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Chapter 1: INTRODUCTION 

 
 
 

1   Historical Introduction 

 

1.1  Cycling is good 

 

The constant coefficient linear equations are well known in Mathematics; 

their solution, for both the free and the forced responses, is straightforward 

with the help of the Laplace Transform and is at the basis for control theory 

of linear systems.  

However, Laplace-transform methods are not applicable when dealing with 

a nonlinear, time-dependent system. So it is useful to highlight a specific 

class of time-dependent differential equations which have a behaviour 

similar to the linear case and are thus easier to solve: differential equations 

with periodically-varying coefficients. The equations more frequently used 

in applications are of in second order form, as:  

0))(2( =−+ ytqay ψ&&                       (1.1) 

where: 

 

� ψ	(�) = ψ	(� + π	)			is a periodic coefficient, generally of period π; 

� �   is a content coefficient; 

� � is the amplitude of periodic change rate; 

 

Equation (1.1), a fundamental equation in this thesis, is known as Hill’s 

equation. 
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1.2  Historical background  

 

Before describing in mathematical details the periodic differential equations 

and control theory, in this section we give a short historical excursus to 

highlight the steps forward that have been done in this field in the last two 

centuries.  

The first studies about the parametric behaviour of systems were carried out 

by Michael Faraday, in 1831. 

 
 

 
 

                                Fig.1: M. Faraday            Fig.2: G.W. Hill 

 
 

Subsequently, the first detailed theory about time-dependent, periodic 

systems was developed by Emile Mathieu in 1868, particularly devoted to the 

analysis of surface waves in elliptic-shaped lakes. A few years later, in 1883, 

G. Floquet, laid the foundation of his most widely known theory about the 

parametric behavior of space-distributed systems and transmission lines. 

One of the most important contributions was given by George William Hill, 

who, in 1886, published some papers that motivated the rise of the stability 

analysis for parametric systems [for details, see Section 2]. His most 

important work has been the determination of the time-dependent 

gravitational influence of the system sun-moon. 
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Hill’s paper gave the impulse to the rise of Lord Rayleigh’s analysis of second 

order systems (1887). 

 

 
 

Fig.3: Lord Rayleigh 

 
Another important scholar working on time-dependent system was E. 

Meissner: in 1918 he published an important paper about Hill’s equation 

where ψ (t) is a rectangular function, so that (1.1) is solvable exactly as a 

couple of constant-coefficient equations, each of them valid in equally-

spaced alternated timeslots. The application area of these theories is very 

wide: two modern examples are described in the fifth chapter. 

 
 
 

1.3  An every-day application: children swing 

 

The application fields of periodic differential equations are, as we remarked 

above, very different: some practical examples are explained in detail in next 

chapters. Nevertheless, a simple example is noteworthy to be reported: the 

children swing. 
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           Fig.4: A children swing. 

 
 

A child playing with a swing can be represented like a fixed-mass variable-

length pendulum: the variable-length of the thread depends on the legs 

extension and on the relative positioning of the body-seat system. 

 

With the hypothesis of well-known initial conditions for position and 

velocity, the person can increment the amplitude of the oscillation, raising 

and lowering his legs while synchronizing the movement with the swing 

instantaneous frequency. In such a way the length of the chains varies with 

the natural frequency. 

This concept is called system pumping. More specifically, the person may 

oscillate at double frequency respect to natural frequency, lowering his 

gravity center approaching to each end of the swing trajectory and raising it 

after the middle point. 

Alternatively, the body may pulse at the exact system frequency extending or 

shortening the chord length with hands once in a period timespan. 

If the system is pumped with wrong initial phase, the system response will 

evolve correcting it in a sort of closed-loop control to maximize the energy 

transfer from source to system: the system is put in a phase-locking 

condition.  

 
An example of the latter in electronic-control field is the PLL (Phase 

Locked Loop) circuit: a closed-loop system used to synchronize the output 

frequency to the input frequency, allowing for easy FM envelope 

modulation/demodulation, CD speed rotation stabilization at fixed 

throughput, constant frequency motor control and precise CPU clock 

setting. 
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1.4  Example: LC oscillating circuit 

 

 
 

Fig.5: LC oscillating circuit 

 
An LC parallel oscillating circuit is described through a second order 

equation with variable V (voltage); if the capacitance is a time-periodic 

function, the relation is a periodic-coefficients Hill’s equation.  

 

Under the hypothesis that the system is initially energy-charged and the 

capacitance value may change, the energy of the system oscillates between 

electrostatic energy (C) and electromagnetic energy (L) with a fixed 

frequency: 

2

1

0 )(
−

= LCω . 
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Fig.6:  a. Unpumped capacitor voltage 

                                                                          b. Square ware capacitor variation 

                                                                         c. Amplification of the capacitor voltage resulting  

                                                                                   from pumping the capacitor 

 
 

When 	 = 0	all the system energy resides in the inductance; vice versa if     

C = ± max it’s entirely contained in the capacitance. 

Suppose that when C = ± max, there is an external source feeding the system 

(it does not really matter how it is realized), adding work to the total energy 

of the circuit. 

Assuming that the initial energy resided in the capacitance, we can observe 

that there’s an amplification of the capacitor voltage. In this way the 

capacitor voltage describes a new sinusoid with higher amplitude. 

This process can be repeated each time C = ± max, allowing an unbounded 

periodic voltage amplification. If some resistors are put in parallel to L, C (in 

this way we have a more complicated circuit, but with a similar functioning), 

this amplification is resistance-limited. 

This effect is called pumping effect, different from the forcing effect 

characterized by a current input in the system, like a source of current. 

Pumping the system at double frequency of resonance frequency, we can 

measure crescent-amplitude oscillations. 

The latter suffices to lead to instability the passive system described. 
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n
generalin ppumping

0
0

2
   2

ωωωω =⇒=  

 
For increasing values for n, we increase the dumping factor; the parametric 

instability, caused by pumping, is frequently experienced only for n = 1. In 

the presence of resistors, the parametric gain results bigger for the same 

value of n. 

 

In conclusion, a general parametric behaviour results from each storing-

energy component pumped above resonance frequency. 

Specifically, the parametric effects depend on the natural (or static) 

frequency variation via a pumping method. Note that not every energy-

storing component contributes to the natural frequency of the system and 

may not lead to parametric behaviour, even though energy-pumped. 

 
 

 1.5  Analytical explanation: the Hill’s Equation 

 
In this section the periodic-coefficient differential equations will be shortly 

described. They can be revealed in very different scientific fields and they 

take many analytical shapes.  

The most general way to denote a periodic equation is the following:  

 

gv(t) xv + gv-1(t) xv-1  + ........... + go(t)x = f(t), 
 

The latter is called homogeneous if �(�) = 0. Their coefficient may have a 

constant or time-dependent periodic value, where θ is the period: 

gi(t)= gi(t + θ) . 

More specifically, the most widely used periodic equation is a second order 

relation:  

0)()( 01 =++ xtgxtgx &&&  

 
A more classical form of the equation is: 

 
0))(2( =−+ xtqax ψ&&  
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That is called Hill’s Equation where: 

  

� (�) = 	ψ	(� + π	) is a periodic coefficient with period 
; 

� |ψ	(�)|��� 	 = 1;	
� � is a scalar coefficient; 

� � is the amplitude of the periodic envelope; 

 

The most famous representation of the Hill’s Equation, called the Mathieu’s 

Equation, is characterized by the sinusoidal form of ψ(t). 
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Chapter 2: THE FLOQUET THEORY 

 

 

 

2.1 Introduction to the general theory and matrix 

representation 

 
The periodic equation to be considered for our purposes shall be expressed 

in the state-space representation (or matrix representation). This form lends 

itself well to the computation of the solution of a system of differential 

equations. The variables of interest will be arranged in a column vector y(t), 

and their dynamics will be expressed in terms of  a vector of variables x(t) 

which we will call the state vector. The number n of elements composing 

vector x(t) is the system dimension. A state–space model for the system 

dynamics in continuous time is of the form: 

 
x'(t) = A(t)x(t)+B(t)u(t),                                 (2.1) 

y(t) = C(t)x(t)+D(t)u(t),                                (2.2) 

 
where A(·), B(·), C(·), and D(·) are matrices of appropriate dimensions. In 

particular, A(·) specifies the dynamical relation between the state vectors 

and is called dynamic matrix, u(t) is a vector of exogenous variables 

representing the inputs of the system. The two coupled equations above are 

known as state–space models: (2.1) is called state equation, whereas (2.2) is the 

so-called output equation. Notice that the output equation is static, and 

equation (2.1) completely describe the dynamical behaviour. We shall thus 

focus on (2.1). The state variable, in general, may or may not have physical 

meaning. 
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A state-space model is said to be periodic if the real matrices A(·), B(·), C(·), 

and D(·) are periodic, that is there exists T > 0 such that: 

 
 A (t +T ) = A (t), 

 B (t +T ) = B (t),                                         (2.3) 

C (t +T ) =C (t), 

D (t +T ) = D (t). 

 
The smallest T for which these periodicity conditions are met is called the 

system period. Typically, the dimension n is constant, so that the system 

matrices have constant dimension too. 

 
Let us introduce some relevant cases that will be studied in detail later. If we 

call, for convenience, f (t )= B(t) u(t), we can write the state equation as: 

 

                       x'(t) = A(t)x(t) + f(t),                             (2.4) 

 

where f(t) is a vector describing the effect of the effect of the inputs, also 

called the forcing term. A(t) is a matrix of constant or periodically varying 

coefficients. When f(t) = 0 the equation (2.4) becomes the homogeneous set 

of v first order periodic equations: 

 

                             x'(t) = A(t)x(t),                     

 A(t) = A(t + θ).                           (2.5) 

  

Some interesting examples from the classical literature on periodic systems 

have this form. In particular, consider a state vector containing a scalar 

variable x and the ordered set of its first n-1 derivatives:  
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   ,                                    (2.6) 

 
 

 The periodic equations we consider are in the form: 

 

gv(t) xv + gv-1(t) xv-1  + ........... + go(t)x = f(t),             (2.7) 

 
in which the notation xv implies the v-th derivative of x with respect to the 

independent variable t, which is usually time. The function f(t), which 

appears in the equation (2.7), generally associated with a periodic forcing 

function, may also involve periodically varying coefficients.  The coefficients 

gi(t) may be constant or periodically varying with t:  

 

gi(t)= gi(t + θ) .                                              (2.8) 

 
for some period θ. When f(t) is zero the equation (2.7) is said to be 

homogeneous. A specific case of equation (2.7) that is very useful in physics is: 

 

)()(

0))(2(

πψψ
ψ
+=

=−+
tt

ytqay&&
   ,                                    (2.9) 

 
which is known as the Hill equation, and will be further described in the 

following paragraphs. The function ψ(t) has, by convention, a period of T 

and also |ψ(t)max| = 1; a is a constant parameter and 2q is a parameter 

which represents the magnitude of the time variation. 

The most widely known form of the Hill equation is the Mathieu equation in 

which ψ(t) is sinusoidal: 
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0))2cos(2( =−+ ytqay&&  .                      (2.10) 

 

This equation will be described in details in the third chapter of this text. 

In this chapter, instead, we will study properties of system (2.1) and (2.2), 

that follow from its periodicity, and present the fundamental theorem of the 

Floquet theory.  

 

 
2.2 Solutions and state-transition matrix 

 
The results we will present relating to periodic systems deal with periodic 

systems evolving autonomously, namely without any exogenous input. This 

amounts to considering, in the continuous time picture, the homogeneous 

equation: 

x'(t) = A(t)x(t),                                             (2.12) 

                     A(t) = A(t + θ),           with θ > 0. 

