
Università degli Studi di Padova
Facoltà di Ingegneria

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
CORSO DI LAUREA IN INGEGNERIA INFORMATICA

TESI DI LAUREA MAGISTRALE

ONE-CLASS SUBJECT IDENTIFICATION
FROM SMARTPHONE-ACQUIRED

WALKING DATA

Sistema di Riconoscimento Biometrico da Segnali di Camminate Acquisiti da Smartphone

Laureando:
Luca Merelli

Relatore:
Ch.mo prof. Michele Rossi

Correlatore:
Matteo Gadaleta

Anno Accademico 2015/2016
Padova, 7 Marzo 2016

One Class Subject Identification from Smartphone-Acquired
Walking Data

by Luca Merelli

Abstract
In recent years, wearable technologies are one of the fastest growing segment of the
so-called Internet of Things (IoT), which together with Wireless Sensor Network
(WSN) technologies will enable Ubiquitous Sensing. Wearable devices have the

distinct property to be worn by users, extending the IoT paradigm to a
human-centric sensing scenario. Technologies advances allowed the integration of

an increasing number of sensors, able to gather physiological and behavioral
biometric information of a user. In this work, I am concerned with the design of a
novel type of human identification system with the aim to recognize a user from the
biometric traits of his way of walk. A smartphone located in the right pocket of the

user is utilized to acquire motion data from the built-in sensors. In particular,
accelerometer and gyroscope data are gathered and then processed through a cycle
extraction phase, a Convolutional Neural Network (CNN) for feature extraction

and a One-Class SVM (OSVM) classifier for the final identification. The proposed
system is tested and from quantitave results it shows that is possibile to achieve an

Equal Error Rate close to 1%.

Acknowledgements

I would like to express my greatest thanks towards Prof. Michele Rossi, for having agreed
to be my supervisor during the course of my Master thesis work, and Matteo Gadaleta for
the good advice, support and assistance during all the phases of this work.
In addition, I would like to dedicate this thesis to my beloved family especially my parents,
who have given me unconditional support and have been close to me in both good times
and difficult ones throughout my university career and beyond.
Finally, I would like to thanks my friends, with whom I shared my course of study.

Contents

List of Figures iii

1 Introduction 1
1.1 Authentication on Smartphones . 2
1.2 State of the Art of Gait Recognition . 3
1.3 Motivations and Contributions . 6

2 Data Acquisition and Preprocessing 9
2.1 Data Acquisition . 9
2.2 Data Preprocessing . 11

3 Convolutional Neural Networks 17
3.1 An overview on Neural Networks . 18

3.1.1 Model of a Neuron . 19
3.1.2 Artificial Neural Network Architectures 20
3.1.3 Learning the ANN Model . 21

3.2 Convolutional Neural Networks . 23
3.2.1 Deep Architectures Learning . 23
3.2.2 CNN Description . 24

4 One Class Support Vector Machine 29
4.1 Introduction to OCC Problem . 29

4.1.1 One-Class Vs. Multi-Class Classification 29
4.1.2 OCC Solution Methods . 31
4.1.3 Application Scenarios . 31

4.2 One-Class Support Vector Machines . 32
4.2.1 Support Vector Machines . 32
4.2.2 One-Class SVM . 34

4.3 Dimensionality Reduction . 37
4.3.1 Principal Component Analysis . 38
4.3.2 Sequential Forward Selection . 40

5 The Recognition System 41
5.1 Data Acquisition and Preprocessing . 41
5.2 Feature Extraction . 43

i

CONTENTS

5.3 Identification . 45

6 Results 49
6.1 CNN Model Optimization . 49
6.2 CNN Features Evaluation . 52
6.3 OSVM Model Optimization . 58

7 Conclusions 69

Bibliography 71

ii

List of Figures

1.1 Sub-division of the gait cycle as suggested by Perry 4

2.1 Activity Logger logo and home screen. 10
2.2 Comparison of the sampling frequency distribution of the smartphone em-

ployed in the data acquisition (LG G2) and another smartphone. 11
2.3 Power Spectral Density of the raw accelerometer data acquired. 12
2.4 Accelerometer signals (on the left) and gyroscope signals (on the right) from

three different users after the cycle extraction step. 13
2.5 Accelerometer data for two different walks with different orientation along

the original axes ax, ay, az and the transformed ones, aξ, aψ, aζ 14

3.1 Simple biological neuron model. 18
3.2 Mathematical model of an Artificial Neuron. 19
3.3 Examples of ANN Architectures . 21
3.4 Two examples of connectivity pattern in a convolutianal layer of a CNN,

where each neuron has a receptive field of size 3. 24
3.5 Example of downsampling with max operator, here shown with a stride of 2. 26
3.6 Example of 2-stage CNN architecture. 27

4.1 Example of a conventional and one-class classifier 30
4.2 One-Class SVM Classifier, where the decision bound and the origin, the only

member of the negative class, are reported. 35
4.3 Principal Component number 1 and 2 capturing the directions in which the

data has the most variance. 39
4.4 Generic diagram of a wrapper approach for feature selection. 40

5.1 General schema of the proposed biometric system for the human gait recog-
nition problem. 41

5.2 Preprocessing block of the proposed biometric system. The internal steps
involved in the computation are highlighted. 42

5.3 Complete schema of the CNN architecture proposed, in which is highlighted
the block used as feature extractor tool. 45

5.4 General schema of the Identification Block, where the internal steps are
highlighted. 46

iii

LIST OF FIGURES

5.5 Plot of the dependencies of FPR and FNR as a function of the security level.
EER is highlighted. 47

6.1 Output test accuracy versus number of cycles per subject employed during
the training phase of the CNN. 50

6.2 Output loss function versus number of cycles per subject employed during
the training phase of the CNN. 51

6.3 Output test accuracy versus number of features of the first fully-connected
layer of the CNN, by varying the number of subjects for the training phase. 52

6.4 Comparison of Machine Learning Algorithms trained on 10 subjects not used
in CNN learning phase. Classification test accuracies versus the number of
train records for each subject are reported. 54

6.5 Comparison of test accuracy versus the number of train records, obtained
from two CNN models trained on 10 and 30 subjects 55

6.6 Comparison of classification algorithms trained on feature vectors obtained
from a pre-trained CNN and calculated directly from the data cycle. Test
accuracy versus the number of train records is reported. 57

6.7 A confusion matrix for a binary classification problem 59
6.8 Performance measure obtained from a pre-trained OSVM model by varying

the number of train data and the ν parameter. 61
6.9 F1-measure performance by varying ν value versus the number of train cy-

cles. 62
6.10 Comparison of dimensionality reduction methods by varying the number of

features. 64
6.11 Performance measure of 6 walk acquisitions tested on an OSVM model

trained on the remaining 5 walk acquisitions. 65
6.12 Performance measure of 12 walk acquisitions tested on an OSVM model

trained on the remaining 11 walk acquisitions. 66
6.13 Average performance comparison by varying the number of features on walk

acquisition not used during training. 67
6.14 The EER point for the cumulative score functions FPR e FNR. 68

iv

Chapter 1

Introduction

In recent years, the field of wearable technologies is growing at a fast pace and promises to
have a widespread influences in the society of coming years. These technologies are now
one of the fastest growing segment of the so-called Machine to Machine (M2M) communi-
cation, better known as Internet of Things (IoT) [43], which comprises internet-connected
objects that can communicate, compute, sense and potentially actuate, if equipped with
artificial intelligence. IoT represents the most disruptive technological revolution to date
and together with Wireless Sensor Networks (WSN) it will enable Ubiquitous Sensing [40],
of the physical world.

Originally, the vision of Ubiquitous Computing, coined by Mark Weiser in 1991 [38],
is that, eventually, computers will disappear and become part of our environment, fading
into the background of our everyday lives. In the same way, ubiquitous sensing try to fuse
the digital and physical worlds, in which users are challenged to find new ways to interact
with this new generation of devices, and new uses of them. To facilitate this process, low-
power devices rely on sensor technologies as well as existing wireless networking systems
and protocols. Moreover, as costs of computation and connectivity continue to fall, these
technologies are increasingly embedded into almost all devices that users own and come
into contact with.

In particular, wearable devices have the distinct property to be worn by users. There-
fore, wearables extend the IoT paradigm to a human-centric sensing scenario, where users
are involved in the sensing phase participating actively and making it feasible to get infor-
mation that otherwise is not possible [39]. Technologies advances allowed the integration
of an increasing number of sensors in devices such as smartphones, smart watches, wrist-
band, chest straps and clip-on devices. Measurements from accelerometer, gyroscope,
magnetometers, GPS, thermometers and cameras can be retrieved from these devices, in
order to make users lives easier, safer, healthier, less expensive and more productive. In
addition users can have more control on their lives and free up time automating routine
tasks. According to a survey, wearable electronics business powers from $20 billion in 2015
to almost $70 billion in 2025 [41], the dominant sector will remain the healthcare sector
which merges medical, fitness, wellness, entertainment, security and industrial.

In this thesis, I focus my attention on the security field and I investigate the utilization
of inertial sensors, embedded in last generation smartphones, for biometric authentication.
In particular, I experiment gait recognition, a biometric method that allows an automatic

1

CHAPTER 1. INTRODUCTION

verification of a person by the way he or she walks. Gait recognition has been based on
the use of video sources and floor sensors, but in recent years a new approach based on
wearing motion-recording sensors on the body in different places, such as on the waist, in
pockets, at the ankle, is starting to develop. The main advantage of gait recognition using
wearable sensors is that it provides an unobtrusive method of authentication for mobile
devices that already contain motion sensors.

1.1 Authentication on Smartphones
Authentication is a measure of security, which has the aim to validate the identity of a per-
son provided to a system checking specific characteristics previously stored. Authentication
on smartphones is usually performed by three approaches. PIN or password authentication,
graphical authentication and the most recent biometric authentication. These methods are
used to authenticate a user for accessing the mobile device and its services.

In the contest of mobile devices, knowledge-based authentication via PIN or password
is the most common method. A PIN is used for authentication at the Subscriber Identify
Module (SIM)-card after turning on the smartphone, but it does not protect the content
of the smartphone as it can be eluded by removing the SIM-card form the phone.

Graphical authentication methods have a higher level of security, because the secret
needed for authentication is an image or a pattern, that are harder to forge and easier to
remember than a password because of the so-called pictures superiority effect [42], accord-
ing to which pictures are easier to remember than words. These methods can be categorized
in locimetrics, drawmetrics and cognometrics. For locimetric methods it is necessary to
highlight special points in a given image, these chosen locations form the password, that
during authentication have to be repeated. Drawmetric methods request the user to repro-
duce a previously drawn image, the best known method is Draw-A-Secret (DAS), in which
during enrollment the user draws a pattern on a grid. Cognometric methods require the
user to recognize previously selected images in a set of images.

Biometrics are spreading in recent years and they are increasingly used in commercial
and private sector thanks to the variety of biometric sensors present in electronic devices
that can be used to authenticate individuals based in their intrinsic physiological or behav-
ioral characteristics, that are unique for each person. Physiological means characteristics
that are part of the human body, such as fingerprint, hand silhouette, iris pattern or DNA
fingerprint. Instead, behavioral characteristics are measurable in human activities. There-
fore biometrics can establish a direct relation between the person under identification and
unique biometric traits [14].

The most common physiological biometric methods running completely on smartphone
are face, speaker or fingerprint recognition. Automatic face recognition uses integrated
front camera to authenticate users. In the literature, there are several approaches, such as
geometrical based, correlation based, neural network and support vector machine based.
They are becoming convenient mobile authentication methods thanks to the increasing
computational power available on mobile phones. Speaker recognition is the identification
of a person from characteristics of voices. On smartphone speaker recognition can be done
in background during phone calls or they require the user to speak or recite a text for the
purpose of explicit authentication. Fingerprint recognition on mobile phone is realized in

2

CHAPTER 1. INTRODUCTION

two ways. The first one is via dedicated sensor, that is not usually integrated in most of
the smartphones. The second approach is to use back cameras to capture an image of the
finger and then evaluate the fingerprint through image processing algorithms.

Generally, physiological characteristics used in these methods are more stable, because
physiological traits are essentially fixed and do not change over time. On the other hand,
behavioral biometrics method is based on the recognition of skills, knowledge, style, pref-
erence or strategy used by people during everyday activities. Unfortunately, these char-
acteristics are more apt to change, because they depend on factors such as aging, injuries
and mood. Because of the prevailing presence of these intra-personal variations, behavior
based systems have a discriminatory power smaller than the physiological methods and
more efforts need to be done to achieve good reliability performance.

One of the recent studied behavioral biometric is gait recognition, which has the aim
to authenticate people based on the way they walk and it has the advantage to be more
user-friendly compared with the previous described authentication methods, because it is
not an obstructive method since it does not require a direct interaction with the user.

There are three different approaches in gait recognition: machine vision based, floor
sensor based and wearable sensor based [12].

In machine vision based gait recognition, subjects are recorded with video cameras.
[9] and [10] survey this approach. As stated in these papers, research on this area is
well advanced but gait recognition for individual identification is still far from practical
applications because of poor recognition rates and evaluation on limited datasets. Floor
sensor based approaches uses integrated pressure sensors measuring ground reaction forces
or the pressure in the perpendicular direction to the floor surface. Because of the need of
these particular sensors the main application of this are access control and smart homes.

In a wearable sensor based approach, a recording sensor is worn or attached to the
human body, in order to measure numerous type of data during a walk, depending on
which sensor is used, such as gyroscope, accelerometers or telemetry sensors. Thanks to
these devices, it is possible to perform two types of identification: continuous and static.
In continuous authentication, the gait data are recorded by acceleration sensors, while the
user is walking, in a way that the stored information can be used to verify the identity of
the users during the walk.

Static authentication is a mechanism that makes decisions about the identity of a user
after the user has walked and the aim is to accept or reject this person with the result of
allowing or not access to a particular system or service. The interest in performing research
on different aspects within wearable-based gait biometrics has increased in recent years. In
particular, accelerometers based gait recognition is widely studied, thanks to the fact that
last generation mobile smartphones are already equipped with such sensors. In the next
section I will cover in depth the state of the art of gait recognition with wearable devices.

1.2 State of the Art of Gait Recognition
Gait recognition is an emerging biometric technology which involves people being identified
through the analysis of the way they walk. A particular way or manner of walking is the
definition for gait [22] and human gait is the continuous repetition of cycles, which generally
consist of two steps each.

3

CHAPTER 1. INTRODUCTION

Gait is not a new topic in the research and scientific literature, in fact it has been
investigated in the past decades in several medical studies, such as those of M.P. Murray
in [15] and [16]. Murray stated “Although the excursions of both pelvic and thoracic
rotation in repeated trials of the same subject were similar, there were striking differences
in these excursions among the individual subjects tested” and also “if all gait movements
are considered, gait is unique”. In a research work of 1977 [20], J.E. Cutting and L.T.
Kozlowski investigated the possibility for a person to recognize friends by their gait. They
showed that people recognize others not by using static properties such as height but by
dynamic aspects such as length of step, rhythm of the walk, speed, bounciness etc. and
people claimed to associate these dynamic aspects with particular individuals.

These examples present a first input to the gait uniqueness of each person. Several
human factors, such as aging, weight, injuries, operations etc. may change a person’s
walking style in a permanent or temporary way [22]. Moreover, Figure 1.1 shows how Dr.
J. Perry divided the biological process of the musculo-skeletal system of a gait cycle, which
consists five stance phase periods and three swing phase periods [17].

Figure 1.1: Sub-division of the gait cycle as suggested by Perry

Hence, researchers initially studied gait for medical applications, for example with the
aim to recognize changes in walking patterns, that can help to identify conditions such as
Parkinson’s disease and multiple sclerosis in their earliest stages [18]. These early studies
were so encouraging and promising to propose gait as a biometric feature to be used for
identifying individuals. However, only in recent years gait recognition has attracted interest
as a method of identification thanks to reliable and inexpensive sensors, and processing
power to handle sizable amount of data.

Many studies have been done and many academic articles have been published about
gait recognition. To present a comprehensive overview of the research work in the literature,
I divided this discussion about fields of application and methods used to perform gait
recognition.

4

CHAPTER 1. INTRODUCTION

Generally, we can find three common application fields: medical and healthcare, activity
recognition, identification and authentication. All these application areas are based on the
recognition of a person exploiting unique gait traits.

In the medical field, gait analysis is performed to assess pathologies, that will affect
walking gait function and body balance, and to monitor human motor functions. Jang
et al. in [23] propose a personal health counseling application, which is able to identify
irregular or abnormal walking patterns like asymmetry or skew and to warn the person
that he or she may have walking problems. Other researchers focused on more specific
diseases, like in [24], where they studied non-specific chronic low back pain (LBP) and
they tried to determine whether patients with LBP and healthy controls could be classified
based on gait characteristics. In [25] C.Y. Lee and J.J. Lee estimated gait pattern, speed
of the subject, total walking distance and improvement of walking function, in order to
monitor functional recovery in gait rehabilitation.

Activity recognition is an application field closely related to healthcare and medical
ones. Daily activities information is useful for clinicians to improve differentiated treat-
ment on diagnosis of neurological, degenerative and respiratory disorders, but also an
accurate quantification of daily physical activity could improve quality of life and prevent
pathologies such as obesity, diabetes and cardiovascular disease widespread in today’s so-
ciety. Several research works are performed in this direction. In [26], activity classification
using accelerometers in a multi-sensor configuration is performed to acquire information
from raw signal to improve activity type and intensity estimation in physical surveillance
projects such as UK Biobank and NHANES. Shoaib et al. in [27] proposed an activity
recognition study with the aim to use the capability of smartphones for motivating peo-
ple to be physically active and give them the right motivational feedback. Other activity
recognition and classification works can be found in [28], [29] and [30].

However, in most of these the analysis of biometric gait recognition has been studied
for use in identification, surveillance and forensic systems, since they provide more reliable
and efficient means of identity verification [22].

Gait recognition systems typically have three main components. A low-level sensing
module, which gathers raw data using motion sensors. A feature processing and selection
module that processes the raw sensor data and transforms them into a reduced set of
features. A classification module that uses the features to identify users. Research works
differ according to the technique and algorithms used in these three modules, but the
common aspect is that gait data acquisition is performed through wearable sensors. This
approach is based on attaching or wearing motion recording sensors, that can retrieve
numerous data types, in fact most literature has put a great focus on accelerometer based
gait recognition [22].

