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Abstract

Since the advent of modern telecommunications, the necessity to exploit the same link to put in commu-

nication more users or to increase the amount of transmitted information has boosted the exploration of the

different degrees of freedom of light, leading to the development of several division multiplexing techniques

based on wavelength, time, polarization, phase/amplitude, and, more recently, space. Space division multi-

plexing (SDM) relies on structuring the intensity or phase distribution of electromagnetic waves over a set

of non-interfering spatial configurations to be used as distinct information channels at the same frequency

in combination with standard modulation formats, offering a way out to the impelling problem of networks

saturation (optical crunch) and a wider alphabet of states for quantum protocols. That requires the choice

of a suitable family of orthogonal beams and the design of specific devices, i.e., the multiplexer and the

demultiplexer, realizing their superposition at the transmitter stage and separation at the receiver one.

In this thesis, a novel and innovative framework will be considered and investigated for SDM, based on the

exploitation of a new type of beams characterized by multipole phases. The purpose of this work is the

design and simulation of a free-space optical link based on multipole-phase division multiplexing. The gen-

eration (multiplexing), transmission, and sorting (demultiplexing) of multipole-phase beams will be analysed

with both a theoretical and numerical approach, in order to engineer the design of efficient and compact

all-optical devices for the manipulation and control of this new type of structured beams. This new spa-

tial multiplexing technique provides an innovative and revolutionary solution in the scenario of free-space

optical communication, from the optical up to the radio regimes, promising to solve the still-opened issues

of previous techniques, as those based on orbital angular momentum, and offering an efficient and practical

method for high-capacity transmission.
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1

1 Introduction to the structured light application and the multipole-

phase beams

In the last decades, the demand of data has increased exponentially, reaching peaks up to 90% in the annual

growth rate [1], and the scenario of the saturation of the worldwide communication networks is becoming a

reality. In addition, the energy consumption of the data centres and the network infrastructure is no longer

sustainable, with a growth from the 1% to the 3% in the last 10 years, corresponding to the 3% of the greenhouse

emission [2]. Moreover, the actual technology of the communication systems has a cost which forms an economic

barrier for the developing countries. For example, the Africa continent takes into account for the 16% of the

world’s population but only 4% of Internet access [2]. These data clarify the urgent need for a redesign of our

networks and the reason for which researchers and engineers are striving to design novel communication systems

much cheaper and ecological, and that can carry more data, more efficiently than ever before. For instance, in

many rural communities the access to electric power is not guaranteed, and the answer may be the integration of

solar power, or other renewable resources, with the free-space optical communication systems (FSO), which do

not request a solid medium in order to propagate the communication signals, as the deployment of the electric

cables or the optical fibres, whose cost (about US$100,000 per km) will be prohibitive for these countries.

Figure 1: Internet users (frame a), and the relative download speeds (frame b), as a function of the population mapped across the
Africa. The values are well below the averages for developed nation of 84% and >12 Mbps, respectively. Besides a 0.6 value of the
Gini coefficient (frame c), which indicates that the richest 20% of the African continent earns 80% of all income generated by the
country, these data indicate a country with a large social divide where only a few rich people have access to telecommunications
[2].

An example in this direction was given by the Google X company, which has founded the Loon project in

order to develop air balloons, powered with solar cells, in order to expand the internet connectivity to rural

regions with the FSO technology. In the 2020, Loon has launched the first internet-via-balloon service in

unserved areas of Kenya (see figure 2). This new type of networks can be also a solution in the regions where

a natural calamity occurred, providing emergency connectivity.

Alongside these attempts aimed at creating new green and economic communication systems, five physical

dimension, i.e., time, frequency, complex amplitude, polarization, and space, have been investigated, in these

years, in order to increase the efficiency of the more widespread telecommunication systems. The easiest to

understand is the time dimension, in the framework of which communication symbols are sent in temporal

succession in the form of pulses, as the alphabet characters during the writing of a text. The shaping of these

signals may be used to compress the pulse’ spectrum, while multilevel modulations may be investigated in order

to increase the information carried per pulse, associating different amplitudes to distinct channels of information

[3]. Instead, exploiting the frequency dimension, multiple communications signals can be transmitted in parallel

on distinct frequencies over the same medium, a technique called ”wavelength-division multiplexing” (WDM).
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Figure 2: The first balloon lunched by the team of the Loon project, in order to provide internet connectivity to rural areas of
Kenya.

Figure 3: Five physic dimensions exploited in the communication technologies: time, frequency, polarization, quadrature, and
space. Specific examples are reported for each dimension [1].
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The limit of the WDMs systems is regulated by the bandwidth constraints on the shared mediums, as in the

radio or mobile transmission, or due to physical and engineering limitations of the waveguides, for example

in the optical fibres, where due to the absorption spectrum of the fibre’s material, five frequency windows

distributed in the range of 1300 + 1600 nm are used (see figure 3). In the optical transmission, the further

polarization dimension can be investigated, where the two different polarizations of the light can be adopted

as an additional degree of freedom in the multiplexing process. Moreover, when the signals are modulated

using both the sine and cosine components, of the carrier electromagnetic wave, a two-dimensional alphabet is

obtained, and we refer to its components as two quadrature dimensions. Considering more values of phase and

amplitude modulation, higher-dimensional quadrature protocols have been developed. Today, however, these

division multiplexing techniques are almost saturated. Indeed, as shown in figure 4 for the transmission in optical

fibres, in the past 40 years different technological breakthroughs have allowed an increasing of the capacity per

fibre around tenfold every four years [4]. From an initial improvement of the optical fibres transmissivity and

the development of the erbium-doped fibre amplifier (EDFA), for the amplification of the optical signals during

the transmission into silica fibres, modulation techniques in the frequency domain have been reached in the 90s.

Moreover, the improvement of the computers performances has unlocked high spectral efficiency coding in the

signals’ modulation.

However, the bandwidth of the optical fibres put a limit in the data transmission, where a single fibre can carry

no more than about 100 Tbit s−1 of data [4]. Therefore, increases in the traffic demands will mean lighting more

fibres, with the energy and environmental issues already introduced. For all these reasons, the most promising

and recent candidate in the multiplexing technologies is the spatial dimension, which includes different strategies

and modulation formats: from the multiple twisted wires used in Ethernet cables or in the fibre ribbons, up

to the space division multiplexing (SDM) technique both for optical fibres and free-space propagation. The

initial application of SDM consisted in exploiting a configuration of separated waveguides inside the same

medium, as in multicore optical fibres [5]. Conversely, a more advanced approach, which is more effective for

free-space applications, consists in using orthogonal spatial configurations of the electromagnetic fields which

can be propagated along the same medium at the same frequency without any interference. This is the so-

called mode-division multiplexing (MDM). In the MMD framework, an initial set of communication channels

are multiplexed into a single electromagnetic field with a phase (or intensity) structure that is manipulated in

order to transmit the information signals at the same time and frequency. Finally, at the receiver stage, the

field is sorted into isolated light beams related to the initial set of channels. In this scenario, the SDM can not

only increase the capacity per fibre, which is almost saturated (as reported in figure 4), with the possibility

to transmit more light field at the same time and frequency, but it can also easily support WDM and others

modulation formats in each spatial channel. In figure 3 all the physic dimensions described above are reported:

time, frequency, quadrature, polarization and space are schematized, and specific practical examples are shown.

In particular, the work reported in this thesis finds its place in the scenario of the space division multiplexing,

where it will be introduced and developed a new and unique framework for the free-space communication

systems, based on the transmission of electromagnetic field with a wavefront characterized by a phase with

a multipole structure, as can be seen in figure 5. These type of beams, in analogy with the fields produced

by a magnetostatics multipole, will be called multipole-phase beams [6], and the purpose of this work is the

exploration of new spatial modulation formats in the free-space communication systems in order to give an

alternative to the traditional division multiplexing techniques.

In last years, some classes of beams have been investigated in the space division multiplexing: Hermite- and

Laguerre-Gaussian [8], Bessel [9], and Elegant beams [10] are the most famous. However, the most promising

candidates in the structured light applications were the beams carrying a twisted phase structure and, therefore,

related to an orbital angular moment (OAM) of light as reported in figure 6. It is well known, indeed, that an

electromagnetic wave can be interpreted quantum mechanically and thus can be imaged to carry both spin an-

gular momentum (SAM) and OAM [8]. While the SAM is related to the vectorial nature of the electromagnetic

field and can only assume two values, i.e., ±~ per photon, corresponding to right/left-handed circular polar-

ization states, the OAM is related to the spatial configuration of the helical wavefronts and is an unbounded
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Figure 4: In the figure it is plotted the transmission capacity of the optical fibres as reported, from the 1982 to the present, by
the annual Optical Fiber Communications Conference. The trend is approximately described by a ten-fold increment every four
years [4]. However, due to fundamental physical limitations of the transmission via optical fibre, the data traffic is approaching the
so-called ”optical crunch”, a saturation of the communication networks.

