
DEPARTMENT OF INFORMATION ENGINEERING

MASTER’S DEGREE IN
COMPUTER ENGINEERING

Deep Learning-Based 6-DoF Object Pose
Estimation With Synthetic Data:

A Case Study in Underwater Environments

Supervisor

Prof. ALBERTO PRETTO

Student

NICOLA VALZAN

ACCADEMIC YEAR 2021 - 2022
28/02/2022

ABSTRACT

In this thesis we aim to address the image based 6-DoF pose estimation problem, or 3D pose
estimation problem, for Autonomous Underwater Vehicles (AUVs). The results of the object
pose estimation will be used, for example, to estimate the global location of the AUV or to
approach more accurately the underwater infrastructures. Actually, an autonomous robot or a
team of autonomous robots need accurate location skills to safely and effectively move within an
underwater environment, where communications are sparse and unreliable, and to accomplish
high-level tasks such as: underwater exploration, mapping of the surrounding environment,
multi-robot conveyance and many other multi-robot problems.
Several state-of-the-art approaches will be analysed and tested on real datasets. Collecting
underwater images and providing them with an accurate ground-truth estimate of the object’s
pose is an expansive and extremely time-consuming activity To this end, we addressed the
problem using only synthetic datasets. In fact, it was not possible to use the standard datasets
used in the analyzed papers, since they are datasets with objects and conditions very different
from those in which the AUVs operate. Hence, we exploited an unpaired image-to-image
translation network is employed to bridge the gap between the rendered and the real images,
producing photorealistic synthetic training images. Promising preliminary results confirm the
goodness of the made choices.

Contents

1 Introduction 1
1.1 Robotics . 1

1.1.1 Sensors for Robotics . 1
1.1.2 Actuators . 2
1.1.3 Automation and Autonomy 2

1.2 Underwater Robotics . 3
1.2.1 Autonomous Underwater Vehicles 3

1.3 The 6-DoF Object Pose Estimation Problem 4

2 Object Pose Estimation: the Analyzed Frameworks 7
2.1 Random Sample Consensus . 7

2.1.1 Formulation . 8
2.1.2 Improvements . 8

2.2 Perspective-n-Point . 8
2.2.1 Formulation . 9
2.2.2 General Case . 10
2.2.3 Solution as Weighted Sum of Eigenvectors 10
2.2.4 Choosing the Right Linear Combination 11
2.2.5 Planar Case . 13
2.2.6 Gauss-Newton Optimization 13

2.3 Deep Underwater Relative Localization 14
2.3.1 Formulation . 15
2.3.2 YOLO . 15
2.3.3 Object Detection Stream 17
2.3.4 Pose Regression Stream 18
2.3.5 Pose refinement . 19
2.3.6 Implementation details . 19

2.4 Pixel-wise Voting Network . 19
2.4.1 Formulation . 20

I

2.4.2 ResNet . 20
2.4.3 Voting-based keypoint localization 24
2.4.4 Keypoint selection . 24
2.4.5 Uncertainty-driven PnP 25
2.4.6 Implementation details . 26

2.5 Dense Pose Object Detector . 26
2.5.1 Data Preparation . 26
2.5.2 Object Detection . 27
2.5.3 Pose Refinement . 27
2.5.4 Limitations . 28

3 Synthetic Dataset Generation 30
3.1 Cycle Generative Adversarial Network 31

3.1.1 Formulation . 32
3.1.2 Adversarial Loss . 32
3.1.3 Cycle Consistency Loss . 32
3.1.4 Full Objective . 33
3.1.5 Implementation details . 34

3.2 Synthetic Dataset . 34
3.2.1 Underwater Backgrounds 34
3.2.2 Synthetic Objects . 35

3.3 Experiments . 35
3.4 Data Enhancement . 38

3.4.1 Histogram Equalization 38
3.4.2 Contrast Limited Adaptive Histogram Equalization 40

4 Experiments 44
4.1 Pipeline . 44
4.2 Training Environment . 45
4.3 Approaches . 45

4.3.1 DeepURL . 45
4.3.2 PVNet . 46

5 Conclusion 51
5.1 Future Work . 52

Bibliography 54

Acknowledgements 59

II

Chapter 1

Introduction

The 6DoF pose estimation problem consists of finding and estimating the rotation and trans-
lation of an object in space, i.e., determining the 2D corners of the object in the image and
then find the 3D projections in space. Accurate pose estimation is crucial for many problems
such as: augmented reality, autonomous driving, and robotic manipulation. Also, there are
several environments, particularly in GPS-denied environments with limited features, where
keeping track of the vehicle’s position is a very challenging task. A common strategy to ad-
dress the localization problem is to use the landmark based localization. This strategy consists
in having objects, called landmarks, in the map whose position is known. In this way, when
they are recognized, the position of the robot can be estimated. In this work, the problem of
estimating the pose of 3D objects in underwater environments will be addressed, in particular
for Autonomous Underwater Vehicles (AUVs). This problem is rather challenging from many
perspectives: among others, the variability of light conditions and the turbidity of the water,
and often the lack of accurate CAD models of the objects of interest. Also, it will not be possi-
ble to use the typical datasets (LINEMOD [18], Occlusion LINEMOD [3] and YCB-Video [45])
used in the analyzed papers, being datasets with objects very different from the ones addressed
by AUVs.

1.1 Robotics
Robotics is the engineering discipline that studies and develops methods that allow a robot to
perform specific tasks by automatically or autonomously reproducing human work. Robotics
involves design, construction, operation, and use of robots. The goal of robotics is to design
machines that can help and assist humans, in particular substitute for humans and replicate
human actions. Important situations are in the use of jobs that are dangerous to humans, such
as inspection of radioactive materials, bomb detection and deactivation. Robots are often used
in hazardous environments or where humans cannot survive, such as in space, underwater, in
high temperatures, and for cleaning and containment of hazardous materials and radiation.

The main components of a robot are the sensors, which allow it to sense the outside world
and the state the robot is in, and the actuators, which allow the actual movement of the various
parts of the robot.

1.1.1 Sensors for Robotics
Sensors allow robots to receive information about a certain measurement of a robot’s condition
and environment. Sensors in robots are based on the functions of human sensory organs and

1

CHAPTER 1. INTRODUCTION

require extensive information about their environment in order to function effectively. This
is essential for robots to perform their tasks, and act upon any changes in the environment
to calculate the appropriate response. Also robot’s internal status are very important to give
warnings about safety or malfunctions.

Specifically, sensors can be divided into three types:

Proprioceptive: sensors that sense the internal state of the robot, more precisely the in-
ternal state of the robot actuators, e.g. temperature, major position or battery power.
Important for the self-control.

Exteroceptive: sensors that perceptive outside the robots, e.g. environment, landmarks or
distances. Utilized for navigation and object recognition.

Exproprioceptive: sensors that perceptive positions of external objects relative to parts of
the robot, so robot with respect that the environment, e.g. external camera that sees the
position of the robot. Usually vision to understand the situation.

Another type of classification can be made based on the input received from the sensor:

Passive: sensor receives energy already in the environment, e.g. camera. They consume less
energy, but often signal noise problems.

Active: sensor emits some form of energy and then measures the impact as a way of under-
standing the environment, e.g. ultrasonics or laser. They consume more energy and less
signal noise problems, but often have restricted environments.

As you can see, sensors are a very important part of a robot, especially on autonomous robots.

1.1.2 Actuators
Actuators are the muscles of a robot, the parts which convert stored energy into movement
that are responsible for moving and controlling a mechanism or system, acts upon to perform
an operation or task. There are mainly three types of motors used as actuators:

Electric motor: uses electrical energy generated through a variable magnetic flux and is typ-
ically used where high speeds and low forces are needed.

Hydraulic motor: exploits the volume change due to a pressurized fluid, used in applications
where large forces and low speeds are needed.

Pneumatic motor: uses pneumatic energy provided by a compressor.

1.1.3 Automation and Autonomy
Automation is about physically-situated tools performing highly repetitive, pre-planned actions
for well-modeled tasks under the closed world assumption. The most obvious example of an
automated robot are industrial robots. They focus on control theory, joint movement to get
fastest and repeatable trajectory. They should have an high repeatability in a world where
everything is fixtured to be in the right place at the right time. However engineers are adding
sensors to reduce need for fixturing. Specifically the closed world assumption assumes:

• Everything relevant is known a priori, that there are no surprises

• Everything relevant can be completely modeled

2

CHAPTER 1. INTRODUCTION

• If world is modeled accurately enough, can create stable control loops to respond to all
expected situations

• If world is controlled, can minimize or eliminate sensing

Instead, autonomy is about physically-situated agents who not only perform actions but
can also adapt to the open world where the environment and tasks are not known a priori
by generating new plans, monitoring and changing plans, and learning within the constraints
of their bounded rationality. Also intelligent robot is situated as intelligent agent. Intelligent
agent is a system that perceives its environment and takes actions which maximize its chances
of success Therefore an intelligent agent is self-governing and autonomous, even it is a heavily
bounded agent. Robot autonomy is often viewed as requiring the generation and execution of
actions to meet a goal or carry out a mission, Execution of the plan may be confounded by
the unmodeled events (open world), requiring the system to dynamically adapt or replan. This
mean to maximaze the successes of a specific mission or goal. Autonomy robots are under the
open world assumption:

• models may be available but are only partially (and unpredictably) correct

• must be able to sense relevant aspects of the world in order to dynamically adapt actions
(e.g., act as an agent)

Since the robot is in an open world it will be very important what it perceives from it, that
is, from the external environment around it. But above all the relationship between robot
and environment. That is why in autonomous robots the perception part is very important
and therefore the sensors that are used, both quantitatively and qualitatively. In fact, it is
not a simple perception, but a more elaborate and complex sensor fusion. Sensor fusion is an
high-level perception and world models, given by raw sensor data combined with algorithms to
obtain features, called sensing.

1.2 Underwater Robotics
One particular type of robots are underwater robots, which are automated and autonomous.
Specifically, automated underwater robots are called ROVs, remotely operated vehicles. While
autonomous ones are called AUVs, autonomous underwater vehicles.

ROV is controlled and powered from the surface by an operator/pilot via an umbilical or
using remote control. Figure 1.1 shows examples of ROV and AUVs.

1.2.1 Autonomous Underwater Vehicles
AUV is a robot that travels underwater without requiring input from an operator and capable
of carrying out missions autonomously. AUVs are therefore able to save on the total cost of a
mission, as they do not require an equipped ship and qualified personnel to remotely guide the
robot. They also allow to complete missions that would be impossible due to the umbilical cord
with the support ship, of which a typical example is the exploration under the ice. Research in
this field can be divided into various areas, depending on the type of problem being examined.
However, it is important to consider that the main difference between ROVs and AUVs is the
absence of human action, so they are mainly studied techniques of artificial intelligence and
autonomous robotics, which allow vehicles to fully perform the task for which they are intended,
even in the presence of unexpected events or scenarios not necessarily known in advance.

AUVs carry sensors to navigate autonomously and map features of the ocean. Typical sensors
include compasses, depth sensors, sidescan and other sonars, magnetometers, thermistors and

3

CHAPTER 1. INTRODUCTION

(a) (b) (c)
(d)

Figure 1.1: (a) ROV at work in an underwater oil and gas field. The ROV is operating a
subsea torque tool (wrench) on a valve on the subsea structure. (b) Pluto Plus AUV for
underwater mine identification and destruction. From Norwegian minehunter KNM Hinnøy
(c) Picture taken of the Battlespace Preparation Autonomous Underwater Vehicle (BPAUV)
by an employee of Bluefin Robotics Corporation during a US Navy exercise. (d) Underwater
platform examined in this thesis for the various experiments.

conductivity probes. Some AUVs are outfitted with biological sensors. Also radio waves cannot
penetrate water very far, so as soon as an AUV dives it loses its GPS signal. Therefore,
a standard way for AUVs to navigate underwater is through dead reckoning, the process of
calculating current position of some moving object by using a previously determined position,
or fix, and then incorporating estimates of speed, heading direction, and course over elapsed
time.

Another important sensor used by AUVs is the camera: used to see the surroundings, rec-
ognize objects and estimate their position. The main problem is the underwater environment
in which the robot is located, in fact this makes the pose estimation problem more challenge.
Such as blurred AUV representation on the image, very bad lighting, image coloration and
distinction between AUV and background. Lighting problem because it could be very bright or
very dark, think if the robot is a few meters from the surface of the water or very deep. Image
coloration problem because the color of the water can vary, some times it could be crystal blue
and other times dark green with sand added. Also considering the general difficulties already
known, including severe occlusions and truncations, variations in lighting and appearance, and
cluttered background objects.

1.3 The 6-DoF Object Pose Estimation Problem
Early approaches to the 6-DoF object pose estimation problems employed a CAD-based tem-
plate matching strategies [5, 6, 13] or extracted a set of local features such as SIFT [30] or
SURF [2] to be matched with a features-based model of the object of interest. Multi-scale
representation of the original image were also used to find objects at different distances.

State of the art focuses on deep-learning techniques. In fact, the logic behind neural networks,
i.e., deep layers, is precisely to represent the image in different representations and thus obtain
as much information as possible simultaneously. This simulates keypoint descriptors and makes
the detection more robust and efficient. These deep-learning approaches are primarily data-
driven, meaning that the dataset used is very important and influences the final result. Dataset
that is one of the main problems of underwater object pose estimation, both because of worse
image quality and because there are very few project-specific datasets addressed.

All methods considered and analyzed are data-driven, i.e., the data used to train the various
models is a key part of the entire pipeline. In this case the data used are only images representing
the object, the background and possible obstacles. In the underwater environment, it is difficult

4

CHAPTER 1. INTRODUCTION

to create a dataset of real images and even more difficult to get the exact location of the object.
For these reasons an unpaired image-to-image transformation strategy is used to obtain a
synthetic adapted images dataset, called CycleGAN [50], instead to use a real dataset. Dataset
obtained from an initial synthetic dataset divided, mainly, into background images and target
object representations. After creating the synthetic adapted datasets we go on to test the
6-DoF object pose estimation approaches considered. Specifically, approaches with different
strategies were considered in order to evaluate which one is the most suitable for our problem.
In particular the focus will be on state-of-the-art approaches: DeepURL[22], PVNet[34] and
DPOD[48].