One of the first studies carried out with wearable sensors belongs to Morris [18] in
2004, where a device, called GaitShoe, was developed to be worn on shoes, equipped with
an extensive sensor suite. The pattern recognition results suggested that GaitShoes has
the ability to extract features useful to recognize individual subjects, as well as groups
of subjects with a similar gait and Neural Nets appeared to be a promising method for
discriminating between both individual subjects and between groups of subject with normal
gait, and groups of subjects with Parkinson’s disease.

The first that investigated user identification from accelerometers signals only was

5

CHAPTER 1. INTRODUCTION

Alisto et al. in [31]. In their study, the recognition is based on the analysis of three-
dimensional acceleration signal produced by gait employing acceleration sensors in a portable
device worn on a belt with fixed orientation. Preprocessing is performed using peak detec-
tion and for identification they used correlation, frequency domain. Performance is quite
good, obtaining a mean Equal Error Rate (EER) of 13%.

In other works, data acquisition can be performed placing sensor devices in different
body positions leading to unrealistic scenarios, such as ankle [26], hip and waist [33] with
fixed orientation. Moreover, inertial sensors are used in combination with other sensors due
to their sensing ability. For example, in [34] GPS data are used with accelerometer data
and in [27] it is investigated the usage of magnetometer and gyroscope data to improve
recognition accuracy.

In recent years, researchers started to study acceleremoter-based gait recognition on
mobile devices due to the rapid deployment of their sensing technology and the explosion
of their usage in people’s daily lives. In 2010, Derawi et al. [30] acquired acceleration
data from a mobile phone attached to the belt of the subject. Only the acceleration in the
x-direction is used to extract repeating cycles to result in one single average cycle for each
person. Dynamic Time Wrapping is used as comparison method. In [21] authors developed
a user verification system using smartphone accelerometer. They proposed a more robust
cycle extraction phase using a template dynamically updated and the user verification was
performed by calculating similarity scores.

In [36], inspired by research done in the area of speaker recognition Nickel et al. applied
Hidden Markov Models to the gait data collected using a mobile phone, but this model
requires several output in order to provide good results. Other popular signal techniques
including the Fourier Transform (FT), Short Time Fourier Transform (STFT), and Hilbert-
Huang Transform (HHT) are deployed to analyze the collected data in [35].

Finally, Machine Learning (ML) algorithm are investigated in the classification phase
for identification. Supervised algorithms are typically used, such as k-Nearest Neighbor
[1], Support Vector Machine, Multi Layer Perceptron and Decision Tree [29]. An impor-
tant preprocessing phase to apply these algorithms is the feature extraction phase. Most
research papers utilized hand-crafted features calculated directly on gait cycles, which are
used as input for the training phase of the ML algorithms [2].

In the next section, I will present the proposed method for human gait recognition.

1.3 Motivations and Contributions
This thesis describes the development of a novel type of human identification system. The
system uses smartphone-acquired walking data, in order to correctly identify a user from
the biometric traits of his way of walking. The proposed system includes four sequential
phases: data acquisition, preprocessing, feature extraction and identification. These four
phases are typically implemented in every identification system, but they basically differ
from the approach present in the literature for techniques and algorithms used to achieve
the desired goals.

First of all, I used last generation smartphones with built-in inertial sensors in order to
acquire accelerometer data, which are widely used for gait recognition, and also gyroscope
data, which in this work are used in combination with the accelerometer ones to investigate

6

CHAPTER 1. INTRODUCTION

if this new source of information could improve recognition accuracy. Regarding the data
acquisition procedure, volunteers walk in a real world scenario, leaving them to walk in
a way they consider normal. Acquisitions are performed with a smartphone located in
the right pocket of the trousers without a fixed orientation, unlike previous literature
approach, where devices are blocked in a fixed position in order to avoid sensor noise and
to get accurate orientation. These problems are faced in the preprocessing phase.

Inspired by the work of Ren et al. [21] the preprocessing of the raw data is performed
through a template based method used for cycle extraction, which includes template ex-
traction and update, comparison and minimum detection utilizing a suitable correlation
distance. As mentioned before, a fixed orientation of the device is not enforced, therefore,
it is necessary to implement a coordinates transformation in order to obtain a new inde-
pendent reference system. The new reference system is evaluated directly from the raw
data acquired, extracting gravity versor from the accelerometer data and using Principal
Component Analysis.

The feature extraction phase is one of the new key aspects of the proposed system. I
use a Machine Learning (ML) approach to extract meaningful features directly from the
data cycles of accelerometer and gyroscope. In contrast with the most used approaches,
which are based on the calculation of statistical features, such as mean, standard deviation,
histogram bins etc. Hence, the aim is to completely eliminate the human effort on this
phase of the system, leaving the ML algorithms the freedom to learn the features from
the data in a completely automatic way. In particular, to do this. I used a pre-trained
Convolutional Neural Network (CNN) as a black-box for feature extraction. CNN is a
Deep Supervised Feedforward Neural Network, which recently has become a hot topic in
voice and image recognition. In this thesis, I investigate the usage of CNN to transform
input signals into a reduced set of features and the ability of these features to represent the
essential discriminative traits of gait cycles. Usually, a CNN is designed to take advantage
of the 2D structure of an input image, therefore, developing a CNN architecture for this
system was more challenging for the different nature of the input data. CNN applied to
data signals is not a topic widely studied in the literature and there are no standards
regarding the choices to follow in the design phase of the network. For these reasons, CNN
architecture is one of the key aspects of the system, because feature extracted by the CNN
model affects the performance of the subsequent phase.

Also, for the identification a ML approach is used. To this end, I used the One-Class
Support Vector Machine proposed by Schölkopf et al. in 1999 [37], where they designed
an algorithm which computes a binary function which is supposed to capture regions in
input space where the probability density of the input data lives. Since One-Class problem
depends only on positive examples of a target class, this classification problem can be
treated as an identification one. Feature vectors of a single subject are given in input, in
order to create a model able to discriminate data of a single subject from that of all others
subjects. In this way, a person can be identified, if the bound created around his data is
precise and robust enough.

The contents of this thesis are organized as follows. In the next Chapter 2, I describe in
detail data acquisition and the preprocessing phase of the data collected. In Chapter 3 and
4, I give an introduction on the fundamentals of Convolutional Neural Networks (CNNs)
and One Class Support Vector Machine (OSVM). In Chapter 5, I describe the design and

7

CHAPTER 1. INTRODUCTION

the implementation of the proposed system. Then, in Chapter 6, I present the experiments
and tests carried out to assess the performance of the proposed system. Finally, in Chapter
7 I draw the conclusions.

8

Chapter 2

Data Acquisition and
Preprocessing

2.1 Data Acquisition
Input data for the designed system were collected using a LG G2 smartphone. It features a
2.26GHz quad-core Qualcomm Snapdragon 800 processor and it comes with 2GB of RAM
on which runs Android 4.4.2 KitKat. It is equipped with built-in sensors: GPS, Proximity
sensors, light and an Inertial Measurement Unit (IMU). In particular, IMU comprises a
tri-axial LGE accelerometer sensor, a gyroscope and a magnetometer, whose specifications
are reported in Table 2.1.

Sensor LGE Accelerometer LGE Gyroscope LGE Magnetometer
Vendor STMicroelectronics STMicroelectronics AKM
Range 39.227 34.907 4912

Resolution 0.001 (0.003%) 0.001 (0.003%) 0.15 (0.003%)
Power 0.28mA 6.1mA 5 mA

Table 2.1: UMI specifics of LG G2 used for data acquisition.

Data collection is performed with a own developed Android application, called Activity
Logger, which is used to set up acquisition parameters, give informations about the user,
collect data and save them in non-volatile memory.

Before the acquisition start, in the home screen it is possible to input the user name, to
select the activity, which in this case is always walking and to insert some useful information
about particular conditions of the user or of the walk, such as age, disease or smartphone
position problems. Moreover, there is the option to set up a starting delay in seconds,
useful to give user time to put the mobile phone in the right position and start walking,
and the total acquisition time in seconds. To begin the acquisition, the user must press
start and if the starting delay is not set, the application starts immediately to acquire data.
In Figure 1.1 we show the logo and the home screen of the Activity Logger application.

9

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

(a) Activity Logger logo (b) Activity Logger home screen

Figure 2.1: Activity Logger logo and home screen.

The application saves in a temporary buffer three-dimensional data gathered from ac-
celerometer and gyroscope, which are then used for the subsequent preprocessing phase,
in addition also three-dimensional magnetometer data, gravity acceleration, linear accel-
eration and rotation vector are retrieved. When the acquisition ends, the buffer is read
by saving data for each sensor in text files, where each sensor event is identified with a
timestamp in nanoseconds, stored in a directory of the smartphone file system.

Raw data were collected from 40 volunteers, either males or females, aged between
17 and 84 years with the application just described. Volunteers were asked to walk in
normal conditions in a real scenario for a minimum of two acquisitions with a duration
comprised between 5 and 10 minutes. The person under examination needs to start the
application, input the information he/she considers appropriate, put the smartphone in
the right pocket of the trousers in vertical position with the screen pointed towards the
legs and start to walk. The phone position in the pocket is not a big issue, because small
rotation or displacement of its initial position does not affect the acquisition, but in order
to acquire data as uniform as possible, subjects have to wear trousers, which do not let the
smartphone move in an uncontrolled manner; jeans were preferred.

At the end of the acquisition, only accelerometer and gyroscope data vectors on each
axis are preprocessed in the subsequent phase. In addition, their magnitudes were calcu-
lated, that is, given accelerometer vector, −→a = (ax,ay,az) and gyroscope vector, −→g =
(gx,gy,gz), magnitude vectors are defined with the following equations:

10

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

amag =
√

a2
x + a2

y + a2
z (2.1)

gmag =
√

g2
x + g2

y + g2
z (2.2)

Note that, the sampling frequency of LG G2 has a standard deviation close to zero,
hence the sampling frequency is almost constant, as one can see in Figure 2.3.(a), where
the sampling frequency distribution is reported, but this is not always the case. In fact,
in Figure 2.3.(b) we show the sampling frequency distribution of another smartphone, in
which one can see that constant sampling frequency is not guaranteed, probably it depends
on the computational load of the operative system stack. Hence, an interpolation phase of
all the signals gathered is necessary.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sampling frequency +1.187e2

0

5000

10000

15000

20000

25000

30000

35000

Fr
eq

ue
nc

y

(a) LG G2 case.

0 50 100 150 200 250 300 350 400
Sampling frequency

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

(b) Another smartphone case.

Figure 2.2: Comparison of the sampling frequency distribution of the smartphone employed
in the data acquisition (LG G2) and another smartphone.

2.2 Data Preprocessing
Raw data retrieved from accelerometer and gyroscope sensors with their magnitude needs
to be processed in order to extract gait cycles, which are going to form the data set used in
the feature extraction phase. The preprocessing step includes four sequential steps: inter-
polation, filtering, cycles extraction, reference system transformation and normalization.

Interpolation

An interpolation step is needed because the sampling rate is not constant during the acqui-
sition due to the priority policy of the Android Operative System. Moreover, smartphones
output data values whenever there is a change in the sensor, therefore, the time intervals

11

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

between two samples are not equal and differ for each sensor. Time interpolation is per-
formed through spline interpolation to ensure a sampling rate of fS = 200Hz and fixed
time interval between any two consecutive samples.

Figure 2.2 shows the Power Spectral Density of the raw accelerometer data and withe
noise gathered by the smartphone. In particular, the tri-axial accelerometer data of a
walk of a random subject is reported together with the tri-axial accelerometer data of the
noise. As one can see, noise undergoes a filtering applied by the smartphone, but if the
noise were not filtered, it would be reasonable to think that the intersection point with the
accelerometer data of the walk is at the red marker dot, highlighted in Figure 2.2. Hence,
the bandwidth of the accelerometer walking data is about 70Hz and the choice to fix the
sampling rate to 200 Hz will avoid the presence of aliasing.

100 101 102

Frequency [dB]

−100

−80

−60

−40

−20

0

20

Po
w

er
 S

pe
ct

ra
l D

en
si

ty
 [G

**
2/

Hz
]

x-axis Acc. walking data
y-axis Acc. walking data
z-axis Acc. walking data
x-axis Acc. noise
y-axis Acc. noise
z-axis Acc. noise
Bandwidth

Figure 2.3: Power Spectral Density of the raw accelerometer data acquired.

Filtering

A filtering step is required to deal with possible noise problems of the acquired data. In
order to smooth signals and remove high peaks, a lowpass FIR filter of order 30 and cutoff
frequency fc = 40Hz is applied to all accelerometer and gyroscope components and to
their magnitude.

Cycle Extraction

Filtered signals are passed through a cycle extraction phase. Human gait follows a cyclic
behavior, where there is a periodic repetition of a pattern, known as cycle, which corre-
sponds approximately to two human steps, hence it is reasonable to think that cycles are

12

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

highly correlated in a walking trace of the same subject. For this reason, gait cycles are
recognized by conducting a cycle identification repeatedly in the walking trace. In order
to do this, a template of fixed length is utilized. The first template is extracted finding
the absolute minimum between the first 0.5 and 2.5 seconds of the accelerometer magni-
tude. Then, the subsequent cycles are identified using this template as sliding window on
the signal and they are then evaluated through a correlation distance measure, defined as
follows:

corr_dist(u,v) = 1− (u− ū) · (v− v̄)
‖u− ū‖ ‖v− v̄‖

(2.3)

Hence, it is possible to find the following minimum looking for local minima in an
interval where the correlation distance between the signal and the time-shifted template
falls below a certain threshold and it is possible to identify the starting point of the subse-
quent gait cycle. Then, the template is updated performing a weighted mean between the
previous one and the current one, in order to obtain an accurate template to avoid that
detection errors are propagated in the subsequent identification. The detection continues
until the end of the signal and the result is a vector of indices in the time domain. Two
consecutive indices represent the start and end points of a cycle and these values are used
to extract cycles from all the accelerometer and gyroscope signals.

0 50 100 150 200
−2
−1

0
1
2
3
4
5 Accelerometer Magnitude

0 50 100 150 200
−3

−2

−1

0

1

2

3 Gyroscope Magnitude

0 50 100 150 200
−3
−2
−1

0
1
2
3
4 X-Axis Accelerometer

0 50 100 150 200
−4
−3
−2
−1

0
1
2
3 X-Axis Gyroscope

0 50 100 150 200
−4
−3
−2
−1

0
1
2
3 Y-Axis Accelerometer

0 50 100 150 200
−3

−2

−1

0

1

2

3 Y-Axis Gyroscope

0 50 100 150 200
−3
−2
−1

0
1
2
3
4 Z-Axis Accelerometer

0 50 100 150 200
−3

−2

−1

0

1

2

3 Z-Axis Gyroscope

Figure 2.4: Accelerometer signals (on the left) and gyroscope signals (on the right) from
three different users after the cycle extraction step.

13

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

In Figure 2.4 cycles of three different subjects are shown. As one may notice, gait
patterns are different for each subject. This example demonstrates the basic idea that the
gait pattern is unique for each person and differs between different people. In particular,
signals that differ the most are the gyroscope one. Hence, including in the feature extrac-
tion phase also these data could give important information, which may help capture the
uniqueness embedded in each gait and to improve discrimination between different people.

Reference System Transformation

A reference system transformation is motivated by the fact that the orientation of the
smartphone inside the pocket is unknown and it changes continuously during walking due
to the leg movement. Hence, the new reference system is extracted directly from the
acquired data, in order to obtain a system independent from the orientation of the phone.
Three independent and orthogonal versors are extracted in the following way.

Because of an accelerometer is subject to the effect of gravity acceleration, data have
a common direction due to this component, which is the main low frequency component.
Hence, the first axis of the new reference system is the gravity direction, which is calculated
as the mean direction of the gravity from the tri-axial accelerometer data.

Then, the acceleration data are projected on this new axis. First the acceleration
component along the gravity axis is evaluated and by removing this component from the
original data, a new flattened component placed on the plane orthogonal to the gravity
vector is obtained. Analyzing the flattened component, there is a strong directionality,
along which we observed the greatest excursion in the acceleration data. In order extract
this direction from the data and to obtain a vector orthogonal to the previous one, Principal
Component Analysis (PCA) is applied. Finally, the third axis is obtained simply with a
cross product between the two versors just calculated.

−14

−12

−10

−8

−6

a
x

Walk 1 before transformation

−4

−2

0

2

4

a
y

0 100 200 300 400 500 600

n [samples]

−2

0

2

4

6

8

a
z

4

6

8

10

12

14

Walk 2 before transformation

0

2

4

6

0 100 200 300 400 500 600

n [samples]

−6

−4

−2

0

2

4

−6
−4
−2
0
2
4
6

a
ξ

Walk 1 after transformation

−4
−3
−2
−1
0
1
2
3

a
ψ

0 100 200 300 400 500 600

n [samples]

4
6
8
10
12
14
16

a
ζ

−6
−4
−2
0
2
4
6

Walk 2 after transformation

−4
−3
−2
−1
0
1
2
3

0 100 200 300 400 500 600

n [samples]

4
6
8
10
12
14
16

Figure 2.5: Accelerometer data for two different walks with different orientation along the
original axes ax, ay, az and the transformed ones, aξ, aψ, aζ .

14

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

The positive effects obtained thanks to this reference system transformation are shown
in Figure 2.5, where we show two different walks of the same subjects acquired with different
orientation. On the left there are raw accelerometer data along the original axes and on the
right one there are the same data in the new reference system. As one can notice, in the
original signal the repetitive pattern of the two walks is hard to identify or is completely
different, this is not the case of the signals in the new reference system, which show a very
similar pattern.

Normalization

As noted before, each type of walk derived from different subjects differs in shape, but
different subject also differs for their speed, in fact people have slow, normal and fast gait
or they may change speed during walking. This aspect is reflected on the duration of each
cycle. Moreover, the subsequent feature extraction phase requires in input a fixed number
of samples for each signal, which can affect the performance of the Convolutional Neural
Network in terms of computational time spent and final classification accuracy. In fact, a
high cycle length could considerably increase the computational time spent in the learning
phase and the number of free parameters of the network, without any improvement i terms
of classification accuracy. On the other hand, a low cycle length could speed up the feature
extraction process, but could led to aliasing problems due to subsampling of the signal.
Therefore, a good trade-off has to be found. For all these reasons, each cycle is normalized
to a length of k samples, which in this case was set to 200 samples per cycle.

