
U N I V E R S I TÀ D E G L I S T U D I D I PA D O VA

FA C O LTÀ D I I N G E G N E R I A

corso di laurea in

ingegneria dell’informazione

tesi di laurea

psort: automated estimation

of hardware parameters

Advisor: Ch.mo Prof. Enoch Peserico Stecchini Negri De Salvi

Co-Advisor: Dott. Marco Bressan

Candidate: Alberto Bedin

anno accademico 2010 - 2011

A B S T R A C T

This thesis describes the design and implementation of an automated
hardware-detection environment for psort, a fast library for stable
sorting of large datasets on external memory. Our goal was to create a
tool that provides a complete set of estimated hardware parameters
which will be used to auto-tune psort both at compiling and at run
time. The entire detection system has been designed to be scalable
and modular in order to simplify the addition of new tests, remaining
as transparent as possible to the end user. Experiments prove that
our code is high reliable and that there is a strict connection between
hardware parameters and software performance, suggesting that psort
should include our system among its tools.

S O M M A R I O

Questa tesi descrive il design e l’implementazione di un apparato
automatico in grado di rilevare l’hardware per psort, una libreria ad
alte prestazioni per l’ordinamento stabile di grandi moli di dati su
memoria esterna. Il nostro obiettivo è stato quello di creare uno stru-
mento che fornisca un insieme completo di parametri hardware stimati
che saranno utilizzati per ottimizzare automaticamente psort, sia al
momento della compilazione, che in quello dell’esecuzione. L’intero
sistema di rilevazione è stato creato per essere scalabile e modulare
in modo da semplificare l’aggiunta di nuovi test, pur rimanendo il
più trasparente possibile per l’utente finale. Gli esperimenti provano
che il nostro codice è affidabile e che c’è una stretta connessione tra
parametri hardware e prestazione del sofware, suggerendo che psort
dovrebbe includere il nostro sistema tra i suoi strumenti.

3

C O N T E N T S

1 introduction 1

1.1 External sorting . 1

1.2 psort . 2

1.2.1 Stage one . 3

1.2.2 Stage two . 4

2 hardware and critical parameters 7

2.1 Finding critical parameters 7

2.1.1 Bash script . 8

2.1.2 Parser . 9

2.1.3 Matlab script . 10

2.1.4 Critical parameters analysis 11

2.2 Tuning and hardware detection 13

2.2.1 psort tuning structure 13

2.2.2 Existing hardware-detection software 15

3 experimental setup 17

3.1 CPU tests . 17

3.1.1 Pointers notation 18

3.1.2 If-else against boolean statements 18

3.1.3 Logical against bitwise comparisons 19

3.2 Cache tests . 21

3.3 Main memory tests . 23

3.4 Disk tests . 24

3.4.1 Sequential read and write 24

3.4.2 Random read . 25

4 results 29

4.1 CPU tests . 29

4.2 Cache tests . 32

4.3 Main memory tests . 35

4.4 Disk tests . 36

5 conclusions 39

a source code 41

a.1 CPU tests source code 41

a.2 Main memory and cache tests source code 59

a.3 Disk tests source code 66

b execution log 71

bibliography 77

5

1
I N T R O D U C T I O N

This thesis describes the design and implementation of an automated psort and hardware
detectionsystem for the detection of hardware parameters. Although our system

is general purpose, it has been designed for psort, a fast library for
stable sorting of large datasets on external memory, that is highly
tunable according to, amongst other things, the machine hardware.
This chapter provides a brief summary of the external sorting problem
(Section 1.1) and an overview of the structure of psort (Section 1.2) as
an introduction to the tuning task.

1.1 external sorting

Sorting is one of the most classical computer science problems, that Memory hierarchic
and sorting
algorithms

was as important in the last century as it is today. Although there exists
a plethora of sorting algorithms which are optimal in theory (such as
those matching the well-known n log n1 lower bound for comparison-
based algorithms), a naive implementation hardly squeezes out more
than half of a machine’s computational power. Sorting algorithms may
be divided in two classes according to the type of computer memories
which they use. It is common to refer to the memories of a computer
as a hierarchical structure [7] [9] where the levels are progressively
faster, smaller, and more expensive. The fastest level is represented by
the CPU registers, followed by the cache, the internal memory, and
then the external memory, that is the slowest one. A well designed
software should exploit all needed memory levels in accordance to
the criteria of spatial and temporal locality [11]. Traditional sorting
algorithms does not need to use external memory, that is instead the
peculiarity of external sorting algorithms.

Nowadays external sorting software finds its application in a wide Classical external
sortrange of sectors, from high-end industrial databases [15] to scientific

research area, e.g. human genome classification. It basically allows to
sort an amount of data that cannot fit the size of the internal memory
of a machine. The classical example of external sort algorithm uses
a multi-way merge sort [12] and can briefly be summarized in two
steps. The first step divides the input, stored in the external memory,
in blocks which can fit the size of the internal memory. Each block is
loaded in this memory, sorted using a classical sorting algorithm, and
then written back to the external memory. The second step merges the
blocks reading the data from, and writing the output to the external

1 It is the well-know lower-bound Ω(n log n) in the worst case, where n is the number
of elements to be sorted, as proved in [11].

1

2 introduction

memory. Finding the more efficient way to access and to sort the data
in both steps is not a trivial problem and may cause huge performance
differences.

Due to its importance, external sorting is a critical aspect evaluatedAlgorithms state of
the art by a lot of benchmarks such as the Sort Benchmark [6], a competition

that annually awards the fastest state of the art sorting software in
different categories.

External memory, that is commonly represented by hard disks, is
hundred of times [11] slower than internal memory. To achieve the best
result with all input typologies, it is not only sufficient to minimize
external accesses: every memory level should be optimized and this is
the primary goal of psort.

1.2 psort

psort is a C++ software and library that allows to quickly sort largepsort overview

amount of data stored in the external memory. It can sort data accord-
ing to an arbitrary comparison operator; but the library comes, by
default, with several highly-optimized versions of the most common
comparators – notably lexicographical and numerical. According to
the Sort Benchmark, psort is the fastest desktop-based external sorting
algorithm from 2008 to 2011 in the PennySort category2. It implements
a high optimized version of the classical external sort algorithm de-
scribed in Section 1.1. psort accepts as input a sequence of records
stored in a file. Each record is composed by a fixed number of bytes
divided in two group: the key bytes and the payload bytes. The key
bytes (which should not necessarily be at the beginning of the record)
represent the comparison portion of the record. The output file is
stored as a unit on an external memory device and contains the sorted
records according to their keys.

In psort the two steps described in Section 1.1 are respectively calledTuning: the starting
point stage one and stage two. Every stage has a huge number of configurable

parameters, which affect its performance. Their are mainly influenced
by the hardware configuration of the machine. Setting up manually
these parameters would be a very difficult operation for a user and
a time-waste task even for a capable developer. The developer could
not know the particular architecture of the machine on which he is
working or its software configuration. Therefore, to solve this problem,
an auto-tuning structure looks like a natural solution. The first step of
the auto-tuning is the automated estimation of hardware parameters.
To deeper understand which tuning operations and hardware parame-
ters are the most relevant, it is useful analyzing how stage one and
stage two work (focusing on the first one, that is the more complex)

2 PennySort benchmarks the “amount of data that can be sorted for a penny’s worth of system
time”. The original definition can be found in [13].

1.2 psort 3

and then run some preliminary tests on the not-tuned version of psort.
This last aspect is covered by Chapter 2.

1.2.1 Stage one

The first operation performed by stage one is the size estimation Initialization and
I/O buffersof each block that will be read from the disk and load in the main

memory. This block is named in psort as a run. The size of a run is
roughly the size of the available internal memory decreased by the
amount of space reserved for the input/output buffers. This space is
defined by the parameter –s1-io-space. In order to maintain the external
memory as busy as possible, psort uses multiple input/output buffers
and performs read/write operations with direct asynchronous I/O3.
In this way data are read and written from and to the device while
psort is still performing other CPU operations. A set of fine tune
parameters allows to specify the number and size of both read and
write buffers. These values should be carefully evaluated according to
the bandwidth and access times of internal and external memories.

If the length of a key is sufficient shorter than the length of the Key detach

record, the key is detached from its payload and a pointer to the
payload is attached to the key. The pair formed by the key and the
pointer is called extended key. This division helps to works with shorter
elements and reduces the number of moved bytes. It is also often
possible and convenient in practical situations.

As shown on Figure 1, the run is then divided in microruns which Microruns sorting

are sorted exploiting the speed of the L2 cache in accordance with
the spatial locality and the hierarchical model [7] described in 1.1.
Known the size of the L2 cache, that is a hardware estimation problem,
a microrun is composed by a number of records or by a number of
extended keys that fits the size of this cache. The parameter which
specifies the number of records or the number of extended keys for
each microrun is –s1-records-per-block. The algorithm that sorts a mi-
crorun is a quasi in place merge sort that uses 1.25 times the size of
the its input although one of its variants that uses a quasi in place
wave sorter has proved to be faster in particular situations. Actually
we are not able to say a priori which situations are favorable to the
second approach. For both implementation the base case of the algo-
rithm is performed by a counting sort that works with a number of
records (or extended keys) specified at compiling time by the parame-
ter chunk_size. It is clear that the best choice of the sorting algorithm
and of the chunk_size is hardware-related.

Continuing to follow Figure 1, the sorted microruns are then merged kmerger sorting

together in a single sorted run that is written back to the disk. The
merging operation is performed by an object called kmerger, which
is an ad hoc implementation of an algorithm similar to both a heap

3 For further information on Direct I/O see 2.1.1 and 3.4.1.

4 introduction

L2 cache

Cache sorter
(merge sort - counting sort)

kmergerStage one

Stage two

input

run
microrun microrun

run

run

kmerger

output

(sorted)

(sorted)

(sorted)

Figure 1: psort stage one and stage two overview. The first stage is the more
complex and tries to exploit all memory levels.

merger (but stable) and a k-way merger. Until each microrun is empty,
the record (or the extended key) with the smaller key among all the
microruns is extracted and moved into a heap. The keys in the heap
compete to reach the root from which they are moved to the external
device. If it is necessary, the payload is reattached to the key using the
pointer address. The disk writes can be almost entirely overlapped
with the merge pass described above.

At the end of this process, all sorted runs are stored in the external
memory.

1.2.2 Stage two

Stage two starts if and only if there is more than one run. kmergerkmerger on stage
two manages the runs with a few differences from the algorithm applied

to the microruns of the stage one. This time the input runs are in the
external memory and therefore they are partially loaded into the main
memory using a different buffer for each run. These buffers are sized
as shown on Figure 2. Since the keys are usually uniformly distributed
among the runs, filling all buffers with the same number of records
would cause all buffers to be empty approximately at the same time.
To avoid this problem, each buffer is filled with a different number of
records according to a parameter called –geometric-factor. The buffers
are refilled when their number of records becomes smaller than a

1.2 psort 5

EXTERNAL MEMORY MAIN MEMORY

KMERGER

output

sorted runs buffers

Figure 2: kmerger reads data from the external memory and place them into
dynamic-size buffers according to the geometric factor value.

threshold specified by the parameter –s2-read-threshold. The bottleneck
of this stage is the disks bandwidth, since the CPU and the main
memory have a low load factor compared with the number of external
device accesses.

Sometimes it is more convenient to merge first, in one pass, a Multi-pass stage two

subsets of the total amount of runs and then to merge these subsets
together in a second pass. Usually one pass suffices to achieve the best
performance but sometimes, especially sorting very large amount of
data with a small internal memory, two or more passes are required
in order to reduce the number of runs. For further details about the
number of passes see [8].

2
H A R D WA R E A N D C R I T I C A L PA R A M E T E R S

There are a lot of ways to achieve better performance in psort. Its Possible
improvementsbase version can be improved by adding multi-core support, multi-

disk support, and by tuning its parameters according to the machine
hardware and to the input file. First of all we need to find which
parameters affect the performance in a significant way and how they
are related to the hardware. Section 2.1 shows the approach and the
tools designed to discover these parameters. The following Section
2.2 is dedicated to the actual tuning structure of psort and to the
hardware detection problem. Since stage one is the most CPU and
RAM intensive, we focus our attention on it.1

2.1 finding critical parameters

To discover critical parameters we need to run psort a large amount of Critical parameter
discovering processtimes on the same input, changing execution and hardware parame-

ters. Then we collect and compare the bandwidth of each execution
and find which parameters give the best improvement according to
a specific hardware configuration. For example Figure 3 on page 8

shows how the bandwidth changes with different choices of the pa-
rameter –io-space that is the total amount of main memory reserved
for input/output buffers. The bandwidth is calculated as the ratio
between the total input file size and the total execution time of stage
one or stage two. The input file size may be measured in number of
records or in bytes. It is important to achieve the highest possible band-
width in both stages: we cannot choose optimal parameters which
give high performance in stage one and low performance in stage two.
This problem is discussed with the –io-space example in 2.1.4.

In order to collect a large amount of data, we need to set up a Data collection
methodscomplete, automatic, and efficient test system. Since each test could be

run on many different machines, it should be able to be executed by
remote via SSH. A versatile test-script in bash is prepared to achieve this
result. It also saves execution values in a log file which is parsed by an
ad hoc script called psortInfoParser. The parser generates another output
file ready to be imported into plotting and high-level computational
environments such as Matlab® [3] and GNU Octave [4]. Finally a
script written in Matlab-language allows to quickly plot the data and

1 As shown in our tests multi-disk support, which is the primary alternative to RAID
configuration, grants the best bandwidth improvement in stage two. According to
this result, disks are the main bottleneck of stage two.

7

8 hardware and critical parameters

0,001 0,01 0,1 1
120

130

140

150

160

170

180

190

I/O Space

B
a

n
d

w
id

th
 (

M
iB

/s
)

psort stage 1 − Direct ON best I/O for a memory size

 −−s1−records−per−block: 65536, Tot records: 67108864, Key Length: 8, Record Length: 128

Total Memory (MB)

512

1024

2000

0,001 0,01 0,1 1
120

130

140

150

160

170

180

190

Figure 3: Different psort performance according to different values of the
parameter –io-space. Choosing a bad value can cause a loss of
bandwidth of more than 20% in stage one.

to compare different execution on the same figure. The entire process
designed to discover critical parameters can be summarized as follow:

1. Execute a group of tests varying one or more parameters.

2. Collect, parse and plot data.

3. Analyze results and find critical parameters to be tuned.

The idea is to provide a collection of tools re-usable in the future by
anyone who will need to test psort.2 All scripts are actually stored in
the tuning-test directory of psort. For future uses, we briefly describe
how they work.

2.1.1 Bash script

psortTestBash.sh can be used from a shell to start a test. There are a lotBash script overview

of parameters which can be set: we can choose to run only stage one,
two or both, to enable psort Direct I/O support3, to set the path of the
input file to be sorted, and to set additional psort options. Plus we can
check the sorted file to verify the presence of sorting errors and finally
specify a loop of tests to be executed.

Every loop iteration changes the value of one parameter according
to a chosen rule: the script requires to specify the start value, the end
value, the incremental step, and the incremental method which can

2 More in general terms both bash script and Matlab® script can be used to test and
benchmark not only psort but also every command-line software.

3 Direct I/O support allows software to read and write from and to the disk without
using the O.S. cache. It increases input/output performance but required aligned
operations. According to psort specifics to use Direct I/O “record_length · block_size
must be a multiple of the boundary” (usually 512 KiB). For more information about
Direct I/O see 3.4.1.

2.1 finding critical parameters 9

be sum or multiplication. The first means that the incremental step
will be added to the start value until the reaching of the end value,
while the latter means that the start value will be multiplied by the
incremental step until the reaching of the final value. The syntax to
properly configure the script can be found by adding the parameter
–help.

First tests with Direct I/O off give strange results: the first execution Improvements to the
bash scriptis always slower than the other ones. The problem is that the O.S.

stores a copy of the data into a fast cache used at the next execution
on the same input. Since there is a considerable execution time gap,
the script has to empty the cache after each execution. We find this
code working on Linux with root access:� �

sync

echo 3 > /proc/sys/vm/drop_caches

� �
A test can frequently last more than twelve hours and a crash during
a single execution shouldn’t stop the entire test. This is a fundamen-
tal aspect achieved by configuring the script to automatically check
from time to time the status of the current test and to eventually
start the next execution. Some tests require to change more than one
parameter. This can be obtain by adding an additional bash script
that contains loops which start the main psortTestBash.sh file with the
desired parameters.

