

An empirical study on

ensemble of segmentation

approaches

University of Padova - Department of Information Engineering

BSc in Computer Engineering

Academic Year 2021-2022

Supervisor Author

Prof. Loris Nanni Alberto Formaggio

__

July 2022

To my family, who always supported me and

gave me the opportunity to pursue higher education.

iv

Abstract (English version)

Recognizing objects in images requires complex skills that involve

knowledge about the context and the ability to identify the borders of

the objects. In computer vision, this task is called semantic

segmentation and it pertains to the classification of each pixel in an

image. The task is of main importance in many real-life scenarios: in

autonomous vehicles, it allows the identification of objects surrounding

the vehicle; in medical diagnosis, it improves the ability of early

detecting dangerous pathologies and thus to mitigate the risk of serious

consequences. In this work, we propose a new ensemble method able

to solve the semantic segmentation task. The model is based on

convolutional neural networks (CNNs) and transformers. An ensemble

uses many different models whose predictions are aggregated to form

the output of the ensemble system. The performance and quality of the

ensemble prediction are strongly connected with some factors, one of

the most important is the diversity among individual models. In our

approach, this is enforced by adopting different loss functions and

testing different data augmentation. We developed the proposed

method by combining DeepLabV3+, HarDNet-MSEG, and Pyramid

Vision Transformers. The developed solution was then assessed

through an extensive empirical evaluation in five different scenarios:

polyp detection, skin detection, leukocytes recognition, environmental

microorganism detection, and butterfly recognition. The model

provides state-of-the-art results. All resources will be available online

at https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation.

v

Sommario (versione Italiana)

Riconoscere oggetti all’interno delle immagini richiede delle abilità

complesse che richiedono una conoscenza del contesto e la capacità di

identificare i bordi degli oggetti stessi. Nel campo della computer

vision, questo compito è chiamato segmentazione semantica e riguarda

la classificazione di ogni pixel all’interno di un’immagine. Tale

compito è di primaria importanza in molti scenari reali: nei veicoli

autonomi, dove permette l’identificazione degli oggetti che circondano

il veicolo, o nella diagnosi medica, in cui migliora la capacità di

identificare patologie pericolose e quindi mitigare il rischio di serie

conseguenze. In questo studio, proponiamo un nuovo modello per un

multiclassificatore in grado di risolvere il compito di segmentazione

semantica. Il modello si basa su reti neurali convoluzionali (CNN) e

transformers. Un multiclassificatore usa diversi modelli le cui stime

vengono aggregate così da ottenere l’output del sistema di

multiclassificazione. Le prestazioni e la qualità delle previsioni

dell’ensemble sono fortemente connessi ad alcuni fattori, tra cui il più

importante è la diversità tra i singoli modelli. Nell’approccio qui

proposto, abbiamo ottenuto questo risultato adottando diverse loss

functions e testando con diversi metodi di data augmentation. Abbiamo

sviluppato questo metodo combinando DeepLabV3+, HarDNet-MSEG

e dei Pyramid Vision Transformers (PVT). La soluzione qui sviluppata

è stata poi esaminata mediante un’ampia valutazione empirica in 5

diversi scenari: rilevamento di polipi, rilevamento della pelle,

riconoscimento di leucociti, rilevamento di microorganismi e

riconoscimento di farfalle. Il modello fornisce dei risultati che sono allo

stato dell’arte. Tutte le risorse sono disponibili online all’indirizzo

https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation.

 vi

Contents

Introduction .. 1

Materials and Methods .. 6

2.1 Deep Learning for Semantic Image Segmentation ... 6

2.2 Loss functions... 8

2.2.1 Dice Loss ... 10

2.2.2 Tversky Loss .. 10

2.2.3 Focal Tversky Loss .. 11

2.2.4 Focal Generalized Dice Loss ... 11

2.2.5 Log-Cosh Type Losses .. 11

2.2.6 SSIM Loss ... 12

2.2.7 Different Functions Combined Loss .. 12

2.2.8 Cross Entropy .. 13

2.2.9 Weighted Intersection over Union ... 13

2.2.10 Structure Loss .. 14

2.2.11 BoundExpStructure.. 15

2.2.12 Boundary Enhancement Loss .. 15

2.2.13 Contour-aware Loss ... 16

2.3 Data Augmentation... 16

2.3.1 Shadows ... 17

2.3.2 Contrast and Motion Blur .. 18

2.3.3 Color Mapping ... 19

Results ... 20

3.1 Metrics .. 20

3.2 Datasets and testing protocols .. 21

3.2.1 Polyp segmentation (POLYP) ... 21

3.2.2 Skin segmentation (SKIN) ... 22

3.2.3 Leukocyte segmentation (LEUKO) ... 22

3.2.4 Butterfly identification (BFLY) ... 23

vii

3.2.5 Microorganism identification (EMICRO) .. 23

3.3 Experiments .. 23

3.3.1 Baseline ensembles .. 23

3.3.2 Ablation studies .. 25

3.3.3 Comparison with the literature ... 28

Conclusions ... 32

References ... 34

1

Chapter 1

Introduction

Being able to recognize objects in images has been for a long time a prerogative of human

beings. It has taken over 14 years to reach the level of an untrained human in the challenge of

Imagenet. Things become more complex when the task requires not only to recognize the object

in an image but also to identify its boundaries. This task is called semantic segmentation and in

machine learning this entails the classification of each pixel in an image. Due to the

improvements of performance related to the adoption of machine learning models, this task is

applied to many real-life scenarios [1,2]: in clinical practice, it can be used to identify polyps,

similarly, in skin and blood analysis the identification of objects may help to visually bound the

presence of different types of diseases. In addition, it can be used in autonomous vehicles, to

identify objects surrounding the vehicle, in classification of environmental microorganisms,

and in many other contexts.

The standard approach is to train a system composed of two modules: an encoder, and a

decoder. The first module learns a low-dimensional representation of the input that describes

semantics in the image. The second module learns to build the original input based on this low-

dimensional feature vector. This has been the approach adopted by U-Net [3], one of the first

systems developed for semantic segmentation.

Autoencoders [4] were also employed to resolve the task due to their ability to learn the

semantics of low-level representations of an image through the encoder module as well as the

ability to re-construct the original input from this reduced representation. Autoencoders

performance and results are the reasons why many researchers and practitioners from the

computer vision area have adopted them.

The performance of autoencoders, as well as the ones of other classifier technologies, are

strongly affected by architecture configurations, and other configurations often referred to as

2 Introduction

hyper-parameters tuning. That consists in finding the best values of some attributes of the

model. This is a context-specific task that requires domain knowledge as well as expertise with

the adopted machine learning techniques, resulting in big efforts and time consumption. The

well-known no-free lunch theorem for machine learning highlights that a single model that

works well on all the datasets cannot exist. Based on this evidence, another approach consists

in adopting sets of classifiers, often shallow or weak, whose predictions are aggregated to form

the output of the system. These frameworks are called ensemble methods. Roughly speaking,

each classifier can be viewed as a voter in an election who expresses its preference on a set of

possible alternatives, then the one that gets the majority of the votes is the chosen one for that

election. In an ensemble, individual classifiers are trained on the same dataset, in such a way

each model should generalise differently in the training space. Ensembles provide state-of-the-

art results in many domains, but it is important to ensure some properties. One of them is to

enforce some kind of diversity in the set of classifiers.

Figure 1. The common ensemble architecture

In this work, we propose a novel ensemble method for semantic segmentation. Our model is

based on convolutional neural networks (CNNs) and transformers. Diversity among individual

classifiers is enforced by adopting different loss functions and testing different data

augmentation.

The model has been developed by combining DeepLabV3+ [5], HarDNet-MSEG [6], and

Pyramid Vision Transformers[7]. We tested our proposal in five real-world scenarios: polyp

detection, skin detection, leukocytes recognition, environmental microorganism detection and

butterfly recognition. The developed solution was then assessed through an extensive empirical

evaluation that compares our proposal with state-of-the-art solutions highlighting promising

results often better than the best approaches.

Introduction 3

Due to improvements of the discipline, machine learning techniques are used and applied in

many different areas, for instance in medical diagnosis or in biology. Convolutional neural

networks (CNNs) and other classic predictors are adopted for assisting researchers and

practitioners in better identifying objects in images. This is the case, for instance, of skin

segmentation or butterfly identification. However, a drawback of this technology is that a huge

amount of data is needed to train these systems, but labeled data is a scarce resource in many

domains. This is one of the reasons why big efforts are spent building and publishing datasets

in specific areas, such an example is Kvasir-SEG [8], a recent dataset that contains polyp images

annotated at pixel level by a group of experts.

A novel architecture came from the scope of natural language processing (NLP), where

researchers study how to comprehend the semantic of texts with the purpose of automating

tasks such as summarization or translation. This new model called Transformer is designed with

a self-attention mechanism that enables the system to focus on specific part of the input.

Transformers have also been applied to computer vision tasks, gaining performance comparable

to or even better than CNNs. Once again, the main drawback of these models resides in the high

demand of data useful to train a stable and performing system. TransFuse [9] and UACANet

[10] are two recent approaches in the medical domain that combine different techniques: the

first is a combination of CNN kernels and Transformers, while the second blends U-Net and a

parallel axial attention autoencoder. No matter the architecture, the aim is to capture

information at both local and global levels.

