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Abstract

The theory of covering spaces is well-behaved when the base space is locally path connected and

semilocally 1-connected. Following works of Brazas, by generalizing the notion of covering to that of

semicovering, by de�ning a topological fundamental group and enriching over Top the usual monodromy

functor, we get an extended theory which is well-behaved with respect to a wider class of spaces, namely

locally wep-connected topological spaces.





A chi mi è sempre stato accanto
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INTRODUCTION

The starting point of this work is the theory of covering spaces:

for a topological space X, consider the following quasi-commutative diagram of functors:

Cov (X)
Π1 //

µ
**

CovMor (Π1X)

R

��
Fct (Π1X,Set) ,

where R is the standard equivalence between the category CovMor (Π1X) of covering morphisms of

the fundamental groupoid Π1X of X and the category Fct (Π1X,Set) of its representations in Set; µ

is the monodromy functor between the category Cov (X) of covering maps of X and Fct (Π1X,Set),

and �nally Π1 is induced by the fundamental groupoid functor. It is a classical result that for a locally

path connected and semilocally 1-connected topological space X, each arrow in the above diagram is an

equivalence.

Following [2], [4] and [5], we build a topologically enriched fundamental groupoid Πτ
1X and de�ne

the notion of semicovering in order to get a topologically enriched version of the previous diagram:

SCov (X)
Πτ1 //

µτ ++

OCovMor (Πτ
1X)

Rτ

��
TopFct (Πτ

1X,Set
e) ,

where each category is a Top−category and each functor is a Top−functor in a sense which will be

de�ned.

Moreover, there exists a class of topological spaces, locally wep-connected spaces, for which each arrow

is an equivalence: in particular any locally path connected and semilocally 1-connected topological space

is locally wep-connected and this diagram reduces to the classical one.

The general structure of this thesis is as follows. Chapter 1 is devoted to classical results: we recall

some de�nitions and properties about the compact-open topology ; about groupoids and their represen-

tations; about �brations and their lifting properties. Finally we describe with some details the above

mentioned functors R, µ and Π1.

In chapter 2, by exploiting free topological groups, �rst we de�ne the quasitopological fundamental

group πqtop1 (X) of a based space X, next we de�ne the functor τ to achieve a true topological group

πτ1 (X) which will be called topological fundamental group. We go on with the example of the Hawaiian

earring H, a topological space such that πqtop1 (H) 6= πτ1 (H). Finally we extend these constructions to

de�ne the topological fundamental groupoid Πτ
1X.

In chapter 3 we de�ne the notion of semicovering map p : Y → X to show that such a map always in-

duces an open covering morphism of groupoids Πτ
1p : Πτ

1Y → Πτ
1X via the enriched fundamental groupoid

functor. We end up describing the enriched functors µτ and Rτ to prove the quasi-commutativity of the

above enriched diagram.

Finally in chapter 4 we introduce and describe the class of locally wep-connected spaces, to which

the teory is well-behaved: in the �nal section we show that the enriched functors Πτ
1 , Rτ and µτ de�ne

equivalences on this class of spaces.

In the appendix we give a constructive inductive approximation of the topological fundamental

7



groupoid starting from the quasitopological one.

NOTATION AND CONVENTIONS

Besides classical notions about covering spaces theory, the reader will be considered familiar with basic

de�nitions and results on category theory. We will use the standard bold notation to denote usual

categories: Set for the category of sets, Grp for groups, Grpd for groupoids, Top for topological

spaces... other categories will be de�ned later. For a category C, the hom-set between the objects a, b ∈ C
will be always denoted by C (a, b) and for a �xed object a ∈ C the vertex hom-set at a is C (a, a) := C (a).

A star as low index denotes a pointed category: for example Top∗ is the category of topological spaces

with selected base point and base point-preserving morphisms. For a category C and an object x ∈ C,
Cx denotes the set of arrows starting from x. For a couple of small categories A and B, the category of

functors with natural transformations is denoted with Fct (A,B).

We will make use also of these notations: a Top-category C is a category enriched in Top, i.e. its

hom-sets are all equipped with a topology such that all composition maps are continuous; in particular

the multiplication C (c1, c)× C (c, c2) → C (c1, c2), given by (f, g) 7→ g ◦ f , is continuous if the domain is

equipped with the product topology. For instance, Set is a Top-category if we endow each set with the

discrete topology and giving hom-sets the topology of point-wise convergence (cfr. Theorems 1.1.5 and

1.1.6 and see also [19, VII] for basic de�nitions). We will denote by Sete the so enriched category of sets.

Given two Top-categories A and B, a Top-functor is a functor F : A → B such that each function

A (a1, a2) → B (F (a1) , F (a2)) is continuous. A Top-natural transformation of Top-functors is a nat-

ural transformation of the underlying functors. The category of Top-functors A → B and Top-natural

transformations is denoted TopFct (A,B).

When the underlying category of a Top-category C is a groupoid and each inversion map C (a, b) →
C (b, a) is continuous, we call C a Top-groupoid. The category of Top-groupoids is denoted TopGrpd.

It must be emphasized that the notion of Top-groupoid is di�erent from that of topological groupoid

which refers to a groupoid internal to Top.

8



Chapter 1

CLASSICAL RESULTS

In this introductory chapter, �rst we remember how the compact-open topology is build and brie�y

describe some of its properties: it will be an important tool to deal with spaces of continuous paths.

Next, we list some known results in standard algebraic topology: we give the de�nition of groupoid and

its representations and we introduce the central notion of covering morphism of groupoids; in particular we

show the equivalence R : CovMor (G) ' Fct (Π1X,Set) between the category of covering morphisms of

a groupoid G and its representations. The �nal section is devoted tomonodromy : we de�ne the category of

�brations with unique path lifting over a space X and recall the de�nition of fundamental groupoid Π1X of

a space; second, we show that for any topological sapce X the monodromy µ : Fib! (X)→ Fct (Π1X,Set)

and the fundamental groupoid functor Π1 : Fib! (X) → CovMor (Π1X) provide a quasi-commuting

diagram of categories; �nally we restrict our study to a special kind of �brations, covering spaces, and

we end up with the classi�cations theorems for coverings of locally path connected and semilocally 1-

connected topological spaces.

1.1 THE COMPACT-OPEN TOPOLOGY

In general, sets of continuous functionsTop (X,Y ) of topological spaces will be endowed with the compact-

open topology, which we are to de�ne.

Given topological spaces X, T and Y and a function h : X × T → Y which is continuous in x for

each �xed t, there is associated with h the function h∗ : T → Top (X,Y ) de�ned by h∗ (t) =: ht where

ht (x) =: h (x, t) for every x ∈ X. The correspondence between h and h∗ is clearly one-to-one.

Although the continuity of any particular h depends only on the given topological spaces X, T and Y ,

the topology of the function space Top (X,Y ) is involved in the continuity of h∗. It would be desirable to

so topologize Top (X,Y ) that the functions h∗ which are continuous are precisely those which correspond

to continuous functions h. It is worth emphasizing that the problem is motivated by the special case

in which T is the unit interval: in this case h is a homotopy and h∗ is a path in the functional space

Top (X,Y ).

De�nition 1.1.1. In the above notations, for any two sets K ⊆ X and W ⊆ Y de�ne M (K,W ) :=

{f ∈ Top (X,Y ) : f (K) ⊆W}. The compact-open topology is de�ned by choosing as a subbasis for the

open sets, the family M (K,W ) where K ranges over the compact subsets of X and W ranges over the

open subsets of Y . In particular the family of �nite intersections of sets of the form M (K,W ) is a base

for this topology.

9
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Lemma 1.1.2. If Top (X,Y ) has the compact-open topology, then continuity of h implies continuity of

h∗ under no restrictions on the topological spaces X, T and Y .

Proof. Let K be a compact set in X, W an open set in Y and let t0 be a point in h
∗−1 (M (K,W )). Then

K × {t0} ⊆ h−1 (W ). Since h−1 (W ) is open, it is the union of open sets Uα × Vα. Since K is compact,

K × t0 is contained in a �nite union
⋃n
i=1 Ui × Vi with each Vi a neighborhood of t0. Then

⋂n
i=1 Vi is an

open neighborhood of t0 and is contained in h∗−1 (M (K,W )). So h∗−1 (M (K,W )) is open since it is a

neighborhood of each of its points.

Lemma 1.1.3. Let X,Y be topological spaces, where X is locally compact and Hausdor� and let P be a

subbasis of the topology on Y . Then the familiy M (K,U) is a subbasis of the compact-open topology on

Top (X,Y ), where K ranges over the compact subsets of X and U ∈ P.

Proof. We have to show that for each continuous f : X → Y , for each compact set K ⊆ X and for

each open set U ⊆ Y such that f (K) ⊆ U , there exist compact sets K1, . . . ,Kn ⊆ X and open sets

U1, . . . , Un ∈ P such that f ∈ M (K1, U1) ∩ . . . ∩M (Kn, Un) ⊆ M (K,U). Let B be the familiy of �nite

intersections of elements of the subbasis P. Then, by de�nition, B is a basis for the topology on Y and,

since f (K) is compact, we can �nd V1, . . . , Vm ⊆ B such that f (K) ⊆ V1 ∪ . . . ∪ Vm ⊆ U .
Each point x ∈ K has a compact neighborhood Kx such that f (Kx) ⊆ Vi for some i: since the

family
{
K̊x

}
x∈K

of the interiors of Kx's is an open covering of K, there exists a �nite subset S ⊆ K

such that K ⊆
⋃
x∈S Kx. Let us denote Ki :=

⋃
{Kx : x ∈ S, f (Kx) ⊆ Vi}, hence each Ki is compact

and f ∈M (K1, V1) ∩ . . . ∩M (Km, Vm) ⊆M (K,U). For each index i, there exist Ui1 , . . . , Uis ∈ P such

that Vi = Ui1 ∩ . . . ∩ Uis and by noticing that M (Ki, Ui1) ∩ . . . ∩M (Ki, Uis) = M (Ki, Vi), we end the

proof.

Theorem 1.1.4 (Exponential law). Let X,T, Y be topological spaces and let all spaces Top (·, ·) be

endowed with the compact-open topology. Then:

1. The map (·)∗ : Top (X × T, Y )→ Top (X,Top (T, Y )) is injective.

2. If T is locally compact and Hausdor�, then (·)∗ is bijective.

3. If X is locally compact and Hausdor�, then (·)∗ is continuous.

4. If X,T are locally compact and Hausdor�, then (·)∗ is a homeomorphism.

Proof. 1. This is essentially Lemma 1.1.2.

2. We have to show that for each continuous g : X → Top (T, Y ), the function f : X × T → Y , given

by f (x, t) = g (x) (t), is continuous. Take an open set U ⊆ Y and a point (x, t) ∈ f−1 (U); the map g (x)

is continuous and T is locally compact and Hausdor�, thus there exists a compact neighborhood B of

t in T such that g (x) (B) ⊆ U and so g (x) ∈ M (B,U). The map g is continuous, thus there exists a

compact neighborhood A of x in X such that g (A) ⊆M (B,U). So f (A×B) ⊆ U .
3. By Lemma 1.1.3, if X is locally compact and Hausdor�, a subbasis for the compact-open topology

on Top (X,Top (T, Y )) is given by the family M (H,M (K,U)) where H and K range over the com-

pact subsets of X and T respectively and U over the open subsets of Y . Since the map (·)∗ identi�es
M (H ×K,U) with M (H,M (K,U)), it follows that (·)∗ is continuous.

4. It is enough to show that the family of open sets of the form M (H ×K,U) gives a subbasis

for the compact-open topology on Top (X × T, Y ). So let S ⊆ X × T be compact and f ∈ M (S,U).
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For each s ∈ S, there are two compact sets Hs ⊆ X and Ks ⊆ T such that f (Hs ×Ks) ⊆ U and

s is in the interior of Hs × Ks. Thanks to compactness, we can �nd two �nite sequences of compact

sets H1, . . . ,Hn ⊆ X and K1, . . . ,Kn ⊆ T such that S ⊆
⋃
iHi × Ki and f (Hi ×Ki) ⊆ U ; so f ∈

M (H1 ×K1, U) ∩ . . . ∩M (Hn ×Kn, U) ⊆M (S,U).

It may be of some interest to compare the compact-open topology with other topologies commonly

de�ned on function spaces: there are classical results which show that if the topological space X has

some reasonable properties, the compact open topology is closely related to the topologies of pointwise

convercence and of uniform convergence on compact sets. Hereunder such results are stated without

proofs (see [20, VII, Th. 1-13]).

Theorem 1.1.5. The compact-open topology C contains the topology of pointwise convergence. The

topological space Top (X,Y ) is Hausdor� if Y is Hausdor�.

Theorem 1.1.6. Let F be a family of continuous functions from a topological space X to a metric space

Y . Then the topology of uniform convergence on compact sets is the compact-open topology.

Let I = [0, 1] be the unit interval, let PX = Top (I,X) denote the space of paths α : I → X and

cx denote the constant path at x. Exploiting De�nition 1.1.1, if B is a basis for the topology of X

which is closed under �nite intersection, sets of the form
⋂n
j=1M

(
Kj
n, Uj

)
, where Kj

n =
[
j−1
n , jn

]
and

Uj ∈ B, form a basis for the compact-open topology on PX. For any �xed, closed subinterval A ⊆ I,

let TA : I → A be the unique increasing homeomorphism. For a path α ∈ PX the restricted path of

α to A is αA := α|A ◦ TA : I → A → X. As a convention if A = {t}, we let αA = cα(t). Clearly

if 0 = t0 ≤ t1 ≤ . . . ≤ tn = 1, knowing the paths α[ti−1,ti] for i = 1, . . . , n, uniquely determines α.

With these notations one can easily de�ne concatenations of paths: if α1, . . . , αn ∈ PX are such that

αj (1) = αj+1 (0) for all j = 1, . . . , n − 1, the n-fold concatenation of this sequence is the unique path

β = α1 ∗ ... ·∗α such that βKj
n

= αj for all j = 1, . . . , n. Since the space PX is endowed with the compact-

open topology, the concatenation morphism PX×X PX := {(α, β) : α (1) = β (0)} → PX, (α, β) 7→ α∗β
is continuous. If α ∈ PX, α−1 (t) := α (1− t) is the reverse of α; the reversing morphism PX → PX,

α 7→ α−1 is a self-homeomorphism of PX.

We will use also the following notations: if A ⊆ X and B ⊆ Y , M (X,A;Y,B) ⊆ M (X,Y ) is

the subspace of maps f : X → Y such that f (A) ⊆ B and if (X,x) and (Y, y) are based spaces,

M∗ (X,x;Y, y) is the subspace of M (X,Y ) preserving base points. With this notation we can de�ne

Ω (X,x) := M∗
(
S1, (1, 0) ;X,x

)
, which is nothing but the space of loops based at x. It is clear also that

Ω (X,x) = M∗ (I, {1, 0} ;X, {x}).

Example

Since we will exploit the compact-open topology all along this article, it is worth describing explicitly the

shape of an open neighborhood of a point p ∈ M (I,X). Such a point is a path p : I → X and an open

neighborhood of p must be the intersection of �nitely many sets of the form M
(
Kj
n, Uj

)
where Kj

n and

Uj have been de�ned above. For instance, �x n = 4 and consider p : I → R2, t 7→ e2πit (it is just the circle

in R2). Choose Uj , j = 1, . . . , 4, to be the squares of sides with lenght 2, of centers
(
± 1

2 ,±
1
2

)
and with

sides parallel to the axes. For sure U1. . . . , U4 belong to a basis for the standard topology of R2. Then

U :=
⋂4
j=1M

(
Kj
n, Uj

)
is a (very large) open neighborhood of p in M (I,X): for example p′ : t 7→ 1

2e
2πit

lies in this neighborhood, while p′′ : t 7→ e2πit + 10 + 10i does not. Making a drawing of all this may help

in having an intuitive idea of this topology.
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Let U =
⋂n
j=1M

(
Kj
n, Uj

)
be a basic open neighborhood of a path p in M (I,X) . Then UA :=⋂

A∩Kj
n 6=∅M

(
T−1
A

(
A ∩Kj

n

)
, Uj
)
is a basic open neighborhood of pA, called the restricted neighborhood

of U to A. If A = {t} is a singleton, then UA =
⋂
t∈Kj

n
M (I, Uj) = M

(
I,
⋂
t∈Kj

n
Uj

)
. On the other hand

if p = qA for some path q ∈ M (I,X) , then UA :=
⋂n
j=1M

(
TA
(
Kj
n

)
, Uj
)
is a basic open neighborhood

of q called induced neighborhood of U on A. If A = {t} is a singleton, then pA is the constant path and

we let UA =
⋂n
j=1M ({t} , Uj).

1.2 COVERINGS OF GROUPOIDS

De�nition 1.2.1. A small category G is called a groupoid whenever all its morphisms are invertible, in

particular each hom-set of the form G (x, x) =: G (x) is a group. A groupoid G with no empty hom-sets

is called connected.

Remark 1.2.2. Any group G may be seen as a groupoid G with one object {?} and arrows G (?) := G;

such a groupoid G is connected. Conversely any connected groupoid is equivalent to a groupoid with one

object.

The following lemma will be implicitly used throughout the whole article:

Lemma 1.2.3. Let a : x → x′ and b : y → y′ be arrows in a groupoid G. Then there exists a bijection

φ : G (x, y)→ G (x′, y′) which, if x = y and x′ = y′, can be chosen to be an isomorphism of groups.

Proof. We de�ne:

φ : G (x, y)→ G (x′, y′) , c 7→ bca−1

ψ : G (x′, y′)→ G (x, y) , d 7→ b−1da.

Clearly φ ◦ ψ and ψ ◦ φ are the identities and so φ is a bijection. If x = y and x′ = y′, let a = b so that

φ sends c to aca−1. If c, c′ ∈ G (x, x), then φc ◦ φc′ = aca−1ac′a−1 = acc′a−1 = φ (cc′), thus φ is an

isomorphism.

In particular the vertex hom-sets G (x) of any connected groupoid G are all isomorphic as groups.

Remark 1.2.4. For a groupoid G, the category of representations of G in Set is

Fct (G,Set) .

Identifying a group G with a groupoid as in Remark 1.2.2, we recover the usual category of representations

of G in Set (i.e. of sets with left G-actions), indeed: Fct (G,Set) may conveniently be seen as the category

whose objects are pairs of the form (S, µs), where S is a set and µS ∈ Grp
(
G,SS

)
is a map such that

µS (1) (s) = s for all s ∈ S and µS (g1g2) (x) = µS (g1) (µS (g2) (x)); morphisms in Fct (G,Set) are of

the form µf : (S, µS) → (T, µT ) where f : S → T is a map of sets such that µT (g) ◦ f = f ◦ µS (g) for

all g ∈ G. Notice that Fct (G,Set) always contains the full subcategory Set, identi�ed to the trivial

representations of G (i.e. representations of the form (S, idS) where idS (g) (s) = s for all g ∈ G).

Let G be a groupoid. For each object x ∈ G, let the star of x in G, denoted by Gx, be the union of the

hom-sets G (x, y) for all objects y ∈ G. Thus Gx consists of all arrows of G starting from the object x.



1.3. MONODROMY OF FIBRATIONS 13

De�nition 1.2.5. Let p : H → G be a morphism of groupoids. We say that p is a covering morphism if

the map Hx → Gp(x), h 7→ p (h), is a bijection for each object x ∈ H. If g ∈ Gp(x), then g̃x denotes the

unique morphism in Hx such that p (g̃x) = g. If G is a groupoid, CovMor (G) denotes the category of

covering morphisms of G; morphisms in CovMor (G) are the obvious commuting triangles of functors.

For example if G is a groupoid with just one element (which makes it into a group) the only covering

morphisms are isomorphisms.

Remark 1.2.6. It is immediate from the de�nition that if ob (H) 6= ∅, G is connected and p : H → G is a

coverig morphism of groupoids, than p must be surjective on objects.

Remark 1.2.7. Let p : H → G be any morphism of groupoids: it is clear that p (H (x)) is a subgroup

of G (p (x)) for each object x ∈ H, but if p is a covering morphism, p (H (x)) is mapped isomorphically

onto G (p (x)). On the other hand, if p is a covering morphism and x, y ∈ ob (H), x 6= y, it follows

straightforward from the de�nition that the induced map p : H (x, y) → G (p (x) , p (y)) is injective, but

in general it is not surjective as shown in the following example.

Example: a covering morphism of groupoids

Let I be the groupoid with two objects {0I , 1I} and just two morphisms other than identities, namely

I (0I , 1I) = {i} and I (1I , 0I) =
{
i−1
}
; let Z2 be the groupoid with one object {?} and two morphisms

Z2 (?, ?) = {0, 1} (actually, Z2 is the usual additive cyclic group with two elements). Finally de�ne the

functor p : I → Z2 by p (0I) = p (1I) = ? on objects and p (id0I ) = p (id1I ) = 0, p (i) = p
(
i−1
)

= 1 on

morphisms. One checks easily that:

• I0I = {id0I , i} → {0, 1} = Z20
is bijective

• I1I =
{
id1I , i

−1
}
→ {0, 1} = Z21

is bijective

and hence p is a covering morphism of groupoids. But I (0I , 1I) = {i} → {0, 1} = Z2 (?, ?) is clearly not

surjective.

The following is a standard result (for details, see [16, Prop. 30]):

Theorem 1.2.8 (R-equivalence). For any groupoid G, there is an equivalence of categories

R : CovMor (G) ' Fct (G,Set) .

Let us recall brie�y how this equivalence is build: a covering morphism F : H → G corresponds to the

functor RF : G → Set given by RF (x) = F−1
ob (x) on objects x ∈ ob (G) and for g ∈ G (x1, x2), RF (g) is

the function F−1
ob (x1)→ F−1

ob (x2), y 7→ t (g̃y) where t : H → ob (H) is the target map of H.
The inverse R−1 : Fct (G,Set)→ CovMor (G) may be described as follows: given a functor N : G →

Set, let H be the groupoid with objects set
⊔
x∈ob(G)N (x) and if yi ∈ N (xi), i = 1, 2, then H (y1, y2) =

{g ∈ G (x1, x2) : N (g) (y1) = y2}. The functor R−1N : H → G taking y ∈ N (x) to x and which is the

inclusion on hom-sets is the corresponding covering morphism.

1.3 MONODROMY OF FIBRATIONS

De�nition 1.3.1. LetX be a topological space. Let us de�ne (PX)x := {α ∈ PX : α (0) = x}, (PX)
y :=

{α ∈ PX : α (1) = y}, PX (x, y) = (PX)x∩(PX)
y

= {α ∈ PX : α (0) = x and α (1) = y} and Ω (X,x) :=
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PX (x, x).

In what follows we heavily exploit the well known notions of homotopy of paths and maps: as usual

the writing α ∼ β means that α and β are homotopic paths or maps (for de�nitions see, for example,

[24, II]) and [α]∼ is the equivalence class of α; unless otherwise speci�ed, we will not distinguish a path

α from its equivalence class [α]∼.

De�nition 1.3.2. Let X be a topological space. The set of endpoint preserving homotopies of paths

starting at x is denoted by (HX)x.

Both P and H may be seen as functors Top∗ → Top∗: for example (X,x) 7→ ((PX)x , cx) is a functor

which is Pf (α) = f ◦ α on morphisms.

1.3.1 Fibrations and liftings

Let p : X̃ → X and f : Y → X be continuous maps. The lifting problem for f is to determine whether

there is a continuous map f̃ : Y → X̃ such that p◦ f̃ = f , i.e. if the dotted arrow of the following diagram

corresponds to a continuous map making the diagram commutative:

X̃

p

��
Y

f //

f̃

66

X.

If it exists, f̃ is called a lifting of f .

De�nition 1.3.3 (homotopy lifting property). A map p : X̃ → X is said to have the homotopy

lifting property with respect to a space Y if, given maps f̃ : Y → X̃ and F : Y × I → X such that

F (y, 0) = p ◦ f̃ (y) for each y ∈ Y , there is a map F̃ : Y × I → X̃ such that F̃ (y, 0) = f̃ (y) for each

y ∈ Y and p ◦ F̃ = F . Pictorially, we are asking the existence of the dotted arrow making the following

diagram commutative:

Y × {0}
f̃ //

� _

��

X̃

p

��
Y × I F //

F̃

77

X.

