
University of Padua

Department of Information Engineering

Bachelor’s Degree in Computer Engineering

Authentication proxy:
delegating authentication towards SPID,
the italian Public Digital Identity System

Bachelor thesis

Supervisor

Prof. Matteo Comin

Graduating

Enrico Biancotto

Anno Accademico 2022-2023

Enrico Biancotto: Authentication proxy:
delegating authentication towards SPID,
the italian Public Digital Identity System, Bachelor thesis, © March 2023.

Abstract

SPID, Public Digital Identity System, is the italian solution born in March 2013 in
order to provide a single unified digital identity card, for the citizens, to access public
and private services.
It is a worldwide example of a successful public-private partnership, and it is recognised
for the open-source nature of the project, it also recognised for strong adoption among
citizens.
The goal of this thesis is to provide a complete analysis of the SPID system, from the
technical point of view, to the implementation in a Java Spring web application for a
private company.
We will see the main components of the system, the authentication process, the security
and privacy aspects, and the main problems that the system has to face.

Sommario

SPID, il Sistema Pubblico di Identità Digitale, è la soluzione italiana nata a Marzo 2013
per fornire un accesso unificato tramite identità digitali ai servizi pubblici e privati,
messo a disposizione per i cittadini italiani.
È un esempio mondiale di una collaborazione vincente tra il settore pubblico e il privato,
e viene riconosciuto per la natura open-source del progetto e per la forte adozione tra i
cittadini.
Lo scopo di questa tesi è di offrire una analisi completa sul sistema SPID, sia da un
punto di vista tecnico, sia da un punto di vista applicativo, implementando un sistema
di autenticazione in una applicazione web Java Spring per una azienda privata.
Andremo a vedere le componenti principali del sistema, il processo di autenticazione,
gli aspetti di sicurezza e privacy, e i principali problemi che il sistema deve affrontare.

ii

Contents

1 Introduction 1
1.1 The company . 1

1.1.1 Triskel S.r.l. 1
1.2 Internship description . 1

1.2.1 Internship planning . 2

2 Background knowledge 4
2.1 Authentication vs authorization . 4
2.2 Authentication protocols . 5

2.2.1 SAML . 5
2.2.2 OpenID Connect . 7

2.3 Differences between SAML and OIDC 11
2.3.1 Shared Features . 11
2.3.2 Threat modeling . 11
2.3.3 SAML and OIDC Conclusions 13

2.4 SPID, the italian Public Digital Identity System 14
2.4.1 What is SPID . 14
2.4.2 History of SPID . 15
2.4.3 Future of SPID . 17

2.5 Java Spring web application . 17
2.5.1 Java Spring overview . 18

2.6 Satosa authentication proxy . 19

3 Solution development 21
3.1 Architectural overview . 21
3.2 Solution development . 22

3.2.1 Java Spring web application . 22
3.2.2 SaToSa authentication proxy 25
3.2.3 Testing . 26

3.3 Findings . 28
3.3.1 Achievements . 28
3.3.2 Future improvements . 28
3.3.3 Personal evaluation . 29

Acronyms 30

Bibliography 31

iii

List of Figures

1.1 Triskel S.r.l. logo . 1
1.2 Internship schedule . 3

2.1 SAML IdP Initiated Authentication Flow, credits [8] 6
2.2 SAML SP Initiated Authentication Flow, credits [8] 6
2.3 OAuth 2.0 Client to Server Authentication Flow, credits [10] 8
2.4 OAuth 2.0 Server to Server Authentication Flow, credits [10] 9
2.5 OpenID Connect Authentication Flow, credits [10] 10
2.6 Example of SPID login page in a Service Provider 14
2.7 SPID Authentication Flow . 14
2.8 Java Spring Overview . 18
2.9 Java Spring Fullstack Example . 19
2.10 SaToSa One To Many Example . 20
2.11 SaToSa Many-to-One Example . 20

3.1 Architecture overview . 21
3.2 SecurityConfig file . 24
3.3 SPID SP Access Button Example . 25
3.4 SaToSa server configuration . 26

iv

Chapter 1

Introduction

In this chapter we present the company where the internship took place, the problem
that was faced and the internship planning.

1.1 The company
The company where the internship took place is called Didanet S.r.l., a company
born in Triskel S.r.l..

1.1.1 Triskel S.r.l.
Triskel is a company specialized in consulting and implementation of advanced system
solutions, it proposes itself on the market as a highly specialized and professional
partner for the management and maintenance of all your IT structures.

Figure 1.1: Triskel S.r.l. logo

1.2 Internship description
The main internship objective was to enable the login with SPID credentials in a
Java Spring web application.

SPID is the italian Public Digital Identity System, allowing italian citizens to login
with a single set of credentials. Over time more private companies have started to use
SPID as an authentication method, as we can see from italian public registry, [1].

As it became more clear over time, when a private company wants to provide login
with SPID for it’s users, it has economic benefits to use an authentication proxy
to aggregate authentication for internal services, and then expose a unique single
sign-on (SSO) service to the SPID federation.

The authentication proxy is a service that acts as a middleman between the Service
Provider (SP) and the SPID Identity Provider (IdP). The SP is a web application that

1

CHAPTER 1. INTRODUCTION 2

accepts and receives authentication assertions by a IdP.
The SP developed in this internship is a Java Spring web application developed in Java
Spring 4.x

To enter the SPID federation a company must register to the AgID (Agenzia per
l’Italia Digitale) and then register to the SPID SP registry. When registering, the
SPID Service Provider must pass a suite of tests carefully designed by the AgID to
ensure the correct implementation of the SPID requirements, so it is necessary to have
a proper testing environment to check our service provider.

1.2.1 Internship planning
The path to pursue became more apparent during the requirements analysis, the main
objective of the internship was well defined, but the solution was not, hence the need
to analyze the SPID requirements in the first weeks of the internship.

The final internship structure became this:

1. Requirements analysis: in the beginning of the internship I devoted most of
my time to:

(a) Analyse the problem and understand the overall architecture;

(b) Study SPID requirements, implement Security Assertion Markup Language
(SAML) and OpenID Connect (OIDC) protocol in Java Spring web applica-
tion;

(c) Feasibility study of exisisting authentication proxy solutions.