As previously noticed, semantic segmentation becomes of main importance in many contexts.

Autonomous vehicles, for instance, use semantic segmentation to identify objects in the

environment surrounding the vehicle in order to make safe decisions[11]. In clinical practice, it

helps reduce the exposure to serious risks by detecting pathologies in their early stages, such as

polyps detection that may prevent the evolution of colorectal cancers [2]. Similarly, in skin

detection, deep learning methods are employed in various areas, spanning from face detection

to hand gesture recognition[12]. In this context, deep approaches have faced some difficulties,

such as the clutter in the background that hinders the reliable detection of hand gestures in real-

world environments.

CNNs have shown their appeal also in this context, two examples are the works by Roy et al.

[13] and Arsalan et al. [14]. In the former work, authors suggest using a CNN based on skin

detection techniques to enhance the hand detector output. The latter instead introduced a

residual skip connections (OR-Skip-Net) CNN that decreases the computational effort of the

network and at the same time tackles demanding skin segmentation tasks. The goal is achieved

4 Introduction

by moving data to the last layer of the network directly from the initial layer. CNNs are also

employed for automatically translate sign language [15].

A comparative analysis is reported in [12] through an extensive empirical evaluation of several

leading technologies on a set of skin detection benchmarks.

Figure 2: Example of a Convolutional Neural Network (CNN)

Recently, deep learning has also been used for the automatic recognition and classification of

leukocytes [16]. This practice helps medical practitioners diagnose various blood-related

diseases. This can be done in many different ways: practitioners can analyse the percentages

through the histogram-based technique [15] or iterative algorithms (such as GrabCut [17]) that

segment white blood cells.

Contribution: This paper proposes a new ensemble method based on DeepLabV3+, HarDNet-

MSEG, and Pyramid Vision Transformers backbones. The proposal is intended to deal with

semantic segmentation. In this work, diversity among individual classifiers in the ensemble is

enforced by adopting different loss functions and testing different data augmentation

approaches. We tested the proposed method on five different scenarios and compared the results

with the existing frameworks. The empirical evaluation highlights our results that are close to

or even better than the state-of-the-art level.

Introduction 5

6

Chapter 2

Materials and Methods

In this section, we will provide all the techniques and approaches used to generate our ensemble.

In particular, we will report the mathematical formalisation of the loss functions adopted to

design the networks.

2.1 Deep Learning for Semantic Image Segmentation

In literature, different deep learning models are proposed to address semantic segmentation

problems.

Semantic segmentation intends to identify objects in an image, with their corresponding

boundaries. The main purpose is therefore to assign a class at the pixel level; a task achieved

thanks to FCNs (Fully convolutional networks). FCNs have very high performance and unlike

CNNs they use a fully convolutional last layer instead of a fully connected one [18].

In order to obtain deconvolutional networks, such as U-Net, FCNs and autoencoders are

combined together.

Figure 3. Semantic Segmentation of a 2D image

2.1 Deep Learning for Semantic Image Segmentation 7

U-Net represents the first attempt to use autoencoders in an image segmentation task. Through

the autoencoder it is possible to downsample the input and simultaneously increment the

number of features used to describe the input space. We can find another symbolic example in

SegNet [19]: here, the max pool indices of the relative encoder level feed the decoders, while

VGG is used for encoding. This allows to reduce memory usage and also has a more promising

segmentation.

DeepLab [20] consists of a series of autoencoder models introduced by Google, which has

shown excellent results in semantic segmentation applications [21]. These are some

of the main features introduced to guarantee good performance:

• A dilated convolution reduces the effects of pooling and stride, thereby greatly in-

creasing the resolution.

• Through an Atrous Spatial Pyramid Pooling, information is obtained at various scales.

• A union of CNNs and probabilistic graphic models makes it possible to detect the

boundaries of objects.

We find in DeepLabV3 two most important innovations: a 1x1 convolution in Atrous Spatial

Pyramid Pooling and a batch normalisation: a set of modules placed in parallel and in cascade

for convolutional dilation. DeepLabV3+ [5], an expansion of the family developed by Google,

is adopted in this work. This expansion includes, among the most important features, a decoder

with depth-wise convolutions and point-wise convolutions. The depth-wise works in the same

location but with various channels, while the point-wise uses the same channel in various

locations. In order to obtain different designs for a framework, we can consider other

characteristics of the structure of a model.

In this paper, we will investigate ResNet101 [22], a very famous CNN that acquires a residual

function by referring to the block input ([33] is recommended for an exhaustive list of CNN

structures). We adopt the ResNet101 network, pre-trained on the VOC segmentation dataset

and then modulated through the parameters suggested1. These parameters have not been

modified in order to prevent overfitting phenomena (i.e. same parameters in all the tested

datasets):

- initial learning rate = 0.01;

- number of epoch = 10 (using the simple data augmentation approach) or 15 (using more

complex data augmentation approach due to the slower convergence using this larger

augmented training set);

- momentum = 0.9;

1 https://github.com/matlab-deep-learning/pretrained-deeplabv3plus

8 Materials and Methods

- L2Regularization = 0.005;

- Learning Rate Drop Period = 5;

- Learning Rate Drop Factor = 0.2;

- Shuffle training images every-epoch;

- Optimizer = SGD (stochastic gradient descent).

Firstly, we propose an ensemble of DeepLabV3+ models obtained by applying various loss and

data augmentation methods, and then we combine the ensemble with HarDNet-MSEG [6], and

Pyramid Vision Transformers (PVT) [7]. The HarD-Net-MSEG (Harmonic Densely Connected

Network), a model influenced by Densely Connected Networks, allows the reduction of

memory consumption in this way: it decreases most of the connection layers at the DenseNet

level, in order to reduce the costs of concatenation. In addition, the input / output channel ratio

is equalised thanks to the increase in the channel width of the layers (consequently to the

increase in its connections).

The PVT is a pure convolution-free transformer network which aims to acquire a high-

resolution representation starting from a fine-grained input. The computational cost of the

model is decreased by a progressive pyramidal shrinkage, accompanied by the depth of the

model. A spatial-reduction attention (SRA) layer is introduced to an additional reduction of the

computational complexity of the system.

In this work, both HarD-Net-MSEG and PVT have been trained using the same options in all

the problems: batch size 15; number of epochs 100; initial learning rate 0.0001; decay

rate=0.1; decay epoch=50.

2.2 Loss functions

The main goal of a neural network would be to map every item perfectly by using the perfect

weights. However, this is not possible due to the presence of too many unknowns.

The problem of learning is cast as an optimization where weights are modified little by little in

order to make more accurate predictions. In a CNN, weights are learned by using the stochastic

gradient descent algorithm.

The gradient descent algorithm seeks the direction opposite to the gradient, hence the direction

along which the loss function decreases the most.

We can see neural networks as an optimization algorithm which wants to minimise the error (or

the loss) of our mapping. The objective function is called loss function.

2.2 Loss functions 9

Figure 4. A loss function measures the quality of the output

Some loss functions tested for designing the networks ensemble will be presented in this

section, including the loss functions suggested in [24] (subsection 2.2.1-2.2.7) (tested also in

[24]) and the new ones here proposed.

Different loss functions influence the training phase and the performance of the model. In

semantic segmentation tasks, pixel-wise-cross-entropy is one of the most widespread and

adopted loss functions; this operates at the pixel level, verifying whether the predicted label of

a given pixel coincides with the ground-truth. One of the main problems with this approach is

the critical situation in which the dataset is unbalanced with respect to the labels, but it can be

solved through the use of counterweights. The Dice loss function [25] aims to verify the overlap

between the predicted segmented images and the ground-truth. This approach, which has also

been used in this work, is widespread in semantic segmentation.

An exhaustive overview of image segmentation and loss functions is available in a recent survey

[25].

10 Materials and Methods

2.2.1 Dice Loss

A widely adopted metric for evaluating the performance of models used for semantic

segmentation is the Dice Loss, obtained from the Sørensen-Dice coefficient. This coefficient

made it possible to evaluate how similar two images are and their value span in the interval [0,

1]. In [26] Generalized Dice Loss was introduced, a multiclass variant of Dice Loss.

We denote the Generalized Dice Loss between the predictions Y and the training targets T as:

𝐿𝐺𝐷(𝑌, 𝑇) = 1 −
2 ∗ ∑ 𝑤𝑘 ∗ ∑ 𝑌𝑘𝑚 ∗ 𝑇𝑘𝑚

𝑀
𝑚=1

𝐾
𝑘=1

∑ 𝑤𝑘 ∗ ∑ (𝑌𝑘𝑚
2 + 𝑇𝑘𝑚

2)𝑀
𝑚=1

𝐾
𝑘=1

(1)

 𝑤𝑘 =
1

(∑ 𝑇𝑘𝑚)
𝑀
𝑚=1

2 (2)

Here, M represents the number of pixels, K represents the number of classes.

The aim of the weighting factors 𝑤𝑘 is to facilitate the network to concentrate on a limited

region (therefore it is inversely proportional to the labels frequency of a given class k).