In summary, the pipeline that will be followed is as follows:

• First creation of a synthetic dataset from background images and object images

• Second will be used a strategy to generate a synthetic adapted dataset and consequently
obtain the right ground-truth for the next step

• Third a data-driven deep-learning strategy will be applied to perform the object pose
estimation problem

In the following chapter, the various methods used for the 6DoF object pose estimation
problem will be presented in detail, trying to describe them in the same way and following a
single division into sections for consistency in comparing them. Specifically, the sections will be
divided as follows: an introduction, the technical formulation of the model, various strategies
implemented and the details implemented. Next, a chapter dedicated to the specific data-driven
technique used to create dataset for the models. In the fourth chapter, the strategy to generate
synthetic adapted datasets and subsequently used by data-driven techniques will be presented.
The last chapter will present the experiments performed: describing the changes adopted on
the models and their reasons, concluding with comparisons and the results obtained.

5

Chapter 2

Object Pose Estimation: the
Analyzed Frameworks

As previously introduced, the goal of this thesis is to analyze effective solutions to the 6-DoF
object pose estimation problem in underwater environments. In particular the focus will be on
data-driven deep-learning methods, as they represent the state-of-art approaches: in particular,
we will analyze the DeepURL[22], PVNet[34] and DPOD[48] frameworks. We opted for these
methods because each develops a different approach to solving the object pose estimation
problem, so we can compare which strategy is the most suitable for the underwater scenario.
Specifically, DeepURL is already oriented to the underwater environment, while PVNet and
DPOD are general. In this chapter, we will present these methods in detail, first introducing
the basic techniques employed, then describing the individual pipelines.

All these approaches use the Random Sample Consensus (RANSAC) [9] based Perspective-
n-Point (PnP) [27] algorithm, strategy used to find the 3D object projections of the 2D points
estimated in the image. Therefore, importance will also be given to these two strategies in this
chapter.

2.1 Random Sample Consensus
Random Sample Consensus (RANSAC) [9] is a paradigm for fitting a model to experimental
data. RANSAC is capable of interpreting and smoothing data containing a significant percent-
age of gross errors and is thus ideally suited for applications in automated image analysis where
interpretation is based on the data provided by error-prone feature detectors.

Scene analysis is about interpreting the received data against predefined models. Conceptu-
ally, this interpretation can be divided into two distinct activities:

• the problem of finding the best match between the data and one of the available models,
so the classification problem

• the problem of computing the best values for the free parameters of the selected model,
so the parameter estimation problem

These two problems are not independent, in fact to obtain a solution to the parameter
estimation problem is often required to solve the classification problem.

Techniques for parameter estimation problem used before RANSAC, such as least squares,
optimize, given a specified objective function, the fit of a functional description to all the data.

7

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

The worst problem of these techniques is they have no internal mechanisms for detecting and
rejecting gross errors. These “classical” techniques are averaging techniques that rely on the
smoothing assumption, where the maximum expected deviation of any datum from the assumed
model is a direct function of the size of the dataset, and thus regardless of the size of the dataset,
there will always be enough good values to smooth out any gross deviations. However, in many
practical parameter estimation problems the smoothing assumption does not hold, i.e., the data
contain uncompensated gross errors.

2.1.1 Formulation
The revolution of the RANSAC procedure is in being opposite to those conventional smoothing
techniques. Rather than using as much as possible data to obtain an initial solution and then
attempting to eliminate the invalid data points, RANSAC uses a small initial dataset and then
enlarges this initial set with consistent data when possible. The RANSAC paradigm is more
formally stated as follows [9]:

Given a model that requires a minimum of n data points to instantiate its free parameters,
and a set of data points P such that the number of points in P is greater than n, this mean
f(P) ≥ n, randomly select a subset S1 of n data points from P and instantiate the model. Use
the instantiated model M1 to determine the subset S∗

1 of points in P that are within some error
tolerance of Ml. The set S∗

1 is called the consensus set of S1.
If f(S∗

1) is greater than some threshold t, which is a function of the estimate of the number of
gross errors in P , use S∗

1 to compute (possibly using least squares) a new model M∗
1 .

If f(S∗
1) is less than t, randomly select a new subset S2 and repeat the above process. If, after

some predetermined number of trials, no consensus set with t or more members has been found,
either solve the model with the largest consensus set found, or terminate in failure.

2.1.2 Improvements
There are two obvious improvements to the above algorithm:

• if there is a problem related to selecting points to form the S’s, it uses a deterministic
selection process instead of a random one

• once a suitable consensus set S∗ has been found and a model M∗ instantiated, add any
new points from P that are consistent with M∗ to S∗ and compute a new model based
on this larger set

RANSAC paradigm contains three unspecified parameters:

• the error tolerance used to determine if a point is compatible with a model or not

• the number of subsets to try

• the threshold t, which is the number of compatible points used to imply that the correct
model has been found

2.2 Perspective-n-Point
The aim of the Perspective-n-Point problem (PnP) is to determine the position and orienta-
tion of a camera given its intrinsic parameters and a set of n reference points correspondences
between 3D points and their 2D projections. It has many applications in Computer Vision, Aug-
mented Reality and Robotics. In this project is used for feature point-based camera tracking,

8

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

that require dealing with many noisy feature points in real-time, which requires computation-
ally efficient methods. The better PnP algorithm known until now is EPnP [27], the authors
introduce a non-iterative solution with better accuracy and much lower computational com-
plexity than other methods, and much faster than iterative ones with little loss of accuracy.
This approach is O(n) for n ≥ 4 whereas all other methods known are either specialized for
small fixed values of n, very sensitive to noise, or much slower (Figure 2.1).

Figure 2.1: Comparing the accuracy of the authors method against state-of-the-art ones. They
use the boxplot representation. The blue boxes denote the first and third quartiles of the errors,
the lines extending from each end of the box depict the statistical extent of the data, and the
crosses indicate observations that fall out of it. Top row. Accuracy of non-iterative methods as
a function of noise when using n = 6 3D-to-2D correspondences: AD is the method of Ansar
and Daniilidis [1]; Clamped DLT is the DLT algorithm after clamping the internal parameters
with their known values; and EPnP is this method. Bottom row. Accuracy of iterative methods
usingn = 6: LHM is Lu et al.’s method [31] initialized with a weak perspective assumption;
EPnP+LHM is Lu et al.’s algorithm initialized with the output of this algorithm; EPnP+GN,
this method followed by a Gauss-Newton optimization.

2.2.1 Formulation
Most of the approaches attempt to solve for the depths of the reference points in the camera
coordinate system. Instead EPnP express their coordinates as a weighted sum of virtual control
points. The key to this efficient implementation is the control points used: 4 non-coplanar for
general configurations and 3 for planar configurations. The coordinates of these control points
in the camera coordinate system became the unknown of the problem. In this way, for large n’s,
EPnP use much smaller unknown values rather than the traditional approaches that use more n
depth values. The solution of the problem can be expressed as a vector that lies in the kernel of a
matrix of size 2n×12 for general configurations, or 2n×9 for planar configurations. This matrix,
called M , can be easily computed from the reference points between 3D world coordinates and
2D image projections. More precisely, it is a weighted sum of the null eigenvectors of M .
Given that the correct linear combination is the one that preserve the distances that yields the
3D camera coordinates correspond to the control points. This can be done with a negligible
computation cost by solving small systems of quadratic equations to find the best weights. In

9

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

fact, the most expensive computation, for n sufficiently large, is the matrix MT M computation,
which grows linearly with n.

2.2.2 General Case
Let the n reference points in 3D coordinates known in the world coordinate system, be pi , i =
1, ..., n. Similarly, let the 4 control points we use to express their world coordinates be cj , j =
1, ..., 4. From now on will be used w for the point coordinates that are expressed in the world
coordinate system and c for the camera coordinate system. Each reference point is expressed
as a weighted sum of the control points

pw
i =

4∑︂
j=1

αijcw
j , with

4∑︂
j=1

αij = 1 ,

where the αij are homogeneous barycentric coordinates, which are uniquely defined and can
easily be estimated. The same relation holds in the camera coordinate system and it is possible
to write

pc
i =

4∑︂
j=1

αijcc
j .

In theory the control points can be chosen arbitrarily. However, in practice, taking the centroid
of the reference points as one increase the stability of the method, and select the rest in such a
way that they form a basis aligned with the principal directions of the data. This normalization
of the point coordinate amounts in the linear system of equations that are introduced below is
very similar to the one recommended for the classic DLT algorithm [14].

2.2.3 Solution as Weighted Sum of Eigenvectors
The 2D projections of the reference points are known, in this way is possible to derive the
solution inside the matrix M kernel. Let A be the internal camera calibration matrix and
{ui}i=1,...,n the 2D projection of the {pi}i=1,...,n reference points, obtaining:

∀i, wi

[︃
ui

1

]︃
= Apc

i = A

4∑︂
j=1

αijcc
j ,

where the wi are scalar projective parameters.
Considering for each control point cc

j the specific 3D coordinates
[︁
xc

j , yc
j , zc

j

]︁T . Also ex-
pand the matrix A: the 2D coordinates [ui, vi]T of the ui projections, the fu, fv focal length
coefficients and (uc, vc) principal points. The previous equation becomes:

∀i, wi

⎡⎣ui

vi

1

⎤⎦ =

⎡⎣fu 0 uc

0 fv vc

0 0 1

⎤⎦ 4∑︂
j=1

αij

⎡⎣xc
j

yc
j

zc
j

⎤⎦ .

The unknown parameters of this linear system are the 12 control point coordinates {(xc
j , yc

j , zc
j)}j=1,...,4

and the n projective parameters {wi}i=1,...,n. The last row implies that wi =
∑︁4

j=1 αijzc
j . Sub-

stituting this expression in the first two rows yields two linear equations for each reference
point: ⎧⎪⎨⎪⎩

∑︁4
j=1

(︁
αijfuxc

j + αij(uc − ui)zc
j = 0

)︁
∑︁4

j=1
(︁
αijfvyc

j + αij(vc − vi)zc
j = 0

)︁ ,

10

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

where the wi projective parameter does not appear anymore in those equations.
Concatenating the all n reference points, it is possible to generate a linear system of the form

Mx = 0 ,

where x = [ccT

1 , ccT

2 , ccT

3 , ccT

4]T is an unknown 12-vector. Also M is a 2n×12 matrix, generated
by arranging the coefficients of the system for each reference point.

The solution therefore belongs to the null space, or kernel, of M , and can be expressed as

x =
N∑︂

i=1
βivi ,

where the set vi are the columns of the right-singular vectors of M corresponding to the N null
singular values of M . They can be found efficiently as the null eigenvectors of matrix MT M ,
which is of small constant (12 × 12) size. Computing the product MT M has O(n) complexity,
and is the most time consuming step in the method if n is sufficiently large.

2.2.4 Choosing the Right Linear Combination
From the previous equation the solution is to compute the appropriate values for the coefficients
{βi}i=1,...,N , this is because the solution can be expressed as a linear combination of the null
eigenvectors of MT M . In theory, with the scale ambiguity, given perfect data from at least
six reference points captured by a perspective camera, the dimension N of the null-space of
MT M should be exactly one. Note that a orthographic camera instead of perspective one, the
dimension of the null space increases to four, because changing the depths of the four control
points would have no influence on where the reference points project. Figure 2.2 illustrates this
behavior, given by the authors. For small focal lengths, MT M has only one zero eigenvalue.
However, with the increment of the focal length and the camera becomes closer to being or-
thographic, all four smallest eigenvalues tend to zero. Furthermore, if the correspondences are
noisy, the smallest eigenvalue of them will be tiny but not strictly equal to zero. Depending
on the configuration of the reference points, the focal length of the camera and the amount
of noise, the effective dimension N of the null space of MT M can be considered from 1 to 4.
Figure 2.3 shows this.

Figure 2.2: Left: Singular values of MT M for different focal lengths. Each curve averages 100
synthetic trials. Right: Zooming in on the smallest eigenvalues. For small focal lengths, the
camera is perspective and only one eigenvalue is zero, which reflects the scale ambiguity. As
the focal length increases and the camera becomes orthographic, all four smallest eigenvalues
tend to zero.

11

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.3: Effective number N of null singular values in MT M . Each vertical bar represents
the distributions of N for a total of 300 experiments, taken by the authors. Left: the results
plot for a fixed image noise of σ = 10 pixels and an increasing number of reference points.
Right: the results correspond to a fixed n = 6 number of reference points and increasing level
of noise in the 2D projections.

In practice, several eigenvalues can have similar magnitudes, for this reason trying to pick
a value of N among the set {1, 2, 3, 4} can be error prone. Instead is a better idea compute
solutions for all four values of N and keep the one that yields the smallest reprojection error:

res =
∑︂

i

dist2(A[R|t]
[︃
pw

i

1

]︃
, ui) ,

where dist(˜︁m, n) is the 2D distance between point m expressed in homogeneous coordinates
and point n. This improves robustness without any noticeable computational penalty, because
the most expensive operation is the computation of MT M , which is done only once, and not
the solving of a few quadratic equations. The distribution of values of N estimated in this way
is depicted by Figure 2.3.

The description for the quadratic constraints of N = 1, 2, 3, 4 is introduced:

Case N = 1: The solution is simply x = βv. β can be solved by computing the distances
between control points in the camera coordinate system that should be equal to the
ones computed in the world coordinate system when using the given 3D coordinates.
Let v[i] be the sub-vector of v that corresponds to the coordinates of the control point
cc

i . Specifically, v[1] will represent the vectors made of the first three elements of v.
Maintaining the distance between pairs of control points (ci, cj) implies that

∥βv[i] − βv[j]∥2 = ∥cw
i − cw

j ∥2 .

Since the distance ∥cw
i − cw

j ∥2 is known, computing β in closed-form becomes:

β =
∑︁

{i,j}∈[1;4] ∥βv[i] − βv[j]∥ · ∥cw
i − cw

j ∥∑︁
{i,j}∈[1;4] ∥βv[i] − βv[j]∥2 .

Case N = 2: Now the solution is x = β1v1 + β2v2, and the distance constraints become:

∥(β1v
[i]
1 + β1v

[j]
1) − (β2v

[i]
2 + β2v

[j]
2)∥2 = ∥cw

i − cw
j ∥2 .