15

CHAPTER 2. DATA ACQUISITION AND PREPROCESSING

16

Chapter 3

Convolutional Neural Networks

Feedforward Neural Networks or Multilayer Perceptron with multiple hidden layers in arti-
ficial neural networks are usually known as Deep Neural Networks (DNNs). Convolutional
Neural Networks (CNN) is one kind of feedforward neural network, proposed in 1960s, when
Hubel and Wiesel researched the neurons used for local sensitive orientation-selective in
the cat’s visual cortex [4]. CNN is an efficient recognition algorithm which is widely used
in pattern recognition, image processing [64] and speech recognition [61]. It has many ad-
vantages such as a simple structure, a few training parameters and adaptability. In order
to use the machine learning algorithms it is necessary to extract from the acquired signals
some features to be informative, non-reduntant and able to facilitate the subsequent learn-
ing. The extracted features are a reduced representation of the relevant information from
the input data, so that the desired task can be performed using this representation instead
of the complete initial data.

In this work, I investigate the potential for generic features obtained from a well trained
Convolutional Neural Network model to perform the task of walk recognition for data
acquired from smartphone motion sensors.

The choice of this new approach is motivated by the broad applicability of CNNs
shown in recent years due to the availability of large dataset, growth in computational
power, availability of GPUs and efficient algorithms, which have been used to train these
large networks. In the field of image processing, several research group have explored
the potential of CNNs to outperform more classical approach to object recognition and
detection that are based on hand-crafted features, such as in [59] and [60]. The CNN
system applied in these large-scale object recognition or detection tasks consists of a feature
extractor, the actual CNN, followed by a classifier or a regressor. Razavin et al. [3]
showed that combining CNN features with a simple classifier such as a linear SVM is highly
competitive or even superior to classical approaches in most visual recognition tasks. Also,
in [62] authors showed that CNN feature maps can be used with Random Forest and SVM
to yield classification results that outperform the original CNN.

The gait recognition problem using motion sensors is a machine learning problem which
has previously been addressed by deriving hand-crafted features. In [1] and [2], the feature
extraction step is performed by computing several features for x-, y- and z-direction, such as
mean, minimum, maximum, standard deviation, variance, energy, entropy etc. By contrast,
the proposed system uses a CNN, that was initially trained for general classification, as

17

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

a generic feature extractor. Then the extracted features for a single person are used to
perform the recognition task through the One-Class Support Vector Machine algorithm.

In this Chapter, I summarize the fundamental notations and high-level description of
the different components of Convolutional Neural Networks (CNNs), starting with a brief
review of the basic concept of Artificial Neural Networks (ANNs) where CNNs have their
roots.

3.1 An overview on Neural Networks
Artificial Neural Networks (ANNs) are an attempt of modeling the information processing
capabilities of the human brain and biological nervous system. The human brain computes
in an entirely different way from the conventional digital computer. It consists of nerve
cells called neurons, linked together with other neurons via strands of fiber called axons,
as illustrated in Figure 3.1. Axons are used to transmit nerve impulses from one neuron
to another when the neurons are stimulated. A neuron is connected to the axons of other
neurons via dendrites. The contact point between a dendrite and an axons is called synapse.
When the signals received are strong enough, the neuron is activated and emits a signal,
which might be sent to another synapse, and might activate other neurons [65].

Figure 3.1: Simple biological neuron model.

This structures has the capability of organizing its constituents, so as to perform certain
computations e.g. pattern recognition, perception, and motor control many times faster
than the fastest computer in existence today. For these reasons, the study of ANN has
been attracting increasing attention in recent years

Analogous to human brain structure, an ANN can be defined as a massively parallel
distributed computing cell made up of simple processing units, called neurons, that has a
natural propensity for acquiring experiential knowledge through a learning process, storing
it through inter-neuron connection strengths, known as synaptic weights, and making it
available for use [63].

18

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

An ANN derives its computing power through its massively parallel distributed struc-
ture and its ability to learn and therefore generalize. Generalization refers to the production
of reasonable outputs for inputs not encountered during the learning process. These two
information-processing capabilities make it possible for neural networks to find good ap-
proximate solutions to complex problems that are intractable and to capture the subtle
functional relationships among the data even if the underlying relationships are unknown.
This is in contrast to most traditional empirical and statistical methods, which need prior
knowledge about the nature of the relationships among the data. In practice, neural net-
works cannot provide the solution by working individually, but they need to be integrated
into a consistent system engineering approach where different networks are assigned a sub-
set of the tasks that match their inherent capabilities.

Figure 3.2: Mathematical model of an Artificial Neuron.

3.1.1 Model of a Neuron

The fundamental processing-unit of an ANN is the artificial neuron, a simple abstraction
of the complexity of a real neuron. Figure 3.2 shows the structure of an artificial neuron
with m inputs, where you can identify its core components:

• A set of synapses, or connecting links, each of which is characterized by a weight or
strength of its own. In particular, a signal xj at the input of synapse j connected to
neuron k is multiplied by the synaptic weight wkj .

• An adder for summing the input signals, weighted by the respective synaptic strengths
of the neuron.

• An activation function for limiting the permissible amplitude range of the output
signal of a neuron to some finite value of a neuron.

• An externally applied bias, denoted by bk. The bias has the effect of increasing or
lowering the net input of the activation function, depending on whether it is positive
or negative, respectively.

19

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

A neuron computes its output value by performing a weighted sum on its inputs, summing
a bias factor to the sum, and then the result of this combined summation is passed through
an activation function to produce the output of the processing element. In mathematical
terms, the process is summarized in Equation 3.1 and 3.2:

vk = bk +
m∑
j=1

wkjxj (3.1)

yk = ϕ(vk) (3.2)

where x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the respective synaptic
weights of neuron k; vk is the linear combiner output plus the the bias bk; ϕ(·) is the
activation function and yk is the output signal of the neuron.

The common activation functions ϕ(·) are the sign function, which outputs a value +1
if its argument is positive and −1 if its argument is negative; linear function, sigmoid and
hyperbolic tangent function which allow nodes to produce output values that are nonlinear
in their input parameters.

3.1.2 Artificial Neural Network Architectures

ANNs can be categorized on the basis of two major criteria: the learning rule used and the
connections between their processing elements. Based on connections, neurons are arranged
onto precise structured manners, known as architecture model, in order to fully harvest the
benefits of mathematical complexity that can be achieved through their interconnection.

From this point of view three fundamentally different types of ANN architectures may
be identified:

• Single-Layer Feedforward Networks - In a layered neural network, the neurons
are organized in the form of layers. In the simplest form of a layered network, we have
an input layer of source nodes that projects directly onto an output layer of neurons,
but not vice versa. In other words, this network is strictly of a feedforward type. In
Figure 3.3 (a) such a network is called a single-layer network, with the designation
“single-layer” referring to the output layer of computation nodes. The Rosenblatt’s
Perceptron (1958) was the first algorithmically described neural network. It is a
single-layer feed-forward network able to classify patterns that are linearly separable.

• Multilayer Feedforward Networks - The second class of a feed-forward neural
network may contain several intermediary layers between its input and output layers.
Such intermediary layers are called hidden layers and the nodes embedded in these
layers are called hidden neurons. The resulting structure is known as a multilayer
neural network where the nodes in one layer are only connected to the nodes in the
next layer. The set of output signals of the neurons in the final layer of the network
constitutes the overall response of the network to the input signals supplied by the
source nodes in the input layer. By adding one or more hidden layers, the network is
capable of extracting higher-order statistics from its input. Figure 3.3 (b) illustrates
the layout of a multilayer feed-forward neural network for the case of a single hidden
layer.

20

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

(a) Feed-forward network with a single
layer

(b) Multilayer feed-forward network with one
hidden layer.

Figure 3.3: Examples of ANN Architectures

• Recurrent Networks - A recurrent neural network distinguishes itself from a feed-
forward neural network in that it has at least one feedback loop. For example, a
recurrent network may consist of a single layer of neurons with each neuron feeding
its output signal back to the inputs of all the other neurons.

3.1.3 Learning the ANN Model

A major task for a neural network is to learn a model of the world in which it is embedded,
and to maintain the model consistent with the real world. Knowledge of the world consists
of observations and measurements, obtained by means of sensors designed to probe the
environment. These observations provide the pool of information, from which the examples
used to train the neural network are drawn, referred to as a set of training data.

The learning process aims at acquiring the knowledge about the environment as it
is embodied by the training data and at providing a representation of such knowledge
by opportunely modifying the values taken on by the free parameters of the network, i.e
synaptic weights and biases.

Learning algorithms can be divided into supervised and unsupervised methods. Super-
vised learning denotes a method which infers a function from labeled training data. The
output computed by the network is observed and the deviation from the desired output
value is measured. The network parameters are corrected according to the the examples
and the error signal, calculated by the desired response and the actual response of the

21

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

network. This kind of learning is also called learning with a teacher, since a control process
knows the correct answer for the set of selected input data.

Unsupervised learning uses a training set of unlabeled examples and allows the discovery
of hidden structures in the input data. Since the corrections to the network weights are
not performed by an external agent, the network itself decides what output is best for a
given input and reorganizes accordingly.

In this work, I used a standard fully supervised Convolutional Neural Network model,
for this reason, I dedicate the remaining section to the discussion of the principles of
supervised learning.

As mentioned before, the network parameters are adjusted under the combined influence
of the training data and the expected response in a step-by-step fashion with the aim to
optimize in some statistical sense an error signal, defined as E(w), which represents the
difference between the desired response and the actual response of the network. Such
form of supervised learning is the basis of error-correction learning, where a performance
measure for the system in function of the free parameters is defined, i.e. mean-square error,
the sum of squared errors or a loss function.

This function may be visualized as a multidimensional error-performance surface, or
simply error surface, with the free parameters as its coordinates. Any given operation of
the system under the teacher’s supervision is represented as a point on the error surface.
For the system to improve performance over time and therefore learn from the teacher,
the operating point has to move down successively toward a minimum point of the error
surface. Since the output of an ANN is a nonlinear function of its parameters because of the
choice of its activation function, greedy algorithms such as those based on gradient descent
method have been developed to efficiently determine the set of weights w that minimize
E(w). The weight update formula, known as delta rule, for node j can be written as
follows:

wj ← wj +4wj (3.3)

where 4wj = −λ∂E(w)
∂wj

and λ is a parameter known as learning rate. The second term
states that the weight should be increased in a direction that reduces the overall error term.
However, because the error function is nonlinear, it is possible that the gradient descent
method may get trapped in a local minimum.

The gradient descent method can be used to learn the weights of the output and hidden
node of a multilayer ANN. For hidden nodes, the computation is not trivial because it
is difficult to asses their error term, ∂E(w)

∂wj
, without knowing what their output values

should be. A technique known as back-propagation has been developed to address this
problem. There are two phases in each iteration of the algorithm: the forward phase and
the backward phase. During the forward phase, the weights obtained from the previous
iteration are used to compute the output value of each neuron in the network and their
derivatives are evaluated at each node. In the forward direction, outputs of the neurons at
level k are computed prior to computing the outputs at level k + 1. During the backword
phase, the weight update formula is applied in the reverse direction, that is, the weights al
level k + 1 are updated before those at level k. This back-propagation approach allows to
use the errors for neurons at layer k + 1 to estimate the errors for neurons at layer k.

22

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

3.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are biologically-inspired variants of MLPs and refer
to a sub-field of machine learning, known as Deep Learning, that is based on learning levels
of representations, corresponding to a hierarchy of features, factors and concepts.

Feedforward Neural Network or Multilayer Perceptron with multiple hidden layers in
artificial neural networks is usually known as Deep Neural Networks (DNNs). Convolu-
tional Neural Networks is one kind of feedforward neural network. In 1960s, when Hubel
and Wisel researched the neurons used for local sensitive orientation-selective in the cat’s
visual system, they found the visual cortex contains a complex arrangement of cells. These
cells are sensitive to small sub-regions of the visual field, called receptive field. The sub-
regions are tiled to cover the entire visual field. These cells act as local filters over the input
space and are well-suited to exploit the strong spatial correlation present in natural images.
Being the animal visual cortex the most powerful visual processing system in existence, it
seems natural to emulate its behavior as Convolutional Neural Network try to do.

CNN is an efficient recognition algorithm which fileds has become a hot research topic
and is widely used in pattern recognition and image processing. It has many desirable prop-
erties such as a simple structure, a few training parameters, adaptability and weight shared
network structure, which make it more similar to biological neural networks, reducing the
network complexity and the number of parameters [66].

3.2.1 Deep Architectures Learning

Human ability to abstract requires that the visual cortex has a deep structure. When
humans try to solve an artificial intelligence task, they often exploit their intuition about
how to decompose the problem into sub-problems and multiple levels of representation,
where models can be reused in different object examples. A computational machine that
need to express complex behaviors requires highly varying mathematical functions, that
are non-linear in terms of raw inputs and display a very large number of variations across
the domain of interest. The raw input to the learning system are high dimensional entities,
made of many observed variables, which are related by unknown intricate statistical rela-
tionships. If a machine captured the factors that explain the statistical variations in the
data, one would be able to say that the machine understands those aspects of the world
covered by these factors of variation [67].

The focus of Deep Architecture Learning is to automatically discover such complex
behaviors, learning features at multiple levels of abstraction that allows a system to map
the input to the output directly from data without completely depending on human-crafted
features.

The concept of Deep Learning comes from the study of Artificial Neural Network.
Multilayer Perceptron which contains more hidden layers is a Deep Learing Architetures.
On the contrary, the model of Multilayer Perceptron, reviewed in the previous section,
with zero or only one hidden layer is called shallow architecture. These architecture offer
little or no invariance to shifting, scaling and other forms of distortion. They ignore
completely the topology of the input, yielding similar training result for all permutation
of the input vector and adding multiple hidden layers to the Multilayer Perceptron is not

23

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

a good approach, since the so called diffusion of gradients problem may occur. These
problems are exacerbated by the fact that in a fully connected neural network when the
number of hidden layers rises, also the number of connections rises and the network can’t
be trained effectively in a finite time [68].

Convolutional Neural Networks developed by Yann LeCun [4] is the first truly deep
architecture to overcome these problems. It is the architecture that closely resembles
human visual system and it can be trained using gradient descent algorithms.

3.2.2 CNN Description

The concept of Convolutional Neural Network was intorduced in 1995 by Yann LeCun and
Yoshua Bengio to deal with the variability and identification of two-dimensional image
information. The following description in based on [4] by Yann Lecun, on [70] by David
Bauchain and on [69] by Wang et al.

At a most basic level, a Convolutional Neural Network is a multilayer, hierarchical
neural network. There are three principal factors that distinguish the CNN from a simple
feedforward neural network: local receptive fields, weights sharing and spatial pooling or
subsampling layers.

In a simple MLP network each neuron was fully connected to the neurons in the sub-
sequent layer. Instead of CNN, which exploits spatially-local correlation by enforcing a
local connectivity pattern between neurons of adjacent layers, in other words each neuron
is constrained to depend only on a spatially local subset of the neurons of the previous
layer, an example is reported in Figure 3.4. The set of nodes that affect the activation of a
neuron is referred to as the neuron’s receptive field. In terms of network architecture, this
translates into a sparse set of edges since adjacent layers are not always fully connected.

Figure 3.4: Two examples of connectivity pattern in a convolutianal layer of a CNN, where
each neuron has a receptive field of size 3.

The second feature that distinguishes CNNs is that the edge weights in the network are
shared across different neurons in the hidden layers. Sharing the weights across multiple
neurons in a hidden layer translates into evaluating the same filter over multiple sub-
windows of the input image. Since each neuron computes a weighted linear combination
of its inputs, this process is equal to evaluate a linear filter over the input values. Hence,
the CNN is effectively learning a set of filters, each of which is applied to all of the sub
windows within the input image. Using the same set of filters over the entire image forces
the network to learn a general encoding or representation of the underlying data [69].

24

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Constraining the weights to be equal across different neurons also has a regularizing effect
on the CNN, because this allows the network to generalize better in many visual recognition
tasks. Moreover, weight sharing reduces the number of free parameters in the CNN, making
it easier and more efficient to train. Finally, evaluating a filter over each window in the
input image corresponds to perform a convolution of the image with a filter. Therfore, in
a convolutional step of a CNN, the input image is convolved with each filter to obtain a
convolutional respose map.

The final distinguishing component in a CNN is the presence of sub-sampling or pooling
layers. The goal here is twofold: reduce the dimensionality of the convolutional responses
and confer a small degree of translational invariance into the model. The standard approach
is through spatial pooling.

Convolutional Neural Network is composed of several feature map arrays clustered into
one, two, or more stages, followed by a classifier at the end. Each stage is used as a feature
extractor and it could be made by a convolutional layer, activation layer and feature pooling
layer.

• Convolutional Layer - It consists of a set of filters. During the forward pass, each
filter slides across the width and height of the input feature map. As the filter slides
across the input, the dot product between the entries of the filter and the input is
computed. Since all neurons use the same weight vector, then the forward pass of the
convolutional layer can be computed as a convolution of the neuron’s weights with
the input. Therefore, it is common to refer to the sets of weights as a filter or a kernel.
Suppose to have a set of n two dimensional feature maps of size H ×W as input,
each feature map is denoted by xi and each neuron xijk, a two dimensional trainable
kernel kij connects feature map xi with the set of feature maps yj . A feature map is
obtained by convolution of the input feature map with the kernel and adding a bias
term.

yj = bj +
∑
i

kij ∗ xi (3.4)

where bj is a trainable bias parameter and ∗ operator performs a two dimensional
discrete convolution. The number of features maps at the output is determined by
how many different convolutional kernels are used. A Convolutional Layer has two
important hyperparameters to be set when building a CNN. The first is the size of
zero-padding, that specifies the number of pixels to add to each side of the input
to apply the filter to every element of the input matrix and get a larger or equally
sized output. Adding zero-padding is also called wide convolution, and not using
zero-padding would be a narrow convolution. Another hyperparameter is the stride
size that specifies intervals at which to apply the filters to the input. In the literature
typically stride is of sizes 1, but a larger stride size may allow to build a model that
behaves somewhat similarly to a Recursive Neural Network, i.e., looking like a tree.