2.2.2 Tversky Loss

A frequent issue in machine learning as well as in image segmentation is represented by

unbalanced classes, i.e., the phenomenon whereby one class prevails over another. To solve this

problem, Tversky Loss function was proposed [27]. The original formula of the Tversky index,

an expansion of the Dice similarity coefficient that can help us formalise the loss function, is

the following:

𝑇𝐼𝑘(𝑌, 𝑇) =
∑ 𝑌𝑝𝑚𝑇𝑝𝑚
𝑀
𝑚=1

∑ 𝑌𝑝𝑚𝑇𝑝𝑚
𝑀
𝑚=1 + 𝛼∑ 𝑌𝑝𝑚𝑇𝑛𝑚

𝑀
𝑚=1 + 𝛽∑ 𝑌𝑛𝑚𝑇𝑝𝑚

𝑀
𝑚=1

 (3)

Here, T represents the ground truth for a certain class k, Y represents the predictions; 𝛼 and 𝛽

are two weighting factors used to handle a trade-off between false negatives and false positives;

M indicates the total number of pixels, 𝑛 represents the negative class and 𝑝 the positive class.

A particular case is when 𝛼 = 𝛽 = 0.5, we have that the Tversky Index boils down to the Dice

Similarity coefficient.

We can formalise, based on the aforementioned formula, the Tversky Loss as:

𝐿𝑇(𝑌, 𝑇) =∑ (1 − 𝑇𝐼𝑘(𝑌, 𝑇))
𝐾

𝑘=1
 (4)

Here, 𝐾 is the number of classes.

2.2 Loss functions 11

In our code, we fix 𝛼 = 0.3 and 𝛽 = 0.7. We use these values in order to focus on false

negatives.

2.2.3 Focal Tversky Loss

The CE function (cross-entropy) intends to limit the dissimilarity between two probability

distributions. Several versions of CE can be found in the literature, including for example focal

loss [28] and binary cross entropy. The first, using a modulating factor 𝛾 > 0, consents the

model to focus on hard samples instead of properly classified examples. The second is an

adaptation of CE that must be applied to binary classification problems (i.e., only-two classes

problems).

Focal Tversky Loss is formalised as:

𝐿𝐹𝑇(𝑌, 𝑇) = 𝐿𝑇(𝑌, 𝑇)
1
𝛾 (5)

In our work, we choose 𝛾 = 4 3⁄ .

2.2.4 Focal Generalized Dice Loss

Moreover, the modulating factor was used in Generalized Dice Loss obtaining the

Focal Generalized Dice Loss [29], a function that by focusing on very limited Regions of

Interest allows to decrease the weight of common samples.

𝐿𝐹𝐺𝐷(𝑌, 𝑇) = 𝐿𝐺𝐷(𝑌, 𝑇)
1
𝛾 (6)

In our work, we choose 𝛾 = 4 3⁄ .

2.2.5 Log-Cosh Type Losses

By combining Dice Loss and Log-Cosh function we obtain Log-Cosh Dice Loss. Log-Cosh

function is commonly applied with the purpose of smoothing the curve in regression

applications. Actually, for small 𝑥, log (cosh(𝑥)) corresponds to 𝑥2 2⁄ and for large 𝑥 to |𝑥| −

log (2). Log-Cosh Generalized Dice Loss is formalised as:

𝐿𝑙𝑐𝐺𝐷(𝑌, 𝑇) = log(cosh(𝐿𝐺𝐷(𝑌, 𝑇))) (7)

With the intention of smoothing their curves the same logic has been applied to other loss

functions, e.g. the Log-Cosh Focal Tversky Loss, which we can formalised as:

𝐿𝑙𝑐𝐹𝑇(𝑌, 𝑇) = log(cosh(𝐿𝐹𝑇(𝑌, 𝑇))) (8)

12 Materials and Methods

2.2.6 SSIM Loss

SSIM Loss [30] is obtained from the Structural similarity (SSIM) index [31], usually adopted

to evaluate the quality of an image. SSIM index can be formalised as:

𝑆𝑆𝑖𝑚(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
(9)

Here, 𝜇𝑥, 𝜇𝑦 are the local means, 𝜎𝑥, 𝜎𝑦, are the standard deviations, and 𝜎𝑥𝑦, is the cross-

covariance for images x, y, while 𝐶1, 𝐶2 are regularization constants.

The SSIM Loss between one prediction Y and the corresponding training target T is defined as:

𝐿𝑆(𝑌, 𝑇) = 1 − 𝑆𝑆𝑖𝑚(𝑌, 𝑇) (10)

Moreover, here we proposed 𝐿𝑀𝑆(𝑌, 𝑇), defined as 𝐿𝑆 but instead of SSIM we use the

Multiscale structural similarity (MS-SSIM) index.

2.2.7 Different Functions Combined Loss

The possibility of obtaining high precision but low recall is frequent with unbalanced data.

In Generalized Dice Loss a common strategy is applied to mitigate the effects of the class

imbalance. We define as weight 𝑤𝑘 the inverse of the frequency of the label.

To reduce the network probability of missing lesions, in certain contexts it is advisable to weight

false positives lower than false negatives. With the intention of emphasising the benefits of both

loss functions and increasing the capacity of the model to focus on difficult samples, we

combine Focal Tversky Loss and Generalized Dice Loss. The formula of the combination is:

𝐶𝑜𝑚𝑏1 (𝑌, 𝑇) = 𝐿𝐹𝐺𝐷(𝑌, 𝑇) + 𝐿𝐹𝑇(𝑌, 𝑇) (11)

In the same way, combining Log-Cosh Dice Loss, Focal Generalized Dice Loss, and Log-Cosh

Focal Tversky Loss allows to reduce the weight of simple samples. Furthermore, we control

the non-convex behavior of the curve by adopting the Log-Cosh function:

𝐶𝑜𝑚𝑏2(𝑌, 𝑇) = 𝐿𝑙𝑐𝐺𝐷(𝑌, 𝑇) + 𝐿𝐹𝐺𝐷(𝑌, 𝑇) + 𝐿𝑙𝑐𝐹𝑇(𝑌, 𝑇) (12)

In our experiments we also tried to combine Generalized Dice Loss and the SSIM Loss:

𝐶𝑜𝑚𝑏3 (𝑌, 𝑇) = 𝐿𝑆(𝑌, 𝑇) + 𝐿𝐺𝐷(𝑌, 𝑇) (13)

2.2 Loss functions 13

2.2.8 Cross Entropy

The cross-entropy (CE) loss function provides us with a measure of the difference between two

probability distributions. The goal is to minimize this difference and, in doing so, it has no bias

between small or large regions.

This could be an issue when dealing with imbalanced datasets. Hence, the weighted cross-

entropy loss was introduced and it resulted in well-balanced classifiers for imbalanced scenarios

[32].

The formula for weighted binary cross entropy is presented in (14). In this equation, 𝑇 refers to

the ground truth label image, while 𝑇𝑖𝑘 is the true value for the pixel 𝑖 and it can be equal to

either 0 or 1. It is equal to 1 if the pixel 𝑖 belongs to the class 𝑘, 0 otherwise.

𝑃 is the prediction for the output image and 𝑃𝑖𝑘 is the probability of the 𝑖-th pixel to belong to

the 𝑘-th class obtained by using the sigmoid activation function. For P we used the softmax

activation function, which returns probabilities.

𝑤𝑖𝑘 is the weight given to the 𝑖-th pixel of the image for the class 𝑘. These weights were

calculated by using an average pooling over the mask with a kernel 31x31 and a stride of 1 in

order to consider also nonmaximal activations.

𝐿𝑊𝐵𝐶𝐸 = −∑ ∑ 𝑤𝑖𝑘 ∗ 𝑇𝑖𝑘 ∗ log(𝑃𝑖𝑘)
𝑁

𝑖=1

𝐾

𝑘=1
(14)

Where 𝐾 is the number of classes and 𝑁 the number of pixels.

2.2.9 Weighted Intersection over Union

Another well-known loss function is Intersection over Union (IoU) loss, which was introduced

for the first time in [33]. The original formula was:

𝐼𝑜𝑈 =
|𝑃 ∩ 𝑇|

|𝑃 ∪ 𝑇|
 (15)

As mentioned earlier, 𝑇 is the truth label image and 𝑃 is the prediction for the output image.

Unfortunately, the set symbols for Intersection and Union are not differentiable because 𝑃 and

𝑇 have to be either 0s or 1s. This is not true for 𝑃, so the formula was then approximated with

the following:

𝐼𝑜𝑈′ =
|𝑃 × 𝑇|

|𝑃 + 𝑇 − 𝑃 × 𝑇|
 (16)

14 Materials and Methods

Where 𝑃 × 𝑇 is the element-wise multiplication of 𝑇 and 𝑃. For what concerns the denominator,

we subtract the “intersection” between 𝑃 and 𝑇 because we do not want to consider the

intersection twice.

Once the set operators have been converted into arithmetic ones, the formula is differentiable

and it is possible to evaluate the gradient.

However, 𝐼𝑜𝑈 is an evaluation metrics used for evaluating the goodness of the prediction.

Hence, a value of 1 is equivalent to a perfect prediction. For this reason, the loss function will

be:

𝐿𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈
′ (17)

Unfortunately, this function has to face the same problem of CE in inferring the label of the

boundary of each object, therefore, as suggested in [34], we use the weighted Intersect over

Union (wIoU), instead of the standard IoU.