Remark 1.3.4. If f, g : Y → X are homotopic maps and p : X̃ → X has the homotopy lifting property,

f can be lifted if and only if g can be lifted. Hence, whether or not a map Y → X can be lifted is a

property of the homotopy class of the map.

In what follows we denote by In the topological closed cube of dimension n.

De�nition 1.3.5. The map p : X̃ → X is called a (Serre or weak) �bration if p satis�es the Homotopy

Lifting Property 1.3.3 with respect to cubes In of all dimensions.

For example if p : X̃ → X is a Serre �bration, any path α ⊆ p
(
X̃
)
can be lifted to a path in X̃,

indeed: α can be seen as a homotpy α : P × I → X where P is a one-point space (in practise P = I0) and

a point x̃0 ∈ X̃ such that p (x̃0) = α (0) corresponds to a map f̃ : P → X̃ such that p ◦ f̃ (P ) = α (P, 0).

Since p is a Serre �bration, there exists a path α̃ in X̃ such that α̃ (0) = x̃0 and p ◦ α̃ = α. So α̃ is the

lifting of α.



1.3. MONODROMY OF FIBRATIONS 15

As usual, for each point x ∈ X, the set p−1 (x) ⊆ X̃ is called �ber.

We are interested in these objects since both covering and semicovering maps, which we are to de�ne,

are Serre �brations.

De�nition 1.3.6. A continuous map p : X̃ → X is said to have unique path lifting if, given paths α and

α′ in X̃ such that p ◦ α = p ◦ α′ and α (0) = α′ (0), then α = α′.

Lemma 1.3.7. Let p : X̃ → X be a continuous map with unique path lifting and Y be a path connected

space. If f, g : Y → X̃ are maps such that p ◦ f = p ◦ g and f (y0) = g (y0) for some y0 ∈ Y , then f = g

for all y ∈ Y .

Proof. With the above hypothesis, let y ∈ Y and α ∈ PY (y0, y). Then f ◦ α and g ◦ α are paths in X̃

that are liftings of the same path in X (namely, of the path p◦f ◦α = p◦g ◦α) and have the same origin.

Because p has unique path lifting, f ◦ α = g ◦ α. So f (y) = (f ◦ α) (1) = (g ◦ α) (1) = g (y).

The following theorem characterizes �brations with unique path lifting, the proof may be found in

[30, II.2.5]:

Theorem 1.3.8. For a �bration p : X̃ → X, the following are equivalent:

1. p has unique path lifting.

2. The �bers of p are totally path-disconnected (i.e. the path connected components of the �bers are

the points).

Moreover ([30, II.2.6]):

Theorem 1.3.9. The composite of �brations (with unique path lifting) is a �bration (with unique path

lifting).

Thanks to this theorem we gain the following:

De�nition 1.3.10. For any topological space X, we denote by Fib! (X) the category whose objects are

�brations with unique path lifting over X and whose morphisms are the commuting triangles

X̃1

p1

%%

f // X̃2

p2

yy
X,

where pi are �brations with unique path lifting and f is required to be continuous.

1.3.2 The fundamental groupoid

Let X be a topological space: recall from Section 1.1 that each path in X admits an inverse, so the

following de�nition makes sense.

De�nition 1.3.11. Given a topological space X, the fundamental groupoid Π1X of X is the category

whose objects are the points of X and whose morphisms Π1X (x, y) are the path classes from x to y;

composition is de�ned by the opposite of concatenation of paths.
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If f : X → Y is a continuous map between topological spaces, by de�ning Π1f : Π1X → Π1Y , [α] 7→
[f ◦ α], it follows straightforward from the de�nition that the fundamental groupoid Π1 : Top→ Grpd is

a functor (cfr. [8, Th. 6.4.2] for the details). Let us remark also that if we choose x = y, then Π1X (x, x)

is a group which is usually referred to as fundamental group of X in x and is denoted by π1 (X,x) or

π1 (X) if fundamental groups are isomorphic for all x ∈ X.

Examples

1. If X consists of a single point x, then Π1X has a single object and Π1X (x, x) consists only of the

zero-path class. More generally , if the path-components of X consist of single points, then

Π1X (x, y) =

∅ if x 6= y

{cx} if x = y
.

A groupoid with this property is called discrete.

2. Let X be a convex subset of a normed vector space and let α, β be two paths in X from x to y.

Then α, β are homotopic since h : I × I → X, (t, s) 7→ (1− s)α (t) + β (t) is a homotopy α ∼ β. So
any two paths from x to y are equivalent and Π1X (x, y) has exactly one element for all x, y in X.

A groupoid with this property is called 1-connected. If Π1X is a 1-connected groupoid, the space

X is said 1-connected too. Clearly if X is 1-connected it is also path-connected.

3. If X has more than one connected component, the hom-set Π1X (x, y) is possibly empty. So the

fundamental groupoid of X is connected if and only if X is path connected.

Remark 1.3.12. If X is path connected, by applying Lemma 1.2.3 to the fundamental groupoid Π1X, we

get that if α is a path from x to y in X, then α determines an isomorphism αX : π1 (X,x) → π1 (X, y),

β 7→ α ∗ β ∗ α−1 of fundamental groups (but such an isomorphism is not canonical). Hence all groups

Π1X (x), x ∈ X, are isomorphic, and the groupoid Π1X is equivalent to the group π1 (X,x0) identi�ed

to the category with one object {x0} and morphisms π1 (X,x0) (cfr. Remark 1.2.2).

We sum up in the following theorem two classical results linking homotopies and fundamental groupoids

(see [8, VI.5, passim] for proofs):

Theorem 1.3.13. Let X,Y be topological spaces. If X → Y is a homotopy equivalence of topological

spaces, then Π1f : Π1X → Π1Y is an equivalence of groupoids. In particular for each x ∈ X the map

π1 (f) : π1 (X,x)→ π1 (Y, f (x)) is a group homomorphism.

1.3.3 Monodromy representations

In this section we recall some classical results in order to describe the covering groupoid functor Π1 and

the monodromy functor µ: lacking proofs may be found in [30, II.3 and II.4, passim].

Lemma 1.3.14. Let p : X̃ → X be a �bration. If Ã is any path component of X̃, then p
(
Ã
)
is a path

component of X and p|Ã : Ã→ p
(
Ã
)
is a �bration.

Proposition 1.3.15. Let p : X̃ → X be a �bration with unique path lifting, let A be a subset of X and

let Ã = p−1 (A). Then the induced morphism Π1p : Π1Ã→ Π1A is a covering morphism of groupoids.
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Proof. Let x̃ ∈ Ã and let p (x̃) = x. For each path α in X with initial point x, let α̃ denote the unique

path of X̃ with initial point x̃. If the �nal point of α is in A, then the �nal point of α̃ is in Ã. Also, the

equivalence class of α̃ depends only on the equivalence class of of α by the unique lifting property. So the

mapping [α] 7→ [α̃] is inverse to the restriction of p which maps
(

Π1Ã
)
x̃
→ (Π1A)x; this last map being

a bijection, Π1p is a covering morphism.

Remark 1.3.16. For any topological space X, Proposition 1.3.15 provides us of a well de�ned functor

Π1 : Fib! (X)→ CovMor (Π1X) .

Lemma 1.3.17. Let p : X̃ → X be a �bration with unique path lifting. If α and α′ are paths in X̃ such

that α (0) = α′ (0) and p ◦ α = p ◦ α′, then α ∼ α′ .

Remark 1.3.18. With this lemma we get that if p : X̃ → X is a �bration with unique path lifting, for any

two objects x̃0, x̃1 ∈ Π1X̃, the induced map p∗ : Π1X̃ (x̃0, x̃1) → Π1X (p (x̃0) , p (x̃1)) is injective and for

x̃0 = x̃1 the group homomorphism p∗ : π1

(
X̃, x̃0

)
→ π1 (X, p (x̃0)) is a monomorphism.

Lemma 1.3.19. Let p : X̃ → X be a �bration with unique path lifting and assume X̃ is a nonempty

connected space. If x̃0, x̃1 ∈ X̃, there is a path α ∈ PX (p (x̃0) , p (x̃1)) such that

p∗

(
π1

(
X̃, x̃0

))
= α ∗ p∗

(
π1

(
X̃, x̃1

))
∗ α−1.

Conversely, given a path α ∈ PX (p (x̃0) , x1) there is a point x̃1 ∈ p−1 (x1) such that

α ∗ p∗
(
π1

(
X̃, x̃1

))
∗ α−1 = p∗

(
π1

(
X̃, x̃0

))
.

Proof. First, let α̃ ∈ PX̃ (x̃0, x̃1). Then π1

(
X̃, x̃0

)
= α̃ ∗ π1

(
X̃, x̃1

)
∗ α̃−1. Therefore

p∗

(
π1

(
X̃, x̃0

))
= (p ◦ α̃) ∗ p∗

(
π1

(
X̃, x̃1

))
∗ (p ◦ α̃)

−1

and so p ◦ α̃ is the path α we looked for.

Conversely, given a path α ∈ PX (p (x̃0) , x1), let α̃ be a path in X̃ such that α̃ (0) = x̃0 and p◦ α̃ = α.

If x̃1 = α̃ (1), then

α ∗ p∗
(
π1

(
X̃, x̃1

))
∗ α−1 = p∗

(
α̃ ∗ π1

(
X̃, x̃1

)
∗ α̃−1

)
= p∗

(
π1

(
X̃, x̃0

))
.

Thanks to Lemma 1.3.19 one immediately shows that:

Proposition 1.3.20. Let p : X̃ → X be a �bration with unique path lifting and assume X̃ is a nonempty

connected space. For x0 ∈ p
(
X̃
)
the family

{
p∗

(
π1

(
X̃, x̃0

))
: x̃0 ∈ p−1 (x0)

}
is a conjugacy class in

π1 (X,x0).

Suppose that p : X̃ → X is a �bration with unique path lifting and let α ∈ Π1X (x0, x1). It is a

standard exercise to show that the map µ (p) (α) : p−1 (x0)→ p−1 (x1) de�ned by x̃0 7→ α̃ (1), where α̃ is

the unique lifting of α starting at x̃0, is well de�ned. Hence we get:
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Theorem 1.3.21. Let p : X̃ → X be a �bration with unique path lifting. Then there is a functor

from Π1X to the category Set: it takes a point x ∈ X to its �ber µ (p) (x) = p−1 (x) and it takes

a path homotopy class α ∈ Π1X (x0, x1) to the function µ (p) (α) : p−1 (x0) → p−1 (x1) de�ned above.

Concerning morphisms, if K is a morphism of �brations p1, p2, i.e. this triangle commutes

X̃1

p1

%%

K // X̃2

p2

yy
X,

then µ (K) is the induced natural transformation of functors de�ned by µ (K) (x) := K|p−1
1 (x) : p−1

1 (x)→
p−1

2 (x) which maps z ∈ p−1
1 (x) to K (z) ∈ p−1

2 (x).

Remark 1.3.22. It is possible to show a stronger version of previous theorem:

For a �bration with unique path lifting p : X̃ → X, there is a functor Π1X to the category Top: it

takes a point x ∈ X to its �ber µ (p) (x) = p−1 (x) and it takes a path homotopy class α ∈ Π1X (x0, x1)

to the continuous function µ (p) (α) : p−1 (x0)→ p−1 (x1) de�ned above.

Since we will consider �brations with unique path lifting and discrete �bers, we will not need to take

care of the topology induced on the �bers.

De�nition 1.3.23. Theorem 1.3.21 provides the monodromy functor

µ : Fib! (X)→ Fct (Π1X,Set) .

For a given �bration p ∈ Fib! (X), µ (p) is called monodromy of p.

Theorem 1.2.8 immediately gives the equivalence

R : CovMor (Π1X) ' Fct (Π1X,Set) .

In this case a covering morphism F : H → Π1X corresponds to the functor RF : Π1X → Set given

by RF (x) = F−1
ob (x) on points x ∈ X and for a path α ∈ Π1X (x1, x2), RF (α) is the function

F−1
ob (x1)→ F−1

ob (x2), y 7→ t (α̃y) where α̃y is the unique morphism in H whose source is y and such that

F (α̃y) = α (it exists and is unique because F is a covering morphism of groupoids).

Conversely, given a functor N : Π1X → Set, let H be the groupoid with objects set
⊔
x∈X N (x) and if

yi ∈ N (xi), i = 1, 2, then H (y1, y2) = {α ∈ Π1X (x1, x2) : N (α) (y1) = y2}. The functor R−1N : H →
Π1X taking y ∈ N (x) to x and which is the inclusion on hom-sets is the corresponding covering morphism.

Hence we get:

Theorem 1.3.24. For any topological space X, the following diagram quasi-commutes:

Fib! (X)
Π1 //

µ
**

CovMor (Π1X)

R

��
Fct (Π1X,Set) .

Thus any �bration p : X̃ → X is characterized either by its corresponding covering morphism Π1X̃ →
Π1X or by its corresponding monodromy functor Π1X → Set.
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De�nition 1.3.25. If X and Y are topological spaces, a covering map is a continuous function p : Y → X

with the property that each point of X has an open neighborhood N such that p−1 (N) is a disjoint union

of open sets, each of which is mapped homeomorphically by p onto N (if N is connected, these must

be the components of p−1 (N)). Such a N is called canonical (or fundamental) neighborhood and Y is

called covering space of X. A morphism between coverings p : Y → X, p′ : Y ′ → X is a continuous map

φ : Y → Y ′ such that p′ ◦ φ = p.

With such de�nitions there remains de�ned the category Cov (X) of coverings of X. Two coverings

are called equivalent if they are isomorphic in this category. A covering p : Y → X is connected if Y is

non-empty and path-connected: let Cov0 (X) be the full subcategory of connected coverings of X. If p

is an initial object in Cov0 (X), we call p a universal covering of X.

It is possible to give another (equivalent) de�nition of covering space which better explains the local

triviality of such a map:

Let S be a set endowed with the discrete topology. Then X × S '
⊔
s∈S Xs where Xs := X × {s} is

a copy of X and each Xs is open.

De�nition 1.3.26.

1. A continuous map p : Y → X is a trivial covering if there exist a non-empty set S (endowed with the

discrete topology) and a homeomorphism h : Y → X × S such that p = p̃ ◦ h where p̃ : X × S → X

is the standard projection.

2. A continuous map p : Y → X is a covering if p is surjective and any x ∈ X has an open neighborhood

U such that p|p−1(U) : p−1 (U)→ U is a trivial covering.

3. If p : Y → X is a covering, a section u of p is a continuous map u : X → Y such that p ◦ u = idX .

A local section is de�ned in the obvious way in an open subset U of X.

Remark 1.3.27. So, roughly speaking, a covering is always locally isomorphic to a trivial covering. Pic-

torially, a covering is visualized by this commuting diagram:

⊔
s∈S Us

p̃

))

p−1 (U)
h
∼

oo

p

��

� � // Y

p

��
U
� � // X.

Remark 1.3.28. A covering map is always a local homeomorphism and hence it has always discrete �bers

([23, 12.3 and 12.12]).

As shown in [30, II.2-5], we have the following:

Theorem 1.3.29. If p : Y → X is a covering map, then p is a �bration with unique path lifting.

Notice that if p : Y → X is a covering and X is locally path connected, then so is Y since p is a local

homeomorphism. The proof of the following theorem may be found in [30, II.4.10]:

Theorem 1.3.30. Every �bration with unique path lifting p : Y → X with X locally path connected and

semilocally 1-connected and Y locally path connected is a covering projection.

Moreover, Theorem 1.3.24 becomes:
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Theorem 1.3.31. If X is locally path connected and semilocally 1-connected, all arrows in the following

quasi-commutative diagram are equivalences:

Cov (X) ∼
Π1 //

µ

∼

**

CovMor (Π1X)

o R

��
Fct (Π1X,Set) .

We devote the remaing of this section to prove it; in next chapters we will develop tools exactly to

generalize it.

In order to show the Π1−equivalence we need some preliminary considerations.

Proposition 1.3.32. Let p : Y → X be a covering map, let A be a subset of X and let Ã = p−1 (A).

Then the induced morphism Π1p : Π1Ã→ Π1A is a covering morphism of groupoids.

Proof. Since p is a �bration, the result follows from Proposition 1.3.15.

Let q : G → Π1X be a covering morphism of the fundamental groupoid Π1X. De�ne X̃ := ob (G) and

p := qob : X̃ → X. We use q to �lift� the topology of X to a topology on X̃. Let U be the family of all

open, path connected subsets of X. If U ∈ U , consider the diagram

G

q

��
Π1U

� � i //

ĩ

55

Π1X,

where i is induced by inclusion. Then i lifts to a unique morphism ĩ : Π1U → G (see [8, 10.3.3]). The set

ĩ (U) is a subset Ũ of X̃ which we call lifting of U . As shown in [8, 10.5.2-4]:

Lemma 1.3.33. With the above notations:

1. The set Ũ of all liftings Ũ for U ∈ U is a base for the topology of X̃.

2. If f : Z → X is a continuous map and Π1f : Π1Z → Π1X lifts to a morphism of groupoids

f ′ : Π1Z → G, then f̃ = f ′ob : Z → X̃ is continuous and is a lifting of f .

3. If p : X̃ → X is a covering map, the topology of X̃ is that of X lifted by Π1p : Π1X̃ → Π1X.

Moreover:

Proposition 1.3.34. The lifted topology is the only topology on X̃ such that:

1. p : X̃ → X is a covering map.

2. There is an isomorphism rG : G → Π1X̃ which is the identity on objects and such that the following

diagram quasi-commutes:

G
rG //

q
((

Π1X̃

Π1p

��
Π1X.

In particular rG itself is a covering morphism.
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For the complete proof, see [8, 10.5.5]. Here we only remember how rG is built: it is the identity on

objects; concerning morphisms, let α ∈ G (x̃, ỹ) and suppose q (α) ∈ Π1X (x, y). Let a : I → X be a path

in the homotopy class of q (α); then a induces a morphism Π1a : Π1I → Π1X such that (Π1a) (?) = q (α),

where ? is the unique element of Π1I (0, 1). Since I is 1-connected, Π1a lifts uniquely to a pointed

morphism a′ : (Π1I, 0)→ (G, x̃) (see [8, 10.3.3]); notice that a′ (?) = α: pictorially one has

G

q

��
Π1I

Π1a //

a′

55

Π1X.

By (2) of Lemma 1.3.33, ã := a′ob : I → X̃ is continuous and we can de�ne rG (α) = [ã].

Theorem 1.3.35 (Π1−equivalence). Let X be a locally path connected and semilocally 1-connected

space. Then the fundamental groupoid functor Π1 induces an equivalence of categories

Π1 : Cov (X) ' CovMor (Π1X) .

Proof. Recall that two categories C,D are equivalent when there are two functors F : C → D and

G : D → C such that F ◦ G ' idD and G ◦ F ' idC , i.e. there are natural transformations between

F ◦G, G ◦ F and idD, idC respectively.

Il p : Y → X is a covering map of topological spaces, then Π1p : Π1Y → Π1X is a covering morphism of

groupoids by Proposition 1.3.32. To show Π1 is an equivalence, we build a functor ρ : CovMor (Π1X)→
Cov (X) and prove that we can �nd natural transformations of functors idCovMor(Π1X) ' Π1 ◦ ρ and

idCov(X) ' ρ ◦Π1.

Let q : G → Π1X be a covering morphism of groupoids. As above, let X̃ := ob (G) and let p :=

qob : X̃ → X. By Proposition 1.3.34, there is a topology on X̃ making p into a covering map and there is

an isomorphism rG : G → Π1X̃. This de�nes ρ on objects.

Now let f : G → H be a morphism in CovMor (Π1X), i.e. we have covering morphisms q, s such that

this diagram quasi-commutes:

G
f //

q

((

H
s

uu
Π1X.

Let U be the family of all open, path connected subsets U of X such that the inclusion Π1U ↪→ Π1X is

trivial (recall that X is semilocally 1-connected). As explained above, the cover U lifts to covers Ũq and
Ũs of X̃ = ob (G) and Ỹ = ob (H) respectively. Let x̃ ∈ X̃ and suppose Ũs ∈ Ũs is an element containing

f (x̃). Then U = s
(
Ũs

)
belongs to U and U lifts to an element Ũq ∈ Ũq containing x̃. Moreover

f
(
Ũq

)
= Ũs by de�nition. So f : X̃ → Ỹ is continuous and the topology given to X̃ is compatible with

all morphisms in CovMor (Π1X). This de�nes ρ on morphisms.

The natural transformation idCovMor(Π1X) ' Π1 ◦ ρ is essentially given by the functor rG : G → Π1X̃
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described in Proposition 1.3.34: we need to show that the following diagram commutes

idCovMor(Π1X) (q)

f

��

rG // Π1 ◦ ρ (q)

Π1◦ρ(f)

��
idCovMor(Π1X) (s)

rH // Π1 ◦ ρ (s) .

By applying the de�nitions, it reduces to show that this other diagram quasi-commutes (we are interested

in the external square):

G
q

**
f

��

rG // Π1X̃

Π1q

tt
Π1fob

��

Π1X

H
s

44

rH
// Π1Ỹ .

Π1s

jj

And indeed: let α ∈ Gx̃ and let a : I → X such that a ∈ [q (α)], where q (α) ∈ Π1X and the source

of q (α) is x. Then a induces a morphism Π1a : Π1I → Π1X such that (Π1a) (?) = q (α) (it is the

same construction made also in Proposition 1.3.34). Moreover Π1a lifts uniquely to a pointed morphism

a′ : (Π1I, 0) → (G, x̃). Then rG (α) is the path ob (a′) : I → X̃. Next, let β = f (α) and apply the same

argument to �nd b′ : (Π1I, 0) → (H, f (x̃)) where b = fob (a). Since b′ is uniquely determined by b it

follows that rH (f (α)) = Π1fob (rG (α)).

Actually we have only shown that there is a natural transformation idCovMor(Π1X) =⇒ Π1 ◦ ρ, but
rG and rH are isomorphisms and those arrows may be reversed giving the inverse transformation.

Finally we need a natural transformation Θ: idCov(X) ' ρ◦Π1. But X̃ = ob
(

Π1X̃
)
and the topology

of X̃ is precisely the topology induced by a covering in Cov (X): indeed, if f is a morphism of covering

maps of X, i.e. we have two covering maps p, p′ making this diagram commute

Y
f //

p

&&

Z
p′

xx
X,

notice that Π1p : Π1Y → Π1X is a covering morphism of groupoids, so ρ (Π1p) = (Π1p)ob : Y → X.

Hence one wants a commuting diagram of the form

idCov(X) (p)

f

��

ΘY // ρ ◦Π1 (p)

ρ◦Π1(f)

��
idCov(X) (p′)

ΘZ // ρ ◦Π1 (p′) .
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By applying the de�nitions, it becomes (look at the external square):

Y
p

**
f

��

ΘY // Ỹ
(Π1p)ob

tt
ρ◦Π1(f)

��

X

Z

p′

55

ΘZ

// Z̃.
(Π1p

′)
ob

jj

Recalling that Ỹ = ob (Π1Y ) = Y and that Z̃ = ob (Π1Z) = Z, this diagram commutes exactly when the

dotted arrows are the identities and ρ◦Π1 (f) = f . Thus in this case we do not only have idCov(X) ' ρ◦Π1

but in fact idCov(X) = ρ ◦Π1.

Finally we need to prove the µ−equivalence.

Theorem 1.3.36 (µ−equivalence). Let X be locally path connected and semilocally 1-connected. Then

the monodromy µ induces an equivalence of categories

µ : Cov (X) ' Fct (Π1X,Set) .

Proof. We have already described µ in De�nition 1.3.23. To de�ne the inverse transformation we just

exploit the inverse of the R−equivalence 1.2.8 and the inverse of the Π1−equivalence 1.3.35: the compo-

sition ρ ◦R−1 does as µ−1.

