
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea in Ingegneria dell’Automazione

Motion planning for coverage
with vision-inspired sensors

Laureando Relatore

Giorgio Corrà Prof. Ruggero Carli

Relatore esterno

Prof. Dimos Dimarogonas

Correlatore

Ph.D. Antonio Adaldo

Anno Accademico 2015/2016

Abstract

In this work, we address the problem of deploying a team of mobile sensing
agents for monitoring a 3-D structure. A function for measuring the quality of
the vision is defined and we use a line search method for optimizing the pose of
single sensors. The algorithm is extended for collaborative coverage, exploiting
intermittent communication between pairs of agents. The algorithm is enriched
with a collision avoidance method for working in a constrained environment. All
the proposed algorithms are tested in simulations and real-word aerial robots.

Acknowledgements

For the development of this thesis, I feel the need to be grateful to several persons.
First, I want to thank Professors Ruggero Carli and Dimos Dimarogonas, for giving
me the opportunity to work on such a fascinating topic, and in the amazing and
stimulating environment of KTH. A heartfelt thanks to Dr. Antonio Adaldo, for all
the suggestions you gave me and the constructive discussions we had during these
months. Next, I want to thank all the Ph.D.’s and students with whom I shared this
experience. Particularly, I cannot express in words my gratitude to Paul: without
your help I would still be configuring ROS , crying in the SML because life is unfair;
I will never forget your jokes, both the ones that I understood and the ones that I
did not. Finally, all the friends that I met in Stockholm, among all Gustavo and
Daniela. Thank you for all the time we spent together, and especially for pushing
me in one of the best adventures I had in my life! I hope we will meet again.

Passando al versante italiano, c’è una pletora di persone che dovrei ringraziare per
questi 5 (ma facciamo anche 23) anni. Sono già sicuro che dimenticherò qualcuno,
perdonatemi.

• La compagnia di Zugliano e dintorni. Mi sono chiesto spesso se avessimo
qualcosa in comune e cosa ci tenga uniti; dopo anni di studi la risposta è
arrivata spontaneamente: siamo tutti cavalli.
• Paolo, meriti una menzione speciale. Sappiamo entrambi di essere anime

gemelle, purtroppo la natura è stata crudele e ci ha voluto creare incompati-
bili. Dubito che si riuscirà mai a colmare questo gap, ma tanto vale provarci
comunque.
• La Conca Bene, la Conca Male, ma soprattutto la Conca A. Non potevo

crescere in un ambiente migliore, l’ostracismo è più che giustificato.
• Il Corty Shore e i suoi frequentatori abituali. Come tutte le cose belle, non

poteva durare in eterno, ma è stata una bella manifestaziöne.
• Dal Lago, Broccardo e i commensali grossi di Via P. P. Cortese. Vi conosco,

vi rispetto.
• Pippo, ovviamente. Sei stato un perfetto Gran Mogol, spero di essere stato

una buona giovane marmotta.

Infine, il più grande ringraziamento va ai miei genitori e i miei fratelli, a cui questa
tesi è dedicata. Grazie per avermi sempre sostenuto e appoggiato in ogni mia scelta.

Voglio considerare comunque, a
questo punto, chiusa la polemica
tra me e il sottoscritto.

Fabio Noaro

Contents

Contents 5

1 Introduction 7
1.1 Literature Review . 7
1.2 Related works . 8
1.3 Context . 9
1.4 Thesis outline . 9

2 Technical preliminaries 11
2.1 Notation . 11
2.2 Coordinate frames and Euler angles 11
2.3 Representation of the orientation . 13

3 Theoretical setup 15
3.1 Measure of the quality of vision . 15
3.2 Problem statement . 20
3.3 Gradient computation . 20
3.4 Optimal orientation . 22

4 Coverage algorithm 25
4.1 Initialization . 26
4.2 Optimal velocity computation . 27
4.3 Collision avoidance . 29
4.4 Magnitude control . 39
4.5 Trading of landmarks . 41
4.6 Convergence analysis . 42

5 Simulations 45
5.1 Unconstrained optimization in two dimensions 46
5.2 Collision avoidance in two dimensions 49
5.3 Multiple agents in two dimensions 55

6 Experimental results 59
6.1 Control set-up in ROS . 59

5

6 CONTENTS

6.2 Experiments . 61

7 Conclusion 65
7.1 Future work . 65

A Useful vector properties 67
A.1 Gradient of vectorial functions . 67
A.2 Time derivative of a vector in rotating coordinate frames 67

Bibliography 69

Chapter 1

Introduction

In this work, we develop an algorithm that allows to autonomously deploy a team of
aerial robots equipped with vision-inspired sensors in order to monitor a 3-D struc-
ture. Such a problem can be treated as an instance of the classical coverage problem.
In order to address this problem, we will first define a function that measures how
good is the vision that the sensor (or the team of sensors) has of the object that
we monitor. The function that we propose depends only on the reciprocal positions
and orientations of the sensors and the body, and has an intuitive geometrical inter-
pretation. Then, a gradient based algorithm is used and communications between
agents are exploited to optimize the pose of the sensors. Moreover a collision avoid-
ance technique is defined and implemented to allow safe movement of the agents
in a constrained environment. Finally the algorithm is tested with simulations and
implemented on real quadcopters for experimental validation.

In the following sections we give an overview in the state of art, as well as of the
context in which this project was made.

1.1 Literature Review

Control of quadcopters and application

In the last years, great effort has been made in the research in the automatic con-
trol of unmanned aerial vehicles (UAVs). Their typical design is the quadcopter
[1], which includes four propellers mounted in one plane, attached to independent
electrical motors. The control of the this aerial vehicles is performed by adjusting
the speeds of the motors. The reasons of the increasing popularity of quadcopters
are multiple: their structure allows vertical take-off and landing, as well as station-
ary flight, so they are easily manoeuvrable even in small spaces; they can reach a
high payload/weight ratio; the cost of components and spare parts have become
very cheap. These characteristics make the UAVs ideal for research purposes, and
also for hobbyists. For a complete survey of results in control theory, automation,
robotics and bio-inspired engineering that involve quadcopters see [2, 3] and refer-
ences therein.

7

8 CHAPTER 1. INTRODUCTION

One of the main challenges in which several works focus is controlling the motion
of the quadrotor, for instance for tracking a given trajectory. In [4, 5], the problem is
addressed applying classic non-linear control techniques with the aim of stabilizing
the dynamics of the quadrotor. In [6], disturbances caused by wind are also taken
into account. Sensor fusion and dynamic attitude estimation methods were also used
in [7, 8, 9] for motion stabilization.

Another topic, inherently related to the simple trajectory tracking, is the gen-
eration of the trajectory that the quadrotor has to follow [10, 11]. The problem is
often extended in a constrained version, where the trajectory also has to guarantee
collision avoidance [12, 13].

One important branch of control theory which can be applied to aerial vehicles is
multiagent control. Some examples are the so-called flocking and formation control
of teams of quadcopters [14], the cooperative lifting and transportation of loads [15]
or the problem of coverage in sensor networks.

Sensor networks and the coverage problem

A sensor network consists of a collection of sensing devices that can coordinate their
actions through wireless communication and aim at performing tasks like reconnais-
sance, surveillance, target tracking and, generically, collection of information about
the environment. Intuitively, in such tasks, the position of the sensors plays a cru-
cial role. The coverage problem studies the deployment of the sensors in the space,
in order to achieve the overall system objectives. The problem can be divided in
several sub-cases, depending on the type of sensor that are used, on whether it is
addressed from a centralized or a distributed point of view, and on the particular
task considered.

Most of the existing results on coverage regard the use of sensors with symmetric,
omnidirectional field of view [16], and only recently anisotropic [17] and vision based
[18] sensors have been considered. The classical solution of the coverage problem
considers Voronoi tessellation and the Lloyd algorithm [19] (see for instance [20]).

A complete survey of the literature goes beyond the scope of this thesis, therefore
we relate to [21, 22] for a wider insight.

1.2 Related works

In this work we consider the problem of inspection of a 3D object with vision-based
sensors, and we propose a novel footprint which is nor symmetric, nor omnidirec-
tional. For movement of the sensors we exploit gradient search methods (see [23])
for the deployment. For the communication between agents we use a gossip-based
interaction strategy, similar to the one proposed in [24] in which only asynchronous,
unreliable communication are needed. Moreover, the same paper proposes to ab-
stract the environment into a finite set of points, which can either be particular
points of interest or represent a complete discretization of the environment. In this

1.3. CONTEXT 9

Figure 1.1: Aeroworks 2020 logo.

work a similar idea is proposed, but adapted to the inspection task that we aim to
perform.

1.3 Context

This work is a contribution to a European project called Aeroworks 2020. The
goal of the project is to develop a team of collaborative aerial robotic workers, able
to autonomously perform infrastructure inspection and maintenance tasks. Further
details can be found at [25]. All the experiments took place in the Smart Mobility
Lab [26], at KTH Royal Institute of Technology.

1.4 Thesis outline

In the rest of the thesis, the different stages of the formulation and implementation
of the proposed coverage algorithm are presented. The work is organized as follows:

• In Chapter 2 some technical preliminaries are exposed.

• In Chapter 3 the footprint chosen for the sensors is explained and formalized,
and the coverage problem is stated.

• In Chapter 4 the algorithm used for the solution of the coverage problem is
described, and the convergence of the algorithm is proved.

• In Chapter 5 some simulations are shown and commented in depth.

• In Chapter 6 the experimental setup that was adopted is explained, and an
experiment involving a real quadcopter is shown.

• In Chapter 7 the conclusions are given, as well as some insights for possible
future developments.

Chapter 2

Technical preliminaries

2.1 Notation

A vector in Rn is denoted with a boldface latin letter, such as a. For any a ∈ Rn, ak
denotes the k-th entry of a, while ‖a‖ denotes the euclidean norm of a. A unitary
vector (i.e. a vector in a ∈ Rn, s.t. ‖a‖ = 1) is denoted with a hat: â. The inner
product between two vectors a, b ∈ Rn is denoted with angle brackets: 〈a, b〉 = a>b.

A matrix in Rn×m is denoted with a capital boldface latin letter, such as A. In
particular I indicates the identity matrix.

2.2 Coordinate frames and Euler angles

In the thesis, particularly in the experimental part (Chapter 6), we deal with two
coordinate frames1: the world (or inertial) frame W =

(
OW , x̂, ŷ, ẑ

)
, that is fixed,

and the body frame B =
(
OB, l̂, m̂, n̂

)
, attached to the quadcopter, as in Figure

2.2b. If we consider a point a in the space we can write it with respect to the world
frame, and we will denote it as aW , or with respect to the body frame, and we will
denote it as aB. We can describe the transformation between the two forms using
a rotation and a translation:

[
aB
1

]
=

[
R OB

W

0 1

] [
aW
1

]

[
aW
1

]
=

[
R> OW

B

0 1

] [
aB
1

] (2.1)

where R ∈ SO(3) is the rotation matrix, whose entries are the direction cosines of
l̂, m̂, n̂ with respect to x̂, ŷ, ẑ, while OB

W is the origin of the body frame written
in the inertial coordinates, and OW

B is the origin of the world frame written in the
body coordinates.

1For a complete introduction to coordinate frames and rotation matrices, see [27].

11

12 CHAPTER 2. TECHNICAL PRELIMINARIES

Now we consider only the attitude, i.e. we assume that the origins of the two frames
coincide. An intuitive way of expressing the orientation of the body frame is given
by the Euler Angles, represented in figure 2.1b. The rotation is decomposed in three
subsequent elementary rotations about one coordinate axis. To make the axis of
the world frame coincide with the ones of the body frame we perform the following
operations:

1. Yaw: rotate about axis ẑ of an angle γ, obtaining the frame
(
O, x̂′, ŷ′, ẑ′

)
;

2. Pitch: rotate about axis ŷ′ of an angle β, obtaining the frame
(
O, x̂′′, ŷ′′, ẑ′′

)
;

3. Roll: rotate about axis x̂′′ of an angle α, obtaining the frame B.

The correspondent rotation matrix can be obtained via multiplication of the rotation
matrices associated with the single transformations:

R = Rz(γ)Ry(β)Rx(α) =



c γ cβ c γ sβ sα− s γ cα c γ sβ cα+ s γ sα
s γ cβ s γ sβ sα+ c γ cα s γ sβ cα− c γ sα
−sβ cβ sα cβ cα


 ,

(2.2)
where we used the post-moltiplication because the rotations are performed every
time with respect to the current frame.

OW

x

y

z

p

OB

l

m

n

(a) World and body reference frames.

x

y

z

γ

x′

y′

z′

β

x′′

y′′

z′′

α

l

m
n

(b) Representation of the Euler angles.