 
A(t) is considered of constant dimension n×n. Our aim is to study the 

Floquet theory, which is concerned with the problem of finding a periodic 

state–space change of basis, so that, in the new basis, the state matrix is 

constant. This clearly would simplify many analysis problems for the 

dynamics, and in particular the study of its stability properties. 

  

First, the properties of the so-called fundamental matrix are pointed out.  

 

Theorem 2.1  Consider again the linear periodic continuous system in :     

 x' = A(t) x,                                            (2.13) 

x(t0) = x0, 

 
    where the elements of the n x n matrix A are   

    continuous functions of t over the period [t0; t0 + T ].  
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    x(t) is a solution of the differential equation if and only  

    if it satisfies the integral equation:  

 
(2.14) 

 

 
Proof: In order to prove the above, we shall follow the following strategy: 

we show that the equation (2.14) can be written as the limit of a sequence of 

approximating vector-valued functions that starts from a constant one, 

corresponding to the initial conditions. In order to do this, we introduce the 

sequence, we show that it converges, and lastly that it is exactly the solution 

of system (2.13).  

The successive approximations are defined by: 

 

;)()()(

;)(

0

111101

0

∫+=

=
t

t

dxAxtx

xtx

σσσ  

=+= ∫
t

t

dxAxtx
0

111102 )()()( σσσ  

++= ∫
t

t

dxAx
0

1010 )( σσ  

      ;)()( 12021

0

1

0

σσσσ
σ

ddxAA
t

t t
∫ ∫+                            

             ....)()()(
0

11110 ++= ∫ −

t

t

kk dxAxtx σσσ  

 
The second step consists in checking the convergence, because if it was not 

verified, the solution may not exist. We try to understand if the solution xk 

converges as k increases: 

 

.)]()([

)()(...)()()()(
1

0
10

1010

∑
−

=
+

−

−+=

=−++−+=
k

j
jj

kkk

txtxx

txtxtxtxtxtx

 

.)()()(
0

0 ∫+=
t

t

dxAxtx τττ
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For xf = 0 : 

0101

10101

0

0

)(

)()()(

xTdxA

dxAtxtx

t

t

t

t

ασσ

σσ

≤⋅≤

≤=−

∫

∫
 

 

for all , where . 

For xf = 1 : 

).(

)()()(

)]()()[()()(

00
2

10

110111

11011112

0

0

0

ttxT

dxT

dxxA

dxxAtxtx

t

t

t

t

t

t

−=

=≤

≤−⋅≤

≤−=−

∫

∫

∫

α

σαα

σσσσ

σσσσ

 

 
 For xf = 2 : 

.
!2

)(

)(

)()()(

)]()()[()()(

2
0

2

0

1010
2

111121

11112123

0

0

0

tt
xT

dtxT

dxxA

dxxAtxtx

t

t

t

t

t

t

−=

=−≤

≤−⋅≤

≤−=−

∫

∫

∫

αα

σσαα

σσσσ

σσσσ

 

 
 Similarly, for xf increasing: 

 

,
!!

)(
)()( 0

0
01 j

T
xT

j

tt
xTtxtx

jjjj

jj

αααα ≤−≤−+  

 

],[ 00 Tttt +∈ )(max
00

tATttt +≤≤=α
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and reminding that:  

,)]()([)(
1

0
10 ∑

−

=
+ −+=

k

j
jjk txtxxtx  

 
we can conclude that: 

 

.
!

)()()(

1

0
00

1

0
10

∑

∑
−

=

−

=
+

⋅+≤

≤−+≤

k

j

jj

k

j
jjk

j

T
xTx

txtxxtx

αα
 

 

So, we have proved that the limit for k going to infinity exists and it 

converges. Thus now we ask if actually the series over indicated: 

∫ −+=
t

t

kk dxAxtx
0

11110 )()()( σσσ , 

converges to the solution of the system described in (2.6). In order to do so, 

we proceed with the derivation of each term of the series, taking into 

account the fundamental theorem of calculus: 

∫ +++=
t

t

xdAtAxtAtx
0

......)()()(0)(' 0220 σσ  

      ]......)()[(
0

0220 ∫ ++=
t

t

xdAxtA σσ  = 

                                      )()( txtA= .     q.e.d. 

 
Notice that the solution x(t) can also be expressed as: 

∫ ∫ ∫ +++=
t

t

t

t t

xddAAdAItx
0 0

1

0

0122111 ....])()()([)(
σ

σσσσσσ . 

 
We then ready to introduce one of the fundamental objects of Floquet 

Theory.  
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Define the n x n matrix Φ( t , t0 ) by: 

 

∫ ∫ ∫ +++=Φ
t

t

t

t t

ddAAdAItt
0 0

1

0

....)()()(:),( 1221110

σ

σσσσσσ              (2.15) 

So, 

                     (2.16) 

.                          

 
Φ (t , t0 ) is called the state transition matrix. The solution of the system (2.7) 

is unique, so also Φ( t , t0 ) is unique as well. This follows from Property 3 

that will be proved below. 

 
Alternately, starting from a generic initial condition x(τ) at time τ, the 

solution is obtained as: 

                        (2.17) 

 

where the transition matrix Φ (t,τ) is given by the solution of the differential 

matrix equation: 

Φ'( t , τ ) = A(t) Φ( t , τ ) ,                                           (2.18) 

                                                                Φ( τ , τ ) = I ,   

 
in continuous-time. Hence, for any given τ, the matrix Φ( t , τ ) is then the 

principal fundamental matrix solution of the system,  that is the unique 

solution of the matrix initial value problem: 

      X’ = A(t) X 

X( τ ) = I . 

If it is a solution for a different initial value, then it is simply called a 

fundamental solution.  

 

It is easily seen that the periodicity of the system involves the double 

periodicity of matrix Φ( t , τ ) , i.e.: 

Φ( t + T, τ + T ) = Φ( t , τ ). 

 

00),()( xtttx Φ=

)(),()( ττ xttx Φ=
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Proof: Take the definition of Φ (t,t0) given in (2.15) and insert                       

Φ( t + T, τ +T ) in that equation: 

 

∫ ∫ ∫ +++=Φ
t

t

t

t t

ddAAdAItt
0 0

1

0

....)()()(:),( 1221110

σ

σσσσσσ  

  
but as A(t+T) = A(t), it follows that:  

 

                          Φ( t + T, τ + T ) = Φ( t , τ ) .                                 q.e.d. 

 
The transition matrix over one period is of particular interest, and we will 

indicate it as: 

                           ψ (t) = Φ( t + T, t  )  .                                    (2.20) 

 

 The matrix ψ(t) is known as monodromy matrix at time t. 

 
 

2.3 Properties of ΦΦΦΦ( t, ττττ ) 

 
As we will use the transition matrix for the definition and the proof of the 

fundamental Floquet's theorem, it is proper to list and prove the properties 

of this matrix for a generic τ . 

 

1.  

 
 
 

 
Proof: the transition matrix is defined as: 

Φ(t,τ ) = I + A(σ1)dσ1 + A(σ1) A(σ 2)dσ 2 dσ1

t0

σ1

∫ +...
τ

t

∫
τ

t

∫ . 

 
 

)(),(),( τττ
τ

Att Φ−=Φ
∂
∂
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By noticing that time-derivation of the integral terms yields: 

∂
∂τ

A(σ1)dσ1 = −A(τ )
τ

t

∫ , 

and 

∂
∂τ

A(σ1) A(σ 2)dσ 2

τ

t

∫ dσ1

τ

t

∫ = − A(σ1

τ

t

∫ )dσ1A(τ ) , 

and so on for the other terms of the series, we get: 

 

=+++−=Φ
∂
∂

∫ ∫ ∫ )(]....)()()([),(
0 0

1

0

122111 τσσσσσστ
τ

σ

AddAAdAIt
t

t

t

t t

 

                                   )(),( ττ AtΦ−= . 
           q.e.d. 

 
2.                 

),(),(),( τσστ ΦΦ=Φ tt  στ ,,t∀ . 

 

Proof: Let x(t) be the solution of the state equation x' = A(t) x , so: 

, 

)(),(),()(),()( ττσσσσ xtxttx ΦΦ=Φ= . 

On the other hand  

)(),()( ττ xttx Φ= . 

By the uniqueness of the solution, demonstrated above: 

)(),()(),(),( ττττσσ xtxt Φ=ΦΦ , 

),(),(),( ττσσ tt Φ=ΦΦ⇒ .                              q.e.d. 

 

 

3.  Φ( t, τ ) is non-singular for all t, and: 

Φ−1(t,τ ) = Φ(τ, t) . 
   

 

 

)(),()( ττσσ xx Φ=
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Proof: We know that 

Itttt =Φ=ΦΦ ),(),(),( ττ . 
 

This shows that Φ(t ,τ) is nonsingular and:  

Φ−1(t,τ ) = Φ(τ, t) . 
     q.e.d. 

 

 
2.4  Complete solution  

 
Consider the state equation: 

x'(t) = A(t)x(t)+B(t)u(t), 

 where A(t) and B(t) are continuous functions of t and u(t) is also a 

continuous function of t. The equation has an unique solution, given by: 

∫Φ+Φ=
t

t

duBtxtttx
0

)()(),(),()( 00 ττττ
. 

Proof: We want to verify if: 

∫Φ+Φ=
t

t

duBtxtttx
0

)()(),(),()( 00 ττττ , 

is really a solution for the state equation. Calculating the first derivate of x(t): 

∫Φ+Φ+Φ
∂
∂=

t

t

duBttutBttxtt
t

tx
0

)()(),()()(),(),()(' 00 ττττ , 

 and using the properties described above: 

∫ +Φ+Φ=
t

t

tutBduBtxtttA
0

)()(])()(),(),()[( 00 ττττ  

                     )()()()( tutBtxtA += . 
   q.e.d. 

 
We can consider now some special cases in the computation of the general 

solution is easier. 
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Special case: A is constant 

 

Remember the definition of Φ(t, τ): 

... d d d 

d d  ),(

21

1

123

121

∫∫ ∫

∫∫ ∫

++

+++=Φ

σ

ττ

σ

τ

σ

ττ τ

σσσ

σσστ

AAA

AAdAIt

t

t t

 

 
For the hypothesis of A constant, we can proceed as follows: 

  
 
 
 
 
 
 
 
 
 

Until we arrive at the solution: 

 
 
 
 

Special case: n=1 

 
Starting with: 

 
If we derive: 

 
 

So: 

 
Applying the natural logarithm: 

 
 
 

We arrive at: . 
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Special case: A is diagonal 

  

  If the structure of the matrix A is the following: 

 



















=

)(

)(

)(

)( 2

1

ta

ta

ta

tA

n

O

, 

   

  it's obvious that the Φ(t, t0) has the form: 

 



















=Φ

),(

),(

),(

),(

0

02

01

0

tt

tt

tt

tt

nφ

φ
φ

O
, 

 
           

  and the solution is:  

 . 
 

 
 

2.5 Floquet Theory 

 
One of the long-standing issues in periodic systems is whether it is possible 

to reduce the study of the original periodic system to that of a time-invariant 

one, to simplify all the computations. A first and easy way to transform a 

time variant system in a time invariant one consists in extending the space 

using a fictitious variable as: 

t = xn+1. 
This method however leads some problems in the study of equilibrium 

states, so if we deal with stability of periodic systems, it is more efficient to 

use some other methods. 

 

ττφ d )(

0
0),(   ∫=
t
t a

i ett
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When focusing on the system (2.11), this is the so-called Floquet problem. 

