
UNIVERSITÀ DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master Course in COMPUTER ENGINEERING

Master Course Thesis

Keyword Search in Relational Databases:

Architecture, Approaches and Considerations

Graduate:

Andrea CARRARO

Supervisor:

Prof. Maristella AGOSTI

Co-supervisor:

Dr. Gianmaria SILVELLO

February 21, 2017 Academic Year 2016-2017

Abstract

Through the years, keyword search established as the most common

and easy way to retrieve information from document collections and on

the web. However, a large amount of data stored in structured databases

cannot be accessed due to the difficulty of posing natural language queries

to structured sources such as relational databases. Many systems have been

proposed to apply keyword search to relational databases, in order to allow

them to be accessed and consulted by general users. This thesis investigates

the solutions presented in the literature and proposes a general pipeline

to design and develop keyword search systems. We survey the different

approaches proposed by the community focusing on the different elements

that compose the system pipeline: we analyze the data representation and

query processing components, the mechanisms to efficiently locate relevant

database elements and the algorithms to build the answers fulfilling the user

information need. Finally, we make the point on the evaluation of these

systems with reference to the well-established and widely used Cranfield

framework adopted in the Information Retrieval field.

i

Sommario

Negli ultimi anni il paradigma keyword search si è imposto in modo

importante nell’ambito del reperimento di informazioni in collezioni di

documenti e nel web, merito soprattutto della sua facilità d’uso. Nonostante

ciò, le informazioni contenute nei database strutturati, come ad esempio i

relazionali, ne rimangono escluse a causa dell’impossibilità di interrogare

queste sorgenti usando il linguaggio naturale. Questo lavoro di tesi

presenta le diverse soluzioni proposte in letteratura per applicare il

paradigma keyword search alle basi di dati relazionali, e vuole delineare

una architettura generale per definire e sviluppare questi sistemi. A tal

proposito, le soluzioni presentate dalla comunità scientifica sono state

analizzate focalizzandosi sui singoli componenti della pipeline di ricerca,

quali la rappresentazione dei dati, l’elaborazione della query, il processo di

abbinamento delle keyword con gli elementi del database, e la costruzione

delle risposte da fornire all’utente. Infine, si sono analizzati i processi di

valutazione sperimentale di questi sistemi, prendendo come riferimento

l’ormai consolidato paradigma di Cranfield, universalmente adottato nel

campo del Reperimento dell’Informazione.

iii

Contents

Abstract i

Sommario iii

1 Introduction 1

2 Background 7

2.1 The Relational Database Model 7

2.2 Relational Database as a Graph 9

2.2.1 Graph Definition . 10

2.2.2 Materializing RDBs as Graphs 11

2.3 Defining and Quering a Database 12

2.4 Keyword Search in Relation Database 14

2.4.1 Systems Architecture . 16

2.5 Systems Approaches . 18

2.5.1 Schema-based Approach 19

2.5.2 Graph-based Approach 26

v

vi Sommario

2.5.3 Virtual Document Approach 30

3 Data processing 33

3.1 Indexing . 35

3.1.1 Schema-based Approaches 35

3.1.2 Graph-based Approaches 38

3.1.3 Other . 39

3.2 RDBMSs Full-Text Capabilities 43

4 Query Processing and Matching 51

4.1 IR Query Analysis . 52

4.1.1 Stopwords Removal . 54

4.1.2 Stemming . 54

4.1.3 Query Expansion . 55

4.1.4 Segmentation and Phrases 57

4.2 Query Language and Semantics 58

4.3 Matching . 59

4.3.1 Matching Process Without Indexes 59

5 Answers Building 65

5.1 Schema-based Approach . 66

5.2 Graph-based Approach . 75

6 Evaluation 87

6.1 Evaluation in Information Retrieval 87

6.2 Evaluation in Relational Keyword Search 89

6.3 Effectiveness Evaluation . 96

6.4 Efficiency Evaluation . 99

vii

6.5 Toward a Reference Evaluation Framework 100

7 Conclusions 103

Bibliography 111

1
Introduction

In our modern and connected word, the keyword search paradigm

has become the preferential way to search and retrieve information on

documents collections or on the world wide web. The use of web search

engines like Google or Bing educate the users to pose natural language

queries defining their information need in a simple and straightforward

way, and to critically inspect the results page in order to search for an

answer fulfilling the need. Keyword search has been extensively studied

in the Information Retrieval (IR) field since the 1960s. The main focus of

IR is the study of the techniques and processes to implement and enhance

automated systems that, taking as input a keyword query, return a list of

documents, ranked by a measure of their relevance to the query according to

a certain ranking function. The documents are essentially “bags of words”,

unstructured document containing plain text to be indexed, and generally

do not contain links and connections among them, so that a document could

be seen as a logical information unit.

Typically, traditional keyword search paradigm has been applied only

to document collections, whereas a vast quantity of data are stored in

1

2 Chapter 1. Introduction

structured sources such as relational databases. These data are accessed

through Structured Query Language -SQL- queries, that present two critical

aspects:

• The user must pose queries using a specific syntax accordingly to the

query language adopted by the database management system.

• The user must know the schema of the underlying database in order to

issue a query .

The research on applying keyword search to the databases field has

the aim to design and develop systems providing the possibility to freely

and naturally access relational database contents by the means of natural

language. To apply a natural language query to a structured database means

to handle the query ambiguity, by providing all the answers for all the

possible query interpretations. For example, we assume the input of a

keyword search systems to be the query {Search, Hristidis}, posed to a

scientific literature database. The system does not have any clues about

the user information need, but it finds that the term “Search” appears in the

articles relation and the term “Hristidis” in the authors relation. The system

does not know if “Hristidis” is meant to be the name of the author of an

“article” containing the word “Search” or if in an article “Hristidis” is cited,

so it must return all the relative answers. It is then to the user to critically

chose the most pertinent results or to rephrase the query to obtain better

results. This approach is the contrary of the usual database consultation

where the user issues structured and not ambiguous queries which always

return the "right" and complete answers.

3

In the keyword search for structured data case, differently from what

happens in the IR field and for web searches, the answers returned are

not plain documents or webpages, but data structures built from the data

contained in the database, starting from the elements (relations, column or

tuples) that contains the query keywords, i.e. that match a keyword. These

answers present different structures, depending on the approach used by

the system.

Building these structures is a hard task in terms of algorithmic

complexity, so that most of the research in the keyword search area is

focused on enhancing the performance and efficiency. For this reason, as

described in [Yu et al., 2010], keyword search in databases is completely

different from traditional IR, because the first focuses on the interconnected

object structures, whereas the second focuses on the objects content.

In the last years, a lot of effort has been put to define new systems and

algorithms to efficiently implement keyword search in databases. Two main

approaches have been proposed in the literature, namely the schema- and

the graph-based approach. In the schema-based approach the database is

represented as a graph of connected database relations, while the graph-

based solutions model the nodes as tuples. In these approaches, the answers

are built on-the-fly after the query has been issued, connecting the nodes

containing the keywords by means of the graph edges, which represent the

primary/foreign key constraints of the database.

The poor time performances of the schema- and graph- based systems

encouraged the community to propose systems that precompute virtual

documents from the information stored in the database, in order to

efficiently retrieve these documents with traditional IR techniques. Even

4 Chapter 1. Introduction

if the virtual document approach did not received the same attention of the

other approaches, the solution to precompute part of the workload could be

a key-element for the future of this research area.

Apart form the specific approach, each keyword search system realizes

a general pipeline to compute and return to the user the appropriate results

• The system prepares the environment to allow the search, i.e. it builds

the indexes and the auxiliary structures needed for the algorithms.

• The system processes the keyword query and match each keyword (or

a subset of the keywords) to the database elements, such as relations,

columns or tuples.

• The matched elements must be connected in order to build meaningful

answers according to the query and the chosen approach, relying on

the appropriate graph representation.

This work aims to present to the reader a general and unified

architecture to design a keyword search in databases system. Following

the pipeline outlined above, we survey the different solutions proposed

to describe each architectural component, according to the peculiarities of

the different approaches. We analyze the advantages and disadvantages of

each solution, the time and memory consumption and the effectiveness of

the search, in order to provide a complete and objective overview on the

state-of-the-art of this field. The considerations that we make in this work

are meant to help a further research on this area, so that new systems and

approaches could be designed by taking into account the work already done

by the community and the issue arisen, overcoming the limits of the current

generation of keyword search systems.

5

In Chapter 2 we provide the reader with the necessary background to

understand the contents of the survey, unequivocally defining fundamental

concepts like databases and graphs.

In Chapter 3 we present the auxiliary structures designed to search

the databases. These structures are required for the matching process

and to enhance the performance of the systems in terms of computational

time. Generally, the systems proposed pre-compute indexes (similar to IR

inverted indexes) mapping each term contained in the database with the

locations of the term in the database schema or instance. The location-

granularity and the details of the indexes are specific to each system and

depend on the approach. Moreover, we surveyed the implementations

of other structures designed to lighten the computational-heavy search

algorithms.

In Chapter 4 we define the query as a set of keywords and present the

query processing techniques exploited by the keyword search systems to

enhance the performance and effectiveness of the retrieval. This techniques

are adapted from the IR and natural language processing field, and include

procedures like stemming and stopword removal. In this chapter we also

address the matching process, where the database elements probably related

to the query keywords are found. This process is usually realized using the

indexes.

In Chapter 5, we present the different techniques and algorithms used

to build the query answers. We survey the different structures proposed to

connect the nodes containing the query keywords, and the way they are

scored to output a ranked list. This kind of problems is generally hard

in terms of algorithmic complexity and highly depends on the approach

6 Chapter 1. Introduction

followed by the authors. In this chapter we analyze how the systems

evolved though the year, and outline the solutions that helped to improve

the performance both in terms of effectiveness and efficiency.

Chapter 6 do not address a specific component of the pipeline, but

presents the problem of evaluate the different systems. As for traditional

IR, keyword search in databases provides results affected by a certain

ambiguity and uncertainty, so that the evaluation in term of efficiency and

effectiveness of these systems is fundamental to the progress of the field.

Finally, we draw the conclusion of this thesis in Chapter 7 , and provide

some considerations about the future of this research area.

2
Background

2.1 The Relational Database Model

In this section the relational database (RDB) model is introduced. This

term refers to a specific data model with relations as data structures and

algebra for specifying queries. It was first formalized in [Codd, 1970] and

later improved and expanded by researchers in database theory.

Among all the data model proposed in literature, the relational model

is the most widely used, and the vast majority of current database

management systems (DBMS) is based on it [Park and Lee, 2011].

An example of relational database is provided in Figure 2.1: it represents

the data organization of a cinemas network show schedule. Intuitively, the

data is represented in tables where each row contains data about a specific

object or set of objects, and rows with uniform structure and intended

meaning are grouped into tables [Abiteboul et al., 1995].

A table in the RDB model is called relation, and it is defined by its own

7

8 Chapter 2. Background

Title Director Year

The Lord of the Rings Peter Jackson 2001

Gone Girl David Fincher 2014

Gravity Alfonso Cuaron 2013

Movie

Cinema Title Room Schedule

Lux Gone Girl A 9.15 PM

Lux Gone Girl B 8.00 PM

Aurora Gravity A 1.00 AM

Show

Cinema Room Capacity

Lux A 200

Lux B 150

Aurora A 160

Location

Figure 2.1. Example of relational database R = {Movie, Show,Location}.

name. A relation row is called tuple, t, while a column is called attribute, a.

Finally, U represents the set of all attributes of a relation.

A relation schema R is a relation name associated with its attributes: it

is possible to define R as R[U]. The arity n of a relation R represents the

number of attributes of a relation. In Figure 2.1 there are three relation

schemas, Movie[{Title, Director, Year}], Location[{Cinema, Room, Capacity}] and

Show[{Cinema, Title, Room, Schedule}].

A database schema is a non-empty finite set R of relation names, that could

be written R = {R1[U1], ..., Rn[Un]} to indicate the relation schemas in R. In

Figure 2.1 R = {Movie, Location, Show}.

A relation instance I = r(R) of a relation R[U] is a finite set of tuples with

2.2. Relational Database as a Graph 9

arity |U | = n. A database instance of database schema R is a mapping I with

domain R, such that I(R) is a relation over R for each R ∈ R.

If t is a tuple of a relation instance I and PK = (a1, a2, ...) is a set of

attributes such that t[PK] is the set of values of t, with reference to the

attributes PK, then PK is a primary key if ∀t1, t2 ∈ I, t1[PK] 6= t2[PK] 6= ∅.

In simple terms, a primary key is a set of attribute values that define

uniquely each tuple, so that two distinct tuples belonging to the same

relation instance cannot share the same primary key. Primary key in

Figure 2.1 are highlighted with bold font: In the Movie relation the Title

attribute is sufficient to describe a primary key (we suppose that there aren’t

movie with the same title), while in Location and Shows this more attributes

are needed.

A set of attributes FK = (b1, b2, ...) of a relation R1[U1] it’s called foreign

key with reference to relation R2[U2] with primary key PK = (b1, ..., bn) if

dom(ai) = dom(bi), 1 ≤ i ≤ n ∧ ∀t1 ∈ r(R1), t1[FK] = NULL ∨ ∃t2 ∈

r(R2) | t1[FK] = t2[PK]. Then, a foreign key is a set of attributes of a

table that refers to the primary key in another table, thus a foreign key

cannot present values that do not appear in the other table’s primary key. In

Figure 2.1 foreign key constraint are represented through arrows pointing

the referenced value.

2.2 Relational Database as a Graph

In many applications a relational database can be seen and materialized

as a graph. Before addressing this particular case, the formal definition of

graph is provided.

10 Chapter 2. Background

2.2.1 Graph Definition

An undirected graph is a pair G = (V,E), where V is a finite set of vertexes

and E ⊆ V × V is a set of edges connecting those vertexes. If u, v ∈ V are

vertexes of V and exists an edge between them, this undirected edge is defined

as (u, v) = (v, u).

In a directed graph Gd (also known as digraph) all the edges are directed,

then (u, v) 6= (v, u). It is always possible to transform an undirected

graph into a directed graph replacing each undirected edge (u, v) with two

opposite directed edges (u, v) and (v, u).

A directed path in Gd is a nonempty sequence pd = (v0, ..., vn) of vertexes

such that (vi, vi+1) ∈ E for each i ∈ [0, n− 1]. n is the length of the path.

An undirected path in G is a nonempty sequence pu = (v0, ..., vn) of

vertexes such that (vi, vi+1) ∈ E ∨ (vi+1, vi) ∈ E for each i ∈ [0, n− 1].

A cycle (directed or undirected) is a path p = (v0, ..., vn) where v0 = vn. A

graph is acyclic if it has no cycles.

Two vertexes u, v ∈ V are connected if there is an undirected path in G

from u to v, and they are strongly connected if there are directed paths from u

to v and from v to u.

The distance d(a, b) of two nodes a, b in a graph is the length of the

shortest path connecting a to b [d(a, b) = inf if a is not connected to b]. The

diameter of a graph G is the maximum finite distance between two nodes in

G.

The degree deg(v) of a node v is the number of edges incident to the

vertex. The in-degree deg−(v) is the number of incoming edges to the vertex

(in-edges), while the out-degree deg+(v) is the number of outgoing vertex (out-

edges). It follows that deg−(v) + deg+(v) = deg(v),∀v ∈ V .

2.2. Relational Database as a Graph 11

A tree is a graph that has one and only one vertex with no in-edges, called

the root, and no cycles. For each vertex v of a tree there is a unique proper

path from the root to v. A leaf of a tree is a vertex with no out-edges. A forest

is a disconnected graph that consists of a set of trees.

2.2.2 Materializing RDBs as Graphs

We formalize in this section two possible representation of a database

as a graph. This passage is necessary to present the approaches proposed

by the scientific community to respond to the keyword search in database

problem.

A database schema could be represented as a graph GS(Vs, Es) where

VS = {R1, ..., Rn} represents the set of schema relations of the database

and Es represents the set of edges between two relation schemas. V (GS)

and E(GS) denote respectively the set of nodes and the set of edges of a

graph GS . Given two relation schemas, Ri and Rj , there exists an edge in

the schema graph, from Rj to Ri, denoted Rj → Ri, if the primary key

defined on Ri is referenced by the foreign key defined on Rj . There may

exist multiple edges from Ri to Rj in GS if there are different foreign keys

defined on Rj referencing the primary key defined on Ri. In such a case,

Rj
X−→ Ri is used, where X is the foreign key attribute name.

Referring to instances of databases, an RDB can be viewed as data graph

GD(V,E) on the schema graph GS . Here, V (GD) represents a set of tuples,

andE(GD) represents a set of edges between tuples. There is at least an edge

between two tuples ti and tj in GD, if there exists a foreign key reference

12 Chapter 2. Background

from ti to tj in the RDB. The number of edges and their direction between

two tuples depends upon the requisite of the system that implement the

data graph.

In general, two tuples, ti and tj are reachable if there is a sequence of

connections between ti and tj in GD. The distance dist(ti, tj) between two

tuples ti and tj is defined as the minimum number of connections between

ti and tj .

2.3 Defining and Quering a Database

A database needs three theoretical different kind of language to be

managed:

• A data definition language (DDL) must be defined to specify the

database structure and dependencies, such as relations and foreign

key constraints.

• A data manipulation language (DML) is necessary to add and modify

data in the database.

• A data query language (DQL) allows the user to pose query to the

database

To support this three different functions, SQL has been proposed. It

is a standardized language that has established itself as the dominant

language to relational database. Different versions of SQL expanding the

functionality and the semantic of the standard one are implemented in

commercial Relational Database Management Systems (RDBMSs) like DB2,

2.3. Defining and Quering a Database 13

Oracle, MySQL or PostgreSQL. SQL was originally developed under the

name Sequel at the IBM San Jose Research Laboratory.

The basic building block of SQL queries is the select-from-where. If the

user wants to know the name of the director of the movie “Gone Girl” from

the database shown in Figure 2.1, s/he have to provide to the system the

following statement:

Listing 2.1. An SQL simple query, posed on RDB in Figure 2.1, corresponding to the

information need name of the director of the movie “Gone Girl”

SELECT Director

FROM Movie

WHERE Title='Gone Girl';

The DBMS will output all the cells with attribute name “Director” of

each tuples of the table “Movie” where the value of “Title” cell is “Gone

Girl”. SQL language is powerful and complete, but unfortunately this

completeness could be a drawback too, because to a non power user it is

denied to query the database. In addition do this, posing a complex query

to the database could be tricky even for an instructed user.

In the second example, referring again to Figure 2.1, we want to query

the system to know how large are the rooms in which “Gone Girl” is going

to play. This query require the user to identify all the tables storing relevant

information, then know how to join them, and finally build a syntactically

correct SQL query such as:

Listing 2.2. A complex SQL query pose to the database in Figure 2.1, corresponding to

the information need how large are the rooms in which “Gone Girl” is going to play

SELECT Movie.Cinema, Location.Room, Location.Capacity

14 Chapter 2. Background

FROM Movie INNER JOIN Show ON Movies.Title = Show.Title

INNER JOIN Location ON Shows.Cinema = Location.

Cinema

AND Shows.Room = Location.Room

WHERE Movie.Title='Gone Girl';

To achieve this goal, the JOIN operator (./ in relational algebra) has

been used: it is a clause that allows to combine one or more tables from a

database on one or more columns.

This operator is essential to keyword search schema-based approach,

because it allows to build the output relations from the tables retrieved

during matching process.