Figure 5: On the left, magnetic field lines for four cases of number of pole-pairs: m = 1, 2, 3 and 4, are reported. The solid and
dotted lines are positive and negative values of the vector potential, respectively [7]. On the right, simulations of multipole-phase
beams for the same values of the phase order m = 1, 2, 3 and 4, are shown. Brightness and colours refer to intensity and phase,
respectively.
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Figure 6: Two cases of angular momenta: (a) a spinning body carrying spin angular momentum (SAM), (b) an orbiting body
carrying orbital angular momentum (OAM), (c) a circularly polarized light field carrying SAM, (d) and the phase structure of an
OAM beam [31].

quantity. Therefore, the SAM beams add a two-dimensional degree of freedom to the space division multi-

plexing, as mentioned above (polarization division multiplexing). However, if the helical structure is generated

by a precession of the wave vector, instead a rotation of the electric field, we obtain an OAM beam, which

is characterized by a phase function, defined on the plane transversal to the propagation direction, which is

exp{ilθ}, where θ is the azimuthal coordinate and l is an integer referring to the number of intertwined helices

(i.e., the 2π phase shifts along the circle around the propagation axes). Since l is an integer number, it can

be a negative, positive, or even a zero value, corresponding to counterclockwise or clockwise phase helices or

a Gaussian beam (i.e., no helix structure), respectively [8]. The advantage with respect to the SAM beams

is that l, which represents the OAM in units of the reduced Plank’s constant ~ [11, 12], can assume infinite

values, providing an alphabet in the SDM limited only by technology constraints. Many important progresses

have been achieved in the detection and generation [13–24], manipulation [25–27], and propagation [28–30], of

the OAM-beams as astigmatic-mode conversion, spiral phase plates and q-plates, multiplane light conversion,

integrated photonics, and conformal transformations. Among all, conformal transformations represent the most

efficient, compact, and versatile way for the spatial manipulation of a wavefield. In a more general approach to

conformal mappings, we demonstrate how a new framework can be developed where harmonic phases are used

to encode, transmit, and process distinct spatial configurations of the electromagnetic field.

However, despite all that progress, OAM beams present a central phase singularity, as can be seen from the fig-

ure 7, which represents a still open issue since the relative dark zone will expand during a free space propagation,

reducing the efficiency of OAM beams for long distance transmissions.

The multipole-phase beams, otherwise, are characterized by the absence of singularities in their phase struc-

ture, as can be seen from the simulations on the right of figure 5. Moreover, they provide two continuous

degrees of freedom, which can be controlled and measured in an efficient and practical way via conformal trans-

formations. For this reason, we expect that the new paradigm, encompassed in this work, will find widespread

applications in the space division multiplexing of the electromagnetic fields. In this thesis, however, we focalized

on the telecommunication field, in particular on the above-mentioned free-space optical communication systems

(FSO) where the SDM [32] relies on the structuring of the phase distribution of electromagnetic fields over a set

of non-interfering spatial configurations, each of them acting as a separated information channel with the same

frequency as the others. As already anticipated, the SDM can be used in combination with the usual modulation

formats [33, 34], offering a solution for different problems as the network saturation [35–37] or the necessity of

wider alphabets in the quantum applications [38], as in the cryptography systems [39, 40]. Moreover, others

important fields, in which the spatial division multiplexing is used, are the micromanipulation [41, 42], the
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Figure 7: Simulations of six OAM beams, of wavelength λ = 1310.0 nm and waist w0 = 0.5 mm, carrying an orbital angular
momentum l = {±1;±2;±3}. Brightness and colours refer to intensity and phase, respectively. Notice how, incrementing l, the
number of completed 2π-phase periods increases (each colour corresponds to a different value of the phase). Moreover, changing
the sign of l, the colours’ sequence is reversed, due to a different rotation of the phase helices of the beam.

imaging and microscopy applications [43–45], besides the already anticipated communication systems [4, 46].

All these scenarios require the manipulation of beams which are orthogonal to each others and the design of

two specific devices performing the superposition of such beams, at the transmitter stage, and the sorting of the

received ones, as reported in figure 8. These two devices are called multiplexer and demultiplexer, respectively.

Figure 8: Four distinct Gaussian beams (l1,2,3,4 = 0) are multiplexed into a set of orthogonal OAM beams with different values of
l. The superposition of these beams are, then, transmitted to the receiver stage, where they are sorted and transformed back to
Gaussian light spots spatially separated.

As we will see, the free space propagation between the two stages can be mathematically described in terms

of Fourier transformations [47], which guarantees a strategy in order to analyse the evolution of the phase

and intensity patterns from the generation of the beam, up to its detection. Moreover, in a ray light picture,

each point of the initial electromagnetic field, undergoes the coordinates’ transformation which projects this

initial point onto a specific position of the detected field. As will be shown, under reasonable assumptions
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of analyticity, the phase pattern of the wavefront will be found as a harmonic function. Indeed, in order to

transmit correctly the information contained into the phase structure of the propagated beam, the angles of

the phase pattern must be preserved. This means, as we will see, that the above-mentioned transformation of

the coordinates is a conformal mapping, and the phase structure of the field will be given by a two-dimensional

Laplace’s equation [48]. Moreover, it will be found that the phase term of the OAM beams is a particular

solution, independent of the radial coordinate, of the Laplace’s equation. The OAM beams are, indeed, a

particular case in the framework of the multipole-phase beams. However, as anticipated, their central phase

singularity still represents a critical issue in the long-distance free-space propagation [24, 49–52]. For this

reason, in the presented work it will be considered the general solution of the Laplace’s equation for the phase

of an electromagnetic field, discovering a new family of beams: the above-mentioned multipole-phase beams.

In particular, these general phase solutions are able to implement the mapping of multipole-phase beams into

linear momentum states (and vice versa), which can be easily sorted with a Fourier lens, showing an efficient

method in order to multiplex and demultiplex this new family of beams with only two optical devices, the

so-called Transformer and Phase Corrector. The first element, indeed, unwraps the multipole-phase structure

into a linear phase gradient, corresponding to its related linear momentum state. The second optical element,

instead, corrects the phase distortions introduced in the propagation between the two elements, and incorporates

the Fourier lens, for the sorting of the beam into an isolated light spot, whose coordinates are related to the

momentum state. In this way, an initial set of multipole-phase beam (each of them corresponding to a different

communication channel) is easily demultiplexed into distinct light spots placed at different positions. In the

reverse process, with the same two optical elements in the inverse order, an initial set of light beams can be

multiplexed into a superposition of multipole-phase beams, and propagated as a unique electromagnetic field

without the interference of the single channels. Therefore, it is easily to understand how, this work, considers

a new more general approach to the SDM, called multipole-phase division multiplexing (MPDM), expected to

be a starter point for promising applications in the free-space transmission in the whole range of wavelengths:

from the optical, up to the radio and microwave fields. In particular, the work of this thesis will be structured

as it follows.

1.1 A brief introduction to the contents of this work

After this initial introduction, in the chapter 2, we will see how the free space propagation of a general

electromagnetic field can be simulated in a MatLab environment without the generation of artefacts and distor-

tions. In particular, it will be shown how two regimes have to be introduced: the short distance and the long

distance regimes. Indeed, the Fourier Transform that, as anticipated, allows us to mathematically describe the

propagation in free space, has to be computed in two different ways, depending on the propagation distance

considered. We will see that this corresponds to satisfy the Nyquist-Shannon sampling theorem. Taking into

account these considerations, a MatLab macro for the free-space propagation of an electromagnetic field will be

defined and discussed. In the next chapter 3, it will be given a theoretical description of the multipole-phase

beams, showing in particular how their phase structure arises from the general solution of the two-dimensional

Laplace’s equation, and depends on two parameters, called phase strength and phase orientation, which repre-

sent the intensity and the orientation of the phase pattern of the wavefront, respectively. Moreover, we will see

how the multipole-phase beams can be divided into different families depending on the phase order, m, which

is related to the number of poles of the phase structure of these beams (see figure 5). In the same chapter, the

evolution of multipole-phase beams during a free space propagation will be described, and it will be reported

a criterion that must be adopted to avoid phase distortions during the propagation. Moreover, it will be in-

troduced how we can act on the phase, thanks to conformal mappings of the coordinates on the propagation

planes, in order to unlock new strategies in the SDM. With these notions, in the chapter 4, we will finally be

able to understand how to simulate the sorting of a superposition of multipole-phase beams into different and

isolated light spots, acting as independent channels of information. It will be shown that the demultiplexing of

multipole-phase beams can be achieved with an anti-holomorphic conformal mapping described by a circular-
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sector transformation, which converts a multipole-phase structure into a linear phase gradient, that can be

sorted by a Fourier lens. As anticipated, this transformation can be performed with two optical elements: the

Transformer and the Phase Corrector. Moreover, in the chapter 5, will be described how, inverting the two

previous optical elements, we can produce the reverse process, i.e., as an initial configuration of light beams

can be manipulated in order to generate a set of multipole-phase beams, which can be transmitted as a unique

electromagnetic field without loss of information.

Then, in the chapter 6 it will be introduced the concept of the Cross-Talk as an estimation of the ability

of a telecommunication system to distinguish different channels at the receiver stage. It will be analysed, in

particular, how we can integrate the Cross-Talk computation in a MatLab simulation and how to interpret the

relative results. In this way, in the chapter 7, a demultiplexing device will be design in order to maximize the

number of distinct channels that can be transmitted without an excessive interference between them, showing

a way to increase the capacity and the efficiency of the free-space communication system. In this way, as de-

scribed in the chapter 8, it will be analysed the whole multiplexing, transmission and demultiplexing process

for multipole-phase beams in an optimized device. Thanks to that, it will be possible to describe the evolution

of wavefields along an entire communication link using this new type of structured light. The analysis will turn

out the potentialities of the beams with a multipole-phase structure, showing, in particular, their versatility and

the ease of implementation in the telecommunication field. Moreover, in the chapter 9, it will be described

as the demultiplexer stage of a such device can be adapted to an experimental setup and tested in an optical

laboratory, putting the focus on the limitation due to the sizes of the experimental tools. The scheme of an

optical bench for optical tests will be outlined and described for future experimental analyses in the laboratory.