More precisely, it consists in finding a T-periodic invertible state–space 

transformation: 

x1(t) = S(t)x(t), 

such that, in the new coordinates, the system is time-invariant: 

x1(t )' = A1 x1(t), 

where matrix A1, known as Floquet factor is constant. So in this case, A(·) 

would be algebraically equivalent to a constant matrix. 

 
We begin by presenting two elementary propositions, that will be useful for 

the following proofs. 

 
Proposition 2.1  If Q is a n x n matrix with det Q ≠ 0, then there exists a  

  n x n complex matrix such that: 

Q= eA0  .                                   (2.21) 

 
Proposition 2.2 The matrix A0 expressed in the theorem 2.1 is not unique. 

 

Proof:  0000 222 AkiA
n

kiAkiIA eeeIeee ===+ πππ
, 

    for any integer k. 

                 q.e.d. 

 
Now we are ready, after giving all the necessary theorems and definitions, to 

state the principal theorem of this paper. 

 
 

Floquet Theorem             If Φ(t, τ) is a fundamental matrix solution for the  

              periodic system:   

                                 x' (t) = A(t) x(t), 

then so is Φ(t + T, τ).  
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Moreover, if A0 is such that  ψ (τ) = e A0 , there 

exist an invertible matrix P(t) with period T such 

that: 

                              Φ(t,0) = P(t) e A0t   .                   (2.22) 

 

Proof: By the properties we have seen before we have: 

      Φ'( t+T , τ) = A(t+T) Φ( t+T, τ ), 

and, by using the fact that A(t+T)=A(t) for periodic systems, we have that 

Φ(t + T, τ) is a fundamental solution, and is thus invertible. 

 
 

Consider Q(t, τ)= Φ−1(t,τ )Φ( t+T , τ), so that: 

 
Φ( t + T, τ) = Φ( t , τ) Q(t, τ).                      for all t∈ ℜ. 

 

We need to show that Q(t, τ) is in fact independent of t. Let                      

Q = Q(τ, τ) = Φ ( τ+T , τ) = ψ (τ). Clearly both Φ ( t + T, τ) and         

Φ(t , τ)Q  are fundamental solutions of the periodic system, and both 

correspond for t = τ to Q = Φ( τ+T , τ)=ψ (τ), so they must correspond to 

the same unique  principal fundamental solution  for all times.  This means 

that  Φ( t , τ) Q(t, τ) =Φ( t , τ) Q, where both Φ are invertible, and 

hence Q(t, τ)  does not actually depend on t.                              
To conclude, we can observe that, given Proposition 2.1, there exists a 

matrix A0 such that Q= eA0T. For such a matrix B , we take                         

P(t) := Φ( t , τ) e- A0T , that is, Φ( t, τ ) = P(t) eA0T .  

Then:  

P( t + T) = Φ( t + T, τ) e- A0 (T+t) = Φ( t, τ ) C e-A0(t+T) = Φ( t , τ ) e- A0T = P(t) 

Therefore is invertible for all t∈ ℜ and periodic of period T. This concludes 

the proof.  

q.e.d. 
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Some observations: 

 

A. If we know Φ(t ,τ) over the period [t0,t0+T], then we will know Φ(t ,τ) 

for all t ∈ ℜ by Floquet Theorem. This means that Φ(t ,τ) on [t0,t0+T]  

determines Φ(t,τ) for all t∈ ℜ. 

 

Proof:  Suppose Φ(t ,τ) is known over the period [t0,t0+T].  

  Since, for the proposition 2.1  

Φ( t + T , τ) = Φ( t , τ) Q , 

                                    we take  

Q = Φ( t ,τ)-1 Φ( t + T, τ ), 

              

 

            and 

A0 = p-1lnQ, 

P(t) := Φ( t ,τ) e- A0T. 

 

           Since P is periodic for all t∈ ℜ, Φ( t, τ ) is given over  t∈ ℜ by: 

Φ( t, τ ) = P(t) e- A0T  

           So to a Φ( t, τ ) we associate a matrix A0 using the Floquet Theorem. 

q.e.d. 

 
 

B. If Φ(t, τ) determines eA0t and so A0, then any fundamental matrix 

solution ψ(t)  determines a similar matrix  SeA0tS-1 , or equivalently SA0S-1. 

  

Proof:  For any fundamental matrix solution ψ(t) there exists S with               

det S ≠ 0 such that Φ( t , τ) = ψ(t) S. Since  

 
Φ( t + T, τ ) = Φ( t, τ ) eA0t, 
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             we have: 

 
ψ(t + T) S = ψ (t) S eA0t  

⇒    ψ(t + T) = ψ(t) S eA0t  S-1 = ψ(t) eSA
0
S-1T. 

           q.e.d. 

 
C. The solutions of a linear periodic system are not necessarily periodic. 

That is, in general: 

Φ(t + T, τ) ≠ Φ(t, τ). 

 

Proof:  You can check this fact using a counterexample like in [Richards]. 

 
 We now prove an important theorem, which is useful for the whole theory. 

 

 Theorem 2.2 Under the transformation x = P(t)y, which is invertible and   

                   periodic, the periodic system: 

     x'(t) = A(t)x(t), 

 
         is a time invariant system. 

 
Proof: Suppose P(t) and B defined as in the paragraph 2.4 and let x = P(t)y.  

        Then: 

 
 

 
          If we want to get y, by Floquet Theorem we have: 

 

00 )()()()()()()()(' 00 AtPtPtAAetettAtP tAtA −=−Φ+Φ= −− . 
 

                                It follows that: 

yAyAtPtPytPtPtAtPy 00
11 )()()](')()()[(' ==−= −− , 

 
           so the system is time-invariant. 

ytPtPtAtPy

ytPtAytPxtP

ytPtAxtAx

ytPxtPx

)]((')()()[('

)()(')()('

)()()('

')()(''

1 −=⇒

=+⇒

==
+=

−
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Some notes: 

 

a.  x = P(t) y is called Lyapunov transformation with P(t) which plays an 

important role. However, it is difficult in general difficult to find it explicitly 

since the computation depends on a fundamental matrix solution Φ (t,τ). 

 
b.  Since Φ (t + T, τ ) = Φ (t,τ ) eA0t , the eigenvalues ρ of Q, with Q = eA0, 

are called the characteristic multipliers of the periodic linear system. The 

eigenvalues λ of  A0 are called characteristic exponents of the periodic linear 

system  ρ = eλp. 

 
c.  Since A0 is not unique, the characteristic exponents are not uniquely 

defined, but the multipliers ρ are so uniquely defined [Richards]. We always 

choose the exponents λ as the eigenvalues of A0 , where is any matrix such 

that: 

eA0t = Q  . 

 
d.   For the same reasons, A0 is not necessarily real [see the proof at  

Richards, Section 3.2].  

 

 
 
2.6  Multipliers 

 
The eigenvalues of the monodromy matrix, called  characteristic multipliers as 

we have seen in the previous paragraph, do not depend on the particular 

time tag: see the brief proof in [Bittanti-Colaneri].  
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Accordingly, if λ is a characteristic exponent, the associated characteristic 

multiplier ρ  is given by: 

ρ = eλT

 

The first relation is real in continuous time. Since the characteristic 

multipliers depend only on matrix A(·), one can conclude that the same 

holds for the characteristic exponents, which are determined by matrix A(·) 

only. An extended proof is available in [Richards]. 

 
The monodromy matrix ψ(τ) relates the value of the state in free motion at 

a given time-point τ to the value after one period τ + T: 

x (τ+T) = ψ(τ) x(τ) . 

 
Therefore, the sampled state x(k) = x(τ + kT) is governed in the free motion 

by the time-invariant discrete-time equation: 

 

x (k+1) = ψ(τ) k x (k) . 

 
This is why the eigenvalues of ψ(t)  play a major role in the modal analysis 

of periodic systems. The monodromy matrix is the basic tool in the stability 

analysis of periodic systems. Indeed, the free motion goes to zero 

asymptotically if and only if all characteristic multipliers have modulus lower 

than one. Hence, 

 
a periodic system (in continuous) is stable if and only if its characteristic 

multipliers belong to the open unit disk in the complex plane. 

 
Obviously, the previous condition can be stated in terms of characteristic 

exponents. 

In continuous-time a periodic system is stable if and only if the real part of 

all characteristic exponents is negative. 
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Notice that there is no direct relation between the eigenvalues of A(t) and 

the system stability. In particular, it may well happen that all eigenvalues of  

A(t) belong to the stability region and nevertheless the system be unstable. 

This fact will be widely described in Chapter 3. 

 

In section 2.2, the notions of transition matrix over one period have been 

introduced, and their relation is: 

ψ(t) = Φ(t +T, t) . 

As already stated, the eigenvalues of the monodromy matrix at time t are 

named characteristic multipliers at t. 

Summarizing, the transition matrix is used to find the solution for the free 

input periodic system:  

 
x(t)' = A(t)x(t), 

x (t) = ψ(t,τ) x(τ),                                         t > τ 

 
and is biperiodic, i.e.: 

Φ(t + T, τ + T) = Φ( t, τ)   ,                       ∀ t ≥  τ. 

 
The monodromy matrix ψ(t) is periodic: 

ψ(t) = ψ(t +T) , 

and is used in the equation for the discrete case: 

x (T+kt) = ψ(t) k x (t), 

                      t ∈ [0,T −1] and k positive integer . 

 

 
 

2.7  Main properties of monodromy matrix 

 
The characteristic polynomial of ψ (t): 

pc(γ) = det [γ I−ψ(t)], 

is independent of t. 
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Proof: Indeed, consider the monodromy matrices ψ (t) and ψ (τ), with  

τ , t ∈ [0,T −1]. 

Following the definition, these matrices can be written as: 

ψ(τ) = FG , 

ψ(t) = GF , 

with: 





+Φ
Φ

=
),(

),(

tT

t
F

τ
τ

                        
t

t

<
≥

τ
τ

 





Φ
+Φ

=
),(

),(

τ
τ

t

Tt
G                          

t

t

<
≥

τ
τ

 

 
Now, take the singular value decomposition of G, i.e.: 

G =UΣV, 

where 

0]det[

00

0

1

1

≠









=Σ

G

G

 

 

and U, V are suitable orthogonal matrices.  

 

 

It follows that: 

)('

)('

VFUGFUU

VFUVFGV

Σ=
Σ=

. 

 

We can partition the matrix VFU as: 









=

43

21

FF

FF
VFU . 

, 
Denoting by n1 the dimension of the sub-matrix G1 it is easy to show that: 

]det[]'det[]det[

]det[]'det[]det[

11

11

1

1

1

1

FGIGFUUIGFI

GFIVFGVIFGI

n
nn

nn

n
nn

nn

−=−=−

−=−=−
−

−

γγγγ

γγγγ
. 
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Since G1 is invertible, matrices F1G1 and G1F1 are similar, so: 

 
]det[]det[ 1111 11

FGIGFI nn −=− γγ . 
 

Therefore, the characteristic polynomials of ψ (t) and ψ (τ ) coincide. 

          q.e.d.  

An important consequence of the previous observation is that the 

characteristic multipliers at time t, namely as seen before the eigenvalues of 

ψ (t), are in fact independent of t. Notice that not only the eigenvalues are 

constant, but also their multiplicities are time invariant, as it is shown in 

[Richards]. 

This is why one can make reference to such eigenvalues as characteristic 

multipliers without any specification of the time point.  

In conclusion, by denoting by r the number of distinct non-zero eigenvalues 

γi of ψ(t), the characteristic polynomial can be written as: 

 

∏
=

−=
r

i

k
i

h
c

cicp
1

)()( γγγλ , 

 
where γi, hc and kci do not depend on time. The characteristic multipliers are 

the γi and γ = 0 if hc ≠ 0. 

