

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA DELL’INFORMAZIONE

“MODELLAZIONE E CONTROLLO DI SISTEMI MAGLEV ELLITTICI”

 Relatore: Prof. Damiano Varagnolo
 Università degli Studi di Padova

Laureando: Francesco De Marchi

 Correlatore: PhD candidate Hans Engmark
 Norges Teknisk-Naturvitenskapelige Universitet

ANNO ACCADEMICO 2021 – 2022

Data di laurea 14/11/2022

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

1 Abstract

This thesis is part of a larger project in collaboration with the Norwegian Uni-
versity of Science and Technology, NTNU, and it has the objective of designing
and building a maglev platform that is cheap, relatively easy to assemble, and
reprogrammable. The intuition is that this platform may be used by students
taking control systems subjects, that could then build their own system to ex-
periment with, and develop a better understanding of the theoretical concepts
behind control.

The first steps of this project were taken by a series of NTNU students
in their bachelor thesis, “Magnetic levitation systems: design, prototyping and
testing of a digital PID-controller” [3]. This first work built a platform that
used permanent magnets and actively controlled solenoids (using PID control)
to magnetically levitate a magnet. It also developed a mathematical framework
in Matlab to simulate the system. This thesis reports part of a new round of
development of the system, performed in collaboration with two other students
from University of Padova, Alberto Morselli and Andrea Nicetto. This round
overhauls the electrical circuits of the system, improves the control algorithms,
and generalizes the results to other mechanical designs.

This thesis focuses in particular on this generalization: we attempt to mod-
ify the system design to simulate the magnetic field the magnets would generate
if they were placed in an elliptical arrangement instead of the original circular
arrangement. This change in the disposition of the magnets is indeed deemed as
allowing to implement more sophisticated (and interesting for the users) control
strategies for the levitating magnet. This adaptation requires the accomplish-
ment of several tasks: first, altering the ODEs to suit the new design; second,
changing the positions of the sensors for the magnetic field as they may not be
optimal anymore; third, finding which new limitations in the ability to control
the levitating magnet are given by physical components such as actuators and
sensors, since they must have a limited cost for the system to be affordable.

2

2 Abstract in lingua Italiana

Questa tesi è parte di un progetto più grande svolto in collaborazione con
l’Università Norvegese di Scienze e Tecnologie, NTNU, che come obbiettivo
ha l’idealizzazione di una piattaforma per la levitazione magnetica che sia eco-
nomica e relativamente facile da assemblare. Gli studenti di teoria dei sistemi
di controllo avrebbero dunque l’opportunità di replicare questa piattaforma per
sperimentare i concetti teorici che hanno studiato e svilupparne una miglior
comprensione.
I primi passi del progetto sono stati compiuti da un gruppo di studenti del
NTNU nella loro tesi triennale, ”Magnetic levitation systems: design, prototyp-
ing and testing of a digital PID-controller” [3]. Essi costruirono una piattaforma
che sfrutta dei magneti permanenti per generare un campo magnetico stabile,
dei solenoidi per alterare questo campo magnetico nel modo necessario per man-
tenere in equilibrio un disco magnetico, e un controllore PID per gestire questi
solenoidi. Inoltre svilupparono anche un simulatore del sistema in MATLAB. In
questa tesi è riportata parte della seconda iterazione di questo progetto, svolta
in collaborazione con altri due studenti dell’Università degli Studi di Padova,
Alberto Morselli e Andrea Nicetto. In questa seconda fase del progetto è stata
compiuta una ri-pianificazione dei circuiti elettrici, lo sviluppo di nuovi algoritmi
di controllo e uno studio sulla generalizzazione del posizionamento dei magneti.
Questa tesi in particolare è incentrata su questa ultima parte: è stato studiato in
simulazione il campo magnetico che i magneti genererebbero se fossero disposti
in una conformazione ellittica anzichè circolare, come nel sistema fisico. Questa
ricerca è stata ritenuta interessante in quanto potrebbe portare allo sviluppo di
strategie di controllo più sofisticate (e interessanti per l’utilizzatore del sistema)
per la levitazione dell’oggetto levitante. Queste modifiche richiedono l’analisi
di diversi fattori: primo, come variano le equazioni differenziali che descrivono
il sistema; secondo, come dovrebbe cambiare la posizione dei sensori per man-
tenere ottimale la misurazione del campo magnetico; terzo, scoprire quali sono i
nuovi limiti dell’abilità di controllare l’oggetto levitante dettati dalle componenti
fische del sistema, come attuatori e sensori, considerando che questi dovrebbero
avere un costo limitato per rispettare gli obbiettivi del progetto.

3

Contents

1 Abstract 2

2 Abstract in lingua Italiana 3

3 Introduction 6

4 Physical Background 7

5 Modelling of the system 9

6 Matlab Implementation 11
6.1 Description of the simulator . 11
6.2 Force Plotter . 13
6.3 Equilibrium Finder . 17
6.4 Controllability . 20
6.5 Condition Number Mapper . 26

7 Discussion on the Results 31
7.1 Height of the Equilibrium . 31
7.2 Controllable Area . 33
7.3 Evaluation of the Condition Number 35
7.4 Conclusions . 36
7.5 Future of the Project . 36

Bibliography 36

5

3 Introduction

A magnetic levitation (abbreviated: MagLev) platform is a system that uses
magnetic fields in order to lift and control an object. This can be achieved in
several ways, usually with a combination of permanent magnets and electromag-
nets, as in the case analysed in this thesis, or diamagnets, which are magnets
that when subjected to another external magnetic field exhibit a weak magnetic
field antiparallel to the first one, or superconductors, which are particular dia-
magnets that can create a strong magnetic field.
The applications of magnetic levitation are wide-ranging, from microrobotics
to medicine, but the most famous use of MagLev technology is arguably in the
field of transportation - the word Maglev itself is in fact usually associated with
magnetically levitating trains.

This project focused on building a MagLev platform started in 2021 and was
originally worked on by four students of the Norwegian University of Science
and Technology, while this second iteration is the result of the efforts of three
students, including the author of this thesis, of the Università degli Studi di
Padova, who had the objective of improving both the hardware and the soft-
ware components of the project.
The aim of the project was to design a system that can be an helpful tool for
other control theory students, since it’s application requires the understanding
several fundamental concepts such as the linearization of non-linear differential
equations, the transfer function, the step response and feedback loops.