Then, in the chapter 10, a possible strategy in the fabrication of the optical elements, necessary in order to

work with the multipole-phase beams, will be introduced. In particular, the recent developed metasurfaces with

anisotropic metaelements will be considered. Finally, a conclusion on the role of the multipole-phase beams in

the scenario of the free-space optical communication systems is given in the last chapter.
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2 Free space propagation

Before considering the demultiplexing and the multiplexing of a set of multipole-phase beams, we need to

know the theory necessary to simulate the free space propagation of an electromagnetic field. In particular,

two different, but complementary methods will be discussed: the Fresnel Transfer Function (TF) propagation

method and the Fresnel Impulse Response (IR) method.

Moreover, at the end of the chapter, it will be shown how a converging lens can be used in order to practi-

cally perform the Fourier Transform of an electromagnetic field. This will be necessary in the multiplexing

and demultiplexing techniques described in the following chapters, and it will be reported here as a natural

consequence of the theory of the free space propagation of electromagnetic fields.

2.1 The Fresnel-Kirchhoff integral

We know that an electromagnetic field is described by two vector fields related to each other: the electric

field E(r, t) and the magnetic field H(r, t), which are functions of position and time and satisfy the Maxwell’s

equations. In the vacuum, in the absence of charges and currents, the Maxwell’s equations are the following:

∇×H = ε0
∂E
∂t (1)

∇×E = −µ0
∂H
∂t (2)

∇ ·H = 0 (3)

∇ ·E = 0 (4)

where ε0 = 8.85×10−12 C2

m2N and µ0 = 4π ×10−7 N
A2 are the electric permittivity and the magnetic permeability

of vacuum, respectively.

Applying the curl to the second equation, we get

∇×∇×E = −µ0∇×
∂H

∂t
(5)

Now, remembering that ∇×∇×E = ∇(∇ ·E)−∇2E, and using the fourth and first equation, we obtain

∇2E − 1

c20

∂2E

∂t2
= 0 (6)

where c0 = 1√
ε0µ0

= 3×108ms−1, is the speed of light in vacuum. The equation 6 is called wave equation,

and its simplest solution is the monochromatic wave

u(r, t) = a(r) cos [φ(r)− ωt] (7)

where a(r) is the amplitude of the wave, φ(r) its initial phase, and w = 2πf where f is the frequency of the

wave. For simplicity, we can rewrite this field as the real part of the complex amplitude U(r, t):

u(r, t) = Re{U(r, t)} (8)

where U(r, t) is defined as

U(r, t) = a(r)ei(φ(r)−ωt) (9)

Now, substituting the equation 9 in the wave equation 6, we obtain the so-called Helmholtz equation

∇2U + k2U = 0 (10)

where k := ω
c = 2π

c = 2π
λ is the wave number, i.e. the modulus of the wave vector k, whose direction is the
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Figure 9: Schematization of the Fresnel-Huygens principle for an aperture of size L and area Σ. An initial spherical wave (plotted
in yellow, in the figure) is generated in the point P0, at the distance r0 from the screen. Reaching the aperture, a series of secondary
spherical wave are generated (points QI,II,III of the wavefront of the source field) and propagated for a distance r � L. The final
field is evaluated in the point P .

propagation one.

A simple solution, in spherical coordinates, of the Helmholtz equation 10, is the spherical wave, characterized

by a complex amplitude that depends only on the modulus of the radial coordinate

U(r) =
U0

r
eikr (11)

where r is the distance from the source of the wave, and U0 a constant defining the total energy carried by

the wave. The spherical waves hold an important role in the propagation and diffraction of the electromagnetic

fields. Indeed, according to the Huygens principle, every point which a luminous disturbance reaches becomes

a source of a spherical wave itself; the superposition of these secondary wavelets determines the wavefront

at any subsequent time. Moreover, Fresnel showed that this principle, together with his own principle about

the light interferences, could explain both the rectilinear propagation and the diffraction of the light. From

a mathematical point of view, the Huygens-Fresnel’s principle states that the electromagnetic field, U(P ), at

a point P is given by the integration over the spherical waves (given by the equation 11) propagating from a

surface Σ and reaching that point P

U(P ) = U0

∫∫
Σ

eikr

r
K(χ) dΣ (12)

where K(χ), reported in equation 13, is a mathematical correction of the diffraction integral 12 in order to

explain the experimental results, and it is called obliquity factor [53]

K(χ) =
1

2iλ
(1 + cosχ) (13)

As reported in figure 9, we can imagine the situation as a spherical wave, with its source in P0, impinging an

aperture whose linear size L is very small compared with the distance r from a general point Q, of the wavefront

at the screen, to the point P . In this scenario, Σ is the area of the wavefront at the aperture.

In our hypothesis of L� r, K(χ) will not vary appreciably over the aperture, and the following approxima-

tion can be assumed:
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Figure 10: Free space propagation along z-axis of an initial electromagnetic field reaching the aperture of area Σ on the plane (ξ, η).
The final field is detected on the plane (x, y) at the distance z.

cos(χ) ≈ 1 (14)

and the integral 12 becomes

U(P ) =
U0

iλ

∫∫
Σ

eikr

r
dΣ (15)

At this point, we can generalize the integral 15, taking the screen with an arbitrary aperture of transmission

function A(ξ, η), and assuming the generating electromagnetic field

U1(ξ, η) =
U0(ξ, η)

r
eikr (16)

characterized by the generic amplitude U0(ξ, η) impinging on the screen.

In this way, in agreement with the equation 15, the transmitted field U
(z)
2 (x, y), at the distance z along the

propagation direction, will be

U
(z)
2 (x, y) =

1

iλ

∫∫
Σ

U0(ξ, η)A(ξ, η)
eikr

r
dξdη (17)

where r is the distance between two points of the wavefront, before and after the field propagation of a

length z, i.e., the distance between two points on the initial and final planes, where (ξ, η) and (x, y) are the

respectively Cartesian coordinates systems (see figure 10).

r =

√
z2 + (x− ξ)2

+ (y − η)
2

(18)

The equation 17 is called Fresnel-Kirchhoff integral, and it is the starting point of our strategy in order to

simulate the free-space propagation of an electromagnetic field.

2.2 Fresnel Transfer Function (TF) propagation

In equation 18 we can collect z, obtaining

r = z

√
1 +

(
x− ξ
z

)2

+

(
y − η
z

)2

(19)



2.2 Fresnel Transfer Function (TF) propagation 12

It is important to notice that the square root of this equation makes the calculation of the Fresnel integral

17 very laborious. For this reason, a more convenient scalar diffraction form is obtained expanding in series the

square root and taking the first terms

r ≈ z +
(x− ξ)2

2z
+

(y − η)
2

2z
(20)

We remember, indeed, that we have chosen the aperture with a linear size very small compared with the

propagation distance z, justifying the previous expansion, called paraxial approximation.

Now, assuming r ≈ z in the denominator of the equation 17, and performing the powers in equation 20, we

obtain the following expression of the Fresnel integral

U
(z)
2 (x, y) =

eikz

iλz
ei

k
2z (x2+y2)

∫∫
Σ

A∗(ξ, η)ei
k
2z (ξ2+η2)e−i

k
z (xξ+yη) dξdη (21)

That we can rewrite as

U
(z)
2 (x, y) =

∫∫
Σ

A∗(ξ, η)h(x− ξ, y − η) dξdη (22)

where we have made the position

A∗(ξ, η) := A(ξ, η)U0(ξ, η) (23)

and introduced the impulse response function of the free-space

h(x, y) :=
eikz

iλz
ei

k
2z (x2+y2) (24)

From the equation 22, it is easy to see that the Fresnel integral has a convolution nature and can be rewritten

as

U
(z)
2 = A∗ ∗ h (25)

Taking the Fourier Transform of both sides of the Fresnel integral 25, we have

F{U (z)
2 (x, y)} = F{A∗ ∗ h(x, y)} = F{A∗(ξ, η)} ·H(fx, fy) (26)

where we used the convolution property of the Fourier Transform, and denoting with H(fx, fy) the transfer

function, which is the Fourier Transform of the impulse response function: H(fx, fy) = F{h(x, y)}. Taking now

the Fourier Antitransform, we finally obtain the detected field

U
(z)
2 (x, y) = F−1{F{A∗(ξ, η)} ·H(fx, fy)} (27)

Notice now, that in our case of a free-space propagation, we don’t have an aperture and A∗ is simply the

amplitude of our initial field U0(ξ, η). Therefore, in order to obtain the final field U
(z)
2 (x, y), we only need to

know the amplitude structure of the initial field, U0, and the transfer function H(x, y). Considering now the

equation 24 and remembering that

F
{
exp

[
−iπ

(
x2

a2
+
y2

b2

)]}
= i|ab| exp

[
−iπ(a2f2

x + b2f2
y )
]

(28)

where in this case a = b =
√
−λz, we obtain the following transfer function:

H(fx, fy) = eikz exp
[
−iπλz(f2

x + f2
x)
]

(29)

At this point, we have the all information necessary, and it is possible to determine U2.
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Far field approximation It is worth noting from the Fresnel integral 21, that in a far field approximation,

where the two exponential terms are negligible exp
[
i k2z (ξ2 + η2)

]
≈ exp

[
i k2z (x2 + y2)

]
≈ 1, the Fresnel integral

21 becomes:

U
(z)
2 (x, y) =

eikz

iλz

∫∫
Σ

A∗(ξ, η)e−i
k
z (xξ+yη) dξdη (30)

Therefore, remembering that the Fourier Transform of a function of two variables is

F{g(x, y)} =

∫∫
g(x, y)e−i2π(xfx+yfy) dxdy (31)

where, in this case, fx = ξ
λz and fy = η

λz (which are actually spatial frequencies since λ, ξ, η and z are

distances), the integral 30, except for the phase term, exp [ikz], is the Fourier Transform of the two-variables

function A∗(ξ, η).