2. Software Development: development of the authentication proxy, tested with
an exisisting SP Java web app.

Software development pace was divided into:

(a) Integrate and test the possible solutions:

∗ Test the solutions against exisisting Proof Of Concept (PoC) Java Spring
web applications, solutions including SATOSA[2], Keycloak[3], Apereo
CAS[4], Shibboleth[5];

∗ Compare authentication flows from a user point of view;
∗ Test the mantainability of the solutions from a developer perspective,

bearing in mind company’s current knowledge base in authentication
systems;

(b) SATOSA implementation: implementation of the SATOSA authentica-
tion proxy;

(c) Testing: test the authentication flow with a Java Spring SP against a local
testing IdP for SPID, see italia/spid-saml-check [6] official repository;

3. Winter break: Christmas holidays;

4. PoC application: this is the final part of the internship, where the authentication
proxy was integrated with a Java Spring web application. This phase was divided
into:

(a) Integration: development of the web application (back-end and front-end);

CHAPTER 1. INTRODUCTION 3

(b) Debug/Improvements: improvement of the PoC to better fit the future
web application needs;

Gantt chart In the following Gantt chart (Figure 1.2), I have outlined the timings
of each step:

Figure 1.2: Internship schedule

Chapter 2

Background knowledge

This chapter presents the concepts needed to comprehend the content of this thesis
fully. As we have stated in the previous chapter, the main objective of this thesis is to
enable the login with SPID in a Java Spring web application, via an authentication
proxy. To achieve this goal, we need to understand the technologies involved in the
process and the concepts behind them.

2.1 Authentication vs authorization
In order to create an application to login with the SPID credentials, we need to
understand what authentication and authorization are and what really is what we
commonly refer to login.

Authentication is the process by which you verify that someone is who they claim
they are.
Authorization is the process of establishing if the user (who is already authenticated)
is allowed to have access to resources.

A machine can authenticate a human with any of the following methods:

∗ Something you know: password, PIN, etc. Passwords are popular because of
their cost and convenience. However, they are not the most secure because they
can be stolen or guessed, without the use of a password generator.

∗ Something you have: smartcard, otp, etc. A smartcard is a credit card-sized
plastic card with an embedded microprocessor that can store cryptographic keys
and do some computation. OTP is a one-time password, which is a password
that is valid for only one login session or transaction.

∗ Something you are: biometrics like fingerprint, voice, retina, etc. Biometrics
allows us to be our key. Biometrics measures features that are unique, and that
cannot be guessed, stolen or shared.

∗ Two-factor authentication: a combination of the above, like something you
know and something you have. Any authentication that requires two out of the
three factors above is known as two-factor authentication.

4

CHAPTER 2. BACKGROUND KNOWLEDGE 5

∗ Authentication using cryptography: Nowadays more and more passwordless
authentication protocols are rising, for example, FIDO2, leveraging public and
private key cryptography.

2.2 Authentication protocols
User authentication is a common problem in Computer Science and over time many
protocols were born to solve it.
In this section, we will see two of these protocols: SAML2 and OpenID Connect, chosen
because they are used in the SPID federation.

2.2.1 SAML
The Security Assertion Markup Language 2.0 (SAML) was released in March 2005 by
the standards organization OASIS (the Organization for the Advancement of Structured
Information Standards). [7]

SAML is a standard that defines a framework for exchanging security information
between online business partners, used both for authentication and authorization.

SAML2 Terminology

∗ User agent the user who wants to access a SP application;

∗ Identity Provider (IdP) the entity that holds the user’s identity information
and enables the user to login and authorize transactions;

∗ Service Provider (SP) the entity that wants authenticated users and needs
authorized transactions;

∗ SAML Assertion a SAML statement that contains information about a subject.

How Trust is established

SAML defines how to transfer user identity information between trusted parties, from
an IdP, which allows the user to authenticate, to a SP, a web application for example.

A SP defines a set of attributes that wants to receive from an IdP (like the user’s
name, surname, email, etc.), and share those requirements with the IdP, along with the
SP certificates, in a signed Metadata XML file. The IdP can also share its Metadata
XML file.
This metadata exchange is what establishes the trust between the SP and the IdP.

SAML2 Web SSO Authentication Flow

There are two ways that the SAML authentication flow can be initiated:

∗ IdP-initiated flow: The user agent acts as the transport mechanism for the
SAML assertion.

CHAPTER 2. BACKGROUND KNOWLEDGE 6

Figure 2.1: SAML IdP Initiated Authentication Flow, credits [8]

1. the user visits and authenticates with the IdP,

2. the user can request access to a service from the IdP,

3. the IdP then generates a SAML assertion and redirects the user to the SP,
with the assertion in an HTTP POST message.

4. The SP map the IdP user information to its local database and starts the
session with the user.

∗ SP-initiated flow:

Figure 2.2: SAML SP Initiated Authentication Flow, credits [8]

1. the user visits the SP;

2. the user is not authenticated so the SP redirects the user to the IdP, with a
SAML AuthNRequest, a request for authentication message;

3. the user authenticates with the IdP;

CHAPTER 2. BACKGROUND KNOWLEDGE 7

4. the IdP then generates a SAML assertion and redirects the user to the SP,
with the assertion in an HTTP POST message.

5. The SP map the IdP user information to its local database and starts the
session with the user.

If the IdP is used for multiple SPs, the IdP is a Single Sign-On (SSO) service, and
users can access multiple SPs, all sharing the same IdP, because the user is already
authenticated with the IdP.

2.2.2 OpenID Connect
OpenID Connect "is a simple identity layer on top of the OAuth 2.0 protocol." [9]
released in February 2014.
In order to fully understand OpenID Connect, we must first see what OAuth 2.0 is.

OAuth 2.0 is a protocol published in 2012 (RFC 6749), specifically designed to
provide delegated authority. Delegated authority is the ability to grant authority to
an application, so the application can act on your behalf;

OAuth 2.0 Terminology

∗ Resource Owner (RO) the user who owns the data;

∗ Client to whom you delegate authority;

∗ Authorization Server (AS) generating the access token;

∗ Resource Server (RS) where the user’s data resides;

∗ OAuth 2.0 grant the authorization given (or granted) by the user to the client;

∗ Access Token a token issued by an Authorization Server in exchange for the
OAuth 2.0 grant;

∗ Refresh Token if the access token expires, the client can use the optional
Refresh Token to obtain a new Access Token from the Authorization Server.

OAuth 2.0 benefits

∗ Verify and change the level of access the user grants to the web application.

∗ The user can easily update the password without breaking integrations

∗ The user can revoke access by simply removing the web application access token.

CHAPTER 2. BACKGROUND KNOWLEDGE 8

OAuth 2.0 implementation

There are two ways that the OAuth 2.0 authentication flow can be defined:

1. Client to Server

2. Server to Server

Client to Server Let’s say a user (Resource Owner) wants to use a web application
(Client), which has a frontend and in the backend (Server) there are both the Resource
Server (RS) and Authorization Server (AS).