• Activation Layer or Rectification Layer - It applies an element-wise activation
function that introduces non-linearity. This is usually a point-wise hyperbolic tangent
f(x) = tanh(xi), a sigmoid function f(xi) = 1

1−e−xi
or a Rectified Linear Unit (ReLU)

f(xi) = max(0, xi).

25

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

• Feature Pooling Layer - It is common to periodically insert a pooling layer in-
between successive convolutional layers. The purpose of this layer is to progressively
reduce the spatial resolution of preceding feature maps. In spatial pooling, the convo-
lutional response map is first divided in a set of m×n blocks, generally disjoint, then
a pooling function is evaluated over the responses in each block. This process yields
a smaller response map with dimension m×n. The most common form of pooling is
the max pooling, that takes the response for each block to be the maximum value
over the block response. Figure 3.5 shows an example of max pooling.

Figure 3.5: Example of downsampling with max operator, here shown with a stride of 2.

• Fully-Connected Layer - After several convolutional and max pooling layers, the
high-level reasoning in the neural network is achived via fully connected layers. Neu-
rons in a fully connected layer have full connections to all activations in the previous
layer, as seen in regular Artificial Neural Networks.

• Loss Layer - The loss layer specifies how the network training penalizes the deviation
between the predicted and true labels and is normally the last layer in the network.
Various loss functions appropriate for different tasks may be used. Softmax loss is
used for predicting a single class of K mutually exclusive classes. Sigmoid cross-
entropy loss is used for predicting K independent probability values in range [0, 1].
Euclidean loss is used for regressing to real-valued labels [−∞,+∞]. Typically, in
this layer are stored the output class scores o labels.

The most common form of a Convolutional Neural Network architecture stacks a few
Convolutional Layer and Rectification Layers, followed by Pooling Layers, and repeats this
pattern until the input data has been merged spatially to a small size. At some point, it is
common to transition to Fully-Connected layers, that holds the output of the classification
task. In Figure 3.6 there is an example of a two stage convolutional network.

26

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.6: Example of 2-stage CNN architecture.

In this way, a deep architecture can be constructed. Intuitively, the low-level convolu-
tional filters, such as those in the first convolutional layer, can be thought of as providing a
low-level encoding of the input data. In the case of image data, these low-level filters may
consist of simple edge filters. As we move to higher layers in the neural network, the model
begins to learn more and more complicated structures. By using multiple layers and large
numbers of filters, the CNN architecture can thus provide vast amounts of representational
power.

To train a CNN, standard technique of error backpropagation can be used, by itera-
tively optimizing the weights by calling forward and backward algorithms and updating
parameters. However, in practice there are a number of challenges in applying the gradient
descent rule, the most important is that the computation of gradient is done for each train-
ing input, unfortunately, when the number of training inputs is very large this can take
a long time, and learning thus occurs slowly. An idea called Stochastic Gradient Descent
(SGD) can be used to speed up learning [5].

Following the discussion on SGD used in Caffe1 and [5]. For a dataset D, the optimiza-
tion objective is the average loss over all |D| data instances throughout the dataset:

L(W) = 1
|D|

|D|∑
i

fW (X(i)) + αr(W) (3.5)

where fW (X(i)) is the loss on data instance X(i) and r(W) is a regularization term to
avoid overfitting on the dataset and it is governed by the parameter α. When |D| is very
large, the idea behind stochastic gradient descent is to estimate the gradient for a small
sample of randomly chosen training inputs, N � |D|, obtaining a stochastic approximation
of the loss function:

L(W) = 1
N

N∑
i

fW (X(i)) + αr(W) (3.6)

1http://caffe.berkeleyvision.org/

27

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

The model computes fW in the forward pass and the gradient ∇fW in the backward
pass. The parameters update4W is calculated from the error gradient∇fW . In particular,
SGD updates the weights by a linear combination of the negative gradient ∇L(W) and the
previous weight update Vt. The learning rate λ is the weight of the negative gradient. The
momentum µ is the weight of the previous update. Formally, given the previous weight
update Vt and current weights Wt, Equations 3.7 and 3.8 are used to respectively compute
the update value Vt+1 and the updated weights Wt+1 at iteration t+ 1.

Vt+1 = µVt − λ∇L(Wt) (3.7)

Wt+1 = Wt + Vt+1 (3.8)

The momentum µ tends to make deep learning with SGD both stabler and faster,
by smoothing the weight updates across iteration and the learning rate λ determines the
learning speed of neurons.

28

Chapter 4

One Class Support Vector Machine

In One-Class Classification (OCC), only information of one of the classes is available, the
instances of this class will be called the target or positive instances. This means that just
the target class is well characterized by instances in the training data, while the objects of
other class, called the negative class, are either absent, poorly sampled or not well defined
to form a statistically-representative sample of the other concept. OCC algorithms aim to
build classification models using data from the target class only. These models should be
able to distinguish examples of the target class from those of the negative class. Although
this problem can be viewed as a standard binary classification problem, the absence of
counter-examples prevents the direct use of traditional binary classification techniques
[51].

OCC problems are prevalent in real world where positive and unlabeled data are widely
available but negative data are hard or expensive to acquire. In the literature a large num-
ber of different terms have been used for this problem, because OCC has been considered
and applied under many research themes, such as outlier or novelty detection and concept
learning.

In this chapter, I will introduce the problem of one-class classification with respect to
conventional multi-class classification problem, considering some possible one-class scenar-
ios to motivate their importance. After a review of the basic approaches to solve OCC
problems in the literature, I formalize the fundamental concepts of One Class Support
Vector Machine.

4.1 Introduction to OCC Problem

4.1.1 One-Class Vs. Multi-Class Classification

A general multi-class classification problem can be decomposed into several two-class clas-
sification problems, therefore I am going to consider for the rest of the discussion the
two-class problem as the basic classification problem.

In a two-class scenario, usually the two classes are labeled by −1 and +1. A training
set is a set of objects which for each object xi, a label yi ∈ {−1,+1} is attached:

Xtr = {(xi, yi)|i = 1, ..., N} (4.1)

29

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

A function f(x) has to be inferred from the training set, such that for a given feature
vector x the label is obtained, y = f(x), where:

f : <d → {−1,+1} (4.2)

Considering Figure 4.1, a training set comprising of instances of apple, indicated by
stars, and pears, indicated by pluses, is reported. Each object has two feature values,
so they can be represented in a 2-dimensional feature space. In this example any binary
classifier can be applied, with the result that the two classes can be separated without
errors by a solid line. But if the test data object is from an entirely different domain,
like the outlier apple in the right lower corner, the binary classifier will always classify
this object as an apple or a pear, which results in both cases a classification error. This
problem arises because in a conventional multi-calss classification problem, data from two
or more classes are available and the decision boundary is supported by the presence of
data objects from each class.

Figure 4.1: Example of a conventional and one-class classifier

To identify the outlier, a one-class classifier should be trained [55]. An example of a
one-class classification is given by the dashed line. As stated earlier, in OCC problems
the negative data objects are absent or available in limited amount, so only one side of
the classification boundary can be determined only using the target data. This makes the
problem of OCC harder than the problem of conventional two-class classification. The task
in OCC is to define a classification boundary around the positive class, such that it accepts
as many objects as possible from the positive class, while it minimizes the probability
of accepting the outlier objects. In OCC, since only one side of the boundary can be
determined, it is hard to decide on the basis of just one-class how tightly the boundary
should fit in each of the directions around the data. It is also harder to decide which
features should be used to find the best separation of the positive and outlier class objects.

30

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

4.1.2 OCC Solution Methods

For one-class classification several models have been proposed and most often the methods
focus on outlier detection [51]. Three basic approaches to solve OCC may be identified:

• Outlier Generation Methods - Conceptually it is the simplest solution for outlier
detection, because it generates outlier data around the target data, also named artifi-
cial counter-examples. The problem then becomes a two-class classification problem
that can be solved by standard binary classification techniques. This approach may
have poor predictive performance on new data in high dimensional problems, since
it is necessary to assume a distribution for the outlier data.

• Density Methods - They directly estimate the density of the target data by as-
suming a uniform outlier distribution and by the application of Bayes rule. Some
methods used for the estimation are Parzen Density Estimator [52] and Gaussian
Mixture Models [53]. The need to assume a particular distribution for the target
data limits this approach because the training data should be a typical sample from
the true data distribution.

• Boundary Methods - This approach looks for a boundary or frontier around the
target data. It tries to avoid the estimation of the complete density of the data and
therefore also works with uncharacteristic data set, this not only provides advantages
when just a limited number of samples is available, but it is even possible to learn
from data when the exact target density distribution in unknown. For the boundary
methods, it is sufficient that the user can indicate just the boundary of the target class
by using examples. Among the machine learning techniques adapted for this purpose,
one frequently used is the Support Vector Machine, such as One-Class Support Vector
Machine [37] and Support Vector Data Description [54].

4.1.3 Application Scenarios

To motivate the importance of One-Class Classification, let us consider some scenarios.
One of the most important application for OCC is outlier detection, with the aim to
detect uncharacteristic objects from a dataset. An outlier is an observation which deviates
so much from the other observations as to arouse suspicions that it was generated by a
different mechanism [56]. Some applications of outlier detection could be: fraud detection,
for example purchasing behavior of a credit card owner usually changes when the card is
stolen and abnormal buying patterns can characterize credit card abuse. In public health
and medicine the occurrence of a particular disease, unusual symptoms and test results
may indicate potential health problems of a patient. Detecting measurement errors, for
example in data derived from sensors may contain measurement errors, removing such
errors can be important in other data mining and data analysis tasks.

Another scenario in which OCC can be used is when one of the classes is sampled
very well, while the other class is severely undersampled, due to the difficulty and the
expensiveness to obtain such measurements. For instance, in a machine monitoring system
where the current condition of a machine is examined to detect when it shows a problem.
Measurements on the normal working conditions of a machine are very cheap and easy to

31

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

obtain. On the other hand, measurements of outliers are very expensive and it is impossible
to generate all faulty situations. Another example is the automatic diagnosis of a disease.
It is relatively easy to obtain positive data, all patients who are known to have a common
disease, but negative data may be difficult to obtain since other patients in the database
cannot be assumed to be negative cases if they have never been tested, and such tests can be
expensive. Alternatively, if the disease is rare it is difficult to collect positive samples until
a sufficiently large group has contracted that disease, which is an unsatisfactory approach.

There are other scenarios in which it may seem sensible to suggest that one-class prob-
lems should be reformulated into two-class ones because there is actually data from other
classes that can be used for training. However, there are genuine one-class applications
where it is inappropriate to make use of negative data during training.

For example, consider password hardening [57], which is a biometric system that
strengthens the login process on a computer by not only requiring the correct password to
be typed, but also requiring it to be typed with the correct rhythm. Password hardening is
clearly a one-class problem, because a single user must be verified and during training time
only data from that user is available, we cannot ask anyone else to provide data without
supplying them with the password. Even in applications where instances from multiple
classes are available at training time, it may be opportune to focus solely on the target
class under consideration and contemplate a one-class setup.

4.2 One-Class Support Vector Machines
The technique I used for walk recognition is One-Class Support Vector Machine, described
by Schölkopf et al. (1999) in [37]. In their work they construct a hyper-plane around the
data, such that this hyperplane is maximally distant from the origin and can separate the
regions that contain no data. They propose to use a binary function that returns +1 in a
small region containing the data and −1 elsewhere. Moreover, they introduce a variable
that controls the effect of outliers, i.e., the hardness or softness of the boundary around
the data and suggest the use of different kernels, corresponding to a variety of non-linear
estimators.

In this section, before starting with the theory dissertation about One-Class SVM, I
present a brief summary of the basic concepts of Support Vector Machines (SVMs), based
on the theory in [19] and [49], which are useful to understand One-Class SVM.

4.2.1 Support Vector Machines

A classification technique that has received considerable attention is Support Vector Ma-
chine (SVM). This technique has its roots in statistical learning theory and has shown
promising empirical results in many practical applications. The basic idea behind SVM
is the concept of decision boundary, a maximal margin hyperplane that separates two
data classes. Maximizing the margin and thereby creating the largest possible distance
between the separating hyperplane and the instances on either side of it, tends to have
better generalization errors than those with small margins.

Intuitively, if the margin is small, then any slight perturbation to the decision boundary
can have a significant impact on its classification performance. Classifiers that produce

32

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

decision boundaries with small margins are more susceptible to model overfitting and tend
to generalize poorly on unseen examples.

If the training data is linearly separable, then a binary classification problem of N
training examples can be considered. Each example is denote by a tuple (xi, yi) where
i = 1, 2, ..., N and xi = (xi1, xi2, ..., xid)T corresponds to the attribute set for the ith

example. By convention, let yi = {−1, 1} denote its class label. The decision boundary of
a linear classifier can be written in the following form:

w · x + b = 0 (4.3)

where w and b are parameters of the model.
The training phase of SVM involves estimating the parameters w and b of the decision

boundary from the training data. If the training data is linearly separable, then a pair
(w, b) exists such that the following two conditions are met:{

w · xi + b ≥ 1 if yi = 1
w · xi + b ≤ −1 if yi = −1

(4.4)

SVM imposes an additional condition requirement that the margin of its decision
boundary must be maximal. An optimum separating hyperplane can be found minimizing
the squared norm of the separating hyperplane, equivalent to the following constrained
optimization problem: min

w
‖w‖2

2
yi(w · xi + b) ≥ 1, i = 1, 2, ..., N

(4.5)

Since the objective function is quadratic and the constraints are linear, this is known
as a convex optimization problem, which can be solved using standard Lagrange multiplier
method. First, the objective function must be rewritten in a form that takes into account
the constraints imposed on its solutions. The new objective function is known as the
Lagrangian for the optimization problem:

LP = 1
2 ‖w‖

2 −
N∑
i=1
λi (yi (w · xi + b)− 1) (4.6)

This lead to the following optimization problem:max
λi

(
min
w,b

LP

)
λi ≥ 0 i = 1, ..., N

(4.7)

where the parameters λi are called the Lagrange multipliers. It is shown that the
solution of problem 4.7 satisfies the following condition:

λi [yi (w · xi + b)− 1] = 1 (4.8)

The constraint states that the Lagrange multiplier λi must be zero unless the training
instance xi satisfies the equation yi (w · xi + b) = 1. Such training instances with λi ≥ 0

33

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

lies along the hyperplanes w ·xi+b = 1 or w ·xi+b = −1, parallel to the decision boundary
with maximum margin, and is known as a support vector. Training instances that do not
reside along these hyperplanes have λi = 0.

Solving the optimization problem of Equation 4.6 is very difficult because it involves a
large number of parameters. The problem can be simplified by transforming the Lagrangian
into a function of the Lagrangian multipliers only, known as the dual problem, and solved
using numerical techniques such as quadratic programming.

Once the λi are found, a feasible solution for w and b can be found and a test instance
z is classified with the following decision function:

f(z) = sign(w · z + b) = sign

(
N∑
i=1

λiyixi · z + b

)
(4.9)

If f(z) = 1, then the test instance is classified as a positive class; otherwise, it is
classified as a negative class.

In some cases SVMmay not be able to find any separating hyperplane at all, because the
data contains missclassified instances. This problem can be addressed by using a method
known as the soft margin approach, that accepts missclassification of the training instances.
This can be done by introducing positive-valued slack variables ξi into the constrains of
the optimization problem 4.7.

Nevertheless, most real world problems involve non-separable data for which no hyper-
plane exists that successfully separates the instances in the training set. One solution is to
transform the data from its original coordinate space in x into a new higher-dimensional
space Φ(x), called the transformed feature space, so that a linear decision boundary can
be found to separate the instances in the transformed space. Then, the training algo-
rithm would only depend on the data through dot products in the form Φ(xi) ·Φ(xj), such
computation can be computationally expensive, because it may suffer from the curse of
dimensionality problem. However, there were functions, called kernel functions, K such
that K(xi,xj) = Φ(xi) · Φ(xj), that can be used in the training algorithm instead of the
dot product on Φ. This method is known as kernel trick, that allows inner products to be
calculated directly in feature space, without performing any mapping.

4.2.2 One-Class SVM

Schölkopf et al. (1999) suggested a method of adapting the SVM methodology to the one-
class classification problem [37]. Essentially, they propose an algorithm which computes a
binary function which is supposed to capture regions in input space where the probability
density lives, i.e. a function such that most of the data will live in the region where the
function is nonzero. They applied the new proposed method on artificial and real-world
data to provide a solid foundation to the theoretical result outlined in their work.

The Problem

The problem can be formulated in the following terms: suppose that a dataset has a
probability distribution P in the feature space. Find a subset S of the feature space such
that the probability that a test point from P lies outside S is bounded by some a priori

34

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

specified value. Supposing that there is a dataset drawn from this underlying probability
distribution P , one needs to estimate a subset S of the input space such that the probability
that a test point from P lies outside of S is bounded by some a prior specified value in
range (0, 1). The solution for this problem is obtained by estimating a function f that
takes the value +1 in S and −1 on the complement S̄ [50]. See Figure 4.2 for an example.
The strategy of Schölkopf et al. is to map the data into the feature space corresponding to
a kernel function, and to separate them from the origin, which is the only member of the
second class, with maximum margin, employing standard two-class SVM techniques. For
a new point x, the value f(x) is determined by evaluating which side of the hyperplane it
falls on.

Figure 4.2: One-Class SVM Classifier, where the decision bound and the origin, the only
member of the negative class, are reported.

The Algorithm

Consider a training data x1,x2, ...,xl ∈ X , where xi is a d-dimensional vector, l ∈ N is the
number of observations and X is some set. Also let Φ be a feature map X −→ F , i.e. a
map into an inner product space F such that the inner product in the image of Φ can be
computed by evaluating some simple kernel function K(x,y).

To separate the data set from the origin, one has to solve the following quadratic
problem:

min
w,ξ,ρ

1
2 ‖w‖

2 + 1
νl

∑
i

ξi − ρ

(w · Φ(xi)) ≥ ρ− ξi
ξi ≥ 0

(4.10)

Here, ν ∈ (0, 1] is a parameter that regularizes the fraction of outliers and Support
Vectors (SVs).