2.2.1 Space discretization

As the first thing, we have to discretize (as represented in figure 11) the two-variables analytic function

which describes the source field

U1(x, y)→ U1(m∆x, n∆y) (32)

where ∆x,∆y are the sampling intervals along the x-axis and y-axis respectively, while m,n are two integer

indexes such that

m = −M
2
, ...,

M

2
− 1 n = −N

2
, ...,

N

2
− 1 (33)

with M,N integer numbers. In this way the source plane is composed of M × N samples which fill it

completely

Lx = M∆x Ly = N∆y (34)

For simplicity, we assume Lx = Ly := L and the same sampling interval ∆x = ∆y. In this way the

coordinates along the x-axis (analogue along y-axis) are:

x→
[
−L

2
: ∆x :

L

2
−∆x

]
(35)

With this discretization we are finally enabled to create a mesh grid [X,Y ] of the source plane and define

the initial field U1(X,Y ). In the following, for example, it is reported the MatLab code of a Gaussian beam of

waist w0 = 2 mm defined on a plane of side L = 10 mm sampled with M = 2000.

Listing 2.2.1: space discretization

1 L = 10 ; % plane s i d e [mm]

2 M = 2000 ; % plane num. o f samples

3 dx = L/M; % sample i n t e r v a l

4 x = −L/2 : dx : L/2−dx ; % x coords

5 y = x ; % y coords

6 [X,Y] = meshgrid (x , y ) ; % c a r t e s i a n coords

7 [ theta , r ] = ca r t 2po l (X,Y) ; % po la r coords

8 w0 = 2 . 0 ; % beam waist [mm]

9 U1 = exp(−( r /w0) . ˆ 2 ) ; % gauss ian beam
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Figure 11: Space discretization of the wavefront of an electromagnetic field, u1(x, y) (dark blue region), into M and N samples

along the x-axis, and y-axis, respectively. The sampling intervals are ∆x = Lx
M

and ∆y =
Ly
N

, where Lx and Ly are the sides of
the propagation plane along the two axes.

2.2.2 Frequency discretization

Now, before to perform the Fourier Transform, we have to define the domain of the frequencies. Conven-

tionally, the continuous space of the frequencies is sampled in the same M ×N samples of the real space:

fx → p∆fx =
p

M∆x
=

p

Lx
p = −M

2
, ...,

M

2
− 1

fy → q∆fy =
q

N∆y
=

q

Ly
q = −N

2
, ...,

N

2
− 1

(36)

And under the same hypothesis of M = N and Lx = Ly := L, we get the following discretization (analogue

for fy):

fx →
[
− 1

2∆x
:

1

L
:

1

2∆x
− 1

L

]
(37)

In the following it is reported the MatLab code for this discretization of the frequencies and the generation

of a mesh grid, as we have seen in the spatial case. We assumed fx = fy as a consequence of the above positions.

Listing 2.2.2: frequency discretization

1 fx = −1/(2∗dx ) : 1/L : 1/(2∗dx )−1/L ; % f r e q u a t i o n coords

2 [FX,FY] = meshgrid ( fx , fx ) ; % f r e q u a t i o n space mesh

2.2.3 Computing of the transfer function

At this point, after the generation of the mesh in the frequency space, [FX , FY ], we can determine the

transfer function for each point thanks to the equation 29:

H = exp
{
−jπλz

(
F 2
X + F 2

Y

)}
(38)
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where we have ignored the factor, ejkz, since it doesn’t change the structure of the wavefront in the x-y

plane. The MatLab instructions of this step are reported in the code below.

Listing 2.2.3: transfer function

1 H = exp(−1 i ∗ pi ∗ lambda∗z ∗(FX.ˆ2+FY. ˆ 2 ) ) ; % t r a n s f . f unc t i on

2.2.4 Fourier Transform

Now we are able to compute the final field, U2(X,Y ), after a free space propagation of a distance z, thanks

to the equation 27, just multiplying the Fourier Transform of U1(X,Y ) with the transfer function H(FX , FY )

and anti-transforming the result.

U2(X,Y ) = F−1{F{U1(X,Y )}H (FX , FY )} (39)

However, the indexes m,n are both positive and negative values, while in a MatLab vector the indexes

are only positive. For this reason a shift has been made, as reported in figure 12, and only then the Fourier

Transform of U1(X,Y ) has been done. In the same way, H(FX , FY ) is shifted and, after the product and the

anti-transformation, the result is re-shifted to the initial coordinates as reported in the following listing

Listing 2.2.4: TF propagation

1 H = f f t s h i f t (H) ; % s h i f t o f H

2 FU1 = f f t 2 ( f f t s h i f t (U1) ) ; % Four i e r t r a n s f . o f s h i f t e d u1

3 FU2 = H.∗FU1 ; % f i n a l f i e l d in f r e q u a t i o n domain

4 U2 = i f f t s h i f t ( i f f t 2 (FU2) ) ; % ant i−t r a n s f . o f re−s h i f t e d U2

Figure 12: Shift of the sampling along the x-axis necessary in order to have a range of only positive values as the index of a MatLab
vector, in order to perform the Fourier Transform. The same shift is performed also for the y-axis.

2.3 Fresnel Impulse Response (IR) propagation

It is easy to see that the equation 27 is analytically equivalent to the following one:

U2(x, y) = F−1{F{U1(x, y)}F{h (x, y)}} (40)

where we didn’t use directly the equation 29 of the transfer function H(FX , FY ) but, this is computed as the

Fourier Transform of the impulse response function h(x, y) expressed in equation 24, using the discretization

(equation 35) as seen in the TF propagation method.

The following steps are the same of the previous method, and the corresponding MatLab code is reported in

the following.



2.4 TF or IR criteria of propagation 16

Listing 2.3.1: IR propagation

1 x = −L/2 : dx : L/2−dx ;

2 [X,Y] = meshgrid (x , x ) ;

3 h = 1/(1 i ∗ lambda∗z ) ∗exp (1 i ∗k/(2∗ z ) ∗(X.ˆ2+Y. ˆ 2 ) ) ;

4 H = f f t 2 ( f f t s h i f t (h) ) ∗dx ˆ2 ;

5 FU1 = f f t 2 ( f f t s h i f t (U1) ) ;

6 FU2 = H.∗FU1 ;

7 U2 = i f f t s h i f t ( i f f t 2 (FU2) ) ;

2.4 TF or IR criteria of propagation

The two methods seen, TF and IR, are analytically equivalent, but they can give different results if applied

to discretized fields. Indeed, we will see that, in order to avoid artefacts, the two approaches work in different

limits of the propagation distance for a fix sampling of the simulated field. In particular, the TF method will

be used in the short distance regime, while the IR method works better in the long distance regime.

2.4.1 Propagation limit for the Transfer Function method

The transfer function (equation 29) has the phase that is a function of the square of the frequencies

φH(fx, fy) = −πλz
(
f2
x + f2

y

)
(41)

This expression is called chirp function, whose absolute value increases with the square of the frequency

variables, and its propagation simulation can be problematic due to the increasing slope of the phase with

frequency [54]. Now, due to the orthogonality of the two frequency variables fx and fy, we can analyse the

chirp function only in one direction (the x-axis for instance). For a constant sampling interval, ∆fx , along this

axis, the phase is described uniquely only in a range of 2π, therefore the variation of its module must be less

than π

∆fx

∣∣∣∣∂φH∂fx

∣∣∣∣
max

≤ π (42)

and resolving the derivative we get

∆fx ≤
1

2λz |fx|max
(43)

Remembering now the frequency discretization (equation 37) we have

|fx|max =

∣∣∣∣− 1

2∆x

∣∣∣∣ ∆fx =
1

L
(44)

Substituting in the previous equation, we finally have the working condition of the TF propagation method:

z ≤ ∆xL

λ
(45)

Now we want to show that the equation 45 it is nothing but the Shannon–Nyquist sampling theorem, which

tell us that: when the spectral content of a signal is limited to a finite range of frequencies, a continuous function

can be recovered correctly from the samples if the sample interval is smaller than

∆x ≤
1

2BX
(46)

where BX is the bandwidth of the spectrum of the continuous function along the x-axis [55]. Rearranging

this expression, and taking the limit condition, we get the Nyquist frequency
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fNX =
1

2∆x
(47)

which is, precisely, the maximum frequency expressed in the equation 44, telling us that we are using the

correct bandwidth for our samplings.

2.4.2 Propagation limit for the Impulse Response method

In this case, from the impulse response function (equation 24) we have a phase pattern in the propagation

plane expressed by the following equation:

φh(x, y) =
k

2z

(
x2 + y2

)
(48)

Similarly to before, the variation of the phase module must be

∆x

∣∣∣∣∂φh∂x
∣∣∣∣
max

≤ π (49)

and performing the derivative, we obtain

∆x
k

z
|x|max ≤ π (50)

where k = 2π
λ and, from the space discretization (equation 35), |x|max = L

2 . Substituting in the previous

equation, we have the working condition of the IR propagation method:

z ≥ ∆xL

λ
(51)

As we can see, the two regimes (equation 45 and equation 51) are complementary, and it will be used one

method rather than the other in function of the distance, z, of the observation plane from the source one (both

of side L and sampling interval ∆x) for a certain field of wavelength λ.

In the code below, it is reported the complete MatLab function used for the free space propagation.