Figure 2.3: OAuth 2.0 Client to Server Authentication Flow, credits [10]

1. The user visits the web application for the first time, the frontend connects to the
backend requesting a resource in the RS, but since the frontend doesn’t present
an access token, the backend redirects the user to the AS.

2. The user authenticates in the Authorization Server;

3. The Authorization Server generates two tokens: an access token and a refresh
token and the backend sends those to the Front-end.

4. The Front-end now attaches the access token to the request to the backend, and
the user has obtained access to the resources.

5. The user has delegated authority to the Front-end, which can now act on the
user’s behalf and access the resources without prompting for authentication.

CHAPTER 2. BACKGROUND KNOWLEDGE 9

Server to Server We have a situation with two applications: App 1 and App 2.
App 1 is a Client in the OAuth 2.0 flow, while App 2 is both an Authentication and
Resource Server.

Figure 2.4: OAuth 2.0 Server to Server Authentication Flow, credits [10]

1. Front-Channel communication: the browser of the client is involved, so a malicious
actor could potentially pick up the information, so the access token is sent in the
next part, between App1 and App2 in a Server-to-Server communication.

∗ Before a normal user can use App 2 authentication in App 1, the admin
of App 1 must register the application in App 2, specifying for example
Application Name (an identifier) and Callback URLs (redirect URI).

∗ App 2 will generate a Client ID and a Client Secret, which will be used by
App 1 in communications with App 2.

∗ Now a user can authenticate in App 1 using App 2 account, the user will
visit App 1 and will be redirected to App 2 with the previously shared Client
ID, Redirect URI, Response Type and a Scope for the authentication.

∗ The user is presented with a Scope and can change the level of access granted
for App 1.

2. Back-Channel communication (Server to Server):

∗ When a user gives consent, an authorization Code is generated and sent
from App 2 to App 1.

∗ App 1 can use the authorization code, along with the Client ID and Secret,
to request an access token from App 2’s Authorization Server (AS).

∗ The AS of App 2, upon successful verification, will respond with an access
token and a refresh token. Usually, the access token is a Bearer token.

∗ The access token is used to authorize each request to App 2’s Resource
Server (RS).

The token format of the OAuth 2.0 token is not specified by the standard, but JWT
Tokens are becoming the de-facto standard.

CHAPTER 2. BACKGROUND KNOWLEDGE 10

OpenID Connect

OAuth 2.0 is for delegated authentication, so the protocol does not specify rules for
user authentication. To provide standard procedures for user authentication using
OAuth 2.0 protocol, OpenID Connect was created.
OIDC requires OAuth 2.0 and it adds a standardized user authentication, adding an
ID Token and a Userinfo endpoint to the OAuth 2.0 flow. ID Token which must be a
JWT Token, and a Userinfo endpoint is as useful as the metadata in SAML, making it
easier to establish integration and trust with OpenID Connect Discovery, helping with
the configuration of the OAuth 2.0 integration.

OpenID Connect Authentication flow

Let’s see an example of a OIDC Authentication flow with two applications: App 1 and
App 2. As the example previously made in OAuth 2.0, App 1 is the Client, but since
App 1 is relying on a claim for user authentication, App 1 is also a Relying Party
(RP).
App 2 is a OpenID Provider (OP), with the Userinfo Endpoint and both the
Authorization Server (AS) and Resource Server (RS).

Figure 2.5: OpenID Connect Authentication Flow, credits [10]

1. Front-Channel:

∗ The user visits App 1, the Relying Party (RP), which redirects the user to
App 2, the Openid connect Provider (OP), with a similar message exchange
as in OAuth 2 (Client ID, Redirect URI, Response Type and a Scope) but
with Scope: OpenID Profile.

∗ The user authenticates in the provider and an authorization code is sent
back to App 1 (RP).

2. Back-Channel communication

CHAPTER 2. BACKGROUND KNOWLEDGE 11

∗ App 1 sends to App 2 the authorization code, along with the Client ID
and Secret, to request an access token and an ID token from App 2’s
Authorization Server (AS).
The ID Token contains some claims about the user, such as a Subject
identifier for the user. The ID Token should be small, and if App 1 needs
more information about the user, it can request it from the Userinfo Endpoint
with the given access token.

2.3 Differences between SAML and OIDC
OIDC is the de-facto authentication standard in web applications, used at Google,
Microsoft, Github and pretty much every private company.

Let’s compare OIDC to SAML:

∗ They have both high standards in security, but SAML had major security issues

∗ Increased ease of integration in OIDC in different systems (web, mobile
applications, IoT) thanks to a REST-like API interface;

2.3.1 Shared Features
Most security problems arise from a faulty implementation of the protocols, obviously,
the simpler the protocol is, the easier is to identify and correct security issues.

SAML and OIDC use cryptographically signed tokes that support optional en-
cryption, SAML with XML Encryption (XMLEnc). This step prevents disclosure of
sensitive attributes after transportation.

2.3.2 Threat modeling
We have seen how these protocols work but when designing a protocol, it is important
to consider the potential threats to the system. Threat modeling adopts the perspective
of a malicious actor to see how it would be possible to damage the system.

SAML Threat model

SAML is mostly used in Web Browser SAML/SSO Profile with Redirect/POST bindings,
relying on HTTPS channel with TLS to guarantee integrity and message confidentiality
at the transport layer. As explained before, SAML is XML based, so it is exposed
to the XML threat model and most of the security issues are related to the XML
signature and encryption and XML file in general, which are generally complicated.
Major security risks are:

∗ XML Signature Wrapping
In 2012, in the article "On Breaking SAML: Be Whoever You Want to Be" [11]
where signature verification algorithms can be circumvented by applying different
Xml Signature Wrapping (XSW) attacks.
The XSW attack is possible when XML documents containing XML Signatures
are processed by a weakly configured XML parser, where the signature validation
and the business logic modules have different views on the document. In particular

CHAPTER 2. BACKGROUND KNOWLEDGE 12

a malicious actor crafts a document where the message structure is modified by
injecting forged elements that don’t invalidate the Signature, so the signature
validation module validates the signature successfully, but this alteration is parsed
by the application logic module, and results in an injection of arbitrary data.
A proper way to prevent this attack is to:

– Always perform schema validation prior to using it;

– Always validate the digital signature;

– Always use absolute XPath to get elements.