The physical system is composed of a platform that holds eight magnets and
four solenoids, placed in a circular arrangement on two different levels, and the
electronics for the control of the system, allocated below the magnets. The
specifics of all the components used to build the platform can be found in the
thesis on the first iteration of the project.
The MATLAB model of the system can be used to calculate the position of
the equilibrium and the area of controllability, to simulate the efficiency of a
controller and to map the magnetic field and the forces exerted on the levitating
disc.

This thesis will focus on some of the modifications applied to the MatLab model
that was created by the first group of students and then overhauled by the second
group, in particular on the scripts that evaluate what changes in the magnetic
field generated by an elliptical arrangement of the magnets. Once the magnetic
field has been calculated it is then possible to get an estimation of the area where
the levitating disc is controllable by analyzing the force that can be applied on
it by the magnets. A second, more accurate, approach to the study of this
area has been explored that requires the calculation of the condition number,
but while the results acquired seem compatible with those obtainable from the
first approach, they remain untested on the physical system. The version of the
simulator used for this thesis can be found at this link

6

https://github.com/francescoDemarchi6/MagLev

4 Physical Background

The levitation of the magnetic disc is caused by its interaction with the magnetic
fields generated by the solenoids and the permanent magnets. By altering the
magnetic field of the solenoids it’s also possible to control the trajectory of the
disc, at least while it is within a certain region containing the equilibrium of the
system. In order to be able to calculate the intensity of the magnetic field and
consequently the magnetic force affecting the disc, the neodymium magnets and
the levitating disc were modelled as if they were solenoids in a way described
in Chapter 6. In this chapter it will be briefly explained how it’s possible to
calculate the magnetic force a solenoid can generate at a certain position
Solenoids are a type of magnets called electromagnets, named so for the way
their magnetic field is generated by the current flowing through them. It is
possible to obtain the intensity of the magnetic field generated by the current
flowing in a circuit at a point P by using Biot-Savart’s law, described by the
following equation:

B⃗ =
µ

4π

∫
γ

Ids⃗

r2
u⃗t × u⃗r (1)

where µ is the magnetic permeability of free space, γ is the circuit along which
the current I flows with direction ds , u⃗t is the versor tangent to the circuit, u⃗r
is the versor pointing toward the point P and finally r is the distance from the
current element Id s̃ that point.

This law can thus be used to calculate the magnetic field generated by the
current flowing through the solenoids at the position of the levitating disc, to
calculate then the force exercised by the magnetic field on the disc, it is possible
to use the second law of Laplace:

F⃗ =

∫
γ

ids⃗× B⃗ (2)

However, the integrals required to solve Biot-Savart’s law and the second law of
Laplace cannot in general be solved in this form but they can be solved through
a process presented by Gonzàlez and Càrdenas (2021) [2]. The resulting equa-
tions, in cylindrical coordinates, are:

B(ρ, ϕ, z) =
µ0Iρ

′

4π
(B⃗x + B⃗yB⃗z) (3)

B⃗x = e⃗x(z − z′)

∫ ϕ2

ϕ1

cos(ϕ′)

[ρ′2 + ρ2 + (z − z′)2 − 2ρ′ρcos(ϕ′ − ϕ)]
3
2

dϕ′ (4)

B⃗y = e⃗y(z − z′)

∫ ϕ2

ϕ1

sin(ϕ′)

[ρ′2 + ρ2 + (z − z′)2 − 2ρ′ρcos(ϕ′ − ϕ)]
3
2

dϕ′ (5)

7

B⃗z = e⃗z

∫ ϕ2

ϕ1

ρ′ − ρcos(ϕ′ − ϕ)

[ρ′2 + ρ2 + (z − z′)2 − 2ρ′ρcos(ϕ′ − ϕ)]
3
2

dϕ′ (6)

The last concept needed to understand the physical background of the system
is the Hall effect, since the sensors used to measure the magnetic field are Hall
probes, or Hall effect sensors.
Such an effect explains how the presence of a magnetic field affects the motion
of a charged particle inside a conductor exposed to an electric field. The formula
to determine the effect is:

B =
ned

I
VH (7)

Where n is the volumetric density of the particles, e is the elementary charge,
d is the length of the equipotential side of the conductor through which the
particles are flowing, I is the current intensity and VH is the potential applied
to the conductor.
If I is constant and is known, then ned

I is constant and known as well, so by
exposing the Hall sensor to a known magnetic field it is possible to quantify VH .
By measuring VH it is then possible to obtain the intensity of the component
of the magnetic field perpendicular to the circuit in the sensor, this means that
at least three Hall sensor are necessary to measure all three components of B⃗.

8

5 Modelling of the system

To model the system effectively, some simplifications were introduced: as stated
in the previous chapter, all the magnets were treated as solenoids for the cal-
culation of the magnetic forces, these solenoids were then approximated as nr
concentric stacks of nh coils each. Moreover, the coils were considered as regular
polygons of n sides, in this way it was possible to obtain the force and torque of
the levitating disc by calculating the forces exercised by each segment of each
coil using equation (2)

The system can be modelled by using the Newton-Euler equations of mo-
tion, as written in ”Model Description: Magnetic Levitating System”, by Hans
Engmark. [∑n

i=1 Fi∑n
i=1 τi

]
=

[
mI3 0
0 I

] [
a
α

]
+

[
0

ω × I ω

]
(8)

Where Fi and τi are the forces and torques exercised by each segment of the coils,
m is the mass of the levitating disc, I is the Identity matrix, I is the matrix
of inertia, and a and α are the linear and angular accelerations respectively.

As state of the system, it was chosen to use:

η =
[
x y z ψ θ ϕ ẋ ẏ ż ψ̇ θ̇ ϕ̇

]T
(9)

The first six variables are the space coordinates and the angles of the disc with
the axes, the second six variables are the derivatives of the first six.
The equation of each component can be obtained by inverting the Newton-
Euler’s laws of motion (8), the result is the following model, better described in
Engmark’s document:

η̇ =

[
O6x6 I6

O6x6 O6x6

]
η +

[
O6x6

I6

]
σ(η, u)

y =

Bx(η, u)

By(η, u)

Bz(η, u)

(10)

σ(η, u) being the six dimensional column vector:

σ(η, u) =

[
mI3 O3x3

O3x3 I

]−1

Fx(η, u)
Fy(η, u)
Fz(η, u)
τx(η, u)
τy(η, u)
τz(η, u)

+

O2x1

−g
O3x1

 (11)

9

The output of the model is B⃗, with each component being measured by one
of the three Hall effect sensors for the reasons described in the last chapter. In
order to get the most precise readings as possible from the sensors, they where
placed in the origin of the system, directly below the equilibrium, where the
variation of the magnetic field in case of a displacement is the highest and the
relative error is then the lowest.