2.4 Keyword Search in Relation Database

Keyword search is the foremost approach for information searching

and in the last decades it has been extensively studied in the field of

Information Retrieval (IR) [Bergamaschi et al., 2013a]. It allows the user

to pose extremely intuitive queries, intended as an unstructured sets (or

ordered lists) of keywords defining her/his information need. The lack

of specification of unstructured queries is balanced by the “best match”

search paradigm, in which the system outputs a list of documents ordered

by some similarity ranking function with respect to the query. The user is

then invited to actively inspect the list, learn its content and possibly clarify

her/his information needs by tuning the queries for finding better suited

results.

Unfortunately, the keyword search model hardly adapts to structured

2.4. Keyword Search in Relation Database 15

data sources like relational databases, which are typically accessed through

structured queries as the above mentioned SQL. Structured queries are not

user-oriented, because it requires the user to both manage the language

syntax and know the structure of the data to be queried. Furthermore,

structured queries are issued assuming that a correct specification of the

user information need exists and that answers are perfect, i.e. they follow

the “exact match” search paradigm.

An example clarifying the intrinsic difficulty of querying a database has

been shown in Listing 2.2, while a simple keyword query Q = {Capacity Gone

Girl rooms} for the same information need (how large are the rooms in which

“Gone Girl” is going to play) could have been more easily posed.

The stumbling block to overcome when adapting keyword search to

databases is how to manage the differences between the information

organizations in traditional IR and RDBs. While in IR the logical

information unit is the document, there is not a equivalent concept in

databases: information is scattered across several relations and tuples, and

the possible interpretations of a keyword query correspond to the different

ways by which their respective tuples are connected. To achieve this goal,

several systems have been proposed in the last fifteen years, implementing

a plethora of approach and algorithms.

Across the different works, we outlines a common pipeline, with

recurring blocks composing it. This architecture is synthesized in Figure 2.2,

and consists of the following steps: (a) data processing, (b) query

processing, (c) element matching, and (d) answer structuring. It worth

noticing that not all the systems put the same importance to each step,

16 Chapter 2. Background

sometimes collapsing two or more block in the same process, according on

the focus of the work.

2.4.1 Systems Architecture

Data Processing The main purpose of this step is to explicitly define

how information data is handled and what kind of auxiliary structures

are needed to provide keyword search functionality. Information data

is initially stored in relational database instances, managed by DBMSs.

Generally, to be able to exploit them, data must be reorganized in the proper

graph representation, as defined in Section 2.5.

Moreover, auxiliary data structures similar to IR inverted indexes could

be implemented to provide an efficient way of matching keyword to

database element in the matching step.

Query processing In this process, the system analyze the query in order

to optimize the query for matching or provide a way to infer the intrinsic

meaning of the query. The majority of systems proposed do not pay

much attention to this component, or entrust it to the underlying RDBMS

functionality. Its minor role in the systems architecture reflects distance of

this systems to a practical implementation in commercial products.

Some authors, whose systems rely on semantic comprehension of the

query, use disambiguation and other techniques to infer the meaning

of the query and (a) better match keyword with the database elements

[Bergamaschi et al., 2011a,b] and (b) increase the effectiveness of the systems

[Demidova et al., 2010].

2.4. Keyword Search in Relation Database 17

Data
Processing

RDB

Index

User
Information
Need

DB
Graph

Element
Matching

Query
Processing

Answers
Building

Answers
List

Keyword
Query

Figure 2.2. A general keyword search in RDB system architecture.

18 Chapter 2. Background

Matching This step address the problem of matching keywords with the

appropriate database/graph element. To do it, the majority of systems

proposed exploits one ore more indexes, with several differences between

the various implementation. Generally it is a sort of inverted index

mapping, for each term, the location of the term at a certain granularity,

such as relations, columns or tuples. Some systems proposed do not exploit

any auxiliary structure to achieve matching purpose, relying on semantic

comprehension of the query and guessing the matching with the schema

attributes.

Answer structuring and ranking In this step, the query answers are

built, ranked and shown to the user. This step depends largely upon the

system approach and the ranking functions chosen. Unlike IR, the answers

typology could differ among the systems and approaches.

Ranking is crucial when searching in databases, both for effectiveness

and efficiency reasons. While the effectiveness reason is trivial, the

efficiency is related to the ability of output only the top-k answers, rather

then compute all the answers.

2.5 Systems Approaches

In the literature, most of the designs proposed so far follows two

main approaches: schema-based and graph-based. Both these approaches

materialize the database as a graph, exploiting the schema graph GS and

data graph GD representation respectively (as defined in Section 2.2.2).

Another approach, less applied than the others, propose to build virtual

2.5. Systems Approaches 19

documents from the information contained in the database, so that an

efficient IR-like retrieval process could be implemented. It worth noticing

that all the systems acts as a middleware upon the RDBMS, materializing

and managing the graphs and the relative auxiliary structures (if needed)

without altering or modifying the underling RDBMS. In Table 2.1 we

provide a list with the references to the principal systems proposed in this

survey, which peculiarities are exposed in their relative chapters.

2.5.1 Schema-based Approach

Schema-based approach models the database schema as a graph GS , so

that nodes are mapped to database relations and edges to relationships such

as foreign key-primary key dependencies.

The matching step generally exploits indexes to map keyword to

relations, then the obtained tables are used in the answers generation

process following this steps:

1. Building the schema of each possible answer (generally trees of

tuples), taking as input the matched element with the query keywords

and the graph GS . If there are more than one answer for a query, this

phase tries to find the schema for each one of them. Each schema is

ranked according to a certain function in order to provide an ordered

list of answers.

2. Possibly generate appropriate SQL queries for each answer, using

patterns applied to the obtained schema. The SQL queries are then

posed to the database in order to obtain final answer tables.

20 Chapter 2. Background

System Reference

DBXplorer [Agrawal et al., 2002]

DISCOVER [Hristidis and Papakonstantinou, 2002]

DISCOVER II - efficient [Hristidis et al., 2003]

PRECIS [Simitsis et al., 2007]

EFFECTIVE [Liu et al., 2006]

SPARK [Luo et al., 2008]

LABRADOR [Mesquita et al., 2007]

MeanKS [Kargar et al., 2014]

POWER [Qin et al., 2009]

SQAK [Tata and Lohman, 2008]

KEYMANTIC/KEYRY [Bergamaschi et al., 2011b,a]

BANKS [Bhalotia et al., 2002]

BANKS II - bidirectional [Kacholia et al., 2005]

BLINKS [He et al., 2007]

Golenberg et al. [Golenberg et al., 2008]

DPBF [Ding et al., 2007]

EASE [Li et al., 2008b]

STAR [Kasneci et al., 2009]

PruneDP [Li et al., 2016]

PACOKS [Lin et al., 2016]

Dalvi et al. [Dalvi et al., 2008]

EKSO [Su and Widom, 2005]

SAINT [Jianhua Feng et al., 2011]

Table 2.1. A list containing the references to the main works presented in this survey.

2.5. Systems Approaches 21

The schema-based approach has been first

formalized in DISCOVER [Hristidis and Papakonstantinou, 2002] and its

main structure has been adopted by later works. The authors model the

relational database as an undirected schema graph GS . To match keywords

to the database elements, they exploits the underlying DBMS full-text index

extension to build a master index and efficiently accomplish the task. They

introduce the Multi Total Join Networks of Tuples as final answers to result to

the user, which are trees interconnecting the relation tuples earlier matched

to the query keywords. MTJNTs must be total and minimal, so that each

network must contain all the query keywords (AND semantics) and do not

contains any useless vertex.

To build the MTJNTs, the system implement two different steps

• In candidate network generation, each possible tuple sets network

containing the query keywords (the candicate network) is built. This

algorithm is based on a breadth-first traversal of the schema graph

starting from the relations that contain the keywords.

• In candidate network evaluation, MTJNTs are built starting form

candidate networks. In order to do it efficiently, a greedy algorithm

that produces a near optimal execution plan has been proposed.

The candidate networks are built in order of increasing size; smaller

networks, containing fewer joins, are preferred. Results are ranked based

on the number of joins of the corresponding MTJNT, assuming that a smaller

tree is more relevant than a larger one. Each MTJNT is mapped to an SQL

statement that joins the tables as specified in the tree.

22 Chapter 2. Background

DBXplorer [Agrawal et al., 2002] provides an indexing structure, the

symbol table, which maps the query keywords to the relational entities,

without the need of any particular DBMS functionality. The symbol table

could handle different kind of schema element granularity, like column

level or cell level. DBXplorer results join tree, a simplified notion close to

the candidate networks of DISCOVER. The answer building process is quite

similar to that of DISCOVER, and both rank the tree with their number of

joins.

In DISCOVER II [Hristidis et al., 2003] the authors implement for the first

time state-of-the-art IR-knowledge to design the system. In continuation

with DISCOVER work, they adapt their earlier algorithm for candidate

network evaluation so that it results top-k MTJNTs for each candidate

network, exploiting a monotonic IR-like ranking function, and avoiding to

compute all the possible solutions. To do this, they proposed three different

algorithms. Their Sparse algorithm is an enhanced version of the DISCOVER

one that does not execute queries for non promising candidate networks.

The Global Pipelined algorithm progressively evaluates a small prefix of each

candidate network in order to retrieve only the top-k results, and hence, it

is more efficient for queries with a relatively large number of results. The

third algorithm is the Hybrid, that tries to estimate the expected number of

results for a query and chooses the best algorithm accordingly.

In PRECIS [Simitsis et al., 2007] the authors propose a system that does

not results a list of SQL queries, but generates a logical subset of the

original database that contains not only items directly related to the given

2.5. Systems Approaches 23

query terms but also items implicitly related to them in various ways. In

order to find the schema of the possible answers for a query, the logical

subset creation algorithm first extracts initial subgraphs from the schema

graph, each one corresponding to a different query interpretation. Then,

these interpretations are enriched in order to discover other information

that may be implicitly related to the query. This corresponds to expand

the initial subgraphs based on a set of constraints. The creation of the

initial subgraphs resembles the candidate network generation, but exploits

a best-first transversal instead of the breadth-first-transversal. To generate

the results, it uses an adaptation of the candidate evaluation algorithm of

DISCOVER.

Effective [Liu et al., 2006] has been the first work to address the

effectiveness issue instead of efficiency. They adapt the framework

proposed in [Hristidis and Papakonstantinou, 2002] to generate tuple trees

as answers for a given query, proposing a new ranking method that take

into consideration the structure of each tree. In addition, they recognized

two different kind of terms: one contained in text column, i.e. value

terms, and the other schema terms, contained in tables, column and database

name. They proposed a system to better rank queries that match schema

terms, exploiting a synonyms table and introducing schema-based document

frequency. Finally, they introduce the idea of phrase: they do not consider

keywords only as single terms, but they use term position information in the

columns (information stored in the inverted indexes) to infer which query

terms must be considered part of a phrase.

24 Chapter 2. Background

In SPARK [Luo et al., 2008; Yi Luo et al., 2011] the authors propose a new

non-monotonic ranking function to evaluate candidate network, modeling

the join tree of tuple as dynamic, query dependent virtual documents,

and ranking these documents with traditional-IR score. To provide top-k

answers exploiting a non-monotonic function, they introduced three new

retrieving algorithms, Skyline Sweeping, Block Pipeline and Tree Pipeline that

try to minimize database probes using several novel score upper bounding

functions.

In LABRADOR [Mesquita et al., 2007] the authors proposed a different

approach than DISCOVER, based on a probabilistic model. The system

tries to match the terms present in the initial unstructured query with

the attributes in the underlying database schema, thus producing a set of

candidate SQL queries. A Bayesian network model is deployed to calculate

a score value that expresses the likelihood of each candidate SQL query

corresponding to the original unstructured query. Therefore, only the top-

k SQL queries would be considered to be processed. The SQL queries

generated are as general as possible, and they can potentially retrieve large

sets of results. To deal with this, the system ranks the query results by using

a second Bayesian network model that evaluates the likelihood of a query

result satisfying the original unstructured query.

Another different approach has

been proposed with KEYMANTIC [Bergamaschi et al., 2011a]. The authors

deviate from DISCOVER approach to address the problem of retrieving data

without having a prior access to the database, so that no auxiliary structure

2.5. Systems Approaches 25

or inverted index could be built to do the matching between keywords and

database terms. They propose a technique to translate keyword queries into

SQL queries adapting the Munkres (Hungarian) algorithm [Bourgeois and

Lassalle, 1971], known to solve the assignment problem in polynomial time.

Having to provide the top-k best assignment, the algorithm is not stopped

after providing the best mapping. Furthermore, for each generation, the

weights used to do the assignment are dynamically updated in order to

take into consideration interdependencies of the different assignments. The

weights used to in the algorithm are computed taking in consideration the

whole dependencies between the query terms, assuming that the meaning

of each keyword is not independent from the meaning of the others.

KEYRY [Bergamaschi et al., 2011b] has an identical goal, i.e. implement

keyword search without an a-priori access to the database, but exploits

Hidden Markov Model for mapping user keywords into database terms. The

use of a HMM allows to model two important aspects of the searching

process: the order of the keywords in a query (this is represented by means

of the HMM transition probabilities) and the probabilities to associates

a keyword to different database terms (by means of the HMM emission

probabilities).

Power [Qin et al., 2009] demonstrate the feasibility of implementing

keyword search in databases without relying on an middleware solution.

It fully exploits the RDBMS in order to match data and build SQL queries

without any precomputing required, using only SQL to compute all the

interconnected tuple structures. The authors provides three different kind

of tuple structures as answers: (a) connected trees up to certain size (b)

26 Chapter 2. Background

sets of tuples reachable from a root tuple within a radius and (c) sets of

multi-center subgraphs within a radius. To compute all the connected trees,

it proposes an approach to prune tuples that do not participate in any

resulting connected trees, followed by query processing over the reduced

relations. To compute all multi-center subgraphs, it proposes a three-phase

reduction approach to effectively prune tuples from relations followed by

query processing over the reduced relations. Finally, it uses a similar

mechanism to compute all the multicenter subgraphs to process sets of

tuples that are reachable from a root tuple within a radius.

MeanKS [Kargar et al., 2014] has been designed to improve the efficiency

of the search exploiting the user interaction with the system. In particular,

it identifies the database entities that are potentially interesting to the user

based on the query keywords the user provides, exploiting full-text DBMS

capabilities, and allows the user to specify their interests through a user

interface. This associate to each keywords a role, allowing to avoid the

generation of unnecessary answers.

2.5.2 Graph-based Approach

The Graph-based approach models the database as a data graph GD,

in which nodes are mapped to tuples and edges to relationships between

tuples, such as primary key dependencies. Under this representation model,

an answer to a keyword query is represented by a set of connected subtrees

of GD containing all the keywords in its nodes. Building a tree that contains

at least one node for each query keyword and with minimal cost means

address the classical Steiner tree problem [Hwang and Richards, 1992], a

2.5. Systems Approaches 27

well-known NP-hard problem. Moreover, it must be noticed that the data

graph is orders of magnitude larger than the database schema graph, than to

execute a great number of joins to connect tuples containing the keywords

could present scalability issues.

Except from the data graph building and updating, the underlying

database (graph-based solutions act as middlewares upon the RDBMS) is

never accessed to provide the final solutions, differently from schema-based

in which the final tuples networks are mapped to SQL query possibly posed

to DBMS.

BANKS [Bhalotia et al., 2002] has been the fist system to adopt graph-

based approach: it materializes the data graph as a directed weighted graph

GD and performs the Backward Expanding search strategy to build the

answers: it define paths starting from each vertex containing a query

keyword, executing a Dijkstra’s single source shortest path algorithm for

each one of them. The idea is to find a common vertex from which a forward

path exists to at least one keyword node in the query. Such paths will define

a rooted directed tree with the common vertex as the root and the keyword

nodes as leaves . Answers are ranked using a notion of proximity coupled

with a notion of prestige of nodes based on in-links, similar to techniques

developed for Web search (i.e. PageRank [Brin and Page, 1998]).

Due to the scalability issues of graph-based solution exposed above,

Backward Expanding search performs poorly in case of a query keyword

matching a very large number of tuple nodes. For these reasons, the same

authors proposed in BANKS II [Kacholia et al., 2005] the Bi-directional

28 Chapter 2. Background

Expansion strategy, that improve Backward Expansion allowing forward

search from potential roots towards leaves. Moreover, to avoid the

BANKS bad performance in presence of high-degree nodes, the authors

implemented an heuristic of spreading activation which prioritizes nodes

with low degrees, and edges with low weights during the expansion of

iterators. However, the performance of both systems remains affected by

high-degree hubs.

BLINKS [He et al., 2007] is a bi-level indexing and query processing

scheme for top-k keyword search on graphs. BLINKS follows a search

strategy exploiting a bi-level index to prune and accelerate the search. The

two level index is designed to reduce the potentially large index space,

partitioning the data graph into blocks: The bi-level index stores summary

information at the block level to initiate and guide search among blocks, and

more detailed information for each block to accelerate search within blocks.

This approach allows to improve the performance at the cost of some space

occupation with respect to BANKS approach.

Unlike the approximate algorithms of BANKS and BLINKS, DPBF[Ding

et al., 2007] propose a dynamic programming solution with a best-first

strategy parameterized algorithm, able to find the optimal solution in

reasonable time when the number of keywords in the query is very

small. Its solution find the top-k optimal Group Steiner Tree Problem (and

consequentially Steiner Tree problem) with time complexity O(3ln+ 2l((l +

log n)n+m)) and space complexityO(2l×n), where l is the number of groups

2.5. Systems Approaches 29

(in our case l i keyword length) , m is the number of graph nodes and n is

the number of edges.

EASE [Li et al., 2008b] address the r-radius Steiner graph problem: known

that graphs with a larger diameter are not so meaningful and relevant to

queries the group Steiner tree problem, they propose to limit the size of

the search space to an acceptable amount. A graph index materializes the

information of the r-radius Steiner graph for maximal radius in advance

to efficiently compute the cost of the answer graph. When necessary, a

smaller radius graph can be reconstructed from the corresponding super-

graphs. Structural relevance (distance between tuples) and IR-style ranking

measures (TF-IDF) are used for ranking the answers. Other then structured

data, this research covers unstructured data and semi-structured data as

well.

[Kasneci et al., 2009] propose a approximation of the Steiner Tree problem,

and adapt it to top-k queries. In order to build a first interconnecting

tree, STAR relies on a similar strategy as BANKS, but, instead of running

single source shortest path iterators from each node of V , STAR runs

simple breadth-first-search iterators from each terminal. STAR may exploit

taxonomic information (when available) to quickly build a first tree, by

allowing the iterators to follow only taxonomic edges, i.e. edges labeled

by taxonomic relations (e.g. subClassOf). This way, STAR can quickly find

a taxonomic ancestor of all nodes from V. In a second phase, STAR aims at

improving the current tree iteratively by replacing certain paths in the tree

by new paths of lower weight from the underlying graph.

30 Chapter 2. Background

[Li et al., 2016] propose PruneDP, a progressive GST algorithm based

on DPBF: the algorithm works in rounds, reporting a sub-optimal and

feasible solution with smaller error guarantees in each round, until in the

last round the optimal solution is obtained. To speed up the algorithm,

they implemented an A∗-search strategy to select the most promising state

to expand and the unpromising states to be pruned.

PACOKS [Lin et al., 2016] exploits a progressive ant-colony-optimization-

based algorithm, for approximating the top-k Steiner trees problem, which

achieves the best answer in a step-by-step manner, through the cooperation

of large amounts of searches over time, instead of in an one-step manner

by a single search. This way, the high costs for finding the best answer are

shared among large amounts of searches, so that low cost and fast response

time for a single search is achieved.

2.5.3 Virtual Document Approach

This approach differs from the others two, because its systems are

designed to build virtual documents off line, so that the retrieval process

could be efficiently done. This approach is characterized by large memory

occupation and high efficiency, but the effectiveness from the user point of

view has never been proved.