The formula of the weighted Intersect over Union loss will be:

𝐿𝑤𝐼𝑜𝑈 = 1 −
|𝑤 ∗ 𝑃 ∗ 𝑇|

|𝑤 ∗ (𝑃 + 𝑇) − 𝑤 ∗ 𝑃 ∗ 𝑇|
= 1 −

∑ 𝑤𝑖𝑘 ∗ ∑ 𝑇𝑖𝑘 ∗ 𝑌𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1 + 1

∑ ∑ 𝑤𝑖𝑘(𝑇𝑖𝑘 + 𝑌𝑖𝑘 −
𝐾
𝑘=1

𝑁
𝑖=1 𝑇𝑖𝑘 ∗ 𝑌𝑖𝑘) + 1

 (18)

Where 𝑁 is the number of pixel and 𝐾 is the number of classes. The weights 𝑤𝑖𝑘 are calculated

as said previously. 𝑇𝑖𝑘 and 𝑌𝑖𝑘 are, respectively, the ground truth value and the prediction value

for the pixel 𝑖 belonging to the class 𝑘. We added 1 to both the numerator and the denominator

in order to prevent the undefined division
0

0
.

2.2.10 Structure Loss

Now, based on the intuition in [6], weighted Intersect over Union and weighted binary-crossed

entropy are considered together.

𝐿′𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 𝐿𝑤𝑏𝑐𝑒 (19)

We decided to change the proposed loss in the following way:

Instead of applying an avgpool over the mask, we have done this over the predictions to improve

the diversity in the deep neural network.

Then, we want to give more importance to the binary-crossed entropy loss, so we use a weight

of 2 for that one.

We obtain the final loss, which is:

2.2 Loss functions 15

𝐿𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 2𝐿𝑤𝑏𝑐𝑒 (20)

2.2.11 BoundExpStructure

We decided to combine Structure Loss, Boundary Loss and Exponential Logarithmic Loss in

order to have better performances on the small structures of a highly imbalanced dataset and,

at the same time, have better identification of the boundaries of the image.

𝐿𝐵𝑜𝑢𝑛𝑑𝐸𝑥𝑝𝑆 = 𝐿𝐵𝑜𝑢𝑛𝑑 + 𝐿𝐸𝑥𝑝 + 𝐿𝑆𝑡𝑟 (21)

2.2.12 Boundary Enhancement Loss

The Boundary Enhancement Loss is a loss proposed in [35] which explicitly focus on the

boundary areas during training.

This loss has very good performance as it requires neither any pre- nor post-processing of the

image nor a particular net in order to work.

The Laplacian filter ℒ(·) is the milestone of this loss as it generates strong responses around

the boundaries and zero everywhere else. When applying the laplacian filter to a mask 𝑆, the

result is:

ℒ(x, y) =
∂2𝑆

𝜕𝑥2
+
𝜕2𝑆

𝜕𝑦2
 (22)

The positive aspect about using the Laplacian filter, is that it can be achieved quite easily

through a series of convolution operations. As a result, the idea is to evaluate the difference

between the filtered output of ground truth labels and the filtered output of the predictions.

The boundary enhancement loss, as proposed in [35] is:

𝐿𝐵𝐸 = ||ℒ(𝑇) − ℒ(𝑌)||2 = ||
∂2(𝑇 − 𝑌)

𝜕𝑥2
+
𝜕2(𝑇 − 𝑌)

𝜕𝑦2
||

2

 (23)

Where || ∙ ||2 is the 𝑙2 norm. This can be easily achieved as already described in the original

paper [35].

Based on the idea of the same paper, we used Dice Loss and Boundary Enhancement loss

together, weighted appropriately, and the Structure Loss:

𝐿𝐷𝑖𝑐𝑒𝐵𝐸𝑆 = 𝜆1𝐿𝐷𝑖𝑐𝑒 + 𝜆2𝐿𝐵𝐸 + 𝐿𝑆𝑡𝑟 (24)

The best results were achieved by using 𝜆1 = 1 and 𝜆2 = 0.01

16 Materials and Methods

2.2.13 Contour-aware Loss

Contour-aware Loss was proposed for the first time in [74]. It consists in a weighted binary

cross-entropy loss where the weights are obtained with the aim of giving more importance to

the borders of the image.

In the loss a morphological gradient edge detector was employed. Basically, the difference

between the dilated and the eroded label map is evaluated. For smoothing purposes, the

Gaussian blur was later applied. This spatial weight map can be formulated as:

𝑀𝐶 = 𝐺𝑎𝑢𝑠𝑠 (𝐾 ∙ (𝑑𝑖𝑙𝑎𝑡𝑒(𝑇) − 𝑒𝑟𝑜𝑑𝑒(𝑇))) + 𝟙 (25)

here 𝑑𝑖𝑙𝑎𝑡𝑒(𝑇) and 𝑒𝑟𝑜𝑑𝑒(𝑇) are dilation and erosion operations with a 5 × 5 kernel. K is a

hyperparameter for assigning the high value to contour pixels which was set to 5 empirically. 𝟙

is the matrix with 1 in every position.

We can formalise now the new loss:

𝐿𝐶 = −∑ 𝑀𝑖
𝐶 ∗ (𝑇𝑖 ∗ log(𝑌𝑖) + (1 − 𝑇𝑖) ∗ log(1 − 𝑌𝑖))

𝑁

𝑖=1
 (26)

Finally, the we are going to use in our ensembles is:

𝐿𝐶𝑆 = 𝐿𝐶 + 𝐿𝑆𝑡𝑟 (27)

2.3 Data Augmentation

The training phase of a classifier and the resulting performance of the system are strongly

influenced by the size of the dataset. This is also true for an ensemble method. Thus, to increase

the amount of data that can be used to train the system, several techniques may be applied to

the original dataset. In the next paragraphs, we shall describe the different techniques adopted

with the purpose of data augmentation. We employ these techniques on the training set, both

on the input samples and their mask. We leave the test set unchanged.

Two different data augmentation approaches are tested:

• DA1, base data augmentation consisting in horizontal and vertical flip, 90° rotation.

• DA2, the following operations are performed:

1. The image is displaced to the right or the left.

2. The image is displaced up or down.

3. The image is rotated by an angle randomly selected from the range [0°, 180°].

4. Horizontal or vertical shear by using the Matlab function randomAffine2d().

2.3 Data Augmentation 17

5. Horizontal or vertical flip.

6. Change in the brightness levels by adding the same value (random value be-

tween 25 and 50) to each RGB channel.

7. Change in the brightness levels by adding different values (random value be-

tween 25 and 50) to each RGB channel.

8. Add speckle noise, it adds multiplicative noise to the image I adding a value n×I,

where n is uniformly distributed random noise with mean 0 and variance 0.05.

9. Application of the technique “Contrast and Motion Blur”, described below.

10. Application of the technique “Shadows”, described below.

11. Application of the technique “Color Mapping”, described below.

Some artificial images (DA2 approach) contain only background pixels; to discard them we

simply delete all the images where there are less than 10 pixels that belong to the foreground

class.

Figure 5: Data Augmentation DA2

2.3.1 Shadows

New image samples can be obtained by creating shadows in the original set of images. Shadows

may be created randomly to the left or to the right of the original image. We use the following

criteria to decide the intensity of the shadow (direction = 1: right; direction = 0: left):

𝑦 =

{

 𝑚𝑖𝑛 {0.2 + 0.8√

𝑥

0.5
, 1} 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1

𝑚𝑖𝑛 {0.2 + 0.8√
1 − 𝑥

0.5
, 1} 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 0

(28)

18 Materials and Methods

2.3.2 Contrast and Motion Blur

Another technique for data augmentation that allows to derive new samples from an original

dataset is based on the combination of contrast and motion blur. The first one increases or

decreases the original contrast, the second one simulates the movement of the camera taking

the image. We developed two different contrast function and each time we choose one of them

at random.

The first function is defined as follows:

𝑦 =
(𝑥 −

1
2
)√1 −

𝑘
4

√1 − 𝑘(𝑥 −
1
2
)2
+ 0.5, 𝑘 ≤ 4 (29)

The parameter 𝑘 controls the contrast. Specifically: The contrast is increased when 𝑘 < 0; it is

decreased when 0 < 𝑘 ≤ 4; the image is unchanged when 𝑘 = 0.

The value of the parameter is drawn at random in the following range:

𝒰(2.8, 3.8) → Hard decrease in contrast;

𝒰(1.5, 2.5) → Soft decrease in contrast;

𝒰(−2,−1) → Soft increase in contrast;

𝒰(−5,−3) → Hard increase in contrast.

The second function is defined as follows:

𝑦 =

{

 1

2
(
𝑥

0.5
) 𝛼 0 ≤ 𝑥 <

1

2

1 −
1

2
(
1 − 𝑥

0.5
)𝛼

1

2
≤ 𝑥 ≤ 1

 (30)

The parameter 𝛼 controls the contrast. In particular, the contrast is increased when 𝛼 > 1; it is

decreased when 0 < 𝛼 < 1; if 𝛼 = 1, then the image is left unchanged.