The equations of the system can describe a general disposition of both the
solenoids and the permanent magnets, since none of the terms were simplified
due to any symmetry of the original circular arrangement, and thus it wasn’t
necessary to alter them in any way to adapt them to an elliptical arrangement
of the magnets.
The point of equilibrium of the system, as explained in ”Magnetic Levitation
System: Design, Prototyping And Testing Of A Digital PID-Controller” (2022)
[3], is in the centre of the system, where the lateral components of the magnetic
forces exercised by the magnets cancel each other out and the vertical compo-
nents are canceled out by the gravitational force. However, altering the position
of the permanent magnets from the original circular position would alter the
height of the point of equilibrium, since by increasing or reducing their distance
from the original point of equilibrium would result in a different intensity of the
force applied at that point, causing it to move up or down.
A deeper analysis of the characteristics of the equilibrium, as well as other
aspects of the system that can be altered by changing the disposition of the
magnets, can be found in the next chapter.

10

6 Matlab Implementation

6.1 Description of the simulator

In order to study the characteristics of the system, such as the value of the
fictitious current flowing in the permanent magnets, the position of the points
of equilibrium and the limits of the controllable area, a simulator of the model
was implemented in MATLAB.
This chapter describes the scripts that needed to be adapted to represent a sys-
tem with an elliptical disposition of the magnets, but all the scripts used can
be found at (todo: put link to github).

A standard ellipse is described by the equation:

y =
x2

a2
+
y2

b2
= 1 (12)

where a2 and b2 are the lengths of the x and y axes respectively. It was
arbitrarily chosen to consider the x axis as unitary and to study the system
with the y axis as the only variable axis. This allowed for the ellipticity of the
system to be describable using only one parameter instead of two, and it was
then possible to describe the ellipse using only its eccentricity, which is defined
as:

e =

√
1− a2

b2
(13)

Since a was considered as unitary, the length of the y axis can be derived form
the eccentricity by inverting this equation.
The eccentricity is an input of the scripts necessary to model the system and the
most important of them is maglevSystem.m, from which the following snippet
is from.

function obj = maglevSystem(x0, params, approximationType,

eccentricity)

mu0 = 4*pi*1e-7;

obj.approximationType = approximationType;

bsqr = 1 / (1 - eccentricity^2); % multiplier for the length

of the y axis of the ellipse

%% Solenoids

Xs = params.solenoids.R*cos(linspace(0,2*pi,params.solenoids.N

+1));

Ys = params.solenoids.R*bsqr*sin(linspace(0,2*pi,params.

solenoids.N+1));

Zs = zeros(size(Xs));

obj.SOLENOIDS = [solenoid(1,1,1,1,1,1,zeros(12,1),0,0,0,’r’)];

for i = 1:params.solenoids.N

obj.SOLENOIDS(i) = solenoid(params.solenoids.ri,params.

solenoids.ro,params.solenoids.h, ...

11

params.solenoids.nr,params.

solenoids.nh,params.solenoids

.nl, ...

[Xs(i),Ys(i),Zs(i)-params.

solenoids.h/2 + params.

solenoids.zs,

0,0,0,0,0,0,0,0,0]’, ...

1,100*mu0,approximationType,’r’);

end

%% Magnets

Xpm = params.magnets.R*cos(linspace(0,2*pi,params.magnets.N+1)

+params.magnets.offset);

Ypm = params.magnets.R*bsqr*sin(linspace(0,2*pi,params.magnets

.N+1)+params.magnets.offset);

Zpm = zeros(size(Xpm));

obj.MAGNETS = [solenoid(1,1,1,1,1,1,zeros(12,1),0,0,0,’r’)];

for i = 1:params.magnets.N

obj.MAGNETS(i) = solenoid(params.magnets.ri,params.magnets

.ro,params.magnets.h, ...

params.magnets.nr,params.magnets.nh

,params.magnets.nl, ...

[Xpm(i),Ypm(i),Zpm(i)-params.

magnets.h

/2,0,0,0,0,0,0,0,0,0]’, ...

params.magnets.I,mu0,

approximationType,0.5*ones

(1,3)); %==gray

end

%% Floating magnet

obj.LEVITATINGMAGNET = solenoid(params.levitatingmagnet.ri,

params.levitatingmagnet.ro,params.levitatingmagnet.h, ...

params.levitatingmagnet.nr,params

.levitatingmagnet.nh,params.

levitatingmagnet.nl, ...

x0,params.levitatingmagnet.I,mu0,

approximationType,’b’);

obj.m = params.levitatingmagnet.m;

%% Sensors

obj.xSens = params.sensor.x;

obj.ySens = params.sensor.y;

obj.zSens = params.sensor.z;

end

The only part that of the script that was necessary to alter was the construc-
tor of the class maglevSystem, here presented: the eccentricity was included in

12

the parameters of the constructor and is used to calculate the variable bsqr which
is then used as multiplicative factor for the positioning of both the solenoids and
the magnets along the y axis. It is thus possible to simulate the system with an
elliptical configurations of just the magnets or just the solenoids, or for example
to align the ellipses along the x axis instead, by just removing the bsqr factor
or changing which array of coordinates is multiplied by it.

6.2 Force Plotter

Another script that had to be slightly adapted is force plotter.m, renamed
force plotter axis.m. The original script maps the forces exercised on the levi-
tating disc in n3 points of a cube centered around a point slightly lower than
the equilibrium. The new version of the script maps the forces only along the
XZ and YZ planes instead, to give a more clear representation of the differ-
ences between the forces felt by the disc along the planes containing the axes of
the ellipse, and plots a region of space that is proportional to the length of the
major axis of the ellipse.