EKSO [Su and Widom, 2005] proposes a system that crawl the database

in advance in order to provide text-objects, i.e. the structure connecting

a tuple t with all the others tuples connected by primary/foreign key

relationship, and virtual documents, i.e. the concatenations of the text-

objects attributes. Each virtual document, computed off line on, represents

2.5. Systems Approaches 31

a meaningful and integral information unit, so that the retrieval process can

be adapted from the IR field. In particular, they are indexed and retrieved

using DB2’s Net Search Extender.

A similar solutions is proposed SAINT [Jianhua Feng et al., 2011]. This

system represents the database as a graph GT , where nodes are tuple units

and edges are relations among them. A tuple units is first introduced in

[Li et al., 2008a] and follows the text-object definition of [Su and Widom,

2005]. Differently the solution proposed in [Jianhua Feng et al., 2011] allow

to search on GT , exploiting the connections between tuple units, outputting

graphs of tuple units if the systems evaluate that the answers to the query

resides in more than one tuple unit.

[Nandi and Jagadish, 2009] introduced the concept of Qunits, i.e. basic,

independent semantic unit of information in a database. Qunits are not

generated automatically, but must be built by someone who has a mental

maps of the underlying databases. It is important to notice that the qunits

building is then an subjective process, and this could eventually undermine

the effectiveness of the search. For this reason, the authors proposed

different possibilities to generate qunits, based on the database content, the

keyword query history or on external sources.

3
Data processing

In information retrieval the practice of building auxiliary structures to

improve the efficiency of search systems is well established. The inverted

index [Zobel and Moffat, 2006], for example, has always been a fundamental

and necessary element of nearly any information retrieval system since the

foundations of this research area.

Generally, an IR-style inverted index is a table reporting, for each term

of the document collection vocabulary, all the documents that contain the

term. When posing a query to the system, this index can efficiently report

the list of documents in which the keywords appear. Inverted indexes must

be built before the user interaction with the system, thus it is necessary to

have the possibility to access the underlying collection of document, and for

each insertion or removal of document, the index must be updated.

When it comes to keyword search in relational databases, some data

structures derived from the inverted index can be used to match keywords

and database instance or schema elements, but unfortunately it is not

possible to rank these matches and present them to the user in the

33

34 Chapter 3. Data processing

straightforward IR way. In IR, the logical information unit is represented

by the document, so that the information need expressed through the query

could be possibly fulfilled by the information contained in the document.

This is not the case of databases: due to the normalization property, logical

information units are scattered among different relations and tuples, so that

it is necessary, after retrieving them, to connect them and build appropriate

answers in order to fulfill the user information need. How these answers

are built is the main argument of Chapter 5, whereas the main focus of this

chapter is put on

• describing the auxiliary structures that allow to find the query-

relevant elements of the database, both in schema- and graph-based

systems

• provide a quick survey on the RDBMS functions that enable IR search

on the underling databases allowing to build indexes on the relations

columns, exploited by schema-based systems

In Chapter 2 the schema- and graph-based approaches have been

discussed. The theoretical differences between these two approaches begin

to materialize starting from the implementation of the graph in memory.

Resuming, schema-based approach considers the database as a schema

graph GS , while the graph-based models it as a data graph GD. This

differences lead to the following considerations:

• Schema-based systems rely on a simple and lightweight schema graph

without the need to update for each alteration on the database instance

and without worrying for space occupation issue. They exploit

3.1. Indexing 35

the database schema in order to connect matched elements during

retrieval process.

• Graph-based systems need to build a potentially large graph

connecting all the tuples of the database instance, say I. For

efficiency reasons, the resulting graph must be resident in memory.

Furthermore, the graph must be kept updated with I.

3.1 Indexing

As stated above, the task of an index is to efficiently match each

query keywords with the database elements (both schema and instance)

containing them. Indexes must be coherent with the approach used by the

system in which it is implemented, thus the location granularity, namely the

database location to which the keywords are mapped, may vary from an

implementation to another. Using an index is a transversal practice among

the approaches, therefore similarities can be found within schema-based

and graph-based approach.

3.1.1 Schema-based Approaches

In schema-based systems, the authors present several different index

designs, even if the solution proposed so far generally exploit the built-in

full-text indexing and retrieval functionality of modern DBMSs.

DBXplorer [Agrawal et al., 2002] has been one of the first keyword

search system to query databases. The authors implemented and compared

36 Chapter 3. Data processing

different symbol tables to establish their trade-offs. A symbol table is the

equivalent of an IR inverted index, i.e. a map storing information about

the location of words in the database at a given granularity, that can be

tuple or column, or even cell. They analyze the different implementations

evaluating three different factors: (a) space and time requirements, (b) effect

on keyword search performance, and (c) ease of maintenance. The authors

identified two interesting granularity levels: (a) column level granularity

(Pub-Col), where for every keyword the symbol table maintains the list of

all database columns that contain it, and (b) cell level granularity (Pub-Cell),

where for every keyword the symbol table maintains the list of database

cells that contain it.

Pub-Col symbol tables are usually much smaller than Pub-Cell

symbol tables, because if a keyword occurs multiple times in a column

(corresponding to different rows), no extra information needs to be recorded

in Pub-Col. Moreover, Pub-col granularity requires less time when building

the index.

Row level granularity has also been analysed, but it has been

discouraged by the authors. It shows little advantage over the cell-level-

one, while the relative subsequent answer building process is harder due to

the absence of column information in the index.

The authors finally concluded that a column-level index must be

preferred over cell-level because of its size, ease of update and performance,

especially if database column indexes are exploited.

SQAK (SQL Aggregates with Keywords) [Tata and Lohman, 2008]

exploits an inverted index based on column text to retrieve keyword-

3.1. Indexing 37

data match. The authors choose Apache Lucene1 to address the indexing

task, specifically avoiding the use of DBMSs proprietary tools and easily

implement SQAK over any commercial product.

In DISCOVER [Hristidis and Papakonstantinou, 2002] the authors

explicitly exploited Oracle 9i Text extension to build their master index: first

of all, they build an index on any database attribute, then all the indexes are

sequentially inspected and combined to provide the master index. Given

a keyword ki, the master index task is to output the basic tuple sets Rki
j ,

j = 1, ..., n where Rj is a relation of the schema, that are used in the answer

structuring step. In [Hristidis et al., 2003] the master index is substituted by

an IR index: while the building process remains the same, it stores useful

information necessary to the system’s new IR-style ranking function as tf ,

i.e. the term frequency of a word w in an attribute ai, or df , i.e. the number of

tuples in ai’s relation with word w in this attribute.

As for DISCOVER, many following systems [Hristidis

and Papakonstantinou, 2002; Hristidis et al., 2003; Liu et al., 2006; Luo

et al., 2007; Yi Luo et al., 2011; Simitsis et al., 2007] exploit indexes obtained

through RDBMS feature. Major RDBMS vendors developed extensions

that enable full-text indexing over text attributes in order to allow IR-

style search on a single column. The management systems full-text search

capabilities are implemented outside of SQL standardization, so that any

vendor implemented them in a different way. For an overview of the main

systems, refer to Section 3.2

1http://lucene.apache.org/core/

http://lucene.apache.org/core/

38 Chapter 3. Data processing

3.1.2 Graph-based Approaches

In graph-based systems the situation is less varied. BANKS and BANKS

II [Bhalotia et al., 2002; Kacholia et al., 2005] exploit a simple inverted index

that maps from keywords to table name/RowID pair, namely to a node

of the graph. This approach is the only one adopted by all graph-based

systems proposed.

The need for graph-based systems to keep the entire data graph GD

in memory could be seen as a limitation of this approach, but as stated

in BANKS [Bhalotia et al., 2002] it is not unreasonable. The in-memory

representation of the graph do not store any information about the relative

tuples but only the RowIDs, while the index mapping keywords to RowIDs

can be disk resident. In [Kacholia et al., 2005] the authors quantify the space

occupation of a graph index in 16× |V |+ 8× |E| bytes (basically a byte per

node), than even large graphs with millions of nodes and edges could fit in

tens of megabytes of central memory.

These theoretical assumptions contradict the systematic evaluation

exposed in [Coffman and Weaver, 2014], where the graph-based systems

hardly manage query posed to larger database because of space occupation

problem (see Chapter 6

In [Dalvi et al., 2008] the possibility of graph with billions of vertex (i.e.

the Web graph) that do not fit in memory has been addressed: the authors

propose a multi-granular graph representation technique, which combines a

condensed in-memory version of the graph with parts of the detailed graph

3.1. Indexing 39

in in-memory cache. The multi-granular approach is based on the 2-stage

graph representation in which a Graph G(V,E) is partitioned as following:

• The nodes, after clustering process, are grouped in supernodes, so that

each supernode contains a subset of the innernode v ∈ V

• The superedges between the supernodes are constructed as follows: if

there is at least one edge from an innernode of supernode s1 to an

innernode of supernode s2, then there exists a superedge from s1 to s2.

The multi-granular solution enhance the 2-stage one allowing a

supernode to be present either in expanded form, i.e., all its innernodes along

with their adjacency lists are present in the cache, either in unexpanded form,

i.e., its innernodes are not in the cache.

Since supernodes and innernodes coexist in the multigranular graph,

several types of edges can be present, linking among them inner and super

nodes. That solution avoids virtual memory approach, that potentially lead

to poor performance due to the high number of I/O operations necessary

for retrieving purpose.

3.1.3 Other

Virtual documents This particular approach propose to extract virtual

documents from the databases that could be indexed and processed using

traditional IR-approaches.

To achieve this, EKSO [Su and Widom, 2005] materialize the text-

objects, i.e. the structure connecting a tuple t with all the others tuples

connected by primary/foreign key relationship, and the virtual documents,

i.e. the concatenations of the text-objects attributes. The indexing and

40 Chapter 3. Data processing

retrieving process are done on the virtual documents and entrusted to the

DB2’2 Net Search Extender. This solution presents critical scalability issue,

because experimental evaluation proved that indexes and structures of this

approach could exceeded the size of the original database between two and

eight times.

[Li et al., 2008a] introduced in literature the concept of tuple units, very

close to the EKSO’s text object, which definition is provided below.

Definition 3.1.1 (Tuple Unit). Given a database D with n connected relations,

R1, R2..., Rn, for each tuple ti in table Ri, let Rti denote the table with the same

primary/foreign keys as Ri, having a single tuple ti. The joined result of table Rti

on other tables Rj(i 6= j) based on foreign keys is called a tupleset. Given two tuple

sets t1 and t2, if any tuple in t2 is contained in t1, we say that t1 covers t2. A tuple

set is called a tuple unit if it is not covered by any tuple set.

In [Jianhua Feng et al., 2011], the idea of tuple units have been

expanded, designing a system able to find connections between tuple units.

They proposed a graph GT , where nodes are tuple units and edges are

relationships between two tuple units. Given two tuple units, if they share

the same value on any primary key attribute, they will be related, and thus

connected. A term is said to be indirectly contained in a tuple unit ti if there

is a path between ti and a tuple unit tj that directly contains it. To allow an

efficiently search, several structures are pre computed:

• The above mentioned graph GT , with all the tuple units. This graph,

with reference to GD, is much smaller because it compacts group of

tuples into the same node.

3.1. Indexing 41

• A minimal distance matrix, containing the shortest paths from each

node of the graph to the others

• A pivotal matrix, where each row is a tuple unit and each column is a

keyword. In each cell, the matrix contains the tuple units that directly

contains the term.

• A score matrix, where each row is a tuple unit and each column is a

keyword, that contains a score computed taking into account IR score

(tf-idf) and the minimum distance from the nodes containing the term

and the other connected nodes.

• The SKSA or KPSA index.

The Single-Keyword-based Structure-Aware index is similar to traditional

inverted index, but maintains both the directed and undirected tuple units

that contain each term, with the relative scores. Differently, the entries of the

Keyword-Pair-based Structure Aware index are keyword pairs 〈ki, kj〉 and

contain a precomputed mutual score that would eventually be computed

during the retrieval process. This final solution performs better in terms of

speed, at the cost of more memory occupation.

LABRADOR In LABRADOR [Mesquita et al., 2007] the authors exploit

Bayesian networks to infer the meaning of the user query, mapping

each keyword to an attribute of the schema. To obtain this result, they

use an inverted index that, for each term on the list, maps to a pair

〈attribute_id, frequency〉where attribute_id represents the table and column

in which the term can be found, and frequency represents how many times

the term occurs in the text values of the attribute.

42 Chapter 3. Data processing

No-Index Approach A different approach that avoids the use of indexes

has been proposed in [Bergamaschi et al., 2011a,b]. They addressed the

problem of not having an a-priori access to the database, so that no auxiliary

structure nor index can be build. It is not a remote case: examples of

such situations include databases on the hidden web and sources in data

integration systems. The solution proposed exploits the inter-dependencies

among the query keywords, assuming that the meaning of each keywords

depends upon the meaning of the others, so that they collectively represent

the information need that the user had in mind when posing the query.

Than, using some auxiliary external knowledge, the system can infer the

semantics that could represent those of the keyword query, mapping each

keyword to schema terms, than output the best combination according to

their ranking functions.

Conclusion

The variety of indexing implementations and auxiliary structures

presented in this chapter are representative of the fragmented and various

state of the current keyword search in database field. With such a scenario,

to identify which implementation performs better is a difficult and critical

task for the future.

It worth noticing that each system adapts the indexing and matching

steps with regards to its own peculiarity, so that they cannot be treated as

independent components but as integrated part of a complex system.

3.2. RDBMSs Full-Text Capabilities 43

3.2 RDBMSs Full-Text Capabilities

Modern Relational Database Management Systems provide to the user

some functions to query a database using keywords.

Even if the standard SQL operator LIKE is already implemented in

all RDBMSs, it lacks in efficiency and capabilities, because it only allows

the search in a defined column, scanning each tuple to highlight a hit

without exploiting any precomputed result or index. Then, to implement

IR-like search process on one or more column, the vendor introduced in

their DBMSs query languge some new operators like CONTAINS or @@

(depending on the on the systems) to address the problem.

The new full-text extensions allows to first build an index on a set

a column, than efficiently search among these columns using keywords.

Moreover, these systems implement IR-style process like stemming, stoplist

or query expansion to improve the effectiveness of the research. The various

solutions proposed by the main RDBMSs commercial vendors are below

exposed.

Oracle Text Oracle Text2 is an extension to Oracle Database that provides

specialized text indexes for traditional full text retrieval applications, and

can filter and extract content from different document formats, like plain

text, PDF or Word documents. Available from Oracle 9i, it is a rebrand of

Oracle InterMedia extension.

Oracle Text provide three different type of index (CONTEXT, CTXCAT,

CTXRULE) with different goals.

2http://www.oracle.com/technetwork/testcontent/index-098492.html

http://www.oracle.com/technetwork/testcontent/index-098492.html

44 Chapter 3. Data processing

• Standard index type for traditional full-text retrieval over documents

and web pages. The CONTEXT index type provides a rich set of text

search capabilities for finding the content you need, without returning

pages of spurious results.

• Catalog index type - the first text index designed specifically for

eBusiness catalogs. The CTXCAT catalog index type provides flexible

searching and sorting at web-speed.

• Classification index type for building classification or routing

applications. The CTXRULE index type is created on a table of queries,

where the queries define the classification or routing criteria.

To perform a keyword search on a database, the standard CONTEXT

index is employed. To create an index, the following SQL statement must

be provided (PARAMETERS clause specifies its optional features):

CREATE INDEX index_name ON Table(Column)

INDEXTYPE IS CTXSYS.CONTEXT

PARAMETERS (....);

Without specifying the parameters, the systems creates a default

index which specification are described on the relative documentation.

Oracle Text implements advanced lexer customization, based on the user

preferences and the database peculiarities. It includes stopword removal

feature, case insensitive capability and language specific functionality. To

query such a CONTEXT index, the SQL clause CONTAINS is provided,

allowing the system to output list of tuples ordered by the similarity SCORE

computed between the keyword query and the text values on the indexed

column.

3.2. RDBMSs Full-Text Capabilities 45

SELECT SCORE(1), Column1

FROM Table

WHERE CONTAINS(Column1, 'k1 k2 k3', 1) > 0;

MySQL Full-Text Search MySQL Full-Text Search allows to create an

index from the words of the enabled full-text search column and performs

searches on this index. It is available from MySQL 5.6 with InnoDB or

MyISAM storage engine3.

MySQL supports indexing and re-indexing data automatically for a full-

text search enabled column whose data type is CHAR, VARCHAR or TEXT.

Defining a full-text index on an existing table is straightforward:

ALTER TABLE Table

ADD FULLTEXT(Column1,Column2..);

or

CREATE FULLTEXT INDEX Table

ON Movies(Column1,Column2..):

To query the system, the MATCH-AGAINST function has been

introduced. MySQl provides three different type of search:

• Natural Language is the default option: it allows to query the system in

an easy and direct way.

• Boolean Mode introduces boolean operators (+,−, <,>, (,),∼, ∗, ””)

and allows to perform a search based on complex queries, suitable

for experienced users.

3http://www.mysqltutorial.org/mysql-full-text-search.aspx

http://www.mysqltutorial.org/mysql-full-text-search.aspx

46 Chapter 3. Data processing

• Query Expansion is used to widen the search result of the full-text

searches based on automatic relevance feedback. A search is then

composed of three steps in which (a) the full-text search engine looks

for all rows that match the search query, (b) it checks all rows in

the search result and finds the relevant words, (c) it performs a

search again but based on the relevant words instead of the original

keywords provided by the users.

The following examples provide a general query in MySQL:

SELECT Column1, Column2

FROM Table

WHERE MATCH(Column1) AGAINST('k1 k2 k3'[mode selection]);

Unfortunately, MySQL full-text search is quite hostile to changes of the

retrieving system: the different pipeline steps cannot be modify or fine-

tuned by the user during run time, while some little variable changes could

be applied at server startup time.

DB2 Text Search The IBM solution4 supports plain text, HTML and XML

formats.

The syntax to create an index is pretty similar to that of MySQL, except

for the explicit format definition :

CREATE INDEX Schema.Index

FOR TEXT

ON Table(Column1, column2..):

The query syntax exploits the CONTAINS() function, in which Words

or phrases can be combined with Boolean operators (AND, OR, NOT) and

4www.ibm.com/developerworks/data/tutorials/dm-0810shettar/

www.ibm.com/developerworks/data/tutorials/dm-0810shettar/

3.2. RDBMSs Full-Text Capabilities 47

masked with wildcards (?, *) to limit or extend the search scope. The

CONTAINS function results 1 if a tuple match the query. An example of

DB2 keyword full-text query is provided below.

SELECT Column1, Column2

FROM Table

WHERE CONTAINS(Column1, 'k1 k2 k3') = 1

DB2 Text Search automatically uses stemmed forms in the search, along

with others IR expedient .

SQL Server Full-Text Search From Microsoft SQL Server 20085 it is

possible to use indexing and keyword query on a database columns. These

columns can have any of the following data types: char, varchar, nchar,

nvarchar, text, ntext, image, xml, or varbinary(max). Each full-text index

indexes one or more columns from the table, and each column can use a

specific natural language.

The queries allowed can search for any of the following:

• One or more specific words or phrases (simple term)

• A word or a phrase where the words begin with specified text (prefix

term)

• Inflectional forms of a specific word (generation term)

• A word or phrase close to another word or phrase (proximity term)

• Synonymous forms of a specific word (thesaurus)

• Words or phrases using weighted values (weighted term)

5https://msdn.microsoft.com/en-us/library/ms142571.aspx

https://msdn.microsoft.com/en-us/library/ms142571.aspx

48 Chapter 3. Data processing

To achieve this, Microsoft SQL Server provide support for language-

specific components like stemmers, stoplists, thesaurus files and filters,

completely customizable by the database administrator.