Since nonzero slack variables ξi are penalized in the objective function, one can expect
that if w and ρ solve this problem, then the decision function is:

35

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

f(x) = sgn ((w · Φ(xi))− ρ) (4.11)

Equation 4.11 will be positive for most examples xi contained in the training set, while
the SV type regularization term ‖w‖ will still be small. The actual trade-off between these
two goals is controlled by ν.

Using multipliers αi, βi ≥ 0,they introduce a lagrangian formulation of the objective
function of problem 4.10:

L (w, ξ, ρ, α, β) = 1
2 ‖w‖

2 + 1
νl

∑
i

ξi − ρ−
∑
i

αi ((w · Φ(xi))− ρ+ ξi)−
∑
i

βiξi (4.12)

and set the derivatives with respect to the primal variables w, ξ, ρ equal to zero, yielding:

w =
∑
i

αiΦ(xi) (4.13)

αi = 1
νl
− βi,

∑
i

αi = 1. (4.14)

In Equation 4.13, all parameters are called Support Vectors. Together with the kernel
function, the SV expansion transforms the decision function 4.11 into the following kernel
expansion

f(x) = sgn

(∑
i

αik(xi,x)− ρ
)

(4.15)

Substituting 4.13 and 4.14 in 4.12, one can obtain the dual problem:
min
α

1
2
∑
i,j

αiαjk(xi,xj)

0 ≤ αi ≤ 1
νl∑

i

αi = 1

(4.16)

One can show that at the optimum, the two inequality constraints of problem 4.10
become equalities if αi and βi are nonzero, i.e., if 0 < αi <

1
νl . Therefore, one can recover

by exploiting that for any such αi, the corresponding pattern xi satisfies

ρ = (w · Φ(xi)) =
∑
j

αjk(xj ,xi) (4.17)

Note that if ν approaches 0, the upper boundaries on the Lagrange multipliers tend to
infinity, i.e. the second inequality constraint in 4.16 becomes void. The problem then re-
sembles the corresponding hard margin algorithm, since the penalization of errors becomes
infinite, as can be seen from the primal objective function in problem 4.10. It is still a
feasible problem, since they have placed no restriction on the offset ρ, so it can become a
large negative number in order to satisfy the constrains of 4.11.

36

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

To understand the meaning of the parameter ν, suppose to use a kernel which can be
normalized as a density in input space, such as the Gaussian. If ν = 1 is used the constrains
in 4.16 only allows the solution α1 = ... = αl = 1

l . Thus the kernel expansion reduces to an
estimate of the underlying density. For ν < 1, the equality constraint in 4.16 still ensures
that the decision function is a thresholded density. However, in that case, the density will
only be represented by a subset of training examples, the Support Vectors. Therefore,
they show that ν is an upper bound on the fraction of outliers and a lower bound on the
fraction of SVs. With probability 1, asymptotically, ν equals both the fraction of SVs and
the fraction of outliers. The modification proposed to the SVM algorithm allows for the
possibility of outliers and they have incorporated this softness of the decision rule using
the ν-trick, obtaining a direct handle on the fraction of outliers.

The problem obtained has formulated in terms of quadratic programs (QPs) for com-
puting region that capture a certain fraction of the data. These constrained optimization
problems can be solved via an off-the-shelf QP package to compute the solution. Schölkopf
describes a modified version of Sequential Minimal Optimization (SMO), an SV training
algorithm proposed for classification, in which sequential optimization over pairs of input
patterns is carried out. The optimization algorithm is a topic beyond the scope of this
thesis, so for further details on this proposed technique can be found in [37].

4.3 Dimensionality Reduction
The term Dimensionality Reduction (DR) is often reserved for those techniques that reduce
the dimensionality of a data set by creating a new set of features. DR is an important
task in the preprocessing of data sets with a large number of features, that has been
widely investigated for different purposes, such as clustering, classification or function
approximation, becoming the focus of many research works where datasets can contain
hundreds of features. Since the learning gets harder quickly as the dimensionality of the
problem increases, using too many features will lead to different problems such as curse of
dimensionality, decreased performances and overfitting [48]. These problems worsen with
the presence of many irrelevant, noisy and redundant features.

There are many potential benefits of dimensionality reduction: facilitating data visu-
alization and data understanding, reducing the measurement and storage requirements,
reducing training and calculation times, defying the curse of dimensionality to improve
prediction performance in term of accuracy of the model.

The subset of the potential input features can be defined through two different ap-
proaches: feature selection and feature transformation or feature extraction [47]. Feature
selection reduces dimensionality by selecting a subsets of relevant features to the existing
features. Feature transformation or feature extraction performs a transformation of the
original features to a new reduced set of features which are more significant. Since in this
thesis I used the term feature extraction to refer to the extraction of informative and non-
reduntant features from an initial set of measured data, I will refer to this second technique
of dimensionality reduction as feature transformation.

DR techniques in a supervised learning context are well posed in that there is a clear
objective of discovering a reduced representation of the data where the classes are well
separated. By contrast, DR in an unsupervised context is ill posed in that the overall ob-

37

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

jective is less clear. While one-class classification falls somewhere between the supervised
and unsupervised learning categories, supervised DR techniques appear not to be directly
applicable to OCC problems because of the absence of a second class label in the training
data. In supervised learning the objective of DR is to optimize the performance of the
final system, that is, minimize the classification error. However, in one-class classifica-
tion performance estimation is difficult because the absence of counterexamples makes the
estimation of the false positive rate hard and assumption-based.

There are several research works that tries to address this problem for OCC. For ex-
ample, in [46] Villalba and Cunningham demonstrated the potential improvements by
applying carefully selected DR techniques to one-class classification. They choose four dif-
ferent OCCs: support vector data description, a k-nearest neighbors approach, a k-means
clustering approach and a Gaussian model. Then, they applied them to real datasets
from different domains in combination with principal component analysis, Q-α algorithm,
locality preserving projections and Laplacian score. The results obtained shows that DR al-
gorithms have to be applied to a dataset in combination with a domain specific knowledge,
because a global solution for all OOC problems does not exist. In [45] authors proposed
a new filter feature selection approach for one-class classification, which uses the feature
ranking of five feature selection measures from different paradigms adapted to the one-class
scenario combined using different aggregation strategies.

In order to select the best subset of features, in the remaining part of this section I
present the two technique used to face the problem of the DR in OCC. The first is Principal
Component Analysis (PCA), a technique for unsupervised dimensionality reduction, that
falls in the category of feature transformation techniques. The second one is a feature
selection technique, known as Sequential Feature Selection.

4.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimension-reduction tool that can be used to
reduce a large set of variables to a small set that still contains most of the information of
the large set [19]. PCA is a mathematical procedure that transforms a number of correlated
features into a number of uncorrelated features called principal components, where each
pair of new distinct features has 0 covariance, features are ordered with respect to how
much of the variance of the data each feature captures, the first feature captures as much
of the variance of the data as possible and subject to the orthogonality requirement, each
successive attribute captures as much of the remaining variance as possible.

The variability of a collection of multivariate data con be summarized by computing
the covariance matrix S of the data, which has entries defined as sij = covariance (d∗i, d∗j)
that is the covariance of the ith and jth features of the data, in other words it is a measure
of how strongly the features vary together. The covariance between two jointly distributed
real-valued random variables X and Y is defined as:

Cov(X,Y) = E [(X − E(X)) (Y − E(Y))] (4.18)

A transformation of the data that has the properties mentioned before can be obtained
by using eigenvalue analysis of the covariance matrix. Let λ1,λn be the eigenvalues of
S. The eigenvalues are all non-negative and can be ordered such that λ1 ≥ λ2 ≥ ≥ λn.

38

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

Let U = [u1, ..., un] be the matrix of eigenvectors of S. These eigenvectors are ordered so
that the eigenvector ith corresponds to the ith largest eigenvalue. Finally, if the original
data matrix D has been preprocessed so that the mean of each attribute is 0, then the
following properties are valid:

• the data matrix D′ = DU is the set of transformed data that satisfies the conditions
posed above.

• Each new features is a linear combination of the original features, that is the weights
of the linear combination for the ith feature are the components of the ith eigenvector.
The variance of the ith new feature is λi.

• The sum of the variance of the original features is equal to the sum of the variance
of the new features, which are called principal components.

Figure 4.3: Principal Component number 1 and 2 capturing the directions in which the
data has the most variance.

The eigenvector associated with the largest eigenvalue indicates the direction in which
the data has the highest variability. In other words, if all the data vectors are projected
onto the line defined by this vector, the resulting values would have the maximum variance
with respect to all possible directions. The eigenvectors of S define a new set of axes.
Indeed, PCA can be viewed as a rotation of the axes to a new set of axes that are aligned
with the variability of the data, as shown in Figure 4.3 with the example of the first two
principal components.

39

CHAPTER 4. ONE CLASS SUPPORT VECTOR MACHINE

4.3.2 Sequential Forward Selection

Feature selection approach reduces the dimension of a dataset by finding the best minimum
subset without transforming the data into a new set. The difficulty of extracting the most
relevant variables is mainly due to the large dimension of the original variable set, the
correlations among inputs which cause redundancy and the presence of features which do
not have any predictive power. In the literature, variable selection methods are classified
into three categories: filter, embedded and wrapper methods [47].

The filter approach consists of a pre-processing phase which is independent of the
learning algorithm, and the subset of relevant variables is extracted by evaluating the
relation between input and output of the considered system. An embedded approach
performs the feature selection in the learning machine, where the features are selected
during the training phase, by thus reducing the computational cost and improving the
efficiency associated with the selection of variables.

Wrapper approaches consider the machine learning as a black box in order to select
subsets of variables on the basis of their predictive power. The basic idea of the wrapper
approach is to use the prediction performance or the classification accuracy of a given
learning machine to evaluate the effectiveness of the selected subset of features. A generic
scheme concerning wrapper approach is shown in Figure 4.4.

Figure 4.4: Generic diagram of a wrapper approach for feature selection.

Wrapper approaches generally achieve better recognition rates than filters since they are
tuned to the specific interactions between the classifier and the dataset, but they are seen
as a brute force approach, so they suffer from being computationally expensive, because
the exhaustive search becomes unaffordable if the number of features is too large. The
used Sequential Forward Selection (SFS) is a greedy search strategy [47]. Starting with
an empty set of features, SFS sequentially adds the feature that results in the highest
performance function when combined with the features that have already been selected.
The performance measure, used in this thesis, in combination with the SFS method is the
square Root of the Mean Square Error (RMSD).

40

Chapter 5

The Recognition System

This chapter describes how the methods presented in the previous chapters are combined
to develop a recognition system based on smartphone-acquired walking data, from the data
acquisition to the final identification of a subject. There are four main blocks involved in
the identification process: data acquisition, preprocessing, feature extraction and the final
identification. The main building blocks of the proposed technique are reported in Figure
5.1 and in the next sections I will highlight the fundamentals steps involved in each block
and the interaction between them.

Figure 5.1: General schema of the proposed biometric system for the human gait recognition
problem.

5.1 Data Acquisition and Preprocessing
Data acquisition and preprocessing have already been described in Chapter 2. Now I want
to only present these two phases in a comprehensive, user-friendly and visual manner.

Data are acquired via a smartphone located in the right pocket of the trousers of a
subject. The gathered data are: tri-axial-accelerometer, -gyroscope and -magnetometer

41

CHAPTER 5. THE RECOGNITION SYSTEM

signals, gravity acceleration, linear acceleration and rotation vector. Only the acceleration
and gyroscope data are used in the subsequent phase and I called them raw data.

Note that, all the computations of the preprocessing steps are performed on a PC.
Therefore, the proposed system performs static identification of the subject, in which the
identification mechanism will make a decision about the claimed identity after the person
has walked.

Figure 5.2: Preprocessing block of the proposed biometric system. The internal steps
involved in the computation are highlighted.

As shown in Figure 5.2, after transferring the data on a PC, the preprocessing phase
starts and it consists of the five sequential steps, listed below:

• Interpolation - It has the aim to ensure a fixed time interval between two consec-
utive samples and to deal with smartphones, that do not have a constant sampling
frequency.

• Filtering - It is performed for the purpose of smoothing signals and removing high
peaks, in order to eliminate noise problems.

• Cycle Extraction - This step has the aim of extracting the repetitive patterns,
called cycles, in each data trace. In this manner, each walk is divided in a set of gait
cycles.

• Reference System Transformation - This step is required, because during data
acquisition a fixed orientation of the smartphone is not enforced. Therefore, a new
reference system is extracted directly from the data. The axes of this new system
are the gravity vector and the first principal components obtained from the flattened
acceleration data.

• Normalization - It is used to force a fixed length for the extracted cycles, in order
to respect the constraint imposed by the subsequent feature extraction phase, that
requires data of fixed length.

Hence, this preprocessing block transforms the raw data acquired from the smartphone into
a set of gait cycles of the same length and orientation, ready for the subsequent feature
extraction phase.

42

CHAPTER 5. THE RECOGNITION SYSTEM

5.2 Feature Extraction
In this thesis, I use a pre-trained CNN models as a generic feature extractors. To this
purpose, the first step is to train a CNN model for classification and the second step is to
use the model as a feature extractor by removing the final layers of the network.

For the development of the network model, I used Caffe1, an open framework for deep
learning algorithms and a collection of reference models. It is developed by the Berkeley
Vision and Learning Center (BVLC) and by community contributors. The code is written
in C++, with CUDA used for GPU computation and bindings to Python/Numpy and
MATLAB. Caffe provides a complete toolkit for training, testing, finetuning and deploying
models for the purpose of object classification, object detection and learning semantic
features. The key aspects of the Caffe architectures are data storage and layers. Caffe
stores and communicates data in 4-dimensional arrays called blobs. Blobs provide a unified
memory interface, holding batches of images, other data or parameters. Blobs simplify
the computational and mental processes of dealing with mixed CPU/GPU operations by
synchronizing from the CPU host to the GPU device as needed. A Caffe layer has two
key responsibilities for the operation of the network: a forward pass that takes the inputs
and produces the outputs, and a backward pass that takes the gradient with respect to
the output, and computes the gradients with respect to the parameters and to the inputs,
which are in turn back-propagated to preceeding layers [6].

The network architecture, training and testing phases, and feature extraction are de-
veloped with the Python interface of Caffe and to speed up operations, the Caffe model is
accelerated by drop-in integration of NVIDIA cuDNN2 for GPU computation.

The CNN architecture developed is summarized in Table 5.1.

Layer Layer Type Size Output Shape
1 Input Layer 8× 200 -
2 Convolutional 10 1× 10 filters (10,8,50)
3 Convolutional 20 4× 10 filters (20,5,12)
4 Max Pooling 1× 3, stride (1,2) (20,5,6)
5 Fully Connected + Activation 40 hidden neurons 40
6 Fully Connected + Activation 40 hidden neurons 40 (labels)
7 SoftMax 40 way 40

Table 5.1: Caffe based CNN architecture.

The considered Convolutional Neural Network comprises seven layers, counting the
input and softmax layers. Since CNNs are powerfull models for image recognition, they
take advantage of the fact that the input consists of images, in particular the layers of a
CNN have neurons arranged in 3 dimensions: width, height and depth. For this reason, the
different signals acquired for each motion sensors are stacked in order to obtain a matrix

1http://caffe.berkeleyvision.org/
2https://developer.nvidia.com/cudnn

43

CHAPTER 5. THE RECOGNITION SYSTEM

of dimension 8× 200, in which the eight rows correspond respectively to acceleration and
gyroscope in the x-,y- and z-direction, acceleration magnitude and gyroscope magnitude.
200 is the number of samples of the normalized cycles, that is the length of the signals.
In this manner, each extracted cycle is transformed into a 2D-matrix and can be used as
input for the CNN. Usually the depth parameter is equal to 3, which corresponds to the
channels of an image, in our case depth is equal to 1.

In the following, I will refer to the Convolutional Layer as Cx, to the Max Pooling
Layer as Px and to the Fully-Connected Layer as FCx, where x is the layer index.

Layer C2 is a convolution layer with 10 feature maps. Each neuron in each feature
map is obtained by convolving the input with a filter of dimension (1 × 10). Each filter
slides across the input with a stride equals to 4 in the width direction and 1 in the height
direction, adding a zero-padding of 3 in the width direction. Therefore, the resulting shape
of the feature maps is 8× 50. This first layer can be seen as a filtering on the x axis of the
input signals, since a linear activation function is applied to the output values of neurons.
Moreover, the filter has height 1, hence the convolution is carried out considering a single
signal of the input matrix at a time, therefore the low-level features learned are specific for
each signal.

Layer C3 is a convolutional layer with 20 feature maps, the convolution step is performed
with filters of dimension (4×10) with the same stride and zero-padding of C1. The resulting
shape is 5× 12. Hence, compared to the previous convolutional layer, the filter used in C3
has height 4. Then C3 learns features that are a combination of those of the accelerometer
and gyroscope acquired signals.

P4 is a pooling layer and it performs a downsampling of the input feature maps using
the max operation, with filters of size 1×3 applied with a stride of 2 along width direction
and of 1 along height direction, therefore the resulting feature maps have dimension 5× 6.
Its function is to reduce the spatial size of the representation to reduce the amount of
parameters and computation time of the network, and consequently to control overfitting.

After P4, there are two fully-connected layers FC5 and FC6, that compute the dot
product between their input vector and their weight vector, to which a bias is added. Each
output of the neurons in FC5 depends on all the neurons of the feature maps obtained
from P4. FC6 computes the output values of the network each depending on the 40 hidden
neurons of the previous layer. The result of FC5 and FC6 are passed through a hyperbolic
tangent function in order introduce non-linearity.

As mentioned before, the first step is to train the network described for classification,
the used learning algorithm is Stochastic Gradient Descent (SGD), which is driven by a
loss function and specifies the goal of learning by mapping the current network weights
to a scalar value specifying the goodness of the parameter settings. Hence, the goal of
learning is to find a setting of the weights that minimizes the loss function, computed in
the SoftMax layer.

A CNN model is obtained by training the network for classification. For this reason, the
proposed CNN architecture has to be trained with gait cycles of a set of subjects, derived
from the preprocessing phase. When the performance obtained are satisfying in terms of
accuracy and loss function minimization, the CNN weights are frozen and the network is
then used as a black-box tool for feature extraction. As shown in Figure 5.1, the feature
extractor consists of the two convolutional layers, the max pooling layer and the first fully

44

CHAPTER 5. THE RECOGNITION SYSTEM

connected layer, so the output values of the FC5 layer are the features used in the next
step of the biometric system. Hence, this step transforms a gait cycle onto a finite set of
features, which are arranged as a vector.