The output is divided in two files: Log files generated
by the bash script

• A log file that describes the operations performed by the bash
script.

• A log file formatted according to psort verbose-level one4 followed
by used parameters and times. This file also contains executions
which return an error, marked by a special symbol.

Times are calculated using built-in psort functions based on standard C
library. Log files are formatted according to the specifics of the parser
described in the next paragraph.

2.1.2 Parser

The parser is a really simple script that takes as input a log file from Parser overview

a bash test of psort and parses it into two formats: one is human
readable while the other one is a common csv file that uses a vertical

4 Verbose-level one consists in a few but critical informations about the psort execution.
All main parameter values are shown here.

10 hardware and critical parameters

slash (divider line “|”) as field separator. This file can be imported
very easily into Matlab® by an automatic script. The parser is also
able to detect execution errors stored in the log file and to save them
in a separated output file. Finally it can be used to set the proper
decimal separator for double values (which can be a dot or a comma)
according to the language of the importing software.

2.1.3 Matlab script

The plot script Multiplotscript.m is entirely written to test psort but isMatlab script
overview still a general purpose script. It is a complete tool to create complex

figures in a short time. It reads as input a text file with a field separator
value; the first row of the file may be the label. The tool is capable
to plot only specific columns and eventually calculates new columns
from the existing ones. This option is useful to obtain derived values,
such as the bandwidth, starting from existing ones like the input size
and the execution time.

All these (and much more) settings can be turned on by editing
an existing set of variables and arrays at the beginning of the script.
In order to obtain a script that can be used in the future, we add a
complete set of comments which guide during the configuration of the
script. We discover that is useful to have all the following functions
ready to be used in the script:

1. Automatic import data from the input file.

2. Sort and remove columns.

3. Calculate additional columns as the sum, product, and ratio of
existing ones.

4. Multi-plot different values on the same figure in different colors.

5. Create an additional plot that shows best values extracted from
the multi-plot (e.g. see Figure 5 on page 12).

6. Automatic add titles, labels, legend, and grid.

7. Save the output image in different formats with an estimated
coherent file name.

8. Export a matrix that contains only the filtered data.

Figure 4 on page 11 is created using this script and allows to quicklyResults extracted
from the plots visualize the content of the test. There are dozens of plots like this.

They show that there is a strict connection between the best value of
a parameter and the hardware of the machine. The next paragraph
analyzes the presented graphics to explain, with two examples, this
relation.

2.1 finding critical parameters 11

10
−1

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

200

Input size MiB (log scale)

B
a
n
d
w
id
th
 M
iB
/s

psort stage 1 − Direct I/O on

 −−io−space: 0.1, −−mem: 3000, Key Length: 8, Record Length: 128

29

215

216

219

220

−−s1−records−per−block

10
−1

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

120

140

160

180

200

Figure 4: Comparison between different values of the parameter –s1-records-
per-block on the same input. Choosing a bad value can cause a loss
of bandwidth of more than 40% in stage one with a significant
input file size.

2.1.4 Critical parameters analysis

There is a high amount of results which can be extracted from a few
tests. Some of these are obvious while others are very interesting.

Figure 3 on page 8 shows that the larger the I/O space is, the faster I/O space test

stage one is. However starting from 1 GiB of input file the difference
of bandwidth between a large value of I/O space (such as 0.256 of the
total main memory) and a relative small value (0.1 of the total main
memory) is trivial. Now consider that using less main memory for the
I/O space means to increment the total memory available for a run. In
this way we can reduce the total number of runs to be merged in stage
two granting a large amount of time. So we can conclude that the
best choice for the I/O space is around 0.1 of the total main memory,
for input size above 1 GiB. The important thing to note is that this
result is valid on the tested machine only (it has 3000 MiB of memory
dedicated for psort at the operating frequency of 800 MHz) and not
necessarily on every other hardware configuration. The best value
of I/O space should not only consider the main memory specifics
but also the disks specifics and the CPU specifics. This because CPU
sorts the data read from the main memory and placed into the buffers
which are directly affected by –io-space.

Analyzing the other plots we see that –s1-records-per-block is another Stage one
records-per-block

12 hardware and critical parameters

10
−1

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4
x 10

4

Input size MiB (log scale)

−
−
s
1
−
re
c
o
rd
s
−
p
e
r−
b
lo
c
k

Best choice for −−s1−records−per−block

 −−io−space: 0.1, −−mem: 3000, Key Length: 8, Record Length: 128

512 512 512 512 1024
2048 2048 2048

4096

8192

32768 32768 32768 32768

10
−1

10
0

10
1

10
2

10
3

10
4

100

120

140

160

180

200

Input size MiB (log scale)

B
a
n
d
w
id
th
 M
iB
/s

512 512
512

512

1024

2048 2048

2048

4096

8192
32768 32768

32768

32768

Figure 5: Best choice of –records-per-block.

critical parameter of stage one. Figure 4 on page 11 shows why this
parameter must be considered in any further tuning operation. Starting
from about 1 GiB of input size, there is a particular value of it that
achieves the best performance. Recalling that this parameter defines
how many extended keys5 must be sorted at once, it follows that their
size must be equal to the size of the L2 cache of the machine. In fact
the plotted test was performed on a machine with 1 MiB of L2 cache
with an extended key length of 16 byte (8 byte for the record key and
8 bytes for the payload address):

records_per_block · extended_key_length = 216 · 16 = 1 MiB

We can further improve performance by choosing as –s1-records-per-
block a number of extended keys which size is a bit smaller of the L2

cache. In fact, Figure 4 on page 11 shows that the value 215 gives a bit
higher bandwidth. This could be due to the fact that in the cache there
aren’t only the extended keys but also some other (and maybe few)
important values for the CPU current process: a miss is the cache will
cause a slowdown which could be avoided by choosing a data set that
can safely fit the cache size. This point will be discussed on Chapter 3.

Figure 5 on page 12 shows that the found value is a good value
for all input above 1 GiB. Why does this value does not achieve the

5 This parameter may also define the number of records in a microrun, if psort is set up
to do not separate payloads from the keys. This also explains the origin of its name.

2.2 tuning and hardware detection 13

best performance with small input? We can suppose that it is because
there is no reason to allocate a large amount of memory for in cache
sorting, while there is no a large amount of data to sort. Whatever it
is, the connection between the best value of this parameter and the L2

cache size is evident and confirmed by other tests. Therefore we need
to correctly estimate the size of this cache and, more in general, all
hardware parameters which can affect software performance.

2.2 tuning and hardware detection

Usually we refer to auto tuning in a software as “the capacity of optimiz- Auto tuning

ing internal running parameters in order to maximize or minimize the ful-
fillment of an objective function; typically the maximization of efficiency”[5].
However this is not its only meaning. With auto tuning we do not
only optimize its internal parameters but also the source code before
the compilation process. To achieve this result we preliminary need to
estimate hardware parameters.

As summary, our intent is to modify psort in order to obtain a psort tuning
structuresoftware that is able to auto detect hardware parameters, auto test

its optimal source code for the current machine, and auto tune itself
during the execution. At the end of this process it will be insert into
an auto-configuring package. This section describes the actual design
of the psort tuning structure focusing on the first step: the automatic
estimation of hardware parameters.

2.2.1 psort tuning structure

We create a package that contains three directories which allow to
execute:

1. Hardware detection.

2. Code tuning.

3. psort (runtime tuning).

There is also a bash file named installTuned.sh that starts the entire soft-
ware auto installation. Default values are set in order to allow a user
to start the installation process just by typing bash installTuned.sh

in a shell. This installing script can also be used for the execution of
isolated preliminary tests. The complete list of parameters and func-
tions of this script can be read by adding the parameter –help at launch
time. In order to execute code tuning the script requires the binary
executable file of CodeWorker6 [2] placed in the code-tuning directory.
Additionally, to properly compile psort, it requires the installation of

6 This file is more than 30 MiB in size and may not be included in every psort auto-
tuning package. It this case, it must be downloaded and compiled apart.

14 hardware and critical parameters

CMake7 [1]. Automatic estimation of hardware parameters can be exe-
cuted without additional packages. More options can be configured
by editing the config file in the hardware detection directory and by
editing the makefile of psort, eventually using CMake-gui.

Once started, the installation process runs by default all hardwareAutomatic
estimation of

hardware parameters
tests. These determinate a list of hardware-related parameters that
psort and code tuning use (or will use) to boost the software. Some tests
are very general purpose, e.g. the estimation of disks or main memory
bandwidth, while other ones are very specific. When possible they
try to obtain solid values working with the O.S. available functions
and files, but more often they need to intensively test the hardware
component, extracting the desired values or estimating which coding
approach is more efficient. Tests are repeated more then once in
order to minimize noise effects and therefore they may require a lot
of time, according to the desired tuning level and hardware speed.
During the installation process the user or the developer can see the
current running test and the number of required iterations. There
is also the possibility to set up a custom tuning level in which every
test parameter can be configured. These parameters are all stored in
preprocessor values so they can be modify by editing headers files in
the CPU, disk, and memory subdirectories. It takes a few seconds to
compile the tests files so there are no performance problems. Every
test saves its output on a log file formatted as csv. Some of these values
are immediately used by the code tuner.

psort code tuning is extensively discussed in [10]. Briefly it triesCode tuning

to estimate the source code that, once compiled, will grant the best
performance on the machine hardware8. To do this, it automatically
generates different versions of the same critical functions, compiles,
and executes them. The function implementation that achieves the
best bandwidth is chosen for psort. The actual code tuning covers cache
sorting of stage one, tested with different loop unroll factors.

There is also another optimization: it compiles the best key compar-
ison method according to the results of hardware detection described
above. In particular the choice is between logical and bitwise compar-
isons. On different hardware configurations, one implementation can
be better than the other one, proving that there is a strict connection
between hardware detection and code tuning. Tests confirm that code
tuning provides performance improvements in psort. This is, in fact, a
well known speed-up approach in high-performance software9.

Once psort is compiled, runtime tuning tries to adjust its parametersRuntime tuning

according to the hardware discovered during the automatic hardware
detection and also according to input file specifics. Actually runtime

7 There is also the possibility to compile psort without using CMake by replacing the
Makefile with the old file Makefile.old.

8 This is the so called compiler based auto tuning. There are other types of code tuning
such as analytical models, global empirical research and local research.

9 For a focus on this topic see ATLAS, FFTW, PhiPAC

2.2 tuning and hardware detection 15

tuning fixes the value of the two critical parameters of the stage one
–s1-records-per-block and –s1-io-space. The number of records per block
is chosen starting from the size of L2 Cache as described in 2.1.4. Since
the optimal value for the I/O space depends on the input (see Figure
3 on page 8), it is set at runtime according to the input size. Tests show
also that this optimal value changes with the state of the Direct I/O
flag.

There are a lot of other parameters which can be tuned at run time,
e.g. –geometric-factor looks like a critical one on stage two. The more in-
formation we acquire about psort working and hardware configuration,
the easier runtime tuning will be.

2.2.2 Existing hardware-detection software

It looks difficult to us to find a complete open source software for Existing
hardware-detection
programs

Unix that is able to estimate all needed hardware parameters. CPUID10

software could be a good starting point but unfortunately it only works
on Windows® based systems. The diffuse tool dmidecode, which is
already packaged in several Linux and BSD distributions, is only able
to detect informations from the BIOS so it does not look very useful
for us. It only shows cache informations but needs root permissions.

There are however some tools which could help to find particular
hardware parameters such as disk bandwidth and cache size. For the
first one we could use the free software dd that is able to easily estimate
the disk bandwidth (sequential read and write) with both Direct I/O
on and off. For the second one (caches size estimation) there are a
lot of small tools which simply allocate an array and calculate access
times. JCache11 works in this way and also provides a small benchmark
utility written in Java.

We conclude that psort requires more specific tests, implemented An ad hoc
implementation for
psort

ad hoc to discover how the hardware works with a really particular
instance of a problem. Since psort has some small fragments of code
which will be executed a huge amount of times, we definitively need
to know which type of code implementation is faster on a particular
CPU. Plus, our tests are implemented considering the actual psort
source code and so they try to be as close as possible to it. In fact a
lot of available tools are written in assembly with SSE1, SSE2, and
SSE3 instructions set and so does not reflect a C++ compiler generated
code.

Finally our tests are all written with the same style in order to be
easily configured and modified. Next chapter analyzes each one of
them discussing the design and implementation.

10 http://www.cpuid.com

11 http://www.dei.unipd.it/ bertasi/jcache.html

3
E X P E R I M E N TA L S E T U P

This chapter describes the design and the implementation of every Hardware detection
overviewsingle hardware-related test. It also provides an overview of the aim

of each test.
In psort, hardware detection tests are divided in four main categories:

• CPU tests

• Cache tests

• Main memory tests

• Disks tests

We will occasionally refer to cache tests as a part of CPU tests or
memory tests. This is because caches are placed in the CPU and they
operate in strict relationship with the main memory.

Each test category is composed by a C++ file and two headers files.
One header file contains the prototypes of functions used in the C++
file. This is the starting point to understand how the code works
because every prototype is commented using a documentation style.
The other header file contains configurable preprocessor values. They
define the number of iterations and the size of each test. These values
are divided into three tuning levels: normal, extreme, and custom.
Finally the C++ file contains the implementation of each function and
the main() function. The main() routine controls the output streams
and the calls to the tests. Some common functions used by all tests are
stored in a global file placed in the misc directory.

There are significant differences between each test category and so
each one requires a deeper analysis.

3.1 cpu tests

There is a huge amount of CPU models and they can be implemented CPU tests overview

using a wide range of approaches. Every year several new models are
released, therefore there is no way to know which code implementa-
tion achieves a better performance on a specific CPU without directly
test it. In particular we suspect that there are three CPU aspects which
affect psort performance. They are:

1. Pointers notation.

2. If-else against boolean statements.

3. Logical against bitwise evaluations.

17

18 experimental setup

One or more of these three aspects may be completely irrelevant on
some hardware but they may be critical on other ones. For each of
them we have to choose between two solutions. Both solutions are
tested with the same input a sufficient amount of times in order to
avoid noise effects. The implementation that gives the lowest execution
time (or equivalently the highest bandwidth) is chosen for psort.

3.1.1 Pointers notation

This test tries to estimate which is the fastest way to increment aSubscript notation
and offset notation pointer in C++ according to the current hardware. It allocates an array

of elements_num elements, starts the timer, and cycles through the
array incrementing each element by one unit. At the end the timer
is stopped. This entire operation is repeated more then once and the
average time is considered as the final one. To give an idea, on normal
tuning level elements_num is actually set to 229 elements of type int
and the test is repeated 3 times. The two approaches differs on how
they increment each element.

The first approach uses the common subscript notation that is:� �
element_type *array = (element_type *) calloc(elements_

num, sizeof(element_type));

for (unsigned long i = 0; i < elements_num; i++)

array[i]++;

� �
While the second approach uses the offset notation:� �

for (unsigned long i = 0; i < elements_num; i++)

(*(array++))++;
� �
3.1.2 If-else against boolean statements

This test tries to estimate which is the fastest way to compare twoIf-else and boolean
statements uint64_t1 and choose a branch according to the result of the compar-

ison on the current hardware. It starts from two fixed large values
(say a and b), compares them and if a is smaller than b, it increments a
counter variable by one unit using one of the two approaches. After
this step, a is incremented by a constant value (actually 104) and b

1 This is the current universal data type used by psort to manage almost all values. It is
a 64 bit type that handles unsigned integers.

3.1 cpu tests 19

is calculated as a xor b. These two new values are used in the next
iteration. On normal tuning level the test is repeated 3 times with both
approaches and each test runs 109 comparisons. The test returns the
average execution time.

The first approach uses the if-else statement to increment the counter:� �
for (unsigned long i = 0; i < single_test_length; i++) {

a += 10000;

b = a ^ b;

if (a < b)

counter++;

}

� �
While the second approach uses a boolean statement:� �

for (unsigned long i = 0; i < single_test_length; i++) {

a += 10000;

b = a ^ b;

counter += (a < b);

}

� �
3.1.3 Logical against bitwise comparisons

This test tries to estimate which is the fastest way to compare two keys Logical and bitwise
evaluationa and b. A key is a sequence of bytes. The keys can be:

• Total equal keys: every bit of key a equals to the same bit of key b.