For a direct construction of µ−1, i.e. without exploiting Π1 and R, see [23, 12.35] or [25, 7.3].

Example: failure of Theorem 1.3.35 when X is not semilocally locally 1-connected

In the following example, due to E. C. Zeeman (see [17, Ex. 6.6.14]), we describe a planar topological

space Z which is not locally 1-connected, that admits non-equivalent coverings but which induces equiv-

alent covering morphisms. In particular the functor Π1 of Theorem 1.3.35 fails to be an equivalence of

categories.

Let Z ⊆ R2 be the space given by the union Z = Z0 ∪ Z1 ∪ Z2:

• Z0 is the unit circle x2 + y2 = 1;

• Z1, the ��ngers� of Z, is the union of the segments joining the point (1, 0) ∈ Z0 to the family of

points (the �nails�) (3, 1/n), n = 1, 2, . . .;

• Z2, the �thumb� of Z, is the arc (x− 2)
2

+ y2 = 1 with y ≤ 0; its extremities are the points

z0 = (1, 0) and (3, 0).

Next, consider the space X ⊆ R2 given by the union
⋃4
n=0Xn:

• X0 = Z0, X1 = Z1;

• X2 is the union of the segments joining the point (−1, 0) with the family of points (−3,−1/n),

n = 1, 2, . . .;

• X3 is the arc (x− 1)
2

+ y2 = 4 with y ≤ 0; its extremities are the points (−1, 0) and (3, 0);
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Figure 1.3.1: Zeeman example

• X4 is the arc (x+ 1)
2

+ y2 = 4 with y ≥ 0; its extremities are the points (1, 0) and (−3, 0).

Finally, consider the space Y ⊆ R2 given by the union
⋃4
n=0 Yn:

• Y0 = Z0, Y1 = Z1, Y2 = Z2, Y3 = X2;

• Y4 is the arc (x+ 1)
2

+ y2 = 1 with y ≥ 0; its extremities are the points (−1, 0) and (−3, 0).

Figure 1.4.1 perfectly gives the idea. Remark that overlapping the three spaces, the three points

x0, y0, z0 coincide.

Now we de�ne two coverings f : X → Z and g : Y → Z:

• under f , X0 is wrapped twice around Z0; both right and left �ngers of X are sent isometrically to

the �ngers of Z; both right and left thumb of X are sent by some homeomorphism to the thumb of

Z;

• under g, Y0 is wrapped twice around Z0; both right and left �ngers of Y are sent isometrically to

the �ngers of Z; both right and left thumb of Y are sent isometrically to the thumb of Z.

It is possible to write down explicitly all involved homeomorphisms but the intuitive idea is even clearer.

It is also clear that both f and g are covering maps as de�ned in 1.3.25 and that f∗ (π1 (X,x0)) =

g∗ (π1 (Y, y0)): with a bit more work it is possible to show that the covering morphisms of the fundamental

groupoid Π1Z induced by f and g are equivalent in CovMor (Π1Z). Moreover we can �nd a function

f̃ : (X,x0)→ (Y, y0) such that g ◦ f̃ = f : let x ∈ X and let γ be a path in X from x0 to x. Then f ◦ γ
is a path in Z from z0 to f (x). By the unique path lifting property (Lemma 1.3.29), we can lift this

path to a path in Y from y0 to some point ỹ such that g (ỹ) = f (x). Now let γ′ be another path in X

from x0 to x. Then γ · γ′−1 is a loop in X based at x0, hence [f ◦ γ] · [f ◦ γ′] ∈ f∗ (π1 (X,x0)). Since

f∗ (π1 (X,x0)) = g∗ (π1 (Y, y0)), it follows that the path (f ◦ γ) · (f ◦ γ′)−1
lifts to a loop in Y based at
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y0. This implies that, if we lift f ◦ γ′ to a path in Y starting at y0, then the �nal point of this path is

also ỹ. Thus ỹ depends only on x (and not on the choice of γ) and the transformation f̃ : X → Y , x 7→ ỹ

is well de�ned. Then certainly g ◦ f̃ = f (and f̃ (x0) = y0).

But f̃ fails to be continuous and so f, g cannot be isomorphic, indeed: in X the sequence of right-hand

�nger nails converges to x1, but their images under f̃ do not converge to y1 which is easily seen to be the

image of x1.

It is worth noticing that if Z had been locally 1-connected, the construction above would have given

a necessarily continuous function f̃ : X → Y such that g ◦ f̃ = f , see for example [24, Th. V.5.1].
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Chapter 2

THE TOPOLOGICAL

FUNDAMENTAL GROUP

The question we focus on this chapter is the following: is it possible to endow the fundamental group of

a topological space X with a group topology?

For the �rst attempt, one may try to use the quotient topology induced by the quotient map Ω (X,x)→
π1 (X,x). For sure this makes π1 (X,x) into a �group with topology� but it turns out that it is not enough

to get a �topological group� (i.e. a group with a topology making both inversion and multiplication

continuous). Examples of such patological spaces are quite complicated but can be found in literature:

the classical example is the Hawaiian Earring (see Section 2.2 hereunder) or the ones in [4]. To have a true

topological group, one has to work harder. We will get to this object in three steps: �rst we introduce

the category of quasitopological groups (i.e. groups with a topology making inversion continuous and

multiplication continuous just component-wise). Next, we de�ne the quasitopological fundamental group

πqtop1 (X,x) and �nally by adjunction we will obtain the topological fundamental group πτ1 (X,x).

In the �nal section we introduce the notion of Top−groupoid and Top−functor to extend the above

construction to groupoids getting the topological fundamental groupoid Πτ
1X.

2.1 A TOPOLOGY FOR THE FUNDAMENTAL GROUP

2.1.1 The free (Markov) topological group and the functor τ

Let us recall brie�y some basic de�nitions about free products of groups and free groups. For proofs and

details we refer to [24, III.4-5] and [22, III.3].

De�nition 2.1.1. Let {Gi : i ∈ I} be a collection of groups and assume there is given for each index i

a homomorphism φi : Gi → G, where G is a �xed group. We call G the free product of the groups Gi's

(with respect to the homomorphisms φi's) if and only if φ satis�es this universal property: for any group

H and any homomorphism ψi : Gi → H, i ∈ I, there exists a unique homomorphism f : G→ H making

27
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the following diagram commutative, i.e. f ◦ φi = ψi for all i ∈ I:

Gi
φi

xx

ψi

&&
G

f // H.

It is a standard result that the free product exists and is unique up to isomorphism. It is customary to

denote the free product of {(Gi, φi)}i∈I by
∐
i∈I Gi. In particular one should keep in mind how elements

of
∐
Gi are e�ectively done: an element of the free product is called a word and is nothing but a string

x1 ∗ · · · ∗ xn of �nite lenght where each xi, i = 1, . . . , n, belongs to one of the Gk's for some k ∈ I and

no xi is an identity element; if xi, xi+1 ∈ Gk, the substring xi ∗ xi+1 is substituted with the element

xi · xi+1; if, after the previous contraction, there appears the substring xi−1 ∗ 1 ∗ xi+1, it is substituted

with xi−1 ∗ xi+1. Product in
∐
Gi is given simply by juxtaposing two words; inverse elements are the

obvious ones. With such a construction, the homomorphisms φi : Gi → G may conveniently be seen as

immersions.

Actually, the notion of free product of groups may be restated in categorical language. In such a

case let I be a category of indeces (for instance, a pre-ordered set), Grp the category of groups and

α : I → Grp a functor. Then the free product of the family of groups {α (i) = Gi : i ∈ I} is the inductive
limit of α, i.e. the element lim

−→
α satisfying this universal property: for all H ∈ Grp and all family of

compatible morphisms {fi : α (i)→ X}i∈I such that fi = fj ◦ f (s) for all s ∈ I (i, j), then there exists a

unique morphism of group ψ : lim
−→

α→ H such that fi factorizes through lim
−→

α for each i. Pictorially one

gets this commutative diagram:

Gi

εi
$$

fi

,,
α(s)

��

lim
−→

α
ψ // H

Gj

εj
;;

fj

22

,

where εi's are the immersion homomorphisms. Let us remark also that if I is a discrete category, the

compatibility condition trivially holds for all fi, fj .

It is possible to generalize the construction of the free product of groups in order to obtain the free

group over an arbitrary set S:

De�nition 2.1.2. Let S be an arbitrary set. The free group over the set S is the couple (F, φ) where

F is a group and φ : S → F is a function such that this universal property holds: for any group H and

any function f : S → H there exists a unique homomorphism ψ : F → H making the following diagram

commute, i.e. ψ ◦ φ = f :

S
φ

{{

f

##
G

ψ // H.

As above, showing such an F exists and is unique up to isomorphism is a standard routine matter.

For instance, let us point out just how one builds F : let S = {xi : i ∈ I}, hence S =
⋃
i∈I {xi}. Consider
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Fi := {xni : n ∈ Z} which is nothing but the in�nite cyclic group generated by xi, and consider for all

i ∈ I the obvious inclusion map φi : {xi} ↪→ Fi. Then (Fi, φi) is the free group on the set {xi}. Finally,
one gets the free group F by taking the free product of the family of groups {Fi}i∈I . Hence an element of

F can be expressed uniquely in the form xn1
1 ∗ · · · ∗ x

nk
k where x1, . . . , xk are elements of S such that any

two successive elements are di�erent and n1, . . . , nk are all non-zero integers. Usually S is just a subset

of F and φ reduces to be the inclusion.

Again, the notion of free group may be restated in categorical language (see [22, VI.1] for details).

In such a case let for : Grp → Set be the forgetful functor and de�ne L : Set → Grp to be the left-

adjoint to for. Hence, there is a bijection Set (S, for (G)) ∼= Grp (L (S) , G) functorial in S ∈ Set and

G ∈ Grp; clearly nothing ensures that L exists, but, in this case, building such a bijection is easy: group

homomorphisms from the free group L (S) (as constructed above) and a group G correspond precisely to

maps from the set S to the set for(G) because each homomorphism L (S)→ G is fully determined by its

action on generators. So far, for each set S ∈ Set, the free group generated by S is de�ned to be L (S).

Now we build a free topological group.

The idea is to build a left-adjoint FM : Top→ TopGrp to the forgetful functor for : TopGrp→ Top

from the category of topological groups to the category of topological spaces. Unfortunately, things are

by far harder than the case of the free group over a set S previously discussed. To prove such a left-adjoint

exists, we have to apply the General Adjoint Function Theorem (GAFT), a powerful (and di�cult) result

which may be found in [22, V.6 Th. 2] (the reader may �nd of some help also [9]). Thanks to the GAFT,

it is possible to show that:

Theorem. The forgetful functor for : TopGrp→ Top admits a left-adjoint FM : Top→ TopGrp:

Top

FM
((

TopGrp

for

hh
.

This theorem is in no way constructive: see [19], [26], [27].

De�nition 2.1.3. For any topological space Y , the topological group FM (Y ) is the free (Markov)

topological group generated by Y .

Remark 2.1.4. Beyond the technical di�culties on the existence of FM , if Y is any topological space,

FM (Y ) is the unique topological group endowed with a continuous map σ : Y → FM (Y ) satisfying

this universal property: for any map f : Y → G to a topological group G there is a unique continuous

morphism f̃ : FM (Y )→ G making the following diagram commute, i.e. f̃ ◦ σ = f :

Y

σ

yy

f

##
FM (Y )

f̃ // G.

In particular, any continuous mapping from a topological space Y to a topological group G factors

uniquely through FM (Y ) , i.e. f can be extended to a continuous homomorphism f̃ : FM (Y )→ G. The

underlying set of FM (Y ) is the free group generated by Y seen as a set and σ is the (continuous) canonical

injection of generators (see [26]).
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For the proof of the following lemma, see [31, 3.9].

Lemma 2.1.5. Let X,Y be topological spaces.

1. If ψ : X → Y is a quotient map, then so is FM (ψ) : FM (X)→ FM (Y ).

2. FM (Y ) is discrete if and only if Y is discrete.

A group with topology is a group G with a topology but no restrictions are made on the continutity of

the operations. Let TG the topology of such a group and denote GrpwTop the category of groups with

topology and continuous homomorphisms. Given G ∈ GrpwTop, let mG : FM (G) → G be the obvious

multiplication epimorphism and give G the quotient topology with respect to mG; hence the resulting

group, denoted τ (G), is a group with topology: the underlying group is G and a subset U ⊆ G is open

exactly when m−1
G (U) is open. But actually we have:

Lemma 2.1.6. With the above construction τ (G) is a topological group.

Proof. The proof follows from this general fact: if p : H → G is an epimorphism of groups and H is

a topological group, the group G becomes a topological group when it is endowed with the quotient

topology induced by p, indeed: it is a well known result that Ker (p) is a normal subgroup of H and

H/Ker (p) ∼= Im (p) = G; hence G is a topological group (cfr. [1, 1.5.3 and 1.5.13]).

Remark 2.1.7. The identity ĩd : G → τ (G) is continuous since it is the composition of continuous maps

mG ◦ σ : G→ FM (G)→ τ (G).

Lemma 2.1.8. The topological group τ (G) enjoys this universal property: if f : G→ H is any continuous

homomorphism to a topological group H, then f : τ (G)→ H is also continuous.

Proof. The homomorphism f : G→ H induces the homomorphism f̃ : FM (G)→ H which is continuous

by the universal property of the free (Markov) groups. Hence one gets this commutative diagram (be

careful: f denotes both functions from G and τ (G)):

G
σ //

ĩd

%%

FM (G)

mG

��

f̃

%%
τ (G)

f // H,

since mG is continuous, f : τ (G)→ H is continuous too.

It follows straightforward from this Lemma that TopGrp is a full subcategory of GrpwTop. More-

over:

Lemma 2.1.9.

1. The functor τ : GrpwTop→ TopGrp is left adjoint to the natural inclusion functor i : TopGrp ↪→
GrpwTop, i.e. TopGrp (τ (G) , H) ∼= GrpwTop (G, i (H)) functorially in G ∈ GrpwTop and

H ∈ TopGrp:

GrpwTop

τ
))
TopGrp
G g

i

jj
.
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2. By setting H = τ (G), the adjunction bijection assigns to the continuous identity id : τ (G)→ τ (G)

the re�ection map rG : G→ τ (G) which is the continuous identity homomorphism.

Proof. 1. Let f : G→ H be any continuous map in GrpwTop. De�ne τ to be the identity on underlying

groups and homomorphisms. To show τ is a well de�ned functor, it is enough to check that τ (f) : τ (G)→
τ (H) is continuous. Indeed, remark that FM (f) : FM (G) → FM (H) is a continuous homomorphism

by the universal property of the free (Markov) group and this square of continuous homomorphisms

commutes:

FM (G)
FM (f) //

mG

��

FM (H)

mH

��
τ (G)

τ(f) // τ (H) .

Since mG and mH are quotient and FM (f) is continuous, τ (f) must be continuous too.

2. The natural bijection characterizing the adjunction is built after the diagram of Lemma 2.1.8:

TopGrp (τ (G) , H)
∼=−→ GrpwTop (G, i (H)), f 7→ f ◦ rG. By letting H = τ (G) and f = id : τ (G) →

τ (G), rG turns out to be the continuous identity morphism.

Remark that we can de�ne also the identity map id∗ : τ (G)→ G, but it does not need to be continuous:

we can think to τ as a functor which makes a group with topology into a topological group by removing

the smallest number of open sets from TG in order to obtain a topological group.

Proposition 2.1.10. The functor τ has the following properties:

1. It preserves quotient maps.

2. If G ∈ GrpwTop, then G is a topological group if and only if G = τ (G).

3. If G ∈ GrpwTop, then G is discrete if and only if τ (G) is discrete.

Proof. 1. Suppose f : G → H is a homomorphism which is also a topological quotient map between

groups with topology. Since FM preserves quotient maps (Lemma 2.1.5), FM (f) is a quotient map,

hence top and vertical arrows of diagram in the above Proposition are quotient; this forces τ (f) to be

quotient too.

2. If G is a topological group, the identity id : G → G is continuous and it induces the continuous

identity id∗ : τ (G) → G (as above, choose H = G and f = id in the diagram of Lemma 2.1.8). Since

rG : G → τ (G) is also the continuous identity homomorphism by Lemma 2.1.9, rG is the continuous

inverse of id∗. Hence G and τ (G) are homeomorphic and the result follows. The other direction is

trivial.

3. Since the identity rG : G → τ (G) is continuous, G is discrete whenever τ (G) is. Conversely, if G

is discrete, then so is FM (G) and its quotient τ (G) (Lemma 2.1.5).

2.1.2 Quasitopological groups

So far we have only built τ (G) as the quotient of a free topological group starting from any group with

topology; but we have not given an explict description of τ (G) yet and actually we have already observed

that it may be quite complicated (for example, in [29] there are given many di�erent descriptions of such

a group).
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Things are a bit easier if we limit our attention to a special class of groups with topology, namely:

quasitopological groups. If G is a quasitopological group (i.e. inversion is continuous and multiplication

is continuous component-wise), let c (G) be the underlying group of G with the quotient topology with

respect to multiplication µG : G×G→ G so that µG : G×G→ c (G) is continuous.

Proposition 2.1.11. Let qTopGrp be the category of quasitopological groups (with the obvious mor-

phisms). Then c : qTopGrp→ qTopGrp is a functor when de�ned to be the identity on morphisms.

Proof. For G ∈ qTopGrp, consider the diagram:

G×G //

µG

��

G×G

µG

��
c (G) // c (G) .

Let g ∈ c (G) and de�ne the top map as (a, b) 7→
(
b−1, a−1

)
. This function is continuous since G is a

quasitopological group. The diagram commutes when the bottom map is inversion and since the vertical

maps are quotients, this operation in c (G) is continuous.

Using as top maps (a, b) 7→ (ga, b) and (a, b) 7→ (a, bg), the diagram commutes when the bottom

map is left multiplication by g and right multiplication by g respectively and since the vertical maps are

quotients, these operations in c (G) are continuous too.

Similarly one shows that c(f) = f : c (G) → c (G′) is continuous for each continuous homomorphism

f : G→ G′ of quasitopological groups.

Thus by applying c to any quasitopological group, we get again a quasitopological group.

Proposition 2.1.12. Let G be a quasitopological group. Then:

1. The identity homomorphisms G→ c (G)→ τ (G) are continuous.

2. Then τ (c (G)) = τ (G).

3. Then G is a topological group if and only if G = c (G).

Proof. 1. Let e be the identity of G. Consider the commuting diagram

G× {e} �
� //

µG ∼=
��

G×G
rG×rG //

µG

��

τ (G)× τ (G)

µτ(G)

��
G // c (G) // τ (G) .

Left vertical map is a homeomorphism; central and right vertical maps are quotient maps; top identities

are continuous. Hence the identities in the bottom are continuous too by the universal property of

quotient spaces.

2. Applying τ to id : G→ c (G) gives id1 : τ (G)→ τ (c (G)) and id1 is bijective and continuous.

Next, notice that by Lemma 2.1.9 we have a pair of adjoint functors

qTopGrp

τ
**
TopGrp
G g

i

jj
,
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so we get the bijection

qTopGrp (c (G) , i (τ (G))) = qTopGrp (c (G) , τ (G)) ∼= TopGrp (τ (c (G)) , τ (G)) .

By (1), id2 : c (G)→ τ (G) is continuous and this map corresponds by adjunction to id3 : τ (c (G))→ τ (G),

which is clearly bijective and continuous. So id1 and id3 are both continuous, bijective and are inverse

of each other. Hence τ (G) and τ (c (G)) are homeomorphic through the identity, i.e. τ (G) = τ (c (G)).

3. If G is a topological group, then G = τ (G) by (2) of Lemma 2.1.10 and by (1) both identities

τ (G)→ c (G)→ τ (G) are continuous; moreover they are inverse of each other so c (G) is homeomorphic

through the identity to τ (G), i.e. τ (G) = c (G). Conversely, if G = c (G) ∈ qTopGrp, then µG : G×G→
c (G) = G is continuous and so G is a topological group.

Proposition 2.1.13. If {Gλ} is a family of quasitopological groups, each with underlying group G and

topology TGλ , then the topology
⋂
λ TGλ on G makes G into a quasitopological group.

Proof. It is a well known result in point-set topology that
⋂
λ TGλ is actually a topology on G. Now let

us take A ∈
⋂
λ TGλ and show that inversion i : G→ G, g 7→ g−1, is continuous: A ∈ TGλ for all λ, hence

i−1 (A) is open in G for all λ; so i−1 (A) ∈
⋂
λ TGλ . The same argument works for both right and left

multiplications.

It is interesting to notice that

Corollary 2.1.14. If G ∈ qTopGrp, then G and τ (G) have the same open subgroups.

For the proof we refer to [6, 3.9].

2.1.3 The quasitopological fundamental group πqtop1 (X)

For a topological space X, recall that π0 (X) denotes the set of path components of X. The path

component space of X, denoted by πqtop0 (X), is the set π0 (X) with the quotient topology induced by the

equivalence relation ∼, where, for any two points in X, one sets x ∼ y if and only if they belong to the

same path component of X.

Remark 2.1.15. It immediately follows from the de�nition that πqtop0 (X) is discrete whenever the path

components of X are open.

Since any map f : X → Y induces a continuous map f∗ : πqtop0 (X) → πqtop0 (Y ) taking the path

component of x in X to the path component of f (x) in Y , we obtain a functor πqtop0 : Top→ Top.

De�nition 2.1.16. The path component space πqtop1 (X,x0) := πqtop0 (Ω (X,x0)) is the quasitopological

fundamental group of the based space (X,x0). It is characterized by the canonical map h : Ω (X,x0) →
πqtop1 (X,x0) identifying homotopy classes of loops.

Remark 2.1.17. Since multiplication and inversion in the fundamental group are induced by the continuous

operations (α, β) 7→ α∗β and α 7→ α−1 in the loop space Ω (X,x0), it follows from the universal property of

quotient spaces that πqtop1 (X,x0) is a quasitopological group; for instance, let us check that the inversion
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ĩ : πqtop1 (X,x0)→ πqtop1 (X,x0) is continuous: one gets the diagram

Ω (X,x0)
i //

h
��

Ω (X,x0)

h
��

πqtop1 (X,x0)
ĩ // πqtop1 (X,x0) .

Clearly it commutes and since all vertical and top arrows are continuous, ĩ must be continuous too.

Analogously, one checks component-wise continuity for multiplication.

Moreover, any based map f : (X,x0)→ (Y, y0) induces a continuous group homomorphism

f∗ = πqtop0 (Ω (f)) : πqtop1 (X,x0)→ πqtop1 (Y, y0) ,

then we obtain a functor πqtop1 : Top∗ → qTopGrp.

The isomorphism class of the quasitopological fundamental group is independent of the choice of

the basepoint (see below Lemma 2.1.20), so we can write πqtop1 (X) if there is no risk of confusion.

Unfortunately πqtop1 (X) may fail to be a topological group (see the example of the Hawaiian Earring

exposed in Section 2.2); but qTopGrp is a full subcategory of GrpwTop, hence the functor πτ1 :=

τ ◦ πqtop1 : Top∗ → TopGrp is well de�ned. This new functor assigns to a based space X a topological

group πτ1 (X) whose underlying group is π1 (X); remark also that since the identity morphism πqtop1 (X)→
πτ1 (X) is continuous, so is Ω (X)→ πqtop1 (X)→ πτ1 (X).

2.1.4 The topological fundamental group πτ1 (X)

De�nition 2.1.18. The topological fundamental group of the space X is the topological group

πτ1 (X) := τ
(
πqtop1 (X)

)
.

According to our previous construction of τ , the topological fundamental group is the quotient of the

free topological group FM
(
πqtop1 (X)

)
with respect to the multiplication morphism; but actually it does

not give an explicit characterization of πτ1 (X). Next propositions describe some properties of this group.

Proposition 2.1.19. The topology of πτ1 (X,x0) is the �nest group topology on π1 (X,x0) such that

h : Ω (X,x0)→ π1 (X,x0) is continuous.