%{

maps the force felt by the levitating magnet in a 3d cube of points

%}

clear; close all;

addpath(’../maglevFunctions’);

load(’params.mat’);

load(’results.mat’);

approximationType = input("approxType [0/1]> ");

eccentricity = input("Eccentricity [0:1]> ");

eccentricity = max (eccentricity, 0); eccentricity = min (eccentricity,

1);

%% Searching parameters

steps = 9; % odd number for planes along the axis

L = .10;

bsqr = 1 / (1 - eccentricity^2);

if(approximationType == 0)

eq = results.zeq.zeq_fst;

params.magnets.I = results.neo_vs_neo.curr_fst;

params.levitatingmagnet.I = results.neo_vs_lev.curr_fst;

else

eq = results.zeq.zeq_acc;

params.magnets.I = results.neo_vs_neo.curr_acc;

params.levitatingmagnet.I = results.neo_vs_lev.curr_acc;

end

13

%% Derived parameters

Ptx = linspace(-L/2, L/2, steps);

Pty = linspace(-L/2*bsqr, L/2*bsqr, steps); % assuming the ellipse’s

major axis is y

Zs = linspace(eq-L*9/20, eq+L*1/10, steps);

Fzs = zeros(length(Ptx), length(Pty), length(Zs),3); %3D matrix of a 3-

page vals

x0 = zeros(12,1); x0(3) = eq;

u = [0; 0; 0; 0]; % x+, y+, x-, y-

sys = maglevSystem(x0, params, approximationType, eccentricity);

% YZ Plane

i = ceil(length(Ptx)/2); % x = 0

for j = 1:length(Pty) %y

for k = 1:length(Zs) %z

x0(1) = Ptx(i); x0(2) = Pty(j); x0(3) = Zs(k); % YZ plane

temp = sys.f(x0, u);

% normalize to make a good plot

vec = temp(7:9);

Fzs(j,i,k,:) = vec./(norm(vec)); %x,y,z forces

end

end

%% XZ Plane

j = ceil(length(Pty)/2); % y = 0

for i = 1:length(Ptx) %x

for k = 1:length(Zs) %z

x0(1) = Ptx(i); x0(2) = Pty(j); x0(3) = Zs(k); % XZ plane

temp = sys.f(x0, u);

% normalize to make a good plot

vec = temp(7:9);

Fzs(j,i,k,:) = vec./(norm(vec)); %x,y,z forces

end

end

%% Plotter

figure(1);

[X,Y,Z] = meshgrid(Ptx, Pty, Zs);

[U,V,W] = deal(Fzs(:,:,:,1), Fzs(:,:,:,2), Fzs(:,:,:,3));

idx = Fzs(:,:,:,3) >= 0;

quiver3(X(idx),Y(idx),Z(idx), U(idx),V(idx),W(idx), .6, ’r’); hold on;

quiver3(X(~idx),Y(~idx),Z(~idx), U(~idx),V(~idx),W(~idx), .6, ’b’); hold

on;

grid on; axis equal; view([45,15]);

xlabel(’x’); ylabel(’y’); zlabel(’z’);

load params;

14

%params.solenoids.ri = 0;

%params.solenoids.ro = 0; % solenoids are covering the forces, better to

not plot them

x0 = zeros(12,1); x0(3) = eq;

sys = maglevSystem(x0, params, approximationType, eccentricity);

draw(sys, ’fancy’); hold off;

It is possible to simulate the forces applied on the disc by any combination
of currents flowing in the solenoids by modifying the value of the variable u in
the section Derived parameters, here set to 0 for all the four solenoids.

15

Figure 1: Some examples of the graphs obtainable from this script:

(a) With an eccentricity of 0.7 the magnets are too far to garantee stability

(b) With an eccentricity of 0.47 it’s possible to stabilize the disc

16

6.3 Equilibrium Finder

The script eq finder can be used to observe the relation between the eccentricity
of the ellipse of the magnets and the height of the point of equilibrium. Naturally
the positions of the solenoids don’t affect the results given by this script, since
the equilibrium is calculated for an autonomous system it depends only on the
position of the permanent magnets.

%{

calculates the height of the equilibrium in (x=0,y=0)

for different eccentricities of the ellipse

an ellipses is described by the equation

x^2/a^2 + y^2/b^2 = 1

sqrt(1-a^2/b^2) is the eccentricity of the ellipse

%}

clear; close all;

addpath(’../maglevFunctions’);

load(’params.mat’);

load(’results.mat’)

approximationType = input("approxType [0/1]> ");

%% Searching parameters

min_height = .03;

max_height = .07;

height_steps = 300;

min_eccentricity = 0;

max_eccentricity = .6;

eccentricity_steps = max_eccentricity * 200; % plotting every .005

if(approximationType == 0)

eq = results.zeq.zeq_fst;

params.magnets.I = results.neo_vs_neo.curr_fst;

params.levitatingmagnet.I = results.neo_vs_lev.curr_fst;

else

eq = results.zeq.zeq_acc;

params.magnets.I = results.neo_vs_neo.curr_acc;

params.levitatingmagnet.I = results.neo_vs_lev.curr_acc;

end

x0 = zeros(12,1); x0(3) = eq;

%% Finding the height of the equilibrium for each eccentricity

Zs = linspace(min_height, max_height, height_steps); % heights at which

the force will be calculated

Es = linspace(min_eccentricity, max_eccentricity, eccentricity_steps); %

eccentricities evaluated

Bs = zeros(size(Es)); % will contain the length of the Y axis of the

17

ellipse

Fzs = zeros(size(Zs)); % vector that will contain the force at each

height

Heights = zeros(size(Es)); % vector with the results

h = waitbar(0);

for i = 1:length(Es)

Bs(i) = params.magnets.R*(1/(1-Es(i)^2));

sys = maglevSystem(x0, params, approximationType, Es(i)); % modelling

a system of eccentricity Es(i)

for k = 1:length(Zs)

temp = sys.f([0,0,Zs(k),zeros(1,9)]’,zeros(params.solenoids.N,1))

;

Fzs(k) = temp(9);

end

[~,idx]=min(abs(Fzs));

Fzs = zeros(size(Zs)); % resetting Fzs for precaution

Heights(i) = Zs(idx); % saving the height of the equilibrium

waitbar(i/length(Es))

end

close(h);

%% Plotting

figure(’Name’, ’Height of the equilibrium / Eccentricity’);

grid minor; axis equal;

plot(Es, Heights)

xlabel(’Eccentricity’); ylabel(’Height’);

figure(’Name’, ’Height of the equilibrium / Length of the Y axis’);

grid minor; axis equal;

plot(Bs, Heights)

xlabel(’Length’); ylabel(’Height’);

For the sake of completeness, the script plots two graphs: one to compare
the height of the equilibrium and with eccentricity, and one to compare it to
the length of the y axis of the ellipse. While the first graph is more related with
the results of the other scripts, which are all dependable on the eccentricity,
the second graph shows more clearly the correlation between the height of the
equilibrium and the dimensions of the ellipse.
These graphs are shown in Figure 2a and 2b.