• Half equal keys: the first half bit of key a equals to the first half
bit of key b, while the second half differs.

• Total different keys: each bit of key a differs from the correspond-
ing bit of key b.

Keys are tested in pairs with different lengths from 4 bytes to 128

bytes, growing as two-powers. For each length total equal keys, half
equal keys, and total different keys are compared.

A test starts allocating two memory areas for the two keys using
calloc and a proper data type that can be uint32_t or uint64_t.
Then memset is called to set the bytes values according to the specifics
of the two keys (total equal, half equal, and total different). Finally
a counter variable is incremented by one according to the result of

20 experimental setup

the comparison between the two keys. The comparison is repeated a
large amount of times. All bytes of key b are post-incremented after
each comparison and pre-decremented before each comparison. This
should convince the compiler that each comparison is different from
the previous one and so it should avoid undesired code optimization
by the compiler itself. The comparison is performed using one of the
two approaches.

The first approach uses logical comparisons to increment the counter.
Logical comparisons use the operator and (&&) and the operator or

(||) which exploit the short-circuit evaluation. If the first argument
of an AND comparison evaluates to false, then the entire function
is false and therefore the second argument is not evaluated. If the
first argument of an OR comparison evaluates to true, then the entire
function is true and therefore the second argument is not evaluated.
On normal tuning level 108 comparisons are performed. This is the
code for 16 Bytes comparisons with half-equal keys:� �

uint64_t *a = (uint64_t *) calloc(2, sizeof(uint64_t));

uint64_t *b = (uint64_t *) calloc(2, sizeof(uint64_t));

memset(b + 1, UCHAR_MAX, sizeof(uint64_t));

for (uint64_t k = 0; k < total_iterations; k++) {

counter += a[0] > b[0] || (a[0] == b[0]++ && (a[1]

> b[1] || (a[1] == b[1]++)));

counter += a[0] > --b[0] || (a[0] == b[0] && (a[1]

> --b[1] || (a[1] == b[1])));

}

� �
The second approach uses bitwise comparisons. The keys are com-

pared bit to bit using the operators bitwise and (&) and bitwise or (|).
Every single bit of key a is compared with the corresponding bit of
key b. Using this approach the evaluation is never stopped before the
reaching of the end of the key. This approach is really fast on some
hardware architecture. Test results may also show that this method is
particularly efficient on specific key lengths. This is the code for 16

Bytes comparisons. Keys allocation is as above and it is not shown:� �
for (uint64_t k = 0; k < total_iterations; k++) {

counter += a[0] > b[0] | (a[0] == b[0]++ & (a[1] >

b[1] | (a[1] == b[1]++)));

counter += a[0] > --b[0] | (a[0] == b[0] & (a[1] >

--b[1] | (a[1] == b[1])));

}

� �

3.2 cache tests 21

The length in characters of the evaluation code line grows expo-
nentially on the length of the keys. An exponential regression curve
applied to the available data set shows that the length of the code
line grows as 20.3 · 1.73log2 x− 1where x is the length of the key. For
example, with a key of 64 Bytes, the evaluation code line is about 314

characters. Since it makes no sense to manually write these lines for
long keys (such as 128 bytes), an ad hoc function is written to perform
this operation.

3.2 cache tests

These tests try to estimate the size of L1, L2, and L3 caches. Sometimes Cache size
estimationL3 cache may not exist and sometime L2 and/or L3 may be shared

along multi-core. The tests use a single core so the entire cache size
should be estimated, even if it is shared. Caches sizes are evaluated
using three approaches, two of them are O.S. based.

The first approach checks if the values _SC_LEVEL2_CACHE_SIZE and sysconf approach
_SC_LEVEL3_CACHE_SIZE are defined and eventually it calls the func-
tion sysconf to retrieve the size of L2 and L3 caches. It safely works
on every Linux based system and returns the size of the cache in KB.

The second approach is also strictly Linux based and tries to extract /proc/cpuinfo
approachthe cache size from the file /proc/cpuinfo. This file report for each

processor (physical or logical) the attribute cache size. There is no way
to know if this is the size of L1, L2 or L3 cache. However this value is
still useful to be compared to the value reported by the other tests.

The third approach measures the bandwidth of read operations Direct cache
estimationfrom the main memory. It starts by reading a few KBytes which are

surely copied into the L1 cache. Each successive iteration reads a larger
amount of bytes and after some steps the total read amount does not
longer fit in L1 cache. Increasing the size of the input, the same occurs
for the L2 and eventually the L3 cache. Since data are read faster from
smaller caches we can estimate the sizes of the caches by finding larger
bandwidth gaps. For example if L2 cache size is 256 KiB and we try
to read 512 KiB, the time spent will be relatively larger that the time
needed to read 256 KiB.

The test starts with the allocation of the vector in the main memory.
The array data type is elem_t and contains a configurable number
of uint64_t (actually 32). The allocated memory is then initialized
to random values. Now the timer starts and a loop reads an entire
elem_t for each iteration, adding its values to the checksum variable.
The elements are not read in sequence. The loop jumps inside the
array using a quite large prime number STEP and the mod operation
on the length of the array.

22 experimental setup

� �
for (uint64_t i = 0; i < NUM_ACCESSES; i += 1) {

for (uint64_t k = 0; k < STRUCT_SIZE; k++)

checksum += v[v_pos].content[k];

v_pos = (v_pos + STEP) % n_elem;

}

� �
Actually on normal tuning level NUM_ACCESSES is 223. Since STRUCT_SIZE

is 32, an iteration reads a total of

num_accesses · struct_size · elem_size = total_size

223 · 32 · 8 = 2048 MiB

The timer stops at the end of the external loop and returns the
calculated bandwidth. The measurement starts with a minimum array
size of 8 KiB and ends with a maximum array size of 48 MiB. If x is
the size of an iteration input, the next iteration has the size x + x

2 . Now
we have all bandwidth values in the interval 8 Kib - 48 MiB and we
can try to guess the size of the two most relevant caches in term of
bandwidth. Table 1 shows the result of a bandwidth test as a function
of the input size on an Intel Core i7.

Size (KiB) Bandwidth (MiB/s)

8 20087

12 20095

16 20155

24 20119

32 20244

48 19630

64 19622

96 19595

128 18169

192 19587

256 17972

384 16415

512 15968

Size (KiB) Bandwidth (MiB/s)

768 15920

1024 15865

1536 15851

2048 15846

3072 14045

4096 12138

6144 10188

8192 7590

12288 6025

16384 5973

24576 59401

32768 5914

49152 5851

Table 1: Cache bandwidth on Intel Core i7 920.

These data are plotted on Figure 7 on page 33. We return two cacheCache size
estimation algorithm size values which are two-powers2, estimated as follows:

2 This is not a limitation for psort, since it works only with two-power values.

3.3 main memory tests 23

1. Create a list A that contains all sizes which are not two-powers
(see the table above. Chosen values are 12, 24, 48, 96, and so on).

2. Consider all pairs of two contiguous values x and y from the list
A, where x < y.

3. For each pair calculate the relative bandwidth variation between
x and y:

variation = | bandwidth(x)− bandiwdth(y)
bandwidth(x) |

4. Extract the largest bandwidth variation and its corresponding
pair a.

5. Extract the second largest bandwidth variation and its corre-
sponding pair b. Each element of pair b must not be an element
of pair a.

6. For both pairs a and b, return the two-power that is larger than
x and smaller than y, where x and y are the elements of the pair.

The condition on point 5, assures that the algorithm does not consider
two bandwidth gaps caused by the same cache. On the example shown
in the table above, a is (192, 384) and b is (6144, 12288) so the estimated
cache sizes are 256 KiB and 8192 KiB.

3.3 main memory tests

These tests try to estimate the read and write bandwidth of the main Read and write
bandwidths of the
main memory

memory. The design and implementation is really similar to the third
approach of the cache size test. In particular the read test works
exactly in the same way of the cache test. The only difference is that it
usually works with larger inputs: its upper-bound is the total amount
of available memory. Write test does not increment a checksum variable
but writes a pseudo-random value (chosen as the loop counter value)
in the memory area that is accessed. However a checksum variable is
created to convince the compiler that the values written in the memory
will be used:� �

checksum = v[v_pos].content[v_pos & (STRUCT_SIZE - 1)];

� �
Next checksum is evaluated by an if-statement. This approach should
force a compiler that uses a high optimization level to compile the
entire source code as wanted. This aspect, briefly summarized here,
will be analyzed at the end of this chapter.

24 experimental setup

3.4 disk tests

These tests try to estimate the read and write bandwidth from/to aDisks tests overview

disk or from/to a RAID configuration. The first test estimates the two
bandwidths during sequential read and write operations performed
using the filesystem, while the second test estimates bandwidth (or
better the access time) during read operations from the physical device.

3.4.1 Sequential read and write

There are two important caches which can affect the data collected byCaches workarounds

this test:

• Kernel cache

• Disk cache

The kernel cache is managed by the O.S. and may copy read and
written data from/to the disk in a fast accessible location. This would
invalidate all bandwidth calculation in repeated tests. It is bypassed
by managing files with the flag O_DIRECT that is widely supported by
Linux since version 2.4.10 and FreeBSD 4

3. This flag allows direct read
and write operation from the user’s buffers space to the device without
passing from the kernel cache. It may also be used in psort by compiling
it with the appropriate flag. Unfortunately Direct I/O does not assure
kernel-bypass and does not allow the management of all input/output
operations. Usually on Linux 2.6 or greater a 512-byte alignment is
required, while on elder versions there are additional boundaries on
the transfer size and on the alignment of the user’s buffer. While
Direct I/O has been strongly criticized in the past (Torvald [14]), it is
widely used in the database and high performance applications and
looks like an excellent solution for our problem since we can work
with values which are multiples of the 512-byte boundary.

The disk cache is a hardware component of the disk itself and may
cause the same problems of the kernel cache. The only way to avoid
the effects of this cache is to load, before each execution, trivial data
which differ from the data used in the next execution. This result is
achieved by arranging the order of the executions in a strategic way.

Read and write tests are performed alternatively starting from smallSequential read and
write test setup input/output sizes which increase at each iteration. The tests stop

when the bandwidth gap of two consecutive input/output sizes is
smaller than a defined relative value or when the maximum input/out-
put file size is reached. Actually on normal tuning level the relative
bandwidth gap threshold is 5% and maximum file size is 1 GiB. The
tests run these operations:

3 For more information on this topic see Linux man-pages. Available: 3.27.

3.4 disk tests 25

1. Write inputFile to the disk. The size of this file is the maximum
file size.

2. Start from the smallest input/output size test_size and:

a) Write test_size bytes to outputFile.

b) Read test_size bytes from inputFile.

3. Calculate bandwidth for both tests.

4. If the bandwidth variation is larger than the threshold, repeat
step 2 with a larger input/output size (typically the double of
the previous one).

5. Print the two bandwidths.

Step 2 is repeated more then once with the same input/output size and
the average bandwidth is considered in order to reduce noise effects.
In addition, consecutive tests always works on different files (once on
inputFile and once on outputFile) to minimize disk cache effects.

Files are managed using functions from fcntl.h and unistd.h. In
particular the open function on write operations is called as follows:� �

open(pathname, O_CREAT|O_TRUNC|O_WRONLY|O_DIRECT,

S_IRWXU);

� �
Data are always read and written entirely from and to a buffer

allocated with posix_memalign. psort uses buffers which usually have
the same size of the values tested here.

3.4.2 Random read

This test estimates the average access time needed for a random Access time for a
read operationread operation from a physical device. Since it involves quite low

level functions, it requires root privileges on the tested machine. The
Listing 1 describes the test in pseudo-code. The pseudo-function
get_number_of_blocks uses the function ioctl(file, BLKGETSIZE,

&numberOfBlocks) that is dedicated to the control of devices attributes.
change_disk_reading_position uses the function lseek64(file, mini

blocksize * offset, SEEK_SET) that moves the offset of a 64-bit
read/write file. The number of iterations is calculated starting from
the number of bytes which are totally read by the test. Since usually
block_size is 512 B, the number of iterations is calculated as:

iterations =
total read bytes

block_size
=

total read bytes
512 B

On normal tuning level total_read_bytes is 512 KiB.

26 experimental setup

Listing 1 Random reads algorithm

file = open (device, read_only);

get_number_of_blocks (file, number_of_blocks);

start_timer();

for each iteration {

offset = number_of_blocks * random (0..1);

change_disk_reading_position (file, offset *
block_size);

read (file, block_size);

}

stop_timer();

average_access_time = total_elapsed_time / iterations;

avoid undesired compiler optimizations

To be as close as possible to psort, all hardware tests are compiledBe aware about
compiler

optimizations
using g++ and optimization level 3. There are also other optimizations
performed during the compiling process, in particular the following
compiler flags are declared: -funroll-loops, -funsafe-loop-optimizations, -
march=native, -mtune=native. They unroll loops and try to optimize the
code according to the hardware architecture. Even if they are not so
powerful as an ad hoc tuning, they significantly contribute to increase
performance. However we should watch out for optimization side
effects.

Our tests allocate variables or large memory areas and perform on
them a lot of operations calculating the elapsed time or the bandwidth.
Compilers try to track values and arrays which are initialized, modi-
fied but never accessed in the future: never printed, never used in a
comparison, and so on. Then they may decide to simply remove from
the code the operations performed on these values and arrays. This
fact could cause the evaluation of totally low and wrong times.

To avoid such a problem, we implement functions which always
perform a trivial operation on the data used during the test. The oper-
ation should be able to produce an output. In this way the compiler
cannot discard any single line of code. The safer way to achieve this
result is to compare a checksum or counter variable to an integer and
eventually print a small output.� �

if (checksum == 0) {

printf("Test ended. Checksum value is zero . "); }

� �

3.4 disk tests 27

Checksum and counter variables contain a trivial value obtained from
the test, such as the sum of all accessed memory locations or the sum
of all key comparison results in which the first key is smaller than the
second key.

4
R E S U LT S

We test the hardware detection code on different machines. Some of Tested machines

them contain medium-end and high-end hardware components while
others are ordinary machines which are used every day as personal
computers. Even if the code is designed for psort we would test if it
could be used also on low-end machines with different purposes. We
test two different O.S. and both 32-bit / 64-bit architectures. The four
main tested machines are:

Model CPU Main Memory Tested disk

Desktop
Ubuntu 11.04

Intel® Core i7 920 @ 3.8 GHz
L1: 32 KiB, L2: 256 KiB, L3: 8192 KiB sh.

6 GiB DDR3 @ 1666 MHz ST3500320AS

7200.11 SATA 3Gb/s 500-GB

Desktop
Deb Linux 6.0

AMD® Phenom™ II X4 945

L1: 128 KiB, L2: 512 KiB, L3: 6144 KiB
8 GiB DDR3 @ 1066 MHz HDS721010CLA332

7200 RPM 500 GB 5-disk RAID

Notebook
Ubuntu 11.04

Intel® Core 2 Duo P8400

L1: 32 KiB, L2: 3072 KiB
4 GiB DDR2 @ 667 MHz WD3200BEVT

5400 RPM SATA 3Gb/s 320-GB

Macbook
Mac OS X 10.6

Intel® Core i5 @ 1.7 GHz
L2: 256 KiB, L3: 3072 KiB shared

4 GiB DDR3 @ 1333 MHz -

Table 2: Tested hardware configurations.

Appendix B contains the execution log of the entire installer package
on the Intel Core i7 machine.

Now we compare the results extracted from the collected data on
different hardware configurations and try to evaluate the reliability of
each test.

4.1 cpu tests

The first test is about pointers notation. On all tested machine offset Pointers notation
resultsnotation is a bit slower than subscript notation. However the difference

between the two implementations is so small that psort should not be
optimized to take an advantage from them. The larger delta between
the two collected times is on MBA and it is about 0.7%. On phenom
it is 0.6% and it is even smaller on the other configurations. This
is not noise because repeating the test brings to the same result:
offset notation is always slower than subscript. The difference may be
more consistent on other machines. Operations with pointers are so
common that this difference could become a relevant factor of psort
performance.

The second test analyzes branch evaluations. The results shows that If-else against
boolean statements
results

the if-else approach is faster on some hardware configurations, the
boolean in others, and there is no difference at all on some CPUs. Table
3 shows the collected times.