∗ Malformed XML Documents
"The W3C XML specification defines a set of principles that XML documents
must follow to be considered well formed. When a document violates any of
these principles, it must be considered a fatal error and the data it contains is
considered malformed." [12]

∗ Invalid XML Documents
"Attackers may introduce unexpected values in documents to take advantage of
an application that does not verify whether the document contains a valid set of
values. Schemas specify restrictions that help identify whether documents are
valid. A valid document is well formed and complies with the restrictions of a
schema, and more than one schema can be used to validate a document." [12]

∗ XML eXternal Entity injection (XXE)
"XXE occurs when untrusted XML input containing reference to an external
entity is processed by a weakly configured XML parser." [13]. An entity is a
term that refers to multiple types of storage units, one of which is an external
general/parameter parsed entity (external entity) that can access local or remote
resources via a declared system identifier.
One method to prevent XXE is to disable Document Type Definition (DTD),
which also prevents Denial of Service (DoS) attacks.

OIDC Threat model

OIDC is JSON based, and it is exposed to the OAuth 2.0 threat model. The article
"OAuth 2.0 Threat Model and Security Considerations."[14] dedicates an entire chapter
for Threat modeling for the OAuth 2.0 protocol, since this is not the scope of the
thesis, we will just see the most relevant threats.

∗ Cross-Site Request Forgery
Cross-Site Request Forgery (CSRF) attack misuses the trust relationship between
the client and the application. A victim is tricked into following a malicious URL,
crafted by an attacker, which will redirect the victim to an Authorization Server.
The victim is then tricked into granting access to the attacker’s application, thus
delegating authentication and allowing the access to victim’s personal information
to the attacker.
OAuth 2.0 recommends the use of a State parameter, a random string generated
by the Client, in the Authorization Request to mitigate CSRF attacks. The
client should store the State parameter and compare it to the State parameter
returned in the Authorization Response. If the two values do not match, the
client should reject the response.

CHAPTER 2. BACKGROUND KNOWLEDGE 13

∗ Clickjacking
In a Clickjacking attack, an attacker constructs a malicious website loading the
Authorization Server request for granting access as a transparent iframe layer,
on top of the malicious page. The resource owner is then tricked into clicking
carefully placed buttons on the webpage, thus granting access to the attacker.
To prevent this attack native applications should use external browsers instead of
embedded ones, and web applications should use the X-Frame-Options header
to prevent the page from being loaded in an iframe.

∗ Password phishing by Counterfeit Authorization Server
When an attacker can intercept Client’s requests, via DNS or ARP spoofing, it
can redirect the Client to a malicious Authorization Server. The attacker can
steal the user’s credentials if the user is not careful to verify the authenticity of
the website.
This attack can be prevented when the Authorization Server requires the use of
TLS security for any requests.

2.3.3 SAML and OIDC Conclusions
Let’s see the main differences between the two

∗ As we have said before, most security issues arise from faulty implementations, so
it is important to choose a protocol that is easy to implement and use correctly.

∗ OIDC libraries need to validate more input values than SAML but OIDC, when
properly implemented and used, can be as secure as SAML.

∗ SAML is more complex than OIDC, major complexity is due to the XML file
format and XML signature and encryption, instead of the JSON Web Signature
and Encryption of the JWT Tokens in OIDC.

∗ OIDC is considered more modern thanks to how it’s well suited for newer use
cases on heterogenous systems, like web or native mobile applications and IoT.

CHAPTER 2. BACKGROUND KNOWLEDGE 14

2.4 SPID, the italian Public Digital Identity System
In this paragraph, we will talk about what SPID is and which protocols it uses. We
dive into the technical requirements of both SPID with SAML and with OpenID Connect

2.4.1 What is SPID
SPID is a pair of credentials (username and password) that "represents the digital
and personal identity of each citizen"[15], with which he is recognized by the Public
Administration and many Private SPID Service Providers.

Figure 2.6: Example of SPID login page in a Service Provider

Under the hood, SPID was designed using the SAML protocol and it is currently
under revision in order to also provide support for the OpenID Connect protocol. SPID
restricts the SAML protocol with more rigid specifications, for example requesting a
Signature, in HTTP Post messages, using RSA algorithm with RSA keys of at least
2048 bits and as digest algorithm at least SHA-256. The Response must be sent
through HTTP Post bindings.

Here an example of the authentication flow in SPID (using SAML):

Figure 2.7: SPID Authentication Flow

CHAPTER 2. BACKGROUND KNOWLEDGE 15

2.4.2 History of SPID
As we can see from italian open data about SPID[16], the first SPID Service Provider
was born in 2015, and the first SPID Identity Provider in 2016. In April 2016 there
were 38700 SPID credentials, compared to the over 33 million SPID credentials in
January 2023.

SPID was born in 2013 from the proposal of Stefano Quintarelli and colleagues
Francesco Caio, Andrea Rigoni. Quintarelli was the head of head of AgID (the Agency
for Digital Italy) at that time.

In 2014 the European Union, introduced the eIDAS regulation, which was the
first European regulation on electronic identification and trust services for electronic
transactions in the internal european market, allowing SPID to be used in any european
state. eIDAS also uses the SAML protocol and all official SPID implementations also
generates an eIDAS compatible metadata.

SPID was possible because of the ideas that were shared among the italian com-
munity since the year 2001, when the first federated identity system was born called
"PEOPLE" project. Also in 2005 prof. Pianciamore and Osnaghi wrote the specifi-
cations for the "SIRIAC" system (Registration Authentication and Communication
Infrastructure Services) based on SAML 1.1.

In Lombardia Region, project SIRIAC was reused to create the "IdPC" system, a
federated identity management system for National Services Card (CNS), which went
live in April 2006.

Following, the "inter-regional" project ICAR went live, where there was an IdP
based on SAML 1.1. From this project, FedERa was born, an authentication system
to access online Federated services of Emilia-Romagna Region.

In 2012, there was an experience of many years in the management of federated
identity systems based on SAML in the italian regions.

One of the great ideas of the SPID project was to delegate to private companies
the management of the SPID identity credentials of the citizens, thus reducing the
costs of the Public Administration. This information were retrieved from a comment
of Daniele Crespi in Stefano Quintarelli Blog[17]

SPID Cost for a Service Provider

Spid prices are available on the official website [18]. SPID follows a pay per user model,
free of charge to the users who wants to login with SPID. The Service Providers are
responsible to pay for the service.
The SP cost is calculated based on the number of users and the type of service requested
in a yearly billing period, cost invoiced from each identity provider.

SPID distinguishes login types based on:

1. The level of security used in the authentication:

∗ SPID 1st level: Authentication using username and password.

CHAPTER 2. BACKGROUND KNOWLEDGE 16

∗ SPID 2nd level: Authentication using a password and a One-Time Password
(OTP) sent via SMS or an Authentication App given by the SPID Identity
Provider.

∗ SPID 3rd level: Authentication using a password and an external device to
store the private key like a smartcard or a remote digital signature device
(using Hardware Security Module HSM).