β1 and β2 only appear in the quadratic terms and they can be solved using a technique
called linearization in cryptography, which was employed by [1] to estimate the point
depths. It involves to solve a linear system in [β11, β12, β22]T where β11 = β2

1 , β12 =

12

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

β1β2, β22 = β2
2 . Since there are four control points, this produces a linear system of six

equations in the βab, where indices a and b for the β’s indicate the differentiate from the
indices i and j used for the 3D points. So it is possible to write:

Lβ = ρ ,

where L is a 6 × 3 matrix composed of the elements of v1 and v2, ρ is a 6-vector with
the squared distances ∥cw

i − cw
j ∥2, and β = [β11, β12, β22]T is the vector of unknowns. To

solve this system it can be used the pseudoinverse of L and choose the signs for the βa so
that all the pc

i have positive z coordinates. This imply β1 and β2 values can be further
refined by using the formula of Equation [11] to estimate a common scale β so that

cc
i = β(β1v

[i]
1 + β2v

[i]
2) .

Case N = 3: As in the N = 2 case, it is possible to use the six distance constraints of Equation
[12]. This yields again a linear system Lβ = ρ , although with larger dimensionality. Now
L is a square 6 × 6 matrix formed with the elements of v1, v2and v3, and β becomes the
6D vector [β11, β12, β13, β22, β23, β33]T . Now is possible to follow the same procedure as
before, except that take the inverse of L instead of its pseudo-inverse.

Case N = 4: Now with four unknown βa and the six distance constraints, in theory, should
be sufficient to compute the solution. Unfortunately, the linearization procedure treats
all 10 products βab = βaβb as unknowns and there are not enough constraints anymore.
Fortunately the problem can be solved with another strategy, the relinearization tech-
nique [16], whose principle is the same as the previous one used to determine the control
points coordinates. The solution for the βab is in the null space of a first homogeneous
linear system made from the original constraints. The correct coefficients are found by
introducing new quadratic equations and solving them again by linearization, hence the
name relinearization. These new quadratic equations are derived from the fact that there
is, by commutativity of the multiplication

βabβcd = βaβbβcβd = βa′b′βc′d′ ,

where {a′, b′, c′, d′} represents any permutation of the integers {a, b, c, d}.

2.2.5 Planar Case
In the planar case, that is, when the moment matrix of the reference points has one very
small eigenvalue, is needed only three control points. The dimensionality of M is then reduced
to 2n × 9 with 9D eigenvectors vi, but the above equations remain mostly valid. The main
difference is that the number of quadratic constraints drops from 6 to 3. As a consequence, the
relinearization technique is introduced in the N = 4 case of the previous section for N ≥ 3.

2.2.6 Gauss-Newton Optimization
This section will show that these closed-form solutions are more accurate than other state-of-
the-art non-iterative methods. Also, this algorithm is faster than the best known by the authors
[31]. However, it may be less accurate, especially when an iterative algorithm is initialized with
good input. To overcome this problem, a refinement procedure will be introduced that will
increase the accuracy at the expense of very little extra computational cost. The Figures 2.1
and 2.4 show that this closed-form approach with refinement has the same accuracy as the
method examined by the authors [20], but still much faster.

13

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.4: Comparing computation times of EPnP method against the state-of-the-art ones
introduced in Figure 2.1. The computation times are plotted as a function of the number of
correspondences. This method is both more accurate and faster than the other non-iterative
ones, especially for large amounts of noise, and is almost as accurate as the iterative LHM.
Furthermore, if maximal precision is required, the output of EPnP algorithm can be used
to initialize a Gauss-Newton optimization procedure which requires a negligible amount of
additional time

Then choosing the four values β = [β1, β2, β3, β4]T that minimize the change in distance
between control points. Specifically, the use of Gauss-Newton algorithm to minimize:

Error(β) =
∑︂

(i,j) s.t. i<j

(∥cc
i − cc

j∥2 − ∥cw
i − cw

j ∥2) ,

with respect β. The distances ∥cw
i − cw

j ∥2 in the world coordinate system are known and the
control point coordinates in camera reference are expressed as a function of the β coefficients
as

cc
i =

4∑︂
j=1

βjv
[i]
j .

Since the optimization is performed only over the four βi coefficients, its computational
complexity is independent of the number of input 3D-to-2D correspondences. This yields fast
and constant time convergence since, in practice, less than 10 iterations are required. As a result,
the computational burden associated to this refinement procedure is almost negligible as can
be observed in Figure 2.4. In fact, the time required for the optimization may be considered
as constant, and hence, the overall complexity of the closed-form solution and Gauss-Newton
remains linear with the number of input 3D-to-2D correspondences.

2.3 Deep Underwater Relative Localization
The big picture of DeepURL is a Convolutional Neural Network (CNN), in particular a modified
version of YOLOv3 [37], that predicts the 2D projections of the 8 corners of the AUV 3D model,
like [36, 42], and an object detection bounding box. Some approaches divide an image into grid
cells, they use global estimates of 2D keypoints for the object with the highest confidence value.
In DeepURL approach, each grid cell inside the bounding box predicts the 2D projections of
keypoints along with their confidences focusing on local regions belonging to the object. These
predictions of all cells are then combined based on their corresponding confidence scores using
RANSAC-based PnP during 6DoF pose estimation.

14

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

2.3.1 Formulation
The proposed network consists of an encoder, Darknet53 [37], and two decoders: Detection
Decoder and Pose Regression Decoder. The detection decoder detects objects with bounding
boxes, and the pose regression decoder regresses to 2D corner keypoints of the 3D object model.
The decoders predict a 3D tensor with a spatial resolution of S × S and a dimension of Ddet

and Dreg, respectively. Figure 2.5 show an overview scheme.

Figure 2.5: In training (outlined in red), the rendered images are translated to the synthetic
images resembling the AUV in a pool or a ocean environment. The synthetic images are then fed
to a common encoder, which is connected to two decoder streams: Detection Decoder (object
detection) and Pose Regression Decoder (6D pose regression). Only in inference (outlined in
purple), are the predicted 2D keypoint projections of 8 corners of the AUV model processed
and utilized to obtain a 6D pose using the RANSAC-based PnP algorithm.

2.3.2 YOLO
DeepURL uses as backbones encoder network Darknet-53 from YOLOv3, the bounding boxes
prediction system. YOLOv3 is the third version of YOLO system [38], "You Only Look Once".
In general, this object detection is a regression problem to spatially separated bounding boxes
and associated class probabilities. This is done by a single neural network that predicts directly
from full images in one evaluation. Since the whole detection pipeline is a single network has
several benefits. First, YOLO is extremely fast, since the frame detection is a regression
problem there are no need for a complex pipeline. Furthermore, it can be optimized end-
to-end directly on detection performance. Second, YOLO reasons globally about the image
when making predictions. In fact, it sees the entire image during the training, so it implicitly
encodes contextual information about classes as well as their appearance. Third, YOLO learns
generalizable representations of objects. Since it is highly generalizable, with new domains or
unexpected inputs it is less likely to break down.

In summary, this system takes a classifier for that object and evaluate it at various locations
and scales in the image. Systems like deformable parts models (DPM) use a sliding window
approach where the classifier is run at evenly spaced locations over the entire image. Figure
2.6 shows the model.

The neural network used by YOLOv3 is Darknet-53. It is a standard CNN with a first part
of convolutional layers and at the end a fully-connected layers follow by a softmax function.
From the previous version that used a 19 convolutional layers network, called Darknet-19, this
third version uses a 53 convolutional layers network. Figure 2.7 shows the architecture. This
increase in the number of layers does not reduce performance; in fact, it remains faster than
many other state-of-the-art networks.

15

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.6: The Model detection as a regression problem. It divides the image into an S × S
grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class
probabilities.

Figure 2.7: Darknet-53 architecture.

After this data extraction by Darknet-53, the estimation of bounding boxes is done through
a system by YOLOv3, that predicts boxes at 3 different scales. In particular, extracts features
from those scales using a similar concept to feature pyramid networks [28]. From the base
feature extractor it adds several convolutional layers, the last of these predicts a 3-d tensor
encoding bounding box, objectness, and class predictions. YOLO predicts 3 boxes at each scale
so the tensor in output is N × N × [3 · (4 + 1 + C)] for the 4 bounding box offsets, 1 objectness
prediction and C class predictions. Next it takes the feature map from 2 layers previous and
upsample it by 2×. Also it takes a feature map from earlier in the network and merge it with the
upsampled features using concatenation. This method allows to get more meaningful semantic
information from the upsampled features and finer-grained information from the earlier feature
map. Then add a few more convolutional layers to process this combined feature map, and
eventually predict a similar tensor, although now twice the size. The same design is performed
one more time to predict boxes for the final scale. Thus predictions for the 3rd scale benefit
from all the prior computation as well as finegrained features from early on in the network.

This bounding boxes prediction system is used by DeepURL, as you will see in the next
sections.

16

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

2.3.3 Object Detection Stream
The object detection stream is like the detection stream of YOLOv3 [37] which predicts object
bounding box. For each grid cell at offset (cx, cy) from the top left corner of the image, the
network predicts 4 coordinates for each bounding box: tx, ty, tw, th. Following Darknet53, it
uses 9 anchor boxes obtained by k-means clustering on COCO dataset [29] of size (10×13), (16×
30), (33 × 23), (30 × 61), (62 × 45), (59 × 119), (116 × 90), (156 × 198), (373 × 326) divided among
three scales. The width and height are predicted as the fraction of the anchor box priors (pw, ph)
and the actual bounding box values are obtained as

bx = σ(tx) + cx,

by = σ(ty) + cy,

bw = pwetw ,

bh = pheth

where σ represents the sigmoid function. Figure 2.8 shows the scheme.

Figure 2.8: Bounding boxes with dimension priors and location prediction. The model predicts
the width and height of the box as offsets from cluster centroids and it predicts the center
coordinates of the box relative to the location of filter application using a sigmoid function.

The sum of square of error between the ground truth t∗ and coordinate prediction t̂∗ is
used as the loss function. The ground truth values t∗ can be obtained by inverting equation
Eq. (3). The object detection stream also predicts the objectness score of each bounding box
by calculating its intersection over union with anchor boxes and class prediction scores using
independent logistic classifiers. The total object detection loss Ldet is the sum of coordinate
prediction loss, objectness score loss, and class prediction loss [38]:

Ldet = λcoord

S2∑︂
i=0

B∑︂
j=0

1obj
ij

[︂
(xi − x̂i)2 + (yi − ŷi)

2
]︂

+ λcoord

S2∑︂
i=0

B∑︂
j=0

1obj
ij

[︄(︂√
wi −

√︁
ŵi

)︂2
+

(︃√︁
hi −

√︂
ĥi

)︃2
]︄

+
S2∑︂
i=0

B∑︂
j=0

1obj
ij

(︂
Ci − Ĉi

)︂2

+ λnoobj

S2∑︂
i=0

B∑︂
j=0

1noobj
ij

(︂
Ci − Ĉi

)︂2

17

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

+
S2∑︂
i=0

1obj
i

∑︂
c ∈ classes

(pi(c) − p̂i(c))2

where 1obj
i denotes if object appears in cell i and 1obj

ij denotes that the jth bounding box predic-
tor in cell i is “responsible” for that prediction. Also this object detection loss increases the loss
from bounding box coordinate predictions and decrease the loss from confidence predictions for
boxes that do not contain objects. Parameters λcoord and λnoobj is used to accomplish this.
The authors for better results set λcoord = 5 and λnoobj = 0.5. Note that the loss function
penalizes classification error if an object is present in that grid cell and also penalizes bounding
box coordinate error if that predictor is “responsible” for the ground truth box.

2.3.4 Pose Regression Stream
The pose regression stream predicts the location of the 2D projections of the 3D keypoints
associated with the 3D object model of the AUV. The 8 corner points of the model bounding
boxes is used as keypoints. The pose regression stream predicts a 3D tensor with size S × S ×
Dreg, where Dreg = 3×8 is the (x, y) spatial locations for the 8 keypoint projections along with
their confidence values. So, the 2D coordinates of the 2D keypoints are not directly predict,
instead it is estimated the offset of each keypoint from the corresponding grid cell as in Figure
2.9(b). Let c be the position of grid cell from top left image corner. For each ith keypoint, it
predicts the offset fi(c) from grid cell, so that the actual location in image coordinates becomes
c + fi(c), which should be close to the ground truth 2D locations gi . The residual is calculated
as

∆i(c) = c + fi(c) − gi

and it defines the offset loss function, Loff , for spatial residual:

Loff =
∑︂
c∈B

8∑︂
i=1

∥∆i(c)∥1,

where B consists of grid cells that fall inside the object bounding box. Apart from the 2D
keypoint locations, the pose regression stream also calculates confidence value for each predicted
keypoint vi(c), which is obtained through the sigmoid function on the network output. The
confidence value is a representation of the distance between the predicted keypoint and ground
truth values and is used a sharp exponential function of the 2D euclidean distance. The
confidence loss is calculated as

Lconf =
∑︂
c∈B

8∑︂
i=1

∥vi(c) − exp(−α∥∆i(c)∥2)∥1,

where parameter α defines the sharpness of the exponential function. The final pose regression
loss is:

Lreg = λoff Loff + λconf Lconf ,

for numerical stability, the authors down-weight the confidence loss for cells that do not contain
objects by setting λconf to 0.1, as suggested in [38]. For the cells that include the object, λconf

is set to 5.0 and λoff to 1.
Therefore, the total loss of the network is:

L = Ldet + Lreg.

18

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.9: (a) The object detection stream predicts the bounding box and assigns each cell
inside the box to the AUV object. (b) The regression stream predicts the location of 8 bounding
box corners as 2D keypoints from each grid cell.

2.3.5 Pose refinement
To achieve a better results is apply a pose refinement strategy. During inference, the object
detection stream predicts the coordinate locations of the bounding boxes with their confidences
and the class probabilities for each grid cell. Then, the class-specific confidence score is esti-
mated for the object by multiplying the class probability and confidence score. To select the
best bounding box, it is used a non-max suppression [39] (Expand this?) with an IOU threshold
of 0.4 and a class-specific confidence score threshold of 0.3.

Simultaneously, the pose regression stream produces the projected 2D locations of the object’s
3D bounding box, along with their confidence scores for each grid cell, as shown in Figure
2.10(b). The 2D keypoints estimated for each grid cells that fall outside the bounding box, as
shown in Figure 2.10(a), predicted by the object detection stream are filtered out. In an ideal
case, the remaining 2D keypoints should cluster around the object center. The 2D keypoints
does not belong to a cluster are removed using a pixel distance threshold of 0.3 times the image
width. The keypoints with confidence scores less than 0.5 are also filtered out. To balance the
computation time and accuracy, the authors of the paper empirically found that using the 12
most confident 2D predictions for each 3D keypoint produces an acceptable pose estimate after
RANSACbased PnP [27], as visualize in Figure 2.10(c). To obtain a robust pose estimation is
used a RANSAC-based PnP method on 12 × 8 = 96 2D-to-3D correspondence pairs between
the image keypoints and the object’s 3D model, as shown in Figure 2.10(d).