29

30 results

CPU Normal tuning
Execution time (s)

Extreme tuning
Execution time (s)

Intel Core i7 2.26 if else 18.11

1.94 boolean 16.40

Phenom 1.99 15.93

2.24 17.92

Core 2 Duo P8400
10.60 -

12.60 -

Intel Core i5 3.49 -

3.50 -

Table 3: Statement test results. The first rows refers to the if-else approach,
while the second one to the boolean approach.

Intel Core i7 achieves better performance using the boolean approach
with a time boost of 10-15%. AMD Phenom works better with if-else
approach that is about 12% faster. The P8400 CPU is really faster
using the if-else approach (18%) but it is absolutely the slowest CPU.
It makes sense because it is also the eldest one. On MBA with Core i5
there is no difference between the two approaches. Since psort widely
uses branch evaluation, it should implement both and choose the
fastest one according to the result of this test. The choice may be
performed both at compiling or at run time but in order to produce
a cleaner code, the implementation at compiling time looks better.
The significant variation on the performance suggests that this is a
critical feature to be add in psort. Merge sort uses these typologies of
evaluations and its optimization could assure that CPU will not be a
bottleneck for stage one.

The third test is about key comparisons: logical and bitwise. A com-Logical against
bitwise comparisons

results
plete log of this test can be found in the appendix B. Figure 6 on the
next page shows some the most relevant results, which are:

1. Bitwise evaluations are always faster comparing keys which are
8-byte or shorter, it does not matter if equal or different keys are
compared. The gain is significant: from 4 times faster on P8400
to hundred times faster on Phenom.

2. Comparing different keys which are longer then 8-byte can be
performed using logical evaluations in constant time, indepen-
dently on how long the key is. Logical approach, in fact, stops
the evaluation after the first mismatch. Sometime the keys are
constituted by random characters and so the probability that

4.1 cpu tests 31

0

1

2

3

4

5

6

4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Key length (Bytes)

Bitwise

Logical

Phenom

different keys

(a) Comparing total different keys on Phenom requires a trivial time with the logical
approach, and an exponential time on key length with the bitwise approach.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Key length (Bytes)

Bitwise

Logical

Core i7

equal keys

(b) On Intel Core i7 the logical approach is faster working with large keys. This is not a
general result, as shown in (c).

0

2

4

6

8

10

12

4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Key length (Bytes)

Bitwise

Logical

Core 2

equal key

(c) On Core 2 Duo the bitwise approach is faster working with large keys. This is not a
general result, as shown in (b).

Figure 6: Key comparison methods

32 results

the first n characters equal to the first n characters of another
key is very small, for a sufficient large value of n. Since logical
approach is faster than boolean only with keys which are longer
than 8 characters1, suppose that n is 8. Then the probability that
the first 8 characters equal to the first 8 char of another key is
(1/256)8 v 0 for each key, assuming that each character is equally
probable and that there are 256 different characters. Therefore
for random keys longer than 8-byte logical evaluations should
be used. A different situation happens with equal keys.

3. Comparing equal keys longer then 16-byte is faster using logical
approach on some CPUs, such as Intel Core i7, while is faster
using bitwise approach on other CPUs, such as Core 2 Duo.

There are different situation and possible combinations to be consid-
ered. Some psort users may want to sort incremental keys which are
equal or half-equal. This is a common situation in databases environ-
ments, working with IDs. In order to answer to this requirement, the
installTuned.sh file allows to choose, before the beginning of the instal-
lation, what typology of keys (random or incremental) will be sort
more frequently. Then the result of this test is automatically load as
input in the Code Tuner that compiles psort with the faster approach.

4.2 cache tests

Cache tests are divided in two groups. Tests in the first group try toO.S. cache tests
results retrieve cache values from the O.S. They provide the correct value

but they are not guaranteed to work on every software configuration.
In addition, sometimes they return indefinite values, such as the
command cat /proc/cpuinfo that returns on Intel Core i7:� �

model name : Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz

stepping : 5

cpu MHz : 1600.000

cache size : 8192 KB

� �
Is this the size of L1, L2 or L3 cache? It is not specified. Moreover
the value CPU MHz, even if it does not actually interest us, is wrong
and may convince us to doubt about the other values returned by this
command. However cache size is still useful to perform comparisons
with other results.

The second group is composed by only one test that directly tries toDirect estimation
cache test result

1 We are assuming that 1 character is 1-byte, that is a common (but not the only one)
situation for keys in text files.

4.2 cache tests 33

L1

L2

L3

0

5000

10000

15000

20000

25000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

B
a
n
d
w

id
th

 (
M

iB
/s

)

Input size (KiB)

Intel Core i7 920

(a) Cache size test on Intel Core i7 920

L1

L2

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

B
a
n
d
w

id
th

 (
M

iB
/s

)

Input size (KiB)

Intel Core 2 Duo P8400

(b) Cache size test on Intel Core 2 Duo P8400

L1

L2

L3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

B
a
n
d
w

id
th

 (
M

iB
/s

)

Input size (KiB)

AMD Phenom II X4 945

(c) Cache size test on AMD Phenom II X4 945

L2

L3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

B
a
n
d
w

id
th

 (
M

iB
/s

)

Input size (KiB)

MBA Intel Core i5 1.7 GHz

(d) Cache size test on MBA Intel Core i5 1.7 GHz

Figure 7: Cache detection test performed on different CPUs. Dashed bars
corresponds to the values declared by the vendors.

34 results

estimate the cache size as described in 3.2. Figure 7 on the preceding
page shows all collected bandwidths which are used to estimate the
sizes of the caches. The bars filled with diagonal dashed lines represent
the nominal cache values of the CPU. The algorithm correctly estimate
the two most significant caches for each CPU. If a CPU has a cache
size that is not a two-power, the nearest two power is returned.

Sub-figure (a) refers to Intel Core i7 and is divided in three levelsIntel Core i7 cache
result of bandwidths. The first level, that corresponds to the nominal level

of the L1 cache (32 KiB), is difficult to be detected. The reason could
be related to the really small size of this cache. However, focusing
on the values, there is a visible bandwidth gap between 32 KiB and
48 KiB and it is about 3%: the other gaps near 32 KiB are all smaller.
Finding the other two caches is easier because the gap between the
value immediately before and immediately after a cache size, is very
significant: 19% for the L2 cache and 70% for the L3 cache. Visually L2

and L3 caches have bandwidths which are at the halfway between the
average bandwidth of the two adjacent levels. The algorithm detects
correctly the L2 and L3 cache values.

Sub-figure (b) refers to Intel Core 2 Duo that has two caches, bothIntel Core 2 Duo
cache result correctly identified (the L2 as the closest smaller two-power). The gaps

are really visible and the relative bandwidth variation between the
previous and the following values of the L2 cache reaches the value of
172%.

Sub-figure (c) refers to Phenom and shows the most linear result:AMD Phenom
cache result there are three steps and each one ends with the nominal size of a

cache. For each step, the average value of the bandwidth is minimally
affected by noise and so has a small variance. In some CPUs the cache
size corresponds to the first value that gives a smaller bandwidth
compared with smaller sizes. In this case it corresponds to the last
value that has a bandwidth in average with smaller sizes. This could
be related to the particular hardware architecture or to the particular
software configuration, e.g. number of active processes during the test.

Sub-figure (d) refers to MBA Intel Core i5. It is curious to note thatIntel Core i5 cache
result there is not nominal L1 cache size for this CPU and in fact the test

confirms this particularity. Yet another time, the two largest gaps
identify the two caches. However this time L3 cache size is the first
value to give a small bandwidth compared to the previous one.

The test does not only identify the caches, but also proves that they
significantly affect performance. Therefore we must work with data
sizes which fit the caches. Actually in this package psort is designed
to run cache sorter using the size of the L2 cache.

4.3 main memory tests 35

4.3 main memory tests

Tests on main memory collect data which can be useful to understand RAM test results

if the main memory is a bottleneck for stage one. They simply calculate
the bandwidth of reading and writing operations from and to the RAM.
First of all we can compare the bandwidth of different memories. This
could help us to evaluate how much a high-end memory is faster then
a low or medium-end memory and therefore we can understand if
a faster memory may improve psort stage one performance or if the
disks limit the entire process. Table 4 compares different hardware
configurations.

Memory
Read bandwidth
(MiB/s)

Write bandwidth
(MiB/s)

CMT6GX3M3A1866C9

6 GiB DDR3 @ 1666 MHz on
Intel Core i7 920

6430 7803

8 GiB DDR3 @ 1066 MHz on
AMD Phenom 945

3077 1803

4 GiB DDR2 @ 667 MHz on
Intel Core 2 Duo

1619 1378

4 GiB DDR3 @ 1333 MHz on
Intel Core i5

2613 5238

Table 4: Read and write bandwidths of the main memory on different hard-
ware configurations.

It is interesting to note that in some memories read operations are
faster than write operations while in other ones the vice versa is true.
Furthermore these data are collected accessing 256-byte atomically.
The estimated bandwidth significantly changes accessing a different
amount of bytes, e.g. on Intel Core i7 (see Table 5).

CMT6GX3M3A1866C9

Bytes atomically accessed
Read bandwidth
(MiB/s)

Write bandwidth
(MiB/s)

128 4979 7240

256 6430 7803

512 5952 8060

Table 5: Read and write bandwidths change with the number of bytes atomi-
cally accessed.

36 results

8 16 32 64 128 256

Read bandwidth (MiB/s) 488 592 559 560 590 608

Write bandwidth (MiB/s) 528 600 631 604 628 637

450

500

550

600

650

700

B
a
n
d
w

id
th

 (
M

iB
/s

)

Size (MiB)
Phenom

Figure 8: Disk bandwidth estimation on Phenom

4.4 disk tests

The only tested machine with a relevant disks configuration is PhenomDisk tests results:
read and write

bandwidths
that has a RAID array divided in three partitions (slow, medium, and
fast) according to the rotation speed of the disk. In fact “transfer time
is lower for data logically closer to the beginning of the array, corresponding
physically to the area of the disk closer to the outer rim” as stated in [8].
The estimated bandwidth for the fast section of this array is 608 MiB/s
(read) and 637 MiB/s (write) as shown in Figure 8. The test ends as
designed with an input/output size of 256 MiB because, considering
the previous execution, the delta of bandwidth is less then 4% both
for reading and writing operations.

The other machines use a single disk with a low-end read bandwidth
of 75 MiB/s (Intel Core i7 machine) and 27 MiB/s (Intel Core 2 Duo
machine).

The second test is about access time/seek time for a single deviceDisk tests results:
seek time without passing for the filesystem. The data collected are slightly

different from the nominal values reported by the vendors as shown
on Table 6.

Device
Nominal seek
time (ms)

Estimated seek
time (ms)

ST3500320AS

7200.11 SATA 3Gb/s 500-GB
8.5 12.71

WD3200BEVT

5400 RPM SATA 3Gb/s 320-GB
12.00 13.05

Table 6: Hard disk seek times do not always match the nominal value.

4.4 disk tests 37

This could happen because every disk is unique: buying multiple
copies of the same disk model, there could be high differences in
performance.

We finally recall that psort, according to the Sort Benchmark specifics
[6], manages data using the filesystem and not directly from/to the
device.

5
C O N C L U S I O N S

The test environment described in this work allows us to conclude The actual role of
hardware detectionthat choosing optimal value for critical psort parameters drastically

increases its performance. Furthermore the optimal values of these
parameters are strictly related to the hardware configuration and there-
fore automatic estimation of hardware parameters plays an important
role in the tuning process of psort.

Nowadays there is a large variety of possible hardware/software
combinations and consequently it is unsafe to retrieve all hardware
parameters only through O.S. based functions. The specifics of a hard-
ware model may also differ from a particular hardware component to
another. These aspects should convince that the data must be collected
with different approach, including the direct test of the hardware
component. In fact, a hardware component that is declared to work
according to certain specifics, may vary its performance in relation to
its interaction with the other hardware components. Hardware archi-
tectures are so complex that it is impossible to theoretically estimate
an implementation that gives a better performance without testing it.

Even if the tests are mainly general purpose and independent from Further
developmentspsort, our work would be a starting point to insert psort in the universe

of the automatically tuned software. Further developments are widely
possible and may move into two directions: the design and implemen-
tations of new tests, and the addition of some code portion in psort
capable to take advantage of the tests results.

There is an infinity of possible new tests but writing the current
hardware detection code bring us to identify some tests, which can be
more interesting and more useful for psort:

1. Add another OS-dependent approach to estimate cache sizes and
other cache values. Actually we are collecting only the size of the
L1, L2 and L3 caches. It would be useful to collect also other val-
ues such as the ways of associativity and cache line size. The com-
mand grep . /sys/devices/system/cpu/cpu0/cache/index*/*
is a good starting point. Cache line size may also be calculated.

2. Test psort using Callgrind, a component of Vallgrind and analyze
the results with kcachegrind. These tools should allow to deeper
understand how psort exploits the caches according to their sizes.

3. Test disk performance using alternative solutions to Direct I/O
such as madvise and posix_fadvise.

39

40 conclusions

The current test structure is designed to easily allow the addition of
new tests using a modular approach.

Regarding the implementation in psort of new code that exploits test
results, the collected and analyzed data of Chapter 4 suggests that the
first step should be the adding of both if-else and boolean evaluations
during k-way merge sort operations.

This work already implements the exploit of some hardware-relatedCode reliability and
usability values together with Code-tuning and psort itself. It provides further

developers with a complete test environment and the basic structure
to add new tests. The test system has proved to be reliable even if run
using a fast tuning level that takes only a few minutes on modern
hardware configuration. It is performed only one time, during the
installation process. Since the results show that the correct choice
of a solution according to the hardware, speed-up different psort
operations and since we do not find any obstacles, we propose to
add the automatic estimation of hardware parameters to the current
version of psort.

A
S O U R C E C O D E

a.1 cpu tests source code

Listing 2: Extract from CPU tests source code� �
1

2 #include "pre−tuner_cpu .h"
3

4 int main(int argc, const char *argv[]) {

5

6 bool run_test_one = TEST_ONE_RUN;

7 bool run_test_two = TEST_TWO_RUN;

8 bool run_test_three = TEST_THREE_RUN;

9

10 printf("\n### Starting CPU TESTS ###\n");
11

12 createOutputFiles();

13

14 /* TEST 1 (pointers) */

15

16 if (run_test_one) {

17

18 printf("\nStarting test 1 (pointers) . I t will be
repeated %d time(s) . Every test works with an
array of size %lu MiB.\n\n", TEST_ONE_NUM, ((

unsigned long) TEST_ONE_ARRAY_ELEMENTS) * sizeof(

TEST_ONE_ARRAY_ELEMENTS_TYPE) / (1<<20));

19

20 runFoolOperations(TEST_ONE_FOOL_OPERATION_AMOUNT_MB);

21 double subscript_total_time = runTestOneSubscript(

TEST_ONE_NUM, TEST_ONE_ARRAY_ELEMENTS);

22 runFoolOperations(TEST_ONE_FOOL_OPERATION_AMOUNT_MB);

23 double offset_total_time = runTestOneOffset(

TEST_ONE_NUM, TEST_ONE_ARRAY_ELEMENTS);

24

25 printf("Subscript notation total time: %f\n",
subscript_total_time);

26 printf("Offset notation total time: %f\n",
offset_total_time);

27

28 //cut: save results code here

29 }

30

31 /* TEST 2 (branch-merge) */

32

41

42 source code

33 if (run_test_two) {

34

35 printf("\nStarting test 2 (branch−merge) . I t will be
repeated %d time(s) . Every test performs %lu
comparisons.\n\n", TEST_TWO_NUM,

TEST_TWO_SINGLE_TEST_LENGTH);

36

37 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

38 double ifelse_total_time = runTestTwoIfElse(

TEST_TWO_NUM, TEST_TWO_SINGLE_TEST_LENGTH);

39 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

40 double boolean_total_time = runTestTwoBoolean(

TEST_TWO_NUM, TEST_TWO_SINGLE_TEST_LENGTH);

41

42 printf(" If−else approach total time: %f\n",
ifelse_total_time);

43 printf("Boolean approach total time: %f\n",
boolean_total_time);

44

45 //cut: save results code here;

46 }

47

48

49 /* TEST 3 (logical against bitwise comparisons) */

50

51 if (run_test_three) {

52

53 printf("\nStarting test 3 (logical−bitwise) . Every
test performs %lu comparisons.\n\n",
TEST_THREE_SINGLE_TEST_LENGTH);

54

55 double B4_logical_time;

56 double B4_bitwise_time;