2.3. REPRESENTATION OF THE ORIENTATION 13

(a) Iris quadcopter

OB

l

m

n

(b) Sketch of the quadcopter with the body
frame

2.3 Representation of the orientation

In the thesis, we represent the direction in which a sensor is pointing, as well as the
direction normal to the surface of an object, as a 3-D unit vector (see Chapter 3).
A unit vector â =

[
a1 a2 a3

]> can be equivalently expressed using only two
independent parameters. Indeed it is defined with three scalars, but the constraint
in the norm reduces to two the number of degrees of freedom. Therefore for defining
â we can use either its vectorial form or two angles (θ, ψ) in a latitude-longitude
fashion, as in Figure 2.3a. It is easy to change from one form to the other with the
formulas:

â =




cos(θ) cos(ψ)
cos(θ) sin(ψ)

sin(θ)


 ,





ψ = arctan
(
a2
a1

)
,

θ = arctan

(
a3√
a21+a22

)
.

(2.3)

Notice that using the function arctan2 we have ψ ∈ (−π, π] and θ ∈
(
−π

2 ,
π
2

]
(since

the squared root returns only positive values). The transformation from vector to
angles is ambiguous only if a1 = a2 = 0, where the value of ψ is not defined. Anyway
this will not cause any problems because in the proposed algorithm we only need
the conversion from angles to vector.
We could also obtain the same result imagining to rotate the frame

(
O, b̂1, b̂2, b̂3

)

about the third axis of an angle ψ and then of an angle −θ about the current second
axis. The vector â would result to be the first axis of the new frame, as represented
in Figure 2.1a.

Now consider the case in which â varies over time, so we should denote it as
â(t), but for simplicity we will drop the dependence on time. We can express the
angular velocity of the rotation either in the original frame as ω =

[
ω1 ω2 ω3

]>

14 CHAPTER 2. TECHNICAL PRELIMINARIES

or with the latitude and longitude rates (θ̇, ψ̇). It is easy to notice that:

ψ̇ = ω3, (2.4)

while the latitude rate can be computed by projecting ω1 and ω2 on the axis about
which we perform the rotation of −θ (see Figure 2.3b):

θ̇ = sin(ψ)ω1 − cos(ψ)ω2, (2.5)

where the sign is changed because we rotate of θ in clockwise direction.

b1

b2

b3

â

a3

a1

a1,2

a2

ψ

θ

(a) Representation of the two possible forms
for expressing a unit vector v

b1

b2
a1,2

ψ

ω1

ω2

(b) Latitude rate and components of ω.

Chapter 3

Theoretical setup

In this chapter we define the footprint of the vision-based sensor, i.e. a function
that measures the quality of the vision over the object that we are inspecting. As
anticipated in the introduction, we do not consider the object as a whole, but just
as a set of points on its surface, that we call landmarks. Depending on the case, the
landmarks could be some particular points of interest of the object, or represent a
complete discretization of it.

The definition of this function is proposed in Section 3.1 and its geometric inter-
pretation is discussed. In Section 3.2 the coverage problem is formalized. In Section
3.3, we compute the gradient of the vision function, which will be used for the algo-
rithm described in Chapter 4. In Section 3.4, it is shown an algorithm that allows
to compute the optimal orientation for the sensor.
All the vectors in this chapter are expressed with respect to the world coordinate
frame, thus we avoid to indicate the subscript to simplify the notation. Moreover
we use the terms sensor and camera indistinctly.

3.1 Measure of the quality of vision

We represent a sensor as a pair (p, v̂), where p ∈ R3 is the position and v̂ ∈ SO(2)
is the orientation, expressed as the unit vector of the direction in which the camera
is pointing. Now we consider a point on the object’s surface, that we call landmark.
We represent it as a pair (q, û), where q ∈ R3 is its position and û ∈ SO(2) is
the unit vector of the normal direction with respect to the surface. A graphical
representation (in R2 for simplicity) is proposed in Figure 3.1a.

We measure the quality of the vision that the camera has of the landmark (q, û)
as:

vis(p, v̂, q, û) = f(‖q − p‖)
〈

q − p

‖q − p‖ , v̂
〉+〈 p− q

‖q − p‖ , û
〉+

, (3.1)

where 〈x,y〉 = x>y is the scalar product and x+ = max{x, 0} is the positive part.
For now we can consider f(‖q − p‖) = 1, its role will be explained later.

15

16 CHAPTER 3. THEORETICAL SETUP

To understand the meaning of (3.1) it is useful to think in two dimensions. We
can define r̂ = q−p

‖q−p‖ , which is the unit vector of the direction that joins the sensor’s
and the point’s positions (see Figure 3.1b). Equation (3.1) becomes:

vis(p, v̂, q, û) = 〈r̂, v̂〉+ 〈−r̂, û〉+ = cos(α)+ cos(β)+, (3.2)

where α is the angle between r̂ and v̂, and β is the angle between −r̂ and û. Notice
that the quality of vision is higher if both α and β are small, and this is reasonable.
Indeed a small value of α means that the camera is watching directly the point; a
small value of β means that the camera is positioned almost orthogonally to the
surface, so it has intuitively the best view of this part of the object.

Notice that in our definition we obtain vis(p, v̂, q, û) = 0, as a consequence of
the use of (·)+, in the following cases:

• 〈r̂, v̂〉 ≤ 0: this happens for all the points contained in the half space in the
back of the camera.

• 〈−r̂, û〉 ≤ 0: this happens for all the points that are on the other side of the
object, with respect to the camera.

Moreover, consider the situation described in Figure 3.1c, i.e. when both 〈r̂, v̂〉 ≤ 0
and 〈−r̂, û〉 ≤ 0. In this case if we didn’t consider only the positive part, we would
have a positive value of the vision even if clearly the point (q, û) is not visible from
the camera because it is in the back of the camera and it is also covered by other
parts of the object (given the orientation of û).

•

p

q

v̂

û

(a) Camera and object rep-
resentation.

•

α

β

p

q

v̂

û

r̂

−r̂

(b) Geometrical interpre-
tation of vision.

•

α

β

p

q

v̂

û

r̂

−r̂

(c) cos(α) < 0, cos(β) < 0

Figure 3.1: Representation of the principal vectors and quantities used to define the
vision function.

3.1. MEASURE OF THE QUALITY OF VISION 17

•

p1 p2

q

v̂v̂

û

(a) Visibility of a landmark in presence
of occlusions.

•

p p+ ∂p

q

v̂

û

(b) Discontinuity in the vision
function if we take occlusions into
account.

Following these ideas, we can also write another equivalent definition of the vision
function, less formal but more intuitive:

vis(p, v̂, q, û) =

{
f(‖q − p‖)

〈
q−p
‖q−p‖ , v̂

〉〈
p−q
‖q−p‖ , û

〉
if (q, û) is visible,

0 if (q, û) is not visible,
(3.3)

where the landmark (q, û) is considered visible if both the scalar products 〈r̂, v̂〉 and
〈−r̂, û〉 take positive values. This last definition may lead to wrong interpretations,
so some remarks are necessary. Firstly, notice that even once the position of the
sensor is fixed, the same landmark may be visible for certain orientations v̂ but
not for others. Secondly, our definition of visibility does not take into account
the presence of occlusions. Referring to Figure 3.2a and using our definition the
landmark is visible from both the positions p1 and p2, while intuitively a camera
positioned in p1 cannot see the point q because it is covered by another part of
the object. Equation (3.3) could be still used if we changed the definition of visible
landmark in a way that takes into consideration the possible occlusions (see [28] for
examples of definitions). However using such a definition we would lose a property
of smoothness of the vision function, while our definition ensures that the vision of
a landmark is a continuous function of the position and orientation of the camera.
Instead if we consider occlusions, the vision may jump from 0 to a positive value as
a consequence of an infinitesimal change of the position (see Figure 3.2b).

18 CHAPTER 3. THEORETICAL SETUP

Quality of the vision with multiple landmarks

Consider now the situation represented in Figure 3.3a, where one sensor has to
monitor a set Q of m points:

Q = {(qi, ûi), i = 1, . . . ,m} .

Then we measure quality of the vision of the camera over Q as:

vis(p, v̂, Q) =
∑

(q,û)∈Q
f(‖q − p‖)

〈
q − p

‖q − p‖ , v̂
〉+〈 p− q

‖q − p‖ , û
〉+

, (3.4)

or equivalently, following the idea proposed in (3.3), as:

vis(p, v̂, Q) =
∑

(q,û)∈QV

f(‖q − p‖)
〈

q − p

‖q − p‖ , v̂
〉〈

p− q

‖q − p‖ , û
〉
, (3.5)

where QV ⊆ Q contains only the points that are visible. Obviously, QV depends on
Q but also on the position and orientation of the camera.

It can be proven that the value of the vision grows as the sensor goes farther
from the object, if f(‖q − p‖) = 1. Indeed in this way all the angles αi and βi
(defined previously) decrease, and thus the values of the cosines increase. A greater
distance from the object turns out in a worse resolution of the image, so we want
to avoid this situation. With this purpose we introduce a term which regulates the
distance, that is f(‖q−p‖). We choose a function f : R≥0 → R≥0 with the following
properties:

1. f(‖δ‖) ≥ 0, ∀δ ∈ R≥0;

2. f(·) is continuously differentiable in all its domain;

3. lim
‖δ‖→+∞

f(‖δ‖) = 0;

4. f(0) = 0.

The first property ensures that the vision is still positive (or zero) in every config-
uration of camera and landmarks. The differentiability will be used in later com-
putations in this chapter. The third property guarantees that the vision does not
increase indefinitely, when the distance becomes greater (so it prevents the issue
exposed previously). The fourth property ensures that the vision decreases when
the sensor goes closer to the object (this is just a security measure). Moreover we
add a fifth property:

5. f(‖δ‖) ∈ [0, 1] for ‖δ‖ ≥ 0.

3.1. MEASURE OF THE QUALITY OF VISION 19

•
• •

p

q1
q2

q3

v̂

û1

û2

û3

(a) Camera and object representation

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

‖δ‖
f
(‖
δ‖
)

(b) Example of function f(‖δ‖).

Figure 3.3

This is not necessary for the algorithm to work, but it ensures that the value of the
vision over a single point is still in [0, 1], and over a set of m points is in [0,m].
Besides, a function that respects the first four properties has a global maximum.
For ensuring that the same function respects also the fifth property it is sufficient
to normalize it, dividing by the value of that maximum. We use:

f(‖δ‖) =
‖δ‖
dopt

e
1− ‖δ‖dopt , dopt > 0, (3.6)

which has a maximum in dopt. Figure 3.3b represents Function (3.6) with dopt = 2.
In this way, for the same amplitude of the angles, the maximum of the vision is
reached at a distance dopt from the landmarks.
Anyway all the computations that follow are valid for any choice of the function
f(‖q − p‖). It is also simpler to incorporate all the terms that depend only on the
distance in a unique function:

f̄(‖q − p‖) =
f(‖q − p‖)
‖q − p‖2

. (3.7)

Thus the vision function can be rewritten as:

vis(p, v̂, Q) =
∑

(q,û)∈QV

f̄(‖q − p‖) 〈q − p, v̂〉 〈p− q, û〉 . (3.8)

Multiagent case and coverage score

Now we consider the most general case, in which there are n sensors for monitoring
a set of landmarks Q. In our setup we partition Q in n subsets Qi:

Q = {Qi, i = 1, . . . , n} , (3.9)

20 CHAPTER 3. THEORETICAL SETUP

such that {⋃n
i=1Qi = Q

Qi ∩Qj = ∅ ∀i 6= j,

and we associate every subset to an agent i that is responsible of monitoring them.
Therefore every camera has a vision value vis(pi, v̂i, Qi) that can be computed using
equation (3.8). We define the overall vision by summing the single values of every
agent:

cov(P,Q) =
∑

i=1,...,n

vis(pi, v̂i, Qi)

=
∑

i=1,...,n

∑

(q,û)∈QV
i

f̄(‖q − pi‖) 〈q − pi, v̂i〉 〈pi − q, û〉 ,
(3.10)

and we call it coverage score. In the formula we denoted as P the set of the poses
of all the cameras:

P = {(pi, v̂i), i = 1, . . . , n} .

3.2 Problem statement

The aim of our algorithm is to find the configuration of sensors and partition of Q
that ensure the best overall vision of the landmarks, so we can express our problem
as:

maximize
P,Q

cov(P,Q)

subject to P = {(pi, v̂i), i = 1, . . . , n} ,
Q = {Qi, i = 1, . . . , n} ,
{⋃n

i=1Qi = Q,

Qi ∩Qj = ∅ ∀i 6= j.

(3.11)

To do this we will optimize the pose of the single sensors and we will allow the
trade of landmarks between couples of agents. In Chapter 4 the algorithm will be
explained in detail.

3.3 Gradient computation

The computation of the gradient of the vision function will be useful for the opti-
mization of the camera pose, because we will use a line search algorithm.

3.3. GRADIENT COMPUTATION 21

We consider each agent singularly, so we omit the index i. Moreover we consider
the set of landmarks Q fixed. First we rewrite the vision function defined in (3.5):

vis(p, v̂, Q) =
∑

(q,û)∈QV

f̄(‖q − p‖) 〈q − p, v̂〉 〈p− q, û〉

=

〈 ∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
, v̂

〉
. (3.12)

Then, we compute the derivative of the vision with respect to time:

∂

∂t
vis(p, v̂, Q) =

∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)>∂v̂
∂t

+ v̂>
∑

(q,û)∈QV

∂

∂t

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
.