Listing 2.4.1: free space propagation MatLab macro

1 f unc t i on [ u2 ] = FreeSpaceProp ( u1 , L , lambda , z ) ;

2

3 [M,N] = s i z e ( u1 ) ;

4 dx = L/M;

5 k = 2∗ pi /lambda ;

6

7 % prop . TF ( shor t d i s t anc e regime )

8 i f z <= dx∗L/lambda

9 fx = −1/(2∗dx ) : 1/L : 1/(2∗dx )−1/L ;

10 [FX,FY] = meshgrid ( fx , fx ) ;

11 H = exp(−1 i ∗ pi ∗ lambda∗z ∗(FX.ˆ2+FY. ˆ 2 ) ) ;

12 H = f f t s h i f t (H) ;

13 FU1 = f f t 2 ( f f t s h i f t (U1) ) ;

14 FU2 = H.∗FU1 ;

15 U2 = i f f t s h i f t ( i f f t 2 (FU2) ) ;

16 end

17

18 % prop . IR ( long d i s t anc e regime )

19 i f z > dx∗L/lambda

20 x = −L/2 : dx : L/2−dx ;
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21 [X,Y] = meshgrid (x , x ) ;

22 h = 1/(1 i ∗ lambda∗z ) ∗exp (1 i ∗k/(2∗ z ) ∗(X.ˆ2+Y. ˆ 2 ) ) ;

23 H = f f t 2 ( f f t s h i f t (h) ) ∗dx ˆ2 ;

24 FU1 = f f t 2 ( f f t s h i f t (U1) ) ;

25 FU2 = H.∗FU1 ;

26 U2 = i f f t s h i f t ( i f f t 2 (FU2) ) ;

27 end

28 end

2.5 Fourier Transform of electromagnetic fields

Consider now a converging lens characterized by the following quadratic phase term Ωf , as reported on the

left of figure 13:

Ωf = − k

2f
ρ2 (52)

where f is the focal length and ρ is the position on the wavefront defined in the (ξ, η)-plane:

ρ =
√
ξ2 + η2 (53)

If we imagine, at this point, an initial field U1 (as expressed in equation 11) impinging our lens, the propagated

field, after a distance z, will be given by the Fresnel integral 21, where, instead of the transmission function of

an aperture, we have now the transmission function related to the lens, which is the following

A(ξ, η) = eiΩf (ξ,η) (54)

Therefore, the Fresnel integral 21 becomes:

U
(z)
2 (x, y) =

eikz

iλz
eik

x2+y2

2z

∫∫
Σ

U0(ξ, η)eik
ξ2+η2

2 ( 1
z−

1
f )e−i

k
z (xξ+yη) dξdη (55)

In the particular case that the propagation distance is equal to the focal length, z = f , the previous integral

will be reduced to

U
(f)
2 (x, y) =

eikf

iλf
eik

x2+y2

2f

∫∫
Σ

U0(ξ, η)e−i
k
f (xξ+yη) dξdη (56)

Therefore, remembering the equation 31, the integral 56, except for the phase term, exp
[
ik x

2+y2

2z

]
, is the

Fourier Transform of the two-variables function U0(ξ, η):

U
(f)
2 (x, y) =

eikf

iλf
eik

x2+y2

2f F {U0(ξ, η)} (57)

Therefore, we finally found that placing a converging lens in front of the object, the image formed on the

focal plane is proportional to the Fourier Transform of the object, apart from a curvature phase term. This

situation is reported on the right of figure 13. It is important to notice that the same result can be obtained

also in a f − f configuration (consisted in placing the lens at the distance f from the object), as we’ll see in a

moment.

2.5.1 The f − f configuration

We consider now the case with the lens placed at a distance d from the object, as reported in figure 14.

Defining with U (d)(u, v) the beam impinging the lens, using the result expressed in equation 57, the field on the

focal plane will be
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Figure 13: On the left, it is reported the phase pattern Ωf , modulo 2π, of a lens with focal length of f = 400 mm designed for an
impinging beam of wavelength λ = 632.8 nm. On the right, the optical configuration, with the lens placed in front of the initial

field, defined by a structure U0(ξ, η), which is focused on the final field, U
(z=f)
2 (x, y), on the focal plane (x, y).

U (f)(x, y) =
eikf

iλf
eik

x2+y2

2f F
{
U (d)(u, v)

}
(58)

where U (d) is the free-space propagation of the initial field U0 for a distance d. Therefore, using the result

26, we have that the Fourier Transform of U (d) will be the following

F{U (d)(u, v)} = F{U0(ξ, η)} ·H(fu, fv) (59)

where the transfer function H(fu, fv) is given by the equation 29 evaluated in z ≡ d

H(fu, fv) = eikde−iπλd(f2
u+f2

v ) (60)

where fu = u
λd and fv = v

λd . Making the variables changing u, v ←→ x, y in equation 60 and substituting

the result into equation 59, the expression of the final field 58 becomes

U (f)(x, y) =
eik(f+d)

iλf
eik

x2+y2

2d (1− fd )F{U0(ξ, η)} (61)

Therefore, in the particular case of a f − f configuration, where d ≡ f , we finally found

U (f)(x, y) =
eik2f

iλf
F{U0(ξ, η)} (62)

telling us that we have, as in the case of a converging lens placed in front of the object, an image on the focal

plane which is proportional to the Fourier Transform of the object. For this reason, in the following chapters,

we will use the first or the second configuration, as needed, whenever it will be necessary to perform the Fourier

Transform of our beams.
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Figure 14: A d − f configuration, where a converging lens, characterized a focal length f , is placed at the distance d from the
object. In the particular case of d ≡ f , the relative image, formed on the focal plane, is proportional to the Fourier Transform of
the object, as expressed by the equation 62.



21

3 Theory of the multipole-phase beams

In this chapter it will be described in detail the theory of the multipole-phase beams. In particular, it

will be demonstrated the quasi-orthogonality of multipole-phase beams characterized by different values of their

parameters, and how these distinct phase patterns can be transformed into different linear phase gradients, which

can be separated into isolated light spots using a Fourier lens. However, in order to preserve the information

content during the conversion of the multipole-phase beams into linear phase gradients, a conformal mapping

is needed. For this reason, in the first section 3.1, it will be demonstrated that such a type of transformation

satisfies the Laplace’s equation, whose solutions are actually expressed in terms of multipole phases. Then, in the

section 3.2, it will be shown that this conformal mapping consists in a circular-sector transformation which can

be performed by the cascade of two phase plates, that will be called Transformer and Phase Corrector. At this

point, knowing how to generate a multipole-phase beam and how to transform it into a linear phase gradient, an

introduction to the demultiplexing of the multipole-phase beams thanks to these circular-sector transformations

will be given in the section 3.3. Then, in section 3.4, the free-space propagation of the multipole-phase beams

for long distances will be studied, and eventually phase distortions are considered in section 3.5. In this way,

exploiting the demonstration, in section 3.6, of the actual orthogonality of multipole-phase beams with different

parameters, we are finally able to guarantee that this new type of structured light can be actually used in the

communication system.

3.1 Laplace’s equation in structured phase transmission

Consider an initial structured electromagnetic field, u(i)(r, θ), defined by an amplitude U (i)(r, θ) and a phase

Ω(r, θ):

u(i)(r, θ) = U (i)(r, θ)eiΩ(r,θ) (63)

where (r, θ) are the polar coordinates of the initial plane, orthogonal to the propagation directions.

In the previous chapter, we have seen that, in the paraxial approximation, the propagation (along the z-axis)

of a field U (i)(x, y), is described by the following diffraction integral

U (z)(u, v) ∝ 1

iλz

∫∫
U (i)(r, θ)eiΩ(r,θ)e−ik

xu+yv
z dxdy (64)

where we can make a change of coordinates passing to the polar coordinates ρ = ρ(cosφ, sinφ) ≡ (u, v) and

r = r(cos θ, sin θ) ≡ (x, y), for the final and the initial planes, respectively, both orthogonal to the propagation

direction.

U (z)(ρ, φ) ∝ 1

iλz

∫∫
U (i)(r, θ)eiΩ(r,θ)e−ik

rρ
z cos(θ−φ)r dr dθ (65)

According to the stationary phase approximation [56], this integral can be evaluated as the contribution,

around the saddle points, of the total phase function, Φ(r, θ), of its argument

Φ(r, θ) = Ω(r, θ)− k rρ
z

cos(θ − φ) (66)

and the equation 65 can be rewritten as

U (z)(ρ, φ) ∼=
2πσ

λz

U (i)(r∗θ∗)√
|H|

eiΦ(r∗θ∗) (67)

where (r∗θ∗) is the saddle point, H is the Hessian determinant of Φ and

σ =

sgn
(
∂2Φ
∂x2

)
if H > 0

−i otherwise
(68)
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Figure 15: A conformal mapping g imparted by a phase pattern Ω on an electromagnetic field U(i).

Considering the equation 66, from the condition ∇Φ = 0 of a saddle point, we obtain the following identity

∇Ω =
k

z
ρ (69)

Now, rearranging the previous equation and applying the curl (remember that the curl of the gradient is

null), we get

∇× ρ =
z

k
∇×∇Ω = 0 (70)

This means that ρ is irrotational and admits the following relation on the partial derivatives

∂u

∂y
=
∂v

∂x
(71)

It is important to notice that the equation 69 establishes a connection between a point, r ≡ (x, y), of the

input wavefront and a point, ρ ≡ (u, v), on the same wavefront at the distance z. This connection can be

thought of as an optical transformation of the input intensity pattern U (i)(r, θ) imparted by the phase term

Ω(r, θ). This implies that, controlling the phase Ω, one can use the transformation in order to transfer or

manipulate information. However, in order to avoid the distortion of the data contained in the phase structure

of the wavefront, it is needed to assume that this transformation locally conserves the angles, i.e., it is conformal.