Figure 5.3: Complete schema of the CNN architecture proposed, in which is highlighted
the block used as feature extractor tool.

5.3 Identification
The identification phase of the biometric authentication system is performed through the
One-Class Support Vector Machine (OSVM) of Chapter 4. The features extracted from
the CNN model, which are a reduced representation of the relevant information of the gait
cycles, derived from the preprocessing phase, are arranged in vectors. So that to each
feature vectors corresponds a walk cycle of a person and they become the input of the
identification phase.

The purpose of identification is to recognize one person at a time. Therefore, an OSVM
model has to be trained on the feature vectors extracted from the walks of a target subject.
After the learning phase is completed, the model is frozen and it is used for identification.
Since the model only depends on examples of a target subject, it is clear that to identify
different subjects, it is necessary to train different OSVM models on the data of each
subject.

Figure 5.4 shows the internal step of the identification phase. This block involves a first
step of dimensionality reduction of the features, in order to reduce the complexity of the
problem for the subsequent steps. Then, a pre-trained OSVM model is applied to identify
the subject and at the end I evaluated the results obtained through the Equal Error Rate
(EER), which is one of the best single description of the error rate of an algorithms and a
widely used performance metric for biometric systems [44].

45

CHAPTER 5. THE RECOGNITION SYSTEM

Figure 5.4: General schema of the Identification Block, where the internal steps are high-
lighted.

Each block shown in Figure 5.4 has to be optimized, in terms of algorithms used,
parameter tuning and performance evaluation. In the dimensionality reduction step I
tested two different approaches: Principal Component Analysis (PCA) and Sequential
Forward Selection, with which I have set the optimal number of features used in the next
step. Also the OSVM have to be optimized in terms of its intrinsic parameters and on the
number of train cycles needed to build a model able to identify a subject.

All the test are carried out with MATLAB R2015b3, a high-level technical computing
language and interactive environment for algorithm development, data visualization and
data analysis. In particular for the OSVM model, I used the fitcsvm method, which
can train binary support vector machine classifiers and can handle one-class SVM using
Schölkopf algorithm.

The last step utilizes Equal Error Rate (EER), a performance measure widely used
for identification systems. More specifically, the OSVM model assigns a score for each
predicted cycle, indicating how well the model recognized the subject. The OSVM score is
the signed distance from an instance to the decision boundary ranging from −∞ to +∞.
A positive score for an instance indicates that it is predicted to be in that class, a negative
score indicates otherwise. For every score value, the following two error statistics can be
calculated:

• False Positive Rate (FPR) or False Matching Rate - A false match occurs when
the system incorrectly approves an identity. Hence, FPR is equal to the fraction of
negative examples predicted as a target example.

• False Negative Rate (FNR) or False non-Matching Rate. A false non-match
or rejection occurs when the system incorrectly denies the target subject identity.
Hence, FNR is the fraction of target examples predicted as a negative example.

In a perfect biometric system with no errors, FPR and FNR are both equal to zero.
Unfortunately, perfect biometric systems do not exist and a variable security level has to
be defined. In order to attain a desired trade-off between FPR and FNR, the security level,
λ, is increased to make it harder for an impostor to be identified or it is decreased to make
it easier for a rightful subject to be identified. In Figure 5.5, the point at which the the

3http://uk.mathworks.com/products/matlab/

46

CHAPTER 5. THE RECOGNITION SYSTEM

curves of FPR and FMR intersect is known as Equal Error Rate, the rate at which the
number of subjects, who are incorrectly identified and incorrectly rejected is equal.

Figure 5.5: Plot of the dependencies of FPR and FNR as a function of the security level.
EER is highlighted.

I used this parameter to assess the final performance of the designed biometric system,
whereby the lower the EER is, the lower is the error rate of the model. An important
issue is to decide the decision threshold based on the score. Select the EER score value as
decision threshold is common choice because it guarantees the same FPR and FNR, but for
a high security scenario the decision threshold must be increased, and as a consequence the
FPR decreases and the FNR simultaneously increases. Instead, for a low security scenario
the decision threshold can be small.

47

CHAPTER 5. THE RECOGNITION SYSTEM

48

Chapter 6

Results

In this chapter, I present the analysis and the experiments carried out in order to set up
the biometric system blocks. In particular, I present the optimization performed on the
Convolutional Neural Network used as a feature extractor tool and an evaluation of the
extracted features combined with other classical machine learning algorithms in order to
assess how they generalize on data that was never used. Then, I report how the One-Class
SVM (OSVM) model parameters have been set to obtain good identification results.

6.1 CNN Model Optimization
The CNN architecture described in Chapter 5 is the result of several tests carried out in
order to obtain a network with the ability to have good prediction performance on the
input data. Since there is no one-size-fit-all network architecture and no magical formulas,
with which to set all the free hyper-parameters of each layer, the common way to design
a suitable CNN architecture is to perform trial-and-error tests. The number of hyper-
parameters to be taken into account is not small. There are parameters concerning the
whole architecture, such as the number of filters per convolutional layer, filter dimensions,
the number of overall layers, namely, convolutional, pooling, activation and fully-connected
layer and the way to stack them together. Moreover, each layer has specific parameters to
deal with. The effectiveness of each parameter setting depends on the network objective,
on the intrinsic complexity of input data, on the generalization accuracy and training time.
In this biometric system, CNN is used as a feature extractor from the input data, in order
to obtain a set of features able to identify a single subject among all the others.

In this section, the optimizations performed to come up with our final network architec-
ture are not reported, because it is not the purpose of this work. What I want to highlight
is the ability of the network to extract good discriminative features from a small set of
data.

The CNN was trained on 40 subjects for classification. Data cycles are divided into a
train and a test set. In Figure 6.1 I show the classification accuracy on the test set, defined
as the number of correct predictions divided by the total number of predictions. Results are
obtained by varying the number of cycles considered for each subject in the train set and
for each number of train cycles eight runs of the network are performed, plotted as scatter

49

CHAPTER 6. RESULTS

points with a x-marker. The red curve and dots represent the median and its evolution.
Then, the standard deviation is calculated on the data and it is reported in the figure as
error bars to show how closely the median is likely to reflect the true values of each run.

0 10 20 30 40 50 60
Number of Train Cycles

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 6.1: Output test accuracy versus number of cycles per subject employed during the
training phase of the CNN.

It can be seen that test accuracy increases as the number of training cycles increases,
towards a saturation point, that can be identified between 20 and 30 cycles per subject.
This behavior shows that with a small number of cycles for each subject the CNN model
can achieve a prediction accuracy of up to 95%. Note that, the total number of cycles of
40 subjects is more than 51.000 and 40 cycles per subject are equal to only 1600 cycles
for the training set. Despite a training set of small size, the network is able to achieve
an accuracy around the median value of 97,6%. This is an important result, because a
small number of gait cycles can be representative of more walks for the same subject.
Hence, the correlation discovered in the preprocessing phase, continues to exist also across
different walks performed by the same subject. This correlation is well captured by the
features learned during the training phase of the CNN. In fact, they have a high predictive
potential, even if they are learned from a small set of data. In contrast with classical
machine learning algorithms that need high amount of training data to learn a model with
the risk to incur in overfitting.

Moreover, as the test accuracy and the number of training cycles increases, the standard
deviation grows smaller. Error bars represent a description of how confident the median
value is to represent the impact of the measurements. Hence, the more the original value
ranges close to the median value, the narrower the error bars are and more confident the

50

CHAPTER 6. RESULTS

median value is. This means that the CNN model is able to make more stable predictions
and to learn a model, that represents better the input data and can generalize on data not
seen.

The same considerations can be made for the loss function, which during the learning
phase of the CNN is minimized and represents the price paid for inaccuracy of predictions.

0 10 20 30 40 50 60
Number of Train Cycles

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss
 F
un

ct
io
n

Figure 6.2: Output loss function versus number of cycles per subject employed during the
training phase of the CNN.

Based on the results of Figure 6.1 and 6.2, I fixed the number of train cycles per subject
equal to 40. This is an acceptable value, since the two performance measures derived from
the simulations have already reached a saturation point, at which there is a much lower
likelihood that these two measures differ significantly. Moreover, it has been shown that
any significant improvements can be gained adding more than 40 cycles to the training set.

Another important parameter to optimize is the number of features at the output of
the first fully-connected layer, which are the features to be extracted and used in the
identification step. Previous simulations are done with this parameters fixed to 40, but
I investigated if this number is a good choice, in order to assess how a greater or lower
number of features affects the prediction performance.

For this reason, I trained eight CNN models with a different number of subjects, as it
can be seen in the legend of Figure 6.3, where I reported the obtained accuracy. I used a
training set with the fixed dimension of 40 cycles per subject and I varied the number of
output features of the first fully-connected layer, starting from 5 and adding five features
at each iteration up to 60.

51

CHAPTER 6. RESULTS

0 10 20 30 40 50 60 70 80
Number of Selected Features

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

5 Subjects
10 Subjects
15 Subjects
20 Subjects
25 Subjects
30 Subjects
35 Subjects
40 Subjects

Figure 6.3: Output test accuracy versus number of features of the first fully-connected
layer of the CNN, by varying the number of subjects for the training phase.

From the simulations of Figure 6.3, when the number of features is low the models that
performs better are those trained with a small number of subjects. This is a reasonable
behavior because to discriminate between a small number of subjects, a high number of
features is unnecessary. When the number of features increases also the models trained on a
high number of subjects reach comparable test accuracies, which are close to the maximum
possible value. This demonstrates that 40 features are a good choice, with which all the
models reached a saturation point and no improvement were obtained increasing it.

In the next section I evaluated how these 40 features generalize on data not seen from
a CNN model using different classification algorithms.

6.2 CNN Features Evaluation
One of the key aspects of the biometric system proposed is the features extracted from
the CNN, that can positively or negatively affect the performances of the subsequent iden-
tification step. As shown in the previous section, I extracted 40 features relying on the
accuracy and loss function metrics achieved testing the pre-trained CNN for a multi-class
classification problem. This method is a good approach to understand what is a good
number of features to be extracted from the network, but it tells us nothing about the
real ability of the features to generalize on other classification problems and what they
represent in relation with the input data.

Intuitively, low-level learned features of top convolutional layers provide a low-level
representation of the input data. In the case of image data, these low-level features may

52

CHAPTER 6. RESULTS

consist of simple edge filters. In the higher layers of the network, the model begins to learn
more complicated patterns, like object parts that would be useful to represent high-level
non-linear complex functions. For image classification, in the literature, several research
works try to understand how CNNs work, to achieve a better knowledge of the internal
operations and to visualize the extracted features from each convolutional layer, in order
to develop better models that are able to extract meaningful properties from the data.

M. Zeiler et. al in [8] introduced a novel visualization technique that gives insight into
the function of intermediate feature layers and the operation of the classifier. They reveal
that the features learned are far from random and uninterpretable patterns. Rather, they
showed many intuitively desirable properties such as compositionality, increasing invariance
and class discrimination as one ascends the layers. This approach and others, [7] and
[58], rely on the introduction of deconvolutional, unpooling layers and on visualization
techniques that allow to observe the evolution of features during training and to identify
the correspondence between learned features and input data.

Since the input of the proposed biometric system are not images, but time series,
a visualization approach to understand what the 40 features represent is not a viable
option, but the mentioned results are encouraging. Therefore, in this thesis I evaluated the
significance of the extracted features using them as input for other classification methods
and I measured the relative importance of them on the basis of how much influence the
output prediction.

The first experiment carried out was to compare the accuracy measure for 4 classifica-
tion models, namely, Binary Classification Decision Tree, Naive Bayes with kernel smooth-
ing density estimate, K-nearest neighbors (kNN) with 10 nearest neighbors and Support
Vector Machines (SVM) with linear, polynomial and radial basis function (RBF) kernels.
I did not perform any parameters tuning on the models and the default parameters are
used according to the MATLAB documentation.

First of all, I trained a CNN model with data acquired from 30 subjects leaving out 10.
The model obtained is then used to extract the features from the data of the 10 subjects
not seen during the training phase. The aim of this approach is to use features of people
that the CNN have never seen, because it is reasonable to think that features extracted
from data not seen are worse in terms of predictive power than those already seen. I am
also interested in the generalization errors on these unseen data.

I divided the feature vectors in a training and a test set and I trained the four clas-
sification models by varying the dimension of the training set. Then I calculated the
classification accuracy on the remaining data, which form the test set. The classification
results are shown in Figure 6.4.

53

CHAPTER 6. RESULTS

Train Records

0 10 20 30 40 50 60

T
e
s
t
A

c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison Classical Machine Learning Algorithms

SVM RBF kernel

SVM polynomial kernel

SVM linear kernel

K-Nearest Neighbour

Decision Tree

Naive Bayes

Figure 6.4: Comparison of Machine Learning Algorithms trained on 10 subjects not used
in CNN learning phase. Classification test accuracies versus the number of train records
for each subject are reported.

Figure 6.1 shows the resulting test accuracy on varying the number of train records for
each person in the training set. From these results, we can see how all the classification
algorithms, except for the SVM with RBF kernel, share a fast evolution towards the sat-
uration value. In fact, the accuracy reached in these cases is near to the maximum value.
SVM with linear and polynomial kernel are the methods with the best performance, be-
cause they have an accuracy of over 90% and they reach the saturation point with less than
10 records for each subjects in the training set. kNN and Naive Bayes grow less quickly
with respect of the first two algorithms, in fact they need more training records to reach
their saturation point, however the performance are similar when more than 20 records
are used. The overall performance of the decision tree model are excellent, but worse than
previous methods.

The worst performance are obtained by SVM with a radial basis kernel. The poor
classification accuracy can be motivated by the small number of training records involved
in the training phase, because in general to induce an accurate class boundary SVM requires
a larger amount of data. This drawback arises when the classification problem has a high
dimensionality and when the number of features is close or larger than the number of
training records, as in our case.

However, except for the SVM model with RBF kernel, accuracies obtained show ex-
cellent results with a few records, like the results obtained in the previous section with
CNN. This means that the extracted features have a strong predictive power and although
the models are trained with a small number of training records, they suffice to produce a
model that has good performance.

This is a first proof that CNN can extract useful features that give competitive predic-
tion accuracy combined with other classification algorithms to yield classification results

54

CHAPTER 6. RESULTS

that are consistent with the original CNN or even better.
The second test carried out has the purpose of evaluating the difference between the

performance obtained on the features extracted from CNN models trained on different
number of subjects. It is reasonable to think that features learned from a small set of
subjects are less robust and predictive than those learned from a larger set. For this
purpose, I trained two CNN models: one trained on 10 subjects and one trained on 30.
I extracted the features of 10 person never used in both models and I calculated the
classification accuracy only for SVM with polynomial kernel model that has obtained the
best performance in the previous tests and K-nearest neighbor on varying the train records
for each subject.

Train Records

0 10 20 30 40 50 60

T
e
s
t
A

c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
SVM polynomial kernel

Features 10 Model

Features 30 Model

(a) SVM with polynomial kernel case
Train Records

0 10 20 30 40 50 60

T
e
s
t
A

c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
K-Nearest Neighbour

Features 10 Model

Features 30 Model

(b) K-Nearest Neighbour case

Figure 6.5: Comparison of test accuracy versus the number of train records, obtained from
two CNN models trained on 10 and 30 subjects

In Figure 6.5, the red curve rapresents the test accuracy obtained on features extracted
from the CNN model trained on 30 subjects and the blue curve on 10 subjects. As expected
there is a gap between the two curves, which is more visible when the number of records is
less than 20 records in case of SVM with polynomial kernel and less than 40 records in the
case of K-nearest neighbour, but in both cases the gap decreases as the number of records
increases. However, surprisingly the accuracy obtained from the CNN model trained on
10 subjects has a competitive prediction accuracy compared with the CNN model trained
on 30 subjects. This is an interesting result, because although the CNN model is trained
on the walks of a few subjects, one can extract meaningful features from the data, which
have the potential to distinguish different subjects that have not yet been seen. Increasing
the number of subjects in the training of the CNN, the predictive quality of the features is
reinforced as is shown by the better prediction accuracy obtained using features extracted
from the CNN model trained on 30 subjects.

The most significant experiment carried out aims to further assess the importance of
the CNN extraced features with respect to hand-crafted features directly calculated on the
extracted cycles after the segmentation phase.

For this reason, I used a CNN model trained on 30 subjects to extract the features data
of 10 unseen subjects. On the other hand, data of the same subjects are used to calculate a

55

CHAPTER 6. RESULTS

set of features, which are shown to be effective using triaxial accelerometers as reported in
[2] and [1]. The features were calculated on the extrated cycles of the eight signals, which
are accelerometer and gyroscope data on x-,y-z-axis as well as the magnitude vectors. The
features calculated are mean, variance, the difference between the maximum amplitude
value and the minimum one and the following:

• Mean Trend - Each cycle is divided in 20 windows with no overlap. The mean
of each of these windows is calculated and subtracted from the mean of the next
window. The mean trend is calculated as follows:

µT =
20∑
i=2

(|µi − µi−1|) (6.1)

where µi is the is the mean value of the ith window.

• Windowed Mean Difference - It is calculated subtracting from the overall mean
µ of the cycle the mean of each window as follows:

µD =
20∑
i=1

(|µ− µi|) (6.2)

• Variance Trend and Windowed Variance Difference - They are computed
similarly to the mean treand and windowed mean difference, except for the variance
within each window, which is calculated as follows:

σT 2 =
20∑
i=2

(|σi − σi−1|) (6.3)

and

σD2 =
20∑
i=1

(|σ − σi|) (6.4)

• Spectral Entropy - It is defined as follows:

PSE = −
∑

pi log2 pi (6.5)

where pi is the normalized Power Spectral Density so that it can be viewed as a
Probability Density Function.

• Zero Crossing Rate - It is equal to the number of times the signal changes sign in
a given cycle segment. If the cycle has length L, it can be calulated as:

ZCR = 1
2

L∑
i=1
|sgn(x(i))− sgn(x(i− 1))| (6.6)

• Bin Count - A histogram is constructed by dividing the entire range of amplitude
values into a series of consecutive non-overlapping bins and then the values falling
into each interval are counted. We use 5 bins in order to obtain 5 features.