 

So, nm characteristic multipliers of A(·) are time-independent and constitute 

the core spectrum of ψ(·). Among them, there are in general both nonzero 

and zero multipliers. 

Obviously, the multiplicity of a nonzero characteristic multiplier γi in the 

minimal polynomial of ψ(t) does not change with time. Therefore, the 

minimal polynomial can be given the form: 

∏
=

−=
r

i

k
i

th
m

mimtp
1

)( )(),( γγγγ , 

where the multiplicities kmi are constant. 
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So, the characteristic polynomial of the monodromy matrix ψ(t) does not 

depend on t. As for the minimal polynomial, the only possible reason for the 

dependence upon t is limited to the multiplicity hm(t) of the null 

singularities. The multiplicity can change under the constraint: 

 
1)()( ≤− τmm hth        ]1,0[, −∈∀ Tt τ . 

 
When matrix A(t) is nonsingular for each t, all characteristic multipliers are 

all different from zero. In such a case, the system is reversible, in that the 

state x(τ ) can be uniquely recovered from x(t) ,  t  > τ . 

 

 

2.8  An example: The Meissner Equation 

 

Consider the second order equation: 

)()(

0))(2(

πψψ
ψ
+=

=−+
tt

ytqay&&

, 

in which ψ(t) is unit rectangular waveform as you can see in Fig. 2.1.  

 

 
Fig.2.1 

 

It is evident that over one period this equation can be viewed as the pair of 

constant coefficient equations: 

0)2(

0)2(

=++
=−+

yqay

yqay

&&

&&
       

πτ
τ

<≤
<≤

t

t0
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for which solutions are easily determined in terms of trigonometric 

functions. As a result, state transition matrices and exact solutions can be 

found. To simplify notation the equation can be rewritten as: 

02 =+ ycy&& , 
for which linearly independent basis solutions xi(t) are cos(ct) and sin(ct).  
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Chapter 3: THE MATHIEU EQUATION 

 
 
 
 

3.1 Introduction 

 
The most widely known form of the Hill equation is the Mathieu equation, 

in which ψ(t) is sinusoidal: 

0))2cos(2( =−+ ytqay&& .                             (3.1) 

This is the most extensively treated form of Hill equation: in fact, the 

Mathieu equation is a Hill equation with only one harmonic mode. By 

association with Fourier series, it may have been assumed that once 

solutions to the Mathieu equation had been determined, solutions to Hill 

equations would follow. Unfortunately, this is not the case. 

In this chapter we will describe various tools to study the Mathieu equation: 

in particular, it is shown that the usefulness of the exact Mathieu equation 

and its solutions for studying the general Hill equation is limited. On the 

other hand, it is shown that by appropriately modelling the sinusoidal 

coefficient, solutions to similar equations can be found. So, rather than 

looking for approximate solutions to the exact Mathieu equation, exact 

solutions to an approximate Mathieu equation will be pursued. 

 
 
 

      3.2  Physical applications 

 

In mathematics, the Mathieu functions, introduced by Émile Léonard 

Mathieu (1868) in the context of vibrating elliptical drumheads, are  
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special functions that are useful for treating a variety of problems in applied 

mathematics, including: 

� quadrupole mass analyzers and quadrupole ion traps for mass 

spectrometry; 

� wave motion in periodic media, such as ultracold atoms in an optical 

lattice; 

� the phenomenon of parametric resonance in forced oscillators; 

� exact plane wave solutions in general relativity; 

� the Stark effect for a rotating electric dipole; 

� in general, the solution of differential equations that are separable in  

elliptic cylindrical coordinates. 

Some physical applications, like the above and others, will be described in 

details in the fifth chapter. 

 
 
3.3 Periodic Solutions 

 
The simplest and most widespread method to obtaining solutions to the 

Mathieu equation, is the series expansion approach: the starting point is to 

observe that these solutions must reduce to either cos(mt) or sin(mt), m2 = a, 

for q → 0, i.e. the equation and its solutions reduce to those of simple 

harmonic motion. As q is increased from zero, the basic solution must be 

modified to account for the degree of periodic coefficient that has been 

introduced. 

 

3.3.1 Mathieu sine and cosine 

 

For fixed a, q, the Mathieu cosine C( a, q, x ) = 1  is a function of x defined 

as the unique solution of the Mathieu equation which: 
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� takes the value C( a, q, 0 ) = 1,  

� is an even function, hence C’( a, q, 0 ) = 1. 

Similarly, the Mathieu sine S( a, q, x ) = 1 is the unique solution which: 

� takes the value S’( a, q, 0 ) = 1,  

� is an odd function, hence S (a,q,0) = 0.  

These are real-valued functions, which are closely related to the Floquet 

solution: 

)0,,(2

),,(),,(
),,(

qaF

xqaFxqaF
xqaC

−+=  ,                           (3.2) 

 

)0,,('2

),,(),,(
),,(

qaF

xqaFxqaF
xqaS

−−=  .                          (3.3) 

 

The general solution to the Mathieu equation (for fixed a and q) is a linear 

combination of the Mathieu cosine and Mathieu sine functions. 

A remarkable special case is: 

,
)sin(

),0,(  ),cos(),0,(
a

xa
xaSxaxaC ==                (3.4) 

 

i.e. when the corresponding Helmholtz equation [see Appendix A] problem 

has circular symmetry. In general, the Mathieu sine and cosine 

are aperiodic. However, for small values of q, we have approximately: 

,
)sin(

),,(  ),cos(),,(
a

xa
xqaSxaxqaC ≈≈      (3.5) 

Given q, for countable special values of the characteristic values a, the 

Mathieu equation admits solutions which are periodic with period 2π. The 

characteristic values of the Mathieu cosine and sine functions respectively 

are written an(q) and bn(q), where n is a natural number. The periodic special 

cases of the Mathieu cosine and sine functions are often written                 



 

 

Stability of Periodic Systems and Floquet Theory  Panardo Ilaria 

 

 40 

 

 

CE (a, q, x) and SE (a, q, x) respectively, although they are traditionally 

given a different normalization.  

Therefore, for positive q, we have: 

)0,,(

),,(
),),((

qnCE

xqnCE
xqqaC n =  ,                          (3.6) 

)0,,(

),,(
),),((

qnSE

xqnSE
xqqbS n = . 

In the figure below there are the first few periodic Mathieu cosine functions 

for q = 1: 

 
 

 
3.3.2 Even solution for a = 1 and  q = 0 

 
At a = 1 and q = 0, the basis solutions are exactly cos(t) and sin(t). 

Concentrating upon the even solution as a starting point, a general solution, 

for q non zero, can be expressed therefore as: 

 
...)()()cos()( 2

2
1 +++= tCqtqCttx ,                    (3.7)   
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where the functions Ci(t) are to be determined. The first task in the classical 

theory is to determine solutions that are periodic for all q. To maintain 

periodicity as q increases above zero the value of a may need to be  

continuously changed as q changes. To allow for this, a is also expressed as 

an infinite series in q: 

 
...1 2

21 +++= qqa αα                                   (3.8) 
 

The constants αi and the functions Ci (t) can be determined by substituting 

equations (3.7) and (3.8) into equation (3.l), equating coefficients of powers 

of q to zero and by removing non-periodic terms. Doing that, it is found 

that the first periodic solution of the Mathieu equation is: 
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 (3.9) 

 

with a constrained to: 
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The solution described in equation (3.9) is called a Mathieu Function (of the 

first kind) and is denoted ce1(t,q). For a given value of q, the value of a 

generated by equation (3.10), at which the corresponding Mathieu function 

exists, is called a characteristic number. 

 
 
 

3.3.3 Odd solution for a = 1  and  q = 0 

 
The second step is to analyse the odd solution sin t for a = 1 and q = 0; 

another general periodic solution to the Mathieu equation is: 
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provided that: 
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Inspection of equations (3.10) and (3.12) reveals that the solutions given in 

equations (3.9) and (3.11) do not coexist except when q = 0.  

 

 

3.3.4  Mathieu Functions of fractional order, q = 0 

 

If a ≠  m2, m integer, for q = 0, then the solutions obtained for q non zero 

will be of the form: 
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It can be demonstrated that the characteristic number is the same for both 

cev(t, q) and sev(t, q),so that the solutions of both type can coexist, and thus 

form a linearly independent pair. A complete solution therefore is of the 

form: 

(t, q) se(t, q) + Bex(t) = A c vv ,                   (3.14) 

 

with A and B constants which will be determined by initial conditions. 

Generally the functions cev(t, q) and sev(t, q) are non-periodic, although 

bounded. They are therefore the solution types applicable in the stable 

regions of the Mathieu equation stability diagram. 
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3.3.5 Solutions for q ≠≠≠≠ 0 

 

For q ≠ 0, the values of a for which the periodic solutions exist are quite 

different. The second linearly independent solutions for non-zero q are non-

periodic. Indeed it can be demonstrated that periodic solutions of the types 

above exist only on stability boundaries, with the a, q relationships in 

equations (3.10) and (3.12) therefore being polynomial expressions for those 

boundaries. In particular equation (3.10) describes the a1 boundary in the 

Mathieu equation stability diagram, and equation (3.12) describes the b1.  

In an analogous manner to that above, a complete hierarchy of periodic 

solutions of odd and even type, along with their associated characteristic 

numbers, can be established. The first few members in this hierarchy are: 
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There exists a table of pairs of a and q that satisfy the characteristic 

numbers. These can be useful in creating an approximate stability diagram 

for the Mathieu equation. Solutions of the type cem(t,q) and sem(t,q)  are 

referred to as Mathieu functions of order m and, in addition, if m is integral 

as in the above formula, they are called functions of integral order. 

 

Within the limits of numerical accuracy, the procedures of paragraph 3.3.1 

have the appeal that they give exact results, since they do not rely upon 

algebraic approximations to the solutions of the equation. Their negative 

aspects, however, lie with their numerical error, especially when solutions 

near stability boundaries are required.  

Accuracy is governed by the number of iteration points chosen for the 

technique, per period of the periodic coefficient in the Mathieu equation. 

For solutions which are unreservedly stable or unstable, only a low number 

of points, about 10 or 20 per period, is necessary to ensure reliable solutions. 

However, near stability boundaries, upwards of 60 points per period is 

necessary to give a solution accuracy of 0.1 %, after a total time interval 

corresponding to 50 complete periods of the time-varying coefficient. 

Summarizing, whilst numerical methods are convenient tools with which to solve 

the Mathieu equation they have two disadvantages: first, they are unable to give 

quantitative information regarding stability, and secondly they are very time-

consuming in evaluation. 

 

 

3.4  Other forms of Mathieu equation 

 

Closely related to the classical form of Mathieu equation is Mathieu's 

modified differential equation: 

[ ] 0)2cosh(22

2

=−− yuqa
du

yd

                             (3.15) 

which follows on substitution u = ix. 
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The above equation can be obtained from the Helmholtz equation [see the 

appendix A] in two dimensions, by expressing it in elliptical 

coordinates, and then separating the two variables. This is why they are also 

known as angular and radial Mathieu equation, respectively. 

The substitution t = cos(x) or equivalently x→ arccos(x) transforms Mathieu's 

equation to the algebraic (or rational) form: 

 

y
x

aqx

dx

dy

x

x

dx

yd

ytaqa
dt

dy
t

dt

yd
t

2

2

22

2

2
2

2
2

1

)24(

1

0)]2(2[)1(

−
−−+

−
=

=−++−−

 
 

This has two regular singularities at t = ± 1, and one irregular singularity at 

infinity, which implies that, in general (unlike many other special 

functions), the solutions of Mathieu's equation cannot be expressed in terms 

of hypergeometric functions. 