Proof. Suppose π1 (X,x0) is endowed with a topology making it into a topological group and such that

h : Ω (X,x0) → π1 (X,x0) is continuous. According to the diagram, the identity id1 : πqtop1 (X,x0) →
π1 (X,x0) is continuous by the universal property of quotient spaces:

Ω (X,x0)

πqtop1

��

h

((
πqtop1 (X,x0)

id1 // π1 (X,x0) ;

moreover π1 (X,x0) is a topological group and thus we can exploit the adjunction bijection

qTopGrp
(
πqtop1 (X,x0) , π1 (X,x0)

) ∼= TopGrp
(
τ
(
πqtop1 (X,x0)

)
, π1 (X,x0)

)
,
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so that id1 corresponds to the the continuous identity id2 : πτ1 (X,x0) = τ
(
πqtop1 (X,x0)

)
→ π1 (X,x0);

then the topology of πτ1 (X,x0) is �ner than that of π1 (X,x0).

Proposition 2.1.20. If γ : I → X is a path, then πτ1 (X, γ (1)) → πτ1 (X, γ (0)), [α] →
[
γ ∗ α ∗ γ−1

]
is

an isomorphism of topological groups. Consequently if x0, x1 lie in the same path component of X, then

πτ1 (X,x0) ∼= πτ1 (X,x1).

Proof. The continuous operation cγ : Ω (X, γ (1)) → Ω (X, γ (0)) given by α → γ ∗ α ∗ γ−1 induces the

continuous isomorphism Γ: πqtop1 (X, γ (1)) → πqtop1 (X, γ (0)) given by [α] 7→
[
γ ∗ α ∗ γ−1

]
. The inverse

is continuous since cγ−1 is continuous. Thus Γ is a continuous isomorphism of quasitopological groups

and τ (Γ) is a continuous isomorphism of topological groups.

Remark 2.1.21. We have shown in Proposition 2.1.12 that πτ1 (X) = πqtop1 (X) if and only if πqtop1 (X)

is already a topological group. Thus if πqtop1 (X) fails to be a topological group, the topology of πτ1 (X)

is strictly coarser than that of πqtop1 (X); however thanks to Corollary 2.1.14, πqtop1 (X) and πτ1 (X) have

the same open subgroups.

The following proposition characterizes the discreteness of πτ1 (X) for path connected spaces:

Proposition 2.1.22. For any path connected space X, the following are equivalent:

1. πτ1 (X) is a discrete group.

2. πqtop1 (X) is a discrete group.

3. For every null-homotopic loop α ∈ Ω (X) there is an open neighborhood U of α in Ω (X) containing

only null-homotopic loops.

Proof. 1⇔ 2 is a special case of 2.1.10. 2⇔ 3 follows since πqtop1 (X) is a quotient space over Ω (X).

It follows straightforward that if πqtop1 (X) is discrete, then πqtop1 (X) = πτ1 (X) and thus the quasitopo-

logical fundamental group is actually a topological group: this is the case of �simple� (i.e. semilocally

1-connected) topological spaces one usually �nds in everyday life.

Even though this last proposition gives a link between πτ1 (X) and πqtop1 (X), at least when one of

these groups is discrete, one usually has explicitly neither πτ1 (X) nor πqtop1 (X). Then it is useful the

following theorem which characterizes discreteness in terms of local properties of X itself; the proof may

be found in [10]:

Theorem 2.1.23. Suppose X is path connected. The following are equivalent:

1. πτ1 (X) is discrete.

2. X is locally path connected and semilocally 1-connected.

3. X admits universal covering.

Unfortunately πqtop1 (X) does not need to preserve �nite products: troubles arise because the product

of quotient maps is not necessarily a quotient map (see [24, A.3] for a simple counterexample or Theorem

3.1.19 hereunder for a harder one). On the other hand one has:



36 CHAPTER 2. THE TOPOLOGICAL FUNDAMENTAL GROUP

Proposition 2.1.24. For any based spaces X,Y there is a natural isomorphism

Φ: πτ1 (X × Y )→ πτ1 (X)× πτ1 (Y )

of topological groups.

Proof. The projections X × Y → X and X × Y → Y induce the continuous group isomorphism

Φ: πτ1 (X × Y ) → πτ1 (X) × πτ1 (Y ) given by Φ ([(α, β)]) = ([α] , [β]). Now we need to prove that the

inverse of Φ is continuous also. Let x0 and y0 be the basepoints of X and Y respectively and cx0 , cy0

the constant loops. The maps i : X → X × Y , x 7→ (x, y0), and j : Y → X × Y , y 7→ (x0, y) induce the

continuous homomorphisms i∗ : πτ1 (X) → πτ1 (X × Y ), [α] 7→ [(α, cy0)], and j∗ : πτ1 (Y ) → πτ1 (X × Y ),

[β] 7→ [(cx0 , β)]. Let µ be the (continuous) group multiplication of the topological group πτ1 (X × Y ).

Then the composition µ ◦ (i∗ × j∗) is the continuous inverse of Φ.

2.2 THE HAWAIIAN EARRING

In this this section we give a (quite long) example of a �wild� topological space H whose quasitopological

fundamental group πqtop1 (H) fails to be a topological group.

The Hawaiian Earring H ⊆ C is a topological space which is a countably in�nite union of circles that

are all tangent to a single line at the same point and whose radii tend to zero. This space is paradigmatic

in the sense that it is an example of all those patological phoenomena which usual theory is buil to

prevent. In Figure 2.2.1 there are represented the �rst n circles.

Figure 2.2.1: The �rst n circles of the Hawaiian Earring

For example, it is a standard exercise to show that the Hawaiian Earring is compact and locally

path connected, but it is not semilocally 1-connected, hence it admits no universal covering; in [18] one

can �nd an example of two coverings over this space whose composition is not a covering (but it is a

semicovering, cfr. the second example in Section 3.1.5, De�nition 3.1.5 and Theorem 3.1.11).

In this section we �rst �nd the (not at all obvious) fundamental group of H, next we show it is not a free

group and �nally we prove that the topology induced by the quotient projection h : Ω (H, 0)→ πqtop1 (H)

does not make πqtop1 (H) into a topological group.

De�nition 2.2.1. For each positive integer n, let Cn ⊆ C be the circle {z ∈ C : |z − 1/n| = 1/n}. The

topological space H =
⋃∞
n=1 Cn is called Hawaiian Earring.
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Our aim is to provide a description of π1 (H, 0), where 0 is the �wild point� where all circles meet.

The base point of H and of all subspaces of H considered in our discussion will always be 0, so in the

sequel we will write for brevity π1 (H) meaning π1 (H, 0), π1 (Cn) meaning π1 (Cn, 0) and so on.

It is a known fact that if X is the wedge of a �nite number of circles, say n, each loop can only go

around �nitely many circles (because a loop has compact image) and consequently π1 (X) is the free

product on the obvious generators (see, for example, [24, Ex. IV.3.4]), in particular π1 (X) '
∏n
i=1 Z. It

may be tempting to think that the fundamental group of H is isomorphic to the free product of in�nitely

many copies of Z, but it is not correct. Indeed, let f : I → H be a loop that goes around C1 on the middle

third part of the unit interval, around C2 on the middle third part of each of the remaining intervals and

so on: this de�nes a continuous map I → H and in particular such a loop wraps at least one time on

each circle of H (remark that f−1 (0) is the triadic Cantor set on the unit interval).

Let Hn =
⋃n
i=1 Cn, then π1 (Hn) =: Fn is isomorphic to the free product on n generators l1, . . . , ln,

where li is the homotopy class of a loop that wraps counterclockwise around Ci once, so that li is a

generator of π1 (Ci); generators l1, . . . , ln will also be called �symbols� or �letters�.

For each n > 0 we have a retraction H → Hn collapsing the loops Ci's with i > n to the point 0.

Therefore we may view Fn as a subgroup of π1 (H), and the retraction induces a map from π1 (H) to Fn.

Moreover the restricted retraction Hn → Hn−1 induces a group homomorphism Fn → Fn−1 �xing li for

i < n and mapping ln to 1: in practice, such a homomorphism simply deletes each occurence of the letter

ln.

Thus the family of groups {Fn} forms a projective system of groups and we get a canonical group

homomorphism

φ : π1 (H)→ F∞ := lim
←−n

Fn.

Recall (see, for example, [22, III.4]) that the projective limit F∞ is the subgroup of the product
∏∞
i=1 Fi

consisting of those sequences (fi)i for which the map Fi → Fi−1 sends fi to fi−1 for all i > 1; for instance,

one checks that
(
l1, l1l

2
2, l1l

2
2l

3
3, . . .

)
∈ F∞, while (l1, 1, 1, . . .) /∈ F∞.

Moreover notice that there is a natural embedding Fn
� � // F∞ , li 7→ (1, . . . , 1, li, li, . . .) for each i ≤ n.

It will turn out that φ maps π1 (H) isomorphically to a subgroup π of F∞ which can be rouhgly

described as the subgroup consisting of those sequences (fi)i ∈ F∞ for which the following condition

holds for each j ≥ 1: the number of times lj occurs in the reduced word representation of fi is a bounded

function of i. More precisely:

De�nition 2.2.2. De�ne the j-weight wj (x) of an element x ∈ Fi as follows: �rst write x as a reduced

word x = g (1)
a1 g (2)

a2 · · · g (s)
as , where each ak is a non-zero integer and g is a map {1, 2, . . . , s} →

{l1, . . . , li} with g (k) 6= g (k + 1) for any k. Finally put wj (x) =
∑
g(k)=lj

|ak|.

For example take x = l1l
3
2l
−5
3 l2 ∈ F3: then w1 (x) = 1, w2 (x) = 4 and w3 (x) = 5, while wk (x) = 0

for all k > 3.

Notice that wj (x) is well de�ned since the representation of x as a reduced word is unique.

De�nition 2.2.3.

1. Let π be the subgroup of F∞ consisting of all sequences x = (xi)i ∈ F∞ such that for every integer

j ≥ 1, the function N≥1 → N de�ned by i 7→ wj (xi) is bounded.

2. For j > 0 de�ne the group F≥j = {(xi)i ∈ F∞ : wk (xi) = 0 for all i and all k < j} and the group

π≥j = π ∩ F≥j .



38 CHAPTER 2. THE TOPOLOGICAL FUNDAMENTAL GROUP

Actually, what we have de�ned in (1) is nothing but a family of sequences in N: for each j, there

remains de�ned the sequence (wj (xi))i where the integer wj (xi) tells how many times the letter lj

appears in the i-th word of the sequence x. By de�nition all such sequences are non-decreasing and the

subgroup π contains the elements x ∈ F∞ for which the non-decreasing sequences wj (x) are eventually

constant for all j.

For example:

•
(
l1, l1l

2
2, l1l

2
2l

3
3, . . .

)
∈ π because for j = 1 one gets the sequence (1, 1, 1, . . .) which is eventually

constant, for j = 2 one gets the sequence (0, 2, 2, . . .) which is eventually constant, for j = 3 one

gets the sequence (0, 0, 3, 3, . . .), and so on;

•
(
1, l1l2l

−1
1 , l1l

2
2l1l3l

−1
1 l−1

2 l−1
1 , l1l

2
2l1l

2
3l1l4l

−1
1 l−1

3 l−1
1 l−1

2 l−1
1 , . . .

)
∈ F∞ r π because for j = 1 one gets

the sequence (0, 2, 4, 6, . . .) which is not bounded.

Notice also that in the sequences contained in F≥j the symbols l1, . . . , lj−1 never appear and consequently

the �rst j − 1 terms of these elements are trivially 1. Moreover, by de�nition, Fj−1 ∩ π≥j = ∅ for all j.

Lemma 2.2.4. The group π is the free product Fj−1 ∗ π≥j of its subgroups Fj−1 and π≥j.

Proof. Before the proof, it is worth noticing that, in the statement, Fj−1 is identi�ed with its image in

the embedding Fj−1
� � // F∞ .

The subgroup of π generated by Fj−1 and π≥j is their free product because of the unique reduced

word representation in any free group Fi and because Fj−1 ∩ π≥j = ∅. So Fj−1 ∗ π≥j ⊆ π. Conversely, if
x = (xi)i ∈ π, then the number of uccurrences of elements of Fj−1 in the reduced representation of xi is

a bounded function of i. Again by uniqueness of the reduced word representation, it follows that x is a

�nite poduct of elements of Fj−1 and of π≥j .

Theorem 2.2.5. The map φ : π1 (H)→ π is a group isomorphism.

Proof. First step: the image of the homomorphism φ : π1 (H)→ F∞ is π.

Let f : I → H be a loop at 0. By van Kampen theorem ([24, IV.2]), π1 (H) = F1 ∗ π1 (C≥2), where

C≥k =
⋃
n≥k Cn. So, after a homotopy, we may assume f is a composition of loops f0e1f1e2f2 · · · esfs

where ei are loops in C1 and fi are loops in C≥2. We have w1 (φ (fi)) = 0 and for n > 1 this implies

w1 (φ (f)n) ≤
∑s
i=1 w1 (φ (ei)); since this last term does not depend on n, the sequence (w1 (φ (f)n))

n
is

eventually constant. Repeating the same argument shows that for every i, the sequence (w2 (φ (fi)n))
n

is eventually constant. By induction, we obtain that φ (f) ∈ π, so the image of φ lies in π.

Conversely, let x = (xi)i ∈ π. We will build a loop f : I → H such that the homotopy class of f

is mapped to x by φ. By Lemma 2.2.4, we can write x as y0e1y1e2y2 · · · esys with ei ∈
{
l1, l
−1
1

}
and

yi ∈ π≥2. Acordingly, we divide the unit interval I in 2s+ 1 intervals Ii :=
[

i
2s+1 ,

i+1
2s+1

]
, 0 ≤ i ≤ 2s, and

de�ne a map f1 : I → H to be zero on the intervals I2i and goes around C1 in the appropriate direction

on the intervals I2i−1, so that the homotopy class of the loops f1|I2i−1
is ei for i = 1, . . . , s.

Next we break up yi ∈ π≥2 into elements
{
l2, l
−1
2

}
and elements in π≥3 and divide the interval I2i

consequently. So we de�ne a map f2 that only di�ers from f1 on subitervals of I2i, where it gives l2-paths

in yi. This way we get a uniformly convergent sequence (fi)i of loops in H which converges to a continuous

loop f in H. By construction the image of φ (f) in Fn is xn, so φ (f) = x.

Second step: the map φ : π1 (H)→ F∞ is injective.

The proof of this result is somewhat non-trivial and we skip it: it may be found in [11].
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Thus, by Theorem 2.2.5 we obtain the intere description of the features of π1 (H): its elements may

be seen as irreducible in�nite words l
ni1
i1
· · · lnikik

· · · such that no generator lij appears more than �nitely

many times. Remark also that π1 (H) contains a subgroup canonically isomorphic to the free group over

the symbols {l1, l2, . . .}.
Finally, notice that, contrary to the behaviour of �simple� spaces commonly studied, we have that:

Corollary 2.2.6. The group π1 (H) is uncountable.

Proof. It is a standard fact that the product
∏∞
n=1 Z2 of in�nitely many copies of the cyclic group with

two elements is uncountable. For any sequence s = (an) ∈
∏∞
n=1 Z2 we build a loop αs : I → H by

de�ning αs to be constant on
[
n−1
n , n

n+1

]
if an = 0 and αs to be ln on

[
n−1
n , n

n+1

]
if an = 1. We also

de�ne αs (1) = 0. This way, we obtain an uncountable family of homotopy classes [αs] ∈ π1 (H). It

is enough to show [αs] 6= [αt] whenever s 6= t. Suppose s = (an) 6= (bn) = t. Then, without loss of

generality, we have aN = 1 and bN = 0 for some N . Consider the retraction qN : H→ CN which collapses

all circles Cj to 0 for j > N and all circles Ci to CN for i < N . If [αs] = [αt], then [qN ◦ αs] = [qN ◦ αt]
in π1 (CN ) ' Z. But [qN ◦ αt] = 0 ∈ Z is trivial, while [qN ◦ αs] = 1 ∈ Z is not trivial, contradiction.

Therefore [αs] 6= [αt], showing that
∏∞
n=1 Z2 injects into π1 (H).

Next results show that π1 (H) is not free.

An uncountable free group G is free on uncoutably many generators and so Hom (G,Z) is also

uncountable. To prove that π1 (H) is not free, it then su�ces so show that Hom (π1 (H) ,Z) is countable.

Lemma 2.2.7. For each positive integer j let x(j) =
(
x

(j)
i

)
i,j

be a sequence in F∞ such that x
(j)
i = 1

for all i < j. Then there is a homomorphism f : F∞ → F∞ sending lj (identi�ed with its immersion

(1, . . . , 1, lj , lj , . . .)) to x
(j) for all j. Moreover, if x(j) ∈ π≥j for all j, then f (π) ⊆ π.

Proof. As Fn is a free group on l1, . . . , ln, there are unique group homomorphisms fn : Fn → Fn sending

lj to x
(j)
n for j ≤ n. Since we have x(j)

i = 1 for i < j, we get the commutative diagram

F1

f1

��

F2
oooo

f2

��

F3
oooo

f3

��

· · ·oooo

F1 F2
oooo F3

oooo · · ·oooo

and taking the (projective) limit in both rows one �nds a homomorphism f : F∞ → F∞ that satis�es the

conditions.

Now suppose y = (yi)i ∈ F∞ and �x k ≥ 1,then

wk (f (y)n) = wk (fn (yn)) ≤
n∑
j=1

wj (yn)wk (fn (lj)) =

=

n∑
j=1

wj (yn)wk

(
x(j)
n

)
and the inequality must be right there because when we substitute the letter lg of yn with fn (yj), there

could be some word reduction to do.

If x(j) ∈ π≥j for each j, then the terms with j > k on the right-hand side vanish. If in addition y ∈ π,
then the remaining k terms are all bounded functions of n, so that wk (f (y)n) is a bounded funtion of n

and f (y) ∈ π, which is the second part of the statement.
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Proposition 2.2.8. Let f : π → Z be a homomorphism. Then f (li) = 0 for all su�ciently large i.

Proof. Suppose that f (li1) , f (li2) , . . . are non-zero for some i1 < i2 < . . .. By Lemma 2.2.7, there is

a homomorphism g : π → π mapping lj to l±3
ij

where the sign is chosen to be the sign of f
(
lij
)
. By

replacing f with f ◦ g we may now assume f (li) ≥ 3. Put ai = f (li). For every j ≥ 1, de�ne the element

x(j) =
(
x

(j)
i

)
i
∈ π by x

(j)
i = 1 if i < j and for i ≥ j: x

(j)
i = lj

(
lj+1

(
· · ·
(
li−1l

ai−1

i

)ai−2 · · ·
)aj+1

)aj
. The

integer f
(
x(1)

)
now satis�es congruence conditions that cannot hold for any integer. Indeed, �rst note

that x(j) = lj
(
x(j+1)

)aj
, so f

(
x(j)

)
= aj + aj · f

(
x(j+1)

)
.

It follows that f
(
x(1)

)
= a1 + a1a2 + · · · + a1a2 · · · an + a1a2 · · · an · f

(
x(n)

)
. Put bn = a1 + a1a2 +

· · ·+ a1a2 · · · an−1 and cn = a1a2 · · · an. Then f
(
x(1)

)
≡ bn mod cn. Moreover bn < cn and bn tends to

in�nity. So:

• if f
(
x(1)

)
≥ 0, then f

(
x(1)

)
≥ bn for all n, which is a contradiction because bn is increasing and

unbounded;

• if f
(
x(1)

)
< 0, then f

(
x(1)

)
≤ bn − cn and we get a contradiction too, because we have chosen

ai ≥ 3 and so bn − cn also tends to in�nity.

Then there must be an integer m such that f (lj) = 0 for all j ≥ m.

Proposition 2.2.9. Let g : π → Z be a homomorphism such that g (li) = 0 for all i. Then g ≡ 0.

Proof. Suppose g (x) 6= 0 for some x ∈ π, then we can write x = f1y1f2y2 · · · fsys with fi ∈ Fj−1 and

yi ∈ π≥j . Now put x≥j := y1y2 · · · ys, then g (x≥j) = g (x) 6= 0 as g (fi) = 0 for i = 1, . . . , s. By

Lemma 2.2.7, there exists a homomorphism π → π mapping lj to x≥j . Composing with g, we get a

homomorphism π → Z mapping all li to non-zero integers, contradicting Proposition 2.2.8.

Finally let Hom (π,Z) →
∏n
i=1 Z be the homomorphism that sends Hom (π,Z) 3 g to the tuple

(g (l1) , g (l2) , . . .):

Corollary 2.2.10. The above homomorphism maps the group Hom (π,Z) injectively to
⊕∞

i=1 Z, which
is countable. In particular π1 (H) ∼= π is not free.

Now we show that multiplication in πqtop1 (H) is discontinuous.

Let Ω (H, 0) be the space of loops on H based at 0 and, as usual, endow Ω (H, 0) with the compact-open

topology (which in this case coincides with the topology of uniform convergence, see Theorem 1.1.6). Let

h : Ω (H, 0) → πqtop1 (H) denote the canonical quotient map identifying homotopic loops in Ω (H, 0) (cfr.

De�nition 2.1.16 and Remark 2.1.17).

De�nition 2.2.11. Let hn be the point (2/n, 0) ∈ Cn. De�ne the oscillation number On : Ω (H, 0) → N
to be the maximum number m such that there exists a set T = {0, t1, . . . , t2m} ⊆ [0, 1] such that

0 < t1 < · · · < t2m = 1 with f (t2i) = 0 and f (t2i+1) = hn, where f ∈ Ω (H, 0).

Roughly speaking, On (f) tells how many times f wraps around the n-th circle; On (f) can be seen

as the weight of the symbol ln into the in�nite word f .

We now list some results which will be exploited in Theorem 2.2.14 , the reader may �nd the proofs

in [12].

Lemma 2.2.12.



2.2. THE HAWAIIAN EARRING 41

1. The number On (f) is �nite for all n ∈ N and f ∈ Ω (H, 0) (this is obvious if one remembers how

elements of π are made up).

2. Suppose fk
k→∞ // f uniformly and On (fk) ≥ m. Then On (f) ≥ m.

3. Suppose f and g are in the same path component of Ω (H, 0) and suppose g : I → Hm corresponds

to a maximally reduced �nite word w in the free group Fm on m letters. Then On (f) ≥ On (g).

Lemma 2.2.13.

1. The path components of Ω (H, 0) are closed subspaces of Ω (H, 0).

2. If Z is a metric space such that each path component of Z is a closed subspace of Z, then each path

component of Z × Z is a closed subspace of Z × Z.

Theorem 2.2.14. With the above notations:

1. The product of quotient maps h×h : Ω (H, 0)×Ω (H, 0)→ πqtop1 (H)×πqtop1 (H) fails to be a quotient

map.

2. The standard multiplication of path µ : πqtop1 (H) × πqtop1 (H) → πqtop1 (H) is discontinuous and so

πqtop1 (H) fails to be a topological group.

Proof. 1. Let xn ∈ Ω (H, 0) be the loop that orbits Cn once counterclockwise, so that π1 (Cn) is generated

by [xn] = ln. Applying path concatenation, for integers n ≥ 2 and k ≥ 2, let a (n, k) ∈ Ω (H, 0) be a

based loop corresponding to the �nite word
(
lnlkl

−1
n l−1

k

)n+k
and let w (n, k) ∈ Ω (H, 0) be a based loop

corresponding to the �nite word
(
l1lkl

−1
1 l−1

k

)n
. Let D ⊆ πqtop1 (H)×πqtop1 (H) denote the set of all doubly

indexed ordered pairs ([a (n, k)] , [w (n, k)]). Let c0 ∈ Ω (H, 0) be the constant path at 0.

To prove h×h fails to be a quotient map, it is enough to show D is not closed in πqtop1 (H)×πqtop1 (H),

but that (h× h)
−1

(D) is closed in Ω (H, 0)× Ω (H, 0).