The parameter is chosen randomly from four possible ranges:

𝒰(0.25, 0.5) → Hard decrease in contrast;

𝒰(0.6, 0.9) → Soft decrease in contrast;

𝒰(1.2, 1.7) → Soft increase in contrast;

𝒰(1.8, 2.3) → Hard increase in contrast;

The blurring effect that mimics the movement of the camera is applied right after the contrast

adjustment. We use the MATLAB function fspecial(’motion’, len, theta).

2.3 Data Augmentation 19

2.3.3 Color Mapping

Changing the color map of the image produces a new image. In particular, it is possible to map

the color of an image to the one of another image. We generated a pair of images by coupling

any image in the original training set with another randomly selected image in the same set. We

adopted the Stain Normalization toolbox2 which provides this functionality in three different

versions:

 RGB Histogram Specification

 Reinhard

 Macenko

2 The toolbox is authored by Nicholas Trahearn and Adnan Khan and available online at

https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/

20

Chapter 3

Results

We run an extensive empirical evaluation with the aim of measuring the performance of our

ensemble. We comprehend a comparison with several state-of-the-art models for a more

exhaustive evaluation of our system. The empirical evaluation is carried out on five real-world

scenarios: polyp segmentation, skin segmentation, leukocyte identification, butterfly and

microorganism identification.

3.1 Metrics

The system has been evaluated using two standard metrics: Dice score and Intersection over

Union (IoU). In the following formulae, TP, TN, FP, FN correspond to the true positives, true

negatives, false positives, and false negatives, respectively. A is the predicted mask (TP+FP)

and B is the ground truth map (TP+FN).

Dice score (which is equivalent to F1score in binary classification tasks) is a weighted average

of precision and recall. Formally, it is defined as:

𝐹1𝑠𝑐𝑜𝑟𝑒 = 𝐷𝑖𝑐𝑒 =
 |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
=

2 ∙ TP

2 ∙ TP + FP + FN
(31)

Intersection over Union (IoU) defines the shared area between two masks, divided by the area

of the union between the two maps. Formally, it is defined as:

𝐼𝑜𝑈 =
 |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=

TP

TP + FP + FN
(32)

In the experiments, images size has been modified due to the input size of the models. In these

cases, the predicted masks have always been changed back to their original dimension.

3.2 Datasets and testing protocols 21

3.2 Datasets and testing protocols

Some examples for images and masks, from each of the five datasets, are displayed in Figure

6. It is clear that they are very different segmentation problems.

Figure 6. Samples from polyp segmentation, skin segmentation, leukocyte identification,

butterfly and microorganism identification (images and masks).

3.2.1 Polyp segmentation (POLYP)

Polyp segmentation from colonoscopy is a challenging task requiring a two-class classification

between the low contrast colon background and polyp foreground pixels.

We present experimental results according to a very popular benchmark [6] available on

GitHub3 and including five datasets for polyp segmentation (i.e. Kvasir [37], ColonDB [38],

CVC-T [39] and ETIS [40], ClinicalDB [41])): the training set is made by 1450 images (from

the largest datasets, i.e. 900 images from Kvasir and 550 images from ClinicalDB) the others

are for the test set (100 images from Kvasir, 380 from ColonDB, 60 from CVC-T, 196 from

ETIS and 62 from ClinicalDB), as usually done in the literature. In these datasets we use resized

images of size 352×352.

3 https://github.com/james128333/HarDNet-MSEG

22 Results

3.2.2 Skin segmentation (SKIN)

The segmentation task in skin detection consists in recognizing the image portions that

represent "skin" and "no skin": as a result, it is a binary classification problem. We use the

framework proposed in [12] in this paper, which includes a small training set of 2000 images

from the ECU dataset [42] and ten datasets very different to each other, see Table 1. According

to the original testing protocol [12], dice (i.e. F1-score) is calculated at the pixel level and not

at the image level and averaged for the whole dataset. In these datasets we use resized images

of size 352×352.

Table 1. Test skin datasets. ECU dataset is split: 2000 images for training and 2000 for test.

ShortName Name #Samples Ref.

Prat Pratheepan 78 [43]

MCG MCG-skin 1000 [44]

UC UChile DB-skin 103 [45]

CMQ Compaq 4675 [46]

SFA SFA 1118 [47]

HGR Hand Gesture Recognition 1558 [48]

Sch Schmugge dataset 845 [49]

VMD Human activity recognition 285 [50]

ECU ECU Face and Skin Detection 2000 [42]

VT VT-AAST 66 [51]

3.2.3 Leukocyte segmentation (LEUKO)

Leukocyte recognition is the task of segmenting the white blood cells from the background,

with the aim of diagnosing many diseases such as leukemia and infections. In our experiment

we used the freely available4 LISC database [16], a collection of 250 hematological images

extracted from the peripheral blood of eight healthy people. Images have been acquired at high

resolution (720×576 pixels) and manually labelled to segment 10 different types of leukocytes.

In this work, we do not perform classification, therefore we consider only segmentation

performance. The testing protocol, as suggested by the authors of the dataset, is a 10-fold cross

4 http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm

3.3 Experiments 23

validation: Dice results are calculated at image level and averaged for each fold and then on the

10 folds. In this dataset we use resized images of size 513×513.

3.2.4 Butterfly identification (BFLY)

As already done in the literature, for butterfly identification we adopted the public dataset5 [52].

For a fair comparison we used the same testing protocol proposed by the authors of the dataset:

4-fold cross validation, each fold includes 208 test images and 624 training images. In this

dataset we use resized images of size 513×513.

3.2.5 Microorganism identification (EMICRO)

EMicro [53] is a public dataset6 of Environmental Microorganism Image Dataset Sixth Version

(EMDS-6). It is composed of 840 images: following the original paper we split the dataset and

the 37.5% of the images belongs to the test set.

In this dataset we use resized images of size 513×513.

3.3 Experiments

3.3.1 Baseline ensembles

As the aim of this paper is to study approaches to increase diversity of ensembles, we report in

Table 2 the performance of some baseline classifiers and ensembles based on different network

architectures (all combined with the data augmentation DA1, see section 2.3). The tests reported

in section 3.3.1 are all based only on the Dice loss; moreover, for sake of space, for the polyp

and skin datasets we report only the average performance value among the set of datasets. Each

ensemble is made up of N models (N=1 denotes a stand-alone model) which differ only for the

randomization in the training process:

 RN18 a stand-alone DeepLabV3+ segmentator with backbone Resnet18 (pretrained in

ImageNet);

 ERN18(N) is an ensemble of N RN18 networks (pretrained in ImageNet);

 RN50 a stand-alone DeepLabV3+ segmentators with backbone Resnet50 (pretrained in

ImageNet);

 ERN50(N) is an ensemble of N RN50 networks;

5 http://www.josiahwang.com/dataset/leedsbutterfly/

6 https://figshare.com/articles/dataset/EMDS-6/17125025/1

24 Results

 RN101 a stand-alone DeepLabV3+ segmentators with backbone Resnet101 (pretrained

as detailed in the above section 2.1);

 ERN101(N) is an ensemble of N RN101 networks.

Table 2. Performance (Dice) of the proposed ensembles in the five benchmark datasets, the last

column AVG reports the average performance.

 Polyp Skin Leuko Bfly EMicro Avg

RN18 0.806 0.865 0.897 0.960 0.908 0.887

RN50 0.802 0.871 0.895 0.968 0.909 0.889

RN101 0.808 0.871 0.915 0.976 0.918 0.898

ERN18(10) 0.821 0.866 0.913 0.963 0.913 0.895

ERN50(10) 0.807 0.872 0.897 0.969 0.918 0.893

ERN101(10) 0.834 0.878 0.925 0.978 0.919 0.907

The results in Table 2 show that, although the overall performance increases when switching

from the stand-alone version to an ensemble, the improvement is not as high as one might

expect, indicating that the individual approaches are quite stable. Maybe this result is related to

the architecture of the DeepLabV3+ network: its internal modules apply atrous convolutions in

cascade or in parallel to capture multi-scale context by adopting several atrous rates. This

solution, which has been designed to solve the problem of segmenting objects at multiple scales,

also mimics an ensemble approach thanks to the fusion of activations taken at different levels

of the encoder, making the resulting segmentation quite stable.

The best method is to use ResNet101 as backbone.

3.3 Experiments 25

Figure 7. A building block of a ResNet (Residual Network). Several of these blocks are stack

on top of one another. The innovation here is the presence of the ‘skip connection’ (on the

right-hand side) which resulted in networks with better accuracy than networks with plain

layers as the output is the result of the input both unchanged and multiplied by the weights.

A ResNet101 has 101 weight layers.

3.3.2 Ablation studies

The first ablation study is related to the evaluation of different loss functions to increase the

diversity of the models and improve the performance of the ensemble. In Table 3 the

performance of RN101, with the different loss functions here tested/proposed, is reported and

compared to the dice loss as baseline and DA1 as data augmentation method. For sake of space,

for the polyp and skin datasets we report only the average performance value among the set of

datasets. The stand-alone networks are later fused, always using the sum rule, in some

ensembles:

 ELoss101(10) is an ensemble, combined by sum rule, of 10 RN101 each coupled with

data augmentation DA1 and a given loss function, the final fusion is given by: 2×LGD+

2×LT+ 2× Comb1 + 2× Comb2+2×Comb3; where with 2×LGD we mean two RN101

trained using LGD loss function.