In the complex formalism, a conformal mapping of the point ζ = x + iy which satisfies the equation 71, is

described by an anti-holomorphic function as the following

g
(
ζ
)

= u(x, y) + iv(x, y) (72)

where ζ = x − iy is the complex coniugate of ζ [25]. We recall that a function is anti-holomorphic if it

satisfies the following identity of the Wirtinger operator ∂
∂ζ

:

∂g(ζ)

∂ζ
≡ 1

2

(
∂

∂x
− i ∂

∂y

)
g(ζ) = 0 (73)

Substituting the expression 72 into this equation and rearranging, we get(
∂u

∂x
+
∂v

∂y

)
+ i

(
∂v

∂x
− ∂u

∂y

)
= 0 (74)
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From the equation 71, however, the second term is null and, therefore, we obtain the following second

Cauchy-Rieman condition

∂u

∂x
= −∂v

∂y
(75)

Now, taking the two-dimensional divergence of the equation 69

∇ ·∇Ω =
k

z
∇ · ρ (76)

we obtain

∇2Ω =
k

z

[
∂ρx
∂x

+
∂ρy
∂y

]
=
k

z

[
∂u

∂x
+
∂v

∂y

]
(75)
= 0 (77)

where the relation 75 was used. We have, therefore, obtained the following Laplace’s equation

∇2Ω = 0 (78)

which tells us that a conformal anti-holomorphic mapping imparts a phase term Ω which is a harmonic

function. The explicit form of the Laplace’s equation in polar coordinates is the following(
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2

)
Ω(r, θ) = 0 (79)

Rearranging, we obtain

∂2Ω(r, θ)

∂r2
+

1

r

∂Ω(r, θ)

∂r
+

1

r2

∂2Ω(r, θ)

∂θ2
= 0 (80)

At this point, we look for solution with separated variables

Ω(r, θ) = R(r)T (θ) (81)

and substituting in the equation 80, we get

T (θ)R′′(r) +
T (θ)

r
R′(r) +

R(r)

r2
T ′′(θ) = 0 (82)

Dividing for T (θ)R(r), and rearranging, we obtain

r2R
′′(r)

R(r)
+ r

R′(r)

R(r)
= −T

′′(θ)

T (θ)
(83)

where the left term is a function of the only radial coordinate r, and the right term depends only on the

azimuthal angle θ. Therefore, the expression is true if, and only if, the two terms are constants, that we can

call C, and the equation 83 can be rewritten as the following system:T ′′(θ) + CT (θ) = 0

r2R′′(r) + rR′(r)− CR(r) = 0
(84)

Now, for continuity of the derivatives, a periodic boundary condition (PBC) has to be introduced for the

angular function:

T (0) = T (2π) (85)

With this assumption, the only values of the constant C corresponding to non-identically null solutions are

C > 0, and, in this case, the first equation of the system 84 returns
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Figure 16: Multipole-phase beams with the same phase strength and orientations but different phase orders m. Brightness and
colours refer to intensity and phase, respectively.

T (θ) = α cos
(
θ
√
C
)

+ β sin
(
θ
√
C
)

(86)

where, α and β, are two real constants. This equation satisfies the periodic boundary conditions 85, if

C = m2 with m ∈ N, obtaining

T (θ) = α cos(mθ) (87)

With this choice of C, the second equation of the system 84 becomes

r2R′′(r) + rR′(r)−m2R(r) = 0 (88)

which has solutions of the type

R(r) = rm (89)

Using the two results 87 and 89, the equation 81 becomes:

Ω(r, θ) = αrm cos[m(θ − θ0)] (90)

where θ0 is an initial angle, introduced in order to generalize the result, taking into account different possible

orientations of the phase pattern Ω(r, θ). Notice that the sine solution can be equally chosen.

Due to the analogy with the fields produced by an electrostatic or magnetostatic multipole, we will refer to an

electromagnetic field, with a phase patterns described by the previous equation, as a ”multipole-phase beam”.

Indeed, as can be seen from the figure 16, incrementing the parameter m, the number of poles of the phase

structure increases, similarly to a magnetostatic multipole. For this reason, m is called ”phase order”.

We call the two continuous parameters, α and θ0, as ”phase strength” and ”phase orientation”, respectively.

Indeed, as we will see in detail in the following chapters, the phase strength is associated to the phase gradient

in the radial direction. Referring to the figure 17, where it is reported a simulation of this pattern as described

in the equation 90, the various colours are related to different phase values. In this way, in a 2π-phase period,

each colour is present only once. Consequently, incrementing α, the density of the coloured stripes rises and

a ”stronger” multipole-phase beam is obtained. The θ0, instead, is the orientation of the phase pattern in the

plane transversal to the propagation direction (i.e., the plane represented in the figure). Finally, the parameter

m describes the multiplicity order of the phase and identifies the beam’s family. After the assumption of periodic
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Figure 17: On the left, an OAM beam with angular momentum l = 2 and beam waist w0 = 1.0 mm. On the right, a multipole-phase
beam of order m = 2 with phase strength α = 60 mm−2 and phase orientation θ0 = π

3
. Brightness and colours refer to intensity

and phase, respectively.

boundary conditions in θ = 0, the phase order m can be assumed integer, as demonstrated above. Observe

that, for m > 0, the phase pattern is defined over the whole plane (r, θ). This is an evident consequence of the

Laplace’s equation 78, and it is an important distinction with respect to the orbital angular moment beams

(OAM), a family of beams widely used in the structured light applications. Indeed, the OAM beams, described

by an azimuthal phase term Ω(θ) = mθ which is a trivial solution of equation 78, are characterized by a phase

pattern with a central phase singularity, as can be seen from the OAM simulated beam on the left of figure 17.

This singularity can be a problem in communication systems, since the relative central dark zone will expand

during a free space propagation, reducing the detection efficiency of OAM beams for long distances, and it is,

certainly, a waste of the detection area of the detectors. We want to further focus the attention on the fact that

we had rediscovered the OAM beams as a particular solution, of the Laplace’s equation, which is independent

of the radial coordinate: Ω(r, θ) ≡ Ω(θ) = mθ.

3.2 Circular-sector transformation in the stationary phase approximation

The purpose of this work is the study of multipole-phase beams in structured light applications. For this

reason, it is important to discover, for each order m, an effective method to sort and generate multipole-phase

beams on the basis of their parameters α and θ0. A way out is the mapping of these multipole phases onto linear

phase gradients, which can be easily separated into isolated light spot thanks to a Fourier lens. Therefore, these

spots can be used as single channels of information, showing the possibility to propagate, simultaneously, more

signals at the same frequency without any interference and loss of information. The mapping just introduced

can be achieved implementing an n-fold circular-sector transformation with n = − 1
m . This transformation

maps, conformally, a point (r, θ) into the new coordinates (ρ, φ) as it follows:ρ = a
(
r
b

)− 1
n = a

(
r
b

)m
φ = θ

n = −mθ
(91)

where a and b are arbitrary scaling factors. Substantially, this change of coordinates is a scaling of the

azimuthal coordinate θ and a power scaling of the radial coordinate r, where the last one is dictated by the

Cauchy-Riemann conditions 71 and 75. Substituting the relations 91 in the expression 90, we found that, after

the application of the circular-sector transformation, the phase of the beam is converted into the following linear

gradient:
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Figure 18: In the frame (a) it is reported an example of the phase pattern, modulo 2π, of a linear phase gradient as expressed by
the equation 92. In the frame (b.1), instead, it is show the initial Gaussian beam (λ = 632.8 nm and w0 = 312 µm) used in order
to generate the multipole-phase beam, shown in the frame (b.2), characterized by a phase strength α = 16 mm−2 and a phase
orientation θ0 = 120°. In the last frame, we found the linear phase gradient obtained after a circular-sector transformation of the
previous multipole-phase beam, where the period and orientation of the linear phase gradient are related to the parameters of the
multipole-phase beam as expressed by the system 91. Brightness and colours refer to intensity and phase, respectively.

Φout(ρ, φ) = βρ cos(φ− φ0) (92)

where φ0 = −mθ0 and β = αbm

a . In figure 18, for instance, it is reported a multipole-phase beam with

α = 16 mm−2 and θ0 = 120°, and the relative field after the circular-sector transformation (frame b.2 and

b.3, respectively). Notice the coloured stripes in the output beam, indication of a linear gradient in its phase

structure, which is rotated due to the choice of a phase orientation θ0 different from zero.

In order to demonstrate as a n-fold circular-sector transformation can produce the gradient as in equation 92,

we recall, as seen in the chapter 2, that the diffraction integral 65 can be obtained, in the paraxial approximation,

illuminating with a field U (i)(r, θ) an optical element with a transmission function A(r, θ) = exp{iΩ(r, θ)}, as

reported in figure 15). The exact expression of the integral 65 is the following:

U (z)(ρ, φ) =
eik

ρ2

2z

iλz

∫∫
U (i)(r, θ)eiΩ(r,θ)eik

r2

2z e−ik
rρ
z cos(θ−φ)r dr dθ (93)

This integral, according to the stationary phase approximation already introduced, can be approximated with

the contributions of the phase function around the saddle points. We can express the phase of the integrand in

the previous equation, as the sum of the phase term, Ωn, imparted by the n-fold circular-sector transformation,

and a quadratic focusing term

Ω(r, θ) = Ωn(r, θ)− k r
2

2f
(94)

where, in this case, f ≡ z.
Now, from the saddle point condition ∇Φ = 0 we obtain the following expression

∇Ωn =
k

z

[
ρ−

(
1− z

f

)
r

]
(95)

where we remember that r = r(cos θ, sin θ) and ρ = ρ(cosφ, sinφ). Considering, then, the coordinate change

expressed by the relation 91

(ρ, φ) =

(
a
(r
b

)− 1
n

,
θ

n

)
(96)

we perform a mapping between the frame (r, θ), on the input plane (z = 0) transversal to the propagation

direction, and the new frame (ρ, φ) on the destination plane (z = f). As said before, this mapping is a n-fold

circular-sector transformation consisting in a rescaling of the azimuthal angle θ by a factor n and in a power

scaling of the radial coordinate,
(
r
b

)− 1
n , dictated by the Cauchy-Riemann conditions 71 and 75. Substituting

the change of coordinates 96 into the equation 95 and solving for z = f , one get:
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Figure 19: Simulation of the evolution of a multipole-phase beam, of order m = 2, during a n-fold circular-sector transformation
where n = −1/m. The initial multipole-phase beam, reported in the first frame, is characterized by wavelength λ = 632.8 nm,
phase strength α = 16 mm−2 and phase orientation θ0 = 72°. In the second frame (z = 0), we found the field after the Transformer,

i.e., the input beam after the application of the phase term Ω
(CS)
n with the additional focusing term −k r2

2fCS
(see equation 101).