18

Figure 2: Height of the equilibrium

(a) Height of the equilibrium in respect to the eccentricity

(b) Height of the equilibrium in respect to the length of the ellipse

19

6.4 Controllability

The area where the disc is controllable has been proven to be convoluted to
calculate, but it’s possible to obtain an approximation of it.
The script eccentricity controllability.m is a script that operates in a similar
way to that of solenoids controlling power.m: for a give set of eccentricities,
it calculates the height of the equilibrium, then proceeds to map the x and y
components of the linear acceleration along the respective axes on the XY plane
containing the equilibrium the same process is then repeated for the z axis. If
these steps are computed for the highest possible intensity of the input of the
system, then the cuboid limited by the points where the acceleration is null is an
approximation of the actual controllable area, more specifically it circumscribes
it.

%{

measures the volume of the controllable area*

for different eccentricities of the system (both magnets and

solenoids)

use the paramiters / figures for a single OR varying eccentricity, do

not use both

*the exact controllable area is difficult to measure, so the

smallest circumbscribing rectangoloid is calculated instead

%}

clear; close all;

addpath(’../maglevFunctions’);

load(’params.mat’);

load(’results.mat’);

approximationType = input("approxType [0/1]> ");

%% Searching parameters

steps = 512;

L = .10;

% parameters for a varying eccentricity

min_eccentricity = 0; max_eccentricity = .5;

eccentricity_steps = max_eccentricity * 200; % plotting every .005

% parameters for a single eccentricity to check if the program

% works (faster to compare with solenoids_controlling_power

% and z_graph)0

%min_eccentricity = .25; max_eccentricity = min_eccentricity;

%eccentricity_steps = 1;

% load correct parameters

if(approximationType == 0)

eq = results.zeq.zeq_fst;

params.magnets.I = results.neo_vs_neo.curr_fst;

20

params.levitatingmagnet.I = results.neo_vs_lev.curr_fst;

else

eq = results.zeq.zeq_acc;

params.magnets.I = results.neo_vs_neo.curr_acc;

params.levitatingmagnet.I = results.neo_vs_lev.curr_acc;

end

%% Derived parameters

% Doubles the space for two halfs respectively for positive error

% (solenoids = +-) and for negative (solenoids = -+)

Xs = linspace(-L/2, L/2, 2*steps);

Ys = linspace(-L, L, 2*steps);

Zs = linspace(.04, .07, steps);

Es = linspace(min_eccentricity, max_eccentricity, eccentricity_steps); %

eccentricities evaluated

Volumes = zeros(eccentricity_steps, 7); % will contain the volumes and

edges of the rectangoloids

eqs = zeros(length(Es), 1);

Fxs = zeros(1,length(Xs));

Fys = zeros(1,length(Ys));

Fzs = zeros(1,length(Zs));

h = waitbar(0);

%% Start searching

x0 = zeros(12,1);

sys = maglevSystem(x0, params, approximationType, 0);

for ec = 1:length(Es)

Zs = linspace(.04, .07, 2*steps); % these parameters need to be reset

to find eq_z

Fzs = zeros(1,length(Zs));

% searching for the new equilibrium to reset Zs

for k = 1:length(Zs)

temp = sys.f([0,0,Zs(k),zeros(1,9)]’,zeros(params.solenoids.N

,1));

Fzs(k) = temp(9);

end

[~,idx]=min(abs(Fzs)); % new equilibrium found

eqs(ec) = Zs(idx);

Zs = linspace(eqs(ec)-L/2, eqs(ec)+L/2, 2*steps); % resetting Zs

around the new equilibria

% calculating points along X axis where Fx is closest to 0

x0 = zeros(12,1); x0(3) = eqs(ec);

sys = maglevSystem(x0, params, approximationType, Es(ec));

for i = 1:length(Xs)/2

21

x0(1) = Xs(i);

temp = sys.f(x0,[.5 0 -.5 0]’);

Fxs(i) = temp(7);

end

for i = length(Xs)/2+1:length(Xs)

x0(1) = Xs(i);

temp = sys.f(x0,[.5 0 -.5 0]’);

Fxs(i) = temp(7);

end

% calculating points along Y axis where Fy is closest to 0

x0 = zeros(12,1); x0(3) = eqs(ec);

sys = maglevSystem(x0, params, approximationType, Es(ec));

for j = 1:length(Ys)/2

x0(2) = Ys(j);

temp = sys.f(x0,[0 .5 0 -.5]’);

Fys(j) = temp(8);

end

for j = length(Ys)/2+1:length(Ys)

x0(2) = Ys(j);

temp = sys.f(x0,[0 .5 0 -.5]’);

Fys(j) = temp(8);

end

% calculating points along Z axis where Fz is closest to 0

x0 = zeros(12,1); x0(3) = eqs(ec);

sys = maglevSystem(x0, params, approximationType, Es(ec));

for k = 1:length(Zs)/2

x0(3) = Zs(k);

temp = sys.f(x0,[.5 .5 .5 .5]’);

Fzs(k) = temp(9);

end

for k = length(Zs)/2+1:length(Zs)

x0(3) = Zs(k);

temp = sys.f(x0,[-.5 -.5 -.5 -.5]’);

Fzs(k) = temp(9);

end

% finding the indexes of the coordinates of the points where the

components of F are smallest

idxs = zeros(1,6);