(3.13)

The derivative of v̂ can be computed as:

∂v̂

∂t
= ω × v̂ = S(v̂)>ω,

where ω ∈ R3 is the angular velocity of the agent and S(v̂) is the skew-symmetric
matrix associated to v̂ (see Appendix A.2).
Instead the other derivative in (3.13) can be computed as:

∂

∂t

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
= 〈p− q, û〉 (q − p)

(
∂

∂t
f̄(‖q − p‖)

)

+ f̄(‖q − p‖)
(
∂

∂t

(
〈p− q, û〉 (q − p)

))
,

where:

∂

∂t
f̄(‖q − p‖) = f̄ ′(‖q − p‖) ∂

∂t

(
‖q − p‖

)
= f̄ ′(‖q − p‖)(p− q)>

‖q − p‖ ṗ,

and

∂

∂t

(
〈p− q, û〉 (q − p)

)
=

∂

∂t

(
〈p− q, û〉

)
(q − p) + 〈p− q, û〉 ∂

∂t

(
q − p

)

= ṗ>û(q − p) + (p− q)>û(−ṗ)

= (q − p)û>ṗ + (q − p)>ûṗ

=
(

(q − p)û> + (q − p)>û I
)
ṗ,

22 CHAPTER 3. THEORETICAL SETUP

in which ṗ ∈ R3 denotes the linear velocity of the agent and f̄ ′(·) is the derivative
of f̄(·). Finally, joining all the terms and substituting in (3.13) we obtain:

∂

∂t
vis(p, v̂, Q) =

∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)>
S(v̂)>ω

+ v̂>
∑

(q,û)∈QV

(
f̄ ′(‖q − p‖)
‖q − p‖ 〈q − p, û〉 (q − p)(q − p)>

+ f̄(‖q − p‖)
(

(q − p)û> + (q − p)>û I
))

ṗ

= ∇v̂(vis(p, v̂, Q))>ω +∇p(vis(p, v̂, Q))> ṗ, (3.14)

where we have put in evidence the gradient of the vision function with respect to
the orientation and the position:

∇v̂(vis(p, v̂, Q)) = S(v̂)
∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
, (3.15)

∇p(vis(p, v̂, Q)) =
∑

(q,û)∈QV

(
f̄ ′(‖q − p‖)
‖q − p‖ 〈q − p, û〉 (q − p)(q − p)> (3.16)

+ f̄(‖q − p‖)
(
û(q − p)> + (q − p)>û I

))
v̂.

Notice that both the gradients depend only on the pose of the camera (p, v̂) and the
considered set of points Q, and that they are continuous if QV is constant. Finally
notice that the gradient with respect to v̂ is always orthogonal to v̂.

3.4 Optimal orientation

From equation (3.12) an optimal value can be derived for v̂, while keeping p fixed:

v̂opt(p, Q) = arg max
v̂:‖v̂‖=1

vis(p, v̂, Q)

= arg max
v̂:‖v̂‖=1

〈 ∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
, v̂

〉

=

∑
(q,û)∈QV

opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)

∥∥∥
∑

(q,û)∈QV
opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)∥∥∥
,

(3.17)

where we exploited the fact that the scalar product of two vectors is maximum
if they are parallel. The major problem that prevents to use this equation is the
dependence of QV on the orientation. Indeed finding v̂opt requires to know QVopt,

3.4. OPTIMAL ORIENTATION 23

Algorithm 1: Finding v̂opt trying all the possible combinations of landmarks.
Data: p, Q
Result: Optimal orientation v̂opt(p, Q).
M = 0 ;
P(Q) = set of all possible subsets of Q;
foreach Q? ∈ P(Q) do

v̂? =

∑
(q,û)∈Q?

(
f̄(‖q−p‖)〈p−q,û〉(q−p)

)

∥∥∥∥∑(q,û)∈Q?

(
f̄(‖q−p‖)〈p−q,û〉(q−p)

)∥∥∥∥ ;
QVv̂? = set of visible points from (p, v̂?) ;
if
(
QVv̂? == Q?

)
AND (vis(p, v̂?, Q?) > M) then

v̂opt = v̂?;
M = vis(p, v̂?, Q?);

end
end

that is the set of visible landmarks when the camera is in (p, v̂opt), which in turn
depends on v̂opt. Therefore the formula cannot be applied directly.

One possible solution is given in Algorithm 1. The idea is to pretend to know already
the set QVopt, we call it Q?. Then we can compute the optimal orientation v̂? using
equation (3.17), where we substitute QVopt with Q?. Then we check if our guess was
correct: if Q? coincides with the set of points that are visible from (p, v̂?) then v̂?

is a candidate to be the optimal orientation. If we do this procedure for all the
possible combination of landmarks Q? and choose the candidate with the maximum
value of vision, we can find v̂opt(p, Q).

The issue of this solution is that, if we are dealing with N landmarks, there are 2N

possible combinations that we have to try. Thus the number of iterations of our
algorithm grows exponentially with the number of points that we are monitoring, so
it is highly inefficient. This is why in our algorithm we will change our orientation
following an angular velocity that guarantees the increase of the vision, instead of
computing at every step the optimal orientation and rotating with the objective of
aligning v̂ with v̂opt(p, Q). Anyway, as we would expect, (p, v̂opt) is a stationary

24 CHAPTER 3. THEORETICAL SETUP

point for the rotation, in the sense that:

∇v̂(vis(p, v̂opt, QVopt)) = v̂opt ×




∑

(q,û)∈QV
opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)



=



∑

(q,û)∈QV
opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)

∥∥∥
∑

(q,û)∈QV
opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)∥∥∥




×




∑

(q,û)∈QV
opt

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)

 = 0,

(3.18)
because it is the cross product of two parallel vectors. As a consequence the time
derivative of the vision is:

∂

∂t
vis(p, v̂opt, QVopt) = ∇p(vis(p, v̂opt, QVopt))

> ṗ,

which means that there is no angular velocity that leads to an increase of the vision.

Chapter 4

Coverage algorithm

In this section we describe the algorithm that we use to solve the optimization
problem defined in Section 3.2:

maximize
P,Q

cov(P,Q), (4.1)

subject to:
P = {(pi, v̂i), i = 1, . . . , n} ,
Q = {Qi, i = 1, . . . , n} ,

with {⋃n
i=1Qi = Q,

Qi ∩Qj = ∅ ∀i 6= j.

Moreover, since we will work in a bounded environment Ω (that we call mission
space) with multiple agents, we also add some constraints for the position in order
to avoid collisions:

{
pi(t) ∈ Ω ∀i, ∀t,∥∥pi(t)− pj(t)

∥∥ >= Rs ∀i 6= j, ∀t,

where t is the time. The first condition states that all the agents must remain inside
the mission space, while the second states that the reciprocal distance between two
agents cannot be lower than a safety radius Rs.

The algorithm that we propose consists of three main parts:

1. Initialization;

2. Pose optimization;

3. Trading of landmarks.

The first phase consists in the selection of the initial poses for the cameras and the
set of landmarks associated to each agent (Section 4.1).

25

26 CHAPTER 4. COVERAGE ALGORITHM

Then for every agent the pose is optimized, meaning that the value of the vision of
the camera on its landmark set is maximized. This is done through a line search
algorithm based on the gradient and implemented in a block that we call motion
planner. It is basically a function that takes as input the position and the orientation
of the camera and returns the linear and angular velocities that we want the camera
to follow, as represented in Figure 4.1a. We can divide the motion planner into
simpler components: the computation of the optimal velocity (explained in Section
4.2) simply computes the directions of linear and angular velocity that guarantee
the maximum increase of the vision, and that will be followed if there is no obstacle
in the path; the collision avoidance (explained in Section 4.3) takes into account the
presence of other agents or boundaries of the mission space and chooses a direction
for the linear velocity that guarantees safety and also an increase of the vision; the
magnitude control (explained in Section 4.4) chooses a suitable magnitude for the
velocity considering the limits of the physical system and ensuring the convergence.
Once an agent has reached the optimal position, it becomes available for trading.
This means that it will try to communicate with other agents and to exchange its
landmarks. The communications are one-to-one, and the algorithm used is described
in section 4.5. If a trade is performed successfully, then a new pose optimization is
started, but now considering the new set of landmarks.

Motion
Planner

ṗ?

ω?

p

v̂

pothers

(a) Motion planner
block.

Optimal
Velocity

Collision
Avoidance

Magnitude
Control

p

v̂

ṗopt

ωopt

pothers

ṗdir

ωopt

ṗ?

ω?

Motion planner

(b) Different parts in which we divide the motion planner.

Figure 4.1

4.1 Initialization

We consider a team of n agents with initial poses:

P0 =
{

(p0,i, v̂0,i), i = 1, . . . , n
}
,

and a set of landmarks:

Q =
{

(qj ,uj), j = 1, . . . ,m
}
.

4.2. OPTIMAL VELOCITY COMPUTATION 27

partitioned initially as:
Q0 = {Q0,i, i = 1, . . . , n} ,

where each Q0,i is associated to the corresponding agent. The initial conditions must
respect the constraints:





⋃n
i=1Q0,i = Q,

Q0,i ∩Q0,j = ∅ ∀i 6= j,

p0,i ∈ Ω ∀i,∥∥p0,i − p0,j

∥∥ >= Rs ∀i 6= j.

This phase is very important because in general different initial conditions can lead
to very different results, as will be clearer in simulations (see Chapter 5). Once
assigned the initial sets of landmarks, each agent performs the pose optimization
using a gradient-based algorithm.

4.2 Optimal velocity computation

This part is executed by every agent independently, therefore we can drop the no-
tation relative to the identity of the agent. The first step is to compute the set of
visible landmarks:

QV = {(q, û) ∈ Q | 〈q − p, v̂〉 > 0, 〈p− q, û〉 > 0} .

Then the gradient of the vision with respect to the position and the orientation is
computed using the formulas (3.15) and (3.16), that are reported here:

∇v̂(vis(p, v̂, Q)) = S(v̂)
∑

(q,û)∈QV

(
f̄(‖q − p‖) 〈p− q, û〉 (q − p)

)
,

∇p(vis(p, v̂, Q)) =
∑

(q,û)∈QV

(
f̄ ′(‖q − p‖)
‖q − p‖ 〈q − p, û〉 (q − p)(q − p)> +

f̄(‖q − p‖)
(
û(q − p)> + (q − p)>û I

))
v̂.

We define the following sets of velocities:

ND (p, v̂, Q) =
{

(a, b) ∈ R3 × R3 | ∇p(vis(p, v̂, Q))> a +∇v̂(vis(p, v̂, Q))> b ≥ 0
}
,

NDṗ (p, v̂, Q) =
{
a ∈ R3 | ∇p(vis(p, v̂, Q))> a ≥ 0

}
,

NDω (p, v̂, Q) =
{
b ∈ R3 | ∇v̂(vis(p, v̂, Q))> b ≥ 0

}
.

The first is the set of non-decreasing velocities: if (ṗ,ω) ∈ ND (p, v̂, Q), then moving
according to this velocities will lead to an increase (or a maintenance) of the value

28 CHAPTER 4. COVERAGE ALGORITHM

of the vision function. The second set is the one of non-decreasing linear velocities:
if ṗ ∈ NDṗ (p, v̂, Q), then moving according to this ṗ while keeping ω = 0 will
lead to an increase (or a maintenance) of the value of the vision function. Finally,
NDω (p, v̂, Q) is the set of non-decreasing angular velocities and is analogous to
NDṗ (p, v̂, Q), switching the role of ṗ and ω. It is easy to notice that:

NDṗ (p, v̂, Q)×NDω (p, v̂, Q) ⊆ ND (p, v̂, Q) . (4.2)

Therefore, assuming that ṗ and ω can be controlled independently, it is sufficient to
choose them in the sets of non-decreasing linear and angular velocities respectively.
So we impose: {

∇p(vis(p, v̂, Q))> ṗ ≥ 0,

∇v̂(vis(p, v̂, Q))>ω ≥ 0,
(4.3)

which means that ṗ has to be in the half-space defined by the vector the gradient
with respect to the position, and analogously for ω, if we work in R3 (see Figure
4.2). Moreover, we can always choose ω ⊥ v̂, indeed:

∂v̂

∂t
= ω × v̂ =

(
ω⊥ + ω‖

)
× v̂ = ω⊥ × v̂, (4.4)

where ω‖ and ω⊥ are the components of ω respectively in the direction parallel and
perpendicular to v̂. For the properties of the cross product the parallel component
does not affect the result, thus can be always chosen equal to zero. Notice that
∇v̂(vis(p, v̂, Q)) is given by the cross product of v̂ and a sum of vectors and therefore
is always already perpendicular to v̂. Obviously this reasoning holds only in R3, since
in R2 the angular velocity is a scalar quantity.