In the following frames, it is reported the field at different distances between the Transformer and the Phase Corrector. Finally, in

the last frame (z = fCS), we have the output beam, i.e., the field after the application of the phase term Ω
(PC)
n with the additional

correction term −k r2

2fCS
(see equation 103). Notice the characteristic coloured stripes of a linear phase gradient. The parameters

of the circular-sector transformation are: a = 2.0 mm, b = 0.85 mm and fCS = 250 mm. Brightness and colours refer to intensity
and phase, respectively.

∇Ωn =
k

f
a
(r
b

)− 1
n

(
cos

(
θ

n

)
, sin

(
θ

n

))
(97)

In order to obtain Ωn, we can integrate this expression, remembering the definition

∇Ωn · r̂ =
∂Ωn
∂r

(98)

where r̂ is the versor in the radial direction. We obtain:

∂Ωn
∂r

=
k

f
a
(r
b

)− 1
n

[
cos

(
θ

n

)
cos(θ) + sin

(
θ

n

)
sin(θ)

]
(99)

=
k

f
a
(r
b

)− 1
n

cos

(
θ − θ

n

)
(100)

A straightforward integration returns the following result

Ω(CS)
n (r, θ) = k

ab

f

(r
b

)1− 1
n cos

((
1− 1

n

)
θ
)

1− 1
n

(101)

The equation 101 defines the phase pattern of the optical element that perform the circular-sector transfor-

mation required to produce a linear phase gradient starting from a multipole-phase beam. For this reason, we

will refer to such a type of phase plate as ”Transformer” or ”Circular-Sector plate” (CS). However, a second

element, placed at z = f , is needed in order to take into account the phase distortions due to the propagation.

This element is called ”Phase-Corrector” (PC). In figure 19, for example, a simulation is reported showing the

wavefront of a multipole-phase beam during the CS-transformation. It is worth noting that the phase structure

of the field at z = fCS does not present a linear phase gradient as expected. Indeed, a further step is necessary

in order to get an output characterized by a sequence of coloured stripes typical of a linear phase gradient (the

last frame in the figure). This step is performed by the Phase Corrector.
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Figure 20: On the left, the phase pattern, modulo 2π, Ω
(CS)
n of the Transformer used in the simulation of figure 19. On the right,

the phase pattern Ω
(PC)
n of the Phase Corrector. We remember the parameters of the circular-sector transformation: a = 2.0 mm,

b = 0.85 mm and fCS = 250 mm.

In order to obtain the phase Ω
(PC)
n of the phase plate, we have to consider the reverse process, i.e., the

transformation of a linear phase gradient into a multipole-phase beam. Thinking in this way, this second optical

element has to be another circular-sector transformation but characterized by an order 1
n . Therefore, the phase

corrector is the mapping defined by the following change of coordinate

(r, θ) =

(
b
(ρ
a

)−n
, nφ

)
(102)

Performing the same calculation for the previous case, we obtain

Ω(PC)
n (ρ, φ) = k

ab

f

(ρ
a

)1−n cos((1− n)φ)

1− n
(103)

which is, substantially, the same expression as in equation 101, under the substitutions b←→ a, n←→ 1/n

and (r, θ)←→ (ρ, φ).

In figure 20 the two phase patterns, Ω
(CS)
n and Ω

(PC)
n , used in the simulations of the figure 19, are shown.

The parameters of these two optical elements are: a = 2.0 mm, b = 0.85 mm and f = 250 mm. Notice how the

phase pattern of the Phase Corrector is rediscovered in the intensity structure of the simulated output beam

reported in the last frame of figure 19, where the brightness variations define such structure.

3.3 A brief introduction to the demultiplexing of multipole-phase beams

From equation 92 one can observe that, incrementing the absolute value of the phase strength |α|, the

intensity of the linear phase gradient Φout increases and, therefore, the density of 2π-periods in the phase

pattern of the wavefront is higher in the radial direction. With the colour notation already introduced, this

mean that each colour appears a major number of times, as can be seen from the figure 21. Indeed, observing

the first two columns of the figure, one can see that reducing |α|, the phase structure of the output beam looks

more ”spread”, i.e., the coloured stripes, appearing a less number of times, have to be larger in order to cover

the whole wavefront. Furthermore, looking at the last column of figure 21, we can see that changing the phase

orientation θ0 of the initial multipole-phase beam, the output beam will be characterized by a rotated linear

phase gradient.

This relation between the phase gradient and the density of 2π-periods is related to the linear momentum of

the photons composing the radiation. Indeed, it is well-known that a plane wave u(r) = U0(r)eiΦ(r) of phase

function
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Figure 21: On the top, three different multipole-phase beams for various values of phase strength α and orientation θ0. On the
bottom, the relative demultiplexed fields with the characteristic linear phase gradient, whose period and orientation depend on the
parameters of the initial multipole-phase beam. It is worth noting that, even if α was defined as a positive quantity, negative values
are also acceptable, and they correspond to a further π

2
-rotation of the phase structure. As usual, brightness and colours refer to

intensity and phase, respectively.

Φ(r) = k · r (104)

is composed by photons of linear momentum p = ~k. For a plane wave with a phase pattern as expressed

in equation 92, we obtain

Φ(ρ, φ) = βρ cosφ (105)

where we have made the position β := bm

a α with α denoting the phase strength. In analogy with the equation

92, β is the modulus, in units of ~, of the components of the linear momentum on a plane perpendicular to the

propagation direction (i.e., the intensity of the phase gradient in the point of coordinates (ρ, φ)).

This density variation of the linear phase gradient according to the phase strength value, suggests a way in order

to sort a superposition of multipole-phase beams. Indeed, different linear phase gradients can be separated, by

a Fourier lens, into a set of light spots whose positions depend on the properties of the phase gradients, as we

will see in a moment. This process is called demultiplexing.

3.3.1 Tilted plane wave in a f − f configuration

In the previous chapter, we have seen that, in the paraxial approximation, both a Fourier lens (of focal length

f) placed in front of an initial electromagnetic field U0 and a f − f configuration, produced on the focal plane a

field which is proportional to the Fourier Transform of the initial one. In particular, for a f − f configuration,

we have found the equation 62:

U (f)(x, y) =
eik2f

iλf
F{U (i)(ξ, η)} (106)

where, in this case, we supposed U (i)(ξ, η) = U0e
iΦ(ξ,η) characterized by a linear phase gradient as expressed

in equation 92. Therefore, the previous integral becomes

U (f)(x, y) =
U0e

ik2f

iλf

∫
dξ

∫
dηeiΦ(ξ,η)e−i2π(xfx+yfy) (107)
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where we have already seen that the two frequencies are fx = ξ
λz , and fy = η

λz , with z ≡ f in this case.

Rewriting the linear phase gradient 92 in Cartesian coordinates,

Φ(ξ, η) = βρ cos(φ− φ0) = iβξ cosφ0 + iβη sinφ0 (108)

the integral 107 becomes the following:

U (f)(x, y) =
U0e

ik2f

iλf

∫
e−i(β sinφ0− 2π

λf y)ηdη

∫
e−i(β cosφ0− 2π

λf x)ξdξ (109)

Remembering that

δ(x− u) =
1

2π

∫
eiξ(x−u)dξ (110)

we finally obtain

U (f)(x, y) =
U0e

ik2f

iλf
2πδ

(
x− λf

2π
β cosφ0

)
2πδ

(
y − λf

2π
β sinφ0

)
(111)

which tell us that the final field, on the focal plane, is a light spot of coordinatesx = λf
2π β cosφ0

y = λf
2π β sinφ0

(112)

Therefore, in the case of a set of light fields characterized by linear phase gradients with different β values but

without any initial rotational angle (φ0 = 0), the light spots produced by a Fourier lens in a f−f configuration,

will be displaced along the x-axis, as reported in the simulations of the figure 22.

Instead, in the case of a non-null initial rotational angle, the final light spots will be focused onto circular

concentric distributions with radius R given by the previous system

R = f
λ

2π

αbm

a
(113)

where we have made explicit the β parameter. For instance, in figure 23, the sorting of five linear phase

gradients with the same β value, but different orientations φ0, is shown.

It should be clear now, how changing the phase strength and orientation into a set of multipole-phase beams,

final distinct light spots can be obtained. Associating to each different multipole-phase beam a distinct channel

of information, a new space division multiplexing format can be exploited. Indeed, the remaining properties

requested are: the possibility to propagate more multipole-phase beams at the same frequency without in-

terferences between them, i.e., the demonstration that they are orthogonal fields for different phase strength

and/or phase orientation values, and the characteristic of keeping unaltered the information content during the

transmission. These two properties are analysed in the following.

3.4 Free-space propagation of a multipole-phase beam

Until now, we have discussed the theory of multipole-phase beams and briefly introduced their demultiplex-

ing/multiplexing in order to use them in communication applications. In particular, we have implicitly assumed

m = 2 for our considerations. However, the only restriction made, about the phase order, is that it is an

integer number and higher values of m could be adopted. As we will see in detail, since the phase structure 101

depends on m, changing the phase order, new families of beams with different phase patterns will be obtained.