To prove D is not closed in πqtop1 (H)× πqtop1 (H), we will prove that ([c0] , [c0]) /∈ D but ([c0] , [c0]) is

a limit point of D. Recall from Section 2.2.1 that φ : π1 (H) → π is a bijection and that we have chosen

k ≥ 2. Hence [c0] 6= [a (n, k)] and [c0] 6= [w (n, k)] for all k ≥ 2. So ([c0] , [c0]) /∈ D.

Suppose [c0] ∈ U and U is open in πqtop1 (H). Let V := h−1 (U). Then V is open in Ω (H, 0) because,

by de�nition, h is continuous. In particular c0 ∈ V , thus there exist N and K such that if n ≥ N

and k ≥ K, then a (n, k) ∈ V (for instance, notice that for large n and k, a (n, k) −→ c0). Notice also

that
(
l1l
−1
1

)N ∈ V ; moreover for some suitable parametrization on [0, 1], w (N, k)
k→∞ //

(
l1l
−1
1

)N
uniformly in Ω (H, 0). Thus there exists K2 > K such that if k > K2, then w (N,K) ∈ V . Hence

([a (N,K2)] , [w (N,K2)]) ∈ U × U . This shows ([c0] , [c0]) is a limit point of D and thus D is not closed

in πqtop1 (H)× πqtop1 (H).

To prove (h× h)
−1

(D) is closed in Ω (H, 0) × Ω (H, 0), suppose (fm, gm)
m→∞ // (f, g) uniformly

and (fm, gm) ∈ (h× h)
−1

(D) for all m. Notice that O1 (w (n, k)) = 2n and ON (a (N, k)) ≥ 2 (N + k).

Let a (nm, km) and w (nm, km) be path homotopic to respectively fm and gm. By (3) of Lemma 2.2.12,

O1 (gm) ≥ O1 (w (nm, km)) = 2nm. Thus if {nm} contains an unbounded subsequence, then, by (2) of

Lemma 2.2.12, O1 (g) ≥ limsupO1 (w (nm, knm)) = ∞ and we have a contradiction since O1 (g) < ∞.

Thus {nm} is bounded and so the sequence {nm} takes on �nitely many values. Similarly, if {km} is
unbounded, then there exist N and a subsequence {kml} such that ON (a (N, kml))→∞. Thus ON (f) ≥
limsupON (a (N, kml)) = ∞ contradicting the fact that ON (f) < ∞. Thus both {nm} and {km} are
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bounded and hence there exists a path component A ⊆ Ω (H, 0) × Ω (H, 0) containing a subsequence

(fml , gml). Thus, by Lemma 2.2.13, (f, g) ∈ A. So (h× h)
−1

(D) is closed and h×h fails to be a quotient

map.

2. Now let us see that the group multiplication µ : πqtop1 (H)× πqtop1 (H)→ πqtop1 (H) is discontinuous.

To achieve this result, we build a closed set A ⊆ πqtop1 (H) such that µ−1 (A) is not closed in πqtop1 (H)×
πqtop1 (H).

Consider the doubly indexed set A = µ (D) ⊆ πqtop1 (H) such that each element of A is of the form

[γn,k] = [a (n, k)] ∗ [w (n, k)].

First, observe that by de�nition [γn,k] 6= [c0] for all n, k (remember that k ≥ 2). So [c0] /∈ A and

([c0] , [c0]) /∈ µ−1 (A). Notice that D ⊆ µ−1 (A) and as shown above, ([c0] , [c0]) is a limit point of D. So

µ−1 (A) is not closed in πqtop1 (H)× πqtop1 (H). On the other hand, A is closed in πqtop1 (H): we show it by

proving h−1 (A) is closed in Ω (H, 0) (remember that h is continuous). Suppose fm −→ f ∈ Ω (H, 0) and

fm ∈ h−1 (A). Find nm, km such that fm ∈ [a (n, k)]∗ [w (n, k)]. Similarly as in (1), if {nm} is unbounded
we get the contradiction O1 (f) ≥ limsupO1 (fm) = ∞. If {nm} is bounded and {km} is unbounded we

�nd N and a subsequence {kml} and again the contradiction ON (f) ≥ limsupON (fml) =∞. Thus both

{nm} and {km} are bounded. It follows that some path component B ⊆ Ω (H, 0) contains a subsequence

{fml} and it follows from (1) of Lemma 2.2.13 that f ∈ B. Hence h−1 (A) is closed in Ω (H, 0) and thus

A is closed in πqtop1 (H).

2.3 FROM GROUPS TO GROUPOIDS

In what follows we will make use Top-groupoids and Top-functors. For notations and de�nitions see the

initial section �Notation and conventions�.

2.3.1 Quasitopological groupoids

De�nition 2.3.1. A qTop-groupoid is a groupoid G whose hom-sets G (x, y) are equipped with topologies

such that multiplications G (x, y)× G (y, x)→ G (x, z) are continuous in each variable and each inversion

function G (x, y) → G (y, x) is continuous. A morphisim of qTop-groupoids is a functor F : G → G′

such that each function F : G (x, y) → G′ (F (x) , F (y)), f → F (f), is continuous. Let qTopGrpd be

the category of qTop-groupoids. Since every Top-groupoid is a qTop-groupoid, TopGrpd is a full

subcategory of qTopGrpd.

De�nition 2.3.2. Let G be a qTop-groupoid. For each g ∈ G (x, y) we de�ne the left-translation

λg : G (w, x)→ G (w, y) by f 7→ g ◦ f and the right translation ρg : G (y, z)→ G (x, z) by h 7→ h ◦ g.

Lemma 2.3.3. The multiplication G (x, y)×G (y, x)→ G (x, z) is continuous in each variable if and only

if λg and ρg are homeomorphisms.

Proof. Let the multiplication be continuous in each variable and �x g ∈ G (x, y). Then the map λg as

de�ned above is continuous. Moreover it is invertible, having λg−1 as inverse (notice that g−1 exists since

G is a groupoid). So λg is continuous, bijective and with continuous inverse, hence a homeomorphism.

Analogously one shows ρg is a homeomorphism.

Conversely, let λg and ρg be homeomorphisms for all g. Then the multiplication µ : G (x, y)×G (y, x)→
G (x, z) is continuous in the �rst component because if h ∈ G (y, z) is �xed, for all f ∈ G (x, y) one has



2.3. FROM GROUPS TO GROUPOIDS 43

µ (f, h) = h ◦ f = λh (f) which is continuous by hypothesis. Analogously for the second component using

right translations.

De�nition 2.3.4. We denote by Πqtop
1 X the quasitopological fundamental groupoid of X, where, for each

x1, x2 ∈ X, Πqtop
1 X (x1, x2) is the quotient space πqtop0 (PX (x1, x2)) (see De�nitions 1.3.11 and 2.1.16).

Proposition 2.3.5. The quasitopological fundamental groupoid has the structure of a qTop-groupoid.

Moreover Πqtop
1 : Top→ qTopGrpd is a functor.

Proof. We easily get convinced that Πqtop
1 X is a qTop-groupoid: for instance, consider the commuting

diagram

PX (x1, x2)

��

// πqtop0 (PX (x1, x2))

such that

��
PX (x2, x3) // πqtop0 (PX (x2, x3))

α
� //

_

��

[α]
_

��
α ∗ β � // [α ∗ β] = [α] ∗ [β]

where horizontal arrows are the (continuous) quotient maps, the left vertical arrow is the (continuous)

right concatenation of paths (for some β ∈ PX (x2, x3) �xed) and the right vertical arrow is the (con-

tinuous) right translation. One gets similar diagrams when considering left concatenation or inversion of

paths.

Analogously, any map f : X → Y induces the map

Πqtop
1 (P (f)) : Πqtop

1 X (x1, x2)→ Πqtop
1 Y (f (x1) , f (x2))

given by [α] 7→ [f ◦ α].

Finally we can extend the de�nition of τ from groups (cfr. Lemma 2.1.6) to groupoids: it is enough

to apply the group-valued functor τ to all vertex groups (i.e. to all hom-sets Πqtop
1 X (x, x)) and extend

via translation. Next lemma gives the details:

Lemma 2.3.6. The forgetful functor for : TopGrpd→ qTopGrpd has a left adjoint τ : qTopGrpd→
TopGrpd which is the identity on the underlying groupoids.

Proof. Let G be a qTop-groupoid. For each x ∈ ob (G), let τ (G) (x) be the topological group τ (G (x)).

If x 6= y and G (x, y) 6= ∅, let τ (G) (x, y) have the topology generated by sets of the form g ◦ U =

{g ◦ u : u ∈ U} where g ∈ G (x, y) and U is open in τ (G) (x). Since g−1
2 ◦ g1 ◦ U is open in τ (G) (x) for

all g1, g2 ∈ G (x, y), all left translations λg : τ (G) (x) → τ (G) (x, y), f 7→ g ◦ f , are homeomorphisms.

Notice that if g ∈ G (x, y), then λg ◦ ρg−1 : G (x) → G (y), h 7→ g ◦ h ◦ g−1, is an isomorphism of

quasitopological groups (indeed, the inverse is λg−1 ◦ ρg : G (y) → G (x), f 7→ g−1 ◦ f ◦ g). We already

know that τ : qTopGrp→ TopGrp is a functor at level of groups, hence τ (G) (x) → τ (G) (y) is an

isomorphism of topological groups, in particular it is a continuous map. Thus also all right translations

ρg : τ (G) (y)→ τ (G) (x, y), h 7→ h ◦ g, are homeomorphisms; pictorially, one has the commuting diagram

τ (G) (x)
λg◦ρg−1

//

λg

��

τ (G) (y)

ρg

tt
τ (G) (x, y)
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where horizontal and vertical arrows are homeomorphisms: this forces ρg to be a homeomorphism too.

All vertex groups are topological groups and thanks to the homeomorphisms we have just built, we

get the commuting diagram

τ (G) (x, y)× τ (G) (y, z) //

∼=
��

τ (G) (x, z)

τ (G) (y)× τ (G) (y) // τ (G) (y) ∼= τ (G) (x) ∼= τ (G) (z)

∼=

OO

where vertical arrows are homeomorphisms one gets by translations and the bottom arrow is the multi-

plication, which is jointly continuous in both entries; this proves that τ (G) is a Top-groupoid at least at

level of objects.

Concerning morphisms, a morphism F : G → G′ of qTop-groupoids induces a morphism τ (F ) : τ (G)→
τ (G′) of Top-groupoids since the group-valued τ on vertex groups gives continuous homomorphisms

τ (G) (x)→ τ (G′) (F (x)) and continuity extends to all hom-sets via translations.

Let us remark also that the vertex groups τ (G) (x) of τ (G) are the topological groups τ (G (x)). Since

each identity G (x) → τ (G) (x) is continuous (cfr. Remark 2.1.7), it follows that the identity functor

ĩd : G → τ (G) is a morphism of qTop-groupoids. Similar to the situation with groups, a qTop-groupoid

G is a Top-groupoid if and only if G = τ (G) (cfr. (2) of Proposition 2.1.10).

Finally, by applying the functor τ to the quasitopological fundamental groupoid, we can de�ne:

De�nition 2.3.7. The fundamental Top-groupoid of a topological space X is the Top-groupoid Πτ
1X :=

τ
(
Πqtop

1 X
)
.

So far we have shown that Πτ
1X exists but we have no idea about how it is done; for an inductive

construction of this object, see Appendix A.

Informally, we could say that in general Πqtop
1 X(x, y) has �too many� open sets: the induction argu-

ment works by removing step by step some of these open sets untill a true topological group is reached.

So as a corollary, we have also:

Corollary 2.3.8. For each x, y ∈ X, the canonical map h : PX (x, y)→ Πτ
1X(x, y) identifying homotopy

classes of paths are continuous.

Proof. The topology of Πτ
1X (x, y) is coarser than that of Πqtop

1 X (x, y) and h : PX (x, y) → Πτ
1X (x, y)

is continuous by de�nition.



Chapter 3

SEMICOVERINGS AND ENRICHED

MONODROMY

In this chapter we introduce the central notions of semicovering and describe some su�cient conditions

for a semicovering to be a classical covering. Next we give the de�nition of open covering morphism of

Top−groupoids to show that a semicovering always induces such a functor via the enriched fundamental

groupoid functor Πτ
1 ; after describing the enriched monodromy µτ and the enriched equivalence Rτ , we

obtain the topologically enriched version of Theorem 1.3.24.

3.1 SEMICOVERINGS

3.1.1 De�nition and properties of semicoverings

De�nition 3.1.1. A map p : Y → X has:

1. continuous lifting of paths if Pp : (PY )y → (PX)p(y) is a homeomorphism for each y ∈ Y .

2. continuous lifting of homotopies if Hp : (HY )y → (HX)p(y) is a homeomorphism for each y ∈ Y .

In such a case Pp and Hp are homeomorphisms with respect to compact-open topology. Certainly,

every map with continuous lifting of paths has unique path lifting (Lemma 1.3.29): indeed, unique path

lifting is equivalent to the injectivity of each map Pp in the above de�nition. The condition that Pp be

a homeomorphism is much stronger than the existence and uniqueness of lifts of paths since each inverse

Lp : (PX)p(y) → (PY )y, which we call lifting homeomorphism, taking a path α to the unique lift α̃y

starting at y, is required to be continuous.

As for paths, if we drop the continuity request on Hp, we �nd that every map with continuous lifting

of homotopies has also the unique homotopy lifting property (Lemma 1.3.29).

The notion of semicovering, �rst introduced by Jeremy Brazas in [5], is the core of this section: in

three di�erent papers ([5], [7] and [21]) there are given three di�erent de�nitions which turn out to be

equivalent. We skip the technical details but we will give all three de�nitions and show their equivalence.

First, we need two introductory lemmas: proofs may be found in [13] and [21].

45
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Lemma 3.1.2. Let p : X̃ → X be a local homeomorphism, Y a connected space, X̃ a Hausdor� space

and let f : (Y, y0) → (X,x0) be a continuous map. Given x̃0 ∈ p−1 (x0), there exists at most one lifting

f̃ : (Y, y0) →
(
X̃, x̃0

)
of f , i.e. there is at most one continuous map f̃ making the following diagram

commute: (
X̃, x̃0

)
p

��
(Y, y0)

f //

f̃

55

(X,x0) .

Lemma 3.1.3. Let p : X̃ → X be a local homeomorphism with unique path lifting property. Consider

this diagram of continuous maps

I
f̃ //

j

��

(
X̃, x̃0

)
p

��
I × I F //

F̃

66

(X,x0)

where j (t) = (t, 0) for all t ∈ I. Then there exists a unique continuous map F̃ : I × I → X̃ making the

diagram commute.

Roughly speaking, Lemma 3.1.3 tells that each local homeomorphism enjoying the unique path lifting

property, has also the unique lifting homotopy property (see Lemma 1.3.29).

Theorem 3.1.4. Let p : Y → X be a local homeomorphism. Then the following are equivalent:

1. p has continuous lifting of paths.

2. p has continuous lifting of paths and homotopies.

3. p is a �bration with unique path lifting.

Proof. 1 ⇒ 2. We have to show that the continuous lifting of paths implies the continuous lifting of

homotopies. So let D2 ⊆ R2 be the closed unit disk with base point d0 = (1, 0) and (HX)x0
be the space

of based (continuous) maps Top
((
D2, d0

)
, (X,x0)

)
with the compact-open topology. Now we show that

(HX)x0
is homeomorphic to the space Ω

(
(PX)x0

, cx0

)
of loops S1 → (PX)x0

based at the constant loop

cx0
at x0: if λt : I → D2 is the linear path from d0 to a point t ∈ S1, then Ψ: (HX)x0

→ Ω
(
(PX)x0

, cx0

)
given by Ψ (f) (t) = f ◦ λt is a homeomorphism. Hence thanks to functoriality of H and P, we get that
Hp : (HY )y → (HX)p(y) is a homeomorphism whenever Pp : (PY )y → (PX)p(y) is a homeomorphism.

2⇒ 3. This is obvious as noticed in describing the continuous lifting of paths property.

3⇒ 1. Let p : Y → X be a local homeomorphism with unique path lifting, �x x ∈ X and y ∈ p−1 (x).

The map Pp : (PY )y → (PX)x is bijective because p has unique path lifting. It is known that Pp is

continuous, so it is enough to prove that Pp is open.
We know from the description of the compact-open topology in Section 1.1 that a basic open set in

(PY )y is of the form Ũ =
⋂n
j=1M

(
Kj
n, Ũj

)
∩ (PY )y, where K

j
n =

[
j−1
n , jn

]
and Ũj is an open set in Y

such that p|Ũj : Ũj → p
(
Ũj

)
is a homeomorphism for each j = 1, . . . , n. Suppose that

U =

n⋂
j=1

M
(
Kj
n, p

(
Ũj

))
∩
n−1⋂
j=1

M
(
Kj
n ∩Kj+1

n , p
(
Ũj ∩ Ũj+1

))
∩ (PX)x .
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We show that Pp
(
Ũ
)

= U . Since p is an open map, p
(
Ũj

)
is open in X for j = 1, . . . , n. Moreover

it is obvious that Pp
(
Ũ
)
⊆ U . Conversely, let α ∈ U . Since p has unique path lifting, we can �nd a

lift α̃ ∈ (PY )y. Choose t ∈ Kj
n. Since p|Ũj and p|Ũj∩Ũj+1

are homeomorphisms and α
(
Kj
n ∩Kj+1

n

)
⊆

p
(
Ũj ∩ Ũj+1

)
, we have p|Ũj (α̃ (t)) = α (t), therefore α̃ (t) ∈ Ũj . So α̃ ∈ Ũ and hence Pp

(
Ũ
)

= U . Since

U is open in X and Pp
(
Ũ
)

= U , Pp is a homeomorphism as we wanted.

De�nition 3.1.5. A semicovering map p : Y → X is a local homeomorphism enjoying one of the equiva-

lent properties in Theorem 3.1.4. In such a case Y is called semicovering space. If p′ : Y ′ → X is another

semicovering of X, a morphism of semicoverings is a continuous map f : Y → Y ′ such that p′ ◦ f = p.

With such de�nitions there remains de�ned the category SCov (X) of semicoverings of X. Two

semicoverings are called equivalent if they are isomorphic in this category. A semicovering p : Y → X

is path connected if Y is non-empty and path-connected: let SCov0 (X) be the full subcategory of path

connected semicoverings of X. If p is an initial object in SCov0 (X), we call p a universal semicovering

of X.

Let us remark that if p : Y → X is a semicovering and y ∈ Y and x ∈ X, any path α ∈ PX (p (y) , x)

lifts to a path α̃y such that p (α̃y (1)) = x. Hence if X is path-connected, p is surjective. Moreover, every

�ber of a local homeomorphism is discrete ([23, 12.3]), so:

Proposition 3.1.6. Each �ber of any semicovering is discrete.

As shown in [30, II.2] we have also (cfr. also Propositions 1.3.15 and 1.3.32):

Proposition 3.1.7. Semicoverings share the same lifting properties of classical covering maps, so semi-

coverings are always �brations. In particular any semicovering map p : Y → X induces a covering

morphism Π1p : Π1Y → Π1X of fundamental groupoids.

Since every semicovering map is a local homeomorphism, we immediately get the following:

Corollary 3.1.8. If p : Y → X is a semicovering map and X is locally path connected, then so is Y .

The following Lemma is an easy generalization of [24, V.4-5]:

Lemma 3.1.9. Let p : Y → X be a semicovering map. If p (yi) = xi, i = 1, 2, and β ∈ PX (x1, x2), then

[β] lies in the image of Πp : ΠY (y1, y2)→ ΠX (x1, x2) if and only if β̃y1 (1) = y2.

It is a known result ([15, 13.20]) that if one does not restrict to spaces with universal covering, the

composition of two connected covering maps is not necessarily a covering map. On the other hand we

now show that composition of any two semicoverings is always a semicovering:

Lemma 3.1.10. Let p : X → Y , q : Y → Z and r = q ◦ p be surjective maps. If two of p, q, r are local

homeomorphisms, then so is the third. If two of p, q, r have continuous lifting of paths and homotopies,

then so does the third.

Proof. [Just a sketch.]

Let p, q be local homeomorphisms and x ∈ X. Then there exists an open neighborhood U of x such that

p|U : U → p (U) is a homeomorphism. In particular p (x) ∈ P (U); since q is a local homeomorphism, there

exists an open neighborhood V of p (x) such that V ⊆ p (U) and q|V : V → q (V ) is a homeomorphism.

By noticing that p|−1
U (V ) is an open neighborhood of x, one gets that r is a local homeomorphism.
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Let p, r be local homeomorphisms and y ∈ Y . Since p is a surjective local homeomorphism, there

exists an open neighborhood U of x ∈ p−1 (y) such that p|U : U → p (U) is a homeomorphism. Since r

is a local homeomorphism, there exists an open neighborhood U ′ of x such that r|U ′ : U ′ → r (U ′) is a

homeomorphism. De�ne U ′′ = U ∩ U ′; then p|U ′′ : U ′′ → p (U ′′) 3 y and r|U ′′ : U ′′ → r (U ′′) 3 q (y). But

r (U ′′) = q (p (U ′′)) and p (U ′′) are open, hence q is a homeomorphism.

Let p, q have continuous lifting of paths and homotopies. Then for each x ∈ X, (PX)x → (PY )p(x)

and (PY )p(x) → (PZ)r(x) are homeomorphisms and so their composition is a homeomorphism too.

The remaining cases are easily shown as these ones.

Theorem 3.1.11. Let p : X → Y , q : Y → Z and r = q ◦ p be maps of connected spaces. If two of p, q, r

are semicoverings, so is the third.

Proof. By the above lemma it is enough to show that if two of p, q, r are semicoverings, the third map

is surjective. Fix x0 ∈ X and de�ne y0 = p (x0), z0 = q (y0) = r (x0). If p, q are semicoverings, they are

both surjective since Y and Z are path-connected; thus r is surjective.

If q, r are semicoverings and y ∈ Y , take α ∈ (PY )y0 with α (1) = y. Then q ◦α ∈ (PZ)z0 has unique

lift q̃ ◦ αx0
(with respect to r) with endpoint x = q̃ ◦ αx0

(1). Since q ◦p◦ q̃ ◦ αx0
= q ◦α and q has unique

path lifting, we must conclude that p ◦ q̃ ◦ αx0
= α. So p (x) = α (1) = y and p is surjective. Finally

suppose p, r are semicoverings. Since Z is path-connected r is surjective; since r = q ◦ p, r is surjective
and p is surjective, q must be surjective too.

Theorem 3.1.12. For any topological space X, Cov (X) and Cov0 (X) are full subcategories of SCov (X)

and SCov0 (X) respectively.

So any covering is a semicovering; the proof may be found in [5, 3.7].

3.1.2 When is a local homeomorphism a semicovering map?

In this section we give some su�cient conditions for a local homeomorphism to be a semicovering map.

We prove only the main results: proofs of preliminary lemmas may be found in [21].

Lemma 3.1.13. Let p : Y → X be a local homeomorphism. Suppose that α is an arbitrary path in X

and y0 ∈ p−1 (α (0)) such that there is no lifting of α starting at y0. Set

Aα :=
{
t ∈ I : α|[0,t] has a lifting α̂t on [0, t] with α̂t (0) = y0

}
.

Then Aα is open and connected. Moreover there exists an s ∈ I such that Aα = [0, s).

Lemma 3.1.14. Let p : Y → X be a local homeomorphism with at most one lifting for each path β : I →
X; let α be an arbitrary path in X and y0 ∈ p−1 (α (0)) such that there is no lifting of α starting

at y0. Then, using the same notations as in previous lemma, there exists a unique continuous map

α̃s : As = [0, s)→ Y such that p ◦ α̃s = α|[0,s).

De�nition 3.1.15. The path α̃s de�ned in Lemma 3.1.14 is called incomplete lifting of α by p starting

at y0.