Mathieu's differential equations arise as models in many contexts, including: 

� the stability of railroad rails as trains drive over them 

� seasonally forced population dynamics  

� the four-dimensional wave equation 

� the Floquet theory of the stability of limit cycles. 

Even some of these themes will be treated in the chapter 5, when we will 

described practical applications of theorems we had seen in the previous 

paragraphs. 

 
 

3.5 Floquet solution for the Mathieu Equation 

 

According to Floquet's theorem, also known as Bloch's theorem, for fixed 

values of a and q, Mathieu's equation admits a complex valued solution in 

the following form: 

 

(3.16) 
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),,()exp(),,( xqaPxixqaF µ=  ,                            (3.17) 

 
where µ  is a complex number, the Mathieu exponent, and P is a complex 

valued function which is periodic in x with period . However, P is in 

general not sinusoidal.  

In the example plotted below, a = 1, q = 1/5, µ ≈ 1+0.0995i. 

 
Fig. 3.1: plot in which real part is red, and imaginary part green 

 

 

3.6  Modelling Techniques for Analysis 

 

The techniques that are well-suited for the analysis of the Mathieu 

equation, typically focus the frequency of the sinusoidal coefficient. 

Following these procedures, a suitable combination of steps and ramps is 

sought as a replacement for the sinusoid, and this combination is 

manipulated such that its lower frequency spectrum closely resembles that of 

the sinusoid. Simple Fourier analysis shows that the complex amplitude 

spectrum of a sinusoid is: 
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.1 allfor             0211 ±≠==± i, Ψ/Ψ i                          (3.18) 

 

Consequently, model coefficients should be chosen such that they have a 

spectrum which is, as closely as possible, a single component of amplitude 

1/2 at the frequency of the sinusoid, i.e. at 2 radians per second (or a period 

of π). In addition, of course, the positive aspect of the method rests upon 

being able to solve analytically the resulting substitute equation. Three likely 

models come to mind. First is that in which the sinusoid is replaced by a 

simple square waveform, the second is that in which a trapezoidal waveform  

is employed and the third model is that which utilises a staircase waveform 

[for detailed descriptions of these methods see Richards at Chapter 6]. 

 

 

3.7  Stability Diagrams for the Mathieu Equation 

 

Stability diagrams are plots of a against q, that represent regions of a and q 

for which the solution to a Mathieu equation is stable, as opposed to those 

regions for which the solution is unstable. The regions of stability and 

instability are separated by stability boundaries on which the solution is 

marginally stable.  

If Φ(π,0) is the discrete transition matrix for the Mathieu equation 

computed, in principle, according to the material of chapter 2, then on 

stability boundaries: 

.2 ))0,( ( trace ±=Φ π  
 

The eigenvalues of Φ(π,0) are either both +1 or both -1, and the 

characteristic exponent of the solution of the Mathieu equation is jm, where 

m is an integer. As a result, the fundamental solution to a Mathieu equation 

on stability boundaries is purely periodic. Note also there is a second, 

linearly independent solution that is a t-multiplied version of the first,  

 



 

 

Stability of Periodic Systems and Floquet Theory  Panardo Ilaria 

 

 48 

 
 
owing to the degenerate eigenvalues [see the proof in Richards 4.5.7]. In 

Sect. 3.3 it has been shown that purely periodic solutions occur for values of 

a and q related by equations such as equations (3.10) and (3.12): in other 

words, for the equation's characteristic numbers. There are two sequences of 

characteristic numbers: 

 

� the first set, designated a0, a1 a2 ..., corresponds to even, periodic     

solutions of the equation; 

� the second set, called b1 , b2 , b3 , ... corresponds to odd, periodic 

solutions.  

 

The first few are given in the paragraph 3.3.5. Following the previous 

reasoning, to produce a stability diagram it is necessary only to identify the a 

and q functional forms of the characteristic numbers, in the region of (a, q) 

space of interest, and then plot them. Since regions of instability are known 

to come from points on the a axis that are squares of integers [see Richards 

6.4], it is easy to label the regions between the stability boundaries. The 

characteristic numbers have been computed for the standard Mathieu 

equation without a first derivative (loss) term, and [McLachlan's Appendix 

II] tabulates from a0 to a5 and from b1 to b6 . From these values, the stability 

diagram shown in Fig. 3.2 has been constructed. 
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Fig. 3.2: Stability diagram for the Mathieu 

equation. Blank regions correspond to stable 

solutions and shaded regions to unstable solutions. 

 
 

Determination of the sets of characteristic numbers for the Mathieu 

equation and plotting them is the classical means by which the stability 

diagram has been determined.  

 

An alternative, and perhaps more convenient method, is to resort to a 

different modelling technique. The techniques developed in the past are 

based upon modelling or replacing a particular intractable Hill equation by a  

counterpart which exhibits very similar solutions and stability properties, 

and yet which can be handled exactly mathematically. 

These modelling procedures are developed by demonstrating, first, that the 

behaviour of a Hill equation, especially for the ranges of its coefficients 

encountered in most practical situations, is determined principally by the 

lower order harmonics in its periodic coefficients, while higher harmonics 

having a progressively decreasing influence as they become of higher order. 

Secondly, the approach leans on being able to identify classes of periodic 

coefficient, in which harmonic content can be quickly adjusted, and for 

which the corresponding Hill equation is solvable. [For details of this topic 

see the chapter 5 of Richards].  
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For this reason, the sinusoid in the Mathieu equation is replaced by a 

sufficiently accurate similar model that leads to an analytically tractable 

equation. The Meissner equation of paragraph 2.8 is an example of this way 

to solve the problem. A diagram for the substitute equation is then 

generated by computing and testing any of the characteristic exponents, the 

eigenvalues of the discrete transition matrix or simply the trace of the 

discrete transition matrix. An approximate stability diagram for the Mathieu 

equation, produced by this method, is shown in the picture below. 

 

 
Fig. 3.3: Approximated stability diagram for 

the Mathieu equation. The real diagram has 

the boundaries shown in broken lines. 

 

This is, in fact, the diagram for a Hill equation with a simple trapezoidal 

waveform coefficient, such where n is the period of the waveform. The 

frequency spectrum of the trapezoid looks closely like the sinusoid's one, 

consisting of one fundamental, no harmonics that are multiples of two or 

three, and very small and diminishing fifth, seventh and so on growing 

higher harmonics. The figure shows clearly that the simulated diagram is 

very accurate, generally near an axis and certainly for a ≤ q/2. A more 

accurate simulated diagram is possible if the amplitude of the trapezoid is  
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adjusted to 0.949703, to make its fundamental magnitude 0.5, thereby 

better matching the spectrum of the sinusoid in the Mathieu equation. 
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Chapter 4: STABILIZATION AND CONTROL OF 

PERIODIC SYSTEMS 

 

 

4.1 Periodic Control of  Time-invariant Systems 

 

A control problem can be formulated according to different objectives and 

design criteria. The early developments of periodic control were focused on 

the problem of driving a periodic system in order to improve the 

performances of an industrial plant (periodic optimization). Nowadays, the 

term periodic control has taken a wider sense, and includes the design of 

control systems where the controller and the plant are described by periodic 

models. 

In this first section we will describe the main results on periodic control of 

time-invariant systems, while periodic control of periodic systems will be the 

subject of the reminder of the Chapter. We start by recalling the key 

problem of output stabilization via periodic control by using various 

techniques, including the  sampled and hold method. This technique has the 

advantage of reducing the problem to an equivalent one in the time-

invariant environment. However, it has the effect of disturbances in the 

inter-sample periods.  

Then, in the first part of the chapter, we will consider the problem of 

stabilization, i.e. the possibility of ensuring stability with a periodic control 

law. After that, we pass to time invariant representation of periodic systems, 

and their properties. The second part of the chapter is dedicated first to 
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optimization, following some different techniques, and after to the control 

of these systems. 

 

 

4.1.1 Preliminaries: Output Stabilization of Linear Time-invariant Systems 

 

The application of periodic controllers to time-invariant processes has been 

treated extensively in literature. The aim is to solve problems otherwise 

unsolvable with time-invariant controllers, or to improve the achievable 

control performances. 

A typical method makes reference to the classical output stabilization 

problem of finding an algebraic feedback control law, based on the 

measurements of the output signal in order to stabilize the control system. If 

the system is of the form: 

 d/dt	�(�) 	= 	��(�) + ��(�),               (4.1) 

                                                              �(�) 	= 		�(�) 

with the control law: 

 			�(�) 	= 	��(�),           (4.2) 

the problem is to find a matrix F (if any) such that the closed-loop system: 

 �(�) 	= 	 (�	 + 	��	)	�(�)          (4.3) 

is stable. Although a number of necessary and sufficient conditions 

concerning the existence of a stabilizing matrix � have been provided in the 

literature, it is not easy to find a reliable algorithm for its determination. 

Obviously, stabilization is a preliminary step for the control target. A further 

step leads to the regulation problem, in which the designer has to create a 

controller to reduce the error, due to exogenous disturbances, with respect to 

a reference signals. When the exosystem (the model generating the 

disturbances and/or the reference signals) is periodic, it is suitable to design 

a periodic controller, even if the process under control is time-invariant. 
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4.1.2 A Note on Periodic Systems in Frequency Domain 

 

The frequency domain representation is a fundamental tool in the analysis 

and control of time-invariant linear systems. It is related to the property 

that, for input-output stable systems, sinusoidal inputs result (at least 

asymptotically) into sinusoidal outputs at the same frequency and different 

amplitude and phase. 

 

A similar tool can be worked out for periodic systems, by making reference 

to their response to the exponentially modulated periodic (EMP) signals. In 

fact, given any complex number s, a complex signal �(�), � ∈ ℜ, is said to 

be EMP of period T and modulation s, if: 

 �(�) = ∑ ���� !�	"	ℤ ,  (4.4) $� = $ + %&Ω. 
 

The quantity )	/2
 is called period of the EMP signal. The class of EMP 

signals is a generalization of the class of T-periodic signals: in fact, an EMP 

signal with $	 = 	0 is just an ordinary time-periodic signal. 

Note that, as a time-invariant system subject to a (complex) exponential 

input admits an exponential regime, a periodic system of period T: 

 �(�) 	= 	�(�)�(�) + �(�)�(�) �(�) 	= 		(�)�(�) + ,(�)�(�) 	
subject to an EMP input of the same period, admits an EMP asymptotic 

regime. While the method is potentially interesting, we shall focus on state-

space methods, which allow for better computer implementation and are 

natural in treating optimal control problem. 
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4.2 Time-invariant Representations 

 

Periodicity is often the result of appropriate operations over time-invariant 

systems. Here, we deal with the problem of transforming the periodic system 

into a time-invariant one. In such a way, one can use the results already 

available in the literature regarding time-invariant system. 

 

 

4.2.1 Generalized Sample and Hold for feedback control 

 

Periodic sampled control offers a practical alternative for the problem of 

finding an appropriate matrix �(⋅). Indeed, consider the time-varying 

control law based on the sampled measurements of �(·): 
 �(�) 	= 	�(�)	�(&.)	,					� ∈ [&., &. + .). 
 

The modulating function �(·) and the sampling period T have to be 

selected  in order to stabilize the closed-loop system, now governed by the 

equation: �(&.	 + .) 	= 	�0	�(&.) , 
where: 

�0 = 1�23 + 4 �2(35�)�	�($)		6$37 8. 
 

The fundamental point is the selection of matrix �(·) for a given period T. 

A first method is to consider an �(·) given by the following expression: 

 

�(�) = �9�2:(35!) ;< �2(35�)�	�9�2:(=>?)6$3
7 @5A B 
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with matrix B still to be specified. Note that the formula above is valid if the 

matrix inversion can be performed (in the reachability condition). In this 

way, the closed-loop matrix �C  takes the form: �0 =	�23 + B	. 