The following statement is used to create and index with SQL Server,

where in square brackets is to possible to adapt the different components:

CREATE FULLTEXT INDEX

ON table_name(column1 [...], column1 [...])

To pose the query, the systems provide two different predicates,

CONTAINS and FREETEXT:

• CONTAINS must be used for precise or fuzzy matches to single words

and phrases, the proximity of words within a certain distance of one

another, or weighted matches. Some boolean operators are supported.

• FREETEXT must be used for matching the meaning, but not the exact

wording, of specified words, phrases or sentences.

The final query is by now quite familiar (in this example the function

FREETEXT has been preferred):

SELECT Column1, Column2

FROM Table

WHERE FREETEXT(Column1, 'k1 k2 k3');

PostgreSQL Full Text Search PostgreSQL supports since version 8.3 two

kind of indexes, namely GiST and GIN, even if it is possible to text searching

without prior indexing by sequentially fetch each tuples. The two kind of

index are the following:

3.2. RDBMSs Full-Text Capabilities 49

• Generalized Search Tree index - GiST - represents each document

with a n-bit fixed length signature, hashing each word into a single

bit in an n-bit string and than do OR operation together. This lossy

algorithm may produce false match because the same signature could

be generated by different documents, and this eventuality must be

addressed by fetching the table records to resolve the false matches.

• Generalized Inverted Index - GIN - are not lossy but their performance

depends logarithmically on the number of unique words.

Due to the fetching process, GiST indexes are generally three time slower

than GIN ones, while the latter are two-to-three time larger than GiST

indexes, and slower to build and update.

To build an index, simply define the table/column pair and the index

typology:

CREATE INDEX index

ON Table

USING gist(Column);

PostegreSQL allows fine-grained control over how documents and

queries are normalized, being able to have control over all the index

preprocessing steps. In PostgreSQL the query is referred as tsquery, while

a document, i.e. a text-value cell, as tsvector. The sintax to pose a query

is quite different from the other solution proposed by competitors, and bit

more complicated: the @@ operator is necessary to match a keyword query

tsquery into a tsvector.

SELECT Column1, Column2

FROM Table

WHERE to_tsvector(Column1) @@ to_tsquery('k1 && k2');

4
Query Processing and Matching

Keyword search has become very popular to retrieve information on the

web due to its efficiency and ease of use because the user do not have to be

educated on a specific query language, but can express his/her information

need with ease using natural language. We define a query as follows:

Definition 4.0.1 (Query). A query Q = {k1....kn} is defined as a set of keywords

ki given by the user and defining his information need.

For a given query Q, the system must provide an answer or a list of

possible answers aiming to fill the information need.

Aim of the keyword search system is to provide to the user a list of

possible answers aiming to fill the information need expressed through

a natural language query Q, overcoming the query inherently ambiguity.

Although the definition of query is the same when searching in a document

collection or a database, the output largely differs, because answers are built

exploiting the structure of the database. Two kinds of possible queries are

distinguished in [Guha et al., 2003]: navigational searches, where the user

provides the search engine with a phrase or a combination of words which

51

52 Chapter 4. Query Processing and Matching

he/she expects to find in the documents, and research searches, where the

user provides the search engine with a phrase denoting an object he/she is

trying to gather information about. Both IR and database keyword search

systems address the first type of query.

Natural language queries are intrinsically ambiguous, thus each term

could refer to multiple database elements. The process to mach each

keyword to an appropriate element presents three critic aspects:

• The database content (schema or tuples) must be known in some way

• Each keyword must actively contribute to define the user information

need

• The eventuality that multiple matches for the same query occur must

be managed

The first point reflects the concepts exposed in Chapter 2 and Chapter 3

when the schema graph GS and a data graph GD database representations

have been introduced, along with the auxiliary structures needed to

accomplish the search task. Instead, the second and third aspects are the

main focus of this chapter.

4.1 IR Query Analysis

In traditional information retrieval, a lot of work has been done to

propose and improve query analysis techniques [van Rijsberben, 1979; Croft

et al., 2009] to enhance both the efficiency and effectiveness of the search;

whereas, when searching in a database, the community lacks of accuracy

4.1. IR Query Analysis 53

and clarity when describing how the queries are handled. This behavior

could have two different reasons: (a) the main focus of the papers in

literature is put on the algorithms building up the final answers structures,

(b) database researchers underestimate the role of the query processing

components, accustomed to the rigid syntax of structured language.

Generally the systems proposed in literature exploit exact matching

between the keyword and the database elements, thus the queries are

assumed to be composed only by term denoting an element of interest to

the user, without any stop-words or not essential terms such as redundant

terms, conjunctions and propositions.

In a typical IR systems indexing pipeline, the query undergoes the same

processing applied to any document in the collection, given that queries

and documents are considered both homogeneous unstructured "bags of

words". Generally, this pipeline include (a) tokenization, (b) stop-words

removal, (c) stemming, (d) possibly some kind of terms expansion and (e)

decompounding and phrases building. They can be seen as independent

blocks of a chain, and can be implemented or not in any IR system.

Due to the structured nature of database information, as we have seen in

Chapter 2 the implementation of these steps for both query and data is not

straightforward as for traditional IR, but depends on the chosen keyword

search approach and on system peculiarities.

In the following we analyze the IR pipeline from a database viewpoint,

inspecting one by one the component listed above.

54 Chapter 4. Query Processing and Matching

4.1.1 Stopwords Removal

Stopwords removal allows to discard any word that do not contribute to

increase and determine the information content of a document or query.

Stopwords are usually defined as functional words, like prepositions,

pronouns, conjunctions, and articles, but are not limited to this classes.

Generally stoplists are exploited to determine which words should be

discarded. The relevance of a word in a collection is determined statistically:

following the work of H.P. Luhn [van Rijsberben, 1979] the resolving power

of significant words depends on the frequency of the term in the collection

(or in the document); then, a term that appears few or too much times

provide a little to none contribute to the document information.

In the majority of schema-based systems the RDBMSs full-text search

capabilities are exploited to index the database columns and execute the

matching (see Chapter 3). The stopword removal process is then entrusted

to the database management system. Generally, as for Oracle or SQL

Server, it is possible to define a custom stoplist and other implementation

preferences, although any paper in literature exploit this possibility.

In graph-based systems stopword removal, as for the others query

processing techniques, is never mentioned. In fact, the graph-based works

mainly focus on the efficiency of the structuring process, without giving to

much attention to the effectiveness issue.

4.1.2 Stemming

Stemming is the process where the variant word forms are mapped

to their base form, namely the stem [Singh and Gupta, 2016]. After this

4.1. IR Query Analysis 55

process, words like write, writer, writing could be substituted by their base

form writ. Stemming is applied both to the query and the documents,

allowing to have integrity between terms: effectiveness of the retrieval is

this way increased, and considering the reduction of the dictionary’s size,

the efficiency is improved, too.

For systems that relies in RDBMs full-text functionality, the situation is

the same as for the stopword removal in Section 4.1.1, thus the stemming

process depends on the characteristics and setup of the underlying database

system manager. Graph-based systems generally do not address the

problem.

In [Agrawal et al., 2002] the authors conjecture the application of the

stemming process on their system, along with other matching capabilities,

such as synonyms or fuzzy matches, but do not implement any of them.

4.1.3 Query Expansion

As stated in [Furnas et al., 1987], the most critical language issue for

retrieval effectiveness is the term mismatch problem, better known as

vocabulary problem: the indexers and the users do often not use the same

words to express the same concept. This problem manifests in two different

aspects:

• Synonymy refers to different words with the same or similar

meanings, such as ’tv’ and ’television’ (it decreases recall))

• Polysemy refers to the same word with different meanings, such as

’java’ (it decreases precision)

56 Chapter 4. Query Processing and Matching

One of the most usual techniques is to expand the original query with

other words that best capture the actual user intent, or that produce a more

useful query [Carpineto and Romano, 2012]: this is called automatic query

expansion (or just query expansion) and has been developed to increase the

effectiveness or IR systems since 1960s. Query expansion, is a category of

techniques introduced to increase the number of possible matches between

keywords and indexed elements, usually growing recall and decreasing

precision.

To the best of our knowledge, query expansion has never been addressed

directly in keyword search in databases, even though a similar approach

can be found in [Liu et al., 2006], although not directly applied to the query

terms.

In [Liu et al., 2006] the authors define two different kind of database

terms: schema terms, i.e. the relation, attribute and domain names, and value

terms, i.e. the words appearing in the columns. Schema terms usually do not

occur in text values, so that potential relevant match are ignored. To avoid

this, the schema terms (and not the query keyword) are expanded though

external knowledge to include synonyms and increase the probability of

relevant matching. A similar approach is proposed in SQAK [Tata and

Lohman, 2008].

In the keyword search in relational database field, some researchers [Tata

and Lohman, 2008; Zeng et al., 2016] have put effort on implementing

aggregate queries (SQL queries containing aggregate functions like

sum, count, avg, max, min...) in unstructured queries. The

systems offering this possibility need to find a reference among the query

4.1. IR Query Analysis 57

terms to the aggregate relative function and group-by clause. This matching

is possible by searching for the exact term in the query or by exploiting a list

of synonyms.

4.1.4 Segmentation and Phrases

Generally, when referring to a keyword, we mean one single word,

useful to define the user information need. This definition could be relaxed

introducing keywords made by several words. This kind of keywords

are called phrases. For example, if the user wants to know who directed

the movie "The Lord of the Rings" searching on the database provided

in Figure 2.1 on page 8, a possible query posed to the system could be

Q = {“Director”, “The Lord of the Rings”}where the movie name is treated

as one single keyword. Even if research in IR has shown that phrase-

based search can actually improve effectiveness [Liu et al., 2004], not all the

systems proposed to search in databases can handle phrase-based query.

[Liu et al., 2006] proposed a system that in the inverted index stores, for

each word, its position within each cell in which it appears: if the terms of

a sub-query P ⊆ Q, P = {ki, ki+1, ..kj}, where i < j, appear in column D,

and ki−1 and kj+1, if they exist and belong to Q, do not appear in an adjacent

location to ki and kj respectively, then the system defines P as a phrase in

D, and treats it like a normal keyword when computing ranking functions.

Thus the system can automatically infer which keywords belong to the

same phrase without the explicit help of the user. The authors designed

the ranking functions to give more importance to a phrase keyword, with

respect to simple keywords.

On the contrary to [Liu et al., 2006], SPARK [Luo et al., 2007, 2008; Yi Luo

58 Chapter 4. Query Processing and Matching

et al., 2011] allows the user to indicate which terms belong to a phrase by

explicitly quoting a phrase.

4.2 Query Language and Semantics

The first systems, both schema and graph based, proposed in the

literature manage a limited query language to search the database. They

generally implement conjunctive keyword semantics (boolean AND) and

do not provide the user with wildcards and functional operators. For this

reason these systems present to the user only structures containing all the

query keywords. In the subsequent systems, query languages have been

improved, allowing the user to pose more complex and complete queries.

Schema based systems [Hristidis et al., 2003] introduced the OR

semantics in schema based systems, by allowing them to output tuple trees

not necessary containing all the keywords.

SPARK system [Luo et al., 2007, 2008; Yi Luo et al., 2011] sets the OR

semantics as default (same choice of [Liu et al., 2006], which authors state

to allow a more flexible result ranking). Moreover, it provides the user with

different operators like− or + to avoid or consider a keyword, quotes (‘ ’) to

define phrase (see Section 4.1.4) or wildcards ∗ or . to define any character

sequence with or without null sequence, respectively. [Simitsis et al., 2007]

allows the user to explicitly use AND, OR, NOT operator to define the

inclusion/exclusion of each single term in the query.

4.3. Matching 59

Graph-based systems To the best of our knowledge, all graph-based

systems proposed so far are designed to support only boolean AND

semantics, without any addition to the query language. It must be noticed

that this is not due to any practical impedance but to the fact that their focus

is put on the algorithm efficiency rather than on query expressiveness.

4.3 Matching

The matching process describes the steps required to find any possible

match between a query keyword and a database element. In the systems

which use inverted index-like structures, this process is straightforward and

efficient: for each query keyword the index provides the list of the elements

that contain it.

The systems not relying on indexes, such as [Bergamaschi et al., 2011a,b]

exploit a different approach by trying to infer all the possible meanings of

the query. This approach is described in the next section.

4.3.1 Matching Process Without Indexes

The main reason for not exploiting indexes for the matching process is

to avoid the necessity of having an a-priori access to the database content.

Possible scenarios where this could be helpful include the on-line access of

databases through web interface, or the sources in information integration

systems operating behind wrappers with specific query capabilities. This

case has been addressed by Bergamaschi et al. in [Bergamaschi et al.,

2011a,b] with two different approaches.

To do the matching, the systems must understand the intrinsic meaning

60 Chapter 4. Query Processing and Matching

of the query and, as far as possible, manage the different misinterpretations.

In order to accomplish this task, these systems see a query as an ordered

list of keywords, instead of an unordered set, relying on the facts that

the order of keywords is important and correlated keywords are typically

close [Kumar and Tomkins, 2009]. Another crucial element is that the

only knowledge about the database these systems need is the schema graph

GS . Eventually, the matching process leads to map each keyword with a

vocabulary term, i.e. the set of all relation names, their domain names and

their attribute names. These maps are called configurations.

Definition 4.3.1 (Configuration). A configuration C of a keyword query Q on

a database R is an injective map from the keywords in Q to database terms in the

vocabulary of R.

There are three reasons behind the configuration injective propriety:

1. each keyword cannot have more than one meaning in the same

configuration, i.e., it is mapped to only one database term

2. two keywords cannot be mapped to the same database term in a

configuration, since overspecified queries are only a small fraction of

the queries that are typically met in practice [Kumar and Tomkins,

2009]

3. every keyword is relevant to the database content, i.e., keywords

always have a correspondent database term (query has been pre-

filtered)

Based on this definition, the matching problem could be seen as finding

the top-k configuration, with reference to specified weights and ranking

4.3. Matching 61

function. The two works proposed by Bergamaschi et al. differs on the

process leading to define the various configurations.

In [Bergamaschi et al., 2010, 2011a] the authors proposed an approach

where weights are computed to map each keyword to a schema element. In

particular, they propose two different kind of weights:

• An intrinsic weight measures the likelihood of the fact that the

semantics of the keyword is the same of the one of the database term,

if considered in isolation from the mappings of all the other keywords

in the query. To compute the intrinsic weights, the authors exploit

techniques based on structural and lexical knowledge extracted from

the data source, or based on external knowledge, e.g., ontologies,

vocabularies, domain, etc.

• A contextual weight is used to measure the same likelihood but

considering the mappings of the remaining query keywords. This is

motivated by the fact that the assignment of a keyword to a database

term may increase or decrease the likelihood that another keyword

corresponds to a certain database term.

After computing these weights, the authors adapted the Hungarian

(Munkres) algorithm [Bourgeois and Lassalle, 1971] to generate the

best configurations, allowing the system to take into consideration

interdependencies of different assignments.

Differently, in [Bergamaschi et al., 2011b] the authors model the matching

function as a sequential process where the order is determined by the

keyword ordering in the query. In each step of the process, a single

62 Chapter 4. Query Processing and Matching

Figure 4.1. Configurations building process from [Bergamaschi et al., 2011a]

4.3. Matching 63

keyword is matched against a database term, taking into account the result

of the previous keyword matches in the sequence. This process has a finite

number of steps, equal to the query length, and it is stochastic, since the

matching between a keyword and a database term is not deterministic. In

fact, the same keyword can have different meanings in different queries and

hence being matched with different database terms; vice-versa, different

database terms may match the same keyword in different queries. This

type of process can be modeled, effectively, using a Hidden Markov Model

(HMM), which is a stochastic finite state machine where the states are

hidden variables. The authors adapted a variation of the HITS algorithm

[Li et al., 2002] for computing an authority score for each database term, to

be considered as the initial state probabilities required by the HMM.

Conclusions

In this chapter we surveyed the different techniques used to process the

query and match each term to an appropriate database element.

Concerning query processing, the argument has not been directly

address in the literature. The main reason is that the attention of the

researchers has been put on more critical topics like answers building, and

generally the queries are then assumed to be well-posed. In any case, in most

of the schema-based solutions, the RDBMS full-text functions are able to

process the query through IR approaches.

The effectiveness of the keyword search in databases systems are

presumably affected by the query processing pipeline adopted. Thus,

in order to design better systems in terms of effectiveness from the user

64 Chapter 4. Query Processing and Matching

viewpoint, we claim to a deeper research in this field, evaluating the

different approaches following the guidelines proposed in Chapter 6.

Concerning the matching component, the inverted index approach

performs well when applicable, while the database-ignorant approach by

Bergamaschi et al. has never been compared to other systems in terms of

performance and effectiveness. It is important to be aware of the space

occupation issue of graph-based systems, presenting scalability problems

when applied to large and complex databases. In sight of this, solutions

like virtual memory usage or multi-granular graphs [Dalvi et al., 2008] have

been proposed.

5
Answers Building

In the previous chapters the issues of matching the query keywords

with the database elements, whatever information graph representation

and approach we choose, have been addressed. In the keyword search in

databases pipeline the subsequent step is to connect the matched elements

to result structures that can fill the user information need. Two main factors

affect this process:

• The approach chosen to materialize the graph and handle data, i.e.

schema- or graph-based

• The semantics of the answer to result, which in turn depends upon the

approach proposed

The structuring algorithms both for schema and graph based systems are

outlined in the next sections.

65

66 Chapter 5. Answers Building

5.1 Schema-based Approach

Schema-based systems perform searches on databases knowing only the

database schemas GS , while ignoring the database instances and lacking

any information about the tuples that contain. The answer building process

inputs the elements obtained by the previous matching step and uses

this information to build relation networks from which SQL queries are

obtained, exploiting predefined patterns. These SQL queries are finally

posed to the DBMS in order to get the final view.

The schema-based approach originated with DISCOVER [Hristidis

and Papakonstantinou, 2002], where the authors formalized the basic

algorithms structure. The DISCOVER system defined the basis for

most of successive schema-based systems. Contemporary to DISCOVER,

DBXPLORER [Agrawal et al., 2002] expose similar concept with different

notation.

The aim of these systems is to return Minimal Total Joining Network of

Tuples (MTJNT), structures of tuples used to derive the SQL queries to

retrieve data from the database.

Definition 5.1.1 (Joining network of tuples). A joining network of tuples J is a

tree of tuples where for each pair of adjacent tuples ti, tj ∈ J where ti ∈ Ri, tj ∈ Rj ,

there is an edge (Ri, rj) in GS and (ti ./ tj) ∈ (Ri ./ Rj). The relation between ti

and tj is than a parent/child relation.

Definition 5.1.2 (Free tuple set). A free tuple set, denoted as R{}, is simply a

relation that appears in the schema graph, and that do not contain any keyword of

the query.

5.1. Schema-based Approach 67

Definition 5.1.3 (Minimal Total Joining Network of Tuples). With reference

to a query Q, J is a joining network of tuple with the following properties:

• Totality Every keyword ki ∈ Q is contained in at least one tuple of the

joining network J

• Minimal If we remove one tuple from J , than J̄ is no longer a total joining

network of tuples.

Definition 5.1.4 (Size on a MTJNT). The size T of a Minimal Total Joining

Network of Tuples is the number of joins involved.

A system design to search in databases must avoid the proliferation of

redundant and useless MTJNTs. While the first adjective is self explanatory,

to define what is useless is more complex. DISCOVER considers useless a

redundant structure, i.e. a tree containing the same nodes and connections

of a previously computed tree. Any non-redundant MTJNT is produced

through candidate network generation.