2. The data that a Service Provider requests:

∗ Authentication mode: when an SP requests only registry attributes of the
user: SPID ID, Fiscal Number, Name, Surname, Gender, Date of Birth and
Place of Birth.

∗ Registration mode: when an SP requests additional extra-authentication
attributes, like mobile phone, email, address, etc.

SPID in "Authentication" mode is free of charge for logins, with every security
level, until 1000 Unique Users have logged in a single Identity Provider in a year. After
that threshold, the prices are reported in the following table, according to [18]. SPID
in "Registration" mode costs the same regardless of the number of users.

SPID credentials SPID Authentication SPID Registration
1st, 2nd level 0,40 EUR 3,50 EUR
3rd level 7,00 EUR 7,00 EUR

Table 2.1: SPID Cost for a Service Provider

Next, AgID shares this formula to calculate the Cost of SPID for a Service
Provider.

SP Cost =
N∑︂
i=1

[︂
(P authentication ∗ UUauthentication

i) + (P registration ∗ UUregistration
i)

]︂
(2.1)

Where:

∗ N = number of Identity Providers;

∗ UUi
authentication = number of unique users that have logged using only SPID in

"Authentication" mode, in the i-th IdP, over a single billing period;

∗ UUi
registration = number of unique users that have logged in at least once using

SPID "Registration" mode, in the i-th IdP, over a single a billing period;

∗ Pauthentication = price per login with SPID "Authentication" mode;

∗ Pregistration = price per login with SPID "Registration" mode;

CHAPTER 2. BACKGROUND KNOWLEDGE 17

2.4.3 Future of SPID
In Europe, there are discussions regarding how to enrich the mechanism of Digital
Identity and authentication with the mechanism of Self Sovereign Identity (SSI) along
with the Europen Blockchain Services Infrastructure (EBSI). Self-sovereign identities
(SSI) are digital identities that are managed in a decentralized manner using the
blockchain.

Problems of this approach can be:

1. Privacy which can be assured by Zero-Knowledge Proof blockchains.

2. General public that is not familiar with the blockchain technology, in order to
ensure privacy we can use Social recovery wallets, which introduce the concept
of "guardians". "If a user loses their signing key, that is when the social recovery
functionality would kick in. The user can simply reach out to their guardians and
ask them to sign a special transaction to change the signing pubkey registered in
the wallet contract to a new one." [19]

SPID can also improve the delegation methods, allowing the parents of a disabled
person to be the delegators, and not only the legal guardian. This problem can also
lead to improvements in other scenarios like the delegation to a lawyer from a citizen
or from a company to an assistant.

A SPID login is time-consuming (a study from Politecnico di Milano reported an
average access in 60 seconds with SPID) and has many steps, increasing the technolog-
ical gap needed to be capable of using digital services with it. So in the future SPID
could improve, lowering those barriers.

One of SPID’s main adjectives is to be Open Source, but all SPID Identity Provider
require the use of One-Time-Passwords but we are locked in the use of IdP’s applications
to generate those OTP, because they use a modified version of the TOTP algorithm
for the generation of One-Time-Passwords. This article [20] explains how to gener-
ate OTPs for SPID unofficially using Google Authenticator, in a rooted Android device.

Another problem for SPID is that from a developer’s point of view, the documenta-
tion is not always on point and not always internationalized, creating language barriers
for not italian speaking integrators.

2.5 Java Spring web application
"Spring Framework is a Java platform that provides comprehensive infrastructure
support for developing Java applications." [21]
Java Spring allows developer to create web applications pretty easily, using Java
methods.

Spring Framework uses the Inversion of Control (IoC) pattern, which means that
the control of the objects is inverted, and the responsibility of managing the objects is
delegated to a container.

Spring Framework uses the Dependency Injection (DI) pattern, which means that
the dependencies between objects are injected into the objects, instead of being created
by the objects themselves.

CHAPTER 2. BACKGROUND KNOWLEDGE 18

Spring Framework uses the Aspect Oriented Programming (AOP) pattern, which
means that the cross-cutting concerns are separated from the business logic, and are
injected into the business logic.

2.5.1 Java Spring overview
Spring Framework separates into modules all the features, with the Core Container
being the base module, accessing Data through Data Access/Integration module,
leaving the handling of the networking to the Web module.

Figure 2.8: Java Spring Overview

One practical example of an application using Java Spring for a fullstack web
application, is the one in the next figure. Where an Apache Tomcat Servlet Container
is used to host the web application, the Frontend of the webapp could be made in Java
Server Page (JSP). The custom domain logic is implemented using the Core container
module which connects to the Data Access module to store data.

CHAPTER 2. BACKGROUND KNOWLEDGE 19

Figure 2.9: Java Spring Fullstack Example

Security with Java Spring Security

"Spring Security provides comprehensive security services for Java EE-based enterprise
software applications." [22]

Spring Security is a framework that provides authentication, authorization, and
protection against common attacks in a Java Spring application.

For the scope of this internship, I used the Spring Security SAML [23] extension,
which provides support for the SAML protocol, protecting against exploits.

2.6 Satosa authentication proxy
SATOSA is an authentication proxy, that translates between different authentication
protocols, like SAML2 and OpenID Connect. The project is open source[2] and it is a
project of "The Identity Python" organization.

SaToSa is born to be a SAML to SAML proxy, but it has been extended to support
other protocols, like OpenID Connect to Saml proxy.

Advantages of SATOSA over competitors are:

∗ Open Source: the project is open source, and it is available on GitHub with a
strong community already working on it and optimizing it for SPID;

∗ Metadata handling: SaToSa automatically creates and signs metadata, and it
also exposes endpoints for metadata retrieval;

∗ Standalone: SaToSa doesn’t need Jetty or Apache or Shibboleth to work, it is
a standalone application developed in Python, composable with a web server like
Nginx;

CHAPTER 2. BACKGROUND KNOWLEDGE 20

∗ Logging: SaToSa handles logging in a very specific way, and it is possible to use
custom logging, choosing where to store the logs;

SaToSa for SAML can be configured to work in two ways:

∗ One-to-many: there is one Service Provider talking to SaToSa, validating
against multiple SAML Identity Providers;

Figure 2.10: SaToSa One To Many Example

∗ Many-to-one: there are multiple SPs configured to use SaToSa, and the proxy
is talking to only one SAML IdP.

Figure 2.11: SaToSa Many-to-One Example

For the scope of this thesis, we will use SaToSa in the One-to-many configuration,
to allow the Java Spring SP to use SPID as an authentication method.

Chapter 3

Solution development

Now we discuss the path we decided to take, how we developed the software, and the
technologies we leveraged. Then, we outline the final achievements and what can be
done to enhance the Proof of Concept.