2.3.6 Implementation details
Create the synthetic dataset following the training procedure of CycleGAN and let the training
continue until it generated acceptable reconstruction. Once CycleGAN can reasonably recon-
struct for the target domain, use the model weights of that epoch to translate all rendered
images to synthetic images. Then, the synthetic to the CNN.

Darknet-53 is trained on the synthetic dataset, where the first 3 epochs are part of a warmup
phase: the learning rate gradually increases from 0 to 1e-4. Is utilized the SGD optimizer with a
momentum of 0.9 and a piecewise decay to decrease the learning rate to 3e-5 at an intermediate
number of epochs and 1e-5 for the last remaining epochs. Also it uses minibatches to avoid the
overfitting(, minibatches of size 8 were produced by applying data augmentation techniques,
including randomly changing hue, saturation, and exposure of the image up to a factor of 1.5).

2.4 Pixel-wise Voting Network
PVNet instead of estimating keypoints directly creates a vector-field representation for keypoint
localization. The basic idea is illustrated in Figure 2.11.

19

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.10: Inference strategy for combining pose candidates. (a) Grid cells inside the detection
box belonging to AUV object overlaid on the image. (b) Each grid predicts 2D locations for
corresponding 3D keypoints shown as red dots. (c) For each keypoints, 12 best candidates
are selected based on the confidence scores. (d) Using 12 × 8 = 96 2D-to-3D correspondence
pairs and running RANSAC-based PnP algorithm yield accurate pose estimate as shown by
the overlaid bounding box.

2.4.1 Formulation
The strategy of predicting the vector-field representation for the keypoints localization enforces
the network to focus on local features of objects and spatial relations between object parts. As
a result, this vector-field representation can represent the location of an invisible part inferred
from the visible parts, so the object keypoints that are even outside the input image. All
these advantages make it an ideal representation for occluded or truncated objects. Another
advantage of PVNet approach is that the dense outputs provide rich information for the PnP
algorithm to deal with inaccurate keypoints estimation. Firstly RANSAC-based voting prunes
outlier predictions and gives a spatial probability distribution for each keypoint. Then the
PnP solver has more freedom from the uncertainty keypoint locations to identify consistent
correspondences for predicting the final pose. In summary PVNet uses a two-stage pipeline:
first detect 2D object keypoints using CNNs and then compute 6D pose parameters using the
PnP algorithm, as shows by the Figure 2.12.

2.4.2 ResNet
PVNet uses a pretrained ResNet-18 as the backbone network for the first stage. The big picture
behind ResNet [15] is a residual learning framework to simplify the training of networks and
reformulate the layers as learning residual functions with reference to the layer inputs, instead
of learning unreferenced functions.

Deep networks naturally integrate low/mid/high level features and classifiers in an end-to-
end multilayer fashion, and the “levels” of this features can be enriched by the deeper layers.
Network depth is a crucial importance, but this increase even the number of the problems. The
notorious problem of vanishing and exploding gradients is an hamper convergence from the
beginning. However, it has been largely addressed by normalized initialization and intermediate
normalization layers, which enable networks start converging for stochastic gradient descent
(SGD) with backpropagation. Another problem related to deeper networks is a degradation
problem: accuracy gets saturated and then degrades rapidly. Unfortunately, such degradation

20

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.11: The 6D pose estimation problem is formulated as a Perspective-n-Point (PnP)
problem, which requires correspondences between 2D and 3D keypoints, as illustrated in (d)
and (e). PVNet predicts vectors pointing to keypoints for each pixel, as shown in (b), and
localize 2D keypoints in a RANSAC-based voting scheme, as shown in (c). Most advantages of
this method is robustness to occlusion (g) and truncation (h), where the green bounding boxes
represent the ground truth pose and the blue bounding boxes represent the prediction.

is not caused by overfitting, and adding more layers to a suitably deep model leads to higher
training error. In fact deeper network has higher training and test error, as shows Figure 2.13.

The degradation problem, of training accuracy, indicates that not all models are similarly
easy to optimize. Let is consider a shallow architecture and its deeper counterpart that has
more hidden layers onto it. To avoid an higher training error of deeper model than its shallower
counterpart exists a construction solution: the added layers are identity mapping, and the other
layers are copied from the learned shallower model. However experiments conducted by the
authors show that current solvers are unable to find solutions that are comparably good or
better than the constructed solution, or are unable to do so in feasible time 2.14.

ResNet addresses the degradation problem by introducing a deep residual learning framework.
Consider an underlying mapping to be fit by a few stacked layers H(x), not necessarily repre-

sent the entire network, with x denoting the inputs to the first layer. Hypothesize that multiple
nonlinear layers can asymptotically approximate complicated functions, then it is equivalent to
hypothesize that they can asymptotically approximate the residual functions, i.e., H(x) − x,
assuming the input dimension is equivalent to the output dimension. So rather than expect
stacked layers approximate H(x), the model can explicitly let these layers approximate a resid-
ual function F (x) := H(x) − x. The original mapping becomes F (x) + x. Although both forms
should be able to asymptotically approximate the desired functions, the ease of learning might
be different. So the added layers can be constructed as identity mappings and a deeper model
should have training error no greater than its shallow counterpart. The degradation problem
suggests that the solvers might have difficulties in approximating identity mappings by multiple
nonlinear layers. To approach identity mappings with the residual learning reformulation, the
models should simply drive the weights of the multiple nonlinear layers toward zero, if the iden-
tity mappings are optimal. In real cases, it is unlikely that identity mappings are optimal, but
it may help to precondition the problem. Also, if the optimal function is closer to an identity
mapping than to a zero mapping, it should be easier for the model to find the perturbations
with reference to an identity mapping, than to learn the function as a new one.

For every few stacked layers, considering the building blocks, ResNet uses the residual learn-

21

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.12: Overview of the keypoint localization: (a) An image of the Occlusion LINEMOD
dataset. (b) The architecture of PVNet. (c) Pixel-wise vectors pointing to the object key-
points. (d) Semantic labels. (e) Hypotheses of the keypoint locations generated by voting. The
hypotheses with higher voting scores are brighter. (f) Probability distributions of the keypoint
locations estimated from hypotheses. The mean of a distribution is represented by a red star
and the covariance matrix is shown by ellipses.

Figure 2.13: Training error (left) and test error (right) on CIFAR-10 [24] with 20-layer and
56-layer “plain” networks. The deeper network has higher training error, and thus test error.
Similar phenomena on ImageNet is presented in Figure 2.14. Results obtained by the authors
of ResNet.

ing. Formally, a building block is defined as:

y = F (x, Wi) + x,

where x and y are the input and output vectors of the layers considered. The function F (x, Wi)
represents the residual mapping to be learned. Figure 2.15 shows an example. In this case
there are two layers, where F = W2σ(Wix) in which σ denotes RELU [resnet cite 29] and the
biases are omitted for simplifying notations. Specifically, the operation F + x is performed
by a shortcut connection and element-wise addition, this mean F and x must have the same
dimension. Then apply the nonlinearity after the last layer. If the two dimensions are not equal
(e.g., when changing the input/output channels), it is possible to perform a linear projection
Ws by the shortcut connections to match the dimensions:

y = F (x, Wi) + Wsx

22

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.14: Training on ImageNet [40]. Thin curves denote training error, and bold curves
denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right:
ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter
compared to their plain counterparts. Results obtained by the authors of ResNet.

Figure 2.15: Residual learning: a building block.

The shortcut connections introduce neither extra parameter nor computation complexity.
This is not only attractive in practice but also important in the comparison between plain
and residual networks. In fact, plain and residual networks can simultaneously have the same
number of parameters, depth, width, and computational cost, except for the negligible element-
wise addition.

The form of the residual function F can be flexible. Experiments from the authors involve a
function F that has two or three layers, as shown on Figure 2.16, but more layers are possible.
Instead with only a single layer, the building block is similar to a linear layer: y = W1x + x,
that not take advantages.

Figure 2.16: Left: a building block (on 56×56 feature maps) for ResNet-34. Right: a “bottle-
neck” building block for ResNet-50/101/152.

This strategy can be apply to fully-connected and convolutional layers. The above notations
are about fully-connected layers for simplicity, but the mapping F (x, Wi) can represent multiple
convolutional layers, where element-wise addition is performed on two feature maps, channel
by channel.

23

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

2.4.3 Voting-based keypoint localization
Given an RGB image, PVNet predicts pixel-wise object labels and vectors that represent the di-
rection from every pixel to every keypoint. In this way, it generates hypotheses of 2D locations
for that keypoints like the confidence scores of RANSAC-based voting. Based on these hy-
potheses, the mean and covariance of the spatial probability distribution for each keypoint are
estimate. More specifically, PVNet performs two tasks: semantic segmentation and vector-field
prediction. For a pixel p, PVNet outputs the semantic label that associates it with a specific
object and the vector vk(p) that represents the direction from the pixel p to a 2D keypoint
xk of the object. In addiction a vector vk(p) could be the offset between the pixel and the
keypoint. In this way, it obtains the target object pixels and add the offset to generate a set of
keypoint hypotheses. However, scale changes of the object penalize these offset, which limits
the generalization ability of PVNet. For this reason the vector computation is scale-invariant

vk(p) = xk − p

∥xk − p∥2
,

which only cares the relative direction between objects parts.
To a better results the keypoint hypotheses are generated by a RANSAC-based voting scheme,

given target object pixels and unit vectors. First, choose randomly two pixels and take the
intersection of their vectors as a hypothesis hk,i associated to the keypoint xk. This step is
repeated N times to generate a set of hypothesis {hk,i|i = 1, 2, ..., N} that represent possible
keypoint locations. Then, all pixels of the object vote for these hypothesis. Specifically, the
voting score wk,i of a hypothesis hk,i is defined as

wk,i =
∑︂
p∈O

I
(︃

(hk,i − p)T

∥hk,i − p∥2
vk(p) ≥ θ

)︃
,

where I represents the indicator function, θ is a threshold (0.99 usually), and p ∈ O means that
the pixel p belongs to the object O. Intuitively, a higher voting score means that a hypothesis
is more confident as it coincides with more predicted directions.

The resulting hypotheses characterize the spatial probability distribution of a keypoint in the
image, as shown by Figure 2.12(e). Finally, the mean µk and the covariance Σk for a keypoint
xk are estimated by:

µk =
∑︁N

i=1 wk,ihk,i∑︁N
i=1 wk,i

,

Σk =
∑︁N

i=1 wk,i(hk,i − µk)(hk,i − µk)T∑︁N
i=1 wk,i

,

which are used for uncertainty-driven PnP solver.

2.4.4 Keypoint selection
As shown by Figure 2.17(a) the bounding box corners may be far from the object pixels in
the image and this longer distance can generate a larger localization error. Other methods like
DeepURL, use the eight corners of the 3D bounding box of the object as the keypoints, so they
are more error driven. This mean the keypoints need to be defined based on the 3D object
model. Figure 2.17(b) and (c)) show the hypotheses of a bounding box corner and a keypoint
selected on the object surface, respectively, which are generated by our PVNet. The keypoint
on the object surface usually has a much smaller variance in localization. For this reason PVNet

24

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.17: (a) A 3D object model and its 3D bounding box. (b) Hypotheses produced by
PVNet for a bounding box corner. (c) Hypotheses produced by PVNet for a keypoint selected
on the object surface. The smaller variance of the surface keypoint shows that it is easier to
localize the surface keypoint than the bounding box corner in our approach.

select keypoint on the onject surface. In addiction, these keypoints should spread out on the
object to make the PnP algorithm more stable.

To select K keypoint is used the farthest point sampling (FPS) algorithm:

1. initialize the keypoint set by adding the object center

2. find a point on the object surface, which is farthest to the current keypoint set

3. add the keypoint to the set

4. repeat until the size of the set reaches K

Considering both accuracy and efficiency, the authors suggest K = 8 according to their exper-
iment results. Figure 2.18 visualizes examples of selected keypoints of some objects.

Figure 2.18: Keypoints of four objects in the LINEMOD [18] dataset.

2.4.5 Uncertainty-driven PnP
Given 2D keypoint locations for each object, its 6D pose problem can be computed by solving
the EPnP problem, like DeepURL. However, with different keypoints selection PVNet have
different confidences and uncertainty patterns, which effects the PnP solver.

Given the estimated mean µk and covariance matrix Σk for k = 1, ..., K the related 6DoF
pose problem (R, t) by minimizing the Mahalanobis distance is:

minimize
R,t

K∑︂
k=1

(˜︁xk − µk)T Σ−1
k (˜︁xk − µk),

˜︁xk = π(RXk + t),
where Xk is the 3D coordinate of the keypoint, ˜︁xk is the 2D projection of Xk and π is the
perspective projection function. The parameters R and t are initialized by EPnP based on four

25

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

keypoints, whose covariance matrices have the smallest traces. Then, it solves the minimization
problem using the Levenberg-Marquardt algorithm.

2.4.6 Implementation details
Assuming there are C classes of objects and K keypoints for each class, PVNet takes as input
the H × W × 3 image, processes it with a fully convolutional architecture, and outputs an H
× W × (K × 2 × C) tensor representing vectors and an H × W × (C + 1) tensor representing
class probabilities. It uses a pretrained ResNet-18 [cite] as the backbone network with three
modifications on it. First, when the feature map of the network has a size of H/8 × W/8, PVNet
does not downsample the feature map anymore by discarding the subsequent pooling layers.
Second, to keep the receptive fields unchanged, the subsequent convolutions are replaced with
suitable dilated convolutions [47]. Third, the fully connected layers in the original ResNet-18
are replaced with convolution layers. Then, this model repeatedly perform skip connection,
convolution and upsampling on the feature map, until its size reaches H × W, as shown in
Figure 2.12(b). By applying a 1 × 1 convolution on the final feature map, we obtain the unit
vectors and class probabilities.