Definition 5.1.5 (Candidate Network). Given a set of keyword Q =

{k1, ..., km}, a candidate network C is a joining network of tuple set, such that

there is an instance I of the database that has a MTJNT M ∈ C, and no tuple

t ∈ M that maps to a free tuple sets F ∈ C contains any keywords. A candidate

network must satisfy the total and minimal conditions defined for MTJNTs.

Specifically, a CN is a join expression that involves tuple sets plus perhaps

additional database free relations R{}. Intuitively, the free tuple sets in a

CN do not have occurrences of the query keywords, but help connect via

foreign-key joins the (non-free) tuple sets that do have non-zero scores for

the query. The DBXplorer join trees could be seen as a simplified version of

a the candidate network [Hristidis and Papakonstantinou, 2002].

68 Chapter 5. Answers Building

Candidate Network Generator

The aim of this stage is to output a set of candidate networks, having a

query Q = {k1, .., km} and a maximum network size T as input. This set of

candidate network C = {C1, C2, ...}must follow this two properties:

• Complete: For each solution of the keyword query, it exists a

candidate network Ci ∈ C that can produce it.

• Duplication-Free: For every two CNs Ci ∈ C and Cj ∈ C, Ci and Cj

must have different structure.

To start the process, the system receives the output of the matching

process described in Chapter 4.3 The keyword query Q and an index are

exploited to retrieve a set of basic tuple sets, i.e.

Definition 5.1.6 (Basic tuple set). With reference to the keyword kj , it is a set R̄kj
i

for i = 1, ..., n which consists of all the tuple relations Ri that contains the keyword

kj .

After retrieving the basic tuple set, the Tuple Set Post-Processor uses them to

produce the tuple sets:

Definition 5.1.7 (Tuple set). For every possible keyword subset Ki ∈ Q. a tuple

set RK
i consists in the tuples of Ri which contain all the keywords of the subset

K and no other keywords, i.e., RK
i = {t|t ∈ Ri ∧ ∀k ∈ K, t contains k ∧ ∀k ∈

Q−K, t does not contain k}.

The tuple post-processor step has a computational cost that is exponential

in the query size, but it is necessary for the systems to implement

5.1. Schema-based Approach 69

AND semantic and then to take care of all the keywords [Hristidis and

Papakonstantinou, 2002; Agrawal et al., 2002]. In DISCOVER II, [Hristidis

et al., 2003] where an AND/OR semantics is implemented, it is not always

necessary to compute and to list every tuple set for every relation-keyword

subset combination. For this reason, the algorithm only create a single

tuple set RQ for each relation R. For queries with AND semantics, a post-

processing step checks that only tuple trees containing all query keywords

are returned. This expedient allows a faster and more efficient execution of

the CN generator process.

The first algorithm designed to provide candidate networks is discussed

in [Hristidis and Papakonstantinou, 2002]: it recursively expands tuple sets

relations with adjacent relations (also empty free-tuple setR{}), and discards

networks according to the following pruning conditions [Yu et al., 2010]:

• Duplicated CNs are pruned

• A CN can be pruned if it contains all the keywords and there is a leaf

node RK
j where K = ∅, because it will generate results that do not

satisfy the minimal condition

• A CN containing a subtree in the form RK — SL — RM , where R

and S are relations and the schema graph GS has an edge R → S,

K,L,M ⊆ Q, must be pruned (the same tuple would appear in two

different tuple sets, then the minimal condition would result violated).

The authors proved that the CNs generated with this algorithm are both

total and minimal, namely that they could produce every possible MTJNTs

and that this MTJNTs are not redundant. Unfortunately, the algorithm

suffers from high computational cost and generates duplicate CNs that

70 Chapter 5. Answers Building

have to be filtered out in a post-processing step. To avoid this problem,

in [Markowetz et al., 2007] the rightmost algorithm was proposed: it makes

pruning rules unnecessary by assigning a proper expansion order to the

partial trees.

Candidate Network Evaluation

The candidate networks retrieved during the previous step must be

evaluated to provide the final MTJNTs to the user. To achieve this, in

DISCOVER, the plan generator module inputs a set of candidate networks

and creates an near-optimal execution plan through a naive greedy

algorithm, designed following two observations: subexpressions that are

shared by most CNs and subexpressions that may generate the smallest

number of results should be evaluated first. It must be noticed that the

problem of finding the intermediate results to build, so that the overall

cost of building these results and evaluating the candidate networks is

minimum, is NP-complete, as stated in in [Hristidis and Papakonstantinou,

2002]. In DISCOVER an DBXplorer, the rank of a MTJNT is computed

counting its number of joins, based the assumption that a larger network

is less informative than a smaller one.

Successive systems tried to mitigate the intrinsic complexity of the

problem avoiding the calculation of all possible results for a specific query,

and only the top-k most scored results are computed. This approach is

corroborated by the assumption that the user has a low interested on lower

scored results. To achieve this goal, the algorithms must find a proper order

of generating MTJNTs in order to stop after k results.

DISCOVER II [Hristidis et al., 2003] proposed three different algorithms

5.1. Schema-based Approach 71

to solve the problem. All the proposals use an attribute level ranking

function, computed using IR-derived metrics such as term frequency tf

(of a term in an attribute) or document frequency df (the number of tuples

in ai’s relation containing the term). The algorithms relies upon the

tuple monotonicity property, necessary to stop the algorithm as soon as

possible. The effectiveness problem has been later addressed in [Liu et al.,

2006], where the authors proposed a new ranking function that takes in

consideration both the morphology and the IR component of the tuple trees.

Definition 5.1.8 (Tuple Monotonicity). The property imposes that for any two

MTJNTs T = t1 ./ t2 .// tl and T ′ = t′1 ./ t
′
2 .// t

′
l generated from

the same candidate network, if for any 1 ≤ i ≤ l score(ti, Q) ≤ score(t′i, Q), then

score(Ti, Q) ≤ score(T ′i , Q).

The three algorithm proposed in [Hristidis et al., 2003] are:

• The Sparse algorithm, which computes a bound MPSi on the

maximum possible score of a tuple tree derived from a CN Ci. As

a further optimization, the CNs for a query are evaluated in ascending

size order. This way, the smallest CNs, which are the less expensive to

process and are the most likely to produce high-score tuple trees using

the combining function above, are evaluated first.

• The Single-Pipelined algorithm, which receives as input a candidate

network C and the non-free tuple sets TS1,..., TSv that participate in

C. The algorithm keeps track of the prefix S(TSi) that it retrieved from

every tuple set TSi; in each iteration, it retrieves a new tuple t from a

TSM , after which it is added to the associated retrieved prefix S(TSM).

Then, the algorithm identifies each potential joining tree of tuples T in

72 Chapter 5. Answers Building

which t can participate. The algorithm retrieves all joining trees of

tuples that include t and adds them to a queue R. To empty R, it is

necessary to guarantee that they are one of the top-k joining trees for

the original query. In order to do this, a bound of the score achieved

so far is mantained.

• The Global-Pipelined is the most efficient algorithm proposed by the

authors. All CNs of the keyword query are evaluated concurrently

following an adaptation of a priority preemptive, round robin

protocol, where the execution of each CN corresponds to a process.

Each CN is evaluated using a modification of the Single Pipelined

algorithm, with the “priority” of a process being the bound value of

its associated CN.

MeanKS In order to facilitate the computation of the results, in [Kargar

et al., 2015] the authors proposed to the user, after the matching process,

to define a specific role for each keyword among various possibilities

provided. The Minimal Joining Networks of Tuples Covering Roles share

the same definition as the MTJNTs, plus the role and keyword covering

requirements, which force that for any query keyword role ri (ri is a relation

in the database) it exists a node tj in the tree T such that tj ∈ ri and tj

contains keyword ki. The user select the role filling a form similar to the one

shown in figure 5.1

To rank the trees, the authors implement three different, mutually

exclusive approaches based on the importance of the edges, of the nodes

or both nodes and edges. They do not use any IR-based knowledge to rank

them.

5.1. Schema-based Approach 73

Figure 5.1. Role selection by the user for query “Joseph Retail Andersen”. (from

[Kargar et al., 2015])

SPARK In [Luo et al., 2008] the authors propose a tree level ranking

function which does not satisfy tuple monotonicity. Basically, the authors

model the tuple trees as virtual, query-specific documents, then assign an

IR-like ranking score to the documents. Two new algorithms are proposed

to solve the problem, based on the single-global pipeline algorithms of

DISCOVER II: Skyline Sweeping and Block-Pipelined.

Précis Taking a keywords query as input, the aim of Précis [Simitsis et al.,

2007] is to generate an entire multi-relation database instead of the typical

individual relation that is outputted by other approaches. This database is

a logical subset of the original one, i.e., it contains not only items directly

related to the given query terms but also items implicitly related to them in

various ways.

The logical subset schema creation process largely differs form the

DISCOVER procedure, due to the different nature of their task, and

is decomposed into two subproblems: initial subgraph creation and

expansion. Giving as inputs the query and the schema graph GS , the

74 Chapter 5. Answers Building

initial subgraph creation process provides the most significant subgraph,

according to the boolean query semantics, relative to a weighting function

that takes in account the dimension and cost of the subgraphs, which nodes

are weighted from their in-degree value. The second step aims to expand

each initial subgraph adding a new edge, provided that the target relation

is significant for all initial relations. The most valued graphs according to

the same ranking function above are then output by the system.

QUEST The QUEry generator for STructured sources [Bergamaschi et al.,

2013b] a search engine for relational databases that combines semantic

and machine learning techniques for transforming keyword queries into

meaningful SQL queries. The system relies on the Hidden Markov Model

approach proposed by the same authors in [Bergamaschi et al., 2011b]

to do the matching process, and exploits a hybrid approach to build the

answers. Focusing on the structuring problem, the algorithm adopts a

solution similar to the graph-based one. It materializes the database as a

weighted graph GA having each attribute of the database for nodes and

edges connecting (a) the node representing the primary key of each table

with all the other attributes in the same table, and (b) nodes associated with

couples of primary-foreign keys. With such a graph, the algorithm aims to

obtain the top-k Steiner trees using a mutual information-based distance to

compute the weights of the edges, similar to what proposed in [Yang et al.,

2011]. It must be noticed that the configurations (see Chapter 4.3) which

define the nodes composing the Steiner trees do not assure that the trees

are consistent with the database content and the user keywords, because

the matching process map keywords into database terms in isolation, and

5.2. Graph-based Approach 75

could lead to void tuples sets.

5.2 Graph-based Approach

This branch of systems represents the database as weighted data graph

GD(V,E) (where u, v ∈ V, e ∈ E), using graph algorithms to do the

search. Weights are applied to nodes and edges according to the specific

algorithm. Generally, for each direct edge (u, v) there is a backward edge

(v, u) with a different weight. Usually, weights are computed according to a

prestige notion, in a PageRank fashion [Brin and Page, 1998]

These systems could return two kinds of answer structures to the user:

• Tree-based semantics systems return trees containing all the keywords

in their nodes

• subgraph-based semantics systems return subgraphs Si ⊂ GD. One

particular case of these subgraphs is the r-radius Steiner graph, which

definition is based on centric distance and radius as defined Section 5.2.

Among the above mentioned structure, the most popular one in literature is

the tree-based. These trees are ranked according to two different semantics:

• In Steiner tree-based semantics the weight of a tree is defined as the total

weight of the edges in the tree.

• In distinct root-based semantics the weight of a tree is the sum of the

shortest distance from the root to each keyword node

76 Chapter 5. Answers Building

Apart from the ranking function, the two semantics differ from the number

of answers presented to the user: while the first allows the system to output

up to O(2m) results (m = |E|), the second is limited to n = |V |, because each

tree must be rooted on a different v ∈ V .

Tree-based Semantics

BANKS I-II The first graph-based systems conceived was BANKS

[Bhalotia et al., 2002]. The authors proposed an algorithm implementing the

Steiner tree-based semantics called Backward Search: it starts searching for

connections from the keyword-nodes (the tuples that contains one or more

keyword), following backward edges. This is accomplished by running

as many copies of Dijkstra’s single source shortest path algorithms as the

number of matched tuples. The idea of concurrent backward search is to

find a common node from which there exists a shortest path to at least one

keyword-node for any keyword. Such paths will define a rooted directed

tree with the common node as the root and the corresponding keyword

nodes as the leaves. The trees are computed in increasing height order. It has

been demonstrated that the backward search provides an l-approximation

of the Steiner Tree problem, where l is number of query keywords.

To rank each tree, the following specification has been used:

• Forward edges have a default weight w(u,v) = 1

• Backward edge weights are computes as w(v,u) = log2(i+ indegree(v))

• A score s(T, ti) for an answer tree T with respect to keyword ti is

1http://dblp.uni-trier.de

http://dblp.uni-trier.de

5.2. Graph-based Approach 77

Figure 5.2. Tree result of the query “soumen sunita” on DBLP1dataset using BANKS.

(Taken form [Bhalotia et al., 2002])

defined as the sum of the edge weights on the path from the root of T

to the leaf containing keyword ti.

• The aggregate edge-score E of an answer tree T is
∑

i s(T, yi)

• The prestige of each node is determined using a biased version of the

Pagerank [Brin and Page, 1998] random walk, where the probability

of following an edge is inversely proportional to its edge weight taken

from the data graph

• The tree node prestige N is the sum of the node prestiges of the leaf

nodes and the answer root.

• The overall tree score is ENλ where λ helps adjust the importance of

edge and node scores (the authors claim to obtain the best result with

λ = 0.2 in terms of effectiveness).

To speed up the retrieval process, the same authors proposed in BANKS

II [Kacholia et al., 2005] the bidirectional search. One of the main drawback

78 Chapter 5. Answers Building

of BANKS is that it instantiate a Dijkstra iterator for each keyword-node.

With complex schema and many keywords in the query, this strategy results

inefficient, because an iterator may need to explore a large number of nodes

if it hits a node with high in-degree. The new algorithm aim to enhance

backward search enabling a forward search starting from some potential

root nodes found along the iterations. The BANKS II enhancements over

BANKS are synthesized in three points:

• An incoming iterator is instantiated to follow the backward edges,

doing the task done by the plethora of iterators in BANKS. It must

be noticed that this is not a Dijkstra iterator, but the nodes to visited

are decided following the spreading activation (see below)

• A outgoing iterator is instantiated to follow the forwarding edges

starting from all the nodes explored by the incoming iterator

• They use spreading activation to prioritize the search. For the incoming

iterator, the next node to be expanded is the one with the highest

activation, a kind of “scent” spread from keyword nodes. The

spreading activation is crucial also for deciding which iterator among

the two to chose.

BLINKS In BLINKS [He et al., 2007] the authors propose a bi-level index

search strategy. The purpose of the index is to precompute all the distances

from the nodes to keywords in an efficient way, in order to enable a faster

search on the data graph. BLINKS partitions a data graph into multiple

subgraphs, or blocks. A bi-level index consists of a top-level block index,

which stores the mapping between keywords and nodes to blocks, and an

5.2. Graph-based Approach 79

intra-block index for each block, which stores more detailed information

within a block. The authors studied the possibility of exploiting a single-

level index to accomplish the task, but bumped into memory occupation

issue. The bi-level index is then a compromise between performance and

memory occupation needs. The retrieval algorithm is based on cost-balanced

expansion, a new policy for the backward search strategy of BANKS I-

II. It aims to expand the cluster with the smallest cardinality: once the

cluster has been chosen, it includes the node with the shortest distance

to this cluster origin (i.e. the initial matched tuple). The distance can be

found in the earlier built index. The BLINKS scoring function S(T) of

an answer T follows the distinct root-based semantics, and is defined as

S(T) = Sr + Sn + Sp, i.e. the sum of the scores relatives to the root, the

leaves and the paths from the answer root to the leaves. The component

score functions incorporate measures based on both graph structure (e.g.,

node scores reflecting PageRank and edge distances reflecting connection

strengths) and content (e.g., IR-style TF/IDF scores for matches).

STAR STAR [Kasneci et al., 2009] proposed a similar strategy to BANKS

for building and ranking answer trees based on Steiner tree semantics. They

introduced an algorithm yielding to O(log n)-approximated Steiner trees,

that can be adapted to provide a top-k search in the graph. It runs a breadth-

first-search iterators from each keyword-node in a round-robin manner, to

build a first tree T . The main peculiarity of STAR is the possibility of

exploiting node and edge labels applied on the graph to quickly to construct

the tree, assuming that such information lead to a common ancestor of the

visited nodes.

80 Chapter 5. Answers Building

In the second phase, STAR aims to iteratively improve the tree T by

replacing certain paths with new paths of lower weight from the underlying

graph. To explain the process, we must first introduce the Steiner nodes

of T , i.e. the non-terminal nodes (which does not contain any query

keywords), the fixed nodes of T , i.e. the terminal node or the Steiner nodes

with deg(v) ≥ 3, and finally the loose path, i.e. path with minimal length in T ,

which end nodes are fixed nodes. According to these definitions, a minimal

Steiner tree with respect to the query Q is a tree in which all loose paths

represent shortest paths between fixed nodes. In each iteration, removing

a loose path, the tree T is split in two subtrees T1 and T2, which must be

connected through a new path with lower weight, as in Figure 5.3. The

iteration continues until no other loose path can be replaced in T .

Dynamic Programming Best-First Algorithm In [Ding et al., 2007] the

Steiner tree problem (or, better, the group Steiner tree variants) has been

addressed implementing a dynamic programming solution with a best-first

strategy, adapted to find the top-k answers of a keyword search in databases

problem. The first assumption that exposes the substructure property of the

problem is that each keyword-node v, that contains the keywords set q ⊆ Q,

can be seen as a single node tree, rooted at v, with a cost zero (the weights

are applied only to edges), i.e. T (v, q) = 0. The substructure property is

defined by the following equations:

T (v, q) = min(Tg(v, q), Tm(v, q))

where Tg(v, q) = min
u∈N(v)

{(v, u)⊕ T (u, q)}

Tm(v, q1 ∪ q2) = min
q1∩q2=∅

{T (v, q1)⊕ T (v, q2)}

5.2. Graph-based Approach 81

Figure 5.3. Two iterations of the STAR algorithm to build a O(log n)-approximated

Steiner tree (from [Kasneci et al., 2009])

82 Chapter 5. Answers Building

Figure 5.4. A Best-First DP Solution (from [Ding et al., 2007])

Here ⊕ is an operation to merge two trees into a new tree, and N(v) is a

set of neighbors of v such as N(v) = {u|(v, u) ∈ E(GD)} in the data graph

GD. An example of trees merging into an optimal Steiner tree can be seen

in Figure 5.4. DPBF maintains trees in a priority queue, by the increasing

order of costs of trees. The smallest cost tree is maintained at the top of

the queue. The algorithm dequeues the top tree T (v, q) of the queue and

grows it exploiting the equations above, then the algorithm enqueues it

and reorder the queue. If T (v, q) contains the entire set of keywords Q, the

algorithm will return T (v, q) as the optimal Steiner tree and terminate. To

implement the top-k solution, it is sufficient to not terminate after the first

tree retrieved, but continue the iteration until the k-th.

5.2. Graph-based Approach 83

Subgraph-Based Semantics

EASE [Li et al., 2008b] is an adaptive keyword search method for

indexing and querying large collections of heterogeneous data, modeling

unstructured, semi-structured and structured data as graphs, with weighted

nodes as documents, elements and tuples respectively, and weighted

edges as hyperlinks, parent-child relationships and primary foreign-key

relationships respectively. The authors do not address the Steiner tree

problem, but the r-radius Stainer graph problem, i.e. they aim to find all

the graphs that contains all or a part of the keywords, and that have an

acceptable size. The following definitions could help to better understand

the problem.

Definition 5.2.1 (Centic Distance). Given graph GD and any node v in GD, the

centric distance of v, denoted as CD(v), is the maximal value among the distances

between v and any node u in GD, i.e., CD(v) = maxu∈GD
{dist(v, u)}.