Where C is the matrix of the system (4.1) and Z can be selected so as to 

stabilize AC, or equivalently the pair (eAT, C) is detectable. 

 

Some practical application of this generalized sample and hold method above 

described in the problem of stabilization are: 

� the problem of simultaneous stabilization of a finite number of plants; 

� fixed poles removal in decentralized control;  

� the issue of pole and/or zero-assignment;  

� adaptive control;  

� model matching.  

 

When using generalized sample-data control, however, the inter-sample 

behaviour can present some critical aspects. Indeed, the action of the 

generalized sample and hold function is a sort of amplitude modulation which, 

in the frequency domain, may lead to additional high-frequency 

components centred on multiples of the sampling frequency. Consequently, 

there are high-frequency components both in the output and control signals. 

To solve this issue, a possibility is to monitor at each time instant the output 

signal and to adopt the feedback control strategy: 

 �(�) = 	�(�)	�(�) 
 

with a periodic gain �(�), in place of the sampled strategy before seen. This 

leads to the issue of memoryless output-feedback control of time-invariant 

systems. The periodic matrix F is chosen as to stabilize the previous system. 
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4.2.2 Sample and Hold  

 

The simplest way to achieve stationarity is to resort to a sample and hold 

procedure, similar to the previous method described above, but more general 

and with a wider field of applications. Indeed, with reference to a 

continuous or a discrete-time periodic system, suppose that the input is kept 

constant over a period, starting from an initial time point τ, i.e., 
 �(�) 	= 		�(&),				� ∈ [&. + D, &. + . + D). 

 

In this way, the evolution of the system state sampled at D + &., i.e.,             �E(&) = �(&. + D), is governed by a time-invariant equation in discrete-

time. Precisely, 

�E(& + 1) = Φ2(. + D, D)�E(&) + Γ(D)	�H(&), 
Γ(D) = 4 Φ2(. + D, $)�($)6$3IEE . 

 

4.2.3 Lifting 

 
The idea underlying the lifting technique is very simple. To be precise, 

given an analog signal J(·), the corresponding lifted signal is obtained by 

splitting the time axis into intervals of length T, and defining the segments J�, k integer, as follows: J� = 	�(�), � ∈ [&., &. + .]. 
In this way, the lifted signal vk is defined in discrete-time. This procedure 

can be applied to the input �(·) and output �(·) of a continuous-time T-

periodic system, thus giving the discrete-time signals �� and ��, 

respectively. The dynamic system relating �� to ��  is called the lifted system. 

It’s useful to transform the continuous-time system into a discrete one, and 

so control the system exploiting the techniques describe in the above 

paragraphs. 
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4.3 Periodic Optimization 

 

In continuous-time, the basic periodic optimization problem can be stated as 

follows. Consider the system: 

�(�) = �(�(�), �(�)) 
�(�) = ℎ(�(�)) 

subject to the periodicity constraint 

�(.) = �(0) , 

The performance index to be maximized is assumed to be in the form: 

M(�(⋅), .) = A
3 4 OP�(�), �(�)Q 6�3

7 . 

We will assume that the function ℎ(·) is differentiable and functions     

� (·,·) and O(·,·) are twice differentiable. If we want only to work in steady-

state conditions, then we have an algebraic optimization problem, and it can 

be solved with mathematical programming techniques. More in detail, 

consider the problem in steady-state, that is when all variables are constant: 

(�) = � , �(�) = �, �(�) = ℎ(�) = �.  Then the periodicity constraint  

�(.) = �(0) is simply satisfied and the performance index becomes: 

M = O(ℎ(�, �)) , 

to be maximized with the constraint : 

� (�, �) = 0. 

We will denote by �7 and �7  the values of � and � solving such a problem. 

Hence (�7, �7) is the optimal steady-state condition and �7 = ℎ(�7) is the 

corresponding optimal output. The associate performance index is                

M7 = O(ℎ(�7, �7)).  

 

When passing from steady-state to periodic operations, an important 

preliminary question is whether the optimal steady-state regime can be  
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improved by cycling or not. A problem for which there exists a periodic 

operation with a better performance is said to be proper. To be precise, the 

optimization problem is proper if there exists a period T ’ and a control 

signal �’(·), such that the periodic solution of period Tˆ of the state 

equation, denoted by �’(·), is such that: M	(�’(·), .’) > M7 . 

The issue of proper periodicity can be tackled by calculus of variation 

method as follows: consider the perturbed signal, �(�) = �7 + T�(�) ,  
where the periodic variation T�(�) is expressed through its Fourier expansion: 

 T�(�) = ∑ U��V�W!,X	�Y5X 		Ω = 2
/..	
 

Define then the Hamiltonian function 

 ZP�(�), �(�), [(�)Q = O((ℎ(�(�), �(�)) + [(�)’	�(�(�), �(�)), 	
where [(�) is a n-dimensional vector. At steady-state, the non-linear 

programming problem of maximizing M with constraint �(�, �) = 0 can be 

solved as the problem of solving a set of algebraic equations constituted by    �(�, �) = 0 and 

 Z\(�, �, [) = 0	, (4.5) Z](�, �, [) = 0,  

 

for some λ . These are the well-known Lagrange conditions of optimality. In 

fact, at the steady-state the Hamiltonian function is the Lagrange function 

and the elements of λ are the Lagrange multipliers. The whole system           �(�, �) = 0 and (4.5) is a set of 2n+m equations in 2n+m unknowns. A 

solution is easily obtained with the classical method of substitution. 
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Once a solution �7, �7, [7		of this system is obtained, we can compute: � = �\(�7, �7),  � =	�](�7, �7),	^ = 	Z\\(�7, �7, [7),  _ = Z\](�7, �7, [7),  ` = Z]](�7, �7, [7). 
 

 

4.4  Periodic Control of Periodic Systems 

 

A typical way to control a plant described by a linear periodic model is to 

impose: �(�) = a(�)�(�) + b(�)J(�) , 
 

where a(·) is a periodic feedback gain, i.e. a(� + .) = a(�), for each t, `(·) is a periodic feedforward gain, `(� + .) = `(�), for each t, and J(�) is 
a new exogenous signal. The associated closed-loop system is then 

 �(�) = P�(�) + �(�)a(�)Q�(�) + �(�)b(�)J(�) . 
 

In particular, the closed-loop dynamic matrix is the periodic matrix �(�) + �(�)a(�). The main problems considered in the literature are 

described in the following paragraphs. 

 

 

4.4.1 Stabilization via State-feedback 

 

As a paradigm problem in control, the stabilization issue is to understand if 

the closed-loop system is stable: any a(·) that is T-periodic and fulfills such 

a requirement is called stabilizing gain. In other words, a gain a(·) is said to  
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be stabilizing when the characteristic multipliers of this matrix lie in the 

open unit disk of the complex plane.  

 

A first basic question is to find the class of all stabilizing gains a(·). A 

general parameterization of all periodic stabilizing gains can be worked out 

by means of a suitable matrix inequality. To be more precise, by making 

reference to continuous-time systems, the Lyapunov inequality condition 

enables to conclude the following proposition: 

 

Proposition 1: the closed-loop system associated with a periodic gain a(·) is stable if and only if there exists a positive definite periodic matrix ^(·) satisfying ∀� the inequality: 

 ^(� + 1) > P�(�) + �(�)a(�)Q ⋅ ^(�) ⋅ (�(�) + �(�)a(�))’. (4.y) 

 

Then, it is possible to show that a periodic gain is stabilizing if and only if it 

can be written in the form: a(�) = d(�)’	^(�)5A , 

 

where d(·) and ^(·) are periodic matrices (of dimensions m×n and n×n, 

respectively) solving the matrix inequality: 

 ^(� + 1) > 	�(�)^(�)�(�)’ + �(�)d(�)’�(�)’ + �(�)d(�)�(�)’ + �(�)d(�)’^(�)5A	d(�)	�(�)’. 
 

 

Properties: In fact, on the basis of the periodic Lyapunov inequality, it is 

easy to show that, if there exists a pair of matrices d(·) and ^(·) such 

that, for all t : 

 

1. d(� + .) +d(�); 
2. ^(� + .) = ^(�); 
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3. (�) > 0 ; 

4. d(·) and ^(·) satisfy the matrix inequality above described; 

 

Consequences: We note first that a(�) = d(�)’^(�)5A is a stabilizing gain. 

Conversely, if a(·) is a T-periodic stabilizing gain, then the periodic 

Lyapunov Lemma guarantees that there exists a periodic and positive 

definite ^(·) satisfying (4.y). Then, letting d(�) = a(�)^(�) it is 

obvious that the gain a(�) takes the factorized form a(�) =d(�)’	^(�)5A. In conclusion, the class of stabilizing gains is generated by 

all periodic pairs d(·) and ^(·), with ^(�) > 0, ∀�, satisfying the 

inequality above. 

 

 

4.4.2 Pole Assignment for Control by state feedback 

 

The basic idea of pole assignment problem by state-feedback is to make the 

system algebraically equivalent to a time-invariant one, by using a first 

periodic state-feedback (invariantization), and then to resort to the pole 

assignment theory for time-invariant systems, in order to locate the 

characteristic multipliers. Thus, the control scheme includes two feedback 

loops, the inner for invariantization, and the outer for pole placement. 

 

Finding a periodic feedback gain that allows for positioning the closed-loop 

characteristic multipliers in given locations in the complex plane, is one of 

the typical problems studied in linear system theory. We will explore two 

ways to do that: the first one refers to the possibility of shaping a new 

dynamics by means of a sample and hold strategy, as seen in a previous 

section, of the type: 

 

 �(�) = a(�)�(e. + D), � ∈ [e. + D, e. + D + . − 1] ,     (4.6) 
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where the gain a(�) is a T-periodic function to be suitably designed and τ is 

a fixed tag in time. The advantage of this approach is that the pole 

assignment algorithm developed for time-invariant systems can be 

eventually applied to the periodic case too, using the techniques described 

above, that are easily solvable.  

 

However, in this sampled feedback strategy, the input signal is updated only 

at the beginning of each period, so that the system is operated in open loop 

in the interperiod instants. This may be a serious issue as important 

information may be lost due to sparse sampling. In particular, in the 

interperiod instants, the performance may deteriorate due to the long action 

of a noise. To prevent this problem, continuous monitoring of the state can  

be appropriate. This leads to the alternative feedback control law: �(�) = a(�)�(�) , 
where a(·) is a T-periodic gain matrix. This control strategy will be referred 

to as instantaneous feedback.  

 

 

4.4.3 Reachability 

 

For time-invariant systems, it is known that reachability is necessary and 

sufficient for arbitrary pole assignability. Starting from this observation, 

consider the system with feedback (4.6).  

Then it is apparent that: 

 

�(e. + D + .) = gψ2(D) + h Φ2(D + ., %)�(% − 1)aCEI3
VYEIA (% − 1)i �(e. + D) 

 

Hence, the monodromy matrix at τ of the closed-loop system is: 
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 ψ2(j D) = kψ2(D) + ∑ Φ2(D + ., %)�(% − 1)alEI3VYEIA (% − 1)m = �E + nEao, 

where �E and nE are the lifted matrices, and : 

 ao = [	al (D)			al(D + 1)		…		al (D + . − 1)	]′. 
 

Therefore, if the pair (�E, nE) is reachable (i.e., the periodic system reachable 

at time τ), it is possible to select a so as to impose the specified set of 

eigenvalues of r2(D). 
 