Over time it has been clear that SPID is currently using the SAML protocol, while
the OpenID Connect protocol is under development by the Identity Providers. So while
testing different solutions, we decided to use the SaToSa authentication proxy which
can be updated in the future to support the SPID protocol with OpenID Connect
Providers.

3.1 Architectural overview
The proposed solution is composed of two main components: the Java Spring web
application and SaToSa authentication proxy. Then, SaToSa faces the external SPID
Identity Providers.

Figure 3.1: Architecture overview

In Figure 3.1 we can see the overall architecture and an example of the authentication
flow.

21

CHAPTER 3. SOLUTION DEVELOPMENT 22

The authentication flow is the following:

1. : A user visits the Java Spring Service Provider and clicks on the "Entra con
SPID" button, thus visiting the SAML Entry Point, generating a first SAML
AuthN Request towards the SaToSa authentication proxy.

2. SaToSa receives the AuthNRequest and shows (in Nginx) the list of SPID Identity
Providers to the user.

3. The user selects one of the official SPID Identity Providers, for example PosteID,
and the user is redirected to the selected SPID IdP. SaToSa creates a second
SAML AuthNRequest and sends it to the selected IdP.

4. In the IdP the user authenticates and upon successful login or in case of an error,
the IdP redirects the user to SaToSa.

5. If the authentication is successful SaToSa automatically redirects the user to the
original Java Service Provider. Otherwise, if an error occured, SaToSa displays
the SPID error message and allow the user to go back to the Java Service Provider
to retry authentication.

6. In the Java Service Provider, if the authentication is successful, the SAML
Processor maps SPID data to a local user in the application, using the Fiscal
Number as a common key. If an error occured, it allows to retry the SPID
authentication.

3.2 Solution development
As we can have said in the architecture overview, the solution is composed of two main
components: the Java Spring web application and SaToSa authentication proxy. But
let’s see dive into those components.

3.2.1 Java Spring web application
The Java Spring application will be the SAML Service Provider. In a normal use
case scenario, the application can already have other methods of authentication, like a
username and password.

In this case, we will add the SAML Service Provider to the existing authentication
methods, using a Custom Authentication Provider.

Setup a SAML Service Provider in Java Spring

To setup a SAML Service Provider in Java Spring we must add the dependency Spring
Security SAML extension and the official Shibboleth repository to download the latest
opensaml jar, in the pom.xml file at the root of our Java Spring project.

Now , we can move on to configuring the SAML Service Provider:

1. Create a SAML Entry Point;

2. Handle Login and Logout;

3. Handle Metadata Generation;

4. Handle Metadata Manager to load the IdP metadata;

CHAPTER 3. SOLUTION DEVELOPMENT 23

5. Parser for XML file;

6. SAML HTTP POST binding and SAML Processor;

7. SAML Custom Authentication Provider;

8. Edit the SecurityConfig file;

9. Add the SPID SP Access Button to the frontend;

In the next figure we can see a sample of the SamlSecurityConfig java file, with an
example similiar to what it’s used in the final code, including the SAML Entry Point,
the SAML Processor, the SAML Custom Authentication Provider, and the SAML
Metadata Manager.

The SAML Entry Point is the first step in the authentication flow, it is the URL
that the user will visit to start the authentication process. In this case, the user will
visit the URL https://.../saml/login to start the authentication process.

The SAML Processor is the class that will handle the incoming SAML messages
from httpRequest stream. Here we can add the supported bindings (SPID only allows
HTTP POST and HTTP Redirect bindings).

The SAML Custom Authentication Provider is the class that will handle the au-
thentication process.

The SAML Metadata Manager is the class that will handle the IdP metadata. In
this case, we will use the metadata from the official SPID repository, [24], saved in
a local XML file, loaded by the Extended Metadata Delegate along with a Caching
Metadata Manager.

The Success Redirect and Authentication Failure handles are responsible to redirect
the user accordingly to the authentication result.

The SAML Logout Handler is responsible to invalidate the HTTP session and clear-
ing the authentication information in the application context, following in a redirect
to the website homepage.

In the following example, there are variables prefixed with the Java Spring token
@Value, this shows us that those variables are loaded from the application.properties
file, typically stored in the Resources folder.

This allows easy customization and modularity for key values in the SAML setup,
like the default IdP, the keystore information (location, password and alias) where the
cryptographic data will be stored.

CHAPTER 3. SOLUTION DEVELOPMENT 24

Figure 3.2: SecurityConfig file

CHAPTER 3. SOLUTION DEVELOPMENT 25

SPID SP Access Button

The SPID federation requires the use of a pre-made button to standardize the login
process. A sample component can be found on the official repository, italia/spid-sp-
access-button[25]. It provides a list of all official Identity Providers with their logos
and URLs.

The button can be a simple HTML list with all the official IdPs loaded with
javascript into the DOM, see Figure 2.6 to see the final result. Here are HTML and
Javascript codes for the SPID Access button:

Figure 3.3: SPID SP Access Button Example

3.2.2 SaToSa authentication proxy
The SaToSa authentication proxy must be published with security in mind. For this
internship, SaToSa has been deployed on a CentOS 8 instance on a private network,
accessible only in a testing environment. The setup has been done using the official
documentation[26]

1. Install required modules and libraries, like Docker, Python, Nginx, Chrony, etc.

2. Generate spid .pem certificates using the official Docker image.

3. Update the system clock, in SAML the timing of the requests is important, so
errors can be introduced when the system clock is not synchronized.

4. Download using git the SaToSa repository.

5. Set the firewall to allow only the required ports, port 80 for HTTP local testing
and port 443 for HTTPS traffic.

6. Configure Nginx frontend.

7. Configure SaToSa.

8. Configure SaToSa network access

9. Configure UWSGI, Universal Web Server Gateway Interface, used to run the
SaToSa proxy in a secure environment.

10. Update the changes by restarting the SaToSa service.

CHAPTER 3. SOLUTION DEVELOPMENT 26

11. Add official SPID IdPs in SaToSa and configure the metadata.

Figure 3.4: SaToSa server configuration

3.2.3 Testing
Now that we are using the official SaToSa SPID implementation, we can focus only on
the Java Spring Service Provider.

We could assume that what is published in the official italia/Satosa-Saml2Spid [27]
repository is a working solution, but assumptions are not safe in a production environ-
ment.

So we just need to be able to test the authentication flow after changes on the
italia/Satosa-Saml2Spid repository, this is possible because this version of Satosa
creates the metadata and AuthNRequest and handles all the error codes, accordingly
to all the SPID requirements, even the not mandatory ones.

To test the authentication flow we can launch the official italia/spid-saml-check [6]
docker container inside the SaToSa server instance.