Finally, we define the directions of ṗopt and ωopt, that are the ones that give the
maximum increase of the vision function:

ṗopt = arg max
ṗ:‖ṗ‖=1

∇p(vis(p, v̂, Q))> ṗ =
∇p(vis(p, v̂, Q))

‖∇p(vis(p, v̂, Q))‖ ,

ωopt = arg max
ω:‖ω‖=1

∇v̂(vis(p, v̂, Q))>ω =
∇v̂(vis(p, v̂, Q))

‖∇v̂(vis(p, v̂, Q))‖ ,

arg max
(ṗ,ω):‖ṗ‖=‖ω‖=1

∂

∂t
vis(p, v̂, Q) =

(
ṗopt,ωopt

)
,

(4.5)

where we considered velocities with unitary norm because we are interested only in
the direction of the movement, regardless its intensity.
Moreover the maximum instantaneous increase of the vision function, still consider-
ing unitary normed velocities, is:

max
‖ṗ‖=‖ω‖=1

vis (p(t+ ∂t), v̂(t+ ∂t), Q) =

vis(p(t), v̂(t), Q) + ‖∇v̂(vis(p(t), v̂(t), Q))‖ ∂t+ ‖∇p(vis(p(t), v̂(t), Q))‖ ∂t.

4.3. COLLISION AVOIDANCE 29

p

v̂

∇v̂(vis(p, v̂, Q))

∇p(vis(p, v̂, Q))

ω

ṗ

NDṗ

NDω

Figure 4.2: Example of choice of non decreasing velocities.

4.3 Collision avoidance

Since we work in a finite environment, potentially with multiple agents, we cannot
always move freely, because we would risk to exit the mission space or to collide
with the others. Therefore there are situations in which we cannot choose to follow
the optimal direction, defined by ṗopt. Instead, for the angular velocity, we will
always choose the direction defined by ωopt, because we assume that the rotation is
independent from the position.

In this section we will propose two possible techniques for ensuring the collision
avoidance. Both of them consider only the direction of the velocity, regardless its
magnitude, and return a direction that, at least in short term, does not lead to a
collision. The two methods differ for the concept of safe velocity from which they
start, but are both expressed as maximization problems, in the sense that they search
a velocity that does not lead to a collision but also ensures the maximum increment
of the vision function. We will refer at the first technique as abrupt, because it leads
to sharp changes of the velocity direction, and at the second as smooth, because it
extends the first method to have a more continuous change of direction.

Abrupt collision avoidance

The obstacles that we consider are of two types: the limits of the mission space
or other agents. Figure 4.3a describes the case where the agent is at one of the
boundaries of the mission space (that we will call walls), it is not possible to move
in the optimal direction. On the other hand, there are still non decreasing velocities
that are allowed, for instance the velocity ṗ drawn in the figure can be considered
safe because it does not bring the agent outside the mission space. The same holds in
the case represented in Figure 4.3c, where the agent is dangerously close to another

30 CHAPTER 4. COVERAGE ALGORITHM

p

ŵ

ṗopt

ṗ

NDṗ

(a) Agent at the boundary of the mission
space.

p

ŵ

ṗopt

ṗ

NDṗ

(b) Safe velocities in green.

Rs

p
ŵ

ṗopt

ṗ

NDṗ

(c) Agent at distance Rs from another
agent.

p
ŵ

ṗopt

ṗ

NDṗ

(d) Safe velocities in green.

Figure 4.3: Safe velocities in case of imminent collisions.

agent, i.e. their distance is lower than the safety radius. Therefore in this case we
consider safe all the velocities that do not lead to a decrease of the distance between
the agent and the obstacle. Moreover we consider an obstacle only when the agent
is at its boundary.

In order to translate into formulas the concept of safe velocity, we define a unit
vector ŵi associated to every obstacle. In the case of a wall ŵi will be the normal
vector to the surface and in the case of another agent it will be directed as the line

4.3. COLLISION AVOIDANCE 31

joining the two agents and oriented repulsively. A velocity will be acceptable if it is
both in NDṗ and safe:

{〈
ṗopt, ṗ

〉
≥ 0,

〈ŵi, ṗ〉 ≥ 0 i = 1, . . . , no,
(4.6)

where no is the number of obstacles. Moreover, in the case there are multiple
acceptable velocities we want to choose the one that is maximizing the increase of
the vision function, that is the one that gives the maximum scalar product with ṗopt.
Notice that if we find an acceptable velocity, then all the others that are parallel but
with different magnitude are acceptable as well. For this reason we can consider only
unitary velocities, and we will deal later with the magnitude. Given these premises
we can express our problem as an optimization problem:

maximize
ṗ

〈
ṗopt, ṗ

〉
,

subject to
〈
ṗopt, ṗ

〉
≥ 0,

〈ŵi, ṗ〉 ≥ 0 i = 1, . . . , no,

‖ṗ‖ = 1.

(4.7)

Notice that considering only unitary velocities makes the problem nonlinear, so it is
not possible to use well known techniques of linear programming, like the simplex
algorithm or similar. On the other hand removing this constraint would lead to an
unbounded problem, because any solution could be improved just by increasing the
magnitude.

Note that all the inequalities of the problem (4.7) can be thought geometrically
as requiring that ṗ must be in a half plan (if we are in R2) or in a half space (if we
are in R3). In particular, the first inequality states that ṗ has to be in NDṗ, and
the other no inequalities state that it has to be in the half plan or half space that
does not contain the obstacle. For defining a half plan in R2 we will us the line that
establishes its boundary, which is the one orthogonal to ŵ. Analogously in R3 for
defining a half space we will use the plan orthogonal to ŵ.

Proposition 1. The solution of the problem (4.7) in R2 is either:

• ṗopt;

• the projection (normalized) of ṗopt on the line orthogonal to ŵi for some i =
1, . . . , no.

Proof. Without loss of generality, we consider ṗopt aligned with the x axis of our
coordinate frame. We can define the angles formed by each vector with the x axis: θ
is the angle associated with the generic ṗ and αi is associated with ŵi, as in Figure
4.4a. The optimization problem (4.7) can be rewritten in terms of the angles as:

arg max
θ

cos(θ) = arg min
θ

‖θ‖

32 CHAPTER 4. COVERAGE ALGORITHM

x

y

ṗopt

ṗ

ŵ1

ŵ2

ŵ3

α3
α1

θ

α2

(a) Representation of the angles αi and θ.

where {
cos(θ) ≥ 0

cos(αi − θ) ≥ 0

The constraints are equivalent to:
{
−π

2 ≤ θ ≤ π
2

αi − π
2 ≤ θ ≤ αi + π

2

Now we can split the problem into two sub-problems:

arg min
θ

θ arg min
θ

−θ
{

0 ≤ θ ≤ π
2

αi − π
2 ≤ θ ≤ αi + π

2

{
−π

2 ≤ θ ≤ 0

αi − π
2 ≤ θ ≤ αi + π

2

and the solution of the initial problem will be the minimum of the two single so-
lutions. Since both the sub-problems are problems of linear optimization we can
exploit a general fact, valid for this kind of problems: the optimum value is always
attained on the boundary of the feasible set. This means that at least one of the
constraints must be tight, i.e. an equality. Therefore the possible solutions are:

θ = 0 ⇒ ṗ =ṗopt,

θ = ±π
2

⇒
〈
ṗopt, ṗ

〉
=0,

θ = αi ±
π

2
⇒ 〈ŵi, ṗ〉 =0.

(4.8)

The last case means that ṗmust be on the line orthogonal to ŵi, so in principle there
could be two chances (the two directions of the line), one with positive scalar product

4.3. COLLISION AVOIDANCE 33

with ṗopt (the one that we are searching) and the other with negative product. To
find the first one it is sufficient to consider the projection of ṗopt on the line, and
the normalize it. The only case in which we have to consider both the directions of
the line is when ŵi = −ṗopt, because they both have null scalar product with ṗopt,
and this is exactly equivalent to the second case of (4.8).

The Proposition 1 implies that the optimal solution can be found in a finite set
whose dimension is linear with the number of obstacles no. Algorithm 2 implements
the solution searching the element of this set that gives the maximum value: if
ṗopt is feasible than it is the optimal solution, otherwise we try all the possible
projections. Although there may exist more efficient algorithms to solve 4.7, note
that the complexity of the proposed algorithm is polynomial (namely, O(no)) because
every iteration of the loop can be done in O(1). In the algorithm we use the function
projection (ṗopt, ŵi) that returns the normalized projection of the vector ṗopt on the
line orthogonal to ŵi.

Algorithm 2: Finding the optimal solution of problem (4.7) in R2, exploiting
Proposition 1.

Data: ṗopt, ŵi i = 1, . . . , no
Result: Optimal acceptable velocity ṗ.
if
(〈
ŵk, ṗopt

〉
≥ 0 ∀k

)
then

ṗ = ṗopt;
return;

end
max = 0 ;
ṗ = 0 ;
for i = 1, . . . , no do

proj = projection(ṗopt, ŵi);
if (〈ŵk,proj〉 ≥ 0 ∀k) AND

(〈
ṗopt,proj

〉
≥ max

)
then

ṗ = proj ;
max =

〈
ṗopt,proj

〉
;

end
end
return;

Note that Proposition 1 does not hold for all the possible configurations in R3.
Consider for instance the case proposed in Figure 4.5, where there are two obstacles.
In this case that each of the projection of ṗopt on one of the planes is excluded by the
other constraint. Nevertheless it is easy to see that

[
0 0 −1

]> is an acceptable
velocity, even if it is not the optimal one (it is orthogonal to ṗopt so it does not lead
to any instantaneous increase of the vision, but neither a decrease).

Conjecture 1. The solution of the problem (4.7) in R3 is either:

34 CHAPTER 4. COVERAGE ALGORITHM

x
y

z

p

ṗopt

p1

p2

(a) Obstacles in R3, first view.

x

y

z

p

ṗopt

p1

p2

(b) Obstacles in R3, second view.

ŵ2

ṗ

ŵ1
x

y

z

ṗopt

(c) Planes associated to obstacles, first
view.

ŵ1

ŵ2

ṗ

x

y

z

ṗopt

(d) Planes associated to obstacles, second
view.

Figure 4.5

• ṗopt;

• the projection (normalized) of ṗopt on the plane orthogonal to ŵi for some
i = 1, . . . , no;

• the unit vector that belongs to the intersection of the two planes orthogonal to
ŵi and ŵj for some i, j = 1, . . . , no, i 6= j, and has positive scalar product
with ṗopt.

To corroborate Conjecture 1, we tried to find contradictions by solving problems
with randomly generated data, both exploiting the conjecture (Algorithm 3 shows
the pseudocode) and using the optimization tool fmincon provided by Matlab, and

4.3. COLLISION AVOIDANCE 35

we did not find any. The algorithm that we propose is efficient, since its complexity
is O(n2

o), and can never return an infeasible solution. Therefore, even if Fact 1 was
false in some particular conditions that we did not find in testing, it could only
happen that a solution exists but we do not find it with our algorithm, or we find a
solution that is feasible but not optimal. The algorithm will never return a velocity
that is decreasing the vision, or is not safe (according to the criterion that we use).

Algorithm 3: Finding the optimal solution of (4.7) in R3 exploiting Conjec-
ture 1.

Data: ṗopt, ŵi i = 1, . . . , no
Result: Optimal acceptable velocity ṗ.
if
(〈
ŵk, ṗopt

〉
≥ 0 ∀k

)
then

ṗ = ṗopt;
return;

end
max = 0 ;
ṗ = 0 ;
for i = 1, . . . , no do

proj = projection(ṗopt, ŵi);
if (〈ŵk,proj〉 ≥ 0 ∀k) AND

(〈
ṗopt,proj

〉
≥ max

)
then

ṗ = proj ;
max =

〈
ṗopt,proj

〉
;

end
for j = i+ 1, . . . , no do

inters = intersection(ŵi, ŵj);
if (〈ŵk, inters〉 ≥ 0 ∀k) AND

(〈
ṗopt, inters

〉
≥ max

)
then

ṗ = inters ;
max =

〈
ṗopt, inters

〉
;

end
end

end
return;

Smooth collision avoidance

The problem with the method used till now is that it starts worrying of a collision
when the agent is already at the boundary of the safe area. So it may happen that
at a certain moment it is completely free to move in any direction and immediately
after it has to change completely the velocity to avoid an obstacle. For preventing
this condition, we set a worrying distance Dw. If the agent is closer than Dw to an
obstacle then it starts to consider it. For all these obstacles we add one constraint

36 CHAPTER 4. COVERAGE ALGORITHM

of the type:
〈ŵk, ṗ〉 ≥ λi, (4.9)

where λi is a value in [−1, 0] computed as:

λi = − di
Dw

, (4.10)

where di is the distance from the i-th obstacle. In Figure 4.6 it is shown the meaning
of the constraint. Figure 4.6a represent the case in which the agent is close (meaning
d < Dw) to a wall. The distance is computed orthogonally to the bound. As can be
seen in Figure 4.6b, the geometrical meaning of the constraint is that the velocity
ṗ must form with ŵ an angle of amplitude smaller than arccos(λ) ∈ [π/2, π]. The
farther the agent is from the obstacle, and the wider will be the angle, reaching
the value π when d = Dw, which means that the ṗ can be any vector (as long
as it does not turn in a decrease of the vision). The closer the agent gets to the
obstacle and the narrower the angle will be, until it reaches π/2 when d = 0. In this
case the angle becomes a half plan, and thus we are back in the situation presented
previously. Figures 4.6c and 4.6d present the case of near collision between two
agents. The only difference in this case is the fact that the distance is measured on
the line joining the position of the two agents.