56

CHAPTER 6. RESULTS

Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison Naive Bayes

CNN Features

Hand-Krafted Features

(a) Naive Bayes case
Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison Classification Tree

CNN Features

Hand-Krafted Features

(b) Binary classification decision tree case

Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison K-Nearest Neighbors

CNN Features

Hand-Krafted Features

(c) K-Nearest Neighbour case
Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison SVM linear kernel

CNN Features

Hand-Krafted Features

(d) SVM with linear kernel case

Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison SVM polynomial kernel

CNN Features

Hand-Krafted Features

(e) SVM with polynomial kernel case
Number of Train Cycles

0 10 20 30 40 50 60

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
Comparison SVM RBF kernel

CNN Features

Hand-Krafted Features

(f) SVM with RBF kernel case

Figure 6.6: Comparison of classification algorithms trained on feature vectors obtained
from a pre-trained CNN and calculated directly from the data cycle. Test accuracy versus
the number of train records is reported.

57

CHAPTER 6. RESULTS

The two sets of features are used to train and test the six classification algorithms
used in the first experiment. Figures 6.6 compares the classification accuracy for each
algorithms achieved when using the CNN feature extractor versus commonly-used hand-
crafted features.

From these results all the classification algorithms trained on the set of CNN extracted
features outperform those trained with the set of hand-crafted one. The classification accu-
racies achieved using the features extracted by the CNN were consistently better than the
classification accuracies achieved when using the hand-crafted features. This a remarkable
result, which demonstrates that a pre-trained CNN extracts features that are meaningful
and effectively performs generalized feature extraction also on data of subjects never seen.
Additionally, these features have a much higher predictive power than the hand-crafted
one, considering how they influence the output prediction accuracy.

Moreover, the prediction accuracy obtained with hand-crafted features seems to be
influenced by the training set size. Considering only the classification models that has
good performance, one can notice that the evaluated measure does not reach a saturation
point, but they tend to grow with the number of training records. In contrast with the
behavior of the models trained with CNN features, which has a fast growth of the accuracy
measure with a small amount of training records.

The tests reported in this section are an attempt to demonstrate that other classification
algorithms can be used successfully with features extracted from a pre-trained CNN to yield
excellent prediction accuracy. Even if we do not have a precise interpretation about what
these features represent in relation with the input data, there are no doubts that they are an
impressive baseline for classification, prediction and recognition tasks. Additionally, these
results show the effectiveness and generality of the features learned with Convolutional
Neural Networks, which have to be considered strong candidates for feature extraction on
time signals and not only on images.

Moreover, the choice to use a machine learning algorithm in order to automatically
extract features from the data has proved successful, in particular from the last result ob-
tained and the good performance achieved by the SVMmodels are promising for subsequent
identification phase with One-Class SVM model.

K-Nearest Neighbor performance tells us something on the local distribution of the
data. K-NN is sensitive to the local structure of the data, since it is based on the principle
that the samples within a dataset will generally exist close to other instances with common
properties. When the label of an unclassified instance is unknown it can be determined
observing the class of its nearest neighbors. Therefore, k-NN can be used to estimate
arbitrary distributions. The results obtained by this algorithms tell us that instances of
different subjects are close to each other and not skewed in the feature space. This a good
initial basis for one class classification problem.

6.3 OSVM Model Optimization
The identification process is performed via a pre-trained One-Class Support Vector al-
gorithm, whose theoretical fundations are described in Chapter 4. In order to obtain

58

CHAPTER 6. RESULTS

satisfying performance, a model optimization phase is needed to show how the parameter
settings influence the identification of the target subject. In particular, during the training
phase, I carried out an optimization on the model and on the kernel parameters, on the
cycle number included in the training set and on the number of features used. Finally,
several tests on walk data never used in the training phase were evaluated to assess the
final classification performance.

For these experiments, the number of correct predictions made, i.e, the classification
accuracy, does not provide specific performance information on the single classes involved
in the classification task. Since an OSVM problem can be viewed as a binary classification
problem, because of the presence of a target and a negative class (i.e., all the other subjects),
a more suitable way to present prediction results has to be used. A confusion matrix, whose
structure is shown in Figure 6.7, provides all the information needed to determine how the
model performs on both classes. It is a 2×2 matrix, where each entry denotes the number
of records of class i predicted to be of the class j.

Figure 6.7: A confusion matrix for a binary classification problem

In particular, true positive (TP) and false negative (FN) correspond respectively to
the number of target cycles correctly and wrongly predicted. True negative (TN) and
false positive (FP) corresponds respectively to the number of negative cycles correctly and
wrongly predicted. The performance measures used to evaluate the experiments are: recall,
precision and F1-measure, which are listed below.

• Recall or True Positive Rate (TPR) measures the fraction of target cycles cor-
rectly predicted by the classifier and the formal definition is the following:

TPR = TP

TP + FN
(6.7)

• Precision determines the fraction of cycles that actually results to be positive, among
those that the classifier predicted to belong to the target class.

P = TP

TP + FP
(6.8)

59

CHAPTER 6. RESULTS

• F1-measure (F1) summarizes into one metric precision and recall. F1 represents a
harmonic mean between recall and precision.

F1 = 2 ·Recall · Precision
Recall + Precision

= 2
1

Recall + 1
Precison

(6.9)

The OSVM algorithm takes in input the feature vectors extracted from a Convolutional
Neural Network trained on 39 subjects. For the subsequent experiments, the feature vectors
of a single subject not seen by the CNN is used as the target data for the OSVM. The
negative data are the feature extracted from the others 39 subjects already used in the
training phase of the CNN.

The OSVM algorithm is trained on the walking data of one subject with radial basis
kernel and one of the key parameters of OSVM algorithm is ν, which represents the trade-off
between the fraction of Support Vectors (SVs) and the fraction of outliers considered during
the learning phase. Togheter with the kernel parameter, usually known as γ, ν drives the
solution and the shape of the bound learned. According to the MATLAB formulation of
the algorithm, a small value of ν leads to fewer support vectors, and, therefore, a smooth,
crude decision boundary. A large value of ν leads to more support vectors, and therefore,
a curvy, flexible decision boundary. Also, ν ∈ (0, 1].

On the other hand, γ can be seen as the inverse of the radius of influence of samples
selected by the model as support vectors. The interaction between these two parameters
is not trivial and practical means to determine them does not exist, hence an optimization
step is needed. However, to simplify the discussion γ is set by default using a heuristic
procedure implemented in the MATLAB software.

In the first experiment of this section I used a target class, composed of six walk data
acquired from a single subject, which corresponds to about 7000 target cycles. Data are
divided into a training set, which consists only of targeted data cycles randomly chosen and
a test set, which is composed of target data cycles plus a balanced number of data cycles
of the negative class, that are data belonging to other 39 subjects. Varying parameter ν,
I evaluated the performance obtained from models trained on varying the number of the
targeted data cycles. In particular, I considered 200 ν values equally spaced in the interval
[0.01, 1] and the train set dimension varies in the range [50, 1000]. Figure 6.8 reports the
results obtained by the models on the test set. In particular, each entry of the matrices
corresponds to a performance measure obtained in correspondence of the ith ν value and
the jth dimension of the training set.

60

CHAPTER 6. RESULTS

0.
01

0.
01

66
4

0.
02

76
8

0.
04

60
6

0.
07

66
3

0.
13

04
9

0.
21

71
1

0.
36

12
3

0.
60

10
3

1

N
u
m

b
e
r

o
f

T
ra

in
 C

y
c
le

s

1000

775

675

550

450

340

260

160

90

50
Recall

0

0.2

0.4

0.6

0.8

1

(a) Recall performance matrix.

0.
01

0.
01

66
4

0.
02

76
8

0.
04

60
6

0.
07

66
3

0.
13

04
9

0.
21

71
1

0.
36

12
3

0.
60

10
3

1

N
u

m
b
e
r

o
f

T
ra

in
 C

y
c
le

s

1000

775

675

550

450

340

260

160

90

50
Precision

0

0.2

0.4

0.6

0.8

1

(b) Precision performance matrix.

0.
01

0.
01

66
4

0.
02

76
8

0.
04

60
6

0.
07

66
3

0.
13

04
9

0.
21

71
1

0.
36

12
3

0.
60

10
3

1

N
u

m
b
e

r
o

f
T

ra
in

 C
y
c
le

s

1000

775

675

550

450

340

260

160

90

50
F1-measure

0

0.2

0.4

0.6

0.8

1

(c) F1-measure performance matrix.

Figure 6.8: Performance measure obtained from a pre-trained OSVM model by varying
the number of train data and the ν parameter.

Recall measure represents how well the model is predicting the target cycles. The
matrix of Figure 6.6.(a) shows an optimization region corresponding to high ν values and
high number of training cycles. Good values of ν can be found in the interval [0.6, 1] for
every training cycle number, because increasing ν means to include more Support Vectors
for the definition of the decision boundary built by the model. This interval becomes
wider when the number of training cycles increases, because the fraction of SVs increases
proportionally to the number of training cycles.

Surprisingly, every combination of the two parameters tested does not affect the pre-
cision measure, Figure 6.6.(b), which in most cases reaches the maximum possible value.
The higher the precision is, the lower the number of false positive errors committed by the
trained model. Hence, also with a low number of cycles the model has low probability to
incorrectly identify subjects belonging to the negative class, but on the other hand recall
has poor performance. For this reason to maximize both precision and recall, F1 measure,

61

CHAPTER 6. RESULTS

in Figure 6.6.(c), is used to summarized the behavior of the two metrics into a single one.
As stated before, F1-measure is the harmonic mean of two numbers, hence a high value of
F1-measure ensures that both precision and recall are reasonably high.

The aim of this test is to set the parameter ν and the number of cycles for the subsequent
test. Figure 6.7 shows better how F1-mesure varies as a function of the number of cycles
and fixing three different value of ν.

Number of Train Cycles

0 100 200 300 400 500 600 700 800 900 1000

F
1

-m
e

a
s
u

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F1-measure vs Number of Cycles

Figure 6.9: F1-measure performance by varying ν value versus the number of train cycles.

In Figure 6.7, it can be seen that the F1-measure for ν = 0.4 and ν = 1 tends to have
the same performance when the number of the training cycles is high enough, instead of
a model with low ν values needs to be trained with a high number of training cycles to
obtain good performance. For this reasons, in subsequent tests I set ν equal to 0.6, which
ensures excellent performance and avoids overfitting that may occur if ν value is too high.
Moreover, I set the number of training cycles to 300, which corresponds to 2- or 3-minute
walk. It is a reasonable amount of data that are needed to capture the data complexity.
Remember that the 300 data cycles are selected randomly between more than 7000 target
cycles of six walking acquisitions.

Previous experiments are obtained using all the features extracted from the CNN, but
one-class classification problem can be viewed as a binary classification one. In fact, a
target and a negative class are present. Therefore, due to the reduced complexity of the
problem with respect to that faced during CNN training, it is reasonable to think that a
smaller number of features can be used to achieve the same or even better classification
results. As mentioned in Chapter 4, dimensionality reduction is performed utilizing PCA

62

CHAPTER 6. RESULTS

and Subsequent Forward Selection. In particular, I use PCA in three different ways, listed
below:

• The first approach is to apply PCA just on a subset of target data disjointed from the
train and test set. Once PCA technique returns the principal component coefficients,
also known as loadings, they are used to convert training and test set features into
sets of linearly uncorrelated features called principal components (PCs). The most
common practice is to retain high variance features in descending order, as it was
done. For brevity, I called this method Classical PCA Approach.

• The second approach used is inspired by the work of Tax and Müller [11], where
they stated that retaining the high variance features is not always the best option
for one-class classification, instead retaining the low variance features provide smaller
classification error. Following this approach and unlike the previous case, I retained
PCA features starting from the low variance one in ascending order. I called this
method Reversed PCA Approach.

• In the last approach, PCA technique is applied on a set including both target and
negative data cycles, in order to obtain more robust coefficients thanks to the presence
of negative instances, which are not present in the previous methods. In classical one-
class problems examples of the negative class are difficult to obtain, but this is not
the case, because we have collected several data from other subjects. Hence, this is
a viable approach and I called it Mixed PCA Approach.

In addition, I also investigated Sequential Forward Selection technique, which starting from
an empty feature set selects a subset of features by sequentially selecting them until there
is no improvement in predictions, as explained in Section 4.3. Also in this case, cycle data
used during feature selection are not considered in the subsequent training and testing
phases of the model.

Since a suitable reduced dimension of the problem cannot be chosen a priori, in this
work, I addressed the dimensionality reduction problem in two phases. First, I tested
the four described methods with the same approach of the previous experiment, that is, I
trained the OSVM model on 300 training cycles randomly chosen from six walking data
acquisitions of the target subject with ν = 0.6. Then, I tested the performance on target
data and on data of the negative class. In the second phase, I selected the method with
the best performance and I tested a pre-trained OSVM model on completely new walking
data of the target subject in order to evaluate how the model generalizes.

In Figure 6.8, I show the results of the first phase. In particular, the OSVM models
are trained on varying the number of features obtained by the tested reduction methods
and I calculated recall, precision and F1-measure.

63

CHAPTER 6. RESULTS

Number of Features

0 10 20 30 40

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1
Recall

Mixed PCA

Sequential Forward Selection

Reversed PCA

Classical PCA

(a) Recall measure performance.
Number of Features

0 10 20 30 40

P
re

c
is

io
n

0

0.2

0.4

0.6

0.8

1
Precision

Mixed PCA

Sequential Forward Selection

Reversed PCA

Classical PCA

(b) Precision measure performance.

Number of Features

0 10 20 30 40

F
1
-m

e
a
s
u
re

0

0.2

0.4

0.6

0.8

1
F1-measure

Mixed PCA

Sequential Forward Selection

Reversed PCA

Classical PCA

(c) F1-measure performance.

Figure 6.10: Comparison of dimensionality reduction methods by varying the number of
features.

All the tested methods achieve excellent performance for the recall measure, shown in
Figure 6.8.(a). This is due to the selection of the ν parameter and the number of training
cycles, that allow to achieve recall values close to the maximum value reachable. On the
contrary, important considerations have to be done on the precision measure. For a number
of selected features below 15, all the methods share a gradual evolution to a saturation
point very near to the maximum value, that all reach when the number of features is
equal or grater than 20. This behavior is justified by the fact that density of the training
cycles decreases exponentially when the dimensionality of the problem increases, so due to
this sparsity, it is possible to find a decision bound around the target data, able to easily
separate them from the negative data. Note that, mixed PCA performs better than the
other methods, even when the number of features is low, because the PCA coefficients are
calculated, not only from target cycles, but also on negative data. This helps the PCA
transformation to consider the variability of the negative data, so that PCA works much
better. Unfortunately, in a pure one-class settings, with no negative cycles at training time

64

CHAPTER 6. RESULTS

Reversed PCA obtains excellent overall performance, but compared to the other methods
is slightly inferior, in particular for the precision measure. Intuitively retaining principal
components, which explain less variance of the data, has the result to project them in less
space as possible. This is a good approach for the target cycles, because the distribution
of the negative data is unknown and it seems to maximize the chance that the model will
accept as few negative cycles as possible. But when negative data have to be tested, the
PCA transformation is applied on these data and the result is that we are packing the
negative cycles in the same way of the target one. Hence, the precision on the target class
worsen, because the false positives increase.

Since the four methods have comparable performance, for the test of the second phase I
decide to choose the classical PCA approach, which is computationally less expensive than
the Sequential Forward Selection method and it involves only target data to compute the
dimensionality reduction, a desirable property in a real world scenario where data only of
the target subject are available.

In order to evaluate how the OSVM model generalizes on new walking data never used
in the CNN and OSVM training phase, I sequentially left out all the cycles of a single walk
acquisition of the target subject from the six initial walking data and I trained the OSVM
model on the cycles of the remaining five walks. So that, all the cycles of the excluded
walk acquisitions became the test set, to which I added a balanced number of cycles of
the negative class. In Figure 6.9, I show the results obtained on the test set thus created,
where I evaluated accuracy and recall.

Number of Features

0 10 20 30 40

A
c
c
u
ra

c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test Accuracy

Walk #1

Walk #2

Walk #3

Walk #4

Walk #5

Walk #6

(a) Test accuracy performance by varying the number
of features.

Number of Features

0 10 20 30 40

R
e
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

Walk #1

Walk #2

Walk #3

Walk #4

Walk #5

Walk #6

(b) Recall measure performance by varying the num-
ber of features.

Figure 6.11: Performance measure of 6 walk acquisitions tested on an OSVM model trained
on the remaining 5 walk acquisitions.

From the accuracy results, shown in Figure 6.9.(a), all tested walk data achieve excellent
performance, except for two OSVM models, that have bad accuracy on walk number 1
and 6. In particular, from the recall results shown in Figure 6.9.(b), the bad accuracy

65

CHAPTER 6. RESULTS

performance is obtained due to classification errors on the target class, meaning that the
models trained on the remaining walk acquisitions are not able to recognize the subject.
The miss-classifications are a problem of acquisition, because from other experiments, not
reported in this thesis, the predictions remains poor changing the parameter settings, that
is ν, number of training cycles and dimensionality reduction approach. Hence, these walks
are not performed in the proper manner, probably the subject walked too fast stopping
several times or during the acquisition the smartphone was not always in the same position.
Another aspect to point out is the decrease that recall tends to have as the number of
selected features is increased. This behavior is a direct result of the curse of dimensionality,
because using too many features results in overfitting of the model on the training data.

In the previous tests, there are two walks that achieve bad performance due an im-
proper data acquisition. To avoid this problem, I investigated the possibility of learning
more robust models including new cycles from new acquisitions and I evaluated whether a
larger number of acquisitions may reinforce the model predictions in the presence of high
variability in the data. To this purpose, I added six more walks of the target subject to the
previous six and, as before, I trained the model leaving out one walk acquisition, which is
considered as the test set. In this case, I use 600 training cycles, because the number of
walk acquisitions is doubled. Again, I reported accuracy and recall on varying the number
of selected features, as shown in Figure 6.10.