57 double B8_logical_time;

58 double B8_bitwise_time;

59 double B16_logical_time;

60 double B16_bitwise_time;

61 double B32_logical_time;

62 double B32_bitwise_time;

63 double B64_logical_time;

64 double B64_bitwise_time;

65 double B128_logical_time;

66 double B128_bitwise_time;

67

68 if (TEST_THREE_RUN_KEY_LEVEL_ZERO) {

69

70 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

71 B4_logical_time = runTestThreeLogical_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 0);

72 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

73 B4_bitwise_time = runTestThreeBitwise_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 0);

A.1 cpu tests source code 43

74 printf("4 Byte (equal key) Logical time: %f\n",
B4_logical_time);

75 printf("4 Byte (equal key) Bitwise time: %f\n",
B4_bitwise_time);

76

77 //cut: duplicated code for larger keys here

78

79 printf("\n");
80

81 //cut: save results code here

82

83 /* Export data for code-tuner */

84

85 char outputString[256] = "equal keys: ";
86 if (B8_bitwise_time < B8_logical_time)

87 sprintf(outputString, "%s %d", outputString, 1);

88 else

89 sprintf(outputString, "%s %d", outputString, 2);

90 if (B16_bitwise_time < B16_logical_time)

91 sprintf(outputString, "%s %d", outputString, 1);

92 else

93 sprintf(outputString, "%s %d", outputString, 2);

94 if (B32_bitwise_time < B32_logical_time)

95 sprintf(outputString, "%s %d %d\n", outputString,

1, 1);

96 else

97 sprintf(outputString, "%s %d %d\n", outputString,

2, 2);

98 writeStringToFile("codetuner", outputString);

99 }

100

101 if (TEST_THREE_RUN_KEY_LEVEL_ONE) {

102

103 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

104 B4_logical_time = runTestThreeLogical_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 1);

105 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

106 B4_bitwise_time = runTestThreeBitwise_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 1);

107 printf("4 Byte (half equal key) Logical time: %f\n",
B4_logical_time);

108 printf("4 Byte (half equal key) Bitwise time: %f\n",
B4_bitwise_time);

109

110 //cut: duplicated code for larger keys here

111

112 //cut: save results code here

113

114 /* Export data for code-tuner */

115

116 char outputString[256] = "half−equal keys: ";
117 if (B8_bitwise_time < B8_logical_time)

44 source code

118 sprintf(outputString, "%s %d", outputString, 1);

119 else

120 sprintf(outputString, "%s %d", outputString, 2);

121 if (B16_bitwise_time < B16_logical_time)

122 sprintf(outputString, "%s %d", outputString, 1);

123 else

124 sprintf(outputString, "%s %d", outputString, 2);

125 if (B32_bitwise_time < B32_logical_time)

126 sprintf(outputString, "%s %d %d\n", outputString,

1, 1);

127 else

128 sprintf(outputString, "%s %d %d\n", outputString,

2, 2);

129 writeStringToFile("codetuner", outputString);

130

131 }

132

133 if (TEST_THREE_RUN_KEY_LEVEL_TWO) {

134

135 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

136 B4_logical_time = runTestThreeLogical_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 2);

137 runFoolOperations(TEST_TWO_FOOL_OPERATION_AMOUNT_MB);

138 B4_bitwise_time = runTestThreeBitwise_4B(

TEST_THREE_SINGLE_TEST_LENGTH, 2);

139 printf("4 Byte (total different key) Logical time: %f
\n", B4_logical_time);

140 printf("4 Byte (total different key) Bitwise time: %f
\n", B4_bitwise_time);

141

142 //cut: duplicated code for larger keys here

143

144 //cut: save results code here

145

146 /* Export data for code-tuner */

147

148 //cut: save results code here

149

150 }

151

152 printf("\n");
153

154 return 0;

155

156 }

157

158 double runTestOneSubscript(int input_test_num, unsigned

long input_elements_num) {

159

160 int tests_num = input_test_num;

161 size_t elements_num = (size_t) input_elements_num;

162

A.1 cpu tests source code 45

163 struct timeval start_time;

164 struct timeval end_time;

165

166 gettimeofday(&start_time, NULL);

167

168 for (int k = 0; k < tests_num; k++) {

169

170 typedef TEST_ONE_ARRAY_ELEMENTS_TYPE element_type;

171

172 element_type *array = (element_type *) calloc(

elements_num, sizeof(element_type));

173 element_type *arrayPtr = array;

174

175 for (unsigned long i = 0; i < elements_num; i++)

176 array[i]++;

177

178 srand(time(NULL));

179 if (arrayPtr[rand() % elements_num] == rand())

//just try to avoid compiler ’ s trick forcing i t
to use the array

180 printf (" Single exec of test one completed with a
match.\n") ;

181 free (arrayPtr) ;
182 }
183

184 gettimeofday(&end_time, NULL) ;
185

186 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec −
start_time . tv_usec)) / 1000000;

187 }
188

189

190 double runTestOneOffset(int input_test_num , unsigned
long input_elements_num) {

191

192 int tests_num = input_test_num ;
193 size_t elements_num = (size_t) input_elements_num;
194

195 struct timeval start_time ;
196 struct timeval end_time ;
197

198 gettimeofday(&start_time , NULL) ;
199

200 for (int k = 0 ; k < tests_num ; k++) {
201

202 typedef TEST_ONE_ARRAY_ELEMENTS_TYPE element_type ;
203

204 element_type *array = (element_type *) calloc (
elements_num, sizeof (element_type)) ;

205 element_type *arrayPtr = array ;
206

46 source code

207 for (unsigned long i = 0 ; i < elements_num; i++)
208 (* (array++))++;
209

210 srand(time(NULL)) ;
211 i f (arrayPtr [rand() % elements_num] == rand())

//just try to avoid compiler ’s trick forcing it

to use the array

212 printf("Single exec of test one completed with a
match.\n");

213 free(arrayPtr);

214 }

215

216 gettimeofday(&end_time, NULL);

217

218 return (double) ((end_time.tv_sec - start_time.

tv_sec) * 1000000 + (end_time.tv_usec -

start_time.tv_usec)) / 1000000;

219 }

220

221

222

223 double runTestTwoIfElse(int input_test_num, unsigned

long input_single_test_length) {

224

225 unsigned long single_test_length =

input_single_test_length;

226 int tests_num = input_test_num;

227 uint64_t a;

228 uint64_t b;

229 unsigned long counter = 0;

230

231 struct timeval start_time;

232 struct timeval end_time;

233

234 gettimeofday(&start_time, NULL);

235

236 for (int k = 0; k < tests_num; k++) {

237

238 a = 1377923;

239 b = 1029341;

240

241 for (unsigned long i = 0; i < single_test_length; i

++) {

242 a += 10000;

243 b = a ^ b;

244 if (a < b)

245 counter++;

246 }

247 }

248

249 gettimeofday(&end_time, NULL);

A.1 cpu tests source code 47

250 if (counter == 0) // just try to avoid compiler ’ s
trick forcing i t to use counter

251 printf (" Test completed with an entire counter ’s
cycle.\n") ;

252

253 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec −
start_time . tv_usec)) / 1000000;

254 }
255

256 double runTestTwoBoolean(int input_test_num , unsigned
long input_single_test_length) {

257

258 unsigned long single_test_length =
input_single_test_length ;

259 int tests_num = input_test_num ;
260 uint64_t a ;
261 uint64_t b;
262 unsigned long counter = 0 ;
263

264 struct timeval start_time ;
265 struct timeval end_time ;
266

267 gettimeofday(&start_time , NULL) ;
268

269 for (int k = 0 ; k < tests_num ; k++) {
270

271 a = 1377923;
272 b = 1029341;
273

274 for (unsigned long i = 0 ; i < single_test_length ; i
++) {

275 a += 10000;
276 b = a ^ b;
277 counter += (a < b) ;
278 }
279 }
280

281 gettimeofday(&end_time, NULL) ;
282 i f (counter == 0) // just try to avoid compiler ’ s

trick forcing i t to use counter
283 printf ("Test completed with an entire counter ’ s

cycle .\n") ;
284

285 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec −
start_time . tv_usec)) / 1000000;

286 }
287

288 double runTestThreeLogical_4B (uint64_t
input_total_iterations , int key_level) {

48 source code

289 const uint64_t total_iterations = input_total_iterations
/ 2 ;

290 uint32_t *a = (uint32_t *) calloc (1 , sizeof (uint32_t))
;

291 uint32_t *b = (uint32_t *) calloc (1 , sizeof (uint32_t))
;

292 uint64_t counter = 1 ;
293

294 i f (key_level == 1)
295 memset(((char *) b) + 2 , UCHAR_MAX, sizeof (uint32_t) /

2) ;
296 else i f (key_level == 2)
297 memset(b, UCHAR_MAX, sizeof (uint32_t)) ;
298

299 struct timeval start_time ;
300 struct timeval end_time ;
301

302 gettimeofday(&start_time , NULL) ;
303

304 for (uint64_t k = 0 ; k < total_iterations ; k++) {
305 counter += a[0] > b[0] || (a[0] == b[0]++) ;
306 counter += a[0] >−−b[0] || (a[0] == b[0]) ;
307 }
308

309 gettimeofday(&end_time, NULL) ;
310 free (a) ; free (b) ;
311 i f (counter == 0)
312 printf (" Test completed with an entire counter ’s cycle

.\n") ;
313

314 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

315 }
316

317 double runTestThreeBitwise_4B (uint64_t
input_total_iterations , int key_level) {

318 const uint64_t total_iterations = input_total_iterations
/ 2 ;

319 uint32_t *a = (uint32_t *) calloc (1 , sizeof (uint32_t))
;

320 uint32_t *b = (uint32_t *) calloc (1 , sizeof (uint32_t))
;

321 uint64_t counter = 1 ;
322

323 i f (key_level == 1)
324 memset(((char *) b) + 2 , UCHAR_MAX, sizeof (uint32_t) /

2) ;
325 else i f (key_level == 2)
326 memset(b, UCHAR_MAX, sizeof (uint32_t)) ;
327

328 struct timeval start_time ;

A.1 cpu tests source code 49

329 struct timeval end_time ;
330

331 gettimeofday(&start_time , NULL) ;
332

333 for (uint64_t k = 0 ; k < total_iterations ; k++) {
334 counter += a[0] > b[0] | (a[0] == b[0]++) ;
335 counter += a[0] >−−b[0] | (a[0] == b[0]) ;
336 }
337

338 gettimeofday(&end_time, NULL) ;
339 free (a) ; free (b) ;
340 i f (counter == 0)
341 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
342

343 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

344 }
345

346 double runTestThreeLogical_8B (uint64_t
input_total_iterations , int key_level) {

347 const uint64_t total_iterations = input_total_iterations
/ 2 ;

348 uint64_t *a = (uint64_t *) calloc (1 , sizeof (uint64_t))
;

349 uint64_t *b = (uint64_t *) calloc (1 , sizeof (uint64_t))
;

350 uint64_t counter = 1 ;
351

352 i f (key_level == 1)
353 memset(((int *) b) + 1 , UCHAR_MAX, sizeof (uint64_t) /

2) ;
354 else i f (key_level == 2)
355 memset(b, UCHAR_MAX, sizeof (uint64_t)) ;
356

357 struct timeval start_time ;
358 struct timeval end_time ;
359

360 gettimeofday(&start_time , NULL) ;
361

362 for (uint64_t k = 0 ; k < total_iterations ; k++) {
363 counter += a[0] > b[0] || (a[0] == b[0]++) ;
364 counter += a[0] >−−b[0] || (a[0] == b[0]) ;
365 }
366

367 gettimeofday(&end_time, NULL) ;
368 free (a) ; free (b) ;
369 i f (counter == 0)
370 printf (" Test completed with an entire counter ’s cycle

.\n") ;
371

50 source code

372 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

373 }
374

375 double runTestThreeBitwise_8B (uint64_t
input_total_iterations , int key_level) {

376 const uint64_t total_iterations = input_total_iterations
/ 2 ;

377 uint64_t *a = (uint64_t *) calloc (1 , sizeof (uint64_t))
;

378 uint64_t *b = (uint64_t *) calloc (1 , sizeof (uint64_t))
;

379 uint64_t counter = 1 ;
380

381 i f (key_level == 1)
382 memset(((int *) b) + 1 , UCHAR_MAX, sizeof (uint64_t) /

2) ;
383 else i f (key_level == 2)
384 memset(b, UCHAR_MAX, sizeof (uint64_t)) ;
385

386 struct timeval start_time ;
387 struct timeval end_time ;
388

389 gettimeofday(&start_time , NULL) ;
390

391 for (uint64_t k = 0 ; k < total_iterations ; k++) {
392 counter += a[0] > b[0] | (a[0] == b[0]++) ;
393 counter += a[0] >−−b[0] | (a[0] == b[0]) ;
394 }
395

396 gettimeofday(&end_time, NULL) ;
397 free (a) ; free (b) ;
398 i f (counter == −1)
399 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
400

401 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

402 }
403

404 double runTestThreeLogical_16B (uint64_t
input_total_iterations , int key_level) {

405 const uint64_t total_iterations = input_total_iterations
/ 2 ;

406 uint64_t *a = (uint64_t *) calloc (2 , sizeof (uint64_t))
;

407 uint64_t *b = (uint64_t *) calloc (2 , sizeof (uint64_t))
;

408 uint64_t counter = 1 ;
409

A.1 cpu tests source code 51

410 i f (key_level == 1)
411 memset(b + 1 , UCHAR_MAX, sizeof (uint64_t)) ;
412 else i f (key_level == 2)
413 memset(b, UCHAR_MAX, sizeof (uint64_t) * 2) ;
414

415 struct timeval start_time ;
416 struct timeval end_time ;
417

418 gettimeofday(&start_time , NULL) ;
419

420 for (uint64_t k = 0 ; k < total_iterations ; k++) {
421 counter += a[0] > b[0] || (a[0] == b[0]++ && (a[1] >

b[1] || (a[1] == b[1]++))) ;
422 counter += a[0] >−−b[0] || (a[0] == b[0] && (a[1] >

−−b[1] || (a[1] == b[1]))) ;
423 }
424

425 gettimeofday(&end_time, NULL) ;
426 free (a) ; free (b) ;
427 i f (counter == 0)
428 printf (" Test completed with an entire counter ’s cycle

.\n") ;
429

430 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

431 }
432

433 double runTestThreeBitwise_16B (uint64_t
input_total_iterations , int key_level) {

434 const uint64_t total_iterations = input_total_iterations
/ 2 ;

435 uint64_t *a = (uint64_t *) calloc (2 , sizeof (uint64_t))
;

436 uint64_t *b = (uint64_t *) calloc (2 , sizeof (uint64_t))
;

437 uint64_t counter = 1 ;
438

439 i f (key_level == 1)
440 memset(b + 1 , UCHAR_MAX, sizeof (uint64_t)) ;
441 else i f (key_level == 2)
442 memset(b, UCHAR_MAX, sizeof (uint64_t) * 2) ;
443

444 struct timeval start_time ;
445 struct timeval end_time ;
446

447 gettimeofday(&start_time , NULL) ;
448

449 for (uint64_t k = 0 ; k < total_iterations ; k++) {
450 counter += a[0] > b[0] | (a[0] == b[0]++ & (a[1] > b

[1] | (a[1] == b[1]++))) ;

52 source code

451 counter += a[0] >−−b[0] | (a[0] == b[0] & (a[1] >
−−b[1] | (a[1] == b[1]))) ;

452 }
453

454 gettimeofday(&end_time, NULL) ;
455 free (a) ; free (b) ;
456 i f (counter == 0)
457 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
458

459 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

460 }
461 double runTestThreeLogical_32B (uint64_t

input_total_iterations , int key_level) {
462 const uint64_t total_iterations = input_total_iterations

/ 2 ;
463 uint64_t *a = (uint64_t *) calloc (4 , sizeof (uint64_t))

;
464 uint64_t *b = (uint64_t *) calloc (4 , sizeof (uint64_t))

;
465 uint64_t counter = 1 ;
466

467 i f (key_level == 1)
468 memset(b + 2 , UCHAR_MAX, sizeof (uint64_t) * 2) ;
469 else i f (key_level == 2)
470 memset(b, UCHAR_MAX, sizeof (uint64_t) * 4) ;
471