The mechanism can also be seen, more intuitively, in the opposite way: as the
agent approaches the obstacle, the angle of unsafe velocities becomes wider, starting
from an amplitude of zero and reaching π/2, which means that the only velocities
that are allowed are the ones that make the agent draw apart from the obstacle.

We can express the problem of finding the best direction for the velocity as a
constrained optimization problem similar to (4.7) but with the new constraints:

maximize
ṗ

〈
ṗopt, ṗ

〉
,

subject to
〈
ṗopt, ṗ

〉
≥ 0,

〈ŵi, ṗ〉 ≥ λi i = 1, . . . , no,

‖ṗ‖ = 1.

(4.11)

Proposition 2. The solution of the problem (4.7) in R2 is either:

• ṗopt;

• the projection (normalized) of ṗopt on one of the two rays that delimit the angle
associated with one of the constraints 〈ŵi, ṗ〉 ≥ λi.

The proof of the Proposition 2 is analogous to the one of Proposition 1. Notice
that generally we cannot exclude one of the projections of ṗopt on the two rays of
the angle, so we will always consider both of them and we will check if they are
feasible. The Algorithm 4 is analogous to Algorithm 2: we consider all the possible
solutions and we search the one that guarantees the best increment of the vision.

4.3. COLLISION AVOIDANCE 37

p

ŵ

ṗopt

NDṗ

Dw

d

(a) Agent at the boundary of the mission
space.

p

ŵ

ṗopt

ṗ

NDṗ

(b) Safe velocities in green.

Rs

p ŵ

ṗopt
NDṗ

Dw

d

(c) Agent at distance Rs from another
agent.

p
ŵ

ṗopt

ṗ

NDṗ

(d) Safe velocities in green.

Figure 4.6: Safe velocities in case of near collisions.

The extension of Proposition 2 to R3 is similar to the one explained before, the
only difference is that instead of dealing with angles, we deal with cones. So in this
case when we approach an obstacle there will be a growing cone of velocities that
cannot be selected. The axis of the cone will be orthogonal to the wall if the obstacle
is a wall, and the line joining the two agents if the obstacle is another agent. The
opening angle of the cone can be computed as arccos(−λ) (the minus sign is due
to the fact that we are considering the velocities that we exclude). Analogously to

38 CHAPTER 4. COVERAGE ALGORITHM

Algorithm 4: Finding the optimal solution of problem (4.11) in R2, exploiting
Proposition 2.

Data: ṗopt, ŵi, λi i = 1, . . . , no
Result: Optimal acceptable velocity ṗ.
if
(〈
ŵk, ṗopt

〉
≥ λk ∀k

)
then

ṗ = ṗopt;
return;

end
max = 0 ;
ṗ = 0 ;
for i = 1, . . . , no do

proj1,proj2 = projection(ṗopt, ŵi, λi);
if (〈ŵk,proj1〉 ≥ λk ∀k) AND

(〈
ṗopt,proj1

〉
≥ max

)
then

ṗ = proj1 ;
max =

〈
ṗopt,proj1

〉
;

end
if (〈ŵk,proj2〉 ≥ λk ∀k) AND

(〈
ṗopt,proj2

〉
≥ max

)
then

ṗ = proj2 ;
max =

〈
ṗopt,proj2

〉
;

end
end
return;

what happens in two dimensions, when d = Dw the cone has a null opening angle,
so there is actually no constraint, whilst when d = 0 the opening angle is π/2 which
means that the cone degenerates into a plane, so we are in the situation presented
previously.

Conjecture 2. The solution of the problem (4.11) in R3 is either:

• ṗopt;

• one of the projections (normalized) of ṗopt on one of the cone associated with
one of the constraints 〈ŵi, ṗ〉 ≥ λi;

• one of the unit vector that belongs to the intersections of the two cones to ŵi

and ŵj for some i, j = 1, . . . , no, i 6= j.

Algorithm 5 shows the pseudocode for the solution of the problem in R3. Also for
Conjecture 2 we have no formal proof, but we did not find any contradiction when
comparing the result with the one computed with the optimization tool fmincon of
Matlab. Moreover the algorithm’s complexity is still polynomial (O(n2

o)), since
the projection and intersection with cones can be solved efficiently exploiting some
geometry observations.

4.4. MAGNITUDE CONTROL 39

Algorithm 5: Finding the optimal solution of problem (4.11) in R3, exploiting
Conjecture 2.

Data: ṗopt, ŵi, λi i = 1, . . . , no
Result: Optimal acceptable velocity ṗ.
if
(〈
ŵk, ṗopt

〉
≥ λk ∀k

)
then

ṗ = ṗopt;
return;

end
max = 0 ;
ṗ = 0 ;
for i = 1, . . . , no do

proj1,proj2 = projection(ṗopt, ŵi, λi);
if (〈ŵk,proj1〉 ≥ λk ∀k) AND

(〈
ṗopt,proj1

〉
≥ max

)
then

ṗ = proj1 ;
max =

〈
ṗopt,proj1

〉
;

end
if (〈ŵk,proj2〉 ≥ λk ∀k) AND

(〈
ṗopt,proj2

〉
≥ max

)
then

ṗ = proj2 ;
max =

〈
ṗopt,proj2

〉
;

end
for j = i+ 1, . . . , no do

inters1, inters2 = intersection(ŵi, λi, ŵj , λj);
if (〈ŵk, inters1〉 ≥ 0 ∀k) AND

(〈
ṗopt, inters1

〉
≥ max

)
then

ṗ = inters1 ;
max =

〈
ṗopt, inters1

〉
;

end
if (〈ŵk, inters2〉 ≥ 0 ∀k) AND

(〈
ṗopt, inters2

〉
≥ max

)
then

ṗ = inters2 ;
max =

〈
ṗopt, inters2

〉
;

end
end

end
return;

4.4 Magnitude control

At this point we have fixed the search direction ṗdir in which the agent will move and
we need to set the intensity of the velocity. For doing that we will use the method of
Backtracking Line Search (BLS), which is based on the Armijo–Goldstein condition.
If we want to maximize a generic function f(x), we are in position x(t) and we move
in the direction ∆x (that we suppose normalized), we have to choose a step-size α

40 CHAPTER 4. COVERAGE ALGORITHM

that respects the condition:

f(x(t) + α∆x) ≥ f(x) + αβ∇f(x(t)) ∆x, (4.12)

where ∇f(·) is the gradient of f(·) and β is a design parameter (β ∈ (0, 1)). On the
left hand side x(t) + α∆x represents the next position x(t+ 1) that will be reached
moving of a quantity α in the fixed direction. On the right hand side α∇f(x(t)) ∆x

represents the increase of the value of the function that we would have if the gradient
was constantly equal to ∇f(x(t)) in all the path from x(t) and x(t + 1). In other
terms it is the expected increase of f(·). Since the gradient approximation is valid
only locally it is generally not true that:

f(x(t) + α∆x) = f(x) + α∇>f(x(t)) ∆x,

unless we choose an infinitesimal value for α. Therefore the Armijo–Goldstein con-
dition requires that the increase of the function in the next position must be greater
than a fraction β of the increase promised by the gradient approximation.
The condition is surely verified for a sufficiently small value of α, even if this would
mean that the movement has been insignificant. Therefore the BLS technique follows
an iterative procedure for finding a value for α that is both big enough, and also
able to guarantee a sufficient increase of the function. We set an initial value α0 and
at every step we decrease the step-size by multiplying it for a value τ ∈ (0, 1) until
the condition is satisfied.

Algorithm 6 shows the pseudocode that we use. We set the initial value as:

α0 = ṗlim∆t,

where ∆t is the sampling time and ṗlim is the limit velocity, i.e. the maximum
magnitude of the linear velocity that we allow. Moreover we add a condition for
stopping the loop, that is if α < αmin, with:

αmin = ṗmin∆t,

where ṗmin is the minimum magnitude of the velocity that still makes sense to
command. Notice that, since we are working with a velocity instead of a difference
of position, α has the dimension of a time. Besides we adopted a simplification: we
did not t compute at every step the visible set in the next position. This is justified
by the fact that the contribution of a new landmark in the field of view of the camera
would be negligible, because we do not admit occlusions as we already discussed in
Chapter 3. An analogous algorithm is used for computing the magnitude of the
angular velocity, again setting two values ωlim and ωmin that are the maximum and
minimum value for the angular velocity respectively.

Notice that applying this method we obtain a discretization in the possible mag-
nitudes of the velocities. Choosing a small value of τ will result in a rougher dis-
cretization, which could lead to big discontinuities in the magnitude of the velocity.

4.5. TRADING OF LANDMARKS 41

On the other hand setting τ ≈ 1 would lead to smoother velocities, but the computa-
tion time could increase because the number of iterations necessary to find the right
step-size grows if the latter is small. The maximum number of iterations indeed is
logτ (ṗmin/ṗlim). Anyway we will never work with a very small sampling time, so
the time necessary to perform the algorithm is not limiting, and we will use τ = 0.9.
For β we choose the value 0.5, that is a standard value for the BLS.

Algorithm 6: Finding the magnitude of the linear velocity with the BLS
method

Data: ṗdir, ṗopt, QV , p, v̂, ṗlim, ṗmin, ∆t, β, τ
Result: Velocity ṗ?.
α = ṗlim∆t/τ ;
αmin = ṗmin∆t;
vist = vis

(
p, v̂, QV

)
;

repeat
α = τα;
vist+1 = vis

(
p + αṗdir, v̂, Q

V
)
;

until
(
vist+1 > vist + αβ ṗ>opt ṗdir

)
OR (α < αmin);

if α ≥ αmin then
ṗ? = αṗdir/∆t;

else
ṗ? = 0;

end

Moreover the algorithm inherently specifies the termination condition of the pose
optimization procedure, i.e. ‖ṗ?‖ < ṗmin and ‖ω?‖ < ωmin.

Finally notice that in the algorithm the Armijo-Goldstein condition is slightly
modified, using the strict inequality. The reason of this choice is clarified in Section
4.6.

4.5 Trading of landmarks

What we described till now is the pose optimization procedure that every single
agent will perform considering its own set of landmarks. Once an agent has finished
this phase, it becomes available for trading its landmarks, so it tries to communicate
with other agents. We consider only trades between two agents, and therefore only
one-to-one communications. Every agent has a list containing the identities of the
possible trading partners, so once it reaches its final pose it picks the first name of
the list and sends a request of trade. If the partner is available (meaning that it
finished its pose optimization phase) then a trading procedure is started, otherwise
it deletes the name from the list and sends a request to the next agent. This goes
on until its list is empty, and in that case the agent will remain passive, waiting for
a request coming from someone else.

42 CHAPTER 4. COVERAGE ALGORITHM

The trading procedure is described in Algorithm 7. For understanding it, we
must recall that our target is to increase the coverage score defined in (3.10). We
call the two agents involved in the trade A and B. Their contribution to the coverage
score is:

vis(pA, v̂A, QA) + vis(pB, v̂B, QB) =
∑

(q,û)∈QV
A

f̄(‖q − pA‖) 〈q − pA, v̂A〉 〈pA − q, û〉

+
∑

(q,û)∈QV
B

f̄(‖q − pB‖) 〈q − pB, v̂B〉 〈pB − q, û〉 .

If the value of this sum increases, then also the total coverage score will increase,
and this is exactly what the procedure achieves. Indeed the results of the trade are
two sets Q?A and Q?B such that:





Q?A ∪Q?B = QA ∪QB
vis(pA, v̂A, q, û) ≥ vis(pB, v̂B, q, û) ∀(q, û) ∈ Q?A
vis(pB, v̂B, q, û) ≥ vis(pA, v̂A, q, û) ∀(q, û) ∈ Q?B.

(4.13)

These conditions ensure that the value of the sum of the visions did not decrease.
Algorithm 7 scrolls through both the lists and transfers to Q?B all the landmarks of
QA that are seen better from B than from A and vice-versa. The trade is considered
successful if at least one landmark was transferred. In this case the agents will
re-initialize their partner lists and they will start a new pose optimization phase.
Notice that it is possible that after a successful trade the contribution of one of
the two agents to the coverage score decreased, but anyway the sum of the two
vision values increased, and so did the total coverage score. If the trade is not
successful then both the agents involved will delete the other from their lists of
possible partners. It is important to highlight that when two agents have the same
vision of one landmark they do not exchange it. Trading it in some cases could bring
a benefit to the coverage score (after the pose optimization), but on the other hand
it could also lead to infinite loops so we decide to avoid it.

Finally, when there is no possible trade (meaning that all the partner lists are
empty) we consider the coverage algorithm concluded.

4.6 Convergence analysis

The convergence of the algorithm is ensured by the following propositions.