 ELossMix(10) is an ensemble similar to the previous one, but here data augmentation

is used to increase diversity: the networks coupled with the loss used in ELoss101(10)

(LGD, LT, Comb1, Comb2, Comb3) are trained one time using DA1 and another time

using DA2 (i.e. 5 networks each trained twice, hence we have an ensemble of 10

networks);

 ELossLarge(10) is an ensemble of 10 networks, the networks trained using (LGD, LT,

Comb1, Comb2, Comb3) use DA2 as augmented training set, while the networks trained

26 Results

considering the new loss functions tested in this work (LSTR, LBoundExpS, LDiceBES, LMS,

LCS) are coupled with DA1.

Table 3. Performance (Dice) of some stand-alone methods and ensembles in the five

benchmark datasets when varying the loss function, the last column AVG reports the average

performance.

 LOSS Polyp Skin Leuko BFly EMicro Avg

RN101 LGD 0.808 0.871 0.915 0.976 0.918 0.898

RN101 LSTR 0.809 0.869 0.930 0.964 0.901 0.895

RN101 LBoundExpS 0.803 0.874 0.928 0.978 0.901 0.897

RN101 LDiceBES 0.819 0.869 0.922 0.969 0.904 0.897

RN101 LMS 0.813 0.860 0.920 0.972 0.920 0.897

RN101 LCS 0.823 0.873 0.917 0.967 0.911 0.898

ERN101(10) LGD 0.834 0.878 0.925 0.978 0.919 0.907

ELoss101(10) Many loss 0.842 0.880 0.925 0.980 0.921 0.910

ELossMix(10) Many loss 0.851 0.883 0.936 0.983 0.924 0.915

ELossLarge(10) Many loss 0.848 0.883 0.944 0.984 0.922 0.916

The results reported in Table 3 show that the proposed new loss functions gain performance

similar to Dice and can be considered a useful starting point for the design of an ensemble. In

fact, the good performance of ELoss101 and ELossLarge with respect to ERN101(10) proves

that the including networks trained by different loss functions are useful for the creation of an

ensemble: this observation is even more evident considering that it is validated on very different

problems.

We should not overlook the value of altering the training set, in this case through the use of

different data augmentation: this seems to be the winning strategy when combined with

different loss functions (ELossMix). Finally, we can notice that ELossMix and ELossLarge

obtain similar performances.

3.3 Experiments 27

Figure 8: Comparison of the output of the network after setting the weights with 2 different

losses: Generalized Dice Loss (baseline loss) and Contour Aware Structure Loss (one of the

proposed loss functions).

The second ablation study is related to the evaluation of different architectures. Performance of

the above cited methods coupled with different data augmentation strategies are reported in

Table 4. The names DA1 and DA2 refer to the strategies explained in section 2.3, while DA1/2

denotes that the given ensemble is obtained by the fusion of networks based on DA1 and

networks based on DA2.

HardNet-MSEG is trained with two different optimizers: SGD denoted as H_S and Adam

denoted as H_A. The ensemble FH is the fusion of HarDNet-MSEG trained with different

optimizers. PVT is trained using AdamW optimizer (as suggested in the original paper where

PVT has been proposed). The loss function for both HarDNet-MSEG and PVT is the same of

the original papers.

Some further ensembles are reported in table 4:

 PVT(2), sum rule between PVT combined with DA1 and PVT combined with DA2;

 FH(2), sum rule among two H_S (one combined with DA1, the latter with DA2) and

two H_A (one combined with DA1, the latter with DA2);

 FH(2)+2×PVT(2), weighted sum rule between PVT(2) and FH(2), the weight of PVT(2)

is assigned so that its importance in the ensemble is the same of FH(2) (notice that FH(2)

consists of four networks while PVT(2) is built by only two networks).

 ELossMix(10)+(10/4)×FH(2)+(10/2)×PVT(2), weighted sum rule among

ElossMix(10), FH(2) and PVT(2), as in the previous ensemble, the weights are assigned

28 Results

so that each ensemble member has the same importance (notice that ElossMix(10) is the

fusion by sum rule of 10 DeepLabV3+).

Table 4. Performance (Dice) of some stand-alone methods and ensembles in the five

benchmark datasets.

 DA Polyp Skin Leuko BFly EMicro Avg

ELossMix(10) DA1/2 0.851 0.883 0.936 0.983 0.924 0.915

H_A DA1 0.840 0.867 0.923 0.977 0.914 0.904

H_A DA2 0.854 0.871 0.945 0.982 0.912 0.913

H_S DA1 0.816 0.872 0.889 0.969 0.894 0.880

H_S DA2 0.847 0.870 0.917 0.976 0.901 0.902

FH DA1 0.859 0.879 0.913 0.980 0.915 0.909

FH(2) DA1/2 0.862 0.885 0.934 0.982 0.916 0.916

PVT DA1 0.854 0.878 0.954 0.975 0.920 0.916

PVT DA2 0.855 0.879 0.954 0.984 0.919 0.918

PVT(2) DA1/2 0.855 0.883 0.957 0.984 0.922 0.920

FH(2)+2×PVT(2) DA1/2 0.875 0.892 0.955 0.985 0.924 0.926

ELossMix(10)+(10/4)×FH(2)+(10/2)×PVT(2) DA1/2 0.875 0.893 0.953 0.985 0.926 0.926

The results reported in Table 4 permit to draw the following conclusions:

 PVT(2), FH(2) and ElossMix(10) obtain very similar performance, only in Leuko the

performance of PVT(2) is better than FH(2) and ElossMix(10);

 PVT(2) permits to obtain a very slight performance improvement with respect to stand-

alone PVT, even the improvement of FH(2) with respect to the best stand-alone HardNet

(i.e. H_A combined with DA2).

 Combining different architectures permits to obtain the best performance, the best trade-

off “complexity vs performance” is given by “FH(2)+2×PVT(2)”.

3.3.3 Comparison with the literature

For comparison with other approaches in the literature, the results of our best ensembles are

reported in full in the different datasets of Polyp segmentation (Table 5) and skin detection

(Table 6). The following tests clearly show that FH(2)+2×PVT(2) obtains state-of-the-art

performance.

3.3 Experiments 29

Table 5. Performance (Dice and IoU) in the polyp segmentation problem.

Method

Kvasir ClinicalDB ColonDB ETIS CVC-T Average

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice

FH(2)+2×PVT(2) 0.874 0.920 0.894 0.937 0.751 0.826 0.717 0.787 0.842 0.904 0.816 0.875

Ensemble in [24] 0.871 0.917 0.886 0.931 0.697 0.769 0.663 0.740 0.829 0.901 0.790 0.852

HarDNet-MSEG [6] 0.857 0.912 0.882 0.932 0.66 0.731 0.613 0.677 0.821 0.887 0.767 0.828

PraNet (from [6]) 0.84 0.898 0.849 0.899 0.64 0.709 0.567 0.628 0.797 0.871 0.739 0.801

SFA (from [6]) 0.611 0.723 0.607 0.700 0.347 0.469 0.217 0.297 0.329 0.467 0.422 0.531

U-Net++ (from [6]) 0.743 0.821 0.729 0.794 0.41 0.483 0.344 0.401 0.624 0.707 0.570 0.641

U-Net (from [6]) 0.746 0.818 0.755 0.823 0.444 0.512 0.335 0.398 0.627 0.710 0.581 0.652

SETR [21] 0.854 0.911 0.885 0.934 0.69 0.773 0.646 0.726 0.814 0.889 0.778 0.847

TransUnet [54] 0.857 0.913 0.887 0.935 0.699 0.781 0.66 0.731 0.824 0.893 0.785 0.851

TransFuse [9] 0.870 0.920 0.897 0.942 0.706 0.781 0.663 0.737 0.826 0.894 0.792 0.855

UACANet [10] 0.859 0.912 0.88 0.926 0.678 0.751 0.678 0.751 0.849 0.910 0.789 0.850

SANet [55] 0.847 0.904 0.859 0.916 0.670 0.753 0.654 0.750 0.815 0.888 0.769 0.842

MSNet [56] 0.862 0.907 0.879 0.921 0.678 0.755 0.664 0.719 0.807 0.869 0.778 0.834

PVT [7] 0.864 0.917 0.889 0.937 0.727 0.808 0.706 0.787 0.833 0.900 0.804 0.869

SwinE-Net [57] 0.870 0.920 0.892 0.938 0.725 0.804 0.687 0.758 0.842 0.906 0.803 0.865

AMNet [58] 0.865 0.912 0.888 0.936 0.690 0.762 0.679 0.756 --- --- --- ---

Table 6. Performance (Dice=F1-score) in the skin detection problem.