472 struct timeval start_time ;
473 struct timeval end_time ;
474

475 gettimeofday(&start_time , NULL) ;
476

477 for (uint64_t k = 0 ; k < total_iterations ; k++) {
478 counter += a[0] > b[0] || (a[0] == b[0]++ && (a[1] >

b[1] || (a[1] == b[1]++ && (a[2] > b[2] || (a
[2] == b[2]++ && (a[3] > b[3] || (a[3] == b[3]++

))))))) ;
479 counter += a[0] >−−b[0] || (a[0] == b[0] && (a[1] >

−−b[1] || (a[1] == b[1] && (a[2] >−−b[2] || (
a[2] == b[2] && (a[3] >−−b[3] || (a[3] == b[3]
))))))) ;

480 }
481

482 gettimeofday(&end_time, NULL) ;
483 free (a) ; free (b) ;
484 i f (counter == 0)
485 printf (" Test completed with an entire counter ’s cycle

.\n") ;
486

A.1 cpu tests source code 53

487 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

488 }
489

490 double runTestThreeBitwise_32B (uint64_t
input_total_iterations , int key_level) {

491 const uint64_t total_iterations = input_total_iterations
/ 2 ;

492 uint64_t *a = (uint64_t *) calloc (4 , sizeof (uint64_t))
;

493 uint64_t *b = (uint64_t *) calloc (4 , sizeof (uint64_t))
;

494 uint64_t counter = 1 ;
495

496 i f (key_level == 1)
497 memset(b + 2 , UCHAR_MAX, sizeof (uint64_t) * 2) ;
498 else i f (key_level == 2)
499 memset(b, UCHAR_MAX, sizeof (uint64_t) * 4) ;
500

501 struct timeval start_time ;
502 struct timeval end_time ;
503

504 gettimeofday(&start_time , NULL) ;
505

506 for (uint64_t k = 0 ; k < total_iterations ; k++) {
507 counter += a[0] > b[0] | (a[0] == b[0]++ & (a[1] > b

[1] | (a[1] == b[1]++ & (a[2] > b[2] | (a[2] ==
b[2]++ & (a[3] > b[3] | (a[3] == b[3]++))))
))) ;

508 counter += a[0] >−−b[0] | (a[0] == b[0] & (a[1] >
−−b[1] | (a[1] == b[1] & (a[2] >−−b[2] | (a[2]

== b[2] & (a[3] >−−b[3] | (a[3] == b[3])))
)))) ;

509 }
510

511 gettimeofday(&end_time, NULL) ;
512 free (a) ; free (b) ;
513 i f (counter == 0)
514 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
515

516 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

517 }
518

519 double runTestThreeLogical_64B (uint64_t
input_total_iterations , int key_level) {

520 const uint64_t total_iterations = input_total_iterations
/ 2 ;

54 source code

521 uint64_t *a = (uint64_t *) calloc (8 , sizeof (uint64_t))
;

522 uint64_t *b = (uint64_t *) calloc (8 , sizeof (uint64_t))
;

523 uint64_t counter = 1 ;
524

525 i f (key_level == 1)
526 memset(b + 4 , UCHAR_MAX, sizeof (uint64_t) * 4) ;
527 else i f (key_level == 2)
528 memset(b, UCHAR_MAX, sizeof (uint64_t) * 8) ;
529

530 struct timeval start_time ;
531 struct timeval end_time ;
532

533 gettimeofday(&start_time , NULL) ;
534

535 for (uint64_t k = 0 ; k < total_iterations ; k++) {
536 counter += a[0] > b[0] || (a[0] == b[0]−− && (a[1] >

b[1] || (a[1] == b[1]−− && (a[2] > b[2] || (a
[2] == b[2]−− && (a[3] > b[3] || (a[3] == b[3]−−
&& (a[4] > b[4] || (a[4] == b[4]−− && (a[5] >

b[5] || (a[5] == b[5]−− && (a[6] > b[6] || (a
[6] == b[6]−− && (a[7] > b[7] || (a[7] == b[7]−−

))))))))))))))) ;
537 counter += a[0] > ++b[0] || (a[0] == b[0] && (a[1] >

++b[1] || (a[1] == b[1] && (a[2] > ++b[2] || (
a[2] == b[2] && (a[3] > ++b[3] || (a[3] == b[3]
&& (a[4] > ++b[4] || (a[4] == b[4] && (a[5] >
++b[5] || (a[5] == b[5] && (a[6] > ++b[6] || (a
[6] == b[6] && (a[7] > ++b[7] || (a[7] == b[7]
))))))))))))))) ;

538 }
539

540 gettimeofday(&end_time, NULL) ;
541 free (a) ; free (b) ;
542 i f (counter == 0)
543 printf (" Test completed with an entire counter ’s cycle

.\n") ;
544

545 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

546 }
547

548 double runTestThreeBitwise_64B (uint64_t
input_total_iterations , int key_level) {

549 const uint64_t total_iterations = input_total_iterations
/ 2 ;

550 uint64_t *a = (uint64_t *) calloc (8 , sizeof (uint64_t))
;

551 uint64_t *b = (uint64_t *) calloc (8 , sizeof (uint64_t))
;

A.1 cpu tests source code 55

552 uint64_t counter = 1 ;
553

554 i f (key_level == 1)
555 memset(b + 4 , UCHAR_MAX, sizeof (uint64_t) * 4) ;
556 else i f (key_level == 2)
557 memset(b, UCHAR_MAX, sizeof (uint64_t) * 8) ;
558

559 struct timeval start_time ;
560 struct timeval end_time ;
561

562 gettimeofday(&start_time , NULL) ;
563

564 for (uint64_t k = 0 ; k < total_iterations ; k++) {
565 counter += a[0] > b[0] | (a[0] == b[0]−− & (a[1] > b

[1] | (a[1] == b[1]−− & (a[2] > b[2] | (a[2] ==
b[2]−− & (a[3] > b[3] | (a[3] == b[3]−− & (a

[4] > b[4] | (a[4] == b[4]−− & (a[5] > b[5] | (
a[5] == b[5]−− & (a[6] > b[6] | (a[6] == b[6]−−
& (a[7] > b[7] | (a[7] == b[7]−−)))))))
)))))))) ;

566 counter += a[0] > ++b[0] | (a[0] == b[0] & (a[1] >
++b[1] | (a[1] == b[1] & (a[2] > ++b[2] | (a[2]

== b[2] & (a[3] > ++b[3] | (a[3] == b[3] & (a
[4] > ++b[4] | (a[4] == b[4] & (a[5] > ++b[5] |
(a[5] == b[5] & (a[6] > ++b[6] | (a[6] == b[6]
& (a[7] > ++b[7] | (a[7] == b[7])))))))
)))))))) ;

567 }
568

569 gettimeofday(&end_time, NULL) ;
570 free (a) ; free (b) ;
571 i f (counter == 0)
572 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
573

574 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

575 }
576

577 double runTestThreeLogical_128B (uint64_t
input_total_iterations , int key_level) {

578 const uint64_t total_iterations = input_total_iterations
/ 2 ;

579 uint64_t *a = (uint64_t *) calloc (16 , sizeof (uint64_t)
) ;

580 uint64_t *b = (uint64_t *) calloc (16 , sizeof (uint64_t)
) ;

581 uint64_t counter = 1 ;
582

583 i f (key_level == 1)
584 memset(b + 8 , UCHAR_MAX, sizeof (uint64_t) * 8) ;

56 source code

585 else i f (key_level == 2)
586 memset(b, UCHAR_MAX, sizeof (uint64_t) * 16) ;
587

588 struct timeval start_time ;
589 struct timeval end_time ;
590

591 gettimeofday(&start_time , NULL) ;
592

593 for (uint64_t k = 0 ; k < total_iterations ; k++) {
594 counter += a[0] > b[0] || (a[0] == b[0]−− && (

a[1] > b[1] || (a[1] == b[1]−− && (a[2] >
b[2] || (a[2] == b[2]−− && (a[3] > b[3] ||

(a[3] == b[3]−− && (a[4] > b[4] || (a[4]
== b[4]−− && (a[5] > b[5] || (a[5] == b

[5]−− && (a[6] > b[6] || (a[6] == b[6]−−
&& (a[7] > b[7] || (a[7] == b[7]−− && (a
[8] > b[8] || (a[8] == b[8]−− && (a[9] > b
[9] || (a[9] == b[9]−− && (a[10] > b[10]
|| (a[10] == b[10]−− && (a[11] > b[11] ||
(a[11] == b[11]−− && (a[12] > b[12] || (a
[12] == b[12]−− && (a[13] > b[13] || (a
[13] == b[13]−− && (a[14] > b[14] || (a
[14] == b[14]−− && (a[15] > b[15] || (a
[15] == b[15]−−))))))))))))))

))))))))))))))))) ;
595 counter += a[0] > ++b[0] || (a[0] == b[0] && (a[1] >

++b[1] || (a[1] == b[1] && (a[2] > ++b[2] || (
a[2] == b[2] && (a[3] > ++b[3] || (a[3] == b[3]
&& (a[4] > ++b[4] || (a[4] == b[4] && (a[5] >
++b[5] || (a[5] == b[5] && (a[6] > ++b[6] || (a
[6] == b[6] && (a[7] > ++b[7] || (a[7] == b[7]

&& (a[8] > ++b[8] || (a[8] == b[8] && (a[9] >
++b[9] || (a[9] == b[9] && (a[10] > ++b[10] || (

a[10] == b[10] && (a[11] > ++b[11] || (a[11] ==
b[11] && (a[12] > ++b[12] || (a[12] == b[12] &&
(a[13] > ++b[13] || (a[13] == b[13] && (a[14]

> ++b[14] || (a[14] == b[14] && (a[15] > ++b[15]
|| (a[15] == b[15]))))))))))))))

))))))))))))))))) ;
596 }
597

598 gettimeofday(&end_time, NULL) ;
599 free (a) ; free (b) ;
600 i f (counter == 0)
601 printf (" Test completed with an entire counter ’s cycle

.\n") ;
602

603 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

604 }
605

A.1 cpu tests source code 57

606 double runTestThreeBitwise_128B (uint64_t
input_total_iterations , int key_level) {

607 const uint64_t total_iterations = input_total_iterations
/ 2 ;

608 uint64_t *a = (uint64_t *) calloc (16 , sizeof (uint64_t)
) ;

609 uint64_t *b = (uint64_t *) calloc (16 , sizeof (uint64_t)
) ;

610 uint64_t counter = 1 ;
611

612 i f (key_level == 1)
613 memset(b + 8 , UCHAR_MAX, sizeof (uint64_t) * 8) ;
614 else i f (key_level == 2)
615 memset(b, UCHAR_MAX, sizeof (uint64_t) * 16) ;
616

617 struct timeval start_time ;
618 struct timeval end_time ;
619

620 gettimeofday(&start_time , NULL) ;
621

622 for (uint64_t k = 0 ; k < total_iterations ; k++) {
623 counter += a[0] > b[0] | (a[0] == b[0]−− & (a[1] > b

[1] | (a[1] == b[1]−− & (a[2] > b[2] | (a[2] ==
b[2]−− & (a[3] > b[3] | (a[3] == b[3]−− & (a

[4] > b[4] | (a[4] == b[4]−− & (a[5] > b[5] | (
a[5] == b[5]−− & (a[6] > b[6] | (a[6] == b[6]−−
& (a[7] > b[7] | (a[7] == b[7]−− & (a[8] > b[8]

| (a[8] == b[8]−− & (a[9] > b[9] | (a[9] == b
[9]−− & (a[10] > b[10] | (a[10] == b[10]−− & (a
[11] > b[11] | (a[11] == b[11]−− & (a[12] > b
[12] | (a[12] == b[12]−− & (a[13] > b[13] | (a
[13] == b[13]−− & (a[14] > b[14] | (a[14] == b
[14]−− & (a[15] > b[15] | (a[15] == b[15]−−))

))
)))) ;

624 counter += a[0] > ++b[0] | (a[0] == b[0] & (a[1] >
++b[1] | (a[1] == b[1] & (a[2] > ++b[2] | (a[2]

== b[2] & (a[3] > ++b[3] | (a[3] == b[3] & (a
[4] > ++b[4] | (a[4] == b[4] & (a[5] > ++b[5] |
(a[5] == b[5] & (a[6] > ++b[6] | (a[6] == b[6]
& (a[7] > ++b[7] | (a[7] == b[7] & (a[8] > ++b
[8] | (a[8] == b[8] & (a[9] > ++b[9] | (a[9] ==
b[9] & (a[10] > ++b[10] | (a[10] == b[10] & (a

[11] > ++b[11] | (a[11] == b[11] & (a[12] > ++b
[12] | (a[12] == b[12] & (a[13] > ++b[13] | (a
[13] == b[13] & (a[14] > ++b[14] | (a[14] == b
[14] & (a[15] > ++b[15] | (a[15] == b[15])))

))
))) ;

625 }
626

627 gettimeofday(&end_time, NULL) ;

58 source code

628 free (a) ; free (b) ;
629 i f (counter == 0)
630 printf ("Test completed with an entire counter ’ s cycle

.\n") ;
631

632 return (double) ((end_time . tv_sec − start_time .
tv_sec) * 1000000 + (end_time . tv_usec − start_time
. tv_usec)) / 1000000;

633 }
634

635

636 void printBooleanExpression(int num_bytes, int
current_index) {

637 int max_index = num_bytes − 1 ;
638 i f (current_index <= max_index)
639 {
640 printf ("a_%dB[%d] > b_%dB[%d] || (a_%dB[%d] == b_%dB

[%d] " , num_bytes, current_index , num_bytes,
current_index , num_bytes, current_index , num_bytes
, current_index) ;

641 i f (current_index < max_index)
642 printf("&& (") ;
643 printBooleanExpression(num_bytes, current_index + 1) ;
644 i f (current_index != max_index)
645 printf (")) ") ;
646 else
647 printf (") ") ;
648 i f (current_index == 0)
649 printf (" ; ") ;
650 }
651 }
652

653 void printUnsignedInt64Arrays(int total_elements ,
uint64_t *array1 , uint64_t *array2) {

654 printf ("\nArray 1 = ") ;
655 for (int i = 0 ; i < total_elements ; i++)
656 printf ("%ju " , array1 [i]) ;
657 printf ("\nArray 2 = ") ;
658 for (int i = 0 ; i < total_elements ; i++)
659 printf ("%ju " , array2 [i]) ;
660 printf ("\n") ;
661 }
662

� �

A.2 main memory and cache tests source code 59

a.2 main memory and cache tests source code

Listing 3: Extract from memory and cache tests source code� �
1

2 #include "pre−tuner_mem.h"
3

4 int main(int argc, char** argv) {

5

6 using namespace std;

7

8 printf("\n### Starting MEM TESTS ###\n");
9

10 createOutputFiles();

11

12 if (RUN_MEM_READ_TEST) {

13

14 printf("\nStarting test 1 (memory reads) . I t will
allocate and array of size %lu MiB and i t will\
nperform %lu reads of %lu B each for a total of %
lu MiB.\n",

15 (long unsigned) (SIZE) / (1024*1024), (long

unsigned) NUM_ACCESSES, (long unsigned) sizeof

(elem_t), (long unsigned) ((NUM_ACCESSES) *
sizeof(elem_t) / (1024*1024)));

16

17 runFoolOperations(FOOL_OPERATIONS_AMOUNT_MB);

18 double bandwidth = runMemoryReadTest();

19 printf("\nRead bandwith: %0.02f MiB/s\n", bandwidth);

20

21 //cut: save results code here

22 }

23

24

25 if (RUN_MEM_WRITE_TEST) {

26

27 printf("\nStarting test 2 (memory writes) . I t will
allocate and array of size %lu MiB and i t will\
nperform %lu writes of %lu B each for a total of %
lu MiB.\n",

28 (long unsigned) (SIZE) / (1024*1024), (long

unsigned) NUM_ACCESSES, (long unsigned) sizeof

(elem_t), (long unsigned) ((NUM_ACCESSES) *
sizeof(elem_t) / (1024*1024)));

29

30 runFoolOperations(FOOL_OPERATIONS_AMOUNT_MB);

31 double bandwidth = runMemoryWriteTest();

32 printf("\nWrite bandwith: %0.02f MiB/s\n", bandwidth)

;

33

34 //cut: save results code here

60 source code

35

36 }

37

38 if (RUN_CACHE_SIZE_TEST) {

39

40 printf("\nStarting test 3 (cache size) .\n\n");
41

42 #ifdef _SC_LEVEL2_CACHE_SIZE

43 long sysconf_L2_size = sysconf(_SC_LEVEL2_CACHE_SIZE);

44 if (sysconf_L2_size != -1) {

45 printf("L2 Cache size using sysconf () : %lu KiB\n",
sysconf_L2_size / 1024);

46 //cut: save results code here

47 }

48 #endif

49

50 #ifdef _SC_LEVEL3_CACHE_SIZE

51 long sysconf_L3_size = sysconf(_SC_LEVEL3_CACHE_SIZE);

52 if (sysconf_L3_size != -1) {

53 printf("L3 Cache size using sysconf () : %lu KiB\n",
sysconf_L3_size / 1024);

54 //cut: save results code here

55 }

56 #endif

57

58 int proc_cache_size = getCacheSizeFromProc_kb();

59 if (proc_cache_size != -1) {

60 printf("Cache size using cpuinfo: %d KiB\n\n",
proc_cache_size);

61 //cut: save results code here

62 }

63 else

64 printf("\n");
65

66 /* This array contains bandwidth values with input

from 12 KiB (index 0) to 49152 KiB (index 12).