Proposition 3. After every iteration of the algorithm (for any agent):

vis(p(t+ ∆t), v̂(t+ ∆t), Q) ≥ vis(p(t), v̂(t), Q), (4.14)

and the equality holds if and only if ṗ(t) = 0, ω(t) = 0.

4.6. CONVERGENCE ANALYSIS 43

Algorithm 7: Trading of landmarks between two agents.
Data: pA, v̂A, QA, pB, v̂B, QB
Result: Landmark sets Q?A, Q

?
B that respect conditions (4.13).

Q?A = ∅;
Q?B = ∅;
foreach (q, û) ∈ QA do

if vis(pB, v̂B, q, û) > vis(pA, v̂A, q, û) then
Add (q, û) to Q?B;

else
Add (q, û) to Q?A;

end
end
foreach (q, û) ∈ QB do

if vis(pA, v̂A, q, û) > vis(pB, v̂B, q, û) then
Add (q, û) to Q?A;

else
Add (q, û) to Q?B;

end
end

Proof. Assume ṗ(t) 6= 0. Then, from the magnitude control:

vis(p(t+ ∆t), v̂(t+ ∆t), Q) > vis(p(t), v̂(t), Q) + αβ ṗopt(t)
> ṗdir(t).

where:
αβ ṗopt(t)

> ṗdir(t) ≥ 0.

Indeed α ≥ αmin > 0 because ṗ(t) 6= 0, β ∈ (0, 1) by hypothesis. Moreover
ṗopt(t)

> ṗdir(t) ≥ 0 because ṗdir(t) must be a non decreasing linear velocity (by the
constraints of the collision avoidance optimization problems).

Analogous proof could be given if ω(t) 6= 0.

Proposition 3 states that during the pose optimization phase, the vision func-
tion is monotonically increasing for the single agents. Notice that in the proof we
exploited the choice of considering the Armijo-Goldstein condition with the strict
inequality. Otherwise, there would be cases in which the proposition does not hold:
if ṗopt(t)> ṗdir(t) = 0, it would be possible to have:

vis(p(t+ ∆t), v̂(t+ ∆t), Q) = vis(p(t), v̂(t), Q)

for every value of α. Therefore the optimization phase could continue indefinitely,
because there could be velocities not equal to zero that guarantee the maintenance
of the value of the vision.

44 CHAPTER 4. COVERAGE ALGORITHM

Proposition 4. After every iteration of the algorithm (for any agent):

cov(P(t+ ∆t),Q(t+ ∆t)) > cov(P(t),Q(t)). (4.15)

Proof. During the pose optimization phase, for every agent the vision (i.e. its con-
tribution to the coverage score) increases, as expressed by Proposition 3. During the
trading phase, the contribution of the two agents involved increases, as explained in
section 4.5.

Proposition 4 ensures the convergence of the algorithm. Indeed the coverage
score is monotonically increasing, but has also an upper bound given by the total
number of landmarks.

Chapter 5

Simulations

For simulating our coverage algorithm, we use the scheme in Figure 5.1, imple-
mented in Matlab. To simulate the movement of the agent we simply integrate the
velocities, meaning that in the integrator block we use the following the equations:

{
p(t+ ∆t) = p(t) + ṗ?(t)∆t

v̂(t+ ∆t) = v̂(t) + (ω?(t)× v̂(t)) ∆t
(5.1)

where:

ω?(t)× v̂(t) =
∂v̂

∂t
(t)

It is important to observe that in general the second equation in (5.1) does not
return a unitary vector. Therefore we need to apply also a normalization:

v = v̂(t) + (ω?(t)× v̂(t)) ∆t

v̂(t+ ∆t) =
v

‖v‖

In all the simulations presented, when the unit of measurement is left implicit,
the times are measured in s, the positions in m, the velocities in m/s, the angles in
rad and the angular velocities in rad/s.

Motion
Planner

∫ṗ?

ω?

p

v̂

Figure 5.1: Block diagram for the simulation.

45

46 CHAPTER 5. SIMULATIONS

5.1 Unconstrained optimization in two dimensions

We consider the following set of landmarks:

Q = {(q1, û1) , (q2, û2) , (q3, û3)} (5.2)

=

{([
1

4.5

]
,

[
cos(−2π/3)
sin(−2π/3)

])
,

([
2

4.1

]
,

[
cos(−π/2)
sin(−π/2)

])
,

([
2.5
4.3

]
,

[
cos(−π/4)
sin(−π/4)

])}
,

and we set the initial pose to:

p0 =

[
−1
5

]
, v̂0 =

[
cos(ψ0)
sin(ψ0)

]
, ψ0 = π/3,

as in Figure 5.2a. For this simulation we set the optimal distance from the landmarks
to dopt = 3 and we do not consider any boundary in the mission space. Figure
5.2b shows the optimal orientation vector computed in different positions, obtained
through the algorithm explained in section 3.4. This allows us to compute the value
of the vision in those points and build a sort of map which tells us where is the
maximum that we are searching. Figure 5.2c shows the contour lines of the vision
function and the gradient with respect to the position, i.e. ∇p(vis(p, v̂, Q)). It can
be noticed that the vision function is equal to zero for any orientation behind the
landmarks, and that there is only one maximum.

In this simulation, since we do not consider any spatial constraint, we do not
need the collision avoidance block and we can always choose the optimal direction
for the movement, which means that ṗdir = ṗopt. For the minimum and maximum
velocities we set the values:

ṗlim = 0.3ms , ṗmin = 0.01ms ,

ωlim =
π

4
rad
s , ωmin =

π

180
rad
s .

For the backtracking line search we used τ = 0.9 and β = 0.5.
In Figure 5.2d is shown the trajectory followed by the camera, and in Figure 5.3
are reported the time evolution of the main variables. It can be noticed that, as we
expected, the camera reaches the maximum point in the vision map, and that the
value of the vision is continuous and monotonically increasing along the trajectory.
Instead in the graph of the linear velocity there are two discontinuities at t = 3.2 s
and t = 14 s. These can be explained with the change of the visible set of landmarks:
at the beginning only (q1, û1) is visible, then (q2, û2) becomes visible and finally
also (q3, û3). Indeed, as we noticed when we computed the gradients with respect
to position and orientation, both of them are continuous unless there is a change
of the visible set. The magnitude of the linear velocity is constantly equal to the
maximum value allowed ṗlim, until the final part of the simulation, when it decreases
gradually because the camera is close to the maximum point. This happens because
the value that we chose for ṗlim is relatively small so it always verifies the Armijo
condition for all the initial part of the movement. On the other hand, observing the

5.1. UNCONSTRAINED OPTIMIZATION IN TWO DIMENSIONS 47

•
• •p0

pf

q1
q2

q3

v̂0

v̂f

û1

û2

û3

(a) Landmarks that we want to monitor,
initial and final pose of the camera.

0 5

0

2

4

6

x

y
(b) Optimal orientation vectors computed
in all the map.

−2 0 2 4 6
0

2

4

6

x

y

(c) Contour lines of the vision function
(computed in every point with the optimal
orientation) and direction of the gradient
with respect to the position.

−2 0 2 4 6
0

2

4

6

x

y

(d) Trajectory followed for the camera
placement.

Figure 5.2: Optimization of the pose of one camera in unbounded mission space.

evolution of the angular velocity we can notice that only at the beginning it reaches
ωlim, while in the whole central part of the simulation ω is almost constant, until
the end when it reaches zero. This can be explained looking at Figure 5.4, where
are represented the values of ψ and ψopt (dashed in the graph), which was computed
for every position. When the simulation starts there is a big difference between the
orientation of the camera and the optimal one, and this results in a big value of ω;
after approximately 1.5 s this gap decreases and remains almost constant, due to the
fact that the camera is still moving: at every step ω would bring v̂ to equal v̂opt,
but since the position keeps changing, also the optimal orientation changes; finally,

48 CHAPTER 5. SIMULATIONS

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

vi
si

on

Vision

0 2 4 6 8 10 12 14 16 18 20 22 24

−2
0

2

4

p
[m

]

Position

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

ψ
[r

ad
]

Orientation

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.4
−0.2

0

0.2

ṗ
,∇

p
[m
/s
]

Linear velocity

0 2 4 6 8 10 12 14 16 18 20 22 24

−0.5

0

t [s]

ω
,∇

v̂
[r
a
d
/s
]

Angular velocity

vision x axis y axis ψ

Figure 5.3: Data relative to the simulation of unconstrained optimization.

5.2. COLLISION AVOIDANCE IN TWO DIMENSIONS 49

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

t [s]

ψ
,ψ

o
p
t
[r
a
d
]

ψ

ψopt

Figure 5.4: Camera orientation during the simulation and optimal orientation in the
corresponding position.

when the camera reaches the final position and stops, the gap in the orientation is
bridged and at the end ψ = ψopt. Notice that the value of ω in the central part keeps
oscillating simply because the exact value that would be necessary to compensate
the movement of the camera is not one of those obtainable with the Backtracking
Line Search.

An important observation is necessary regarding the magnitude control. As can
be seen from the velocity plots in the simulation, the magnitude of ∇p(vis(p, v̂, Q))
and ∇v̂(vis(p, v̂, Q)) decreases to zero when we approach the final point (see the
dashed lines in the velocity plots in Figure 5.3). So in principle we could sim-
ply choose to use ṗ = ∇p(vis(p, v̂, Q)) and ω = ∇v̂(vis(p, v̂, Q)), without using the
backtracking line search, but simply saturating the velocities to ṗlim and ωlim and
stopping when they are smaller than the minimum values. Anyway this would lead
to a very slow convergence (nearly twice the time in the case of the previous simula-
tion), because the velocities are smaller then the ones that we obtain with the BLS,
since the gradient decreases when we approach the maximum.

5.2 Collision avoidance in two dimensions

We will now study what happens in the same setup (same landmark set and initial
position), but when the mission space is bounded or when there are multiple agents
involved.

50 CHAPTER 5. SIMULATIONS

•
• •p0

pf

q1 q2
q3

v̂0

v̂f

û1

û2

û3

(a) Landmarks that we want to monitor
and bounds of the mission space, initial and
final pose of the camera.

−2 0 2 4 6
0

2

4

6

x

y

(b) Vision map and walls. Notice that the
maximum is outside of the mission space.

−2 0 2 4

2

3

4

5

x

y

(c) Trajectory followed in the camera
placement. The dashed grey trajectory is
relative to the abrupt version of the colli-
sion avoidance while the black one is rela-
tive to the smooth version.

p

ṗopt

ṗdir

φṗ

(d) Collision avoidance and explanation of
the φṗ angle.

Figure 5.5: Optimization of the camera pose in a rectangular mission space.

Bounded mission space

At first, we consider the rectangular environment represented in Figure 5.5a. As can
be seen in Figure 5.5b, the maximum is outside of the mission space so it cannot be
reached.
We perform the simulation with both the collision avoidance techniques proposed
in 4.3, the abrupt one and the smooth one. The trajectories obtained are in Figure
5.5c, and they both reach the same final point, which is the local maximum inside
the mission space. The dashed grey trajectory is the one relative to the abrupt
version of the collision avoidance. It simply follows the same path of simulation in

5.2. COLLISION AVOIDANCE IN TWO DIMENSIONS 51

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.2

0.4

0.6

0.8

Dw

d
[m

]

Distance from the wall

0 2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

t [s]

φ
ṗ
[r
a
d
]

Angle between ṗopt and ṗdir

Abrupt Smooth

Figure 5.6: Evolution of φṗ, whose meaning is explained in Figure 5.5d.

free space until it reaches the wall, and then it moves parallel to the wall till ṗopt
is perpendicular to the wall. Instead with the smooth version (black trajectory)
the camera follows the same path until it is at distance Dw from the wall, then it
starts worrying about the collision. As it gets closer to the wall, the angle of unsafe
velocities becomes wider (see Figure 5.5d). If ṗopt is safe then its direction is followed,
otherwise it is chose its projection on the closest ray of the angle. Therefore, as the
camera approaches the wall, the velocity smoothly turns until it becomes parallel.
We denote with φṗ the angle between the optimal direction ṗopt and the one that
is followed ṗdir. In Figure 5.6 are compared the values of φṗ in the two cases. In
the abrupt case, it is zero until the wall is reached, then there is a sudden change
because the ṗdir becomes parallel to the wall. Instead in the smooth case the angle
changes gradually while the distance with the wall decreases. Then the angles follow
approximately the same evolution (there is a small delay in the abrupt case because
the path followed is longer). The sharp change of angle at t ≈ 15 s is due to a new
visible landmark, therefore what changes is not ṗdir but ṗopt. Notice that there
is a short time (t ∈ [8.8, 9]) in which even if d < Dw the camera keeps moving in
the direction of ṗopt also in the smooth case. This happens because the angle of
unsafe velocities is small and ṗopt is still considered a safe velocity, because it is not
perpendicular to the wall.
This simulation clarifies why the smooth version of the collision avoidance is prefer-

52 CHAPTER 5. SIMULATIONS

•
• ••

pA,0

pB,0

q1
q2

q3q4

v̂A,0

v̂B,0

û1

û2

û3
û4

(a) Initial poses of the two agents
and respective landmarks sets.
The mission space is unbounded.