Definition 5.2.2 (Radius). The radius of a graph GD,denoted as R(GD), is

the minimal value among the centric distances of every node in GD, i.e.,

R(GD)=minv∈GD
{CD(v)}. GD is called an r-radius graph if the radius of GD

is exactly r.

Definition 5.2.3 (r-Radius Steiner Graph). Given an r-radius graph GD and

a keyword query Q. A node in GD is called a content node if it directly contains

some input keywords inQ. A node s inGD is called a Steiner node if there exist two

content nodes, u and v, and s is on the path 〈u, v〈 (smay be u or v).The subgraph of

GD composed of the Steiner nodes and associated edges is called an r-radius Steiner

graph. The radius of an r-radius Steiner graph may be smaller than r but cannot

be larger than r.

84 Chapter 5. Answers Building

To compute the r-radius Steiner tree, the systems precompute, using an

adjacency matrix, each r-radius graphs of the dataset, one for each node

v ∈ GD. These graphs are query independent, and could be stored in

secondary memory. Then, the structuring algorithm prunes the r-radius

graphs in order to obtain r-radius Steiner graphs. The ranking functions

used in EASE reflect its heterogeneous nature: it takes into account both

document relevancy from the IR perspective and structural compactness

from the DB perspective to capture structural relationships. To efficiently

identify the top-k answers with the highest scores, the systems maintains

a a sort of inverted index of all the query independent scores computed

on the r-radius graphs, so that, before computing the Steiner graphs, the

system retrieves the maximal r-radius graphs for the specific query.

PACOKS A progressive ant-colony-optimization-based keyword search

algorithm is the argument of [Lin et al., 2016]. This algorithm aim to

reduce the response time for a single search through the cooperation of large

amounts of searches over time. To work, it exploit a single-step ant-colony-

optimization-based algorithm for approximating the top-k Steiner trees

problem (ACOKS). This component results a solution (or top-k solutions)

closer to the global optimal solution at each iteration, but it needs a large

amount of ants to get the optimal solution, unacceptably slowing down the

performance. PACOKS algorithm aims to reduce this issue implementing

ACOKS with a limited number of ants for each search, and relying on the

continue use of the search engine. In other words, the result of the current

search is a further optimization upon that of the previous one, so that the

result of every search is a successive approximation of the global optimal

5.2. Graph-based Approach 85

Figure 5.5. An example of PACOKS execution for the query Q = {k1, k2,K3, k4}

(from [Lin et al., 2016])

solution.

For each search, PACOKS build a complete graph GK having the

keywordsQ = {k1, ..., k2} as nodes. Then, for each edge e(ki, kj) ∈ E(GK), it

get the minimum Steiner tree applying ACKOS with only the two keywords

ki and kj . The weight of each Steiner tree is applied to the relative edge. The

successive step is to compute the minimum spanning tree ST of GK : each

edge in ST is finally replaced with the relative Steiner tree producing the

final solution. An example of the PACOKS steps is provided in Figure 5.5.

Conclusions

The answer building process is the core of the keyword search in

databases. so that most of the effort spent in this field has been spent on this

86 Chapter 5. Answers Building

component. Generally the solutions proposed follows the schema-based

and graph-based approaches, and differentiate for the ranking functions

used or the precautions introduced to allow a more efficient search. As a

matter of fact, the time performance are the most critical issue that future

works must address. The complexity of the problem prevents an efficient

research. From this point of view, to precompute part of the workload may

seem the only way to provide a keyword search system design to hit the

market.

6
Evaluation

6.1 Evaluation in Information Retrieval

The 1958 witnessed the begin of the Cranfield Project [Cleverdon, 1997],

lead by Cyril Cleverdon, namely the first scientific attempt to evaluate the

different “retrieval systems”. Even if the aim of this first evaluation campaign

was to inspect manual library classification models, generally very distant

from the current automated retrieval systems, the Cleverdon’s work posed

the basis for the information retrieval evaluation processes.

A systematic and comparable experimental evaluation of IR is a very

demanding activity, both in terms of time and effort. For this reason, it is

usually carried out in publicly open and large-scale evaluation campaigns

at international level, which allow for sharing the effort, producing

large experimental collections, and comparing state-of-the-art systems and

algorithms [Bergamaschi et al., 2016]. In the years, several campaigns

have been established, where the most important are the Text REtrieval

Conference (TREC) in the United States (co-sponsored by the National

87

88 Chapter 6. Evaluation

Institute of Standards and Technology - NIST), the Conference and Labs of

the Evaluation Forum (CLEF) in Europe, and NII Testbeds and Community

for Information access Research (NTCIR) in Japan and Asia.

The experimental method developed in the Cranfield tests has been

highly influential, so that all these international evaluation activities rely on

the Cranfield methodology: this evaluation procedure makes use of standard

test collections, a triple composed by

• A dataset, a collection of documents where retrieve information

• A set of topics which simulates actual user information needs

• The ground-truth, a set of relevance judgments where for each topic

the documents relevant for the topic are determined.

Evaluation campaigns promote the re-use of the experimental data and

the acquired knowledge, giving the possibility to conduct studies to track

the improvement on performances, to reproduce the obtained results, and

to develop new solutions.

The effectiveness of evaluation campaigns is documented: TREC

committee assert that the effectiveness of information retrieval systems

doubled within six years since the beginning of the campaign1. Moreover,

as reported by [Tassey et al., 2010], there is an economical benefit from these

campaigns: for every $1 that NIST and its partners invested in TREC, at

least $3.35 to $5.07 accrued to researchers and industry.

1http://trec.nist.gov/overview.html

http://trec.nist.gov/overview.html

6.2. Evaluation in Relational Keyword Search 89

6.2 Evaluation in Relational Keyword Search

The lack of a shared and complete evaluation methodology for relational

keyword search systems is one of the main topics that [Bergamaschi et al.,

2016] addresses. Without it, the development of new and efficient systems,

designed to daily use, would not be possible in short times.

As for traditional IR systems, an empirical assessment of keyword-

based retrieval systems is imperative [Webber, 2010]. Keyword search in

databases share with traditional IR the task of providing results retrieved to

fill the ambiguous information need expressed though the query, so that an

empirical evaluation of the answers resulted by the systems is necessary

to measure the effectiveness of the research from the user viewpoint.

Moreover, due to the complexity of the task, there is also the necessity

to systematically evaluate the keyword search systems from a time and

memory consumption point of view.

At the current state, a systematic comparison of the current systems is

hardly feasible due to the lack of an unified architectural approach that

considers all of the issues of keyword search, from the interpretation of the

user needs, to the computation, retrieval, ranking and presentation of the

results. For example, it is hard to compare different systems that follow

different approaches, such as schema- or graph-based, proposing different

solutions for all the components of the pipeline treated in this thesis.

From this point of view, in [Bergamaschi et al., 2016] the authors address

the need of a conceptual keyword search architecture pivoting around two

different components:

90 Chapter 6. Evaluation

• The system-oriented component, aiming to improve the performances

and the efficiency of the search

• The user-oriented, aiming to improve the effectiveness, i.e. the quality of

the search from a user perspective.

This two complementary aspects have been addressed individually in

many evaluations, even though the user-oriented component has been less

considered. In Table 6.1 we summarize the different datasets and query sets

used in literature to evaluate and test the systems. These evaluation process

and resources presented the following critical points:

• The evaluation and comparison of the systems are performed

exploiting arbitrary datasets. It is trivial that different datasets

produce different results, and that same datasets produce equivalent

results. In keyword search literature, a plethora of different datasets

has been used to evaluate the systems and, moreover, different

evaluations use different subschemas of the original dataset. The

practice of cropping the datasets reduces the dimensions and allows

a faster execution, but at the same time alters the results, masking

scalability issues and artificially bolstering the reported effectiveness

of the system.

• The datasets dimensions and complexity are rarely provided, and

whenever provided, represents small and simple databases.

• Systems are generally evaluated with efficiency benchmarks, lacking

an effectiveness evaluation. Both should be considered, because a fast

systems that result poor answers is useless.

6.2. Evaluation in Relational Keyword Search 91

• There is no uniformity when creating query: some authors build

them picking random terms among the dataset, other researchers

build queries that reflect their proposed ranking scheme. Moreover,

self-authored queries have a strong potential for bias: it is too easy

to formulate queries that are favorable to your own over other

algorithms [Webber, 2010].

• The definition of relevance is often vague among the authors, and in

the case of SPARK [Luo et al., 2008], which judges relevant a result

containing all the query terms and have the smallest size of any result

satisfying the first criterion, it is also in contrast to the definition of

the IR community, i.e. a relevant results must address the underlying

information need and not just contain all search terms. [Webber, 2010].

Furthermore, like self-authoring, self-assessment has the potential for

biasing result.

• Finally, systems appear to perform abnormally well with regard to

effectiveness metrics, with [Kacholia et al., 2005] authors claiming a

near 100% of recall and EASE [Li et al., 2008b] authors a precision of

0.9.

Looking at the Table 6.1 we can see that the community converged

to the use of a restricted number of recurring datasets. To understand

the peculiarities of each one, we provide their characteristics, even thou

we cannot give specifications like size and schema, due to the copious

customizations applied by the researchers.

• TPC2 is a non-profit corporation that provide transaction processing
2http://www.tpc.org/

http://www.tpc.org/

92 Chapter 6. Evaluation
Sy

st
em

D
at

ab
as

e
Q

ue
ri

es
Pe

rf
or

m
an

ce

N
am

e(
s)

#
R

el
.

M
B

O
ri

gi
ns

#
Q

ue
ri

es
K

.r
an

ge
M

em
.

Ti
m

e
Ef

f.

D
BX

pl
or

er
TP

C
-H

,3
C

us
to

m
D

B
19

-8
4

≥
10

R
D

M
50

0/
50

0/
50

0/
50

0
2-

10
X

X
X

D
IS

C
O

V
ER

TP
C

-H
(3

ev
al

ua
ti

on
s)

N
D

≥
10

0
R

D
M

N
D

/1
00

/2
00

2-
5

X

D
IS

C
O

V
ER

II
D

BL
P

6
56

R
D

M
10

0/
N

D
2-

5
X

PR
EC

IS
IM

D
B

N
D

N
D

R
ES

14
0

N
D

X
X

EF
FE

C
TI

V
E

C
us

to
m

5
N

D
Q

L
50

6.
7

X

SP
A

R
K

D
BL

P,
IM

D
b,

M
O

N
D

IA
L

N
D

N
D

R
ES

18
/2

2/
35

2-
4

X
X

LA
BR

A
D

O
R

3
C

us
to

m
D

B
1/

3/
3

3/
4/

6
Q

L
33

/1
5/

34
1-

4
X

M
ea

nK
S

TP
C

-E
(o

nl
y

te
st

ed
)

N
D

N
D

N
D

N
D

N
D

PO
W

ER
D

BL
P,

IM
D

b
4/

8
N

D
R

ES
17

/2
0

3-
5

X

SQ
A

K
C

us
to

m
/T

PC
-H

6/
8

R
ES

15
/1

5
N

D
X

K
EY

M
A

N
T

IC
/K

EY
R

Y
C

us
to

m
/I

M
D

B
N

D
N

D
U

SR
29

N
D

X
X

BA
N

K
S

D
BL

P,
C

us
to

m
N

D
N

D
R

ES
7

1-
2

X
X

BA
N

K
S

II
D

BL
P,

IM
D

b
N

D
N

D
R

D
M

20
0

2-
7

X

BL
IN

K
S

D
BL

P,
IM

D
b

N
D

N
D

R
ES

60
/4

0
2-

8
X

X

G
ol

en
be

rg
et

al
.

M
O

N
D

IA
L

N
D

N
D

R
D

M
36

2-
10

X

D
PB

F
D

BL
P,

M
ov

eL
en

s
N

D
N

D
R

D
M

50
0/

50
0/

10
0

2-
6

X

EA
SE

D
bL

if
e,

D
BL

P,
IM

D
b

N
D

N
D

/4
00

/5
R

ES
5/

5
2-

5
X

X

ST
A

R
D

BL
P,

IM
D

b,
YA

G
O

N
D

N
D

R
D

M
18

0/
18

0/
12

0
3-

7
X

X

Pr
un

eD
P

D
BL

P,
IM

D
b

N
D

N
D

R
D

M
50

/5
0

N
D

X
X

PA
C

O
K

S
D

BL
P

N
D

80
0

R
ES

50
2-

6
X

D
al

vi
D

BL
P,

IM
D

b
N

D
99

/9
4

R
ES

8/
4

2-
6

X

Ek
so

TP
C

-H
,C

us
to

m
N

D
50

0/
92

9
R

D
M

50
/5

0
2-

4
X

X
X

SA
IN

T
D

BL
P,

IM
D

b
4/

4
47

0/
N

D
Q

L
10

0/
10

0
N

D
X

X

Table 6.1. List of the the systems presented in this thesis with the datasets and query

sets used do evaluate the performance or the effectiveness of the search. Legend -

ND: Not Defined; RDM: query random taken from the dataset; RES: query posed by

researchers; USR query posed by users; QL: query built from DBMS query logs; Mem:

Memory; Eff: Efficiency.

6.2. Evaluation in Relational Keyword Search 93

and database benchmarks. The TPC-E dataset models the activity

of brokerage firm that must manage customer accounts, execute

customer trade orders, and be responsible for the interactions of

customers with financial markets, while TPC-H models the content

of an industry which must manage sell, or distribute products

worldwide.

• The DBLP3 computer science bibliography is the on-line reference for

bibliographic information on major computer science publications,

containing more than 3.3 million publications and more than 1.7

million authors.

• IMDB4 is the world’s most popular and authoritative source for movie,

TV and celebrity contents. Its database contains more than 185

million data items including more than 3.5 million movies, TV and

entertainment programs and 7 million cast and crew members.

• MONDIAL5 dataset comprises geographical and demographic

information from the CIA World Factbook, the International Atlas, the

TERRA database, and other web sources.

Two of the datasets reported above have been used in [Coffman and

Weaver, 2010] to define an unified evaluation framework, designed to be

a first pass to overcome the lack of a systematic evaluation process in the

keyword search field. This framework is based on a Cranfield methodology

triple composed by:

3http://dblp.uni-trier.de/
4http://www.imdb.com/
5https://www.dbis.informatik.uni-goettingen.de/Mondial/

http://dblp.uni-trier.de/
http://www.imdb.com/
https://www.dbis.informatik.uni-goettingen.de/Mondial/

94 Chapter 6. Evaluation

• Datasets: they proposed two datasets built from subsets of the IMDb

and Wikipedia databases (the latter is a selection of articles crawled

from the website6) and the entire MONDIAL. Albeit MONDIAL is

smaller in size than the others, its schema is much more complex. The

characteristics of the datasets are represented in Table 6.2.

• Topics: the authors materialize topics as keyword queries. They

produce fifty queries (the traditional minimum for evaluation

purpose), paying attention to: (a) not produce redundant information

need, (b) not produce ambiguous queries, (c) produce queries for the

domain-specific datasets.

All the queries have been produced by the authors, differently

form what happens in evaluation campaigns, where a number of

individuals create candidate information needs from which only a

small subset is actually chosen. This procedure aims to avoid biased

sets of queries, but is impractical for keyword search in databases

due to the lack of incentive for other research to participate in the

campaign. Queries statistics are summarized in Table 6.3.

• Relevance assessment: for all the information needs, the authors

identify relevant results by constructing the information needs around

a template of database relations. Then, a number of SQL queries

are posed to the DBMSs to identify all possible results satisfying the

information need and judge each of these results for relevance. They

use binary relevance assessments when judging results.

6https://www.wikipedia.org/

https://www.wikipedia.org/

6.2. Evaluation in Relational Keyword Search 95

Table 3: System evaluation comparison matrix.
Evaluations that compare against other systems are
listed on the left; the systems they compare against
appear at the top of the table. Comprehensive evalu-
ations would compare against all previous work (i.e.,
the lower left entries would all be •).

B
A

N
K

S
[2

]

D
IS

C
O

V
E

R
[1

5
]

E
ffi

c
ie

n
t

[1
4
]

B
id

ir
e
c
ti

o
n
a
l

[1
7
]

E
ff

e
c
ti

v
e

[2
1
]

D
P

B
F

[8
]

B
L

IN
K

S
[1

3
]

S
P

A
R

K
[2

2
]

E
A

S
E

[2
0
]

G
o
le

n
b

e
rg

e
t
a
l.

[1
1
]

D
a
lv

i
e
t
a
l.

[7
]

S
T

A
R

[1
8
]

Q
in

e
t
a
l.

[2
7
]

BANKS [2] –
DISCOVER [15] –

Efficient [14] –
Bidirectional [17] • ◦ –

Effective [21] ◦ ◦ –
DPBF [8] • • –

BLINKS [13] • –
SPARK [22] • ◦ –

EASE [20] • –
Golenberg et al. [11] –

Dalvi et al. [7] • ◦ –
STAR [18] • • • • –

Qin et al. [27] • –

Our evaluation • • • • ◦ • • •

Legend
• exact comparison
◦ characteristics of system approximated

ality that ad hoc evaluations are an accepted practice rather
than aberrations.

3. EVALUATION FRAMEWORK

3.1 Datasets
Two of our datasets are derived from popular websites

(IMDb and Wikipedia). The third (Mondial) is an ideal
counterpoint due to its smaller size. Table 4 provides detailed
statistics regarding all three of our datasets. Even though
our datasets are relatively small, they are sufficiently chal-
lenging for existing search techniques (as shown in Section 4),
and both IMDb and Wikipedia can be scaled up as search
techniques improve.

DBLP is one of the more popular datasets included in
previous evaluations. We elected not to include it because
the content of the DBLP database is similar to IMDb (e.g.,
names and titles) so results across these two datasets would
likely be similar.

3.1.1 Mondial
The Mondial dataset [24] comprises geographical and

demographic information from the CIA World Factbook,
the International Atlas, the TERRA database, and other
web sources. We downloaded the relational version from its
website. Mondial’s cyclic data graph is much more complex
than the others included in our evaluation.

3.1.2 IMDb
We downloaded IMDb’s plain text files and created a

relational database using IMDbPY 4.1. Using a third-party
tool eliminates any bias in the creation of the schema, which

has the potential to significantly impact search effectiveness
and performance. The initial database contained 20 relations
with more than 44 million tuples. Because many proximity
search systems require an in-memory data graph, our dataset
is a subset of the original database. We note that our subset
potentially overstates the effectiveness of the various search
techniques for this dataset.

3.1.3 Wikipedia
Our final dataset is a selection of articles from Wikipedia.

The complete Wikipedia contains more than 3 million articles,
which makes including all of them infeasible. Our selection
includes more than 5500 articles chosen for the 2008–2009
Wikipedia Schools DVD, a general purpose encyclopedia,
which contains content roughly equal to a traditional 20
volume encyclopedia. We deemed general content more
desirable than a larger number of articles chosen randomly
from the corpus. We drop all the tables unrelated to articles
or users and augment the PageLinks table with an additional
foreign key to explicitly indicate referenced pages.

3.2 Queries
Fifty information needs is the traditional minimum for

evaluating retrieval systems [23, 31]. This number of infor-
mation needs reflects the fact that performance varies widely
across queries for the same document collection. Table 2
shows that other evaluations that use representative queries
have not included this number of distinct information needs.
Liu et al. [21] repeat a number of information needs in their
queries. All our queries reflect distinct information needs.

We do not use real user queries extracted from a search en-
gine log for three reasons. First, many queries are inherently
ambiguous. Given the query “Indiana Jones,” it is impossible
to determine the underlying information need. Does the user
want information about the character Indiana Jones or the
films named after that title character? Without knowing the
user’s intent, it is impossible to judge whether the charac-
ter or a film is the desired result. In contrast, a synthetic

Table 4: Characteristics and simplified schema of
our three evaluation datasets. The reported size in-
cludes database indices.