 DA Prat MCG UC CMQ SFA HGR Sch VMD ECU VT Avg

ERN101(1) DA1 0.922 0.887 0.923 0.823 0.948 0.969 0.750 0.748 0.948 0.796 0.871

ERN101(10) DA1 0.924 0.887 0.920 0.845 0.952 0.971 0.778 0.754 0.950 0.794 0.878

ELoss101(10) DA1 0.926 0.892 0.923 0.844 0.956 0.971 0.777 0.751 0.953 0.807 0.880

ELossMix(10) DA1/DA2 0.924 0.893 0.929 0.850 0.956 0.970 0.789 0.739 0.952 0.829 0.883

H_S DA1 0.903 0.880 0.903 0.838 0.947 0.964 0.793 0.744 0.941 0.810 0.872

H_A DA1 0.913 0.880 0.900 0.809 0.951 0.967 0.792 0.717 0.945 0.799 0.867

PVT DA1 0.920 0.888 0.925 0.851 0.951 0.966 0.792 0.709 0.951 0.828 0.878

FH(2)+2×PVT(2) DA1/DA2 0.927 0.894 0.932 0.868 0.954 0.971 0.797 0.767 0.955 0.853 0.893

[79] DA1 0.926 0.888 0.916 0.842 0.955 0.971 0.799 0.764 0.952 0.820 0.883

30 Results

In LEUKO the authors of the dataset report an IoU of 0.842, FH(2)+2×PVT(2) obtains an higher

IoU of 0.916.

In EMicro the authors of the dataset report a Dice score of 0.884, FH(2)+2×PVT(2) obtains an

higher Dice of 0.924.

 In the BFLY many approaches have been tested (see [59]) the two best methods reported in

the literature are:

a) [59] that reports an IoU of 0.950;

b) [60] that reports an IoU of 0.945.

Our suggested ensemble (i.e. FH(2)+2×PVT(2)) strongly outperforms the previous state of the

art obtaining an IoU of 0.970.

Clearly the ensemble boosts the performance of the best stand-alone network (PVT combined

with DA2)

The main drawback of this approach is that the best ensemble is composed by 6 networks, this

means 6x RAM requirements and 6x inference time. Anyway, the inference time is very low

also using an ensemble, with the current GPU architectures it is not an issue in many problems

(obviously it could become one in some applications such as autonomous drive, but not in the

segmentation problems faced in this paper).

E.g. a single HarDNet-MSEG runs at 86.7 / second on a GeForce RTX 2080 Ti GPU.

We have performed a further experiment to select the optimal set of models to be included in

the final ensemble. We have extracted a validation set to select the best set of networks: we

have considered only the two problems including many test sets: i.e. polyp and skin

segmentation. In the polyp problem, the Kvasir test set has been chosen as validation set; in the

skin application problem the ECU test set has been used as validation set. We have used

sequential forward floating selection (SFFS) [61] for retaining the subset of networks that

maximize Dice performance indicator in the validation set.

The performance of both ensembles was lower than we expected and in both datasets our best

approach (i.e. FH(2)+2×PVT(2)) gained higher performance. In both cases we have faced an

overfitting problem: the images in test sets are very different among each other, therefore a

larger validation set, and more comprehensive of the different variations that can occur to an

image, is needed for a reliable network selection.

Finally, we performed some tests using Q-statistic for further validation of our idea to build

ensembles. Yule’s Q-statistic [62] was conducted to demonstrate the relationship of diversity

https://doi.org/10.1016/j.ecoinf.2022.101553
https://doi.org/10.1016/j.ecoinf.2022.101553
https://doi.org/10.1016/j.compag.2020.105739

3.3 Experiments 31

among the networks that belong to the ensemble. After calculation, the range of Q-statistic

varies from -1 to 1. For statistically independent classifiers, Q-statistic is equal to zero.

In Table 7, we report the average Q-statistic among the network of the proposed ensemble:

clearly ELossMix allows for a set of networks with greater diversity than Eloss101 and

ERN101. Moreover, also FH(2)+2×PVT(2) is built by a set of quite different segmentators.

Table 7. Average Q-statistic.

Ensembles Average Q-Statistic

ERN101(10) 0.975

ELOSS101(10) 0.952

ELOSSMIX(10) 0.921

FH(2)+2×PVT(2) 0.925

32

Chapter 4

Conclusions

In computer vision, we called semantic segmentation the task that involves the classification of

each pixel in an image.

This is a very important task in in several fields, e.g. in autonomous vehicles, it allows the

identification of objects surrounding the vehicle; in medical diagnosis, it improves the ability

of early detecting dangerous pathologies and thus to mitigate the risk of serious consequences.

Here we obtain state-of-the-art performances proposing different ensemble of segmentation

approaches. We have tested:

 Different loss functions;

 Different data augmentation approaches;

 Different network topologies, i.e. convolutional neural networks and transformer

(namely DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers);

Finally, the ensemble is combined by sum rule.

Our proposed ensemble has been tested, providing state-of-the-art results, in five benchmark

datasets: polyp detection, skin detection, leukocytes recognition, environmental microorganism

detection, and butterfly recognition.

As future work, our aim - through techniques such as pruning, quantization, low-ranking

factorization and distillation - is to decrease the complexity of ensembles.

All resources are available online at:

https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation.

Conclusions 33

34

Chapter 5

References

[1] D. Feng et al., “Deep multi-modal object detection and semantic segmentation for

autonomous driving: Datasets, methods, and challenges,” IEEE Trans. Intell. Transp. Syst., vol.

22, no. 3, pp. 1341–1360, 2020.

[2] P. Brandao et al., “Towards a computed-aided diagnosis system in colonoscopy:

automatic polyp segmentation using convolution neural networks,” J. Med. Robot. Res., vol. 3,

no. 02, p. 1840002, 2018.

[3] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic

segmentation,” 2015, doi: 10.1109/ICCV.2015.178.

[4] L. Li, “Deep residual autoencoder with multiscaling for semantic segmentation of land-

use images,” Remote Sens., vol. 11, no. 18, 2019, doi: 10.3390/rs11182142.

[5] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with

atrous separable convolution for semantic image segmentation,” 2018, doi: 10.1007/978-3-030-

01234-2_49.

[6] C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, “HarDNet-MSEG: A Simple Encoder-Decoder

Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS,” Jan. 2021,

Accessed: Mar. 30, 2021. [Online]. Available: http://arxiv.org/abs/2101.07172.

[7] B. Dong, W. Wang, J. Li, and D.-P. Fan, “Polyp-PVT: Polyp Segmentation with

Pyramid Vision Transformers,” Aug. 2021, doi: 10.48550/arxiv.2108.06932.

[8] D. Jha et al., “Kvasir-SEG: A Segmented Polyp Dataset,” 2020, doi: 10.1007/978-3-

030-37734-2_37.

[9] Y. Zhang, H. Liu, and Q. Hu, “TransFuse: Fusing Transformers and CNNs for Medical

Image Segmentation,” Feb. 2021, Accessed: Sep. 28, 2021. [Online]. Available:

http://arxiv.org/abs/2102.08005.

[10] T. Kim, H. Lee, and D. Kim, “UACANet: Uncertainty Augmented Context Attention

for Polyp Segmentation,” Jul. 2021, doi: 10.1145/3474085.3475375.

[11] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos,

“Image Segmentation Using Deep Learning: A Survey,” IEEE Trans. Pattern Anal. Mach.

Intell., 2021, doi: 10.1109/TPAMI.2021.3059968.

References 35

[12] A. Lumini and L. Nanni, “Fair comparison of skin detection approaches on publicly

available datasets,” Expert Systems with Applications. 2020, doi: 10.1016/j.eswa.2020.113677.

[13] K. Roy, A. Mohanty, and R. R. Sahay, “Deep Learning Based Hand Detection in

Cluttered Environment Using Skin Segmentation,” in 2017 IEEE International Conference on

Computer Vision Workshops (ICCVW), 2017, pp. 640–649, doi: 10.1109/ICCVW.2017.81.

[14] M. Arsalan, D. S. Kim, M. Owais, and K. R. Park, “OR-Skip-Net: Outer residual skip

network for skin segmentation in non-ideal situations,” Expert Syst. Appl., vol. 141, p. 112922,

Mar. 2020, doi: 10.1016/J.ESWA.2019.112922.

[15] S. Shahriar et al., “Real-time american sign language recognition using skin

segmentation and image category classification with convolutional neural network and deep

learning,” in TENCON 2018-2018 IEEE Region 10 Conference, 2018, pp. 1168–1171.

[16] M. R. Reena and P. M. Ameer, “Localization and recognition of leukocytes in peripheral

blood: A deep learning approach,” Comput. Biol. Med., vol. 126, 2020, doi:

10.1016/j.compbiomed.2020.104034.

[17] Y. Liu, F. Cao, J. Zhao, and J. Chu, “Segmentation of White Blood Cells Image Using

Adaptive Location and Iteration,” IEEE J. Biomed. Heal. Informatics, vol. 21, no. 6, 2017, doi:

10.1109/JBHI.2016.2623421.

[18] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic

Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 2017, doi:

10.1109/TPAMI.2016.2572683.

[19] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern Anal. Mach.

Intell., 2017, doi: 10.1109/TPAMI.2016.2644615.

[20] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab:

Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., 2018, doi:

10.1109/TPAMI.2017.2699184.

[21] S. Zheng et al., “Rethinking Semantic Segmentation from a Sequence-to-Sequence

Perspective with Transformers,” Dec. 2020, Accessed: Sep. 28, 2021. [Online]. Available:

https://arxiv.org/abs/2012.15840.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

770–778, doi: 10.1109/CVPR.2016.90.

[23] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures

of deep convolutional neural networks,” Artif. Intell. Rev., 2020, doi: 10.1007/s10462-020-

09825-6.