Spid-saml-check contains a demo web application that can be used to emulate a
SPID Identity Provider and also a spid-validator web application that provides a test

CHAPTER 3. SOLUTION DEVELOPMENT 27

suite to check if our solution passes the strict SPID requirements.
In our case, we can add the spid-saml-check and launch the authentication flow

as usual selecting the local spid-saml-check as Identity Provider in Satosa, then we
can select the spid-validator application and launch the test suite and we can see that
every test passes.

CHAPTER 3. SOLUTION DEVELOPMENT 28

3.3 Findings
In this last section, we discuss the last considerations about the final result, what can
be done to improve the solution and personal thoughts.

3.3.1 Achievements
The Java Spring Service Provider is now able to authenticate users using the SPID
credentials, delegating authentication to the SaToSa authentication proxy.

This configuration works best when multiple Service Providers need to use the
SPID credentials, if we have a new working SAML Service Provider that we want to
configure, we just need to exchange metadata information with the SaToSa proxy and
the new Service Provider is able to authenticate users with the SPID credentials.

3.3.2 Future improvements
During the final part of the internship and the writing of this thesis, many aspects
came up that could be improved in the future.

Adding the support for the OpenID Connect protocol in the SaToSa proxy from both
parts of the proxy, allowing the Service Provider to retrieve SPID Credentials using a
more modern protocol is a future improvement that SPID will state as mandatory in
the following year.

Also, future improvements to SPID will allow the spread in the private sector. As of
now, there are 12674 Public Administration services using SPID, but only 182 private
service providers using it[28].

I have tested all private service providers and the majority of those are just testing
environments or they are not working because they have removed the SPID service or
they do not provide access because of SAML libraries errors.

Given the fact that SPID is a mandatory authentication method for Public Admin-
istration, many companies are offering to integrate SPID authentication, but many
private businesses could argue where the benefits could reside of using this complicated
system, still keeping in consideration they also have to pay a 0,40efee on every login
after 1000 unique users per year.

For the ones that may say that the SPID fee is not a problem because a lot of
services send SMS or emails to the user which also costs the Service Provider, following
there’s an example of the cost to send a single SMS using two of the most used
SMS-as-a-service platforms: Amazon Simple Notification Service (SNS)[29] and Twilio
SMS[30].

Amazon SNS Twilio SMS
Cost to send one SMS 0.075 $ 0.0927 $

Comparing these costs of Amazon SNS and Twilio (spending less than 0,10eper
SMS) with the cost of SPID for a private Service Provider (reported in the table
2.1, with a cost of 0,40eor 3,50eor 7,00e), SPID’s per-user fee is disproportionate
compared to similar "pay-per-use" services.

The SPID login could be useful for a general web application in the registration
phase, where the user could be tasked to insert manually a lot of personal informations

CHAPTER 3. SOLUTION DEVELOPMENT 29

and even though SPID is time-consuming, it will take less time and energy than a user
being asked to insert all of its data manually.

3.3.3 Personal evaluation
This internship has been a great experience for me because I had the opportunity
to learn a lot about authentication protocols along with fullstack development, in
particular how SPID and the SAML protocol works. I also been able to receive value
from the company and from some of the amazing members of the open source italian
community, that works in SPID.

Acronyms

DoS Denial of Service. 12

DTD Document Type Definition. 12

IdP Identity Provider. 1, 2, 5

OIDC OpenID Connect. 2, 10, 11

OP OpenID Provider. 10

PoC Proof Of Concept. 2

RP Relying Party. 10

SAML Security Assertion Markup Language. 2, 11

SP Service Provider. 1, 2, 5

XMLEnc XML Encryption. 11

XSW Xml Signature Wrapping. 11

XXE XML eXternal Entity injection. 12

30

Bibliography

Bibliographical references
[11] A. M. e. a. Juraj Somorovsky, “On Breaking SAML: Be Whoever You Want

to Be,” 2012. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity12/sec12-final91-8-23-12.pdf (cit. on p. 11).

[14] e. a. T. Lodderstedt M. McGloin, “OAuth 2.0 Threat Model and Security Con-
siderations,” [Online]. Available: https://www.rfc-editor.org/rfc/rfc6819
(cit. on p. 12).

Websites consulted
[1] “SPID private service provider registry,” [Online]. Available: https://registry.

spid.gov.it/private-service-providers (cit. on p. 1).

[2] “SATOSA authentication proxy,” [Online]. Available: https://github.com/
IdentityPython/SATOSA (cit. on pp. 2, 19).

[3] “SPID Keycloak implementation,” [Online]. Available: https://github.com/
italia/spid-keycloak-provider (cit. on p. 2).

[4] “Apereo CAS official website,” [Online]. Available: https://www.apereo.org/
projects/cas (cit. on p. 2).

[5] “SPID Shibboleth implementation,” [Online]. Available: https://github.com/
italia/spid-sp-shibboleth (cit. on p. 2).

[6] “SPID saml check testing Identity Provider,” [Online]. Available: https://
github.com/italia/spid-saml-check (cit. on pp. 2, 26).

[7] “SAML v2.0 Technical Overview,” [Online]. Available: http://docs.oasis-
open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
(cit. on p. 5).

[8] “SAML Authentication Flow,” [Online]. Available: https://youtu.be/SvppXbpv-
5k (cit. on p. 6).

[9] “OpenID Connect,” [Online]. Available: https://openid.net/connect/ (cit. on
p. 7).

[10] “OpenID Connect Authentication Flow,” [Online]. Available: https://youtu.
be/rTzlF-U9Y6Y (cit. on pp. 8–10).

31

https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91-8-23-12.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91-8-23-12.pdf
https://www.rfc-editor.org/rfc/rfc6819
https://registry.spid.gov.it/private-service-providers
https://registry.spid.gov.it/private-service-providers
https://github.com/IdentityPython/SATOSA
https://github.com/IdentityPython/SATOSA
https://github.com/italia/spid-keycloak-provider
https://github.com/italia/spid-keycloak-provider
https://www.apereo.org/projects/cas
https://www.apereo.org/projects/cas
https://github.com/italia/spid-sp-shibboleth
https://github.com/italia/spid-sp-shibboleth
https://github.com/italia/spid-saml-check
https://github.com/italia/spid-saml-check
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://youtu.be/SvppXbpv-5k
https://youtu.be/SvppXbpv-5k
https://openid.net/connect/
https://youtu.be/rTzlF-U9Y6Y
https://youtu.be/rTzlF-U9Y6Y

BIBLIOGRAPHY 32

[12] “OWASP XML Security Cheat Sheet,” [Online]. Available: https://cheatsheetseries.
owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html (cit. on p. 12).