67 Element at index i has input value which is the

double of element at index i-1.

68 We ’ l l find the two largest bandwith variations and
estimate cache size as the

69 two−power between two contiguous−element of this
array . */

70

71 double bandwidths[13] ;
72 int counter = 0 ;
73

74 for (uint64_t size = 8 * (1<<10) ; size <= 32 *
(1<<20) ; size *= 2) {

75

76 runFoolOperations(FOOL_OPERATIONS_AMOUNT_MB) ;
77 double bandwidth = runCacheSizeTest(size) ;

A.2 main memory and cache tests source code 61

78 printf ("Read bandwith with input of %ju KiB: %0.00f
MiB/s\n" , size / (1<<10) , bandwidth) ;

79 //cut: save results code here
80

81 runFoolOperations(FOOL_OPERATIONS_AMOUNT_MB) ;
82 bandwidth = runCacheSizeTest(size + size / 2) ;
83 //cut: save results code here
84 bandwidths[counter++] = bandwidth;
85 }
86

87 int caches [2] ;
88 estimateCacheSize(bandwidths, caches) ;
89

90 printf ("\nFirst estimated cache size: %d KiB\nSecond
estimated cache size: %d KiB\n" , caches [1] , caches
[0]) ;

91 //cut: save results code here
92

93 /* Actually psort needs the size of the cache nearest
to 512 KiB */

94 char string [128] ;
95 i f (abs((512 − caches [0])) < abs((512 − caches [1])))
96 sprintf (string , "cache−size: %d" , caches [0]) ;
97 else
98 sprintf (string , "cache−size: %d" , caches [1]) ;
99 writeStringToFile (" psortvalues " , string) ;

100

101 }
102 printf ("\n") ;
103 }
104

105 double runMemoryReadTest() {
106

107 uint64_t checksum = 0 ;
108 uint64_t v_pos = 0 ;
109

110 struct timeval start_time ;
111 struct timeval end_time ;
112

113 /* allocate the vector */
114 elem_t *v;
115 const uint64_t n_elem = ((SIZE) / sizeof (elem_t)) ;
116 i f (posix_memalign((void**) &v, sizeof (elem_t) ,

sizeof (elem_t) * n_elem) != 0) {
117 perror ("Cannot allocate array ") ;
118 exit (2) ;
119 }
120

121 /* f i l l the vector */
122 for (uint64_t i = 0 ; i < n_elem; i++) {
123 for (uint64_t j = 0 ; j < STRUCT_SIZE; j++)
124 v[i] . content [j] = i + j + 1 ;

62 source code

125 }
126

127 gettimeofday(&start_time , NULL) ;
128

129 for (uint64_t i = 0 ; i < NUM_ACCESSES; i += 1) {
130 for (uint64_t k = 0 ; k < STRUCT_SIZE; k++)
131 checksum += v[v_pos] . content [k] ;
132 v_pos = (v_pos + STEP) % n_elem;
133 }
134

135 gettimeofday(&end_time, NULL) ;
136

137 double time = (double) ((end_time . tv_sec −
start_time . tv_sec) * 1000000 + (end_time . tv_usec −

start_time . tv_usec)) / 1000000;
138 double band = ((((NUM_ACCESSES) * sizeof (elem_t)

) / time)) / (1024*1024) ; // in MiB/s
139

140 free (v) ;
141

142 i f (checksum == 0) // just try to avoid compiler ’s
trick forcing it to use counter

143 printf(" Checksum: %d", (int) checksum);

144

145 return band;

146 }

147

148 double runMemoryWriteTest() {

149

150 uint64_t checksum = 0;

151 uint64_t v_pos = 0;

152

153 struct timeval start_time;

154 struct timeval end_time;

155

156 /* allocate the vector */

157 elem_t *v;

158 const uint64_t n_elem = ((SIZE) / sizeof(elem_t));

159 if (posix_memalign((void**) &v, sizeof(elem_t) ,

sizeof(elem_t) * n_elem) != 0) {

160 perror("Cannot allocate array");
161 exit(2);

162 }

163

164 /* fill the vector */

165 for (uint64_t i = 0; i < n_elem; i++) {

166 for (uint64_t j = 0; j < STRUCT_SIZE; j++)

167 v[i].content[j] = i + j + 1;

168 }

169

170 gettimeofday(&start_time, NULL);

171

A.2 main memory and cache tests source code 63

172 for (uint64_t i = 0; i < NUM_ACCESSES; i++) {

173 for (uint64_t k = 0; k < STRUCT_SIZE; k+= 1)

174 v[v_pos].content[k] = i;

175 v_pos = (v_pos + STEP) % n_elem;

176 }

177

178 gettimeofday(&end_time, NULL);

179

180 double time = (double) ((end_time.tv_sec -

start_time.tv_sec) * 1000000 + (end_time.tv_usec -

start_time.tv_usec)) / 1000000;

181 double band = ((((NUM_ACCESSES) * sizeof(elem_t)

) / time)) / (1024*1024); // in MiB/s

182

183 checksum = v[v_pos].content[v_pos & (STRUCT_SIZE - 1

)];

184

185 free(v);

186

187 if (checksum == 0) // just try to avoid compiler ’ s
trick forcing i t to use counter

188 printf (" Checksum: %d" , (int) checksum) ;
189

190 return band;
191 }
192

193 double runCacheSizeTest(uint64_t size) {
194

195 uint64_t checksum = 0 ;
196 uint64_t v_pos = 0 ;
197

198 struct timeval start_time ;
199 struct timeval end_time ;
200

201 // allocate the vector
202 elem_t *v;
203 const uint64_t n_elem = (size / sizeof (elem_t)) ;
204 i f (posix_memalign((void**) &v, sizeof (elem_t) ,

sizeof (elem_t) * n_elem) != 0) {
205 perror ("Cannot allocate array ") ;
206 exit (2) ;
207 }
208

209 // f i l l the vector
210 for (uint64_t i = 0 ; i < n_elem; i++) {
211 for (uint64_t j = 0 ; j < STRUCT_SIZE; j++)
212 v[i] . content [j] = i + j + 1 ;
213 }
214

215 gettimeofday(&start_time , NULL) ;
216

217 for (uint64_t i = 0 ; i < NUM_ACCESSES; i += 1) {

64 source code

218 for (uint64_t k = 0 ; k < STRUCT_SIZE; k++)
219 checksum += v[v_pos] . content [k] ;
220 v_pos = (v_pos + STEP) % n_elem;
221 }
222

223 gettimeofday(&end_time, NULL) ;
224

225 double time = (double) ((end_time . tv_sec −
start_time . tv_sec) * 1000000 + (end_time . tv_usec −

start_time . tv_usec)) / 1000000;
226 double band = ((((NUM_ACCESSES) * sizeof (elem_t)

) / time)) / (1024*1024) ; // in MiB/s
227

228 free (v) ;
229

230 i f (checksum == 0) // just try to avoid compiler ’s
trick forcing it to use counter

231 printf(" Checksum: %d", (int) checksum);

232

233 return band;

234 }

235

236 int getCacheSizeFromProc_kb()

237 {

238 char line[512], buffer[32];

239 size_t column;

240 FILE *cpuinfo;

241

242 if (!(cpuinfo = fopen("/proc/cpuinfo", " r "))) {

243 perror("/proc/cpuinfo: fopen");
244 return -1;

245 }

246

247 while (fgets(line, sizeof(line), cpuinfo)) {

248 if (strstr(line, "cache size ")) {

249 column = strcspn(line, " : ");
250 strncpy(buffer, line + column + 1, sizeof(buffer))

;

251 fclose(cpuinfo);

252 return (int)strtol(buffer, NULL, 10);

253 }

254 }

255 fclose(cpuinfo);

256 return -1;

257 }

258

259 void estimateCacheSize(const double *bandwidths, int*
caches) {

260

261 /* Element at index i contains variation between

bandwidths at index i and i+1. */

262 double variation[12] = {0};

A.2 main memory and cache tests source code 65

263

264 for (int i = 0; i < 13; i++) {

265 variation[i] = (bandwidths[i] - bandwidths[i+1]) /

bandwidths[i];

266 if (variation[i] < 0) variation[i] *= (-1);

267 }

268

269 int maxIndex = 0;

270 int secondHigherIndex = 0;

271 double currentMax = 0;

272 double currentSecondHigher = 0;

273

274 /* Debug

275 printf("\n");
276 for (int i = 0; i < 13; i++) {

277 printf("bandwidths[%d] : %f\n", i, bandwidths[i]);

278 }

279 printf("\n");
280

281 printf("\n");
282 for (int i = 0; i < 12; i++) {

283 printf(" variation[%d] : %f\n", i, variation[i]);

284 }

285 printf("\n");*/
286

287 for (int i = 0; i < 12; i++) {

288 if (variation[i] > currentMax) {

289 maxIndex = i;

290 currentMax = variation[i];

291 }

292 }

293 for (int i = 0; i < 12; i++) {

294 if (variation[i] < currentMax && variation[i] >

currentSecondHigher && abs(maxIndex - i) > 2) {

295 secondHigherIndex = i;

296 currentSecondHigher = variation[i];

297 }

298 }

299

300 caches[0] = 1 << (maxIndex + 4); // 4 as offset because

first element is 12 KiB.

301 caches[1] = 1 << (secondHigherIndex + 4);

302 }

303

� �

66 source code

a.3 disk tests source code

Listing 4: Extract from disks tests source code� �
1

2 #include "pre−tuner_disks .h"
3

4 int main(int argc, const char *argv[]) {

5

6 printf("\n### Starting DISKS TESTS ###\n");
7

8 createOutputFiles();

9

10 if (RUN_SEQUENTIAL_RW_TEST) {

11 char *readFromFileName = new char[2048];

12 strcpy(readFromFileName, quotes(SEQ_INPUT_FILE));

13 char *writeToFileName = (char *) malloc(strlen(

readFromFileName) + 4);

14 strcpy(writeToFileName, readFromFileName);

15 strcat(writeToFileName, "_w");
16

17 printf("\nFirst Test: sequential write to %s and read
from %s . Max fi les ize is %d MiB.\n\n",
writeToFileName, readFromFileName,

SEQ_MAX_BLOCKSIZE_MB);

18

19 seqWriteToDisk(readFromFileName, SEQ_MAX_BLOCKSIZE_MB

* 1024 * 1024); // To be read

20

21 double prevSeqWriteBandwidth = 0;

22 double prevSeqReadBandwidth = 0;

23

24 for (size_t k = SEQ_MIN_BLOCKSIZE_B; k <= (size_t)

SEQ_MAX_BLOCKSIZE_MB * 1024 * 1024; k *=

SEQ_STEP_INCREMENT) {

25

26 double seqWriteBandwidth = 0;

27 double seqReadBandwidth = 0;

28

29 for (int i = 0; i < SEQ_NUM_TEST; i++) {

30 seqWriteBandwidth += seqWriteToDisk(

writeToFileName, k);

31 seqReadFromDisk(writeToFileName, k);

32 seqReadBandwidth += seqReadFromDisk(

readFromFileName, k);

33 }

34

35 seqWriteBandwidth = seqWriteBandwidth / SEQ_NUM_TEST

;

36 seqReadBandwidth = seqReadBandwidth / SEQ_NUM_TEST;

37

A.3 disk tests source code 67

38 printf("Output size: %.03f MiB. Sequential write
bandwidth: %.02f MiB/s\n", ((double) k) /

(1024*1024) , seqWriteBandwidth);

39 printf("Input size: %.03f MiB. Sequential read
bandwidth: %.02f MiB/s\n", ((double) k) /

(1024*1024) , seqReadBandwidth);

40

41 // We need to know when the threshold of bandwidth

is small enough to stop the test

42 if (prevSeqWriteBandwidth > 0 &&

prevSeqReadBandwidth > 0) {

43 if (ABS(1 - seqWriteBandwidth /

prevSeqWriteBandwidth) <=

SEQ_PERCENT_THRESHOLD) {

44 if (ABS(1 - seqReadBandwidth /

prevSeqReadBandwidth) <=

SEQ_PERCENT_THRESHOLD) {

45 printf("\nWrite delta i s : %f\n", ABS(1 -

seqWriteBandwidth / prevSeqWriteBandwidth)

);

46 printf("Read delta i s : %f\n", ABS(1 -

seqReadBandwidth / prevSeqReadBandwidth))

;

47 //cut: save results code here

48 break;

49 }

50 }

51 }

52 prevSeqWriteBandwidth = seqWriteBandwidth;

53 prevSeqReadBandwidth = seqReadBandwidth;

54

55 }

56

57 if(remove(writeToFileName) != 0)

58 perror("Error deleting tmp writing f i l e ");

59 if(remove(readFromFileName) != 0)

60 perror("Error deleting tmp reading f i l e ");

61

62 }

63

64 if (RUN_RANDOM_READ_TEST) {

65

66 printf("\nSecond Test: random read from device %s of %
d KiB (in blocks of %d B) .\n\n", RANDOM_DEVICE,

RANDOM_SEQ_BLOCKSIZE_KB,

RANDOM_MINISEQ_BLOCKSIZE_B);

67

68 double randomReadAccessTime = randomReadFromDisk(

RANDOM_DEVICE, RANDOM_SEQ_BLOCKSIZE_KB);

69 printf("Random read access time: %.02f ms\n",
randomReadAccessTime);

70

68 source code

71 writeRecordToFile("human", "disks", 3, "Random read
bandwidth", randomReadAccessTime, -1, -1);

72 writeRecordToFile("machine", "2", 3, "1",
randomReadAccessTime, -1, -1);

73 }

74

75 printf("\n");
76

77 return 0;

78 }

79

80 double seqWriteToDisk(const char *pathname, size_t

blocksize) {

81 struct timeval start_time;

82 struct timeval end_time;

83

84 void *buffer;

85 if (posix_memalign(&buffer, blocksize, blocksize) != 0

) {

86 perror("Cannot allocate buffer ");
87 exit(2);

88 }

89 int file = open(pathname, O_CREAT|O_TRUNC|O_WRONLY|

O_DIRECT, S_IRWXU);

90

91 checkFileForErrors(file);

92

93 gettimeofday(&start_time, NULL);

94 int check = write(file, buffer, blocksize);

95 gettimeofday(&end_time, NULL);

96

97 if (check == -1) {

98 perror("Error writing data");
99 exit(3);

100 }

101

102 checkFileForErrors (close(file));

103 free(buffer);

104

105 double total_bandwidth = ((double) blocksize / (1<<20)

) / ((double) ((end_time.tv_sec - start_time.

tv_sec) * 1000000 + (end_time.tv_usec - start_time

.tv_usec)) / 1000000);

106 // printf(" Partial seq write: %.02f MiB/s\n",
total_bandwidth);

107 return total_bandwidth;

108 }

109

110 double seqReadFromDisk(const char *pathname, size_t

blocksize) {

111

112 struct timeval start_time;

A.3 disk tests source code 69

113 struct timeval end_time;

114

115 void *buffer;

116 if (posix_memalign(&buffer, blocksize, blocksize) != 0

) {

117 perror("Cannot allocate buffer ");
118 exit(2);

119 }

120 int file = open(pathname, O_RDONLY|O_DIRECT, S_IRWXU);

121

122 checkFileForErrors(file);

123

124 gettimeofday(&start_time, NULL);