Dataset Size (MB) Relations Tuples

Mondial 9 28 17,115

IMDb 516 6 1,673,074
Movie (id,

:::
title, year) 181,706

Person (id,
::::
name) 273,034

Character (id,
::::
name) 206,951

Role (id, type) 11

Cast (movieId , personId , characterId , roleId) 812,694

MovieInfo (id, movieId,
:::
info) 198,678

Wikipedia 550 6 206,318
Page (id,

:::
title) 5,540

Revision (id, pageId, textId, userId) 5,540

Text (id,
:::
text) 5,540

User (id, name) 1,745

PageLinks (id, from, to) 187,951

UserGroups (userId ,
:::::
group) 2

Legend primary key, foreign key,
::
full

:::::
text

:::::
index

Table 6.2. Characteristics and simplified schema of the datasets used in Coffman and

Weaver’s framework. The reported size includes database indices. (Taken form [Coffman

and Weaver, 2010])

Table 5: Query and result statistics.

Search log [26] Synthesized Results

Dataset JqK |Q| JqK JqK JRK JRK
Mondial 50 1–5 2.04 1–35 5.90
IMDb 2.71 50 1–26 3.88 1–35 4.32
Wikipedia 2.87 50 1–6 2.66 1–13 3.26

Overall 2.37 150 1–26 2.86 1–35 4.49

Legend
|Q| total number of queries
JqK range in number of query terms

JqK average number of terms per query

JRK range in number of relevant results per query
JRK average number of relevant results per query

query workload based on overt information needs avoids this
problem. Second, we believe a large number of queries will re-
flect the limitations of existing search engines—namely, web
search engines are not designed to connect disparate pieces
of information. Users implicitly adapt to this limitation by
submitting few (Nandi and Jagadish [25] report less than
2%) queries that reference multiple database entities. Third,
the available search logs provide an insufficient number of
user queries for many domain-specific datasets (e.g., DBLP
and Mondial).

Ideally, a number of individuals all create candidate infor-
mation needs for an evaluation, and a subset from this pool
is actually included. This procedure is used by established
evaluation forums (e.g., TREC and INEX) but is impractical
for this work given the lack of incentive for others to partici-
pate. Consequently, we independently derived a variety of
information needs for each dataset.

Table 5 provides the statistics of our query workload and
the relevant results for each dataset. Five IMDb queries are
outliers because they include an exact quote from a movie.
Omitting these queries reduces the maximum number of
terms in any query to 7 and the average number of terms
per query to 2.91. The statistics for our queries are similar
to those reported for web queries [16] and our independent
analysis of query lengths from a commercial search engine
log [26], which suggests that our queries are representative
of real-world user queries. In contrast, the average length
of queries used in previous studies (see Table 2) is almost
always greater than the average for web queries.

3.3 Assessing Relevance
Relevance is assessed relative to the original information

need. For all our information needs, we identify relevant
results by constructing our information needs around a tem-
plate of database relations. We execute a number of SQL
queries to identify all possible results satisfying the infor-
mation need and judge each of these results for relevance.
Thus, careful construction of our information needs allows
exhaustive relevance judgments for the collection. As is done
at TREC, relevance assessments are carried out by a single
individual. While using a single assessment as the gold stan-
dard does affect the absolute values of effectiveness metrics,
it has not been shown to impact the relative effectiveness of
the systems under comparison [23, 31].

We use binary relevance assessments when judging results.
In adherence to the Cranfield paradigm [5], TREC tradition-

ally used binary relevance assessments, which also have been
used by all the previous evaluations reported in Section 2.
In contrast, INEX distinguishes between highly relevant and
partially relevant results. We believe this distinction to be
good in theory, but it adds considerable complexity to the
assessment process and also questions some of the central
assumptions of the Cranfield paradigm—namely, all relevant
documents are equally desirable. In practice, the notion of
relevance, especially for structured data, is extremely subtle,
involving novelty and diversity in the results. We refer the
reader to Clarke et al. [4] for additional details.

4. EXPERIMENTS
In this paper, we do not consider the efficiency of search

techniques and instead focus exclusively on search effective-
ness. Obviously, performance plays a key factor when assess-
ing system utility. The evaluations reported in the literature
already investigate the performance aspect of their systems.
Our work complements the evaluations appearing in the
literature by comparing systems on the basis of search qual-
ity. Omitting a performance comparison also stems from a
pragmatic reason: we have not yet had the opportunity to im-
plement many of the optimized query processing techniques
proposed by the original researchers.

Our experiments target three questions. First, what is
the effectiveness of each system, especially in comparison
to each other? For previous evaluations that do consider
search effectiveness, we hope to corroborate their claims.
Second, what impact does the number of retrieved (top-
k) results have when evaluating search quality? Previous
experiments at TREC show that retrieving too few results
can significantly impact systems’ precision-recall curves [12],
and some previous evaluations of search effectiveness only
include the top-10 or top-20 results. Third, are the systems’
results highly correlated with each other? We expect many
systems (e.g., BANKS [2] and its successor Bidirectional [17])
to return similar results, which would make performance the
only significant difference between these systems.

4.1 Metrics
To measure the effectiveness of search systems, we use four

metrics. The number of top-1 relevant results is the number
of queries for which the first result is relevant. Reciprocal
rank is the reciprocal of the highest ranked relevant result for
a given query. Both of these measures tend to be very noisy
but indicate the quality of the top-ranked results. Average
precision for a query is the average of the precision values cal-
culated after each relevant result is retrieved (and assigning a
precision of 0.0 to any relevant results not retrieved). Mean
average precision (MAP) averages this single value across
information needs to derive a single measure of quality across
different recall levels and information needs. To summarize
the entire precision-recall curve, we use 11-point interpolated
average precision. To calculate each metric, we retrieve the
top 1000 results for each system.

To measure the correlation between the results returned
by the various systems, we use the normalized Kendall dis-
tance [19]. The Kendall distance between two permutations
is the number of pairwise swaps needed to convert one per-
mutation into the other. Because we consider only the top-k
results from each system, we use the generalization proposed
by Fagin et al. [9].

Table 6.3. Query and result statistics of Coffman and Weaver framework. (Taken form

[Coffman and Weaver, 2010])

96 Chapter 6. Evaluation

6.3 Effectiveness Evaluation

In [Coffman and Weaver, 2010] is presented the first systematic

comparison between keyword search systems to explicitly use the above

mentioned framework to evaluate them. They compare the 8 state-of-the-

art systems indicated in Table 6.4 with the ∗ sign.

Before this work, the singular systems have been compared to a

limited set of other systems on an arbitrary subset of datasets. The non

standard datasets, along with the lack of cross evaluation, makes difficult

to compare the trade-offs between approaches that vary widely in both

query processing and ranking results. In Table 6.4 we summarize the

the comparisons realized in literature. As expected, systems with similar

approaches are more easily to compare, e.g. the BANK I-II systems have

been widely used as a benchmark for graph-based systems. It worth

noticing that several comparison between systems with different approach

have been done. Generally, these comparisons do not take in considerations

all the systems aspects, and are performed thought expedients used to adapt

the systems to the situations.

To measure the effectiveness of search systems, the authors use four

metrics derived from the information retrieval field.

• Number of top-1 relevant results is the number of queries for which

the first result is relevant

• Reciprocal rank is the reciprocal of the highest ranked relevant result

for a given query

• Average Precision (AP) is the average of the precision values

6.3. Effectiveness Evaluation 97

D
BX

pl
or

er
D

IS
C

O
V

ER
D

IS
C

O
V

ER
II

PR
EC

IS
EF

FE
C

TI
V

E
SP

A
R

K
LA

BR
A

D
O

R
M

ea
nK

S
PO

W
ER

SQ
A

K
K

EY
M

A
N

T
IC

/K
EY

R
Y

BA
N

K
S

BA
N

K
S

II
BL

IN
K

S
G

ol
en

be
rg

et
al

.
D

PB
F

EA
SE

ST
A

R
Pr

un
eD

P
PA

C
O

K
S

D
al

vi
et

al
.

Ek
so

SA
IN

T

DBXplorer−
DISCOVER∗ −

DISCOVER II∗ −
PRECIS −

EFFECTIVE∗ ©© −
SPARK∗ � ©−

LABRADOR −
MeanKS −
POWER � −

SQAK −
KEYMANTIC/KEYRY©© −

BANKS∗ −
BANKS II∗ © � −

BLINKS∗ � −
Golenberg et al. −

DPBF∗ � � −
EASE � −
STAR � � � � −

PruneDP � −
PACOKS � � −

Dalvi et al. © � −
Ekso −

SAINT © © −

Table 6.4. System evaluation comparison matrix. On the left are listed the systems

that have been compared with the systems in the header. � means that the evaluation is

naturally feasible, while© represents an approximate comparison, i.e. between systems

of different approaches. Systems marked with ∗ have been compared using the C&W

framework (Based and expanded from [Coffman and Weaver, 2010])

98 Chapter 6. Evaluation

calculated after each relevant result is retrieved (and assigning a

precision of 0.0 to any relevant results not retrieved)

• 11-point interpolated average precision is used to summarize the

entire precision-recall curve

To calculate each metric, they retrieve the top 1000 results for each system.

The measurements of effectiveness realized by the authors are

considerably lower than those reported in the previous evaluations. The

trend toward reporting above-average effectiveness scores have been

confirmed in [Webber, 2010], and possibly caused by the biased queries

posed. Moreover, the scores of retrieval systems evaluated are much higher

with respect to the systems evaluated at TREC and INEX.

Relative to the systems evaluated, most of the systems perform

comparably on each dataset, while graph based are generally more effective

than schema-based approaches. Furthermore, the results empirically

proved that there is no need to prefer a system that exploits complex IR-style

scoring functions and complicated processing algorithms over a simple

structure ranking function,

The authors conclude noticing that PageRank-like concept plays an

important factor when ranking results: systems pivoting around node

weights as BANKS [Bhalotia et al., 2002] and Bidirectional [Kacholia et al.,

2005] perform better than systems as DPBF [Ding et al., 2007] focused on

minimizing the weight of the result tree.

6.4. Efficiency Evaluation 99

6.4 Efficiency Evaluation

In continuity with the work discussed above, Coffman and Weaver

conducted a performance analysis on seven systems (DISCOVER I-II,

BANKS I-II, DPBF, STAR, SPARK), and provided their conclusion in

[Coffman and Weaver, 2014].

The analysis were conducted exploiting the evaluation framework

introduced above, and took in consideration the execution time and the

memory consumption of the algorithms.

Execution Time

Typically the systems proposed do not address a complete search on

the database, i.e. they do not aim to retrieve all the relevant results,

but result only the top-k relevant results. The variables that affect the

run-time performances are different: the retrieval depth, the number

of search terms, the frequency of search terms in the database, the

numbers of database tuples and the complexity of the schema. Aside

from this, the authors found out that the performance of the systems

evaluated were disappointing, particularly with regard to the number

of queries completed successfully (they impose a maximum execution

time of 1 hour for each search technique): existing search techniques

provide reasonable performance only on the smallest dataset (MONDIAL).

Performance degrades significantly when we consider a dataset with

hundreds of thousands of tuples (Wikipedia) and becomes unacceptable for

a data set with a million tuples (IMDb).

100 Chapter 6. Evaluation

Memory Consumption

The schema-based systems consume very little memory, most of which

is used for the database schema. In contrast, the graph-based approaches

require considerably more memory to store their data graph. Even if never

documented before, the graph-based approaches hardly contains the space

used to store the initial data graph: significant is the case of BLINKS [He

et al., 2007]: its bi-level index could occupy more than 160GB of memory to

represents the IMDb dataset.

Due to excessive memory consumption (the total amount of memory

was 5GB), several queries cannot be complete and lead to memory fault,

unveiling the unreliable behavior of this systems.

6.5 Toward a Reference Evaluation Framework

Even if the Coffman and Weber framework represents an important step

towards a fair evaluation of keyword search approaches, the authors of

[Bergamaschi et al., 2016] pointed out four main limitations of this work:

• The adopted metrics to evaluate effectiveness and efficiency are biased

in most of the schema-based systems, because a certain amount of

time is required for the execution of the SQL queries by the DBMS

underlying the application, that is independent form the retrieval

algorithm, and depends from the underlying DBMS.

• The effectiveness measurements of schema-based systems is altered

because of the intrinsic nature of the approach: it provides SQL

queries as a primary result, so that all tuples resulting from the same

6.5. Toward a Reference Evaluation Framework 101

SQL query have intrinsically the same score, and that the same result

can be obtained by different queries.

• Most of the queries in the dataset are composed of only one element,

so that the evaluation do not test the algorithm at all

• The benchmark does not discuss what is a correct result in terms of

granularity.

To address these issues, the authors proposed some guidelines to

build an evaluation framework based on Cranfield paradigm tailored for

keyword search over structured data.

• The dataset must be representative of the domain of interest both in

terms of data and size, so that they have to be decided on the basis

of the search task the system has to address. Furthermore, the dataset

must also have a complex structure made of interconnected tables, to

properly test the retrieval algorithm.

• The topics must simulate actual user information needs and could

be prepared from real system logs, gathered by means of task-

based analysis, or through a deep interaction with the involved

stakeholders. As a consequence, the evaluation is conducted starting

from the information need and not from ready-to-use query, as in

numerous previous evaluations. Furthermore, it is necessary to define

information needs that can be translated into queries composed of

more than one keyword, for the reasons explained above.

• The ground-truth is essential to evaluate the effectiveness of a systems,

and it is important that the relevance judgments are as most unbiased

102 Chapter 6. Evaluation

as possible. For this reason the possible results to a query have to be

judged by a pool of domain users that decide if a result is relevant for

a given information need. To avoid the issue of schema-based systems

that provide sets of equally rank tuples, the SQL queries could be be a

good candidate for the evaluation for these systems. Nevertheless, to

consider SQL queries as a result of a search system makes graph-based

approaches not comparable with schema-based approaches.

Conclusions

It is necessary for the development of this research area that the

community recognize the need of an unified and shared framework

to evaluate the keyword search systems in a systematic. It has been

demonstrated by the information retrieval evaluation campaigns that the

creation of a tool for the systematical comparison and evaluation of the

different approaches is the fist step in the right direction for a more objective

and efficient improvement of the performances, both in terms of time and

effectiveness. Without a comprehensive benchmark, it is impossible to

identify the valuable system components and approach, leading to scientific

research based on speculations.

7
Conclusions

In the last years, a lot of effort has been put on designing different

systems implementing natural language search on relational databases. The

community proposed integrated solutions built to efficiently accomplish the

task, but they lacked a complete and general view on the issue, so that many

critical aspects do not received the necessary attention.

With our work we propose a general pipeline for keyword search systems

and we generalize the approaches proposed in literature, disclosing to the

reader the state-of-the-art of the field. This pipeline takes in considerations

all the aspects of a keyword search systems: we delineate four different

elements, i.e. the data processing, the query processing, the matching step

and the answers building. Each component is individually presented in the

chapters of this thesis, because each component is equally important from

a system viewpoint. These components are deeply integrated together, so

that the peculiarities of each component depend from the specific system

and from the others components.

The content of this thesis can be used as a first step toward the

103

104 Chapter 7. Conclusions

development of new solutions, because although a lot of research has been

done to present more and more efficient and effective solutions, there is

still a great deal of work ahead to overcome the proof-of-concept state of

these works and to present a real commercial system designed for a daily

use. The most of the research in this field aimed to enhance the efficiency

of the keyword search systems, overlooking the components that do not

directly affect this aspect. Differently, we analyzed each component details,

providing a close examination of the systems. In Table 7.1 we synthetically

present the characteristics of the main systems studied and analyzed in

this thesis. We take into account each component, showing the approaches

followed by the authors. The contents of this thesis, resumed in the table,

are exposed in the following paragraphs.

The data processing component aims to manage and organize the data

contained in the database to allow the successive search, materializing

indexes and other auxiliary structures. As we can see from Table 7.1,

most of the systems implement the schema- or graph-based approaches

(SCH, GRA in the table, respectively) to represent the database content.

The schema graph GS materialize the database as a network of relations,

while the data graph GD as a network of tuples. GS is than light and

flexible compared to GD: from this viewpoint, the latter systems suffer

from critical scalability issues that could undermine the feasibility of this

kind of approach due to the potential large dimensions of the data graph.

The Multi-Granular-Graph (M-GRA) approach of Dalvi et al. [Dalvi et al.,

2008] aims to resolve these memory consumption issues materializing in

RAM only a small part of the entire data-graph, while the rest could be

105

Sy
st

em
D

at
a

Q
ue

ry
A

ns
w

er
s

R
ep

re
s.

In
de

x/
M

at
ch

in
g

Se
m

an
ti

cs
Q

.p
ro

ce
ss

in
g

St
ru

ct
ur

e
R

an
ki

ng

D
BX

pl
or

er
SC

H
Sy

m
bo

lT
ab

le
∧

-
SQ

L
qu

er
ie

s
N

um
be

r
of

jo
in

s

D
IS

C
O

V
ER

SC
H

M
as

te
r

In
de

x
∧

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
N

um
be

r
of

jo
in

s

D
IS

C
O

V
ER

II
SC

H
M

as
te

r
In

de
x

∧,
∨

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
IR

at
at

tr
ib

ut
e

le
ve

l

PR
EC

IS
SC

H
M

as
te

r
In

de
x

∧,
∨,
¬

fu
ll-

te
xt

D
BM

S
D

B
Su

bs
et

G
S

Ed
ge

W
ei

gh
ts

EF
FE

C
TI

V
E

SC
H

M
as

te
r

In
de

x
∧,
∨

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
IR

at
at

tr
ib

ut
e

le
ve

l

SP
A

R
K

SC
H

M
as

te
r

In
de

x
∧,
∨,
¬

,W
C

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
IR

at
at

tr
ib

ut
e

le
ve

l

LA
BR

A
D

O
R

SC
H

M
as

te
r

In
de

x
∧

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
Si

m
ila

ri
ty

BN

M
ea

nK
S

SC
H

M
as

te
r

In
de

x
∧

fu
ll-

te
xt

D
BM

S
SQ

L
qu

er
ie

s
G

S
Ed

ge
W

ei
gh

ts

PO
W

ER
SC

H
M

as
te

r
In

de
x

∧
fu

ll-
te

xt
D

BM
S

Tu
pl

e
st

ru
ct

ur
es

N
D

SQ
A

K
SC

H
In

ve
rt

ed
In

de
x

∧
−

SQ
L

qu
er

ie
s

G
S

N
od

e/
Ed

ge
W

ei
gh

ts

K
EY

M
A

N
TI

C
/

K
EY

R
Y

SC
H

−
∧

−
SQ

L
qu

er
ie

s
N

D

G
ol

en
be

rg
et

al
.