 

4.4.4 Pole Assignment via Instantaneous Feedback 

 

Consider now the memoryless feedback law �(�) = a(�)�(�)  applied to 

the system. The associated closed-loop dynamic matrix is: 

 �A(�) = �(�) + �(�)a(�). 
 

The question is whether it is possible to find, for each set Λ of n complex 

numbers (in conjugate pairs), a periodic gain a(·) in such a way that �A(·) 
has all its characteristic multipliers coincident with the elements of s. A first 

idea is to try to find a memoryless feedback law from the sampled feedback 

law �(�) = a(�)	�(t. + D)	 in such a way that the characteristic multipliers 

of �A(·) coincide with the eigenvalues of r2(D).  
The simplest way to do this is to impose the coincidence of the two state 

evolutions associated with both control actions. To be precise, this consists 

into equating the two expressions of �(t. + D + &), starting from & = 1  

and prosecuting up to & = . − 1.  
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It is easy to conclude that, if: 

 a0(D) = a(D), 
a0(D + 1) = a(D + 1)(�(D) + �(D)a(D)), 

a0(D + 2) = a(D + 2)P�(D + 1) + �(D + 1)a(D + 1)QP�(D) + �(D)a(D)Q, 

… 
 

then the two state evolutions coincide. Notice that this set of equations can 

be given in the easy form: 

 

a0(D + t) = a(D + u)v2(D + t, D),       t =  0,1,· · · , . − 1.             
 

Although this pole assignment procedure by instantaneous feedback law is 

simple, there is no guarantee that the invertibility condition on �A(·) is 

satisfied for a certain a0(·). An interesting question is then whether, among 

all possible a0(·) which assign the prescribed characteristic multipliers, there 

is one for which the invertibility condition is met. However, finding an 

algorithm of wide applicability is still an open question. 

 

From the decomposition into reachable/unreachable parts, it clearly appears 

that the characteristic multipliers of the unreachable part �wA(·) cannot be 

moved by any periodic feedback gain a(·). Hence the problem has to be 

faced by focusing on the reachable pair (�w(·), �w(·)) only, and applying the 

method developed above. 

 

 

4.4.5 Other design methods: LQ Optimal Control 

 

The classical finite horizon optimal control problem is that of minimizing the 

quadratic performance index over the time interval (�, �x): 

MP�, �x,�!Q = �P�xQ9_!x�P�xQ + < Py(D)9y(D)Q6D
!x

!
 



 

 

Stability of Periodic Systems and Floquet Theory  Panardo Ilaria 

 

 67 

 

 

where �! is the system initial state at time t, _!z 	≥ 	0 is the matrix 

weighting the final state �(�x)	[for details see Bittanti 1.8.2]. A first task of 

the  controller is then to determine the actual value of the state �(�) from 

the past observation of �(·) and �(·) up to time t. This leads to the problem 

of finding an estimate �|(�) of �(�) as the output of a linear system (filter) 

with as input the available measurements. The design of such a filter can be 

carried out in a lot of different ways, one of them is the Kalman filter. The 

implementation requires the solution of a matrix Riccati equation with 

periodic coefficients. Once �|(�) is available, the control action is typically 

obtained as: �(D) = 	a}~!(D)	�|(D). 
 

as shown in the figure below: 

 

 
Fig. 4.x: An optimal controller structure 

 

 using the solution of a Kalman Filter and the Riccati Equation. The 

fundamental fact is that the control is periodic, due to the structure of the 

system. 
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4.4.6 Other design methods: H∞ Periodic Control 

 

In the classical linear quadratic periodic control problem introduced above, 

the objective was the minimization of a mean-square performance criterion. 

An alternative measure of performance, which takes into account the 

requirement of robustness of the closed-loop system, is the Z∞ criterion. To 

describe such method, the system dynamic equation is conveniently 

modified by introducing a disturbance �(·), with unspecified characteristics, 

as follows: �(�) = �(�)�(�) + ��(�)�(�) + �(�)�(�). 
 

Moreover, for an initial time point, denoted again by t for simplicity, let the 

initial state �(�) be zero, i.e., �(�) = 0. The focus is to achieve a satisfactory 

bound for the ratio between the energy of the performance variable y(·) and 

the energy of the disturbance �(·). So, a way is to consider the following 

differential game cost index: 

MXP�, �xQ = �P�xQ9 !̂x�P�xQ + < Py(D)9y(D) − ���(D)9�(D)Q6D!x
!  

where _!z ≥ 0. Moreover, � is a positive scalar. In optimal control, the 

design corresponds to a minimization problem. In the Z∞ control, the 

objective is make MXP�, �xQ < 0 for all possible disturbances �(·). It 

corresponds to attenuating the effect of disturbance	�(·) on the 

performance evaluation variable y(·). In this regard, parameter � plays a 

major role in order to achieve a trade-off between the two energies. 

Actually, the disturbance �(·) is unspecified, so that the real problem is to 

ensure M∞(�, �x) < 0 in the worst case, i.e. for the disturbance maximizing 

the cost. This is a typical situation encountered in differential game theory, 

where two players have conflicting objectives, leading to the so-called min-

max techniques. See a detailed explanation in the next chapter. 
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4.5 Exact Model Matching 

 

The problem of model matching consists in finding a compensator for a 

given system, so as to obtain an overall dynamics as close as possible to an 

assigned input–output map. So, we restrict attention to the exact model 

matching for periodic systems via state feedback controllers. To be precise, 

given a periodic input–output map b: �(� + 1) = �(�)�(�) + �(�)�(�), �(�) = 	(�)�(�) + ,(�)�(�) , 
          we try to find a state-feedback controller : �(�) = a(�)�(�) + n(�)J(�) , 

with a(�) and n(�) T-periodic design matrices, in such a way that the 

closed-loop input–output map coincides with the assigned one. A special 

case arises when the assigned map is actually time-invariant, so that the 

controller task is to make invariant the input–output closed-loop behaviour. 

To simplify the solution of the main problem, we make the assumption that n(�) is square and non-singular for each t. Nowadays there are many studies 

related to this argument, that will develop in the future: these is only a brief 

overview which could change with the next discoveries. 

 

At last, the overall scheme is depicted in the following figure. 

 

 
Fig. 4.1: Exact model matching scheme 
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Chapter 5: APPLICATIONS 

 
 

5.1 Quadrupole ion trap 

 
A quadrupole ion storage trap (QUISTOR) exists in both linear and 3D  

varieties, and refers to an ion trap that uses constant DC and radio 

frequency (RF) oscillating AC electric fields to trap ions. It is commonly 

used as a component of mass spectrometers. The invention of the 3D 

quadrupole ion trap itself is attributed to Wolfgang Paul, who shared 

the Nobel Prize in Physics in 1989 for this work. 

 

The 3D trap generally consists of two hyperbolic metal electrodes and a 

hyperbolic ring electrode, halfway between the other two electrodes. 

The ions are trapped in the space between these three electrodes by AC 

(oscillating) and DC (static) electric fields. The AC radio frequency voltage 

oscillates between the two hyperbolic metal end cap electrodes, if ion 

excitation is desired; the driving AC voltage is applied to the ring electrode. 

The ions are first pulled up and down axially while being pushed in radially. 

The ions are then pulled out radially and pushed in axially (from the top and 

bottom).  

The quadrupole ion trap has two configurations: the three-dimensional 

form described above and the linear form made of 4 parallel electrodes. A 

simplified rectilinear configuration has also been used. The advantage of the 

linear design is in its simplicity, but this leaves a particular constraint on its  
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modeling. The motions of a single ion in the trap are described by Mathieu 

Equations, which can only be solved numerically via computer simulations. 

 

 
Figure 1: A quadrupole ion trap  

 

 
5.1.1 Equations of motion 

 

Ions in a quadrupole field are trapped by forces that drive them back toward 

the center of the trap. The motion of the ions in the field is described by 

solutions to the Mathieu equation.  When written for ion motion in a trap, 

the equation is: 

0)2cos2(
2

2

=−+ uqa
d

ud
uu ξ

ξ
, 

where u represents either the x, y or the z coordinate, ξ is a dimensionless 

parameter given by ξ = Ωt/2  , and  au and qu are dimensionless trapping 

parameters. The parameter  Ω is the radial frequency of the potential 

applied to the ring electrode. By using the chain rule for computing the 

derivative of the composition of two functions on the first addend of the 

previous formula, it can be shown that: 

2

22

2

2

4 ξd

ud

dt

ud Ω= . 
Substituting Equation 2 into the Mathieu Equation 1 yields: 
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0)]cos(2[
4

2

2

2
=Ω−+

Ω
utqa

dt

ud
uu . 

Reorganizing terms shows us that: 

0)]cos(2[
4

2

2

2

=Ω−Ω+ utqam
dt

ud
m uu . 

By Newton's laws of motion, the above equation represents the force on the 

ion: the Floquet theorem describes exactly the propagator’s structure. 

 The forces in each dimension are not coupled, thus the force acting on an 

ion in, for example, the x dimension is: 

x
e

dt

xd
mmaFx ∂

∂−=== φ
2

2

 
Here, φ is the quadrupolar potential, given by 

)( 222
2

0

0 zyx
r

γσλφφ ++=  
where  is the applied electric potential and λ, σ and γ are weighting 

factors due to the geometry of the device, and r0 is a size parameter constant. 

It can be shown that: 

λ + σ + γ = 0. 

For an ion trap, λ = σ = 1 and γ = -2 and for a quadrupole mass filter,           

λ = - σ = -1 and γ = 0 . 

 
Figure 1: Diagram of the stability regions of a quadrupole ion trap  

according to the voltage and frequency applied to the ion trap elements. 
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The trapping of ions can be understood in terms of stability regions 

in qu and au space. 

 
 
5.3 Quadrupole mass analyzer 

 
A quadrupole mass analyzer consists of four electrically isolated hyperbolic 

or cylindrical rods linked to RF (radio frequency) and DC (direct current) 

voltages. The combination of RF and DC voltages creates a region of strong 

focusing and selectivity known as a hyperbolic field. In simplest terms, the 

ratio of RF/DC allows for the selective transmission of ions of a narrow 

range of mass-to-charge ratios from the total population of ions introduced 

from the ionization source. 

The idealized hyperbolic field can be described in terms of Cartesian 

coordinates (x and y directions toward the rods, and z direction along the 

rods’ axis). Ions of a selected mass-to-charge ratio follow a stable trajectory 

around the center of the field, and are transmitted in the z direction through 

the device. Motion of these “stable ions” in the x and y directions are small 

in amplitude. Ions of other mass-to-charge ratio will have unstable 

trajectories, with increasing displacement in the x and y directions away 

from the center of the hyperbolic field, and thus strike the quadrupole rods, 

where they neutralize upon contact. The application of RF and DC voltages 

creates a region of stability for transmission of ions of a limited mass-to-

charge ratio range. In this regard, the quadrupole analyzer is operating as a 

mass filter. Ions of increasing mass-to-charge ratio will sequentially achieve 

stable trajectories and reach the detector in order of increasing mass-to-

charge ratio. 
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Figure 2: The quadrupole mass filter architecture and its power supply 

 

To understand the behavior of ions in the quadrupole, we give a brief 

introduction to the mathematics associated with ion motion. 

The motion of ions through a quadrupole is described by the second-order 

linear differential Mathieu equation, which can be derived starting from the 

familiar equation relating force to mass and acceleration, F = ma, yielding 

the final parameterized form, with the following substitutions for the 

parameters a and q: 

22
0

22
0

2

2

4

8

0)2cos2(

Ω
=

Ω
=

=−+

mr

eV
q

mr

eU
a

uqa
d

ud

u

u

uu ξ
ξ

 

The u in the above equations represents position along the coordinate axes 

(x or y), f is a parameter, t is time, e is the charge on an electron, U is the 

applied DC voltage, V is the applied RF voltage, m is the mass of the ion, r0 

is the effective radius between electrodes, and Ω is the applied RF 

frequency. The parameters a and q are proportional to the DC voltage U 

and the RF voltage V, respectively. 