Theorem 3.1.16. If Y is Hausdor� and sequential compact and p : Y → X is a local homeomorphism,

then p is a semicovering map.
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Proof. Let α : I → X be a path which has no lifting starting at y0 ∈ p−1 (α (0)). Let α̃ : As = [0, s)→ Y

be the incomplete lifting of α at y0. Suppose {tn}n∈N is a sequence in As which tends to t0 and tn ≤ t0

for all n. Since Y is sequential compact, there exists a convergent subsequence of {α̃ (tn)}n∈N, call it
{α̃ (tnk)}k∈N, such that α̃ (tnk) tends to some l. Now de�ne

g (t) =

α̃ (t) 0 ≤ t < t0

l = limk→∞ α̃ (tnk) t = t0
.

We have p (l) = p (limk→∞ α̃ (tnk)) = limk→∞ p (α̃ (tnk)) = limk→∞ α (tnk) = α (t0) and so p ◦ g = α.

Now we show that g is continuous at t0 (in [0, t0) we already know it is). Since p is a local homeomor-

phism, there exists a neighborhood W at l such that p|W : W → p (W ) is a homeomorphism. Hence there

is a ∈ I such that α ([a, t0]) ⊆ p (W ). Let V be a neighborhood at l andW ′ = V ∩W , then p (W ′) ⊆ p (W )

is an open set. Put U = α−1 (p (W ′)) ∩ (a, t0], which is open in [0, t0]. It is enough to show that

g (U) ⊆W ′. Since α (U) ⊆ p (W ′) and p is a homeomorphism onW ′, (p|W )
−1

(α (U)) ⊆ (p|W )
−1

(p (W ′))

and so (p|W )
−1 ◦ α = α̃ on [a, t0) since p (l) = α (t0). Hence (p|W )

−1 ◦ α = g on [a, t0]. Thus

g (U) ⊆ g
(
α−1 (p (W ′))

)
= (p|W )

−1 ◦ α
(
α−1 (p (W ′))

)
⊆ (p|W )

−1 ◦ p (W ′) ⊆ W ′ ⊆ V , so g is con-

tinuous. Hence t0 ∈ As, which is a contradiction because As is open. Thus p has at least one lifting

for each path α in X, and by Lemma 3.1.2 we conclude that p has unique path lifting and so is a

semicovering.

Corollary 3.1.17. If pi : Xi → Xi−1, i = 1, 2, are local homeomorphisms and X2 is a Hausdor� and

sequential compact space, then p1 ◦ p2 is a a semicovering map.

We have also the following result:

Theorem 3.1.18. Let p : Y → X be a closed local homeomorphism with Y a Hausdor� space. Then p is

a semicovering map.

Proof. By Theorem 3.1.4 it is enough to show that p has unique path lifting. By Lemma 3.1.2, p has at

most one lifting for each path α in X. To prove the unique path lifting property for p, suppose there exists

a path α in X such that it has no lifting starting at y0 ∈ p−1 (α (0)). Let g : As → Y be the incomplete

lifting of α at y0. Suppose {tn}n∈N is a sequence which tends to s. Put B := {tn : n ∈ N}, then g (B)

is closed in Y and so p
(
g (B)

)
is closed in X, because p is a closed map. Since α (B) ⊆ p

(
g (B)

)
,

α (s) ∈ p
(
g (B)

)
and so there exists z ∈ g (B) such that p (z) = α (s). Since p is a local homeomorphism,

there exists a neighborhood Wz of z such that p|Wz : Wz → p (Wz) is a homeomorphism. Since z ∈ g (B),

there exists an nk ∈ N such that g (tnr ) ∈Wz for every nr ≥ nk. Since α (s) ∈ p (Wz), there exists kl ∈ N
such that α

([
tnkl , s

])
⊆ p (Wz). Put h =

(
(p|Wz )

−1 ◦ α
)
|[
tnkl

,s
], then p ◦ g = α = p ◦ h on

[
tnkl , s

)
.

Hence p ◦ g = p ◦ h on
[
tnkl , s

)
. Since p|Wz is a homeomorphism, g

(
tnkl

)
= h

(
tnkl

)
, so g = h on[

tnkl , s
)
. Therefore the map g (t) : [0, s]→ Y de�ned by

g (t) =

g (t) 0 ≤ t < s

h (s) t = s

is continuous and p ◦ g = α on [0, s]. Thus s ∈ As, which is a contradiction because As is open.
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3.1.3 When is a semicovering map a covering map?

We end this section by giving some su�cient conditions for a semicovering to be a covering. If p : Y → X

is a semicovering map, π1 (X,x0) acts on p−1 (x0) by α · y0 = α̃ (1) where y0 ∈ p−1 (x0) and α̃ is the

(unique) lifting of α starting at y0 (actually this corresponds to the classical construction made also

for coverings, for example see [24, V.7]; see also Section 4.2 of this article). So the stabilizer of y0,

call it π1 (X,x0)y0 (i.e. the subgroup {[α] ∈ π1 (X,x0) : α · y0 = y0}) is equal to p∗ (π1 (Y, y0)) for all

y0 ∈ p−1 (x0) and so
∣∣p−1 (x0)

∣∣ = [π1 (X,x0) : p∗ (π1 (Y, y0))] (cfr. [24, V.7-10] for details). Thus if

x0, x1 ∈ X and Y is path connected, then
∣∣p−1 (x0)

∣∣ =
∣∣p−1 (x1)

∣∣. So we can de�ne the concept of sheet

for a semicovering map similarly as for coverings.

Theorem 3.1.19. Suppose p : Y → X is a semicovering map and Y is a Hausdor� space such that

[π1 (X,x0) : p∗ (π1 (Y, y0))] is �nite; then p is a �nite sheeted covering map.

Proof. Let x ∈ X. Since p is a semicovering map and [π1 (X,x0) : p∗ (π1 (Y, y0))] = m, p is an m-sheeted

semicovering map and so we have y0 ∈ p−1 (x0) = {y1, . . . , ym}. Since p is Hausdor� and p is a local

homeomorphism, we can �nd an open neighborhood V of x0 and disjoint open neighborhoods Uj such

that for every j = 1, . . . ,m, yj ∈ Uj and p|Uj : Uj → V is a homeomorphism. Since p is a semicovering

map, we have
∣∣p−1 (x)

∣∣ = m for each point x ∈ X and so p−1 (V ) =
⋃m
j=1 Uj : but these are exactly the

conditions for p to be an m-sheeted covering map.

Corollary 3.1.20. Every �nite sheeted semicovering map from a Hausdor� space is a �nite sheeted

covering map.

Corollary 3.1.21. If p : Y → X is a local homeomorphism from a Hausdor� �rst-countable compact

space Y to a Hausdor� space X, then p is a �nite sheeted covering map.

Proof. Since Y is compact and �rst countable, it is sequential compact (see [23, 6.21]), so by Theorem

3.1.16, p is a semicovering. Moreover any singleton {x0} is closed in X, so the �ber p−1 ({x0}) is closed
and discrete in Y , which is compact, so p−1 ({x0}) is �nite. Thus p is a semicovering with �nite �ber,

hence a covering by Corollary 3.1.20.

Remark 3.1.22. There is a result similar to Theorem 3.1.16 for coverings: let Y be compact and Hausdor�

and X be Hausdor�; if p : Y → X is a local homeomorphism, then p is a covering map. See [24, Ex.

V.2.4].

In general a continuous map p : Y → X between any two topological spaces is called proper when it

is closed and its �bers are compact and relatively Hausdor� (i.e. two distinct points in the �ber have

disjoint neighborhoods in Y ). This notion gets easier in some cases, for example ([3, 10.2]):

• if X is locally compact and Hausdor� or

• if Y is Hausdor� and X is locally compact, then

the map f is proper whenever f−1 (H) is compact for any compact subset H ⊆ X.

Theorem 3.1.23. If p is a proper local homeomorphism from a Hausdor� space Y onto a Hausdor� and

locally compact space X, then p is a �nite sheeted covering map.



3.1. SEMICOVERINGS 51

Proof. The map p is open because every local homeomorphism is an open map. Also, every proper map

is closed by de�nition. Hence by Theorem 3.1.18, p is a semicovering map. Since singletons in X are

compact and p is proper, every �ber of p is compact in X; since �bers of a local homeomorphism are

discrete, �bers of p turn out to be closed and compact and thus they are �nite. So p is a �nite sheeted

semicovering map and by Corollary 3.1.20 p is a �nite sheeted covering map.

Theorem 3.1.24. If X is locally path connected and semilocally 1-connected, then each semicovering of

X with locally path connected total space is a covering.

Proof. It follows from Theorem 1.3.30 that in this case we have the following chain of inclusions where

�rst and last terms coincide:

Cov (X) ⊆ SCov (X) ⊆ Fib! (X) = Cov (X) .

It is worth giving some examples.

3.1.4 Examples

While reading this section, making some drawings may be of great help.

1. A local homeomorphism which is not a semicovering

In view of Theorem 3.1.4 we have to look for a map without unique path lifting: it means that it may

have no lifting at all or more than one lifting. The following example has been found in [21].

Let Y := ((0, 1)× {0}) ∪
({

1
2

}
×
[

1
2 ,

3
4

))
be endowed with a topology whose base sets are of the form

{((
a, 1

2

)
× {0}

)
∪
({

1
2

}
×
[

1
2 , b
))

: a ∈
(
0, 1

2

)
, b ∈

(
1
2 ,

3
4

)}
{(a, b)× {0} : a, b ∈ (0, 1) , a < b}{{

1
2

}
× (a, b) : a, b ∈

(
1
2 ,

3
4

)
, a < b

}
.

Let X be the open interval (0, 1) and de�ne p : Y → X by

p (s, t) =

s t = 0

t t 6= 0
.

For sure p is a local homeomorphism (it is possible to write down explicitly the proof, but intuition should

su�ce), but it has not the unique path lifting property: for instance consider the path α : I → X given

by α (r) = 1
4 + 1

2r, then one immediately checks that α has at least two di�erent liftings.

2. Two coverings whose composition is not a covering

Topological spaces which are found in real life usually have all those good properties which allow them to

have a universal covering. If the universal covering exists, the composition of two coverings is a covering.

Hence to �nd a space admitting two coverings whose composition is not a covering, one has to work with

some kind of imagination. The example here exposed has been found in [30, II, Ex. 1.15 and 2.8].

Let us de�ne these topological spaces:
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• Z = S1 × S1 × · · · is the product of countably many copies of the unit circle;

• Y = N× Z, where N is endowed with the discrete topology;

• Xn = Rn × Z;

• X =
⋃
n∈NXn, which is clearly a disjoint union.

As usual, all these spaces are endowed with the product topology.

Let us de�ne a covering p : X → Y in this way: for each �xed n ∈ N, consider the map pn : Xn → Z

given by (x1, . . . , xn, w1, w2, . . .) 7→
(
e2πix1 , . . . , e2πixn , w1, w2, . . .

)
where xi ∈ R and wi ∈ S1 for all i ∈ N.

In practise, pn acts as the standard exponential covering R→ S1 on the �rst n factors and as the identity

on the countably many remaining ones. So we can de�ne p : X → Y by x 7→ (n, pn (x)) if x ∈ Xn. One

easily gets convinced it actually is a covering, indeed: let Q = (m, v1, . . . , vn, . . .) ∈ N × Z. Then its

preimage is the discrete set of points x ∈ Rm × S1 × S1 × · · · where x = (x1, . . . , xm, w1, . . .) is such that

e2πixj = vj for j = 1, . . . ,m and wj = vj+m for all j ∈ N. To build a fundamental neighborhood of Q,

consider the open set U := {m}×U1×· · ·×Um×S1×S1×· · · ⊆ N×Z where vi ∈ Ui for i = 1, . . . ,m and

Ui is an open connected neighborhood of vi in S1. It is clear that such a U is an open neighborhood of Q.

Then p−1 (U) = p−1 (U1)× · · · × p−1 (Um)× S1 × S1 × · · · ⊆ Xm. This set has countably many disjoint

connected components and each one is readily seen to be homeomorphic through p to the set U ; to keep

ideas: if Q = (1, (0, 1) , (0, 1) , . . .) ∈ N× Z and U = {1} × U1 × S1 × S1 × · · · , connected components of

p−1 (U) are for example (−ε, ε)× S1 × S1 × · · · or (1− ε, 1 + ε)× S1 × S1 × · · · .
Second, a simple covering q : Y → Z of Z is given by the standard projection (n, y) 7→ y.

However the composition r := q◦p : X → Z is not a covering of Z since there is no point of Z admitting

a fundamental neighborhood. For example take the point Q = ((0, 1) , (0, 1) , . . .) ∈ Z (but the same idea

holds for each point of Z). A neighborhood V of Q is the intersection of �nitely many sets of a base

for the product topology: if U ⊆ S1 is a connected open neighborhood of (0, 1), one �nds V =
∏
j∈N Vj

where Vj = U for �nitely many j and Vj = S1 for the remaining ones. For instance, one could choose

V = U1×U2×· · ·×Um×S1×S1×· · · where Ui = U for i = 1, . . . ,m. Computing the preimage through

r, we get the disjoint union r−1 (V ) =
⋃
n∈N p

−1
n (V ). But the connected components of r−1 (V ) can not

be all mapped homeomorphically by r onto V . For example if m = 2 (again: this applies for each m),

among all possible connected components of r−1 (V ), there are W1 = (−ε, ε) × U2 × S1 × S1 × · · · (for
n = 1), W2 = (−ε, ε)× (−ε, ε)× S1 × S1 × · · · (for n = 2), W3 = (−ε, ε)× (−ε, ε)×R× S1 × S1 × · · · (for
n = 3) and clearly r|W3

: W3 → V is not injetive.

Thus r : X → Z is not a covering; on the other hand, thanks to Theorem 3.1.11, r provides us of an

example of a semicovering which is not a covering.

3. A non-trivial covering of the space S1 × S1

We show that p : S1 × S1 → S1 × S1 de�ned by (x, y) 7→ (xnym, xsyt) is a covering map whenever

m,n, s, t ∈ N and n/s 6= m/t.

We will exploit the theorems of previous sections.

Let exp (θ) = e2πiθ so that p may be written as p (exp (α) , exp (β)) = (exp (nα+mβ) , exp (sα+ tβ));

as a notation put also exp (γ, δ) :=
{

exp (θ) ∈ S1 : γ ≤ θ ≤ δ
}
. De�ne l = max {m,n, s, t} and consider

the open set U =
(
exp

(
α− π

2l , α+ π
2l

))
×
(
exp

(
β − π

2l , β + π
2l

))
, which is an open neighborhood of the

point (exp (α) , exp (β)) ∈ S1 × S1.
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We show that

p|U : U → exp
(
n
(
α− π

2l

)
+m

(
β − π

2l

)
, n
(
α+

π

2l

)
+m

(
β +

π

2l

))
× exp

(
s
(
α− π

2l

)
+ t
(
β − π

2l

)
, s
(
α+

π

2l

)
+mtβ +

π

2l

)
is a homeomorphism.

Computations give that(
m
(
α+ π

2l

)
+ n

(
α+ π

2l

))
−
(
m
(
α− π

2l

)
+ n

(
α− π

2l

))
=

= m
l

(
π
2 + π

2

)
+ n

l

(
π
2 + π

2

)
< 2π

and(
s
(
β + π

2l

)
+ t
(
β + π

2l

))
−
(
s
(
β − π

2l

)
+ t
(
β − π

2l

))
=

= s
l

(
π
2 + π

2

)
+ t

l

(
π
2 + π

2

)
< 2π.

Therefore, if p (exp (α1) , exp (β1)) = p (exp (α2) , exp (β2)), thennα1 +mβ1 = nα2 +mβ2

sα1 + tβ1 = sα2 + tβ2

and so

n (α1 − α2) = m (β2 − β1)

s (α1 − α2) = t (β2 − β1) .

Since n/s 6= m/t, we must have α1 = α2 and β1 = β2. Thus p is a local homeomorphism.

Now notice that S1 × S1 is a compact metric space and so it is also sequential compact. Hence by

Theorem 3.1.16, p is a semicovering map. In view of Theorem 1.3.30 or Theorem 3.1.24, since S1 × S1

is locally path connected and semilocally 1-connected, p is also a covering map. Alternatively, we could

observe that p is a proper map because S1 × S1 is compact and Hausdor�, thus p is a �nite sheeted

covering map by Theorem 3.1.19. The same conclusion can be reached also by Theorem 3.1.23. Remark

that despite knowing that p is a �nite sheeted covering, it is not at all easy to �nd an evenly covered

neighborhood by p for an arbitrary point of S1 × S1.

3.2 OPEN COVERING MORPHISMS

De�nition 3.2.1. A Top-functor F : A → B is open if each map F : A (x, y) → B (F (x) , F (y)) is an

open map. Thus an open covering morphism F : H → G of Top-groupoids is a covering morphism such

that each map F : H (x, y)→ G (F (x) , F (y)) is an open embedding (cfr. Remark 1.2.7).

If G is a Top-groupoid, OCovMor (G) denotes the category of open covering morphisms H → G. A
morphism of open covering morphisms p, p′ is a Top-functor F making this diagram quasi-commute, i.e.

p′ ◦ F = p:

H
p

##

F // H′
p′

{{
G .

The following lemma reminds us of Theorems 1.3.9 and 3.1.11: every morphism of open covering

morphisms is an open covering morphism itself.

Lemma 3.2.2. Suppose A,B, C are Top-groupoids and p : A → B, q : B → C, r := q ◦ p are functors.

Then:
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1. If p and q are open covering morphisms, then so is r.

2. If q and r are open covering morphisms, then so is p.

3. If p and r are open covering morphisms and p is surjective on objects, then q is an open covering

morphism.

Proof. Let us remove for a moment each appearance of �open� in the statement; it remains true, for: let

x ∈ ob (A) and consider the composite induced by p and q given by Ax
p′ // Bp(x)

q′ // Cq(p(x)) .

Clearly if any two of p′, q′, q′ ◦ p′ are bijections, then so is the third; for (3), one also needs that any

y ∈ ob (B) is p (x) for some x.

To show the statement in the case of open covering morphisms, one has to notice that, given

A (x, y)
p′ // B (p (x) , p (y))

q′ // C (q (p (x)) , q (p (y))) :

1. the composition of open maps is open;

2. if q′ and q′ ◦ p′ are open maps and A ⊆ A (x, y) is open, p′ (A) = q′−1 (q′ ◦ p′ (A)) is open (for

instance, remember that q′ is injective and continuous);

3. if p′ and q′ ◦ p′ are open maps and B ⊆ B (p (x) , p (y)), p′ being surjective, there exists at least one

open set A ⊆ A (x, y) such that p′ (A) = B. Since q′ ◦ p′ (A) is open and B = q′−1 (q′ ◦ p′ (A)), B

is open too.

3.2.1 The enriched functors Πτ
1, µ

τ and Rτ

In this section we give an enriched version of Theorem 1.3.24: since we will need maps which are both

�brations with unique path lifting and local homeomorphisms, for any topological space X, we cannot

consider the whole category Fib! (X) but infact we have to restrict to SCov (X).

Lemma 3.2.3. If p : Y → X is a semicovering such that p (yi) = xi, i = 1, 2, the map Pp : PY (y1, y2)→
Pp (x1, x2) is an open embedding.

Proof. Since Pp : PY (y1, y2) → PX (x1, x2) is the restriction of the homeomorphism P̃p : (PY )y1 →
(PX)x1

, Pp is continuous and injective. So it is enough to show the image of Pp is open in PX (x1, x2).

Let α ∈ PX (x1, x2) such that α̃y1 ∈ PY (y1, y2). Let U =
⋂n
j=1M

(
Kj
n, Uj

)
be an open neighborhood

of α̃y1 ∈ (PY )y1 such that p|Un : Un → p (Un) is a homeomorphism (such a Un exists because p is a local

homeomoprhism). Since P̃p : (PY )y1
∼= (PX)x1

, W := P̃p (U) ∩ PX (x1, x2) is an open neighborhood of

α in (the induced topology of) PX (x1, x2). If β ∈ W, then U is an open neighborhood of β̃y1 in (PY )y1 .

In particular β̃y1 ∈ PY (y1, y2), giving the desired inclusion W ⊆ Im (Pp).

Theorem 3.2.4. If p : Y → X is a semicovering map, then Πτ
1p : Πτ

1Y → Πτ
1X is an open covering

morphism.

Proof. It has already been observed in Lemma 1.3.15 that Πτ
1p is a covering morphism and in Lemma

2.3.6 that it is a Top-functor, so it is enough to show Πτ
1p is open. Remark that each function

Π1p : Π1Y (y1, y2) → Π1X (p (y1) , p (y2)) is injective because Π1p is a covering morphism of groupoids

(cfr. Remark 1.2.7). This injectivity is independent of topologies on the hom-sets.
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We work by trans�nite induction following the constructive approach of the Appendix.

For simplicity, let H0 := Πqtop
1 Y and G0 := Πqtop

1 X and inductively take Hζ and Gζ to be the approx-

imating qTop-groupoids of τ (H0) = Πτ
1Y and τ (G0) = Πτ

1X respectively.

For the �rst inductive step we have to show that whenever p (yi) = xi, i = 1, 2, then the map

Π1p : H0 (y1, y2)→ G0 (x1, x2), [α] 7→ [p ◦ α] is open. So let U be an open set in H0 (y1, y2): the following

diagram commutes when the vertical arrows are the canonical quotient maps

PY (y1, y2)
Pp //

hY

��

PX (x1, x2)

hX

��
H0 (y1, y2)

Π1p // G0 (x1, x2) .

The top map is open by previous Lemma and hX is quotient so it su�ces to show the equality h−1
X (Π1p (U)) =

Pp
(
h−1
Y (U)

)
. If α ∈ h−1

X (Π1p (U)), then [α] ∈ Π1p (U) and the lift α̃y1 ends at y2 by Lemma 3.1.9.

It is clear that Π1p ([α̃y1 ]) = [α] ∈ Π1p (U) and the injectivity of Π1p gives [α̃y1 ] ∈ U . Moreover

α = p ◦ α̃y1 = Pp (α̃y1) for α̃y1 ∈ h−1
Y (U), hence α ∈ Pp

(
h−1
Y (U)

)
. For the other inclusion, if α = p ◦ α̃y1

is such that [α̃y1 ] ∈ U , then [α] = Π1p ([α̃y1 ]) ∈ Π1p (U) and so α ∈ h−1
X (Π1p (U)).

For the second inductive step, suppose ζ is an ordinal and that for each η < ζ, Π1p : Hη (y1, y2) →
Gη (p (y1) , p (y2)) is open for each y1, y2 ∈ Y . Fix y1, y2 ∈ Y and let p (yi) = xi. Clearly, if ζ is a

limit ordinal, then Π1p : Hζ (y1, y2)→ Gζ (x1, x2) is an open embedding (indeed, cfr. the construction of

Theorem in Appendix). If ζ is a successor ordinal, consider the following quasi-commutative diagram:

⊔
b∈Y
Hζ−1 (y1, b)×Hζ−1 (b, y2)

Pζ−1 //

µY

��

⊔
a∈X
Gζ−1 (x1, a)× Gζ−1 (a, x2)

µX

��
Hζ (y1, y2)

Π1p // Gζ (x1, x2) ,

the vertical multiplication maps are quotients by de�nition, the top map Pζ−1 is, on each summand,

the product of open embeddings (by inductive hypothesis): in particular Π1p × Π1p : Hζ−1 (y1, b) ×
Hζ−1 (b, y2) → Gζ−1 (x1, p (b)) × Gζ−1 (p (b) , x2) is given by ([α] , [β]) 7→ ([p ◦ α] , [p ◦ β]) and so Pζ−1 is

continuous and open.

Now suppose U is open in Hζ (y1, y2). We have to show that Π1p (U) is open or, equivalently, that

µ−1
X (Π1p (U)) is open. If ([δ] , [ε]) ∈ µ−1

X (Π1p (U)), then [δ ∗ ε] ∈ Π1p (U). Let a0 = δ (1). Conse-

quently, the lift of δ ∗ ε starting at y1 ends at y2. This lift is δ̃y1 ∗ ε̃b0 , where b0 = δ̃y1 (1) ∈ p−1 (a0).