PVNet uses the smooth l1 loss proposed in Fast R-CNN [10] for learning unit vectors. The
corresponding loss function is defined as

l(w) =
k∑︂

k=1

∑︂
p∈O

(l1(∆vk(p; w)|x) + l1(∆vk(p; w)|y)) ,

∆vk(p; w) = ˜︁vk(p; w) − vk(p),

where w represents the parameters of PVNet, ˜︁vk is the predicted vector, vk is the ground truth
unit vector, and ∆vk(p; w)|x and ∆vk(p; w)|y represent the two elements of ∆vk, respectively.
Note that during testing, there is no need of the predicted vectors to be unit because the
subsequent processing uses only the directions of the vectors.

2.5 Dense Pose Object Detector
Dense Pose Object Detector (DPOD) estimates dense multi-class 2D-3D correspondence maps
between an input RGB image and available 3D models. Given the correspondences, a 6DoF
pose object estimation is computed via PnP and RANSAC. Also a RGB pose refinement of the
initial pose estimation is performed using a custom deep learning-based refinement scheme.

2.5.1 Data Preparation
DPOD, like DeepURL, introduces a strategy to create a specific dataset to train the model.
First the 3D model of the object is rendered in all possible viewpoints so that it is covered
sufficiently. Then for each camera position the object is rendered on a black background and
the RGB and depth channels are stored. In addition, a depth mask is created for each position
in order to create a box containing the depicted object. For detector training, masks are used
to cut out objects from images and then stored as patches for the online augmentation phase.
In addition, new in-plane poses are artificially simulated by adding additional rotations. For
training the refinement, objects are left as they are.

The custom part of the dataset concerns the generation of images with a correspondence
mapping. To to learn a dense 2D-3D correspondences, each 3D object model of the dataset
is textured with a correspondence map, shown on Figure 2.19. A correspondence map is a

26

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

2-channel image with values ranging from 0 to 255, where the objects are textured using either
simple spherical or cylindrical projections. In this way, there is a bijective mapping between the
model’s vertices and pixels on the correspondence map. This provides an easy-to-read 2D-3D
correspondences since given the pixel color, it is instantaneously to estimate the object position
on the model surface by selecting the vertex with the same color value. Given the predicted
correspondence map, the pose estimation stage estimates the object pose with respect to the
camera.

Figure 2.19: Correspondence model: (1) 3D model of interest, (2) apply a 2 channel correspon-
dence texture to the object. The resulting correspondence model (3) is then used to generate
ground-truth maps and estimate poses.

2.5.2 Object Detection
The pipeline is divided into two blocks: the correspondence block and the pose block, Figure
2.20.

The correspondence block is an encoder-decoder convolutional neural network with three
decoder which regress the mask of the object and dense 2D-3D correspondence map from an
RGB image. The encoder model is based on a 12-layer ResNet-like architecture [15]. The
decoders upsample the feature up to its original size using a stack of bilinear interpolations
followed by convolutional layers. Finally, images are generated with a single channel, where
each pixel contains the maximum estimated probability of the class, forming the ID mask, U
and V channels of the correspondence image. For the 2D-3D matches is used the color regression
problem as discrete color class classification problem, this is useful for much faster convergence
and for the superior quality. The network parameters are optimized subject to the composite
loss function:

L = αLm + βLu + γLv ,

where Lm is the mask loss, and Lu and Lv are the losses associated to the U-V channels of the
correspondence image. α, β, and γ are weight the factors. Both Lu and Lv losses are defined
as multi-class cross-entropy functions, whereas Lm uses a weighted version.

The pose block is responsible for the pose prediction. Given the estimated mask, the 2D
locations are estimated, whereas the correspondence map maps each 2D point to a coordinate
on an actual 3D model. The 6D pose is then performed using the EPnP method [27]. Also
RANSAC [9] is used in conjunction with PnP to make camera pose prediction more robust to
possible outliers.

2.5.3 Pose Refinement
Analogous to the object detection stage, for the pose refinement stage is used a ResNet-based
architecture. The network has two parallel input branches: one branch receives an RGB image
as input, while the other one extracts features from the rendering of the object in the predicted
pose from the previous stage. From these two networks the two feature vectors obtained are
subtracted and fed into the next ResNet-based block producing the feature vector. The network

27

CHAPTER 2. OBJECT POSE ESTIMATION: THE ANALYZED FRAMEWORKS

Figure 2.20: Dense Object Detection Pipeline.

ends with three separate output head blocks: one for regressing the rotation, one for regressing
the translation in X and Y directions, and one for regressing the translation in Z direction.
Each head block is implemented as two fully connected layers.

2.5.4 Limitations
At first glance, this method seemed very callous in that it used an efficient strategy that
was different from both DeepURL and PVNet. This would have allowed further comparison of
different state-of-the-art strategies that best represented the underwater object pose estimation
problem. However after several attempts in building the dataset a complication presented itself.
Specifically in the creation of the correspondence map images. This is because the authors of the
paper use objects with simple and convex shapes, i.e. the correspondence mapping projection
that is done is immediate and each point of the object is mapped with a different pair (U,V).
However industrial objects, as in this case, can be very complex and with a low density of
vertices representing the 3D model. This implies, for example, taken any square it can be
represented with four vertices and two triangles, the basic geometric form used to model 3D
objects. The correspondence map associated with the square is simply an interpolation, which
makes the pixels less distinguishable from each other, unlike the objects used by the authors
with a high density of vertices. Another limitation is the presence of pixels with equal (U,V)
values in the same line through the center of reference of the object. Last issue is the presence of
a blind part that remains without (U,V) values and that the authors have masked by mapping
it to the base of the object.

28

Chapter 3

Synthetic Dataset Generation

All methods considered and analyzed are data-driven, i.e., the data used to train the various
models is a key part of the entire pipeline. In this case the data used are only images representing
the object, the background and possible obstacles. General difficulties already known on general
image detection include severe occlusions and truncations, variations in lighting and appearance,
and cluttered background objects. Adding that we are in an underwater environment where
images can be even more difficult to analyze and extract key parts, the dataset used is even
more fundamental. This obviously leads to greater difficulties and a more challenging scenario.

Most recent RGB-based detectors can be divided in two groups based on the type of data
they use for training: synthetic-based and real-based, where both types of data generation have
their pros and cons. When the object is sufficiently covered by real images, it is more convenient
to use it. In fact, the close resemblance to the actual object allows for better training, faster
convergence and better results. However, training with real images presents some problems,
such as: illuminations, poses, scales and occlusions, which could lead the generalization in new
environments. Also in some cases, as in this project, the poses of the object, both 2D points and
3D projections in the real world are not available. This could happen because of an inability
to get them or because the process is too expensive.

With synthetic rendering of the dataset, a disproportionate number of images can be gener-
ated to sufficiently cover the object from all viewpoints. Despite being advantageous in terms
of the pose coverage, one as to deal with the domain gap problem severely hindering the per-
formance if no additional data augmentation is applied. Theoretically, one can benefit from the
advantages of both types of data by mixing real and synthetic adapted images in the training
set. In fact approaches that can be trained with both methods are more desirable.

The models analyzed in this thesis could use both methods, but there is the problem of
not having the poses of the real data. From this issue in the following chapter, the problem
of generating a synthetic adapted or corrupt dataset from a dataset of false rendered images
will be addressed. Specifically, an unpaired image-to-image transformation strategy will be
analyzed: Cycle Generative Adversarial Network (CycleGAN) [50].

The next section describes the strategy used to obtain the final synthetic adapted dataset
with CycleGAN. In the second section will present the entire pipeline to generate a synthetic
adapted dataset. In particular how to generate a first dataset of synthetic images, obtained
by a specific algorithm. Then will present the experiments done with CycleGAN to obtain
different synthetic adapted datasets and subsequently compare them. Cloncluding with data
enhancement strategies to check if this leads to real improvements in the final results.

30

CHAPTER 3. SYNTHETIC DATASET GENERATION

3.1 Cycle Generative Adversarial Network

From the DeepURL paper the best method used is the generation of rendered image with a tool
to create the dataset, then use an image-to-image transform to obtain the synthetic adapted or
corrupted images, that they can be used for the approaches taken. A method that can learn to
capture special characteristics of one image collection and figure out how these characteristics
could be translated into the other image collection, all in the absence of any paired training
examples. Converting an image from one representation of a given scene, x, to another, y.

Years of research in computer vision, image processing, computational photography, and
graphics have produced powerful translation systems in a supervised scenario, where are avail-
able image pairs {xi, yi}N

i=1, e.g. [8, 16, 21, 25, 46], as Figure 3.1(a) shown. However, obtaining
paired training data can be difficult and expensive. For example, exists only a couple of datasets
for tasks like semantic segmentation, and they are relatively small. For the AUV 6DoF object
pose estimation is significant an algorithm that can learn to translate between domains without
paired input-output examples, Figure 3.1(b).

Figure 3.1: (a) Paired training data consists of training examples {xi, yi}N
i=1, where the cor-

respondence between xi and yi exists. (b) unpaired training data, consisting of a source set
{xi}N

i=1(xi ∈ X) and a target set {yj}M
j=1(yj ∈ Y), with no information provided as to which

xi matches which yj .

Where the supervision in the form of paired examples, can be exploit supervision at the level
of sets: given one set of images in domain X and a different set in domain Y. Also it assumes
there is some underlying relationship between the two domains and learns that relationship.
For example, that they are two different renderings of the same underlying scene.

To do that, CycleGAN trains a mapping function G : X → Y such that the output ŷ =
G(x), x ∈ X, is indistinguishable from images y ∈ Y by an adversary trained to classify ŷ
apart from y. The optimal mapping function G thereby translates the domain X to a domain
Ŷ distributed identically to Y . However, a translation does not guarantee that an individual
input x and output y are paired up in a meaningful way, because there are infinitely many
mappings G that will induce the same distribution over ŷ. Moreover, in practice, it is difficult
to optimize the adversarial objective in isolation. Therefore, CycleGAN exploits the property
of “cycle consistent” [49]. Where a translator G : X → Y and another translator F : Y → X,
with G and F inverses of each other, and both mappings should be bijections. With this
structural assumption training both the mappings G and F simultaneously and adding a cycle
consistency loss is encouraged F (G(x)) ≈ x and G(F (y)) ≈ y. Combining this cycle consistency
loss with adversarial losses on domains X and Y yields full objective for unpaired image-to-
image translation.

31

CHAPTER 3. SYNTHETIC DATASET GENERATION

3.1.1 Formulation
The goal is to learn mapping functions between a source domain X and a target domain Y
given training samples xi ∈ X, ∀i = 1. . . N and yj ∈ Y, ∀j = 1. . . M . The data distribution is
denoted as x ∼ pdata(x) and y ∼ pdata(y). As illustrated in Figure 3.2(a), the model includes
two mappings G : X → Y and F : Y → X as said before and in addition, two adversarial
discriminators DX and DY . Specifically(/in detail) DX aims to distinguish between images
{x} and translated images {F (y)}. In the same way, DY aims to discriminate between {y}
and {G(x)}. So, the objective contains two types of terms: adversarial losses [11] for matching
the distribution of generated images to the data distribution in the target domain; and cycle
consistency losses [49] to prevent the learned mappings G and F from contradicting each other.

Figure 3.2: (a) The model contains two mapping functions G : X → Y and F : Y → X,
and associated adversarial discriminators DY and DX . DY encourages G to translate X into
outputs indistinguishable from domain Y , and vice versa for DX and F . To further regularize
the mappings, is introduced two cycle consistency losses that capture the intuition that if the
model translates from one domain to the other and back again it should arrive at where it
started. (b) Forward cycle-consistency loss: x → G(x) → F (G(x)) ≈ x. (c) Backward cycle-
consistency loss: y → F (y) → G(F (y)) ≈ y

3.1.2 Adversarial Loss
The adversarial losses are applied to both mapping functions. For the mapping function G :
X → Y and its discriminator DY , the objective is:

LGAN (G, DY , X, Y) = Ey∼pdata(y)[log DY (y)] + Ex∼pdata(x)[log(1 − DY (G(x)))],

where G tries to generate images G(x) that look similar to images from domain Y , while DY

aims to distinguish between translated samples G(x) and real samples y. Also, the G aims to
minimize this objective against adversary DY that tries to maximize it. Same for the mapping
function F : Y → X and its discriminator DX , i.e.,

min
G

max
DY

LGAN (G, DY , X, Y) ,

min
F

max
DX

LGAN (F, DX , Y, X) .

3.1.3 Cycle Consistency Loss
In theory, the adversarial training can learn mappings G and F that produce outputs identically
distributed as target domains Y and X respectively. However, with large enough capacity,

32

CHAPTER 3. SYNTHETIC DATASET GENERATION

a network can map the same set of input images to any random permutation of images in
the target domain, this imply that adversarial losses alone cannot guarantee that the learned
function can map an individual input xi to a desired output yi. For this reason, CyceGAN
implements the cycle consistency losses, where for each source image x the translation image
should bring back to the original one: i.e., x → G(x) → F (G(x)) ≈ x. This is the forward cycle
consistency as shown in Figure 3.2(b).

Similarly, as illustrated in Figure 3.2(c), for each image y, G and F should also satisfy the
backward cycle consistency: i.e., y → F (y) → G(F (y)) ≈ y. The cycle consistency loss is:

Lcyc(G, F) = Ex∼pdata(x)[∥F (G(x)) − x∥1] + Ey∼pdata(y)[∥G(F (y)) − y∥1]

As verified by the authors of the paper, replacing the L1 norm does not lead to any improve-
ment.

Figure 3.3 shows an example of cycle consistency loss, made available by the authors

Figure 3.3: The input images x, output images G(x) and the reconstructed images F (G(x)) from
various experiments. From top to bottom: photo↔Cezanne; horses↔zebras; winter↔summer
Yosemite; aerial photos↔Google maps.

3.1.4 Full Objective
The full objective is:

L(G, F, DX , DY) = LGAN (G, DY , X, Y) + LGAN (F, DX , Y, X) + λLcyc(G, F),

where λ controls the relative importance of the two objectives.
The problem solved by CycleGAN is:

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G, F, DX , DY)

This model can be viewed as training two “autoencoders” [20], where it learns one autoen-
coder F ◦G : X → X jointly with another G◦F : Y → Y . However, they have a special internal
structure: they map an image to itself via an intermediate representation that is a translation of
the image into another domain. Obviously, the target distribution for the X → X autoencoder
is the domain Y and for the Y → Y autoencoder is the domain X.