−2 0 2 4 6
0

2

4

6

x

y

(b) Trajectories followed by the two agents. The
inner circle has radius Rs, the outer one as radius
Rs +Dw.

Figure 5.7: Optimization of the pose of two cameras (the trade is not considered)
for testing the collision avoidance between agents.

able: in a real situation the velocity cannot change instantaneously, so it is reasonable
to expect that the trajectory followed in the abrupt case would lead to a collision.

Avoidance between agents

Similar conclusions can be drawn in the case presented in Figure 5.7a, where there
are two cameras, called A and B. The difference with the previous simulations is
that we add a fourth landmark that is assigned to B. The initial conditions are
chosen so that agent B will interfere with the movement of agent A. The initial
poses are:

pA,0 =

[
−1
5

]
, v̂A,0 =

[
cos(ψA,0)
sin(ψA,0)

]
, ψA,0 = π/3,

pB,0 =

[
2
1

]
, v̂B,0 =

[
cos(ψB,0)
sin(ψB,0)

]
, ψB,0 = π/2,

and the landmarks sets are:

QA = {(q1, û1) , (q2, û2) , (q3, û3)} ,
QB = {(q4, û4)} ,

5.2. COLLISION AVOIDANCE IN TWO DIMENSIONS 53

where the first three landmarks are the same as in the previous simulations (see
Equation (5.2)), while the fourth is:

(q4, û4) =

([
1.5
4.2

]
,

[
cos(−7π/12)
sin(−7π/12)

])
.

The vision map represented in Figure 5.7b is relative to agent A, and it is the same
as before. Moreover are shown the trajectories followed by the two cameras. Agent
B arrives to its final position in less than five seconds and then it stops. Therefore
A has to change its path and circumnavigate B, but it finally reaches its maximum.
The inner circle represented in figure represents the minimum distance that can be
kept safely between two agents (in this case 1m), the outer circle shows the area
where A needs to worry about the collision (Dw = 0.5m). Notice that A if possible
keeps the minimum distance from B so in the choice of radius Rs we need to keep
a safety margin.

Velocity oscillation due to collision avoidance

The collision avoidance algorithm that we proposed in particular situations can lead
to undesired oscillations in the velocity. Consider for instance the case proposed in
Figure 5.8a: the setup is equivalent to the one described previously in the case of
bounded mission space, but with a different initial position. In this example:

p0 =

[
2.5
5

]
, v̂0 =

[
cos(ψ0)
sin(ψ0)

]
, ψ0 = π/2.

As shown in the Figure 5.8b the trajectory is not smooth but presents oscillations in
the direction parallel to the wall. Figure 5.8c explains the cause of this behaviour:
ṗopt is almost perpendicular to the wall and a slight modification of the position can
make it pass from one side to the other of the direction orthogonal to the wall. But
since we always choose the projection of ṗopt on the closest ray of the angle, this small
change of ṗopt turns into a big change of ṗdir. Moreover the oscillation becomes even
bigger when we approach the wall, because the angle becomes wider. Figure 5.8d
shows ṗ how the velocity changes during the simulation: the y component decreases
during when the distance with the wall becomes smaller, but the x component is
alternatively positive and negative.

Clearly such a behaviour can cause instability in a real system, and in any case
this input cannot be followed by a system with inertia (notice that we are simulating
using a simple integrator, so any velocity can be followed), so we need to solve this
issue. The problem derives from the fact that we decide to choose always the best
direction for the velocity but in this case there is not a big difference between the
two possible choices, because ṗopt is almost vertical. Therefore what we will do is
adding another constraint to the optimization problem of the collision avoidance:

〈ṗdir(t), ṗdir(t− 1)〉 > λdir,

54 CHAPTER 5. SIMULATIONS

−2 0 2 4

2

3

4

5

x

y

(a) Vision map and walls. The camera tra-
jectory shows oscillations.

2 2.2 2.4 2.6 2.8 3
1.8

2

2.2

2.4

2.6

2.8

x

y

(b) Zoom of the trajectory: oscillations in
the direction parallel to the wall.

p(t)

ṗopt

ṗdir

p(t+ 1)

ṗopt

ṗdir

p(t+ 2)

ṗopt

ṗdir

p(t+ 3)

(c) Explanation of the oscillating be-
haviour.

0 2 4

−0.2

0

0.2

t [s]

ṗ
x
,ṗ

y
[m
/s
]

Velocity

ṗx
ṗy

(d) Evolution of the velocity that show that
the oscillation is only relative to the x com-
ponent, i.e. the one parallel to the obstacle.

Figure 5.8: Simulation showing an issue of the collision avoidance method, which
happens when the optimal direction is almost orthogonal to an obstacle.

where λdir ∈ [0, 1] is close to one. The meaning of the constraint is that, in addition
to being a safe velocity, ṗdir(t) must also be close enough to the direction of the
last iteration. The result of adding this constraint is shown in Figure 5.9: there are
lateral movements, but they are wider then before because the camera moves in one
of the two directions until the velocity is put to zero for the magnitude control. We
used λdir = 0.95, which means that the angle between the past and the new direction
must be greater than 20◦, but with any value between 0.3 and 0.99 we obtain the

5.3. MULTIPLE AGENTS IN TWO DIMENSIONS 55

2.2 2.4 2.6 2.8 3 3.2
1.8

2

2.2

2.4

2.6

2.8

x

y

0 2 4 6 8 10

−0.2

0

0.2

t [s]

ṗ
x
,ṗ

y
[m
/s
]

Velocity

ṗx
ṗy

Figure 5.9: Simulation with the limit in the change of direction for preventing oscil-
lations.

same result, because its role is just excluding a direction that is very different from
the past one. However, for obtaining this result we had to set a very small value
for ωmin, otherwise once finished the first sweep (at t ≈ 4 s) the camera would stop
because both the linear and angular velocity would be lower than the minimum
values. Hence, in this case the camera will not stop in the optimal position, but
close to it.

5.3 Multiple agents in two dimensions

We now present a complete simulation of our algorithm. We consider an hexagonal
structure of side L = 0.5m with one landmark at the centre of each edge, as in
Figure 5.10:

Q =

{
(qk, ûk) =

(
L

√
3

2

[
cos(φk)
sin(φk)

]
,

[
cos(φk)
sin(φk)

])
, k = 1, . . . , 6

}
,

φk =
π k

3
− π

6
.

The mission space is [−3, 3]× [−3, 3]. We run the simulation with three agents A,B
and C, initialized with conditions:

pA,0 =
[
−2 2

]>
, ψA,0 = 0, QA,0 = {(qk, ûk), k = 3, 6} ,

pB,0 =
[
−2 0

]>
, ψB,0 = 0, QB,0 = {(qk, ûk), k = 2, 4} ,

pC,0 =
[
0 2

]>
, ψC,0 = −π

2 , QC,0 = {(qk, ûk), k = 1, 5} ,

56 CHAPTER 5. SIMULATIONS

•••
• • •

pA,0

pB,0

pC,0

q1
q2

q3
q4

q5
q6

pA,1

pB,1

pC,1

(a) t ∈ [0, 7.2] s

•••
• • •

pA,1

pB,1 = pB,2

pC,1

q1
q2

q3
q4

q5
q6

pA,2

pC,2

(b) t ∈ [7.2, 10.7] s

•••
• • •

pA,2

pB,2

pC,2 = pC,3

q1
q2

q3
q4

q5
q6

pA,3

pB,3

(c) t ∈ [10.7, 13.7] s

•••
• • •

pA,3 = pA,f

pB,3

pC,3

q1
q2

q3
q4

q5
q6

pB,f

pC,f

(d) t ∈ [13.7, 20.3] s

Figure 5.10: Simulation of monitoring of an hexagonal structure with multiple
agents.

as in Figure 5.10a. This is how the simulation evolves:

1. Figure 5.10a: each agent can see only one of its landmarks so they start op-
timizing the pose to have the best vision of that landmark. At t = 3.7 s A
reaches the optimal pose pA,1 and it stops. It tries to communicate with B and
C for trading the landmarks but they are still busy, so it waits for someone
else to ask him to trade. At t = 7.2 s B finishes the optimization in pB,1, so it
communicates with A and the trade is successful: the landmark 2 can be seen
from A but not from B, so it becomes responsibility of A. In the mean time
C reaches position pC,1 but it is still optimizing the pose.

2. Figure 5.10b: A starts the optimization, while B waits because it is already
at its optimum and the other two agents are busy. At t = 10.7 s C reaches the
maximum, so it can trade with B and the landmark 5 passes from QC to QB.

5.3. MULTIPLE AGENTS IN TWO DIMENSIONS 57

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

t [s]

co
v(

P
(t
),

Q
(t
))

Coverage score

Figure 5.11: Coverage score over time during the multiagent simulation.

3. Figure 5.10c: B starts optimizing, while C waits until A reaches the maximum
at t = 13.7 s. Then A communicates with C and landmark 6 is traded.

4. Figure 5.10d: A waits, while B and C optimize. First B and then also C reach
their maximum but no trade is successful, so the final configuration has been
reached.

During the whole process, the coverage score is always increasing, as can be seen in
Figure 5.11, and there are three jumps corresponding to the three successful trades.

Chapter 6

Experimental results

In this chapter, we present the experimental set-up that we used and the results
that were obtained. The algorithm proposed in chapter 4 was implemented in ROS
(Robot Operative System [29]) environment using the Python language [30], and
then used to command both simulated and real quadcopters (Iris+ of 3D Robotics
[31]).
In Section 6.1 is described the control structure that was used to command the
quadcopters. In Section 6.2 are shown some of the experiments that were performed.
During the chapter we deal with two different coordinate frames (the world frame
and the body frame), and we use the Euler angles for expressing the orientation
of the quadcopter. An introduction to these concepts is given in 2.2. Moreover
we use two alternative ways for expressing the orientation of the camera: one is
through the vector v̂ used till now, and the other one is through two angles in a
latitude-longitude fashion. Further details can be found in 2.3.

6.1 Control set-up in ROS

As was explained in Chapter 4 the algorithm works as a state machine with two
states, that we called pose optimization and trade. While the algorithm is running
every agent switches multiple times between one state and the other, but it is easier
to treat them independently, since the control loop that is needed in the two cases
is different.

Control loop for pose optimization

The control loop can be divided in several simpler blocks, as represented in the
diagram in Figure 6.1. We adopted a modular approach: each block was coded as a
ROS node or a Python function. This means that all the different components are
implemented independently and, in future modifications, can be easily substituted.

The motion planner was already presented in chapter 4 and is used to command

59

60 CHAPTER 6. EXPERIMENTAL RESULTS

the linear and angular velocities that the agent has to follow1. These velocities are
then processed by low level controllers for obtaining the commands that are required
as input by the quadcopter. The speed controller that we used is basically a PID
controller which returns the desired 3d-force F ? = [Fx Fy Fz].

As mentioned, with the real quadcopter we are able to control just one of the
degrees of freedom of the camera orientation. This is why we adopted the latitude-
longitude configuration for the orientation: in this way the longitude coincides with
the yaw of the quadcopter (so it can be physically controlled), while the latitude
would correspond with the tilt movement of a camera attached to the quad. In
the experiments this last degree of freedom is just simulated, meaning that the
latitude value θ is obtained by integration of the latitude rate θ̇. The conversion
from angular velocity in the world frame and latitude and longitude rates is done
with the Equations (2.4), (2.5):

ψ̇ = ω3, θ̇ = sin(ψ)ω1 − cos(ψ)ω2.

Moreover, since one of the inputs of the quadcopter is the yaw rate, which coincides
with the longitude rate (γ̇ = ψ̇), we do not need a yaw rate controller.
Finally F ? and ψ̇ are converted to the final inputs of the quadcopter: the desired
thrust T ?, roll angle α?, pitch angle β? and yaw rate γ̇?. Then there is an on-
board controller which transforms these inputs in the angular velocities of the four
propellers.
In the real system, the feedback is given by a motion capture system (Qualisys [32]):
there is a network of 12 infrared cameras which are able to identify some markers
attached to the quadcopters and provide an estimate of their position, orientation
and velocity.
For returning to the vectorial convention for the orientation, it is sufficient to apply
Equation (2.3):

v̂ =




cos(θ) cos(ψ)
cos(θ) sin(ψ)

sin(θ)


 .

Control loop for trading

In the trading phase the pose of the quadcopter has to remain still. Therefore we use
a position controller (PID) and an angle controller (PI) as in Figure 6.2. The same
configuration is also used for in the initialization phase, for the initial positioning of
the agents.

1In practice the three sub-blocks in which we divided the motion planner (optimal velocity
computation, collision avoidance and magnitude control) were in implemented in three separated
ROS nodes for having a more modular structure.

6.2. EXPERIMENTS 61

Motion
Planner

ṗ?
Velocity
controller

ω? Angular
velocity

converter

F ?

Quad
converterψ̇?

Real system
or simulator

T ?

α?

β?

γ̇?

θ̇?

p

Orientation
converter

γ

θ

v̂

βαṗ

Figure 6.1: Block diagram of the control loop for the pose optimization of one
quadcopter. The scheme is slightly simplified because it does not take into account
the presence of the other agents.

p? Position
controller

F ?