[13] “OWASP Xml eXternal Entity (XXE) Prevention Cheat Sheet,” [Online]. Avail-
able: https://cheatsheetseries.owasp.org/cheatsheets/XML_External_
Entity_Prevention_Cheat_Sheet.html (cit. on p. 12).

[15] “What is SPID,” [Online]. Available: https://www.spid.gov.it/en/what-is-
spid/ (cit. on p. 14).

[16] “SPID Open Data,” [Online]. Available: https : / / avanzamentodigitale .
italia.it/it/progetto/spid (cit. on p. 15).

[17] “Blog Stefano Quintarelli,” [Online]. Available: https://blog.quintarelli.
it/spid/ (cit. on p. 15).

[18] “SPID prices,” [Online]. Available: https://www.agid.gov.it/sites/default/
files/repository_files/allegato_4_dt_166_corrispettivi_spid_idp_
2019_0.pdf (cit. on pp. 15, 16).

[19] “Vitalik blog about social recovery wallet,” [Online]. Available: https://vitalik.
ca/general/2021/01/11/recovery.html (cit. on p. 17).

[20] “SPID OTP with Google Authenticator” (cit. on p. 17).

[21] “Introduction to the Spring Framework,” [Online]. Available: https://docs.
spring.io/spring-framework/docs/4.3.29.RELEASE/spring-framework-
reference/htmlsingle/#overview (cit. on p. 17).

[22] “What is Spring Security,” [Online]. Available: https://docs.spring.io/
spring-security/site/docs/4.2.x/reference/htmlsingle/#what-is-
acegi-security (cit. on p. 19).

[23] “Spring Security SAML,” [Online]. Available: https://docs.spring.io/
spring- security- saml/docs/1.0.x/reference/htmlsingle/#chapter-
quick-start (cit. on p. 19).

[24] “SPID Identity Provider Metadata,” [Online]. Available: https://registry.
spid.gov.it/metadata/idp/spid-entities-idps.xml (cit. on p. 23).

[25] “SPID Service Provider Access Button,” [Online]. Available: https://github.
com/italia/spid-sp-access-button (cit. on p. 25).

[26] “SaToSa authentication proxy SPID guide,” [Online]. Available: https://
github.com/aslbat/Satosa-SPID-Proxy/ (cit. on p. 25).

[27] “SPID SATOSA implementation,” [Online]. Available: https://github.com/
italia/Satosa-Saml2Spid (cit. on p. 26).

[28] “SPID Service Provider Registry,” [Online]. Available: https://registry.spid.
gov.it/private-service-providers (cit. on p. 28).

[29] “Amazon Simple Notification Service,” [Online]. Available: https://aws.amazon.
com/it/sns/sms-pricing/ (cit. on p. 28).

[30] “Twilio SMS pricing,” [Online]. Available: https://www.twilio.com/sms/
pricing/it (cit. on p. 28).

https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://www.spid.gov.it/en/what-is-spid/
https://www.spid.gov.it/en/what-is-spid/
https://avanzamentodigitale.italia.it/it/progetto/spid
https://avanzamentodigitale.italia.it/it/progetto/spid
https://blog.quintarelli.it/spid/
https://blog.quintarelli.it/spid/
https://www.agid.gov.it/sites/default/files/repository_files/allegato_4_dt_166_corrispettivi_spid_idp_2019_0.pdf
https://www.agid.gov.it/sites/default/files/repository_files/allegato_4_dt_166_corrispettivi_spid_idp_2019_0.pdf
https://www.agid.gov.it/sites/default/files/repository_files/allegato_4_dt_166_corrispettivi_spid_idp_2019_0.pdf
https://vitalik.ca/general/2021/01/11/recovery.html
https://vitalik.ca/general/2021/01/11/recovery.html
https://docs.spring.io/spring-framework/docs/4.3.29.RELEASE/spring-framework-reference/htmlsingle/#overview
https://docs.spring.io/spring-framework/docs/4.3.29.RELEASE/spring-framework-reference/htmlsingle/#overview
https://docs.spring.io/spring-framework/docs/4.3.29.RELEASE/spring-framework-reference/htmlsingle/#overview
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/htmlsingle/#what-is-acegi-security
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/htmlsingle/#what-is-acegi-security
https://docs.spring.io/spring-security/site/docs/4.2.x/reference/htmlsingle/#what-is-acegi-security
https://docs.spring.io/spring-security-saml/docs/1.0.x/reference/htmlsingle/#chapter-quick-start
https://docs.spring.io/spring-security-saml/docs/1.0.x/reference/htmlsingle/#chapter-quick-start
https://docs.spring.io/spring-security-saml/docs/1.0.x/reference/htmlsingle/#chapter-quick-start
https://registry.spid.gov.it/metadata/idp/spid-entities-idps.xml
https://registry.spid.gov.it/metadata/idp/spid-entities-idps.xml
https://github.com/italia/spid-sp-access-button
https://github.com/italia/spid-sp-access-button
https://github.com/aslbat/Satosa-SPID-Proxy/
https://github.com/aslbat/Satosa-SPID-Proxy/
https://github.com/italia/Satosa-Saml2Spid
https://github.com/italia/Satosa-Saml2Spid
https://registry.spid.gov.it/private-service-providers
https://registry.spid.gov.it/private-service-providers
https://aws.amazon.com/it/sns/sms-pricing/
https://aws.amazon.com/it/sns/sms-pricing/
https://www.twilio.com/sms/pricing/it
https://www.twilio.com/sms/pricing/it

	Summary
	Contents
	List of Figures
	1 Introduction
	1.1 The company
	1.1.1 Triskel S.r.l.

	1.2 Internship description
	1.2.1 Internship planning

	2 Background knowledge
	2.1 Authentication vs authorization
	2.2 Authentication protocols
	2.2.1 SAML
	2.2.2 OpenID Connect

	2.3 Differences between SAML and OIDC
	2.3.1 Shared Features
	2.3.2 Threat modeling
	2.3.3 SAML and OIDC Conclusions

	2.4 SPID, the italian Public Digital Identity System
	2.4.1 What is SPID
	2.4.2 History of SPID
	2.4.3 Future of SPID

	2.5 Java Spring web application
	2.5.1 Java Spring overview

	2.6 Satosa authentication proxy

	3 Solution development
	3.1 Architectural overview
	3.2 Solution development
	3.2.1 Java Spring web application
	3.2.2 SaToSa authentication proxy
	3.2.3 Testing

	3.3 Findings
	3.3.1 Achievements
	3.3.2 Future improvements
	3.3.3 Personal evaluation

	Acronyms
	Bibliography