The analytical solution to this second-order linear differential equation is:  

∑∑
∞

−∞=

∞

−∞=

+−Γ++Γ=
n

n
n

n incinCu ξβξβξ )2(exp')2exp()( 22  
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Figure 3: Mathieu stability diagram for an ion of m/z 219  

in a quadrupole mass filter with 9.5-mm diameter round  

rods and an RF frequency of 1.2MHz 

 

The solutions to the Mathieu equation can be presented graphically, as 

shown in Figure 2 in a so-called stability diagram. Points in (U, V) space 

(DC, RF voltage space) within the lines lead to stable trajectories; points 

outside the lines will lead to an unstable trajectory. The dotted line is called 

the scan line: if the line passes just under the apex of the stability region, the 

mass-to-charge ratio will have a stable trajectory at those voltages, and will 

be transmitted to the detector. 

The selection of RF and DC voltages, V and U, the RF frequency, and the 

inscribed radius r0 between the rods determines the performance of the 

quadrupole mass filter. The mass range of the mass filter can be increased by 

increasing the RF and DC voltages, or by decreasing the inscribed radius or 

RF frequency. The mass resolution is a function of the ratio of the RF and 

DC voltages  

 

 
Figure 4: Schematic of a triple quadrupole mass spectrometer (TQMS) 

 

The quadrupole mass analyzer enjoys a central role in the success of mass 

spectrometric methods in proteomics. Development of an understanding of  
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the theoretical and practical aspects of quadrupoles can improve ability to 

utilize single and triple quadrupole mass spectrometers effectively to solve 

important problems in proteomics. 

 

 

5.4 A program for numerical solution of the Mathieu Equation 

 
In this paragraph we will review the full spectrum of solutions to the 

Mathieu differential equation: 

0))2cos(2( =−+ ytqay&&  
 

and we will describe a numerical algorithm which allows a flexible approach 

to the computation of all the Mathieu functions. A compact matrix notation 

is used, which can be readily implemented on any computing platform. Also 

there will be some explicit examples (written in the programming language 

Scilab) that provide a ready-to-use package for solving the Mathieu 

differential equation and related applications in several fields. 

Some high-level mathematical language contains Mathieu functions, but 

these are defined as black-box commands: thus, it is difficult to understand 

how these commands work and how to extend their use to other cases or 

specific applications. In this example open-source software is employed, 

which is characterized by its modularity and simplicity: that allows easy 

improvements, extensions and applications to different specific cases. 

The program is composed of two modules, essentially based on the Scilab 

command spec for the diagonalization of a matrix, which turns out to be 

necessary for elliptical-to-cartesian coordinate transformation when plotting 

the results. In contrast with polynomial approximations, this one does not 

accumulate errors as it is based on matrix diagonalization and Fourier 

transform. Moreover, the modular form of the program makes it more  
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flexible and efficient in determining a whole range of values rather than a 

single one. 

 

In this paragraph first we briefly recall some known facts about the solutions 

of the Mathieu equation. The Mathieu equation is a second-order 

homogeneous linear differential equation of the form: 

0))2cos(2( =−+ ytqay&&                             (5.1) 

where the constants a, q are often referred as characteristic number and 

parameter, respectively.  

By substituting the independent variable z →  iz in the above equation we 

can obtain the so called modified Mathieu equation, which is easier to solve: 

[ ] 0)2cosh(22

2

=−− yuqa
du

yd

                            (5.2) 

The most general solution y(z) of the first equation can be written as a 

linear combination of two independent solutions y1(z) and y2(z), i.e.  

y(z) = Ay1(z) + By2(z) 

with A, B arbitrary complex constants. According to Floquet’s theorem, it is 

possible to choose y1(z) and y2(z) in a very simple and convenient form: 

indeed, there always exists a solution of  (5.1) of the first kind: 

y1(z) = eiνzp(z)                                                     (5.3) 

where the characteristic exponent ν depends on a and q, and p(z) is a 

periodic function with period π. It is easy to check that a solution of the 

form (5.3) is bounded for z → ∞, unless ν is a complex number, for which 

y1(z) is unbounded. If ν is real but not a rational number then (5.3) is non-

periodic. If ν is a rational number, i.e. ν is a proper fraction as ν = s/p, then 

(5.3) is periodic of period at most 2πp (and not π or 2π). Finally if ν is a real 

integer then y1 is a periodic function with period π or 2π. 

There are two ways of tackling the problem of solving (5.1), according to 

the physical problem one is interested in: 
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1) The first case is with a, q being independently given constants (e.g. in 

the case of the parametric oscillator). Then, the general solution may be 

periodic or not, bounded or not depending on the corresponding values. 

Such a ν value can be determined by the following method: by 

introducing in (5.3) the Fourier representation of a periodic function 

with period π, 

∑
+∞

−∞=

=
k

ikz
k eczp 2)(  

and by inserting the result in eq. (5.1), one obtains the following 

recurrence equation for ck: 

0][])2[( 11
2 =++−+ −+ kkk ccqcak ν  

which can be written in matrix form: 

0)( =Ι− caHν  
where I is the identity matrix and Hν is a symmetric tridiagonal matrix 

and c is a column vector.  

 

2) The second case is when, from the very beginning, we are interested only 

to periodic solutions with period π or 2π (e.g. in the case of the angular 

part of the wave equation in elliptical coordinates). Then a and q cannot 

be given independently: they must satisfy the equation (owing the 

periodicity) of the form ν(a; q) = n, where n is an integer number. All a’s 

values for which ν(a; q) = n, are called characteristic values: the 

corresponding periodic solutions (5.3) are called Mathieu functions (or 

Mathieu functions of the first kind). In this case, the second solution y2 

(Mathieu function of the second kind) is usually rejected since it is not 

bounded. 

 

It is easy to see from (5.3) that if ν(a; q) = n, then y1 is periodic with period 

π for even n and periodic with period 2π for odd n. Since a periodic 

function with period π it has also period 2π, then by inserting the Fourier 

representation of a 2π periodic function in (5.3), 
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∑
+∞

−∞=

=
k

ikz
k eczy )(1  

we can obtain the following recurrence relation,       

0)()( 22
22 =++− −+ kkk ccqcak     or   0)( =Ι− caH  

where H is a symmetric pentadiagonal matrix. 

 

The Mathieu functions so obtained are defined as cen(z; q) (even solutions 

corresponding to an eigenvalues: cosine-elliptic), sen(z; q) (odd solutions 

corresponding to bn eigenvalues: sine-elliptic). 

The solutions of the modified Mathieu equation can be easily obtained by 

the following way; for a-values corresponding to cem(z, q), sem(z, q) the first 

solutions of (5.2) are derived by substituting iz for z, i.e.  

                                            Cen(z, q) = cen(iz, q) 

Sen(z, q) = −isen(iz, q) 

Cen and Sen are called modified Mathieu functions of the first kind. 

 

 

5.4.1 Scilab modules 

 

The program is composed of four modules, two for the calculation of 

periodic Mathieu functions (hence q is given as an input, and the a’s and b’s 

are calculated as output), and two for the general aperiodic case (both a and 

q are given as arbitrary input): 

 

-  [ab,c]=mathieuf(q,[mat_dimension]) 

 

calculates the characteristic values ak, bk and the coefficients ck of the 

expansion of Mathieu functions, for a given matrix dimension; 

 

- mathieu(’kind’,order,arg,q,[precision]) 

 

uses the former program to calculate the Mathieu functions with a 

given precision, by starting with a matrix size (depending on the order n  
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and the parameter q) which is increased until the required precision is 

reached. Some inputs can also be entered interactively. 

 

 

- [nu,c] =mathieuexp(a,q,[mat_dimension]) 

 

calculates the characteristic exponent ν(a, q) of non-periodic solutions 

of the Mathieu equations and the coefficients ck of the expansion of the 

periodic factor. 

 

- mathieus(arg,a,q,[precision])  
 

uses the former program and calculates solutions of Mathieu Equations 

with arbitrary a and q parameters. 

 

- [x,y]=ell2cart(u,v,c)  
 

has also been written for the transformation from cartesian to elliptical 

coordinates, which is necessary when plotting the results of a two 

dimensional calculation (for example the elliptical waveguide). 

 

 

5.4.2 Some Examples 

 

Figure 5 shows the well-known stability curves, where the white areas show 

values of a and q with stable (periodic) solutions, and the coloured contours 

indicate the unstable solutions (the value expressed by the contour is the 

exponential envelope factor of the diverging function). The equations in this 

case might describe a parametric oscillator, i.e. a harmonic oscillator. 
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Figure 5: Stability curves of Mathieu Equation obtained by the program 

 

Figure 6 is a plot over one period of se1(x, q) for various values of q, showing 

how the function, which is a sinusoid for q = 0, deviates from it as q 

increases. 

 

 
Figure 6: The function se1 for various values of q 

 

 

Figure 7 is the 3-D plot of the field of a higher-order mode of an elliptical 

waveguide (or vibrating drum). It was the first case of study of Mathieu, 

and we show that also this complicated example could be represented with 

the previous functions. 
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Figure 7: Elliptical waveguide 

 

The limitation of this technique is given by the framework program 

language, which imposes restrictions both on numerical precision and on 

memory available. 
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APPENDIX A 

Algebraically equivalent systems 

 

We want to recall how change the structure of a linear system when we 

make a basis change in in the state space. We will refer to the discrete case: 

the continuous one leads to the same result. 

Consider (v1, v2, ….vn) as the state space basis, described by the following 

equations: 

)()()(

)()()1(

tDutHxty

tGutFxtx

+=
+=+

 

Suppose that we want to see X in a new basis (v’1, v’2, ….v’n):  each vector 

v’i is described as a linear combination ∑ j jijtv of vector vi , i.e.: 

Tvvv

ttt

ttt

ttt

vvvvvv n

nnnn

n

n

nn ),.....,,(

...

............

...

...

),.....,,()',.....,','( 21

21

22221

11211

2121 =



















=  

For the vectors vi  are also expressible as a linear combination of vectors vi’, 

the matrix T is invertible and the link between two basis could be expressed 

as follows: 

1
2121 )',.....,','(),.....,,( −= Tvvvvvv nn  

The system state, defined by the n elements related with the basis

),.....,,( 21 nvvv : 
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Will have as components related with the new base )',.....,','( 21 nvvv  

xTx 1' −=  

Proof: It follows directly from: 
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By substituting, we have: 

)()(')(

)()(')1()1(' 111

tDutHTxty

tGuTtFTxTtxTtx

+=
+=+=+ −−−

 

Or: 

)()('')(

)(')('')1('

tDutxHty

tuGtxFtx

+=
+=+

 

In which we have replaced: 

HTH

GTG

FTTF

=
=
=

−

−

'

'

'
1

1

 

 

Definition: Two systems (F, G, H, D) and (F’, G’, H’, D) are called 

algebraically equivalent if they meet the previous equations. So they could be 

considered as the same system referred to different basis in the state space. 
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APPENDIX B 

Matrix Norm 

 

In what follows, K will denote the field of real or complex numbers. 

Let K denote the vector space containing all matrices with m rows 

and n columns with entries in K.  

A matrix norm is a vector norm on K. That is, if ||A|| denotes the norm of 

the matrix A, then, 

� 0≥A ; 

� 00 =⇔= AA ; 

� AA αα =  for all α in K and all matrices A in Kmxn ; 

� BABA +≤+ for all matrices A and B in Kmxn . 
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