33

CHAPTER 3. SYNTHETIC DATASET GENERATION

3.1.5 Implementation details
CycleGAN adopts the architecture from Johnson et al. [21], which according to the authors
of the paper, it has shown impressive results for neural style transfer and super-resolution.
This network contains three convolutions, several residual blocks [15], two fractionally-strided
convolutions with stride 1/2, and one convolution that maps features to RGB. The model
uses 6 blocks for 128×128 images, 9 blocks for 256×256 and higher-resolution training images.
Also it uses instance normalization [44]. As discriminator networks CycleGAN uses 70x70
PatchGANs [20, 7, 26], which aim to classify whether 70×70 overlapping image patches are
real or synthetic. Such a patch-level discriminator architecture has fewer parameters than a
full-image discriminator and can work on arbitrarilysized images in a fully convolutional fashion
[20].

To stabilize the model training procedure is applied two specific techniques. First, for LGAN

equation, replace the negative log likelihood objective by a least-squares loss [32]. This loss is
more stable during training and generates higher quality results. In particular, for a GAN loss
LGAN (G, D, X, Y), train X to minimize Ex∼pdata(x)[(D(G(x)) − 1)2] and train D to minimize
Ey∼pdata(y)[(D(y)−1)2]+Ex∼pdata(x)[D(G(x))2]. Second, to reduce model oscillation [11], apply
Shrivastava et al.’s strategy [41] and update the discriminators using a history of generated
images rather than the ones produced by the latest generators. Introduce an image buffer that
stores the 50 previously created images. Authors suggest to set λ = 10 in the full objective
equation, use the Adam solver [23] with a batch size of 1, and keep the same learning rate for
a first part of the training and linearly decay the rate to zero over the next epochs.

3.2 Synthetic Dataset
The generation of a synthetic dataset is divided, mainly, into two phases: search or creation of
the backgrounds images and generation of the object views.

From now on, the following terminology will be used: synthetic dataset as the source dataset
of CycleGan, real dataset as the target dataset of CycleGAN, and synthetic adapted or corrupted
dataset as the result of CycleGAN and input for 6DoF object pose estimation approaches.

3.2.1 Underwater Backgrounds
The first step is to search for or create what will be the backgrounds of the synthetic dataset.
In this case, existing underwater backgrounds were used, regardless of coloration, brightness
and subjects present. This phase was quite time consuming, as each image was downloaded
from the web manually. In fact even if the main constraint was the underwater scenario, there
were some limitations to be taken into account, such as having some subjects (peaches, wrecks,
stones and other) present but not too many, having a certain variety of coloration of the sea
(crystal blue, midnight blue, green, brown sand), general variation of brightness (day and night)
and blurred backgrounds to simulate the unfocusing of the lens. As you can guess this took
time, also because initially CycleGAN was tested with simple underwater images with different
subjects: species of fish, mollusks, crustaceans, wrecks and divers. Two datasets depicting
subjects in underwater and non-underwater environments were taken. This was done to test if
the network was able to recognize and identify the various subjects in the images and change
between environments automatically.

In summary at the beginning two datasets of underwater subjects were created, one synthetic
and one real, to test CycleGAN and then a dataset of underwater backgrounds for the final
synthetic dataset. Figure 3.4 shows some examples of underwater backgrounds.

34

CHAPTER 3. SYNTHETIC DATASET GENERATION

3.2.2 Synthetic Objects
Synthetic representations of the object are made through a 3D model representing the object.
In particular the PLY format [12] is used.

Polygon File Format (PLY) or Stanford Triangle Format is a format for storing graphical
objects that are described as a collection of polygons. The main advantage is simple and easy
to implement, but it is general enough to create a wide variety of objects. The PLY format
describes an object as a collection of vertices, faces and other elements, along with properties
such as color and normal direction that can be attached to these elements. A PLY file contains
the description of exactly one object. A typical PLY object definition is simply a indexed list of
(x, y, z) triples for each vertex and a list of faces that are described by indices that identify the
vertices. In addition PLY provides a number of properties to enrich the polygon: color, surface
normals, texture coordinates, transparency, range data confidence, and different properties for
the front and back of a polygon. Moreover there is a certain degree of customization, in fact
one can create a new element type and define the properties associated with this element. This
brief description has been devoted to PLY since this polygon format is also used by the three
object pose estimation approaches examined.

With the 3D model of the object we are going to create a series of 2D views of the model.
First we assume that the object is at the center of a sphere, so that a coordinate system can
be defined with respect to the spherical parameters of longitude (or roll), latitude (or pitch),
and distance. Starting with this assumption, we place a series of virtual cameras around the
3D model and project the object in the image plane of each virtual camera. In this way the
different 2D views of the object are generated.The next step is to arrange the virtual cameras
uniformly around the 3D model of the object. To do this we use an icosphere, which is a
particular convex polyhedron made of triangles, where each virtual camera is associated with a
vertex of the polyhedron.From this method we have two important advantages: uniform vertices
around the object and each triangle can be subdivided into three other triangles. The number
of recursive subdivisions, called the subdivision level, consequently increases the density of the
vertices of the polyhedron and thus increases the number of views obtained from the 3D model
of the object. In addition, to make the algorithm more efficient, some non-essential vertices can
be avoided, such as those in the southern hemisphere. In addition we can set some parameters
of the algorithm: minimum and maximum distance from the object along the optical axis of the
virtual cameras, sample the distance interval with a certain sampling step, for computational
efficiency set the maximum number of sampled points and the sampling granularity of the
polyhedron. Once all the different views of the object are created, they are overlaid on the
backgrounds to get a synthetic images. To increase the number of images and variety, we also
perform a translation of the synthetic objects with respect to the background.

In this way we obtain the synthetic dataset to be used as the source dataset for CycleGAN
and obtain the synthetic adapted datasets that will be used for the object pose estimation
problem. Figure 3.4 shows examples of synthetic images rendered from synthetic backgrounds
and synthetic object.

3.3 Experiments
For the generation of the synthetic adapted dataset we need two important datasets: the
synthetic one, obtained in the previous section and the real one, for this thesis is used an
underwater platform. Figure 3.5 shows some images of the real dataset.

CycleGAN has several training and test flags:

• load_size: scale images to the size selected.

35

CHAPTER 3. SYNTHETIC DATASET GENERATION

Figure 3.4: Examples of synthetic images rendered from synthetic backgrounds and synthetic
object.

• crop_size: after load_size a crop is performed to the size selected.

• preprocess: scaling and cropping of images at load time, this parameter activates/deactivates
load_size and crop_size parameters. The default option ’resize_and_crop’ resizes the
image to the load size and does a random crop size. The option ’crop’ skips the re-
sizing step and only performs random cropping. The option ’scale_width’ resizes the
image to have width equal to the crop size while keeping the aspect ratio. The option
’scale_width_and_crop’ first resizes the image to have width equal to the load size and
then does random cropping of crop size. The option ’none’ tries to skip all these prepro-
cessing steps. However, if the image size is not a multiple of some number depending on
the number of downsamplings of the generator, you will get an error because the size of
the output image may be different from the size of the input image. Therefore, ’none’
option still tries to adjust the image size to be a multiple of 4. You might need a bigger
adjustment if you change the generator architecture.

• pool_size: the size of image buffer that stores previously generated images.

• epoch, batch_size, lr : respectively to choose the number of epochs, batch set size, and
training policy.

During all training a default learning rate equal to 0.0002 was used, this is because after
some tests with was noticed that with a high learning rate created too many variations and
at the end could not converge, on the contrary with a too low learning rate could not learn
enough and increased the time. As a learning policy was used the default one: linear. The
other policies made available did not give a real improvement.

The other parameters are very useful if you want to speed up training by doing a resize, add
perturbation by cropping, or focus on a certain part of the image. In the beginning they were
widely used to get different variations and speed up the training, but this brought a change on

36

CHAPTER 3. SYNTHETIC DATASET GENERATION

Figure 3.5: Example of real images.

the final size of the image and the object inside. Obviously this is to the detriment of the final
result you want to obtain, because the synthetic adapted dataset must be perfectly consistent
with the synthetic one. The reason is quite obvious, since all the various 2D keypoints and 3D
projections are done with respect to the synthetic dataset.

The most important experiment concerns the addition of a new value to the full objective loss
function, called shape loss. The shape loss, summarizing, is the gradient magnitude difference
between the synthetic image taken as input by CycleGAN and the synthetic adapted one created
in output. Specifically, the two images are converted to gray-scale, because we care about the
shape of the object and not the colors. Then a Gaussian blur is applied to smooth the image. We
derive the gradients with respect to the two dimensions by applying Sobel’s method, improved
by the previous blur. We compute the normalized gradient magnitude, L1, with respect to the
two previous gradients. At the end the gradient magnitude difference between the two images
is computed and normalized with respect to the object mask. In addition, the shape loss is
adjusted by a hyper-parameter λsl.

The first experiment conducted was to simply train CycleGAN with synthetic and real
datasets. Then shape loss strategy was applied with different λsl values: 1.5, 3, 5. Figure
3.6 shows some examples of images obtained from the different synthetic adapted datasets.

As we can see almost all the synthetic adapted images obtained are good, in fact CycleGAN
is able to distinguish quite easily the object from the background. In addition, even if we
used different colors for the object and different backgrounds, very different from each other,
CycleGAN was able to generalize quite well. The first thing we notice is the accentuation,
almost excessive, of the λsl = 1.5, in fact this could be more a disadvantage than an advantage,
because AUV finding in the real world images much less accentuated could have difficulty in
recognizing the object. On the contrary, using a λsl = 5, the object is blurred and is less
recognizable than the other strategies. With λsl = 3 there is no more excessive accentuation
and there is a certain similarity with λsl = 5, but perhaps in general with less blurring. The
absence of shape loss could be a valid decision from what we see, in fact in general the object is
distinguishable from the background and also the shape of the object remains intact. In general

37

CHAPTER 3. SYNTHETIC DATASET GENERATION

all four strategies have acceptable results and some very negative ones if we look at the whole
datasets obtained. What was found is the validity of λsl = 3 or without, so use an intermediate
value or don’t use it at all.

3.4 Data Enhancement
Following the experiments done on CycleGAN, data augmentation strategies were applied to
obtain better results or try to obtain them. In particular we used Histogram Equalization (HE)
[33] strategy and then a natural improvement, Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) [51]. We opted for these strategies because they require little computational
power and they are fast, since the AUVs must process images online. In fact, consideration
was given to using a deep-learning based method: Holistically-Nested Edge Detection [46], but
later discarded to allow for online execution.

3.4.1 Histogram Equalization
A histogram of an image is the graphical interpretation of the image’s pixel intensity values.
It can be interpreted as the data structure that stores the frequencies of all the pixel intensity
levels in the image. Figure 3.7 first row shows an histogram example.

Histogram Equalization is an image processing technique that adjusts the contrast of an
image by using its histogram, especially when the image is represented by a narrow range
of intensity values. To enhance the image’s contrast, it spreads out the most frequent pixel
intensity values or stretches out the intensity range of the image, in this way the intensities
can be better distributed on the histogram utilizing the full range of intensities evenly. By
accomplishing this, histogram equalization allows the image’s areas with lower contrast to gain
a higher contrast, while spreading out the highly populated intensity values which use to degrade
image contrast. The method is useful in images with backgrounds and foregrounds that are
both bright or both dark, which look washed out because they do not have sufficient contrast.
Also, the light and dark areas blend together creating a flatter image that lacks highlights and
shadows. In particular, the method can lead to better views and to better detail, for example,
in photographs that are either over or under-exposed. A key advantage of the method is that
it is a fairly straightforward technique adaptive to the input image and an invertible operator.
So in theory, if the histogram equalization function is known, then the original histogram can
be recovered. The calculation is not computationally intensive. A disadvantage of the method
is that it is indiscriminate. It may increase the contrast of background noise, while decreasing
the usable signal. Histogram equalization often produces unrealistic effects in photographs;
however it is very useful for scientific images like thermal, satellite or x-ray images, often the
same class of images to which one would apply false-color. Also histogram equalization can
produce undesirable effects, like visible image gradient, when applied to images with low color
depth. For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will
further reduce color depth of the image, the number of unique shades of gray. Histogram
equalization will work the best when applied to images with much higher color depth than
palette size, like continuous data or 16-bit gray-scale images.

The above describes histogram equalization on a grayscale image. However it can also be
used on RGB images by applying the same method separately to the Red, Green and Blue
channels of the RGB color values of the image. However, applying the same method on the
Red, Green, and Blue channels of an RGB image may yield dramatic changes in the image’s
color balance since the relative distributions of the color channels change as a result of applying
the algorithm. However, if the image is first converted to another color space, Lab color space,

38

CHAPTER 3. SYNTHETIC DATASET GENERATION

Figure 3.6: Example of synthetic adapted images obtained.

39

CHAPTER 3. SYNTHETIC DATASET GENERATION

or HSL/HSV color space in particular, then the algorithm can be applied to the luminance or
value channel without resulting in changes to the hue and saturation of the image [33]. There
are several histogram equalization methods in 3D space, like [43], but it results in "whitening"
where the probability of bright pixels are higher than that of dark ones. Figure 3.7 second row
shows an example of histogram equalization on HSV color space, in particular on the Value
channel.

(a)
(b) (c) (d)

Figure 3.7: First row shows an example of RBG color space histograms. Second row shows HE
example on HVS color space. Third row shows CLAHE example on Lab color space. Fourth row
shows a CLAHE example on a synthetic adapted image. This compares the real and synthetic
adapted dataset and those with data enhancement strategies. (a) image example. (b), (c) and
(d) are the RGB channels histograms associated.

3.4.2 Contrast Limited Adaptive Histogram Equalization
Adaptive histogram equalization (AHE) [19, 35] is a computer image processing technique used
to improve contrast in images. It differs from ordinary histogram equalization in the respect that
the adaptive method computes several histograms, each corresponding to a distinct section of
the image, and uses them to redistribute the lightness values of the image. It is therefore suitable
for improving the local contrast and enhancing the definitions of edges in each region of an
image. Ordinary histogram equalization uses the same transformation derived from the image
histogram to transform all pixels. This works well when the distribution of pixel values is similar
throughout the image. However, when the image contains regions that are significantly lighter

40

CHAPTER 3. SYNTHETIC DATASET GENERATION

or darker than most of the image, the contrast in those regions will not be sufficiently enhanced.
AHE improves on this by transforming each pixel with a transformation function derived from
a neighbourhood region. In its simplest form, each pixel is transformed based on the histogram
of a square surrounding the pixel, as in the figure below. The derivation of the transformation
functions from the histograms is exactly the same as for ordinary histogram equalization. The
transformation function is proportional to the cumulative distribution function (CDF) of pixel
values in the neighbourhood. Pixels near the image boundary have to be treated specially,
because their neighbourhood would not lie completely within the image. This applies for
example to the pixels to the left or above the blue pixel in the figure. This can be solved by
extending the image by mirroring pixel lines and columns with respect to the image boundary.
Simply copying the pixel lines on the border is not appropriate, as it would lead to a highly
peaked neighbourhood histogram.