[~,idxs(1)] = min(abs(Fxs(1:end/2))); % smallest force for x < 0

[~,idxs(2)] = min(abs(Fxs(end/2+1:end))); idxs(2) = idxs(2) + length(

Fxs)/2; % smallest force for x > 0

[~,idxs(3)] = min(abs(Fys(1:end/2))); % smallest force for y < 0

[~,idxs(4)] = min(abs(Fys(end/2+1:end))); idxs(4) = idxs(4) + length(

Fys)/2; % smallest force for y > 0

[~,idxs(5)] = min(abs(Fzs(1:end*3/8))); % smallest force for z << eq

22

[~,idxs(6)] = min(abs(Fzs(end/2+1:end))); idxs(6) = idxs(6) + length(

Zs)/2; % smallest force for z > eq

% dimensions of the rectangoloid

[Volumes(ec, 1), Volumes(ec, 2)] = deal(Xs(idxs(1)),Xs(idxs(2))-Xs(

idxs(1))); % vertex x, edge xl

[Volumes(ec, 3), Volumes(ec, 4)] = deal(Ys(idxs(3)),Ys(idxs(4))-Ys(

idxs(3))); % vertex y, edge yl

[Volumes(ec, 5), Volumes(ec, 6)] = deal(Zs(idxs(5)),Zs(idxs(6))-Zs(

idxs(5))); % vertex z, edge zl

Volumes(ec, 7) = Volumes(ec, 2) * Volumes(ec, 4) * Volumes(ec, 6) * 1

e6; % saving the volume in cm^3

waitbar(ec/length(Es))

end

[~, idx] = max(Volumes(:,7));

fprintf("The eccentricity that grants the biggest controllable volume is:

%f\n", Es(idx));

fprintf("Volume is: %f\n", Volumes(idx, 7));

close(h);

%% Plotting

% figures for a varying eccentricity

figure(’Name’, ’EQz / ecc’);

plot(Es, eqs);

xlabel(’Eccentricity’); ylabel(’Height of the equilibrium’)

figure(’Name’, ’Controllable Volume’);

plot(Es, Volumes(:,7));

xlabel(’Eccentricity’); ylabel(’Volume’)

%{

% figures for a single eccentricity

figure(1);

plot3(Xs,zeros(1,length(Xs)),Fxs); hold on;

plot3(zeros(1,length(Ys)),Ys,Fys);

xlabel(’X’); ylabel(’Y’); zlabel(’Fx/Fy’)

grid minor; xline(0); yline(0);

% rescaling X-Y axes to be equal, leaving Z axis as unvaried

h = get(gca,’DataAspectRatio’);

if h(3)==1

set(gca,’DataAspectRatio’,[1 1 1/max(h(1:2))])

else

set(gca,’DataAspectRatio’,[1 1 h(3)])

end

plot3(Xs(idxs(1, 1:2)),0,0,’ko’);

plot3(0,Ys(idxs(1, 3:4)),0,’ko’); hold off;

23

figure(2);

plot(Zs,Fzs); hold on;

xlabel(’Z’); ylabel(’Fz’)

grid minor; yline(0);

Z = Zs(idxs(1,5:6));

plot(Z,0,’ko’); hold off;

%}

% plots the biggest (or only) rectangoloid

figure(’Name’, ’Controllability Region’);

x0 = zeros(12,1); x0(3) = eq;

sys = maglevSystem(x0, params, approximationType, Es(idx));

hold on; draw(sys, ’fancy’); grid on; axis equal; view([45,30]);

plotcube([Volumes(idx, 2) Volumes(idx, 4) Volumes(idx, 6)], ...

[Volumes(idx, 1) Volumes(idx, 3) Volumes(idx, 5)], .1, [1,0,0]);

hold off;

As an example of the data obtainable with this script, the following images
represent the aforementioned graphs of the forces plotted along the axes and
the approximation of the controllable area for an eccentricity of 0.3 of both the
permanent magnets and the solenoids.

24

Figure 3: Data acquired from a system of eccentricity 0.3

25

6.5 Condition Number Mapper

In order to get a more accurate (but more intricate to interpret) depiction of the
controllable area, a second approach was tempted with the script CN mapper.m,
based on the evaluation of the condition number through a process presented
by Berkelman and Dzadovsky (2010) [1].
Given the simple equation:

Fnxmamx1 = bnx1 (14)

the condition number of the matrix F, which is defined by the following equation:

κ(F) =
|λmax(F)|
|λmin(F)|

(15)

can be consider as the rate at which a changes with respect to a variation of b.
The evaluation of the condition number can thus be used to roughly estimate
how much the state of the system will be altered as consequence of a change of
the input of the system, with a low condition number meaning that the system
is well controllable, and a high condition number meaning the opposite.
Although, due to the non-linearity of the system itself, a matrix F such that
F η̇ = u cannot be obtained from the ODEs of the system described in (10) and
a linearization of the system was thus necessary. Since the input u affects only
the last 6 components of η̇, the linearized system can be simplified as follows:

η̇7−12 = Fu (16)

In order to obtain the relation, the desired F must then be inverted, but since it
is a 6x4 matrix, the Moore–Penrose pseudoinverse is used instead. By linearizing
and inverting the F matrix in several points of the space, it’s possible to map
the regions where its condition number is the lowest. A second version of the
script was written called CN mapper fast; while the first version linearizes and
maps the condition number in n3 points of a cuboid, much like force plotter.m,
the second version only does so for the points on the XZ , YZ and XY planes
containing the equilibrium, reducing the number of points to 3n2 , thus greatly
increasing performing times.

%{

Linearizes the magnetic levitation system in every point of a cube

and

calculates the condition number

%}

clear; close all;

addpath(’../maglevFunctions’);

load(’params.mat’);

load(’results.mat’);

approximationType = input("approxType [0/1]> ");

26

eccentricity = input("Eccentricity [0:1]> ");

eccentricity = max (eccentricity, 0); eccentricity = min (eccentricity,

1);

%% Searching parameters

steps = 150; % odd numbers will intersecate the equilibria in (0, 0),

resulting in +infinity

L = .10;

bsqr = 1 / (1 - eccentricity^2);

if(approximationType == 0)

eq = results.zeq.zeq_fst;

params.magnets.I = results.neo_vs_neo.curr_fst;

params.levitatingmagnet.I = results.neo_vs_lev.curr_fst;

else

eq = results.zeq.zeq_acc;

params.magnets.I = results.neo_vs_neo.curr_acc;

params.levitatingmagnet.I = results.neo_vs_lev.curr_acc;

end

%% Area to research

Ptx = linspace(-L/2, L/2, steps);

Pty = linspace(-L/2*bsqr, L/2*bsqr, steps); % assuming the ellipse’s

major axis is y

Zs = linspace(eq-L*9/20, eq+L*1/10, steps);

Cns = zeros(length(Ptx), length(Pty), length(Zs),1);