[24] L. Nanni, D. Cuza, A. Lumini, A. Loreggia, and S. Brahnam, “Deep ensembles in

bioimage segmentation,” Dec. 2021, doi: 10.48550/arxiv.2112.12955.

[25] S. Jadon, “A survey of loss functions for semantic segmentation,” 2020, doi:

10.1109/CIBCB48159.2020.9277638.

36 References

[26] C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, “Generalised

dice overlap as a deep learning loss function for highly unbalanced segmentations,” 2017, doi:

10.1007/978-3-319-67558-9_28.

[27] S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image

segmentation using 3D fully convolutional deep networks,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017, vol. 10541 LNCS, doi: 10.1007/978-3-319-67389-9_44.

[28] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object

Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, 2020, doi:

10.1109/TPAMI.2018.2858826.

[29] N. Abraham and N. M. Khan, “A novel focal tversky loss function with improved

attention u-net for lesion segmentation,” in Proceedings - International Symposium on

Biomedical Imaging, 2019, vol. 2019-April, doi: 10.1109/ISBI.2019.8759329.

[30] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, “Basnet:

Boundary-aware salient object detection,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, doi:

10.1109/CVPR.2019.00766.

[31] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:

From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, 2004,

doi: 10.1109/TIP.2003.819861.

[32] Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, and A. P. Braga, “Learning from

Imbalanced Data Sets with Weighted Cross-Entropy Function,” Neural Process. Lett., vol. 50,

no. 2, 2019, doi: 10.1007/s11063-018-09977-1.

[33] M. A. Rahman and Y. Wang, “Optimizing intersection-over-union in deep neural

networks for image segmentation,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, vol. 10072

LNCS, doi: 10.1007/978-3-319-50835-1_22.

[34] Y.-J. Cho, “Weighted Intersection over Union (wIoU): A New Evaluation Metric for

Image Segmentation,” Jul. 2021, doi: 10.48550/arxiv.2107.09858.

[35] D. Yang, H. Roth, X. Wang, Z. Xu, A. Myronenko, and D. Xu, “Enhancing Foreground

Boundaries for Medical Image Segmentation,” May 2020, doi: 10.48550/arxiv.2005.14355.

[36] Z. Chen, H. Zhou, J. Lai, L. Yang, and X. Xie, “Contour-Aware Loss: Boundary-Aware

Learning for Salient Object Segmentation,” IEEE Trans. Image Process., vol. 30, 2021, doi:

10.1109/TIP.2020.3037536.

[37] D. Jha et al., “Real-time polyp detection, localisation and segmentation in colonoscopy

using deep learning,” arXiv. 2020.

[38] J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp detection with a polyp

appearance model,” 2012, doi: 10.1016/j.patcog.2012.03.002.

[39] D. Vázquez et al., “A Benchmark for Endoluminal Scene Segmentation of Colonoscopy

Images,” J. Healthc. Eng., vol. 2017, 2017, doi: 10.1155/2017/4037190.

References 37

[40] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection

of polyps in WCE images for early diagnosis of colorectal cancer,” Int. J. Comput. Assist.

Radiol. Surg., 2014, doi: 10.1007/s11548-013-0926-3.

[41] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño,

“WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency

maps from physicians,” Comput. Med. Imaging Graph., 2015, doi:

10.1016/j.compmedimag.2015.02.007.

[42] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation using color pixel

classification: Analysis and comparison,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no.

1, pp. 148–154, 2005, doi: 10.1109/TPAMI.2005.17.

[43] W. R. Tan, C. S. Chan, P. Yogarajah, and J. Condell, “A Fusion Approach for Efficient

Human Skin Detection,” Ind. Informatics, IEEE Trans., vol. 8, no. 1, pp. 138–147, 2012, doi:

10.1109/TII.2011.2172451.

[44] L. Huang, T. Xia, Y. Zhang, and S. Lin, “Human skin detection in images by MSER

analysis,” 18th IEEE Int. Conf. Image Process., pp. 1257–1260, 2011, doi:

10.1109/ICIP.2011.6115661.

[45] J. Ruiz-Del-Solar and R. Verschae, “Skin detection using neighborhood information,”

in Proceedings - Sixth IEEE International Conference on Automatic Face and Gesture

Recognition, 2004, pp. 463–468, doi: 10.1109/AFGR.2004.1301576.

[46] M. J. Jones and J. M. Rehg, “Statistical color models with application to skin detection,”

Int. J. Comput. Vis., vol. 46, no. 1, pp. 81–96, 2002, doi: 10.1023/A:1013200319198.

[47] J. P. B. Casati, D. R. Moraes, and E. L. L. Rodrigues, “SFA: A human skin image

database based on FERET and AR facial images,” 2013.

[48] M. Kawulok, J. Kawulok, J. Nalepa, and B. Smolka, “Self-adaptive algorithm for

segmenting skin regions,” EURASIP J. Adv. Signal Process., no. 1, pp. 1–22, 2014, doi:

10.1186/1687-6180-2014-170.

[49] S. J. Schmugge, S. Jayaram, M. C. Shin, and L. V. Tsap, “Objective evaluation of

approaches of skin detection using ROC analysis,” Comput. Vis. Image Underst., vol. 108, no.

1–2, pp. 41–51, 2007, doi: 10.1016/j.cviu.2006.10.009.

[50] J. C. Sanmiguel and S. Suja, “Skin detection by dual maximization of detectors

agreement for video monitoring,” Pattern Recognit. Lett., vol. 34, no. 16, pp. 2102–2109, 2013,

doi: 10.1016/j.patrec.2013.07.016.

[51] A. S. Abdallah, M. A. El-Nasr, and A. L. Abbott, “A new color image database for

benchmarking of automatic face detection and human skin segmentation techniques,” in

Proceedings of World Academy of Science, Engineering and Technology, 2007, vol. 20, pp.

353–357.

[52] J. Wang, K. Markert, and M. Everingham, “Learning models for object recognition from

natural language descriptions,” 2009, doi: 10.5244/C.23.2.

38 References

[53] P. Zhao et al., “EMDS-6: Environmental Microorganism Image Dataset Sixth Version

for Image Denoising, Segmentation, Feature Extraction, Classification, and Detection Method

Evaluation.,” Front. Microbiol., vol. 13, p. 829027, 2022, doi: 10.3389/fmicb.2022.829027.

[54] J. Chen et al., “TransUNet: Transformers Make Strong Encoders for Medical Image

Segmentation,” Feb. 2021, Accessed: Sep. 28, 2021. [Online]. Available:

https://arxiv.org/abs/2102.04306.

[55] J. Wei, Y. Hu, R. Zhang, Z. Li, S. K. Zhou, and S. Cui, “Shallow Attention Network for

Polyp Segmentation,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, vol. 12901 LNCS,

doi: 10.1007/978-3-030-87193-2_66.

[56] X. Zhao, L. Zhang, and H. Lu, “Automatic Polyp Segmentation via Multi-scale

Subtraction Network,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, vol. 12901 LNCS,

doi: 10.1007/978-3-030-87193-2_12.

[57] K.-B. Park and J. Y. Lee, “SwinE-Net: hybrid deep learning approach to novel polyp

segmentation using convolutional neural network and Swin Transformer,” J. Comput. Des.

Eng., vol. 9, no. 2, pp. 616–632, Apr. 2022, doi: 10.1093/jcde/qwac018.

[58] P. Song, J. Li, and H. Fan, “Attention based multi-scale parallel network for polyp

segmentation,” Comput. Biol. Med., vol. 146, p. 105476, Jul. 2022, doi:

10.1016/J.COMPBIOMED.2022.105476.

[59] I. Filali, B. Achour, M. Belkadi, and M. Lalam, “Graph ranking based butterfly

segmentation in ecological images,” Ecol. Inform., vol. 68, 2022, doi:

10.1016/j.ecoinf.2022.101553.

[60] H. Tang, B. Wang, and X. Chen, “Deep learning techniques for automatic butterfly

segmentation in ecological images,” Comput. Electron. Agric., vol. 178, 2020, doi:

10.1016/j.compag.2020.105739.

[61] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,”

Pattern Recognit. Lett., 1994, doi: 10.1016/0167-8655(94)90127-9.

[62] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy,” Mach. Learn., 2003, doi:

10.1023/A:102285900300

39

Acknowledgements

Un sentito ringraziamento va a tutte le persone che mi hanno aiutato a raggiungere questo

traguardo, nello specifico:

- Al professor Loris Nanni a cui sono riconoscente per avermi dato l’opportunità di

lavorare con lui a questa ricerca e per essere sempre stato disponibile ad aiutarmi

- Ai miei genitori, i quali hanno sempre creduto in me e mi hanno supportato sin

dall’infanzia: avete sempre voluto il meglio per me e mi avete sempre spinto in questa

direzione, apprezzo davvero tutto ciò che avete fatto affinché io potessi raggiungere

questo importante traguardo della mia vita.

- Alle mie nonne, che durante questi tre anni universitari hanno sempre seguito il mio

percorso accademico.

- Ai miei amici e compagni di corso con cui ho vissuto dei momenti speciali che mi hanno

aiutato anche nei periodi più difficili.

- Ad Andrea, il migliore amico che si possa desiderare e la persona su cui so di poter

sempre contare nonostante tutto.