125 int check = read(file, buffer, blocksize);

126 gettimeofday(&end_time, NULL);

127

128 if (check == -1) {

129 perror("Error reading data");
130 exit(3);

131 }

132

133 checkFileForErrors (close(file));

134 free(buffer);

135

136 double total_bandwidth = ((double) blocksize / (1<<20)

) / ((double) ((end_time.tv_sec - start_time.

tv_sec) * 1000000 + (end_time.tv_usec - start_time

.tv_usec)) / 1000000);

137 // printf(" Partial seq read: %.02f MiB/s\n",
total_bandwidth);

138 return total_bandwidth;

139 }

140

141

142 double randomReadFromDisk(const char *disk, size_t

blocksize_kb) {

143

144 struct timeval start_time;

145 struct timeval end_time;

146 const size_t miniblocksize = RANDOM_MINISEQ_BLOCKSIZE_B;

147 unsigned long iterations = (((unsigned long)

blocksize_kb) * 1024) / miniblocksize;

148

149 char *buffer = new char[miniblocksize];

150 unsigned long numberOfBlocks;

151 off64_t offset;

152

153 int file = open(disk, O_RDONLY);

154 checkFileForErrors(file);

155

156 if (ioctl(file, BLKGETSIZE, &numberOfBlocks) == -1) {

157 perror("Cannot get total block number from the disk");

70 source code

158 return -1;

159 }

160

161 unsigned int seed = (unsigned int) time(NULL);

162 srand(seed);

163

164 gettimeofday(&start_time, NULL);

165

166 for (int i = 0; i < iterations; i++) {

167 offset = (off64_t) numberOfBlocks * random() /

RAND_MAX;

168 if ((int) lseek64(file, miniblocksize * offset,

SEEK_SET) == -1) {

169 perror("Cannot locate next block");
170 return -1;

171 }

172 if (read(file, buffer, miniblocksize) < 0) {

173 perror("Cannot read data from disk");
174 return -1;

175 }

176 }

177

178 gettimeofday(&end_time, NULL);

179 free(buffer);

180 double total_time = (double) ((end_time.tv_sec -

start_time.tv_sec) * 1000000 + (end_time.tv_usec -

start_time.tv_usec)) / 1000000;

181 return (double) total_time / iterations * 1000;

182

183 }

184

185

186 void checkFileForErrors(int file) {

187 if (file == -1) {

188 perror("Error with test f i l e . Please check dir
permissions");

189 exit(1);

190 }

191 }

192

� �

B
E X E C U T I O N L O G

This appendix contains the execution log of the entire psort tuning
package installer starting from the hardware detection and ending
with a test execution of psort. The log has been recorded on an Intel
Core i7 920 (cache: L1 32 KiB, L2 256 KiB, L3 8192 KiB shared) with
6 GiB of RAM and a single 7200 RPM low-end disk. The package
performs, in order:

1. Estimation of hardware parameters.

2. Code tuning.

3. psort compiling.

4. Installation test.

Listing 5: Execution log on Intel Core i7 920� �
1 ----------- PSORT INSTALLER -----------

2

3 Using extreme pre-tuner level.

4 All TESTS will be performed (cpu, disks, mem).

5 Code-tuning level is 2 (medium).

6 Using different keys optimization.

7

8 --- STARTING HARDWARE DETECTION PROCESS

9

10 Compiling pre-tuner files...

11

12 g++ -O3 -funroll-loops -funsafe-loop-optimizations -

march=native -mtune=native -c -DOUTPUT_PATH=../ -

DPSORT_PATH=../psort/ misc/pre-tuner_functions.cpp -

o misc/pre-tuner_functions.o

13 g++ -O3 -funroll-loops -funsafe-loop-optimizations -

march=native -mtune=native -DCPU_PRETUNING_LEVEL=2

cpu-test/pre-tuner_cpu.cpp misc/pre-tuner_functions.

cpp -o cpu-test/pre-tuner_cpu

14 g++ -O3 -funroll-loops -funsafe-loop-optimizations -

march=native -mtune=native -DDISKS_PRETUNING_LEVEL=2

-DSEQ_INPUT_FILE=/tmp/tmp.data disks-test/pre-

tuner_disks.cpp misc/pre-tuner_functions.cpp -o

disks-test/pre-tuner_disks

15 g++ -O3 -funroll-loops -funsafe-loop-optimizations -

march=native -mtune=native -DMEM_PRETUNING_LEVEL=2

mem-test/pre-tuner_mem.cpp misc/pre-tuner_functions.

cpp -o mem-test/pre-tuner_mem

71

72 execution log

16

17 ### Starting CPU TESTS ###

18

19 Starting test 1 (pointers). It will be repeated 8 time(s

). Every test works with an array of size 4096 MiB.

20

21 Subscript notation total time: 12.889888

22 Offset notation total time: 12.897998

23

24 Starting test 2 (branch-merge). It will be repeated 8

time(s). Every test performs 3000000000 comparisons.

25

26 If-else approach total time: 18.111178

27 Boolean approach total time: 15.395987

28

29 Starting test 3 (logical-bitwise). Every test performs

300000000 comparisons.

30

31 4 Byte (equal key) Logical time: 0.283646

32 4 Byte (equal key) Bitwise time: 0.014774

33 8 Byte (equal key) Logical time: 0.283638

34 8 Byte (equal key) Bitwise time: 0.014776

35 16 Byte (equal key) Logical time: 0.532310

36 16 Byte (equal key) Bitwise time: 0.787882

37 32 Byte (equal key) Logical time: 0.925768

38 32 Byte (equal key) Bitwise time: 1.812099

39 64 Byte (equal key) Logical time: 1.536332

40 64 Byte (equal key) Bitwise time: 2.314368

41 128 Byte (equal key) Logical time: 3.112589

42 128 Byte (equal key) Bitwise time: 4.293876

43

44 4 Byte (half equal key) Logical time: 0.323030

45 4 Byte (half equal key) Bitwise time: 0.014774

46 8 Byte (half equal key) Logical time: 0.323070

47 8 Byte (half equal key) Bitwise time: 0.014774

48 16 Byte (half equal key) Logical time: 0.531815

49 16 Byte (half equal key) Bitwise time: 0.787880

50 32 Byte (half equal key) Logical time: 0.679554

51 32 Byte (half equal key) Bitwise time: 1.812540

52 64 Byte (half equal key) Logical time: 0.984845

53 64 Byte (half equal key) Bitwise time: 2.314361

54 128 Byte (half equal key) Logical time: 1.890885

55 128 Byte (half equal key) Bitwise time: 4.294293

56

57 4 Byte (total different key) Logical time: 0.323025

58 4 Byte (total different key) Bitwise time: 0.014774

59 8 Byte (total different key) Logical time: 0.323038

60 8 Byte (total different key) Bitwise time: 0.014810

61 16 Byte (total different key) Logical time: 0.226513

62 16 Byte (total different key) Bitwise time: 0.787860

63 32 Byte (total different key) Logical time: 0.216670

64 32 Byte (total different key) Bitwise time: 1.812091

execution log 73

65 64 Byte (total different key) Logical time: 0.236359

66 64 Byte (total different key) Bitwise time: 2.314354

67 128 Byte (total different key) Logical time: 0.196980

68 128 Byte (total different key) Bitwise time: 4.294296

69

70

71 ### Starting DISKS TESTS ###

72

73 First Test: sequential write to /tmp/tmp.data_w and read

from /tmp/tmp.data. Max filesize is 1024 MiB.

74

75 Output size: 8.000 MiB. Sequential write bandwidth:

72.31 MiB/s

76 Input size: 8.000 MiB. Sequential read bandwidth:

69.15 MiB/s

77 Output size: 16.000 MiB. Sequential write bandwidth:

84.91 MiB/s

78 Input size: 16.000 MiB. Sequential read bandwidth:

66.35 MiB/s

79 Output size: 32.000 MiB. Sequential write bandwidth:

75.54 MiB/s

80 Input size: 32.000 MiB. Sequential read bandwidth:

77.60 MiB/s

81 Output size: 64.000 MiB. Sequential write bandwidth:

77.89 MiB/s

82 Input size: 64.000 MiB. Sequential read bandwidth:

75.30 MiB/s

83

84 Write delta is: 0.031083

85 Read delta is: 0.029666

86

87 Second Test: random read from device /dev/sdc of 1024

KiB (in blocks of 512 B).

88

89 Random read access time: 12.71 ms (nominal seek time 8.5

ms)

90

91

92 ### Starting MEM TESTS ###

93

94 Starting test 1 (memory reads). It will allocate and

array of size 256 MiB and it will

95 perform 268435456 reads of 256 B each for a total of

65536 MiB.

96

97 Read bandwith: 6430.53 MiB/s

98

99 Starting test 2 (memory writes). It will allocate and

array of size 256 MiB and it will

100 perform 268435456 writes of 256 B each for a total of

65536 MiB.

101

74 execution log

102 Write bandwith: 7803.61 MiB/s

103

104 Starting test 3 (cache size).

105

106 L2 Cache size using sysconf(): 256 KiB

107 L3 Cache size using sysconf(): 8192 KiB

108 Cache size using cpuinfo: 8192 KiB

109

110 Read bandwith with input of 8 KiB: 20087 MiB/s

111 Read bandwith with input of 12 KiB: 20095 MiB/s

112 Read bandwith with input of 16 KiB: 20155 MiB/s

113 Read bandwith with input of 24 KiB: 20119 MiB/s

114 Read bandwith with input of 32 KiB: 20244 MiB/s

115 Read bandwith with input of 48 KiB: 19630 MiB/s

116 Read bandwith with input of 64 KiB: 19622 MiB/s

117 Read bandwith with input of 96 KiB: 19595 MiB/s

118 Read bandwith with input of 128 KiB: 18169 MiB/s

119 Read bandwith with input of 192 KiB: 19587 MiB/s

120 Read bandwith with input of 256 KiB: 17972 MiB/s

121 Read bandwith with input of 384 KiB: 16415 MiB/s

122 Read bandwith with input of 512 KiB: 15968 MiB/s

123 Read bandwith with input of 768 KiB: 15920 MiB/s

124 Read bandwith with input of 1024 KiB: 15865 MiB/s

125 Read bandwith with input of 1536 KiB: 15851 MiB/s

126 Read bandwith with input of 2048 KiB: 15846 MiB/s

127 Read bandwith with input of 3072 KiB: 14045 MiB/s

128 Read bandwith with input of 4096 KiB: 12138 MiB/s

129 Read bandwith with input of 6144 KiB: 10188 MiB/s

130 Read bandwith with input of 8192 KiB: 7590 MiB/s

131 Read bandwith with input of 12288 KiB: 6025 MiB/s

132 Read bandwith with input of 16384 KiB: 5973 MiB/s

133 Read bandwith with input of 24576 KiB: 5941 MiB/s

134 Read bandwith with input of 32768 KiB: 5914 MiB/s

135 Read bandwith with input of 49152 KiB: 5851 MiB/s

136

137 First estimated cache size: 256 KiB

138 Second estimated cache size: 8192 KiB

139

140

141 --- STARTING CODE-TUNING PROCESS

142

143 Pre-tuning exectued.

144 *** inlines.tun ***
145 *** Translating the tuning file to a C++ source code ***
146

147 *** cache_sorters.tun ***
148 *** Translating the tuning file to a C++ source code ***
149 *** Compiling the extended source code ***
150 *** Executing test and evaluating the best options ***
151 *** Generating the optimal source code ***
152 The details has been saved in tuningLog_cache_sorters.

txt

execution log 75

153

154

155 --- STARTING PSORT INSTALLATION

156

157 -- Configuring done

158 -- Generating done

159 -- Build files have been written to: /home/user/

Documents/PSORT-TUNED-PACKAGE/psort

160 Scanning dependencies of target libpsort

161 [18%] Building CXX object CMakeFiles/libpsort.dir/

functions.cpp.o

162 [27%] Building CXX object CMakeFiles/libpsort.dir/

kmerger.cpp.o

163 [36%] Building CXX object CMakeFiles/libpsort.dir/

stage_one.cpp.o

164 [45%] Building CXX object CMakeFiles/libpsort.dir/

stage_two.cpp.o

165 Linking CXX static library libpsort.a

166 [63%] Built target libpsort

167 Linking CXX executable psort

168 [72%] Built target psort

169 Scanning dependencies of target checksort

170 [81%] Building CXX object tools/CMakeFiles/checksort.dir

/checksort.cpp.o

171 Linking CXX executable checksort

172 [81%] Built target checksort

173 [90%] Built target generator

174 [100%] Built target psortInfoParser

175

176

177 --- TESTING PSORT INSTALLATION

178

179 Generating 1048576 sort test data records to file ../../

test-files/test-input.txt

180 Completed writing 1048576 Records to file ../../test-

files/test-input.txt

181

182 --- RUNNING PSORT

183

184 psort - yet another fast external sorter

185 -- Stage 1 --

186 input: 1048576 x (8,128,0) = 134217728 bytes

in 1 runs

187 block size: 16384 records (262144 bytes)

188 allocated blocks: 64

189 heap merger: 64 ways

190 I/O buffer size: read: 540672 recs (69206016 bytes);

write: 540672 recs (69206016 bytes)

191 memory used: 419430656

192 writing run 0 (1048576 records)

193 done.

194

76 execution log

195 --- CHECKING SORTED FILE

196

197 verbose level: 1

198 record length: 128

199 key length: 8

200 key offset: 0

201 tot records: 1048576

202 sort order: 1

203 buffer size: 85852160

204 E037B94C

205

206 --- END OF INSTALLATION PROCESS

207

� �

B I B L I O G R A P H Y

[1] CMake home page. http://www.cmake.org/, Available: Septem-
ber 2011.

[2] Codeworker home page. http://www.codeworker.org/, Avail-
able: September 2011.

[3] Matlab® home page. http://www.mathworks.com/products/matlab/,
Available: September 2011.

[4] Gnu Octave home page. http://www.gnu.org/software/octave/,
Available: September 2011.

[5] Wikipedia home page. http://www.wikipedia.org, Available:
September 2011.

[6] Sort Benchmark home page. http://sortbenchmark.org/, Avail-
able: September 2011.

[7] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for
hierarchical memory. Proceedings of the 19th ACM Symposium on
Theory of Computing (STOC), pages 305–314, 1987.

[8] P. Bertasi, M. Bressan, and E. Peserico. psort, yet another fast
stable external sorting software. Proceedings of the 8th Symposium
on Experimental Algorithms, 2009.

[9] D. Burger, Goodman J. R., and G. S. Sohi. Memory systems in The
Computer Science and Engineering Handbook. CRC Press, 1997.

[10] G. Di Liberto. psort: automated code tuning. Thesis paper -
University of Padua, July 2011.

[11] M. T. Goodrich and R. Tamassia. Data Structures and Algorithms
in Java. Addison-Wesley Professional, 2th edition, 2006.

[12] D. E. Knuth. Art of Computer Programming. Vol. 3: Sorting and
searching. Addison-Wesley Professional, 2th edition, 1998.

[13] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet.
Alphasort: A Cache-Sensitive Parallel External Sort. VLDB Journal
4, pages 603–627, 1995.

[14] L. Torvald. Re: O_direct question. Email, January 2007.

[15] J.D. Ullman. Principles of Database Systems. Computer Science
Press, Potomac (MD), 1983.

77

	Abstract
	Sommario
	Contents
	1 Introduction
	1.1 External sorting
	1.2 psort
	1.2.1 Stage one
	1.2.2 Stage two

	2 Hardware and critical parameters
	2.1 Finding critical parameters
	2.1.1 Bash script
	2.1.2 Parser
	2.1.3 Matlab script
	2.1.4 Critical parameters analysis

	2.2 Tuning and hardware detection
	2.2.1 psort tuning structure
	2.2.2 Existing hardware-detection software

	3 Experimental setup
	3.1 CPU tests
	3.1.1 Pointers notation
	3.1.2 If-else against boolean statements
	3.1.3 Logical against bitwise comparisons

	3.2 Cache tests
	3.3 Main memory tests
	3.4 Disk tests
	3.4.1 Sequential read and write
	3.4.2 Random read

	4 Results
	4.1 CPU tests
	4.2 Cache tests
	4.3 Main memory tests
	4.4 Disk tests

	5 Conclusions
	A Source code
	A.1 CPU tests source code
	A.2 Main memory and cache tests source code
	A.3 Disk tests source code

	B Execution log
	Bibliography