Angle
controller

ψ?

θ?

Quad
converterψ̇?

Real system
or simulator

T ?

α?

β?

γ̇?

θ̇?

θψ

βαp

Figure 6.2: Block diagram of the control loop for the trading phase and the initial
positioning.

6.2 Experiments

For safety reasons and to reduce the risk of damaging the quadcopters and other
equipment, the experiments were made inside an "arena", consisting of a net on
the top and the sides and mattresses on the bottom. Moreover a projector was
used to dynamically display useful data on the floor of the arena. The arena’s

62 CHAPTER 6. EXPERIMENTAL RESULTS

dimensions are approximately 6m×6m×4m, while the quadcopters have a diameter
of approximately 0.8m. In order to avoid collision with the arena, the mission space
Ω was set as a cage of 4m× 4m× 3m, while the safety radius was set to 1.5m and
the worry-distance to 0.5m.

The experiment presented in this section is relative to the inspection of a cube
with edge of length 0.5m using three agents. One of the agent (A, in blue) is a real
quadcopter while the other two (B, in red, and C, in green), are simulated. The
cube is centred in [0, 0, 1]> and has three landmarks on each of the sides and three
on the top face. The initial poses of the agents are:

pA,0 =
[
−1 −1 0.75

]>
, ψA,0 = 0, θA,0 = 0,

pB,0 =
[
−1 1.5 2

]>
, ψB,0 = 0, θB,0 = 0,

pC,0 =
[
1 1.5 0.75

]>
, ψC,0 = pi, θC,0 = 0,

and to each agent was assigned one landmark per face, as in the first screenshot of
Figure 6.3. During the experiments the projector was used to display the partition of
the landmarks in real time, as well as the positions and orientations of the cameras.
The other screenshots in the Figure 6.3 show the evolution of the algorithm over
time. In the final configuration all the landmarks are visible by the responsible
agent: A and C monitor the sides and B the top face (it is positioned above the
cube with the camera facing down).

Finally, Figure 6.4 shows the coverage score over time during the experiment. As
expected the value is monotonically increasing. The drop at t ≈ 25 s is only due to
a bad synchronization between two agents. In particular there is a trade between A
and C, which is disadvantageous for C. After the trade the two agents update their
landmarks set, but in this case C does so one step before A, causing an apparent
decrease of the coverage score.

6.2. EXPERIMENTS 63

Figure 6.3: Screenshots showing the evolution of the algorithm for the coverage of
a cube, in the experiment with one real quad.

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

15

t [s]

co
v(

P
(t
),

Q
(t
))

Coverage score

Figure 6.4: Coverage score over time during the experiment.

Chapter 7

Conclusion

In this thesis, the problem of the automatic deployment of vision-based sensors
for the inspection of 3D objects was addressed. We started by proposing a vision
function based on a discretization of the observed object. This approach is partic-
ularly suitable for applications in which some meaningful points of the object can
be defined, but can also be applied in the general case by performing a complete
discretization of the object’s surface. Starting from this definition, an algorithm for
the coverage optimization was developed. The algorithm is founded on the alterna-
tion of pose optimization of a single agent and trading between pairs of agents. The
main idea that was followed was that the coverage score must always increase dur-
ing the procedure. The implementation follows a modular approach, which allows
to test the single components of the algorithm separately and also to replace them,
if necessary. For the pose optimization, a gradient search method was followed, and
it was integrated with a collision avoidance strategy. For the trading phase, a gossip
protocol was followed, meaning that we only allow binary communications and we
do not make assumptions on reliability or frequency of them. The algorithm was
proved to converge to equilibrium both theoretically and experimentally, using real
quadcopters.

In the following section some possible extensions of this thesis are proposed.

7.1 Future work

A generalization of this work could consider the presence of occlusions. As discussed
in Chapter 3, this could be done simply by changing the definition of visible landmark
adopted. The problem of distinguishing which points can be seen from a camera
is deeply studied in the problems with camera networks (a wide survey can be
found in [28]). However, this change leads to discontinuities in the vision function,
which prevent the use of gradient-based methods. Instead, local evaluation of the
vision could be exploited, but this could significantly increase the computational
complexity of the algorithm.

A second extension could take into account moving landmarks, i.e. dealing with

65

66 CHAPTER 7. CONCLUSION

(q(t), û(t)). In this case the equation of the time derivative of the vision would be:

∂

∂t
vis(p, v̂, q, û) = 〈∇p, ṗ〉+ 〈∇v̂,ωcam〉+ 〈∇q, q̇〉+ 〈∇û,ωlmk〉 ,

where ṗ, ωcam, q̇, ωlmk are respectively the linear and angular velocities of the
camera and the landmark. In this case the conditions for ensuring the increase
of the vision would depend on the movement of the landmark, therefore some a
priori knowledge about the motion of the landmark could be used. A scenario in
which such a problem could arise is the assistance of an agent that has limited
sensing capabilities (due to limits in the payload): another quadcopter equipped
with a camera could follow it and provide useful information about, for instance,
the presence of obstacles.

Appendix A

Useful vector properties

A.1 Gradient of vectorial functions

Given x ∈ Rn and f(·) : Rn → R, we will denote the gradient of f as ∇xf(·) and it
will be a column vector:

∇x (f(·)) =




∂f(·)
∂x1
...

∂f(·)
∂xn


 .

If instead we consider a vectorial function g(·) : Rn → Rm then the gradient will be
a matrix in Rn×m:

∇x (g(·)) =




∂g1(·)
∂x1

. . . ∂gm(·)
∂x1

...
...

∂g1(·)
∂xn

· · · ∂gm(·)
∂xn


 .

For any a ∈ Rn the following properties for the derivation hold:

∇x

(
x>a

)
= ∇x

(
a>x

)
= a, (A.1)

∇x (‖x− a‖) =
x− a

‖x− a‖ , (A.2)

∇x

(
x− a

‖x− a‖

)
=

I

‖x− a‖ −
(x− a)(x− a)>

‖x− a‖3
. (A.3)

These relations were taken from [33].

A.2 Time derivative of a vector in rotating coordinate
frames

Consider a time varying rotation matrix R(t). Its time derivative can be computed
as:

Ṙ(t) = S(ω(t))R(t), (A.4)

67

68 APPENDIX A. USEFUL VECTOR PROPERTIES

where S(ω(t)) is the skew symmetric matrix:

S(ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (A.5)

Now consider a constant vector a? and its rotation a(t) = Ṙ(t)a?. Then:

ȧ(t) = S(ω(t))R(t)a? = ω(t)× a(t). (A.6)

Further details can be found in [27].

Bibliography

[1] P. Pounds, M. Mahony, and P. Corke. Modelling and control of a quad-rotor
robot. Australasian Conference on Robotics and Automation, 2006. 7

[2] S. Gupte, P.I.T. Mohandas, and J.M. Conrad. A survey of quadrotor Unmanned
Aerial Vehicles. Proceedings of IEEE Southeastcon, 2012. 7

[3] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J.K. Hedrick. An overview
of emerging results in cooperative UAV control. IEEE Conference on Decision
and Control (CDC), 2004. 7

[4] H. Voos. Nonlinear Control of a Quadrotor Micro-UAV using Feedback-
Linearization. IEEE International Conference on Mechatronics (ICM), 2009.
8

[5] A. Mokhtari, N. K. M’Sirdi, K. Meghriche, and A. Belaidi. Feedback lineariza-
tion and linear observer for a quadrotor unmanned aerial vehicle. Advanced
Robotics, 20, 2006. 8

[6] C. Eaton, E. Chong, and A. Maciejewski. Multiple-Scenario Unmanned Aerial
System Control: A Systems Engineering Approach and Review of Existing
Control Methods. Aerospace, 3, 2016. 8

[7] D. Campolo, L. Schenato, L. Pi, X. Deng, and E. Guglielmelli. Attitude Estima-
tion of a Biologically Inspired Robotic Housefly via Multimodal Sensor Fusion.
Advanced Robotics, 23, 2009. 8

[8] D. Campolo, G. Barbera, L. Schenato, L. Pi, X. Deng, and E. Guglielmelli.
Attitude Stabilization of a Biologically Inspired Robotic Housefly via Dynamic
Multimodal Attitude Estimation. Advanced Robotics, 23, 2009. 8

[9] M.G. Earl and R. D’Andrea. Real-time attitude estimation techniques applied
to a four rotor helicopter. IEEE Conference on Decision and Control (CDC),
2004. 8

[10] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control
for quadrotors. IEEE International Conference on Robotics and Automation,
2011. 8

69

70 BIBLIOGRAPHY

[11] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control
for precise aggressive maneuvers with quadrotors. The International Journal of
Robotics Research, 31, 2012. 8

[12] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.
The International Journal of Robotics Research, 5, 1986. 8

[13] J. Van den Berg, S.J. Guy, M. Lin, and D. Manocha. Reciprocal n-Body Collision
Avoidance. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 8

[14] M. Turpin, N. Michael, and V. Kumar. Decentralized formation control with
variable shapes for aerial robots. IEEE International Conference on Robotics
and Automation, 2012. 8

[15] N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and transporta-
tion with aerial robots. Autonomous Robots, 30, 2011. 8

[16] M. Saska, V. Vonásek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar.
Swarm distribution and deployment for cooperative surveillance by micro-aerial
vehicles. Journal of Intelligent & Robotic Systems., 2016. 8

[17] A. Gusrialdi, S. Hirche, D. Asikin, T. Hatanaka, and M. Fujita. Voronoi-
based coverage control with anisotropic sensors and experimental case study.
Intelligent Service Robotics, 2, 2009. 8

[18] Y. Kantaros, M. Thanou, and A. Tzes. Visibility-oriented coverage control of
mobile robotic networks on non-convex regions. IEEE International Conference
on Robotics and Automation (ICRA), 2014. 8

[19] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory, 28, 1982. 8

[20] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. IEEE International Conference on Robotics and Automation,
20, 2004. 8

[21] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and J. De Schutter.
Active Sensing for Robotics - A Survey. 5th International Conference On Nu-
merical Methods and Applications, 2002. 8

[22] A. Sangwan and R. P. Singh. Survey on Coverage Problems in Wireless Sensor
Networks. Wireless Personal Communications, 80, 2015. 8

[23] S.J. Nocedal and S. Wright. Numerical Optimization. Springer-Verlag New
York, 1 edition, 1999. 8

[24] J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete Partitioning and
Coverage Control for Gossiping Robots. IEEE Transactions on Robotics, 28,
2012. 8

BIBLIOGRAPHY 71

[25] Aeroworks 2020, European project. http://www.aeroworks2020.eu/. 9

[26] Smart Mobility Lab at KTH. https://www.kth.se/en/ees/forskning/
strategiska-forskningsomraden/intelligenta-transportsystem/
smart-mobility-lab. 9

[27] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Plan-
ning and Control. Springer Publishing Company, Incorporated, 1st edition,
2008. 11, 68

[28] A. Mavrinac and X. Chen. Modeling Coverage in Camera Networks: A Survey.
International Journal of Computer Vision, 101, 2013. 17, 65

[29] ROS: Robot Operative System. http://www.ros.org/. 59

[30] Python. https://www.python.org/. 59

[31] 3D Robotics. https://3dr.com/. 59

[32] Qualisys: Motion Capture System. http://www.qualisys.com/. 60

[33] K.B. Petersen and M.S. Pedersen. The matrix cookbook. Technical University
of Denmark, 2008. 67

http://www.aeroworks2020.eu/
https://www.kth.se/en/ees/forskning/strategiska-forskningsomraden/intelligenta-transportsystem/smart-mobility-lab
https://www.kth.se/en/ees/forskning/strategiska-forskningsomraden/intelligenta-transportsystem/smart-mobility-lab
https://www.kth.se/en/ees/forskning/strategiska-forskningsomraden/intelligenta-transportsystem/smart-mobility-lab
http://www.ros.org/
https://www.python.org/
https://3dr.com/
http://www.qualisys.com/

	Contents
	1 Introduction
	1.1 Literature Review
	1.2 Related works
	1.3 Context
	1.4 Thesis outline

	2 Technical preliminaries
	2.1 Notation
	2.2 Coordinate frames and Euler angles
	2.3 Representation of the orientation

	3 Theoretical setup
	3.1 Measure of the quality of vision
	3.2 Problem statement
	3.3 Gradient computation
	3.4 Optimal orientation

	4 Coverage algorithm
	4.1 Initialization
	4.2 Optimal velocity computation
	4.3 Collision avoidance
	4.4 Magnitude control
	4.5 Trading of landmarks
	4.6 Convergence analysis

	5 Simulations
	5.1 Unconstrained optimization in two dimensions
	5.2 Collision avoidance in two dimensions
	5.3 Multiple agents in two dimensions

	6 Experimental results
	6.1 Control set-up in ROS
	6.2 Experiments

	7 Conclusion
	7.1 Future work

	A Useful vector properties
	A.1 Gradient of vectorial functions
	A.2 Time derivative of a vector in rotating coordinate frames

	Bibliography