Number of Features

0 5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy

Walk #1

Walk #2

Walk #3

Walk #4

Walk #5

Walk #6

Walk #7

Walk #8

Walk #9

Walk #10

Walk #11

Walk #12

(a) Test accuracy performance by varying the number
of features.

Number of Features

0 5 10 15 20 25 30 35 40

R
e
c
a

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recall

Walk #1

Walk #2

Walk #3

Walk #4

Walk #5

Walk #6

Walk #7

Walk #8

Walk #9

Walk #10

Walk #11

Walk #12

(b) Recall performance measure by varying the
number of features.

Figure 6.12: Performance measure of 12 walk acquisitions tested on an OSVM model
trained on the remaining 11 walk acquisitions.

These results confirm what we expected. The model trained on a set of acquisition large
enough can recognize better noisy data and reinforce ita predictions on data never used
during the training phase. In particular, walk number 6 is now recognized. Instead, walk
number 1, still obtains poor performance but greatly improved compared to the results of
Figure 6.9.

The improvement obtained can be better assessed from the comparison between the
results obtained when using 5 walk acquisitions and 11 walk acquisitions to train the model.

66

CHAPTER 6. RESULTS

In Figure 6.11, I show the accuracy and recall results obtained on each test walk divided
by the number of walks. On average, the accuracy obtained with a model trained on 11
walk acquisitions is improved by approximately 10% and the recall measure by 26%.

Number of Features

0 10 20 30 40

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1
Mean Accuracy

Accuracy on 6 Walks

Accuracy on 12 Walks

(a) Test accuracy performance.
Number of Features

0 10 20 30 40

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1
Mean Recall

Recall on 6 Walks

Recall on 12 Walks

(b) Recall measure performance.

Figure 6.13: Average performance comparison by varying the number of features on walk
acquisition not used during training.

Considering the whole biometric system, this result means that the model used in the
identification step can be trained periodically on data of the target subject to reinforce
the classifier and every time that new acquired data are included in the training set, the
number of training cycles has to be incremented proportionally, in order to capture the
data complexity. Hence, based on the results obtained I choose the number of features
equal to 20, which represents a good trade-off between the prediction accuracy on the
target subject and negative class.

Finally, I evaluate the performance of the whole system on a target subject using the
Equal Error Rate (EER) measure, previously described in Section 5.3. Hence, the final
CNN model is trained with data of 39 subjects, where I used 40 cycles for each subject. I
applied the pre-trained CNN network on the data cycles of a target subject, with which
I extracted 40 features from the output of the first fully-connected layer for each cycle.
Feature vectors are used as input of the OSVM algorithm in order to learn a model to
identify the target subject. I used ν = 0.6, 300 target cycles and a radial basis kernel to
train the OSVM. Then, I created a test set, which comprises cycles of the target subject
never used during the training and cycles belonging to negative subjects. Then, I applied
the pre-trained OSVM and I calculated the False Positive Rate (FPR) and False Negative
Rate (FNR) measures to find the Equal Error Rate, shown in Figure 6.15.

67

CHAPTER 6. RESULTS

Score

-5 0 5 10 15 20

E
E

R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Equal Error Rate

False Positive Rate

False Negative Rate

EER(0.46501,0.013129)

Figure 6.14: The EER point for the cumulative score functions FPR e FNR.

The EER point (0.465, 0.013) has been found for the score value 0.465, i.e. the decision
threshold, at which FPR e FNR functions have the same value of 0.013. As expected, the
EER value is low and the designed biometric system can be defined accurate and precise.
Given the output scores of the model, the system can be more safe shifting to the right the
decision threshold and as a consequence minimize the identification errors. On the other
hand, for low security the decision threshold must be shifted to the left.

68

Chapter 7

Conclusions

In this thesis, I have investigated a human identification system based on biometric walk-
ing data acquired from a smartphone located in the pocket of the trousers of a person. In
particular, the proposed system exploits accelerometer and gyroscope data signals in order
to capture the behavioral characteristics, that are unique to each person’s gait. After a
walking cycle segmentation, a pre-trained Convolutional Neural Network is used as an inno-
vative feature extraction technique. This novel machine learning approach allows to reduce
original data complexity by extracting meaningful and general features in a fully-automated
way, outperforming commonly hand-crafted statistical features calculated directly on the
data signals and classical machine learning approaches. For the final subject identification,
only the feature vectors from a target user are considered as input of a one-class classifier
based on a support vector machines. Combined with a dimensionality reduction phase,
the model achieves excellent performance results also when new walking data are inputted.
Moreover, a model can be easily reinforced simply increasing the number of target data
used in the training phase, intentionally kept low, in order to classify target walks, which
are not performed in a proper manner, while preserving the discrimination ability with
respect to the other subjects.

69

CHAPTER 7. CONCLUSIONS

70

Bibliography

[1] C. Nickel, T. Wirtl, C. Bush. Authentication of Smartphone Users Based on the Way
They Walk Using k-NN Algorithm, International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, 2012.

[2] P. Gupta, T. Dallas. Feature Selection and Activity Recognition System Using a Single
Triaxial Accelerometer, IEEE Transactions on Biomedical Engineering, 2014.

[3] A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson. CNN Features off-the-shelf: an
Astounding Baseline for Recognition. arXiv preprint arXiv:1403.6382, 2014.

[4] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-Based Learning Applied to
Document Recognition, Proc. of the IEEE, November, 1998.

[5] L. Bottou. Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the Trade.
Springer, 2012.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T.
Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 20 June 2014.

[7] M. D. Zeiler, R. Fergus. Visualizing and Understanding Convolutional Networks, arXiv
preprint arXiv:1311.2901v3, 28 November 2013.

[8] M. D. Zeiler, G. W. Taylor, R. Fergus. Adaptive Deconvolutional Networks for Mid
and High Level Feature Learning.

[9] V.G.M. Guru, V.N. Kamalesh. Vision based Human Gait Recognition System: Obser-
vations, Pragmatic Conditions and Datasets. Indian Journal of Science and Technol-
ogy, Vol 8(15), 71237, July 2015.

[10] J. Wang, M. She, S. Nahavandi, A. Kouzani. A Review of Vision-Based Gait Recog-
nition Methods for Human Identification. Digital Image Computing: Techniques and
Applications (DICTA), 2010 International Conference, pp. 320 - 327. December 2010.

[11] D.M.J. Tax, K. R. Müller. Feature Extraction for One-class Classification.
ICANN/ICONIP: joint international conference on artificial neural networks and neu-
ral information processing. 26-29 June 2003.

[12] C. Nickel. Accelerometer-based Biometric Gait Recognition for Authentication on
Smartphones. TU Darmstadt, Ph.D. Thesis 2012.

71

BIBLIOGRAPHY

[13] I. Staff. Technical Evaluation Criteria for the Assessment and Clasification of Biomet-
ric Systems. Technical report draft ver. 0.5-1, Fraunhofer Institute of Graphical Data
Processing. August 2000.

[14] N.V. Bougouris, K.N. Plataniotis, E. Micheli-Tzanakou. Biometrics. Theory, Methods,
and Applications. Wiley, 2010.

[15] M.P. Murray. Gait as a total pattern of movement. American Journal of Physical
Medicine, vol. 46, pp. 290–332, June 1967.

[16] M. P. Murray, A. B. Drought, and R. C. Kory. Walking Patterns of Normal Men. The
Journal of Bone and Joint Surgery, 46:335–360, 1964.

[17] J. Perry. History of the Study of Locomotion. [Online]. Available:
http://www.clinicalgaitanalysis.com/history/modern.html

[18] S.J. Morris. A shoe-Integrated Sensor System for Wireless Gait Analysis and Real-
Time Therapeutic Feedback. Submitted to the Harvard-MIT Division of Health Science
and Technology, May 2004.

[19] P.N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining. Pearson Education,
2013.

[20] J. E. Cutting, L. T. Kozlowski. Recognizing Friends by their Walk: Gait Perception
without Familiarity Cues. Psychonomic Society, vol. 9(5):pp. 353–6. 1977.

[21] Y. Ren, Y. Chen, M.C. Chuah, J. Yang. Smartphone Based User Verification Lever-
aging Gait Recognition for Mobile Healthcare Systems. Sensor, Mesh and Ad Hoc
Communications and Networks (SECON), 2013 10th Annual IEEE Communications
Society Conference on, June 2013, pp. 149–157.

[22] M.O. Derawi. Accelerometer-Based Gait Analysis, A Survey. Norwegian Information
Security Conference, November 2010.

[23] S. Jiang, B. Zhang, G. Zou, D. Wei. The Possibility of Normal Gait Analysis based on
a Smart Phone for Healthcare. IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber, Physical and
Social Computing, 2013.

[24] H. Chan, H. Zheng, H. Wang, R. Sterritt, D. Newell. Smart Mobile Phone Based
Gait Assessment of Patients with Low Back Pain. Ninth International Conference on
Natural Computation (ICNC), 2103.

[25] C.Y. Lee, J.J. Lee. Estimation of Walking Behavior Using Accelerometers in Gait Re-
habilitation. International Journal of Human-friendly Welfare Robotic Systems, 2002.

[26] A. Mannini, S.S. Intille, M. Rosenberger, A.M. Sabatini, W. Haskell. Activity recogni-
tion using a single accelerometer placed at the wrist or ankle. Med Sci Sports Exerc,
November 2013.

72

BIBLIOGRAPHY

[27] M. Shoaib, H. Scholten, P. J. M. Havinga. Towards Physical Activity Recognition
Using Smartphone Sensors. 2013 IEEE 10th International Conference on Ubiquitous
Intelligence & Computing and 2013 IEEE 10th International Conference on Autonomic
& Trusted Computing.

[28] X. Long, B. Yin, R. M. Aarts. Single-Accelerometer-Based Daily Physical Activity
Classification. 31st Annual International Conference of the IEEE EMBS Minneapolis,
Minnesota, USA, September 2-6, 2009.

[29] F. Miao, Y. He, J. Liu, Y. Li, I. Ayoola. Identifying typical physical activity on smart-
phone with varying positions and orientations. BioMedical Engineering OnLine, 2015.

[30] M. Derawi, P. Bours. Gait and Activity Recognition using Commercial Phones. Com-
puters & Security Volume 39, Part B, November 2013, Pages 137–144.

[31] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. Makela, and H. Ailisto. Identifying
Users of Portable Devices from Gait Pattern with Accelerometers. Acoustics, Speech,
and Signal Processing, vol. 2, March 2005, pp. 973–976.

[32] M. Derawi, C. Nickel, P. Bours, and C. Busch. Unobtrusive User-Authentication on
Mobile Phones using Biometric Gait Recognition. Intelligent Information Hiding and
Multimedia Signal Processing (IIH- MSP), Oct 2010, pp. 306–311.

[33] S.G. Trost, Y. Zeng, W.K. Wong. Machine Learning for Activity Recognition: Hip
versus Wrist Data. IOP Publishing, Physiological Measurements 35, p. 2183–2189,
October 2014.

[34] M. Ermes, J. Pärkkä, J. Mäntyjärvi, I. Korhonen. Detection of Daily Activities
and Sports With Wearable Sensors in Controlled and Uncontrolled Conditions. IEEE
Transactions on information tech- nology in biomedicine, Vol. 12, No. 1, January 2008.

[35] G.S. Huang, C.C. Wu, J. Lin. Gait Analysis by Using Tri-Axial Accelerometer of Smart
Phones. Computerized Healthcare (ICCH), 2012 International Conference.

[36] C. Nickel, C. Busch, S. Rangarajan, M. Möbius. Using Hidden Markov Models for
Accelerometer-Based Biometric Gait Recognition. 2011 IEEE 7th International Collo-
quium on Signal Processing and its Applications.

[37] B. Schölkopf, J.C. Plattz, J. Shawe-Taylory, A.J. Smolax, R.C. Williamson. Estimating
the Support of a High-Dimensional Distribution. Neural Computation archive Volume
13 Issue 7, July 2001 Pages 1443 - 1471.

[38] M. Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing
and Communications Review - Homepage archive Volume 3, July 1999 Pages 3-11.

[39] M. Srivastava, T. Abdelzaher, B. Szymanski. Human-centric Sensing. Philosophical
Transcation of Royal Society, 370 ser. A (1958), 2012, pp. 176-197.

[40] A. Zaslavsky. Internet of Things and Ubiquitous Sensing. September 2013. [Online].
Available: http://www.computer.org/web/computingnow/archive/september2013

73

BIBLIOGRAPHY

[41] P. Harrop, J. Hayward, R. Das, G. Holland. Wearable Technology 2015-
2025: Technologies, Markets, Forecasts. IDTechEx, 2015. [Online]. Available:
http://www.idtechex.com

[42] G. Stenberg. Conceptual and perceptual factors in the picture superiority effect. Euro-
pean Journal of Cognitive Psychology, 2006.

[43] O. Vermesan, P. Friess. Internet of Things - Converging Technologies for Smart En-
viroment and Integrated Ecosystems. River Publisher, 2013.

[44] J.L. Wayman. Error Rate Equations for the General Biometric System. Robotics &
Automation Magazine, IEEE, Volume 6, pp. 35 - 48. March 1999.

[45] L.H.N. Lorena, A. Carvalho, A.C. Lorena. Filter Feature Selection for One-Class Clas-
sification. Journal of Intelligent & Robotic Systems December 2015, Volume 80, Sup-
plement 1, pp 227-243.

[46] S.D. Villalba, P. Cunningham. An Evaluation of Dimension Reduction Techniques for
One-Class Classification. Artificial Intelligence Review April 2007, Volume 27, Issue
4, pp 273-294.

[47] S.Cateni, M. Vannucci, M. Vannocci, V. Colla. Variable Selection and Feature Extrac-
tion Through Artificial Intelligence Techniques. InTechOpen, published on: January
2013.

[48] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[49] S.B. Kotsiantis. Supervised Machine Learning: A Review of Classification Techniques.
Informatica 31, p.249–268, 2007.

[50] L. M. Manevitz, M. Yousef. One-Class SVMs for Document Classification. Journal of
Machine Learning Research 2 (2001) 139-154.

[51] S. Khan, M.G. Madden. One-Class Classification: Taxonomy of Study and Review of
Techniques. The Knowledge Engineering Review, pp 1-30, 2014.

[52] G. Cohen, H. Sax, A. Geissbuhler. Novelty Detection using One-class Parzen Density
Estimator. An Application to Surveillance of Nosocomial Infections. Studies in Health
Technology and Informatics. Volume 136, pp. 21 - 26, 2008.

[53] M. Kemmler, E. Rodner, E.S. Wacker, J. Denzler. One-Class Classification with Gaus-
sian Processes. Pattern Recognition Volume 46, Issue 12, December 2013, Pages
3507–3518.

[54] D.M.J. Tax, R.P.W. Duin. Support Vector Data Description. Machine Learning, 54,
45 - 66, 2004.

[55] D.M.J. Tax. One-Class Classification: Concept-learning in the Absence of Counter-
examples. Ph.D. thesis, Technische Universiteit Delft, 2001.

74

BIBLIOGRAPHY

[56] I. Ben-Gal. Outlier Detection. Data Mining and Knowledge Discovery Handbook: A
Complete Guide for Practitioners and Researchers," Kluwer Academic Publishers,
2005.

[57] K. Hempstalk, E. Frank, I.H. Witten. One-Class Classification by Combining Density
and Class Probability Estimation. In Proceedings of European Conference, ECML
PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part I (pp.
505-519). Berlin: Springer.

[58] L. Xu, J.SJ. Ren, C. Liu, J. Jia. Deep Convolutional Neural Network for Image De-
convolution. Advances in Neural Information Processing Systems (NIPS), 2014.

[59] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun. OverFeat: In-
tegrated Recognition, Localization and Detection using Convolutional Networks. arXiv
preprint arXiv:1312.6229. February, 2014.

[60] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell. DeCAF: A
Deep Convolutional Activation Feature for Generic Visual Recognition. arXiv preprint
arXiv:1310.1531. October, 2013.

[61] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, D. Yu. Convolutional
Neural Networks for Speech Recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, Vol. 22, No. 10, October 2014.

[62] B. Athiwaratkun, K. Kang. Feature Representation in Convolutional Neural Networks.
arXiv preprint arXiv:1507.02313. July, 2013.

[63] S. Haykin. Neural Networks and Learning Machines. Prentice Hall, 2009.

[64] A. Krizhevsky, I. Sutskever, and G.E. Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. Vol. 25, pp. 1097–1105. December, 2012.

[65] R. Stufflebeam. Neurons, Synapses, Action Potentials, and Neurotransmission. Con-
sortium on Cognitive Science Instruction, 2008.

[66] T. Liu, S. Fang, Y. Zhao, P. Wang, J. Zhang. Implementation of Training Convolu-
tional Neural Networks. arXiv preprint arXiv:1506.01195. June, 2015.

[67] Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine
Learning: Vol. 2: No. 1, pp 1-127. 2009.

[68] P. Hála. Spectral Classification using Convolutional Neural Networks. arXiv preprint
arXiv:1412.8341, December, 2014.

[69] T. Wang, D.J. Wu, A. Coates, A.Y. Ng. End-to-end text recognition with convolutional
neural networks. Pattern Recognition (ICPR), 2012 21st International Conference on
Date of Conference: 11-15 Nov. 2012 Page(s): 3304 - 3308.

[70] D. Bouchain. Character Recognition using Convolutional Neural Networks. Institute
for Neural Information Processing, 2006.

75

	List of Figures
	Introduction
	Authentication on Smartphones
	State of the Art of Gait Recognition
	Motivations and Contributions

	Data Acquisition and Preprocessing
	Data Acquisition
	Data Preprocessing

	Convolutional Neural Networks
	An overview on Neural Networks
	Model of a Neuron
	Artificial Neural Network Architectures
	Learning the ANN Model

	Convolutional Neural Networks
	Deep Architectures Learning
	CNN Description

	One Class Support Vector Machine
	Introduction to OCC Problem
	One-Class Vs. Multi-Class Classification
	OCC Solution Methods
	Application Scenarios

	One-Class Support Vector Machines
	Support Vector Machines
	One-Class SVM

	Dimensionality Reduction
	Principal Component Analysis
	Sequential Forward Selection

	The Recognition System
	Data Acquisition and Preprocessing
	Feature Extraction
	Identification

	Results
	CNN Model Optimization
	CNN Features Evaluation
	OSVM Model Optimization

	Conclusions
	Bibliography