Adaptive histogram equalization in its straightforward form presented above, both with and
without contrast limiting, requires the computation of a different neighbourhood histogram
and transformation function for each pixel in the image. This makes the method very ex-
pensive computationally. Interpolation allows a significant improvement in efficiency without
compromising the quality of the result [35], where the image is partitioned into equally sized
rectangular tiles. Figure 3.8 shows the procedure. A histogram, CDF and transformation func-
tion is then computed for each of the tiles. The transformation functions are appropriate for the
tile center pixels, correspond to the black squares in the left part of the figure. All other pixels
are transformed with up to four transformation functions of the tiles with center pixels closest
to them, and are assigned interpolated values. Pixels in the bulk of the image: shaded blue, are
bilinearly interpolated; pixels close to the boundary, shaded green, are linearly interpolated;
and pixels near corners, shaded red, are transformed with the transformation function of the
corner tile. The interpolation coefficients reflect the location of pixels between the closest tile
center pixels, so that the result is continuous as the pixel approaches a tile center.

Figure 3.8: Rappresentation of efficient AHE computation by interpolation.

Ordinary AHE tends to overamplify the contrast in near-constant regions of the image, since
the histogram in such regions is highly concentrated. As a result, AHE may cause noise to be
amplified in near-constant regions. Contrast Limited AHE (CLAHE) is a variant of adaptive
histogram equalization in which the contrast amplification is limited, so as to reduce this
problem of noise amplification [51]. In CLAHE, the contrast amplification in the vicinity of a
given pixel value is given by the slope of the transformation function. This is proportional to
the slope of the neighbourhood CDF and therefore to the value of the histogram at that pixel
value. CLAHE limits the amplification by clipping the histogram at a predefined value before
computing the CDF. This limits the slope of the CDF and therefore of the transformation
function. The value at which the histogram is clipped, the so-called clip limit, depends on the
normalization of the histogram and thereby on the size of the neighbourhood region. Common
values limit the resulting amplification to between 3 and 4. It is advantageous not to discard
the part of the histogram that exceeds the clip limit but to redistribute it equally among all

41

CHAPTER 3. SYNTHETIC DATASET GENERATION

histogram bins. The redistribution will push some bins over the clip limit again (region shaded
green in the figure), resulting in an effective clip limit that is larger than the prescribed limit
and the exact value of which depends on the image. If this is undesirable, the redistribution
procedure can be repeated recursively until the excess is negligible. Figure 3.7 third row shows
an example of contrast limited adaptive histogram equalization on Lab color space, in particular
on the perceptual Lightness channel. Also the fourth row shows a CLAHE example on a
synthetic adapted image. From this example we can immediately see that the original histogram
is not balanced. HE, on the contrary, equalizes too much, going to balance the intensity
indifferently with respect to the whole image and the result is a brighter image and histograms
consistently spread over all values. CLAHE, on the other hand, equalizes different areas of
the image while preserving brightness, but creating a pixel effect. From the synthetic adapted
image we can see that after applying CLAHE the histograms remain faithful to the real image,
which means that the various intensities are not abnormally modified and the various areas
of the image are preserved. Moreover, this same shape of the histograms consolidates the
effectiveness of CycleGAN, because even if the object is in a different pose and view-point the
variety of intensities and colors is maintained.

42

Chapter 4

Experiments

In this chapter we will test the estimation approaches considered: DeepURL and PVNet,
DPOD as explained will not be taken into account for reasons already explained and widely
discussed above. In particular we will discuss the experiments carried out and the various
results achieved, positive and not. Before this section, we want to dedicate a section to the
entire pipeline considered and the working environments used to perform the various tests.
Going to illustrate the aspects both positive and negative that led from their use.

4.1 Pipeline

Figure 4.1 shows the entire pipeline considered for the underwater 6-DoF object pose estimation
problem. Specifically, at first an algorithm is run to obtain the synthetic dataset from the 3D
model of the object and an underwater background. Then CycleGAN creates the corrupted
dataset given the synthetic and real dataset. In this step, 4 datasets are created: three with
shape loss and one without. At this point we apply CLAHE to the dataset without shape loss,
thus obtaining 5 datasets in total. Finally, a 6-DoF object pose estimation approach is applied.

Figure 4.1: The entire pipeline considered

44

CHAPTER 4. EXPERIMENTS

4.2 Training Environment
The cluster of the Department of Information Engineering of the University of Padua was
used for the various trainings. In particular, the cluster is composed of graphics cards less
performing, such as nvidia Quadro p2000 and other very performing, such as nvidia TitanX
and RTX3090. The training were performed through containers specifically created for each
considered model, this is because each one had its own specifications to be met. In particular
was used SingularityCE, which is a container platform. The advantage of using containers
is to separate the hardware and software components. This has allowed to create different
environments on a single piece of hardware without them conflicting with each other.

Of course, there were also problems during the creation of these containers, in particular:

• The fact that you need to compile the trained modules on your computer and then upload
them to the cluster

• Meet the dependencies of both the models and the target hardware

The first problem is related to the container loading phase, because in my case a slow connection
took a lot of time to the other phases of the thesis project. The second problem is related to the
specific dependencies of the various models and those of the graphics cards, which in rare cases
matched. This in a nutshell means wasting time in finding the right combination in creating a
container that satisfies everyone. Also each time the container had to be tested, of course, in
the cluster and that implied a new upload. In addition, SingularityCE builds containers from
Docker containers or other pre-built environments, which means a download phase.

In summary there is an initial download phase to download the pre-built environment and
the specific dependencies of the model used, build of the final container and upload to the
cluster, and all this to be repeated over and over again if the dependencies did not satisfy both
the training environment and the models. This process involved great waste of time, time taken
away from training or implementing other methods not considered in this thesis.

4.3 Approaches
As already explained DPOD will not be considered in this chapter, as it does not satisfy the
requirements for our problem. Therefore DeepURL and PVNet will be considered. DeepURL
as it will be explained will have a qualitative accuracy, while PVNet will have a quantitative
accuracy.

4.3.1 DeepURL
DeepURL provides several parameters to model the training and try to improve the final result:

• corners_number : The number of the corners used by the model during the training, the
8 bounding box corners or include the centroid as well and make 9 corners.

• img_size: Images will be resized and fed to the network, we can choose two different
dimension and take a rectangular images.

• lr, optimizer and batch_size: a set of parameters to manage the learning rate (initial,
decay and bound) and the training policy.

Different combinations of these parameters were used during training, but without noticing,
at least for our specific problem, any real advantage or improvement over the default settings.

45

CHAPTER 4. EXPERIMENTS

This means a learning rate equal to 0.0001, a simple Momentum optimization, batch size at 4,
200 epochs and image resizing while keeping the original aspect ratio.

To evaluate the pose estimation capability of the DeepURL results the authors use a specific
metrics. Calculated the mean translation error as the Euclidean distance between the predicted
and the ground truth translation and rotation. For individual angle errors in terms of Yaw, Roll,
and Pitch, the authors decomposed the rotation matrices into Euler angles and calculated their
absolute difference. To evaluate the pose accuracy, it is used standard metrics: 2D reprojection
error and ADD metric, the average 3D distance of the model corners. These two metrics will
be described in the next section on PVNet.

Before presenting the results obtained, we want to point out an issue that may have negatively
affected the training and the final result. The code was developed with Tensorflow version 1,
the problem is that this version is no longer maintained and also the dependencies are quite
difficult to satisfy. In fact several containers have been tried to satisfy this version and at the
same time meet the requirements of the working environment. But there was always an issue
that prevented the correct execution of the code. The only working solution found was to use
the latest available versions and convert the code to Tensorflow version 2 using a script and a
patient search in the documentation. Hence, the training was performed on partially modified
code and this may have affected its correct functioning.

Figure 4.2 shows some results obtained with DeepURL. The results obtained are not satis-
factory, in fact we see errors with respect to both translation and rotation. In fact here we find
the limitation of using a network that estimates the bounding box and from this derives the
3D projections. But actually the 2D bounding box predicts the position quite well, this means
that it is the next step of 3D pose estimation that is not performed adequately. A possible
consideration is that the 2D bounding box is predicted by trying to fill the target object as
best as possible. On the contrary in the 3D bounding box estimation many points can very
often be in the surroundings of the object, this means that the network has to predict corners
that are not pixels object and consequently has no real measure on the distance. Moreover the
model should take into account all possible positions and viewpoints.

Since the results were discouraging already with a synthetic dataset, where the AUV is
distinguishable from the background and all the issues of the real dataset are not present, no
further training was performed with other datasets. In fact the subject is different, since we
were still in an initial phase of evaluation of the various approaches. Keeping in mind, however,
different combinations of the given parameters were tried to get acceptable results. Somewhat
surprising are the results obtained by the DeepURL authors, as they show acceptable results.
It can be assumed that it is for the dataset used, in fact they use an AUV in a pool and in an
ocean. As we can guess the pool is a very favorable environment even if underwater, as there
are no other objects and the water is crystal blue, so there is no particular problem related
to this scenario. It is also quite favorable, because the AUV is well distinguishable from the
background and allows a remarkable contrast between the two. Also in the case of the ocean,
a very clean and recognizable water was used with respect to the target.

However, DeepURL remains an inspiring approach regarding the use and generation of syn-
thetic adapted datasets to train models and counteract the insufficiency of real datasets for
underwater environments

4.3.2 PVNet
Before presenting the experiments done, we want to discuss the training environment, which
especially in this case did not make our life easy. In fact, the only way to train PVNet was
to use the nvidia Quadro P2000 graphics card, i.e., the low performance one, because the
high performance ones required dependencies that PVNet could not support. Also, the same

46

CHAPTER 4. EXPERIMENTS

Figure 4.2: DeepURL results with synthetic dataset.

container created by the authors did not work in any graphics card.
PVNet provides several parameters to model the training and try to improve the final result:

• lr, optimizer and batch_size: a set of parameters to manage the learning rate (initial and
decay) and the training policy.

• cropresize_rate: indicates the ratio to keep with respect to the original image, if less than
one a resize and crop is performed; values [0-1].

• rotate: rotation to be applied to the object (rate, min and max)

Again, the default configuration was retained, as other combinations gave no real improve-
ment. Learning rate equal to 0.001, Adam optimization, batch size at 2, 200 epochs and original
image size.

Two metrics are used to evaluate this approach:

2D Projection metric [4]: this metric computes the mean distance between the projections
of 3D model points given the estimated pose and the ground-truth pose. A pose is
considered as correct if the distance is less than 5 pixels.

ADD metric [17]: compute the mean distance between two transformed model points using
the estimated pose and the ground-truth pose. When the distance is less than 10% of
the model’s diameter, it is claimed that the estimated pose is correct. For symmetric
objects, it is used the ADD-S metric [45], where the mean distance is computed based on
the closest point distance.

Figure 4.4 shows some results obtained with PVNet. The first line was included as a com-
parison with DeepURL and we can see that in this approach the estimation is much better,
almost perfect. Obviously this case has no real validity, but still it can serve as an example
if the target is well recognizable and distinguishable from the background. In the second row,
containing images without shape loss strategy, we can see in general that the box is predicted
well even in those cases where the target is not very distinguishable. However, in cases where
there is an accentuation of the object, some rotation is added. In the remaining three rows
we have the datasets with the shape loss strategy. Also in these three cases the estimates are
acceptable, but with a small translation compared to no shape loss. In all four tests there is
additional rotation when the object is near the edge, this could be caused by incorrect pixel
voting in determining the corners. Taking into account the results obtained with respect to the
metrics and the visible bounding boxes, the best strategies seem to be: no shape loss strategy
or with λsl = 3 and then use an intermediate value. A valid alternative remains shape loss
with λsl = 1.5, since that excessive accentuation could lead to unexpected improvements.

47

CHAPTER 4. EXPERIMENTS

Figure 4.3: PVNet results with CLAHE dataset

Figure 4.3 shows some results obtained apply CLAHE to the dataset without shape loss
strategy. The presence of CLAHE does not deviate much from the previous results, however it
remains an excellent strategy to consider for adding perturbation to the training.

Table 4.1 shows the performance obtained. It can be seen immediately the big difference
between the two metrics of accuracy, in fact for all tests conducted we have ADD very high
and 2D Projection very low. This might seem an error in the correctness of the tests, but also
in some cases reported by the authors of PVNet we find the same results. We hypothesize that
this is related to the difference in the two metrics. In fact, 2D Projection metric measures the
difference between bounding boxes within 5 pixels, while ADD metric measures the difference
within 10% of the object diameter. Consequently, even a small variation of the estimated
bounding box by 5 pixels from ground truth greatly decreases the accuracy of the 2D Projection
metric. Instead ADD metric remains high probably due to the large diameter of the object and
the 10% of it is large enough to cover the error between the two bounding boxes.

PVNet Proj-2D ADD
λsl = 0 5.2 99.7

λsl = 0 + CLAHE 4.1 99.5
λsl = 1.5 5.9 99.8
λsl = 3 4.4 99.9
λsl = 5 2.7 99.8

Table 4.1: Performance of PVNet with different datasets

48

CHAPTER 4. EXPERIMENTS

Figure 4.4: PVNet results with synthetic and synthetic adapted datasets
49

Chapter 5

Conclusion

Data-driven 6-DoF object pose estimation methods require accurate ground truth data, but
in underwater scenarios, it is very difficult to get both real images and ground truth data.
Therefore it is very useful to be able to create synthetic images and then transform them into
photo realistic images to be used to effectively train the data-driven methods. In particular in
this thesis an unpaired image-to-image transformation strategy is used to obtain a synthetic
adapted images dataset, called CycleGAN. In this way is "easily" to create a specific dataset for
this particular problem and as needed. CycleGAN tries to capture special features of one image
collection and figuring out how these characteristics could be translated into the other image
collection, all in the absence of any paired training examples. This speeds up the creation of
the synthetic dataset, at least in part since there is no need to create one-to-one pairs, which
by the way is very difficult in our specific case. The results obtained are more than acceptable,
even those obtained with the introduction of shape loss, as they could lead to randomness and
unexpected improvements during the training. Obviously also thanks to the synthetic dataset,
in particular to the careful selection of the various backgrounds, but taking into account also
in this case to insert the perturbation.