Since Π1p
([
δ̃y1 ∗ ε̃b0

])
=
[
p ◦
(
δ̃y1 ∗ ε̃b0

)]
=
[(
p ◦ δ̃y1

)
∗ (p ◦ ε̃b0)

]
= [δ ∗ ε] ∈ Π1p (U) and Π1p is

injective, hence
[
δ̃y1 ∗ ε̃b0

]
∈ U . Therefore µ−1

Y (U) is an open neighborhood of
([
δ̃y1

]
, [ε̃b0 ]

)
and

Pζ−1

(
µ−1
Y (U)

)
is an open neighborhood of ([δ] , [ε]) in

⊔
a∈X
Gζ−1 (x1, a)×Gζ−1 (a, x2). So we have shown

that Pζ−1

(
µ−1
Y (U)

)
⊇ µ−1

X (Π1p (U)). The other inclusion follows by noticing that if ([α] , [β]) ∈ µ−1
Y (U),

then [α ∗ β] ∈ U and µX (Pζ−1 ([α] , [β])) = [p ◦ α] ∗ [p ◦ β] = [p ◦ (α ∗ β)] = Π1p ([α ∗ β]) ∈ Π1p (U).

Corollary 3.2.5. If p : Y → X is a semicovering such that p (y0) = x0, the induced homomorphism of

groups p∗ : πτ1 (Y, y0)→ πτ1 (X,x0) is an open embedding of topological groups.
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Corollary 3.2.6. Thanks to Theorem 3.2.4, the map

Πτ
1 : SCov (X)→ OCovMor (Πτ

1X) ,

which assigns to a given semicovering of X an open covering morphism of the topological fundamental

groupoid of X, is a Top-functor.

Similarly, we enrich the functor µ (De�nition 1.3.23), which is well de�ned since any semicovering is

a �bration. The monodromy of a semicovering becomes an enriched functor when we use Πτ
1X instead of

Π1X and view Set as a Top-category by giving each set the discrete topology and endowing each hom-set

Set (A,B) with the compact-open topology. In what follows Sete denotes the so enriched category Set.

Theorem 3.2.7. The monodromy µτ (p) : Πτ
1X → Sete of a semicovering p : Y → X is a Top-functor.

Moreover,

µτ : SCov (X)→ TopFct (Πτ
1X,Set

e)

is a well de�ned functor.

Proof. Suppose p (yi) = xi, i = 1, 2. The set {[α] ∈ Πτ
1X (x1, x2) : y1 · [α] = y2} is open in Πτ

1X (x1, x2)

since it is the image of the open embedding Πτ
1p : Πτ

1Y (y1, y2) → Πτ
1X(x1, x2) (cfr. Theorem 3.2.4).

Moreover each �ber p−1 (X) is discrete. Therefore each action map

p−1 (x1)×Πτ
1X (x1, x2)→ p−1 (x2) , (y, [α]) 7→ y · [α]

is continuous. Since discrete spaces are locally compact and Hausdor�, the map

µτ (p) : Πτ
1X (x1, x2)→ Sete

(
p−1 (x1) , p−1 (x2)

)
, where µτ (p) ([α]) (y) = y · [α] ,

is continuous by the Exponential Law 1.1.4. Thus µτ (p) : Πτ
1X → Sete is a Top-functor.

Finally, a morphism f : Y → Y ′ of semicoverings p : Y → X and p′ : Y ′ → X induces the natural

transformation µτf : µτp→ µτp′ with the obvious components f : p−1 (x)→ p′−1 (x).

As an aside we get the following:

Corollary 3.2.8. For each x0 ∈ X, the monodromy of a semicovering p : Y → X restricts to a continuous

group homomorphism πτ1 (X,x0)→ homeo
(
p−1 (x0)

)
.

Finally we enrich the equivalence R (Theorem 1.2.8) getting:

Theorem 3.2.9 (enriched R−equivalence). For a Top-groupoid G, there is an equivalence of cate-

gories

Rτ : OCovMor (G) ' TopFct (G,Sete) .

Proof. We build Rτ and its inverse in such a way that when topological structures are forgotten we retain

the construction of the R−Equivalence 1.2.8.
First, a subbasis set for the topology of Sete

(
F−1
ob (x1) , F−1

ob (x2)
)
is of the form M ({y1} , {y2})

(because on each set F−1
ob (x) there is the discrete topology and the topology on Sete

(
F−1
ob (x1) , F−1

ob (x2)
)

is the compact-open one). Thus if F : H → G is an open covering morphism of Top-groupoids, then

RτF : G (x1, x2) → Sete
(
F−1
ob (x1) , F−1

ob (x2)
)
is continuous since each set (RτF )

−1
(M ({y1} , {y2})) =
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{g ∈ G (x1, x2) : t (g̃y1) = y2} = Im (F : H (y1, y2)→ G (x1, x2)) is open in G (x1, x2) (indeed, F is an open

covering morphism).

Conversely, let G be a Top-groupoid and N : G → Sete be a Top-functor. We de�ne H and

Rτ−1N : H → G as in Theorem 1.2.8 and we give H (y1, y2) the subspace topology of G (x1, x2) when

yi ∈ N (xi) (it makes sense because ob (H) ⊆ ob (G)). This makes H into a Top-groupoid and Rτ−1N

into a Top-functor.

Finally, N : G (x1, x2) → Sete (N (x1) , N (x2)) is continuous and each N (xi) is a discrete space; so

H (y1, y2) is open in G (x1, x2) whenever yi ∈ N (xi). Thus Rτ−1N is open.

The above constructions of Πτ
1 , µ

τ and Rτ prove that:

Theorem 3.2.10. For any topological space X, the following diagram quasi-commutes:

SCov (X)
Πτ1 //

µτ ++

OCovMor (Πτ
1X)

o Rτ

��
TopFct (Πτ

1X,Set
e) .

Thus any semicovering p : Y → X is characterized either by its corresponding open covering morphism

Πτ
1Y → Πτ

1X or by its corresponding enriched monodromy functor Πτ
1X → Sete.



58 CHAPTER 3. SEMICOVERINGS AND ENRICHED MONODROMY



Chapter 4

CLASSIFICATION THEOREMS

This �nal chapter is devoted to classi�cation theorems. We de�ne the class of locally wep-connected

spaces and prove that for such a space X the enriched functors Πτ
1 : SCov (X)→ OCovMor (Πτ

1X) and

µτ : SCov (X) → TopFct (Πτ
1X,Set) are equivalences of categories: this gives the enriched version of

Theorem 1.3.31.

4.1 WEP-CONNECTED SPACES

De�nition 4.1.1. Let X be a topological space.

1. A path α : I → X is well-ended if for every open neighborhood U of α in PX there are open

neighborhoods V0, V1 of α (0) , α (1) in X respectively such that for every a ∈ V0, b ∈ V1, there is a

path β ∈ U with β (0) = a and β (1) = b.

2. A path α : I → X is well-targeted if for every open neighborhood U of α in (PX)α(0) there is an

open neighborhood V1 of α (1) such that for each b ∈ V1, there is a path β ∈ U with β (1) = b.

3. A space is wep-connected if each pair of points can be connected by a well-ended path.

Remark 4.1.2. By de�nition, every wep-connected space is also path connected.

It is worth giving some intuition of these notions: since a basis for the topology of PX is given by

neighborhoods of the form
⋂n
j=1M

(
Kj
n, Uj

)
, where Uj is open in X, we get that a path α ∈ PX is

well-ended if and only if for each neighborhood
⋂n
j=1M

(
Kj
n, Uj

)
of α, there are open neighborhoods

V0 ⊆ U1, V1 ⊆ Un of α (0) , α (1) in X respectively such that for every a ∈ V0, b ∈ V1 there is a path

β ∈
⋂n
j=1M

(
Kj
n, Uj

)
with β (0) = a and β (1) = b; all this is resumed in the following �gure:

Figure 4.1.1: A well-ended path α

59
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A similar proof as in [7, 4.11] shows that the Hawaiian Earring H introduced in Section 2.2 is locally

wep-connected. A non-wep-connected space is for example the space X described in the example at the

end of Section 1.3.3: it is easily seen to be non-wep-connected at the point x1.

Next proposition describes some basic properties of wep-connected spaces:

Proposition 4.1.3. Let X be a topological space.

1. If α : I → X is a path and X is locally path connected at α (0) and α (1), then α is well-ended.

2. All path connected and locally path connected spaces are wep-connected.

3. Fix any x0 ∈ X. Then X is wep-connected if and only if for each x ∈ X there is a well-targeted

path from x0 to x.

Proof. 1. Suppose U =
⋂n
j=1M

(
Kj
n, Uj

)
is a basic open neighborhood of α in PX. Fix a path connected

neighborhood V0, V1 of α (0) , α (1) respectively such that V0 ⊆ U1, V1 ⊆ Un. For points a ∈ V0, b ∈ V1

take paths γ : I → V0 from a to α (0) and δ : I → V 1 from α (1) to b. Now de�ne a path q ∈ U by setting

qK1
2n

= γ, qK2
2n

= αK1
n
, q[ 1

n ,
n−1
n ] = p[ 1

n ,
n−1
n ], qK2n−1

2n
= αKn−1

n
and qK2n

2n
= δ.

Clearly q is a path in U from a to b.

2. It is a direct consequence of (1) .

3. Evidently if X is wep-connected it is also well-targeted. For the converse, pick a, b ∈ X. By

assumption there are paths α, β ∈ (PX)x0
ending at a, b respectively, each satisfying the de�nition of

being well-targeted to a, b respectively. We claim α ∗ β−1 is well-ended. Let U =
⋂n
j=1M

(
Kj
n, Uj

)
be a

basic open neighborhood of α ∗ β−1 in PX. Since A := U[0, 12 ] ∩ (PX)x0
and B := U[ 1

2 ,1]
∩ (PX)x0

are

open neighborhoods of α and β respectively, there are open neighborhoods A of a and B of b such that

for any a′ ∈ A (resp. b′ ∈ B) there is a path α′ ∈ A (resp. β′ ∈ B) from x0 to a′ (resp. x0 to b′). Finally

α′ ∗ (β′)
−1 ∈ U is the path a′ to b′ whose existence was required.

Proposition 4.1.4. If X is wep-connected and x0 ∈ X, then the evaluation map ev1 : (PX)x0
→ X,

α 7→ α (1) is a quotient map (i.e. the topology of X coincides with the quotient topology induced by ev1).

Proof. Suppose x ∈ U ⊆ X such that ev−1
1 (U) is open in (PX)x0

. Since X is wep-connected, there is a

well-targeted path γ ∈ (PX)x0
ending at x. Since ev−1

1 (U) is an open neighborhood of γ, there exists

an open neighborhood V of x in X such that for each v ∈ V there is a path α ∈ ev−1
1 (U) from x0 to v.

Thus V ⊆ U, showing that U is a neighborhood of all its points, hence U is open.

Proposition 4.1.5. If the path components of X are wep-connected, then πqtop0 X is discrete (i.e. the

path components of X are open).

Proof. Let x ∈ X and α any well-ended path such that α (0) = x. Since PX is a (trivial) open neigh-

borhood of α, there are open neighborhoods V0, V1 of x, α (1) respectively such that for each a ∈ V0,

b ∈ V1 there is a path γ from a to α (1); then V0 is contained in the path component of x, so the path

component of x is a neighborood of all its points, hence it is open.

For further use it is necessary to slightly strenghten the notion of wep-connectedness:

De�nition 4.1.6. Let X be a topological space.



4.1. WEP-CONNECTED SPACES 61

1. A path α : I → X is locally well-ended if for every open neighborhood U of α in PX there are open

neighborhoods V0, V1 of α (0) , α (1) in X respectively such that for every a ∈ V0, b ∈ V1, there is a

well-ended path β ∈ U with β (0) = a and β (1) = b.

2. A path α : I → X is well-targeted if for every open neighborhood U of α in (PX)α(0) there is an

open neighborhood V1 of α (1) such that for each b ∈ V1, there is a well-targeted path β ∈ U with

β (1) = b.

3. A space is locally wep-connected if each pair of points can be connected by a locally well-ended

path.

It is straightforward from the de�nition that every locally wep-connected space is wep-connected.

Moreover one can show that the local version of Proposition 4.1.3 still holds.

Well-ended and well-targeted paths enjoy also the following properties (the proofs may be found in

[5]):

Proposition 4.1.7. Let X be a topological space and α : I → X a path.

1. If there is a 0 ≤ t ≤ 1 such that α[t,1] is well-targeted (resp. locally well-targeted), then α is

well-targeted (resp. locally well-targeted) itself.

2. If there are 0 ≤ s ≤ t ≤ 1 such that α[t,1]and
(
α[0,s]

)−1
are well-targeted (resp. locally well-targeted),

then α is well-ended (resp. locally well-ended).

3. The reverse of a well-ended (resp. locally well-ended) path is well-ended (resp. locally well-ended).

4. The concatenation of well-ended (resp.locally well-ended) paths is well-ended (resp. locally well-

ended).

The following corollary allows us to replace any path in a locally wep-connected space by a homotopic

locally well-targeted path with the same endpoints.

Corollary 4.1.8. Let X be wep-connected (resp. locally wep-connected) and x1, x2 ∈ X. For each class

[α] ∈ π1X (x1, x2) there is a well-targeted (resp. locally well-targeted) path β ∈ [α].

Proof. If X is wep-connected (resp. locally wep-connected), there is a well-targeted (resp. locally well-

targeted) path γ from x1 to x2. Let β := α∗γ−1 ∗γ. Clearly [α] = [β] and (1) of the above lemma implies

that β is well-targeted (resp. locally well-targeted).

It is also interesting to recall the following partial generalization of the van Kampen Theorem to the

topological fundamental group, for the proof see [6, 4.23]:

Theorem 4.1.9 (van kampen theorem). Let (X,x0) be a based space and {U1, U2, U1 ∩ U2} an open

cover of X consisting of path connected neighborhoods each containing x0. If U1 ∩ U2 is wep-connected,

there is a canonical isomorphism

πτ1 (X) ∼= πτ1 (U1) ∗πτ1 (U1∩U2) π
τ
1 (U2) .
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In other words if ki : U1 ∩U2 ↪→ Ui and ji : Ui ↪→ X are the inclusions and U1 ∩U2 is wep-connected, the

induced diagram of continuous homomorphisms

πτ1 (U1 ∩ U2)
(k1)∗ //

(k2)∗
��

πτ1 (U1)

(j1)∗
��

πτ1 (U2)
(j2)∗ // πτ1 (X)

is a pushout square in the category of topological groups.

Recall that if there are given two group homomorphisms φ : F → G and ψ : F → H, the amalgamated

product of G and H (with respect to φ and ψ), denoted by G ∗F H, is the quotient group (G ∗H) /N ,

where N is the normal subgroup of G ∗H generated by all words of the form φ (x)ψ (x)
−1

for x ∈ F ; in
our case φ and ψ are the continuous homomorphisms induced by inclusions Ui ↪→ X. For the de�nition

of pushout see [22, III.3].

Moreover ([6, 4.10]):

Theorem 4.1.10. Every topological group G is isomorphic to the fundamental topological group πτ1 (X)

of a suitable locally wep-connected space X.

4.1.1 Semicoverings of wep-connected spaces

We end this section with two statements motivated by the desire to lift properties of a space to its

semicovering spaces. Drawing down some pictures while reading may be of some help.

Proposition 4.1.11. Let p : Y → X be a semicovering map such that p (y0) = x0. If α ∈ (PX)x0
is

(locally) well-targeted, then so is the lift α̃y0 .

Proof. Suppose α is well-targeted and let W be an open neighborhood of α̃y0 in (PY )y0 . Since p is a

local homeomorphism, there is an open neighborhood U of α̃y0 (1) mapped homeomorphically by p onto

an open subset of X. Let U :=W ∩M ({1} , U) and remark that α̃y0 ∈ U . Since Pp : (PY )y0 → (PX)x0

is a homeomorphism, V := Pp (U) is an open neighborhood of α. By assumption, there is an open

neighborhood V of α (1) (which may be taken contained in p (U)) such that for each v ∈ V there is a path

γ ∈ V from x0 to v. Now, W := p−1 (V )∩U is a homeomorphic copy of V in U . If w ∈W , then p (w) ∈ V
and there is a path γ ∈ V from x to p (w). Since p ◦ γ̃y0 (1) = p (w) and γ̃y0 (1) ∈ p−1 (p (w)) ∩ U = {w},
we have γ̃y0 (1) = w. This ends the proof of the well-targeted case.

Since the lift of well-targeted paths is still well-targeted, the local version follows from the same

argument starting with a locally well-targeted path α.

Corollary 4.1.12. Let p : Y → X be a semicovering map. If X is wep-connected (resp. locally wep-

connected), then so is every path component of Y .

Proof. Let p (y0) = x0: we show the path component of y0 in Y is wep-connected (resp. locally wep-

connected). Suppose y ∈ Y , p (y) = x and γ̃y0 is a path from y0 to y so that γ = p ◦ γ̃y0 is a path

from x0 to x. We have to show that γ̃y0 is well-ended. By Corollary 4.1.8, there is a well-targeted (resp.

locally well-targeted) path α from x0 to x homotopic to γ. This homotopy lifts to a homotopy of paths

γ̃y0 ' α̃y0 ; in particular α̃y0 (1) = γ̃y0 (1) = y and α̃y0 is well-targeted (resp. locally well-targeted) by

Proposition 4.1.11. Repeating the same argument for (γ̃y0)
−1

one �nds that (α̃y0)
−1

is well-targeted too
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and by (2) of Proposition 4.1.7, we conclude that α̃y0 is well-ended (resp. locally well-ended). So any

two points in the path component of y0 in Y can be connected by a well-ended (resp. locally well-ended)

path so any path component of Y is wep-connected (resp. locally wep-connected).

4.2 THE ENRICHED EQUIVALENCES Πτ
1, µ

τAND Rτ

The aim of this �nal section is the proof of the following theorem, which is the generalization of Corollary

1.3.31:

Theorem 4.2.1. If X is locally wep-connected, all arrows in the following quasi-commutative diagram

are equivalences:

SCov (X) ∼
Πτ1 //

µτ
∼

++

OCovMor (Πτ
1X)

o Rτ

��
TopFct (Πτ

1X,Set
e) .

We start by proving the Πτ
1−equivalence.

In this case the main di�cult is the existence of a semicovering p whose induced covering morphism

Πτ
1p is equivalent to a given open covering morphism H → Πτ

1X: roughly speaking, if we are given an

open covering morphism, we need a way to build a semicovering which induces exactly that open covering

morphism (or an equivalent one).

Let X be a path-connected space and F : H → Π1X be a covering morphism of groupoids: since we

are interested in genuine coverings, we may assume ob (H) 6= ∅ and so F is sujective on objects (Remark

1.2.6).

For each y ∈ F−1
ob (x) and α ∈ (PX)x, let y · [α] denote the target of the unique morphism [̃α]y ∈ Hy

such that F
(

[̃α]y

)
= [α] ∈ (Πτ

1X)x.

De�nition 4.2.2. Let X̃F be the space obtained by giving the set ob (H) the quotient topology with

respect to the map

ΘF :
⊔
x∈X

F−1
ob (x)× (PX)x → ob (H) where ΘF (y, α) = y · [α] .

It is understood that each �ber F−1
ob (x) is given the discrete topology. A generic element of X̃F will

be denoted by y · [α]. Finally de�ne the map pF : X̃F → X by pF (y · [α]) = α (1).

Notice that ob (H) and X̃F are the same set: we are just giving ob (H) the topology induced by ΘF .

Moreover, if h ∈ ob (H), then

Θ−1
F (h) =

{
(a, α) : a ∈ F−1

ob (α (0)) , α ∈ (PX)α(0) and [̃α]a has target h
}
.

Remark 4.2.3. The diagram

⊔
x∈X

F−1
ob (x)× (PX)x

ev

**

ΘF // X̃F

pF

��
X
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commutes when ev (y, α) = α (1). Moreover ev is continuous (Proposition 4.1.4) so pF is continuous too

by the universal property of quotient spaces. Remark also that pF is necessarily surjective.

Proposition 4.2.4. If F ′ : H′ → Π1X is another covering morphism and K : H → H′ is a functor such

that F ′ ◦K = F , then Kob : X̃F → X̃F ′ is continuous.

Proof. For each x ∈ X, let Kx : F−1
ob (x)→ F ′−1

ob (x) be the restriction of Kob to F
−1
ob (x). Since F, F ′ are

covering morphisms and F ′ ◦K = F , we have K (y · [α]) = Kx (y) whenever F (x) = y and α ∈ (PX)x.

Thus the following diagram commutes:

⊔
x∈X

F−1
ob (x)× (PX)x

⊔
x∈X

Kx×id
//

ΘF

��

⊔
x∈X

F ′−1
ob × (PX)x

ΘF ′

��
X̃F

Kob // X̃F ′ .

The top map is trivially continuous because the topology on each �ber F−1
ob (x) and F ′−1

ob is discrete;

vertical arrows are continuous by de�nition; so the continuity of the bottom map follows from the universal

property of quotient spaces.

Next results show that, under appropriate hypothesis, pF provides us of a semicovering map.

Lemma 4.2.5. If X is wep-connected, then pF : X̃F → X is an open map.

Proof. Suppose W is open in X̃F and x = pF (y) ∈ pF (W ) for y ∈ W . Notice that y · [cx] = y. By

Corollary 4.1.8, there exists a well-targeted, null-homotopic loop β ∈ Ω (X,x). So y ·[β] = y ·[cx] = y ∈W .

Now, for some open neighborhood U of β in (PX)x, we have {y}×U = Θ−1
F (W )∩ ({y} × (PX)x). Since

β is well-targeted, there is an open neighborhood V of x = β (1) in X such that for every v ∈ V , there is
a path δ ∈ U such that δ (1) = v. Thus y · [δ] ∈ W and pF (y · [δ]) = δ (1) = v. So V ⊆ pF (W ), showing

that pF (W ) is a neighborhood of all its points and so it is open.

Lemma 4.2.6 (Canonical lifts of paths). Let X be a wep-connected space and F : H → Π1X a

covering morphism. Then pF admits a canonical lift of paths.

Proof. For y ∈ p−1
F (x) we need a way to build a continuous section of the map PpF :

(
PX̃F

)
y
→ (PX)x,

i.e. a map LF : (PX)x →
(
PX̃F

)
y
such that PpF ◦ LF = id(PX)x

.

Multiplication µ : I × I → I of real numbers is continuous, so the function

µ# : (PX)x → Top ((I × I, {0} × I ∪ I × {0}) , (X, {x})) , β 7→ β ◦ µ,

is continuous also by the Exponential Law 1.1.4 (see also Section 1.1 for notations); actually, β ◦ µ just

takes a couple of real numbers (a, b) ∈ I × I to the point β (µ (a, b)) ∈ X. Additionally, the map

r : Top ((I × I, {0} × I ∪ I × {0}) , (X, {x}))→ (P (PX)x)
cx

de�ned by r (φ) (s) (t) = φ (s, t) (where (s, t) ∈ I × I may be visualized as a �path of paths�) is a home-

omorphism: indeed, by de�nition, we have that (PX)x = Top ((I, {0}) , (X, {x})) and (P (PX)x)
cx

=
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Top ((I, {0}) ,Top ((I, {0}) , (X, {x}))) and again by the Eponential Law, this last space is homeomor-

phic to Top ((I × I, {0} × I ∪ I × {0}) , (X, {x})). Notice that r (β ◦ µ) (s) (t) = β (st) and therefore

r (β ◦ µ) (s) = β[0,s]. Lastly, the map

PΘF : (P (PX)x)
cx
→
(
PX̃F

)
y

is obtained by applying P to the restriction of ΘF to {y} × (PX)x, and clearly PΘF is continuous

(because ΘF was).

Now let LF : (PX)x →
(
PX̃F

)
y
be the composition PΘF ◦ r ◦ µ# which takes β to the path

β̃y (s) = y ·
[
β[0,s]

]
. Since pF

(
y ·
[
β[0,s]

])
= β (s), β̃y is a lift of β starting at y as we wanted. So LF is

the desired section.