%% parameters for the linearization of system

x0 = zeros(12,1); x0(3) = eq;

sys = maglevSystem(x0, params, approximationType, eccentricity);

uLp = zeros(params.solenoids.N,1); % input (it doesn’t affect the

condition number, but it’s needed to linearize)

delta = 1e-4;

dimX = 12;

dimU = params.solenoids.N; % 4

h = waitbar(0);

max = 3*steps;

B = zeros(dimX,dimU); % 12x4

%% Plane XY

%calculating k in this way gives an approximation of the nearest k to the

%equilibrium

k = round(length(Zs)*9/11); % chosen height of the plane to plot: around

the equilibrium

fprintf("k: %f Zs(k): %f\n", k, Zs(k));

27

planeXY = zeros(length(Ptx), length(Pty)); % contains the condition

numbers of the chosen XY plane

for i = 1:length(Ptx) %x

for j = 1:length(Pty) %y

% linearizing

x0(1) = Ptx(i); x0(2) = Pty(j); x0(3) = Zs(k); % linearizing

for l = 1:dimU % linearizing around this point

B(:,l) = (sys.f(x0,uLp+(l==1:dimU)’*delta) ...

-sys.f(x0,uLp-(l==1:dimU)’*delta)) ...

/(2*delta);

end

temp = B(7:11, :); % coping only the non 0 rows

Cns(i, j, k) = cond(pinv(temp)); % saving the condition number of

the Moore-Penrose pseudinverse

% saving the CN

planeXY(i, j) = Cns(i, j, k);

if planeXY(i, j) > 5e3 % for some reason max() gives an error

if Cns(i, j, k) > 1e14 && ~(Ptx(i) == 0 && Pty(j) == 0)

fprintf("possible equilibrium at x: %f y: %f z: %f, or

i: %f j: %f k: %f\n", Ptx(i), Pty(j), Zs(k), i, j,

k);

end

planeXY(i, j) = 5e3; % saturating the results for better

plotting

end

end

waitbar(i/max)

end

%% Plane XZ

j = ceil(length(Pty)/2); % y = 0

fprintf("j: %f Pty(j): %f\n", j, Pty(j));

planeXZ = zeros(length(Ptx), length(Zs)); % contains the condition

numbers of the chosen XZ plane

for i = 1:length(Ptx) %x

for k = 1:length(Zs) %z

% linearizing

x0(1) = Ptx(i); x0(2) = Pty(j); x0(3) = Zs(k); % linearizing

for l = 1:dimU % linearizing around this point

B(:,l) = (sys.f(x0,uLp+(l==1:dimU)’*delta) ...

-sys.f(x0,uLp-(l==1:dimU)’*delta)) ...

/(2*delta);

end

temp = B(7:11, :); % coping only the non 0 rows

Cns(i, j, k) = cond(pinv(temp)); % saving the condition number of

the Moore-Penrose pseudinverse

% saving the CN

planeXZ(i, k) = Cns(i, j, k);

if planeXZ(i, k) > 5e3 % for some reason max() gives an error

if Cns(i, j, k) > 1e14 && Ptx(i) ~= 0

28

fprintf("possible equilibrium at x: %f y: %f z: %f, or

i: %f j: %f k: %f\n", Ptx(i), Pty(j), Zs(k), i, j,

k);

end

planeXZ(i, k) = 5e3;

end

end

waitbar((steps+i)/max)

end

%% Plane YZ

i = ceil(length(Ptx)/2); % x = 0

fprintf("i: %f Ptx(i): %f\n", i, Ptx(i));

planeYZ = zeros(length(Pty), length(Zs)); % contains the condition

numbers of the chosen YZ plane

for j = 1:length(Pty) %y

for k = 1:length(Zs) %z

% linearizing

x0(1) = Ptx(i); x0(2) = Pty(j); x0(3) = Zs(k); % linearizing

for l = 1:dimU % linearizing around this point

B(:,l) = (sys.f(x0,uLp+(l==1:dimU)’*delta) ...

-sys.f(x0,uLp-(l==1:dimU)’*delta)) ...

/(2*delta);

end

temp = B(7:11, :); % coping only the non 0 rows

Cns(i, j, k) = cond(pinv(temp)); % saving the condition number of

the Moore-Penrose pseudinverse

% saving the CN

planeYZ(j, k) = Cns(i, j, k);

if planeYZ(j, k) > 5e3 % for some reason max() gives an error

if Cns(i, j, k) > 1e14 && Pty(j) ~= 0

fprintf("possible equilibrium at x: %f y: %f z: %f, or

i: %f j: %f k: %f\n", Ptx(i), Pty(j), Zs(k), i, j,

k);

end

planeYZ(j, k) = 5e3;

end

end

waitbar((2*steps+i)/max)

end

close(h);

%% Plotting XY

figure(’Name’, ’XY Plane’);

xlabel(’X’); ylabel(’Y’); hold on;

grid minor; axis equal;

[X, Y] = meshgrid(Ptx, Pty);

contour3(X, Y, planeXY, ’ShowText’,’on’);

c.LineWidth = 3;

29

hold off;

figure(’Name’, ’XY Plane v2’);

grid minor; axis equal;

[X, Y] = meshgrid(Ptx, Pty);

surf(Ptx, Pty, planeXY);

xlabel(’X’); ylabel(’Y’); zlabel(’Cn’)

%% Plotting XZ

figure(’Name’, ’XZ Plane’);

xlabel(’X’); ylabel(’Z’); hold on;

grid minor; axis equal;

[X, Z] = meshgrid(Ptx, Zs);

contour3(X, Z, planeXZ.’, ’ShowText’,’on’);

c.LineWidth = 6;

hold off;

figure(’Name’, ’XZ Plane v2’);

grid minor; axis equal;

[X, Z] = meshgrid(Ptx, Zs);

surf(Ptx, Zs, planeXZ.’);

xlabel(’X’); ylabel(’Z’); zlabel(’Cn’)

%% Plotting YZ

figure(’Name’, ’YZ Plane’);

xlabel(’Y’); ylabel(’Z’); hold on;

grid minor; axis equal;

[Y, Z] = meshgrid(Pty, Zs);

contour3(Y, Z, planeYZ.’, ’ShowText’,’on’);

c.LineWidth = 6;

hold off;

figure(’Name’, ’YZ Plane v2’);

grid minor; axis equal;

[Y, Z] = meshgrid(Pty, Zs);

surf(Pty, Zs, planeYZ.’);

xlabel(’Y’); ylabel(’Z’); zlabel(’Cn’)

30

7 Discussion on the Results

The scripts described in the last chapter were used to analyze several parameters
of the system and compare them between different elliptical arrangements of the
permanent magnets and the solenoids. In particular it was observed how the
height of the equilibrium and the volume of the controllable area would change
in respect to an elliptical disposition of both the permanent magnets and the
solenoids, an elliptical disposition of the permanent magnets and a circular
disposition of the solenoids, and vice versa. The data of a circular system are
also included for comparison.