After creating the adapted synthetic datasets, we tested the considered 6-DoF object pose
estimation approaches. Specifically, approaches with different strategies were considered in
order to evaluate which one is the most suitable for our problem. DPOD, as it has been
explained, is not able to handle complex objects or objects that do not have a certain level of
detail of the 3D model.

DeepURL estimates the 3D pose of an AUV from a single image as projected 2D image
keypoints, that represent the 8 corners of the 3D model of the AUV. Then the 3D pose in the
camera coordinates is determined using RANSAC-based PnP. In other words, the detected key-
points serve as an intermediate representation for pose estimation. Such two-stage approaches
achieve state-of-the-art performance, thanks to robust detection of keypoints. However, these
methods have difficulty in tackling occluded and truncated objects, since part of their keypoints
are invisible. But, as it turns out, DeepURL is not suitable for us, as having to directly predict
the corners of the bounding box has limitations.

PVNet predicts vectors that represent directions from each pixel of the object towards the
keypoints. These directions then vote for the keypoint locations based on the RANSAC algo-
rithm. This voting scheme is motivated from a property of rigid objects that once it sees some
local parts, it can infer the relative directions to other parts. In particular is oriented to create
a flexible representation for localizing occluded or truncated keypoints. Another important
feature of this representation is that it provides uncertainties of keypoint locations that can
be further leveraged by the PnP solver. It also tries to better predict under several occlu-

51

CHAPTER 5. CONCLUSION

sions, variations in lighting and appearance, and cluttered background objects. In addition,
PVNet has proven reliable in low and bad light conditions, in case of clipping and difficulty
in distinguishing the object from the background.This corner voting strategy was inspiring, as
it brought very positive results, pointing out that it is not enough to apply methods already
known and extensively studied in some cases, but new ideas are needed.

5.1 Future Work
We discuss several improvements that could lead to further enhance the performance of the
underwater object pose estimation pipeline. Summarizing:

• Choice of backgrounds images used for the synthetic dataset

• Improvements on the corrupted datasets generation related to CycleGAN

• Using other data enhancement strategies

• Improvements in object pose estimation approaches

The first improvement concerns the generation of synthetic images. Instead of using random
backgrounds images or downloaded from the web, and then slide the models of the object of
interest, it would be possible to extract images from a simulator developed with a rendering
engine, taking care to bring the virtual camera very close to the relevant portion of the objects.
In fact, the synthetic images extracted from the simulator have the advantage of not having
a background with objects in the foreground, which could confuse CycleGAN during the cor-
ruption process. Moreover, using the simulator it is possible to adjust the type of water and
turbidity levels in order to generate synthetic images even more similar to the real ones.

The second addresses the SHAPE_LOSS custom model. This model, in fact, uses a too
aggressive technique to extract gradients from both the synthetic and corrupted images. Indeed,
a smoother gradient extraction technique than Sobel could allow an increase in the details. In
other words, it would be possible to obtain synthetic adapted images that are more faithful to
the originals in terms of shape and detail, which would probably lead to an increase in accuracy
in the testing phase of object pose estimation problem.

The third improvement is to apply other data enhancement strategies to the synthetic
adapted datasets, in particular also testing state-of-the-art deep-learning based approaches.

The fourth improvement involves the last part of the pipeline. Specifically using DeepURL
with the most recent version of YOLO, seeing if this can bring about any marked improvements.
Adapt DPOP for complex objects as in our case, as the strategy behind it seemed very valid.
Use approaches that use PVNet itself with an additional layer of pose refinement. But also
analyze and test additional strategies that have not been considered so far.

All these aspects could allow to further increase the level of accuracy achieved by the under-
water 6-DoF object pose estimation pipeline.

52

Bibliography

[1] A. Ansar and K. Daniilidis. “Linear pose estimation from points or lines”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 25.5 (2003), pp. 578–589.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust features”.
In: In ECCV. 2006, pp. 404–417.

[3] Eric Brachmann et al. “Learning 6D Object Pose Estimation Using 3D Object Coordi-
nates.” In: ECCV (2). Vol. 8690. Lecture Notes in Computer Science. Springer, 2014,
pp. 536–551.

[4] Eric Brachmann et al. “Uncertainty-Driven 6D Pose Estimation of Objects and Scenes
From a Single RGB Image”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[5] J. H. M. Byne and J. A. D. W. Anderson. “A CAD-based computer vision system.” In:
Image Vis. Comput. 16.8 (1998), pp. 533–539.

[6] “CAD-Based Vision: Object Recognition in Cluttered Range Images Using Recognition
Strategies”. In: CVGIP: Image Understanding 58.1 (1993), pp. 33–48.

[7] Li Chuan and Wand Michael. “Precomputed real-time texture synthesis with markovian
generative adversarial networks”. In: Computer Vision – ECCV 2016. 2016.

[8] David Eigen and Rob Fergus. “Predicting Depth, Surface Normals and Semantic Labels
with a Common Multi-scale Convolutional Architecture.” In: ICCV. IEEE Computer
Society, 2015, pp. 2650–2658.

[9] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography”. In:
Commun. ACM 24.6 (June 1981), pp. 381–395.

54

BIBLIOGRAPHY

[10] Ross B. Girshick. “Fast R-CNN.” In: ICCV. IEEE Computer Society, 2015, pp. 1440–
1448.

[11] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

[12] Turk Greg. “The PLY Polygon File Format.” In: 1994.

[13] Christian Hansen, Thomas C. Henderson, and Roderic A. Grupen. “CAD-based 3-D
object recognition.” In: SMC. IEEE, 1989, pp. 168–172.

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second.
Cambridge University Press, ISBN: 0521540518, 2004.

[15] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[16] Aaron Hertzmann et al. “Image analogies”. In: SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques. ACM Press, 2001,
pp. 327–340.

[17] Stefan Hinterstoisser et al. “Model Based Training, Detection and Pose Estimation of
Texture-Less 3D Objects in Heavily Cluttered Scenes”. In: Computer Vision – ACCV
2012. Ed. by Kyoung Mu Lee et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 548–562.

[18] Stefan Hinterstoisser et al. “Model Based Training, Detection and Pose Estimation of
Texture-Less 3D Objects in Heavily Cluttered Scenes.” In: ACCV (1). Vol. 7724. Lecture
Notes in Computer Science. Springer, 2012, pp. 548–562.

[19] Robert Hummel. “Image enhancement by histogram transformation”. In: Computer Graph-
ics and Image Processing 6.2 (1977), pp. 184–195.

[20] Phillip Isola et al. “Image-to-Image Translation with Conditional Adversarial Networks”.
In: Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. 2017.

[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. “Perceptual Losses for Real-Time Style
Transfer and Super-Resolution”. In: Computer Vision – ECCV 2016. Ed. by Bastian
Leibe et al. 2016.

55

BIBLIOGRAPHY

[22] Bharat Joshi et al. DeepURL: Deep Pose Estimation Framework for Underwater Relative
Localization. 2020.

[23] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.” In:
ICLR. 2015.

[24] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: Tech
Report (2009), pp. 32–33.

[25] Pierre-Yves Laffont et al. “Transient attributes for high-level understanding and editing
of outdoor scenes.” In: ACM Trans. Graph. 33.4 (2014), 149:1–149:11.

[26] C. Ledig et al. “Photo-Realistic Single Image Super-Resolution Using a Generative Ad-
versarial Network”. In: Computer Vision and Pattern Recognition. 2017.

[27] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “EPnP: An Accurate O(n)
Solution to the PnP Problem”. In: International Journal of Computer Vision (2008).

[28] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection.” In: CVPR. IEEE
Computer Society, 2017, pp. 936–944.

[29] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: Computer Vision
– ECCV 2014. Ed. by David Fleet et al. Cham: Springer International Publishing, 2014,
pp. 740–755.

[30] David G. Lowe. “Object Recognition from Local Scale-Invariant Features”. In: Proceedings
of the International Conference on Computer Vision-Volume 2 - Volume 2. ICCV ’99.
IEEE Computer Society, 1999, pp. 1150–1157.

[31] C.-P. Lu, G.D. Hager, and E. Mjolsness. “Fast and globally convergent pose estimation
from video images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
22.6 (2000), pp. 610–622.

[32] Xudong Mao et al. “Least Squares Generative Adversarial Networks”. In: Oct. 2017,
pp. 2813–2821. doi: 10.1109/ICCV.2017.304.

[33] S.K. Naik and C.A. Murthy. “Hue-preserving color image enhancement without gamut
problem”. In: IEEE Transactions on Image Processing 12.12 (2003), pp. 1591–1598.

56

https://doi.org/10.1109/ICCV.2017.304

BIBLIOGRAPHY

[34] Sida Peng et al. “PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation”. In:
CVPR. 2019.

[35] Stephen M. Pizer et al. “Adaptive Histogram Equalization and Its Variations”. In: Com-
put. Vision Graph. Image Process. 39.3 (Sept. 1987), pp. 355–368.

[36] Mahdi Rad and Vincent Lepetit. “BB8: A Scalable, Accurate, Robust to Partial Occlusion
Method for Predicting the 3D Poses of Challenging Objects without Using Depth.” In:
ICCV. IEEE Computer Society, 2017, pp. 3848–3856.

[37] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: (2018).

[38] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 2016.

[39] Rasmus Rothe, Matthieu Guillaumin, and Luc Van Gool. “Non-maximum Suppression for
Object Detection by Passing Messages Between Windows.” In: ACCV. Vol. 9003. 2014,
pp. 290–306.

[40] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: (2014).
arXiv: 1607.08022.

[41] Ashish Shrivastava et al. “Learning from Simulated and Unsupervised Images through
Adversarial Training.” In: CVPR. IEEE Computer Society, 2017, pp. 2242–2251.

[42] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. “Real-Time Seamless Single Shot 6D
Object Pose Prediction.” In: CVPR. IEEE Computer Society, 2018, pp. 292–301.

[43] P.E. Trahanias and A.N. Venetsanopoulos. “Color image enhancement through 3-D his-
togram equalization”. In: Proceedings., 11th IAPR International Conference on Pattern
Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis, 1992, pp. 545–
548.

[44] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. “Instance Normalization:
The Missing Ingredient for Fast Stylization”. In: CoRR abs/1607.08022 (2016). arXiv:
1607.08022.

[45] Yu Xiang et al. “PoseCNN: A Convolutional Neural Network for 6D Object Pose Esti-
mation in Cluttered Scenes.” In: Robotics: Science and Systems. 2018.

57

https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1607.08022

BIBLIOGRAPHY

[46] Saining Xie and Zhuowen Tu. “Holistically-Nested Edge Detection.” In: ICCV. IEEE
Computer Society, 2015, pp. 1395–1403.

[47] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggregation by Dilated Convolu-
tions.” In: ICLR. 2016.

[48] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. “DPOD: 6D Pose Object Detector
and Refiner”. In: International Conference on Computer Vision (ICCV). Oct. 2019.

[49] Tinghui Zhou et al. “Learning Dense Correspondence via 3D-guided Cycle Consistency”.
In: CoRR abs/1604.05383 (2016).

[50] Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent Ad-
versarial Networks”. In: Computer Vision (ICCV), 2017 IEEE International Conference
on. 2017.

[51] Karel J. Zuiderveld. “Contrast Limited Adaptive Histogram Equalization.” In: Graphics
Gems. Ed. by Paul S. Heckbert. Elsevier, 1994, pp. 474–485.

58

Acknowledgements

The realization of this thesis represents the end of a journey that began several years ago,
but at the same time the beginning of a completely new path, to which several people have
contributed.
First of all, I would like to thank Riccardo Bastianello and Luca Signorato, two colleagues and
true companions of adventure who have accompanied me during my journey at the University
of Padua, always ready to lighten the most difficult moments of university life. In particular, I
would like to thank Riccardo for all the precious discussions I had during the development of
my thesis, working on different sections of the same project.
Secondly, I would like to thank my thesis supervisor, Alberto Pretto, for having been always
present and available during the development of my thesis and for having believed in my abil-
ities. His advice and His way of doing things made the work very pleasant and stimulating,
turning it into a valuable source of discovery and personal enrichment. I would also like to
thank my supervisor for having contributed to the generation of the synthetic data used to
create the various tests.
Finally, a special thanks to my family. To my brother, for all the hours spent together to share
some common passions and the special bond we have, a bond that I hope will last forever. To
my parents, who supported me and encouraged me to do my best, continuing to believe in me
until the end.

Padua, 28 February 2022
Nicola Valzan

59

	Introduction
	Robotics
	Sensors for Robotics
	Actuators
	Automation and Autonomy

	Underwater Robotics
	Autonomous Underwater Vehicles

	The 6-DoF Object Pose Estimation Problem

	Object Pose Estimation: the Analyzed Frameworks
	Random Sample Consensus
	Formulation
	Improvements

	Perspective-n-Point
	Formulation
	General Case
	Solution as Weighted Sum of Eigenvectors
	Choosing the Right Linear Combination
	Planar Case
	Gauss-Newton Optimization

	Deep Underwater Relative Localization
	Formulation
	YOLO
	Object Detection Stream
	Pose Regression Stream
	Pose refinement
	Implementation details

	Pixel-wise Voting Network
	Formulation
	ResNet
	Voting-based keypoint localization
	Keypoint selection
	Uncertainty-driven PnP
	Implementation details

	Dense Pose Object Detector
	Data Preparation
	Object Detection
	Pose Refinement
	Limitations

	Synthetic Dataset Generation
	Cycle Generative Adversarial Network
	Formulation
	Adversarial Loss
	Cycle Consistency Loss
	Full Objective
	Implementation details

	Synthetic Dataset
	Underwater Backgrounds
	Synthetic Objects

	Experiments
	Data Enhancement
	Histogram Equalization
	Contrast Limited Adaptive Histogram Equalization

	Experiments
	Pipeline
	Training Environment
	Approaches
	DeepURL
	PVNet

	Conclusion
	Future Work

	Bibliography
	Acknowledgements