G
R

A
N

D
∧,
∨

−
Tu

pl
es

tr
ee

s
Pr

ox
im

it
y/

N
od

e
Pr

es
ti

ge

BA
N

K
S

G
R

A
D

ou
bl

e
in

de
x

∧
−

Tu
pl

es
tr

ee
s

Pr
ox

im
it

y/
N

od
e

Pr
es

ti
ge

BA
N

K
S

II
G

R
A

D
ou

bl
e

in
de

x
∧

−
Tu

pl
es

tr
ee

s
Pr

ox
im

it
y/

N
od

e
Pr

es
ti

ge

BL
IN

K
S

G
R

A
Bi

-l
ev

el
in

de
x

∧
−

Tu
pl

es
tr

ee
s

Pr
ox

im
it

y/
N

od
e

Pr
es

ti
ge

D
PB

F
G

R
A

N
ot

sp
ec

ifi
ed

∧
−

Tu
pl

es
tr

ee
s

Pr
ox

im
it

y/
N

od
e

Pr
es

ti
ge

EA
SE

G
R

A
Ex

te
nd

ed
in

de
x

∧
−

r-
ra

di
us

gr
ap

hs
IR

/
Pr

ox
im

it
y

ST
A

R
G

R
A

D
ou

bl
e

in
de

x
∧

−
Tu

pl
es

tr
ee

s
Pr

ox
im

it
y/

N
od

e
Pr

es
ti

ge

Pr
un

eD
P

G
R

A
D

ou
bl

e
in

de
x

∧
−

Tu
pl

es
tr

ee
s

G
D

W
ei

gh
ts

PA
C

O
K

S
G

R
A

D
ou

bl
e

in
de

x
∧

−
Tu

pl
e

su
bg

ra
ph

s
Pr

ox
im

it
y/

N
od

e
Pr

es
ti

ge

D
al

vi
M

-G
R

A
M

-G
R

A
∧

−
Tu

pl
es

tr
ee

s
Pr

ox
im

it
y/

N
od

e
Pr

es
ti

ge

EK
SO

V
D

In
ve

rt
ed

In
de

x
∧

fu
ll-

te
xt

D
BM

S
V

ir
tu

al
D

oc
um

en
ts

fu
ll-

te
xt

D
BM

S

SA
IN

T
V

D
SK

SA
/K

PS
A

∧
N

D
V

ir
tu

al
D

oc
um

en
ts

IR
/

pr
ox

im
it

y

Table 7.1. A overview of most of the systems surveyed in this work with their

characteristics. Legend: SCH: Schema-based; GRA: Graph-based; M-GRA: Multi-

Granular-Graph; VD: Virtual Documents; −: not implemented; ND: not defined; ∧:

AND; ∨: OR; ¬: NOT; WC: Wildcards.

106 Chapter 7. Conclusions

disk-resident. Finally, a totally different approach is represented by the

virtual document (VD) approach, that materializes plain documents built

offline from the information contained in the database instance, in order to

efficiently retrieve this documents with traditional IR techniques.

The matching process generally uses precomputed indexes to efficiently

match the query keywords with the database elements. Researchers adopt

structures and techniques derived from the IR inverted index and indexing

process to do the task. In the literature, the indexing details (as for the query

processing details) are generally omitted either because indexing process

is entrusted to the DBMS or because effectiveness issues are not the main

focus. In particular, the schema-based approaches generally use Master

Indexes assembled from the inverted indexes built on each relation attribute

using the DBMS indexing capabilities. Differently, in DBXplorer [Agrawal

et al., 2002] the authors designed their own indexing system: the Symbol

Table can handle different location granularities, so that it can index the

rows, the columns or the cells of each table; SQAK [Mesquita et al., 2007]

exploits Apache Lucene for indexing the content of each relation attribute,

while Keymantic and Keyry [Bergamaschi et al., 2011a,b] do not rely on any

index to do the matching between the keywords and the database elements.

The most of the graph-based systems implement a double index, where

the first one maps each database term with the RowIDs of the tuples that

contain the term, while the second one maps RowIDs with GD nodes.

Indexes are used in BLINKS [He et al., 2007] both to allow the matching

step and to accelerate the answers building process: it materialize a bi-level

graph storing the minimum distances between the nodes on the graph. In

107

EASE [Li et al., 2008b], the authors implement an extended index that maps

the heterogeneous data source handled by the system. [Golenberg et al.,

2008] and DPBF [Ding et al., 2007] do not provide any information on the

indexing process adopted.

The virtual document approach exploits inverted index derived from

the IR field. In particular, SAINT [Jianhua Feng et al., 2011] proposed two

solutions: the single-keyword-based structure-aware index maps each term

with the related virtual documents, while the keyword-pair based structure-

aware index stores, for each couple of keywords, a pre-computed mutual

score that would eventually been computed using the SKSA index.

The Query processing component aims to enhance the effectiveness of

the search applying technique designed to sanitize the query and provide

a more effective matching. Even though most of the components of the

information retrieval query processing could be easily adopted in this field,

e.g. stopword removing and stemming, little attention has been payed on

it. In Table 7.1 we can see that schema-based systems generally entrust

the DBMS full-text features to process the query (many of them did not

specify the implementation details), whereas graph-based solutions do not

even address the problem. As a matter of fact, the aim of the current

generation of systems focuses on performance and efficiency, while lacking

any detail on marginal (from this point of view) topics. This assumption

implies that a commercial implementation of a keyword search system is

still far from to be released. In Table 7.1 we also specify the logical semantics

applied to the queries. Most of the systems apply the AND semantics in

order to output only the answers containing all the keywords of the query.

108 Chapter 7. Conclusions

Generally, applying the OR semantics allows to obtain more relevant results,

but increase the computational complexity because the algorithms must

take in account all the possible keyword configurations. Rarely the systems

use a more rich semantic.

The major contributions in the keyword search field have been produced

to design and lighten the answers building process. The structures built from

the database representation graph, either from GS or GD, are expensive to

be computed and their nature depends on both the graph structure and

algorithm used. The approach generally followed is to calculate the top-k

ranked results, avoiding to waste time to calculate results that the user

would not consult. This results are produced on-the-fly inspecting the

graphs, and are ranked according to functions that take in considerations

both the structure topology and the IR features.

The schema-based systems generally produce Minimal Total Join

Networks of Tuples (MTJNTs) through the analysis of the relations content.

These networks are applied to patterns to produce structured SQL queries.

Differently, In [Zeng et al., 2016]the authors designed a system resulting

tuple structures built exploiting only the DBMS and without an on-the-

top system. The task of the system proposed in [Simitsis et al., 2007]

differs from the other approaches, because it is designed to result database

subgraphs containing all the information related to the content of the query.

The first naive ranking functions of DBXplorer [Agrawal et al., 2002] or

Discover [Hristidis and Papakonstantinou, 2002] only takes in account the

dimensions of the MTJNTs, assuming that more compact networks are more

significant than large ones. DISCOVER II [Hristidis et al., 2003] added an

109

IR-fashion ranking function, based on tf-idf measures. However, it has

been empirically demonstrated in [Coffman and Weaver, 2010] that this

kind of ranking functions does not provide any significant effectiveness

enhancement with respect to ranking functions that only take in account

structural factors. As a matter of fact, most of the systems rank the answers

with a score proportional to the sum of weight of nodes and edges on the

graph, computed in heterogeneous ways among the different cases. In

LABRADOR [Mesquita et al., 2007] the authors trained a Bayesian Network

to compute a measure of similarity between the SQL queries resulted and

the original query, in order to provide the ranked list.

Generally, the graph-based systems rely on building connected trees

from the graph nodes, applying algorithms to solve or approximate the

Steiner Tree Problem. These solutions generally rank their results using

proximity-based score emphasizing compact results, designed to consider

the PageRank-style prestige of the nodes. Differently, EASE materialize his

answers as r-radius graphs, a solution suited to represent the heterogeneous

data that the system handles. The score of this answers consider both IR

measures and structural factors.

The complexity of the problem prevents the algorithm to produce

results in acceptable times, even with small databases. In our opinion,

this is the most relevant problem of the current generation of keyword

search systems. The performance of graph- and schema-based solutions

encouraged researchers to design the virtual document-based systems, that

result ranked lists of virtual document, which scores are computed using

traditional IR techniques. In the case of SAINT [Jianhua Feng et al.,

2011], the virtual documents are connected in a graph through links built

110 Chapter 7. Conclusions

on shared tuples, so that the system could retrieve aggregates of virtual

documents, which scores are computed using proximity measures. In

our opinion, designing systems that lighted the load of the algorithm pre-

computing partial results is necessary for the systems of the future.

Finally, we could not propose a thesis written to be a first step toward

the development of new keyword search over databases solutions without

analyzing the situation over the scientific evaluation of these systems. After

years of development in this field, it is now time for the community

to spend effort on building a complete and systematical evaluation

framework, following the examples of the information retrieval evaluation

campaigns. This step cannot be further postponed, because new proposed

solutions must be evaluated objectively, avoiding the biased results that

the researchers got from the comparisons done until now. New standard

collections, topics and judgments must be proposed by large dedicated

pools of researchers: the future of the keyword search field depends on

valuable results, and these results can be achieved only through a shared,

standard and systematical evaluation process.

Bibliography

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of databases.

Addison-Wesley, Reading, Mass.

Agrawal, S., Chaudhuri, S., and Das, G. (2002). DBXplorer: a system for

keyword-based search over relational databases. In Proceedings of the 18th

International Conference on Data Engineering, pages 5–16.

Bergamaschi, S., Domnori, E., Guerra, F., Orsini, M., Lado, R. T., and

Velegrakis, Y. (2010). Keymantic: semantic keyword-based searching in

data integration systems. In Proceedings of the VLDB Endowment, volume 3,

pages 1637–1640.

Bergamaschi, S., Domnori, E., Guerra, F., Trillo Lado, R., and Velegrakis,

Y. (2011a). Keyword search over relational databases: a metadata

approach. In Proceedings of the 2011 ACM SIGMOD International Conference

on Management of data, pages 565–576.

Bergamaschi, S., Ferro, N., Guerra, F., and Silvello, G. (2013a). Keyword

search and evaluation over relational databases: an outlook to the future.

111

112 Chapter 7. Conclusions

In Proceedings of the 7th International Workshop on Ranking in Databases,

page 8.

Bergamaschi, S., Ferro, N., Guerra, F., and Silvello, G. (2016). Keyword-

Based Search Over Databases: A Roadmap for a Reference Architecture

Paired with an Evaluation Framework. In Transactions on Computational

Collective Intelligence XXI, pages 1–20. Springer.

Bergamaschi, S., Guerra, F., Interlandi, M., Trillo-Lado, R., and Velegrakis,

Y. (2013b). QUEST: a keyword search system for relational data based

on semantic and machine learning techniques. Proceedings of the VLDB

Endowment, 6(12):1222–1225.

Bergamaschi, S., Guerra, F., Rota, S., and Velegrakis, Y. (2011b). A

hidden markov model approach to keyword-based search over relational

databases. In International Conference on Conceptual Modeling, pages 411–

420. Springer.

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S.

(2002). Keyword searching and browsing in databases using BANKS. In

Proceeding of the 18th International Conference on Data Engineering, pages

431–440.

Bourgeois, F. and Lassalle, J.-C. (1971). An Extension of the Munkres

Algorithm for the Assignment Problem to Rectangular Matrices.

Commununications of the ACM, 14(12):802–804.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web

search engine. Computer Networks and ISDN Systems, 30.

113

Carpineto, C. and Romano, G. (2012). A Survey of Automatic Query

Expansion in Information Retrieval. ACM Computing Surveys, 44(1):1–50.

Cleverdon, C. (1997). The Cranfield tests on index language devices. In

Sparck Jones, K. and Willett, P., editors, Readings in Information Retrieval,

pages 47–59. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Codd, E. F. (1970). A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387.

Coffman, J. and Weaver, A. C. (2010). A framework for evaluating database

keyword search strategies. In Proceedings of the 19th ACM international

conference on Information and knowledge management, pages 729–738.

Coffman, J. and Weaver, A. C. (2014). An Empirical Performance Evaluation

of Relational Keyword Search Techniques. IEEE Transactions on Knowledge

and Data Engineering, 26(1):30–42.

Croft, B., Metzler, D., and Strohman, T. (2009). Search Engines: Information

Retrieval in Practice. Addison-Wesley Publishing Company, USA, 1st

edition.

Dalvi, B. B., Kshirsagar, M., and Sudarshan, S. (2008). Keyword search

on external memory data graphs. Proceedings of the VLDB Endowment,

1(1):1189–1204.

Demidova, E., Fankhauser, P., Zhou, X., and Nejdl, W. (2010). DivQ:

diversification for keyword search over structured databases. In

Proceedings of the 33rd international ACM SIGIR conference on Research and

development in information retrieval, pages 331–338.

114 Chapter 7. Conclusions

Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., and Lin, X. (2007).

Finding top-k min-cost connected trees in databases. In 2007 IEEE 23rd

International Conference on Data Engineering, pages 836–845.

Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The

vocabulary problem in human-system communication. Communications

of the ACM, 30(11):964–971.

Golenberg, K., Kimelfeld, B., and Sagiv, Y. (2008). Keyword proximity

search in complex data graphs. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, pages 927–940.

Guha, R., McCool, R., and Miller, E. (2003). Semantic search. In Proceedings

of the 12th international conference on World Wide Web, pages 700–709.

He, H., Wang, H., Yang, J., and Yu, P. S. (2007). BLINKS: ranked keyword

searches on graphs. In Proceedings of the 2007 ACM SIGMOD International

Conference on Management of Data, pages 305–316.

Hristidis, V., Gravano, L., and Papakonstantinou, Y. (2003). Efficient IR-

style keyword search over relational databases. In Proceedings of the 29th

International Conference on Very Large Data Bases, volume 29, pages 850–

861.

Hristidis, V. and Papakonstantinou, Y. (2002). Discover: Keyword search

in relational databases. In Proceedings of the 28th international conference

on Very Large Data Bases, pages 670–681. Proceeding of the 2002 VLDB

Endowment.

115

Hwang, F. and Richards, D. S. (1992). Steiner tree problems. Networks,

22(1):55–89.

Jianhua Feng, Guoliang Li, and Jianyong Wang (2011). Finding Top-

k Answers in Keyword Search over Relational Databases Using Tuple

Units. IEEE Transactions on Knowledge and Data Engineering, 23(12):1781–

1794.

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., and

Karambelkar, H. (2005). Bidirectional expansion for keyword search on

graph databases. In Proceedings of the 31st International Conference on Very

Large Data Bases, pages 505–516.

Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., and Yu, X.

(2014). MeanKS: meaningful keyword search in relational databases with

complex schema. pages 905–908.

Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., and Yu, X.

(2015). Meaningful keyword search in relational databases with large and

complex schema. In Proceedings of the 31st International Conference on Data

Engineering, pages 411–422.

Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F. M., and Weikum, G.

(2009). STAR: Steiner-Tree Approximation in Relationship Graphs. In

Proceeding of the 2009 International Conference on Data Engineering, pages

868–879.

Kumar, R. and Tomkins, A. (2009). A Characterization of Online Search

Behavior. Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering.

116 Chapter 7. Conclusions

Li, G., Feng, J., and Zhou, L. (2008a). Retune: Retrieving and materializing

tuple units for effective keyword search over relational databases. In

Proceedings of the 27th International Conference on Conceptual Modeling,

pages 469–483. Springer.

Li, G., Ooi, B. C., Feng, J., Wang, J., and Zhou, L. (2008b). EASE: an

effective 3-in-1 keyword search method for unstructured, semi-structured

and structured data. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pages 903–914.

Li, L., Shang, Y., Shi, H., and Zhang, W. (2002). Performance evaluation

of hits-based algorithms. In Communications, internet, and information

technology, pages 171–176.

Li, R.-H., Qin, L., Yu, J. X., and Mao, R. (2016). Efficient and Progressive

Group Steiner Tree Search. pages 91–106.

Lin, Z., Xue, Q., and Lai, Y. (2016). Pacoks: Progressive ant-colony-

optimization-based keyword search over relational databases. In

International Conference on Web-Age Information Management, pages 107–

119. Springer.

Liu, F., Yu, C., Meng, W., and Chowdhury, A. (2006). Effective keyword

search in relational databases. In Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, pages 563–574.

Liu, S., Liu, F., Yu, C., and Meng, W. (2004). An effective approach

to document retrieval via utilizing WordNet and recognizing phrases.

In Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval, pages 266–272.

117

Luo, Y., Lin, X., Wang, W., and Zhou, X. (2007). Spark: top-k keyword

query in relational databases. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 115–126.

Luo, Y., Wang, W., and Lin, X. (2008). SPARK: A Keyword Search Engine on

Relational Databases. In Proceedings of the 24th International Conference on

Data Engineering, pages 1552–1555.

Markowetz, A., Yang, Y., and Papadias, D. (2007). Keyword search

on relational data streams. In Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data, pages 605–616.

Mesquita, F., da Silva, A. S., de Moura, E. S., Calado, P., and Laender, A. H.

(2007). LABRADOR: Efficiently publishing relational databases on the

web by using keyword-based query interfaces. Information Processing &

Management, 43(4):983–1004.

Nandi, A. and Jagadish, H. (2009). Qunits: queried units in database search.

arXiv preprint arXiv:0909.1765.

Park, J. and Lee, S.-g. (2011). Keyword search in relational databases.

Knowledge and Information Systems, 26(2):175–193.

Qin, L., Yu, J. X., and Chang, L. (2009). Keyword search in databases: the

power of RDBMS. In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, pages 681–694.

Simitsis, A., Koutrika, G., and Ioannidis, Y. (2007). Précis: from unstructured

keywords as queries to structured databases as answers. The VLDB

Journal, 17(1):117–149.

118 Chapter 7. Conclusions

Singh, J. and Gupta, V. (2016). Text Stemming: Approaches, Applications,

and Challenges. ACM Computing Surveys, 49(3):1–46.

Su, Q. and Widom, J. (2005). Indexing relational database content offline

for efficient keyword-based search. In Proceedings of the 9th International

Database Engineering & Application Symposium (IDEAS’05), pages 297–306.

Tassey, G., Rowe, B. R., Wood, D. W., Link, A. N., and Simoni, D. A. (2010).

Economic impact assessment of NIST’s text REtrieval conference (TREC)

program. National Institute of Standards and Technology, Gaithersburg,

Maryland.

Tata, S. and Lohman, G. M. (2008). SQAK: doing more with keywords.

In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, pages 889–902.

van Rijsberben, C. J. (1979). Information Retrieval. Butterworth-Heinemann

Newton, MA, USA.

Webber, W. (2010). Evaluating the effectiveness of keyword search. IEEE

Data Engineering Bulletin, 33(1):54–59.

Yang, X., Procopiuc, C. M., and Srivastava, D. (2011). Summary graphs for

relational database schemas.

Yi Luo, Wei Wang, Xuemin Lin, Xiaofang Zhou, Jianmin Wang, and Kequi

Li (2011). SPARK2: Top-k Keyword Query in Relational Databases. IEEE

Transactions on Knowledge and Data Engineering, 23(12):1763–1780.

Yu, J. X., Qin, L., and Chang, L. (2010). Keyword Search in Relational

Databases: A Survey. IEEE Data Eng. Bull., 33(1):67–78.

119

Zeng, Z., Lee, M. L., and Ling, T. W. (2016). PowerQ: An Interactive

Keyword Search Engine for Aggregate Queries on Relational Databases.

In Proceedings of the 19th International Conference on Extending Database

Technology. OpenProceedings.

Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM

computing surveys, 38(2):6.

	Abstract
	Sommario
	Introduction
	Background
	The Relational Database Model
	Relational Database as a Graph
	Graph Definition
	Materializing RDBs as Graphs

	Defining and Quering a Database
	Keyword Search in Relation Database
	Systems Architecture

	Systems Approaches
	Schema-based Approach
	Graph-based Approach
	Virtual Document Approach

	Data processing
	Indexing
	Schema-based Approaches
	Graph-based Approaches
	Other

	RDBMSs Full-Text Capabilities

	Query Processing and Matching
	IR Query Analysis
	Stopwords Removal
	Stemming
	Query Expansion
	Segmentation and Phrases

	Query Language and Semantics
	Matching
	Matching Process Without Indexes

	Answers Building
	Schema-based Approach
	Graph-based Approach

	Evaluation
	Evaluation in Information Retrieval
	Evaluation in Relational Keyword Search
	Effectiveness Evaluation
	Efficiency Evaluation
	Toward a Reference Evaluation Framework

	Conclusions
	Bibliography