7.1 Height of the Equilibrium

The height of the equilibrium, as it was possible to predict, gets progressively
lower with an increasing distance of the permanent magnets while is unaffected
by the position of the solenoids. This is easily comprehensible since the equilib-
rium is calculated for an autonomous system, thus independent from the input.
As a result, the height decreases as the eccentricity of the magnets increases,
and for a circular design the equilibrium is even lower since the magnets are
distancing along the x axis, too. As for what height is more favorable, it’ll be
discussed in the subsection relative to the condition number.

31

Figure 4: Elliptical vs Circular design

(a) elliptical disposition of the magnets

(b) circular design

32

7.2 Controllable Area

(a) elliptical disposition of the solenoids (b) elliptical disposition of the magnets

(c) elliptical disposition of the both (d) circular design

These graphs refer to the volumes of the cuboid circumscribing the controllable
area obtainable with the script eccentricity controllability.m and several inter-
esting things can be noted from them: first, it would seem that by increasing the
eccentricity of both the solenoids and the magnets or the solenoids alone yields
similar results, but a closer look at the numeric data reveals that in the first
case the volume is consistently higher by a few cubic centimeters. this would
seem to contradict figure (5b) which shows how an elliptic arrangement of the
magnets actually reduces the ability to control the levitating disc.
In fact, the ellipticity of the magnets alone reduces the controllability, but it
improves if paired with increasing the ellipticity of the solenoids, as seen by
analyzing the measurements of the edges of the cuboid individually. It would
seem that by increasing the eccentricity of the magnets, the height of the cuboid
increases while the length and width decrease, but this last effect can be com-
pensated by the ellipticity of the solenoids. In order to understand how the
solenoids affect the controllability along the XY plane, it’s possible to observe
the graphs of the Fx and Fy forces described in section (6.4) and compare them
for different eccentricities of the system.

33

(a) circular design (b) elliptical design

It is immediately noticeable how the increase in the volume of the control-
lable area is caused by the distancing of the points where Fy is close to 0. This
also means that the strongest force applicable on the disk in the central zone
of the platform is greatly reduced. These theoretical results thus suggest that a
bigger controllable area comes at the cost of response time and reduced power
to contrast errors.

34

7.3 Evaluation of the Condition Number

As mentioned before, eccentricity controllability.m can only find the smallest
cuboid containing the actual controllable area, while CN mapper can calculate
how ”easy” it is to control the disc at any given position based on the value of
the condition number of the linearized transformation matrix of the input of the
system, so with it it is possible not only to obtain a more precise computation
of the controllable area, but also to find where the controllability is ”stronger”,
more stable, and disturbances of higher intensity may be negated.

(a) Original circular design (b) Eccentricity equal to 0.47

(c) Eccentricity equal to 0.5 (d) Greater circular design

The unstable equilibrium by definition has a condition number always equal
to positive infinity, that is why each graph has a bright area in the middle,
but the values around it can change greatly with the design of the platform.
The bright area of the form of a cross around the equilibrium in the original
design seems to confirm the hypothesis that the arrangement wasn’t ideal, and
by distancing the magnets of the platform it’s possible to obtain a more or
less consistent region where the condition number is relatively low. As these
figures suggest, with a high enough ellipticity, the four low-conditioning regions
of the original design merge into two along the ellipse’s major axis, and these
two regions wouldn’t exist in a circular design with the same position of the
equilibrium.

35

7.4 Conclusions

As it was expected, the results of this thesis don’t show a particular design or
a certain eccentricity as superior, but they highlighted the correlations between
different characteristics of the system and how one can be increased at the ex-
penses of another one. For example, they show how having the solenoids close
to the center allows for a better control along the z axis but reduces the ability
to control the disk along the XY plane, or how a bigger controllable area is
possible only with a longer rising time.
In conclusion, the design should be chosen based on what trajectories the plat-
form is intended to control, for example if it is only meant to keep the levitating
magnet stationary at the equilibrium or if it needs to move it along a certain
trajectory.

7.5 Future of the Project

There are of course many aspects of the project that can be improved by the
next batch of students that will work on it, and hopefully this thesis will help
them in finding what arrangement of the magnets better suits the goals they
will have for the new platform.
Some possible adaptations were already presented in the new iteration of En-
gmark’s description of the model regarding a different way of modelling the
permanent magnets, moreover it could be tested if positioning the sensors in
the spots where the flux of the magnetic field is null would be a more effective
placement choice.

References

[1] Peter Berkelman and Michael Dzadovsky. “Novel Design, Characterization,
and Control Method for Large Motion Range Magnetic Levitation”. In:
IEEE Magnetics Letters 1 (2010), pp. 0500104–0500104. doi: 10.1109/
LMAG.2009.2039341.

[2] Migdonio Alberto González and Dorindo Elám Cárdenas. “Analytical Ex-
pressions for the Magnetic Field Generated by a Circular Arc Filament
Carrying a Direct Current”. In: IEEE Access 9 (2020), pp. 7483–7495.

[3] Martin Brønstad et al. “Magnetic levitation system: Design, prototyping
and testing of a digital PID-controller”. B.S. thesis. NTNU, 2022.

36

https://doi.org/10.1109/LMAG.2009.2039341
https://doi.org/10.1109/LMAG.2009.2039341

	Abstract
	Abstract in lingua Italiana
	Introduction
	Physical Background
	Modelling of the system
	Matlab Implementation
	Description of the simulator
	Force Plotter
	Equilibrium Finder
	Controllability
	Condition Number Mapper

	Discussion on the Results
	Height of the Equilibrium
	Controllable Area
	Evaluation of the Condition Number
	Conclusions
	Future of the Project

	Bibliography

