φ) is eigenvalue of φ.
(ii) An eigenvector v ∈ Π \ {0} relative to r.
(iii) Be f : Π \ {0} → R defined by f(v) = min

i=1,..n

e∗i◦φ(v)
e∗i◦v

, with e∗i ◦ v 6= 0. Then r =

max
v∈Π\{0}

f(v).

The differences with respect to the positive matrix are that the spectral radius can be
0 ; the algebraic and geometric multiplicity of r can be different from 1 ; the eigenvalue
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of maximal absolute value can be not unique. Frobenius found the property that φ non
negative must satisfy in order to extend to it the uniqueness results of Perron’s theorem:
the function needs to be irreducible. We will not delve into this as it is out of our scope.

E.2 Applications

We make extensive use of this theorem when it is time to both analytically and numeri-
cally compute the epidemic threshold.

• In Eq.(3.16) we use Lemma (i) of the Perron’s Theorem to prove that:

ρ
(
(1 − µ)I+ λA>

)
= 1 − µ+ λρ(A>). (E.1)

In fact, in general ρ(A+ B) 6= ρ(A) + ρ(B). We start by noticing that the eigenval-
ues of
P = (1 − µ)I+ λA> are xP = 1 − µ+ λxA, because every eigenvector of A is also
eigenvector of the identity; moreover being A symmetric (by definition of undi-
rected network) its eigenvalues are all real xA ∈ R. To compute the spectral radius,
we have to evaluate |xP | and find its maximum value. Of course xP belongs to a
certain real interval IP = [xmin, xMax], therefore:

max
xP∈I

|xP | =


|xmin| if xmin < xMax < 0
|xmin| if xmin < 0, xMax > 0, |xmin| > xMax
xMax if xMax > xmin > 0
xMax if or xmin < 0, xmax > 0, xMax > |xmin|

(E.2)

We now substitute xP = 1−µ+λxA, with xA ∈ [xAmin, xAmax]. As A is non-negative
, we can apply Lemma (i) in Perron’s Corollary and therefore we know that ρ(A) =
xAmax > 0 and |xA| 6 xAmax. Moreover (1−µ) > 0 by definition of µ as a probability.
Therefore, we have restricted our possible intervals IP to be [1−µ+ λxAmin, 1−µ+
λxAmax]. This is the case corresponding to xPmax > 0 and xPmax > |xPmin|, that we
find in the last two cases of Eq.(E.2). In conclusion, the spectral radius of P is:

ρ(P) = max
xP∈I

|xP | = x
P
Max = 1 − µ+ λxAmax = 1 − µ+ λρ(A). (E.3)

• Another important application of Perron’s theorem is given by the direct use of
Lemma (v) for computing the spectral radius of a non-negative matrix. The nu-
merical method that implements it is usually called power method. It is sufficient
to take a non zero (can be random) starting vector v0 and iterate the recurrence
relation

vk =
Avk−1

‖Avk−1‖
(E.4)

So, at every iteration, the vector vk is multiplied by the matrix A and normalized.
If we assume A has an eigenvalue that is strictly greater in magnitude than its other
eigenvalues and the starting vector v0 has a non-zero component in the direction
of an eigenvector associated with the dominant eigenvalue, then the sequence {vk}

converges to an eigenvector associated with the dominant eigenvalue. In the same
way, the sequence of associated values {λk} with:

λk =
v>kAvk

v>k vk
. (E.5)
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converges to the spectral radius of A.
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Appendix F

Aggregating time windows and
impact on the threshold

In many cases, information on network dynamics can be coarse. Data often report the
temporal evolution at a lower resolution time scale (i.e. the time step is wider) than
real one: ∆tdata > ∆treal. The temporal-network we can reconstruct from data thus
corresponds to an aggregated representation of the real and finer temporal dynamics.
This means that all causal structures and temporal correlations that occur at time scales
that smaller than the coarse data-resolution are lost. Since these structures can impact
disease dynamics, it is crucial to assess how such coarser representation influences the
description of epidemic processes ([48]). Here, we study the influence of two aggrega-
tion schemes on the epidemic threshold. HET scheme is a weighted aggregation of the
snapshots, obtained by summing link weights: W(t),W(t+ 1)→W(t)+W(t+ 1) where
W(t) is the weighted adjacency matrix of time t. HOM is topologically equivalent to HET,
having the exact same set of links. Each link is given an equal weight corresponding to
the average link weight of the weight distribution of the HET network aggregated over
the same period. As a result, both schemes share the same average weight at every ag-
gregation interval, but HET accounts for weight heterogeneity.
We apply these aggregation schemes to our network of encounters. We use the intrinsic
transmissibility λ for comparison across different aggregation schemes and intervals, as
it does not depend on weight. Starting from the finest resolution (∆t=1), we aggregate
snapshots recursively, increasing each time the aggregation interval ∆tk. We consider
the recovery rate m as an intrinsic property of the disease, thus not changing with ag-
gregation. The probability of recovery after a time ∆t is ke−m∆t Hence, we compute the
recovery probability µ(∆tk) at the aggregation interval ∆tk = kdt = k as the probability
of recovering within that interval µ(∆tk) = 1 − e−mk. In this way we account for the
changing of the time-scale of network dynamics via a rescaling of the recovery proba-
bility µ. We recall that high recovery rates mean short average infectious periods, and
thus fast disease progression at node level. Conversely, low recovery rates induce long
infectious periods, resulting in slower microscopical disease dynamics.

The curves of Figure (F.1) show that the prediction made on the aggregated sex-
workers network deteriorates with the increase of the time aggregation window ∆t.
Because, as expected, the aggregation induces a loss of the temporal information with
the result that the aggregated network performs poorly with respect to reproducing the
behaviour obtained in the original network. By focusing on the HETEROGENEOUS
time-aggregation (blue lines) we find (λ∆t/λ1) < 1: the HET network becomes more
vulnerable with respect to the original time-resolution. The reason is that aggregation

91



92APPENDIX F. AGGREGATING TIME WINDOWS AND IMPACT ON THE THRESHOLD

Figure F.1: HET and HOM aggregation schemes compared.

creates more paths of diffusion for the epidemic and also increases the link density ([48]).
All these effects tend to facilitate the spread of a disease, so that the resulting epidemic
threshold is lower than the one computed on the original temporal network. The effect
is more rapid and stronger for the fast disease (e.g. m = 0.1 days−1 in shaded blue),
because in that case the disease has the possibility to experience the entire landscape of
dynamical changes the network undergoes through, thus differentiating a lot between
the pattern obtained at the highest resolution and the aggregated one.

If we focus on the HOM aggregation scheme, we observe that the epidemic thresh-
old predicted for a given ∆t is systematically higher than the one obtained in the HET
scheme for the same ∆t value (same intensity of color, dashed lines vs. continuous lines
in Fig.(F.1) ). The reason lies in the way weights are distributed over the links of the
aggregated networks. While the HET scheme preserves the heterogeneity of the dura-
tion of the contacts, cumulating the duration of the interaction established by each pair
of individuals, this information is lost in the HOM scheme as the total contact duration
is homogeneously distributed among all contacts. Heterogeneity of the weights has a
strong effect on the evolution of epidemics and in many cases it has the effect of favour-
ing the spread of diseases. This results in a lower epidemic threshold for HET than its
homogeneous counterpart, for a given ∆t. The faster the disease is, the smaller is the dif-
ference observed in the epidemic threshold obtained from the two aggregation schemes.
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