Remark 4.2.7. For y1, y2 ∈ X̃F , let FH (y1, y2) be the image of the injection F : H (y1, y2)→ Π1X (x1, x2).

Since F is a covering morphism, FH (y1, y2) = {[α] ∈ Π1X (x1, x2) : y1 · [α] = y2} whenever pF (yi) = xi.

The special case y1 = y = y2 gives that y · [α] = y · [β] if and only if
[
α ∗ β−1

]
∈ FH (y).

From this moment on, X will be a locally wep-connected space, H a Top-groupoid and the covering

morphism F : H → Πτ
1X an open Top-functor. Our next goal is to obtain a simple basis for the topology

of X̃F . Since, by de�nition, each map F : H (y1, y2)→ Πτ
1X (x1, x2) is an open embedding, FH (y1, y2) is

open in Πτ
1X (x1, x2). Moreover, each map h : PX (x1, x2) → Πτ

1X(x1, x2) identifying homotopy classes

of paths is continuous (Proposition 2.1.19), so the pre-image h−1 (FH (y1, y2)) is open in PX (x1, x2).

Suppose pF (y0) = x0, α ∈ (PX)x0
and U is an open neighborhood of y0 · [α] in X̃F . By Corol-

lary 2.1.19, we may assume that α is locally well-targeted. Notice also that h−1 (FH (y0)) is an open

neighborhood of the null-homotopic loop α ∗ α−1 in Ω (X,x0) because Ω (X,x0) ⊆ (PX)x0
and since

FH (y0) ⊆ Πτ
1X (x0), we get h−1 (FH (y0)) ⊆ h−1 (Πτ

1X (x0)) = Ω (X,x0). This means we can �nd a

neighborhood U =
⋂m
i=1M

(
Ki
m, Ai

)
of α in (PX)x0

such that:

1. {y0} × U ⊆ ΘF (U): indeed, for sure y0 ∈ F−1
ob (x0) and if U is su�ciently small, for all β ∈ U , β is

a path from x0 to β (1) and β (1) is a point in a small neighborhood of α (1) so that y0 · [β] results

in U (remember that pF is continuous);

2. α ∗ α−1 ∈ U · U−1 ∩ Ω (X,x0) ⊆ h−1 (FH (y0)): indeed, we know that h−1 (FH (y0)) ⊆ Ω (X,x0)

and if U is su�ciently small we can suppose U · U−1 ⊆ h−1 (FH (y0)), so that U · U−1∩Ω (X,x0) ⊆
h−1 (FH (y0));

it is undestood that U·U−1 =
{
γ1 ∗ γ2 ∈ Ω (X,x0) : γ1 ∈ U , γ2 ∈ U−1 and γ1 ∗ γ2 makes sense

}
;

Since α is locally well-targeted, there is an open neighborhood V of α (1) contained in Am such that for

each v ∈ V , there is a well-targeted path δ ∈ U from x0 to v.

Let B (y0 · [α] ,U , V ) := ΘF ({y0} × (U ∩M ({1} , V ))); roughly speaking, U ∩ M ({1} , V ) are the

paths of U which end in V .

Lemma 4.2.8. Sets of the form B (y0 · [α] ,U , V ) give a basis for the topology of X̃F . Moreover the open

set B (y0 · [α] ,U , V ) is mapped homeomorphically onto V by pF . In particular pF is a local homeomor-

phism.

Proof. The reader is invited to look at Figure 4.1.1 while reading this proof.
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Figure 4.2.1: Lemma 4.2.8

Since U is arbitrary and B (y0 · [α] ,U , V ) ⊆ U (by point (1) above) it is enough to show that

B (y0 · [α] ,U , V ) is open in X̃F or, equivalently, that Θ−1
F (B (y0 · [α] ,U , V )) is open. If (y1, β) ∈

Θ−1
F (B (y0 · [α] ,U , V )) ∩

(
{y1} × (PX)x1

)
, then y1 · [β] = y0 · [ε] for ε ∈ U ∩M ({1} , V ) and this implies

that β (1) = ε (1). By assumption there is a well-targeted path δ ∈ U such that δ (1) = ε (1) because

ε ∈M ({1} , V ). Since δ ∗ ε−1 ∈ U · U−1 ∩ Ω (X,x0) ⊆ h−1 (FH (y0)), we have y0 · [δ] = y0 · [ε] = y1 · [β].

Since
[
δ ∗ β−1

]
∈ FH (y0, y1), the set h−1 (FH (y0, y1)) is an open neighborhood of δ∗β−1 in PX (x0, x1).

This observation guarantees that there are open neighborhoods B =
⋂n
j=1M

(
Kj
n, Bj

)
of β in (PX)x1

and D =
⋂p
k=1M

(
Kk
p , Dk

)
of δ in (PX)x0

such that:

1. D ⊆ U , because δ ∈ U so it is enough to choose a neighborhood of δ contained in U ;

2. δ ∗ β−1 ∈ D · B−1 ∩ PX (x0, x1) ⊆ h−1 (FH (y0, y1)), by construction;

3. Bn ∪Dp ⊆ V (remember that β (1) = δ (1) ∈ V ).

Since δ is well-targeted, there is an open neighborhood W of β (1) = δ (1) of Bn ∩Dp such that for each

w ∈ W , there is a path ζ ∈ D from x0 to w. We claim the neighborhood {y1} × (B ∩M ({1} ,W )) of

(y1, β) is contained in Θ−1
F (B (y0 · [α] ,U , V )) ∩

(
{y1} × (PX)x1

)
.

If γ ∈ B ∩ M ({1} ,W ), there is a path ζ ∈ D from x0 to γ (1). This gives ζ ∗ γ−1 ∈ D · B−1 ∩
PX (x0, x1) ⊆ h−1 (FH (y0, y1)) and therefore y0 · [ζ] = y1 · [γ]. Since y1 · [γ] = y0 · [ζ], for ζ ∈ D ∩
M ({1} ,W ) ⊆ U ∩M ({1} , V ), we have y1 · [γ] ∈ B (y0 · [α] ,U , V ) as we wanted.

For the second part of the statement, since pF is open by Lemma 4.2.5, we have that the restriction

p̄F : B (y0 · [α] ,U , V )→ V of pF is a homeomorphism if pF is bijective.

If v ∈ V, there is a path δ ∈ U such that δ (1) = v which gives pF (y0 · [δ]) = v so p̄F is surjective. If

δ, ε ∈ U∩M ({1} , V ) such that pF (y0 · [δ]) = δ (1) = ε (1) = pF (y0 · [ε]), then δ∗ε−1 ∈ U·U−1∩Ω (X,x0) ⊆
h−1 (FH (y0)) and so

[
δ ∗ ε−1

]
∈ FH (y0) and this is possible if and only if y0 · [δ] = y0 · [ε] (i.e. the target

of δ is the source of ε−1), thus p̄F is injective.
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Remark 4.2.9. The rough drawing in Figure 4.1.1 makes this last proof seem arti�cious and redundant:

in fact, if V is path connected, B (y0 · [α] ,U , V ) =
{
y0 · [α ∗ ζ] : ζ ∈ (PV )α(1)

}
. So if X is locally path

connected (as it is the sheet of our drawing...) the construction of X̃F agrees with the usual construction

of coverings of locally path connected spaces (cfr., for example, [23, V.7-10]).

By Lemma 4.2.8, if pF (y) = x, the set y · (Πτ
1X)x =

{
y · [α] ∈ X̃F : α ∈ (PX)x

}
is open in X̃F ;

moreover X is path-connected, so (PX)x is path connected and therefore y · (Πτ
1X)x is path connected

too.

Proposition 4.2.10. The path components of X̃F are the open sets y · (Πτ
1X)x.

Proof. If y ∈ y1 · (Πτ
1X)x1

∩ y2 · (Πτ
1X)x2

, then y1 · [α1] = y = y2 · [α2] for some paths αi satisfying the

conditions αi (0) = xi and α1 (1) = α2 (1). We claim that y1 · (Πτ
1X)x1

= y2 · (Πτ
1X)x2

. If y1 · [β] ∈
y1 · (Πτ

1X)x1
, where β (0) = x1, then y1 · [β] = y1 · [α1]

[
α−1

1 ∗ β
]

= y2 · [α2] [α1 ∗ β] = y2 ·
[
α2 ∗ α−1

1 ∗ β
]

giving y1 · [β] ⊆ y2 · (Πτ
1X)x2

. The other inclusion is shown similarly.

The following theorem shows that pF is actually a semicovering map.

Theorem 4.2.11. If X is locally wep-connected and F : H → Πτ
1X is an open covering morphism of

Top-groupoids, then pF : X̃F → X is a semicovering map.

Proof. By Lemmas 4.2.8 and 4.2.6 pF is a local homeomorphism which has the path lifting property; so

it remains to be shown that pF has unique path lifting (recall De�nition 3.1.5). Let f, g : I → X̃F be

paths in X̃F such that pF ◦ f = pF ◦ g. We show that {t ∈ I : f (t) = g (t)} is either empty or the whole

I. By Proposition 4.2.10, we may assume that f and g have image in a path component y0 · (Πτ
1X)x0

where pF (y0) = x0 . Exploiting Corollary 4.1.8, we have f (t) = y0 · [αt] and g (t) = y0 · [βt] for some

locally well-targeted paths αt, βt ∈ (PX)x0
. The condition pF ◦ f = pF ◦ g means αt (1) = βt (1) for

each t ∈ I and thus αt ∗ β−1
t ∈ Ω (X,x0). Let λt =

[
αt ∗ β−1

t

]
so that h−1 (FH (y0) ∗ λt) is an open

neighborhood of αt ∗ β−1
t in Ω (X,x0). Since αt ∗ α−1

t and βt ∗ β−1
t are null-homotopic, there is an open

neighborhood At =
⋂nt
j=1M

(
Kj
nt , A

t
j

)
of αt and Bt =

⋂mt
i=1M

(
Ki
mt , B

t
i

)
of βt in (PX)x0

such that((
At · A−1

t

)
∪
(
Bt · B−1

t

))
∩ Ω (X,x0) ⊆ h−1 (FH (y0)) and At · B−1

t ∩ Ω (X,x0) ⊆ h−1 (FH (y0) ∗ λt).
Since αt, βt are locally well-targeted, there is an open neighborhood Ut ⊆ Atnt of αt (1) (resp. Vt ⊆ Btmt
of βt (1)) such that for each u ∈ Ut (resp. v ∈ Vt) there is a well-targeted path δ ∈ At with δ (1) = u

(resp. γ ∈ Bt with γ (1) = v).

According to Lemma 4.2.8, for each t ∈ I, B (y0 · [αt] ,At, Ut) and B (y0 · [βt] ,Bt, Vt) are open neigh-

borhoods of y0 · [αt] and y0 · [βt] in y0 · (Πτ
1X)x0

respectively. Suppose now that there are r, s ∈ I such

that y0 · [αr] 6= y0 · [βr] and y0 · [αs] = y0 · [βs] and assume r < s. Let z be the greatest lower bound of

A = {t ∈ [r, s] : y0 · [αt] = y0 · [βt]} =
{
t ∈ [r, s] :

[
αt ∗ β−1

t

]
∈ FH (y0)

}
(in practice z = inf (A)).

Since f, g are continuous, there exists an ε > 0 such that y0 · [αt] ∈ B (y0 · [αz] ,Az, Uz) and y0 · [βt] ∈
B (y0 · [βz] ,Bz, Vz) for all t ∈ (z − ε, z + ε) ∩ I. Now there are two cases:

1. If z ∈ A (i.e.
[
αz ∗ β−1

z

]
∈ FH (y0)), then r < z ≤ s and FH (y0) ∗ λz = FH (y0). Pick any

t0 ∈ (r, z) ∩ (z − ε, z). We have y0 · [αt0 ] ∈ B (y0 · [αz] ,Az, Uz) and y0 · [βt0 ] ∈ B (y0 · [βz] ,Bz, Vz) and

therefore y0 · [αt0 ] = y0 · [ζ] for ζ ∈ Az and y0 · [βt0 ] = y0 · [η] for η ∈ Bz. Since ζ (1) = αt0 (1) =

βt0 (1) = η (1), we have ζ ∗ η−1 ∈ Az · B−1
z ∩ Ω (X,x0) ⊆ h−1 (FH (y0) ∗ λz) = h−1 (FH (y0)) and

y0 · [αt0 ] = y0 · [ζ] = y0 · [η] = y0 · [βt0 ]. But t0 < z and t0 ∈ A contradicting that z is a lower bound of A.

2. If z /∈ A (i.e.
[
αz ∗ β−1

z

]
/∈ FH (y0)), then r ≤ z < s and FH (y0) ∗ λz ∩ FH (y0) = ∅. Pick

any t0 ∈ (z, s) ∩ (z, z + ε) so that, as above, y0 · [αt0 ] = y0 · [ζ] for ζ ∈ Az and y0 · [βt0 ] = y0 · [η] for
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η ∈ Bz. If y0 · [αt0 ] = y0 · [βt0 ], then
[
ζ ∗ η−1

]
∈ FH (y0). But this is not possible because ζ ∗ η−1 ∈

Az·B−1
z ∩Ω (X,x0) ⊆ h−1 (FH (y0) ∗ λz) and FH (y0) ∗ λz ∩FH (y0) = ∅. Thus y0 · [αt] 6= y0 · [βt] for all

t ∈ [z, s) ∩ [z, z + ε). Then any y ∈ (z, s) ∩ (z, z + ε) is a lower bound greater than z, and again we gain

a contradiction.

Finally, we are able to give a proof of the following:

Theorem 4.2.12 (enriched Π1−equivalence). Let X be locally wep-connected. Then the enriched

fundamental groupoid functor Πτ
1 induces an equivalence of categories

Πτ
1 : SCov (X) ' OCovMor (Πτ

1X) .

Proof. To show Πτ
1 is an equivalence, let us de�ne the inverse equivalence S : OCovMor (Πτ

1X) →
SCov (X): for an open covering morphism F : H → Πτ

1X, we set S (F ) := pF : X̃F → X; for a

morphism K in OCovMor (Πτ
1X) such that this diagram quasi-commutes

H

F
((

K // H′

F ′vv
Πτ

1X

in view of Proposition 4.2.4, we set S (K) := Kob : X̃F → X̃F ′ . So S is well de�ned both on objects and

on morphisms.

First, we show that S ◦Πτ
1 ' idSCov(X).

Suppose p : Y → X is a semicovering of X and F = Πτ
1p : Πτ

1Y → Πτ
1X. Certainly, S (Πτ

1p) =

S (F ) = pF : X̃F → X and p agree as functions because p = (Πτ
1p)ob = Fob = pF . But to complete this

part of the proof, at least at level of objects, we have also to check that the topologies on Y and X̃F

agree; so consider the following commutative diagram:

⊔
x∈X p

−1 (x)× (PX)x
ΘF //

⊔
y∈Y Lp

��

X̃F

id

��⊔
y∈Y (PY )y

⊔
y ev1 // Y.

The left vertical map takes (y, α) ∈ p−1 (x) × (PX)x to the lift α̃y ∈ (PY )y and is a homeomorphism,

since p, by de�nition, has continuous lifting of paths; in particular
⊔
y Lp is open. The bottom map is

the evaluation at 1 on each element of the disjoint union and is a quotient map by Corollary 4.1.12 and

Proposition 4.1.4, in particular ev1 is continuous. Finally, ΘF is continuous by de�nition. So id : X̃F → Y

is continuous and open, hence a homeomorphism.

Now we check the equivalence holds at level of morphisms: suppose p′ : Y ′ → X is another semicovering

of X, F ′ := Πτ
1p
′ : Πτ

1Y
′ → Πτ

1X and f : Y → Y ′ is a map such that p′ ◦ f = p. Then S (Πτ
1f) is

the map f = (Πτ
1f)ob : X̃F → X̃F ′ , but above we have shown that X̃F = Y and X̃F ′ = Y ′, thus
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S ◦Πτ
1 ' idSCov(X) (notice that the components of the natural transformation are identity maps:

pF

��

id // p

��
pF ′

id // p′

and in this case we do not only have an isomorphism of functors S ◦Πτ
1X ' idSCov(X) but infact we get

a full equality S ◦Πτ
1X = idSCov(X)).

Second, we show that idOCovMor(Πτ1X) ' Πτ
1 ◦S .

So suppose F : H → Πτ
1X is an open covering morphism. By Theorem 4.2.11, S (F ) = pF : X̃F → X

is a semicovering which induces an open covering morphism Πτ
1pF : Πτ

1X̃F → Πτ
1X. We de�ne a functor

NF : H → Πτ
1X̃F such that (NF )ob = idob(H). Moreover, if h ∈ H (y1, y2) and F (h) = [α] ∈ Πτ

1X (x1, x2),

let NF (h) = [α̃y1 ] ∈ Πτ
1X̃F (y1, y2) be the class of the unique lift of α with respect to pF . So NF is well

de�ned both on objects and on morphisms of H. Thanks to the description of lifts of paths in Lemma

4.2.6, we immediately get α̃y1 (1) = y1 · F (h) = y2.

Since Πτ
1pF ◦NF = F (it is a straight veri�cation), NF is an open covering morphism by Lemma 3.2.2; but

moreover (NF )ob is the identity on objects and so NF : H → Πτ
1X̃F is an isomorphism of Top-groupoids.

Thus to end the proof we need to show that NF is actually a natural transformation of functors such

that idOCovMor(Πτ1X) ' Πτ
1 ◦S , i.e. that the following diagram of Top-functors quasi-commutes for any

morphism K : H → H′ of open covering morphisms F and F ′ : H′ → Πτ
1X:

H NF //

K

��

Πτ
1X̃F

Πτ1Kob
��

H′
NF ′ // Πτ

1X̃F .

Certainly the diagram commutes on objects by de�nition ofNF andNF ′ . Concerning morphisms, suppose

g ∈ H (y1, y2) and F (g) = [α] so that NF (g) = [α̃y1 ]. Then Πτ
1Kob ([α̃y1 ]) is the homotopy class

[
α̃K(y1)

]
of the unique lift α with respect to pF ′ : X̃F ′ → X starting at K (y1). The de�nition of NF ′ gives

NF ′ (K (g)) =
[
α̃K(y1)

]
because F ′ (K (g)) = F (g) = [α] and K (g) ∈ H′ (K (y1) ,K (y2)). Hence the

diagram commutes and the proof ends.

As in the µ−equivalence 1.3.36, by de�ning (µτ )
−1 := (Rτ )

−1 ◦S we get the µτ−equivalence:

Theorem 4.2.13 (enriched µ−equivalence). Let X be locally wep-connected. Then the enriched

monodromy functor µτ induces an equivalence of categories

µτ : SCov (X) ' TopFct (Πτ
1X,Set

e) .

This last theorem together with Theorems 4.2.12 and 3.2.9 closes the triangle and makes it a quasi-

commutative diagram of categories where each arrow is an equivalence, proving Theorem 4.2.1.
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APPENDIX: an inductive

approximation of Πτ1 (X)

It may be of some interest to understand how it is possible to build the topological fundamental group

τ (G) starting from a quasitopological group G as de�ned in Section 2.1 and then how to generalize this

construction to quasitopological groupoids. Although annoying in all details, the results here exposed

exploit a common trans�nite argument. For notations, see Chapter 2.

Thanks to Proposition 2.1.13 it is possible approximate τ (G) by trans�nite induction whenever G is

a quasitopological group: let G = G0 be a quasitopological group with topology TG0
. Iterate the action

of c by letting Gα = c (Gα−1) with topology TGα for each ordinal α with predecessor. When α is a limit

ordinal, let Gα have topology TGα =
⋂
β<α TGβ . One easily shows Gα is a quasitopological group for each

ordinal α. Finally we obtain τ (G) since �the iteration ends� (for the proof, see [6, 3.8]):

Theorem. There exists an ordinal α such that Gα = τ (G).

In the next theorem we explicitly generalize this result to groupoids.

Let G = G0 be a qTop-groupoid (actually, what is laid out here in all generality may be thought

in relation with the quasitopological fundamental groupoid: G0 = Πqtop
1 X). Construct qTop-groupoids

Gζ inductively so that if ζ is a successor ordinal, the topology of Gζ (x, y) (if not empty) is the quotient

topology with respect to all possible multiplication maps

µ :
⊔

a∈ob(G)

Gζ−1 (x, a)× Gζ−1 (a, y)→ Gζ (x, y) .

Notice that for each new built groupoid, what changes is the topology on the hom-sets, but objects are

the same. If ζ is a limit ordinal, the topology of Gζ (x, y) is the intersection of the topologies of Gη (x, y)

for η < ζ.

Theorem. Let G be a qTop-groupoid. Then:

1. Gζ is a qTop-groupoid for each ζ.

2. The identities G → Gζ → Gζ+1 → τ (G) are morphisms of qTop-groupoids for each ζ.

3. τ (Gζ) = τ (G) for each ζ.

4. Gζ is a Top-groupoid if and only if Gζ = τ (G) if and only if Gζ (x, y) = Gζ+1 (x, y) for all x, y ∈
ob (G).

5. There is an ordinal number ζ0 such that Gζ = τ (G) for e ach ζ ≥ ζ0.
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Proof. 1. Let us show that, for each ordinal, translations and inversion are continuous. Take for example

left translations: λg : Gζ (w, x)→ Gζ (w, y) where g : x→ y.

• If ζ is a successor ordinal, we have the homeomorphism λ
′

g : Gζ−1 (w, x) → Gζ−1 (w, y) and hence

we can build the commuting diagram

Gζ−1 (w, x)
λ
′
g //

�� **

Gζ−1 (w, y)

��
Gζ (w, x)

λg // Gζ (w, y)

where the left vertical arrow is the continuous multiplication Gζ−1 (w, x)×{idx} → Gζ (w, x) and the

left vertical arrow is built similarly. Since the top arrow is continuous, the bottom one is continuous

too.

• If ζ is a limit ordinal, λg is still continuous by construction of Gζ .

Similarly one concludes for inversion and right translations.

2. Again, we procede by trans�nite induction.

• If ζ is a successor ordinal, each map Gζ−1 (x, y)→ Gζ (x, y) is continuous as we noticed above. Thus

if G → Gζ−1 is a morphism of qTop-groupoids, so is G → Gζ . Moreover, vertical and top arrows of

the following commutative diagram are continuous (notice that the top id is continuous by Remark

2.1.7):

⊔
a∈ob(G)

Gζ−1 (x, a)× Gζ−1 (a, y)
id //

µ

��

⊔
a∈ob(G)

τ (G) (x, a)× τ (G) (a, y)

µ

��
Gζ (x, y)

id // τ (G) (x, y)

hence the bottom identity is continuous too.

• If ζ is a limit ordinal, the result follows by construction of Gζ .

3. Since id : Gζ → τ (G) is a morphism of qTop-groupoids, so is id : τ (Gζ) → τ (τ (G)) = τ (G). By

(1), id : G → τ (Gζ) is a morphism of qTop-groupoids whose adjoint is the inverse id : τ (G)→ τ (Gζ). So
τ (Gζ) = τ (G).

4. The �rst double implication is essentially (3). For the second one, observe that Gζ is aTop-groupoid
if and only if µ :

⊔
a∈ob(G)

Gζ (x, a)× Gζ (a, y)→ Gζ (x, y) is continuous for all x, y ∈ ob (G).

5. For each ordinal ζ, let Aζ :=
⊔

x,y∈ob(G)
Gζ (x, y) be the disjoint union of the hom-sets (each one with

its own topology) and let Tζ be the topology of Aζ . Point (1) gives that Tζ+1 ⊆ Tζ ⊆ T0 for each ζ and

point (4) gives that Tζ+1 = Tζ if and only if Gζ = τ (G). Suppose Gζ 6= τ (G) for all ordinals ζ. Then

TζrTζ+1 6= ∅ for each ordinal ζ, contradicting the known fact that there is no injection of ordinal numbers
into the power set of T0. Hence there exists an ordinal ζ0 such that Gζ0 = τ (G). Since Gζ0 → Gζ → τ (G)

are morphisms of Top-groupoids whenever ζ ≥ ζ0, it follows that Gζ = τ (G) for all ζ ≥ ζ0.
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