For this reason, m can be a further degree of freedom in the design of communication system working with

multipole-phase beams. This will be analysed in detail from a theoretical and practical point of view in the

next chapters. Here, however, we want to show that the beams characterized by a phase order m = 2, assume

a peculiar role in the free space propagation. Indeed, this family of beams is the only one (except for the trivial

case m = 0) which conserves the same multipole-phase order during the whole propagation and, therefore, they
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Figure 22: Demultiplexing of Gaussian beams characterized by a wavelength λ = 632.8 nm, and a linear phase gradient (as expressed
by the equation 92) for different values of β(ρ, φ). The Fourier transforms are performed by a lens of focal length fL = 400 mm in
a fL − fL configuration. Brightness and colours refer to intensity and phase, respectively.

Figure 23: Demultiplexing of Gaussian beams characterized by a wavelength λ = 632.8 nm, and a linear phase gradient (as expressed
by the equation 92) for different values of φ0. The Fourier transforms are performed by a lens of focal length fL = 400 mm in a
fL − fL configuration. Brightness and colours refer to intensity and phase, respectively.
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conserve the phase structure and the information contained in it. It can be proved as it follows.

Considering again an initial structured light field, u(i)(r, θ), described as in the equation 63

u(i)(r, θ) = U (i)(r)eiα0r
m cos(m(θ−θ0)) (114)

where, in this case: U (i)(r) is an axially symmetric field distribution, for example a Gaussian beam (as the

one produce by a common laser source, for instance). Moreover, (α0, θ0) are the initial phase strength and the

phase orientations of the multipole-phase beam u(i)(r, θ). With the aim of transmitting this field for a distance

f , we impart, to the beam, a focusing term exp{iΩf} with a phase

Ωf (r) = − k

2f
r2 (115)

Therefore, the electromagnetic field, at a distance z = f , is described by the following diffraction integral

U (f)(ρ, φ) =
eik

ρ2

2f

iλf

∫∫
U (i)(r)eiα0r

m cos(m(θ−θ0))e−ik
rρ
f cos(θ−φ)r dr dθ (116)

Applying the stationary phase approximation, as done in the relation 67, we obtain

U (f)(ρ, φ) ∝ eik
ρ2

2f

iλf

U (i)(r∗)√
|H|

eiΦ(r∗θ∗) (117)

where, again, (r∗θ∗) is the saddle point and H is the Hessian determinant of the phase term, Φ, of the

argument, that is

Φ(r, θ) = α0r
m cos(m(θ − θ0))− k rρ

f
cos(θ − φ) (118)

In polar coordinates, the saddle point condition ∇Φ = 0 is equivalent to the following system∂Φ
∂r = mα0r

m−1 cos(m(θ − θ0))− k ρf cos(θ − φ) = 0

∂Φ
∂θ = −mα0r

m sin(m(θ − θ0)) + k rρf sin(θ − φ) = 0
(119)

whose solutions are ρ = mfα0

k rm−1

φ = (1−m)θ +mθ0

(120)

After inverting these equations and substituting in the relation 117, we obtain the phase term, of the beam

in the diffraction integral 116, after the propagation for a distance f .

Ω(f)(ρ, φ) = Φ(r∗, θ∗)

= α0

(
kρ

mfα0

) m
m−1

cos

(
m

[
φ

1−m
− m

1−m
θ0 − θ0

])
−

kρ

f

(
kρ

mfα0

) 1
m−1

cos

(
φ

1−m
− m

1−m
θ0 − φ

) (121)

Rearranging, we finally get the following expression for Ω(f)

Ω(f)(ρ, φ) = α0(1−m)

(
kρ

mfα0

) m
m−1

cos

(
m

m− 1
(φ− θ0)

)
(122)

Notice, from the cosine factor and the radial power
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cos

(
m

m− 1
(φ− θ0)

)
(123)

that the transmitted beam is still endowed with a multipole-phase term 90 but with a new phase order, m′,

expressed by the following relation

m′ :=
m

m− 1
(124)

As anticipated, since the phase structure of a multipole-phase beam depends on m, this beam can be

propagated without the alteration of the information contained in its phase structure, only if m′ ≡ m. This is

satisfied, apart from the trivial case m = 0, only by the family of multipole-phase beams of order m = 2. For

these fields, the equation 122 becomes

Ω(f)(ρ, φ) = − 1

α0

k2

4f2
ρ2 cos (2(φ− θ0)) (125)

which can be rewritten in the usual form 90 of a multipole phase term

Ω(f)(ρ, φ) = α1ρ
2 cos(2(φ− θ1)) (126)

where, now, the phase strength and the phase orientation are transformed into the followingα1 = k2

4f2
1
α0

θ1 = θ0 + π
2

(127)

where the π/2 term, arises from the factor (1 −m)
m=2
= −1 in the equation 122. Remember, indeed, that

− cos(β)
(1)
= cos(π − β) and, therefore:

Ω(f)(ρ, φ) ∝ − cos (2[φ− θ0])

(1)
= cos (2[φ− θ0]− π)

= cos
(

2
[
φ− θ0 −

π

2

]) (128)

At this point, another phase factor − k
2f ρ

2, has to be applied in order to compensate the Fresnel’s term

present in the equation 117. Then, the transmitted beam is obtained. However, the transformation of the

beam’s parameters, accordingly to the equations 127, implies that the detected beam will be slightly different

from the original one. Indeed, the phase structure will be rotated of π/2 and the phase strength will be changed

as a function of the propagation distance f . From the figure 24 it is possible to see, easily, how the transmitted

beam has a phase orientation rotated of π/2.

3.5 Distortion of circular-sector transformation for multipole-phase beams

In the theoretical framework introduced in this chapter, we have used the stationary phase approximation

assuming an input field which was a planar wave. However, physically, no electromagnetic field has a wavefront

which is exactly planar.

In the paraxial ray approximation, a ray that impinges, on the position r0 := (x0, y0), on a phase plate with

a pattern Ω, placed in the plane z = 0, is deflected to the position [57]

r(z) = r0 +
z

k
∇Ω|r0 (129)

In our case, we want to perform a circular-sector transformation of a multipole-phase beam. Therefore, Ω,

will be the sum
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Figure 24: The evolution of a multipole-phase beam in a free space propagation of 1 km. The beam has the following characteristics:
wavelength λ = 632.8 nm, waist w0 = 60 mm, phase strength α = 6×10−3mm−2 and phase orientation θ0 = π/3. Brightness and
colours refer to intensity and phase, respectively.

Ω := Φ(in) + Ωn (130)

of the phase of the impinging multipole-phase beam Φ(in) (given by the equation 90), and the phase pattern,

Ωn, of the Transformer of the n-fold circular-sector transformation (given by the equation 101). Indeed, in order

to generate and sort a multipole-phase beam, we need to impart to an initial light field (for example the output

beam of a laser) a phase function Φ(in) and, then, the phase term Ωn. Substituting these two phase terms in

the equation 129 and performing the derivation, we obtainx(z) = r cos θ
(

1− z
f

)
+ az

f

(
r
b

)− 1
n cos

(
θ
n

)
+ z

kαmr
m−1 cos((m− 1)θ −mθ0))

y(z) = r sin θ
(

1− z
f

)
+ az

f

(
r
b

)− 1
n sin

(
θ
n

)
− z

kαmr
m−1 sin((m− 1)θ −mθ0))

(131)

where (x0, y0) = (r cos θ, r sin θ). At the focal plane, these equations becomex(f) = a
(
r
b

)− 1
n cos

(
θ
n

)
+ f

kαmr
m−1 cos((m− 1)θ −mθ0))

y(z) = a
(
r
b

)− 1
n sin

(
θ
n

)
− f

kαmr
m−1 sin((m− 1)θ −mθ0))

(132)

At this point, considering the radial distance R :=
√
x2 + y2 as function of the angle φ, defined as φ := θ/n,

we get

R(r, φ)|z≡f =

√
a2
(r
b

)− 2
n

+

(
f

k
αmrm−1

)2

+ 2
afαm

kb−1/n
rm−

1
n−1 cos [n(m− 1)φ−mθ0 + φ] (133)

Then, remembering that between the order, n, of the n-fold circular-sector transformation, and the phase

order, m, of the multipole-phase beam sorted by that transformation, there is the relation n = −1/m, the

previous equation becomes

R(r, φ)|z≡f =

√
a2
(r
b

)2m

+

(
f

k
αmrm−1

)2

+ 2
afαm

kbm
r2m−1 cos

[
φ

m
−mθ0

]
(134)

which is, due to the cosine term, an oscillating function with period of 2π|m|. However, notice that the

factor, before the cosine function, can be rewritten as
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Figure 25: Effects of a phase distortion in the sorting of two multipole-phase beams of phase strengths α(1) = 100 mm−2 and
α(2) = 300 mm−2, for the same parameters of circular-sector transformation: a = 1.0 mm, b = 0.4 mm, f = 10.0 mm and for the
same beam waist w0 = 312 µm. On the left, the input multipole-phase beams are reported, while the demultiplexed light spots are
show on the right. The dashed lines indicate the theoretical radial coordinate of the sorted beams, as expressed in equation 113.
Brightness and colours refer to intensity and phase, respectively.



3.6 Quasi-orthogonality of the multipole-phase beams 36

2

(
f

k
αmrm−1

)
a
(r
b

)m
(135)

Therefore, in the following condition

f

k
αmrm−1 � a

(r
b

)m
(136)

the oscillating term is negligible. Notice that this condition corresponds to∣∣∣∇Φ(in)
∣∣∣� |∇Ωn| (137)

which is the request that the changing of the phase structure, Φ(in), of the impinging beam, has to be

much smaller than the scale of variation of the phase pattern of the Transformer. In this way, the CS-phase

plate ”sees” a wavefront which has a very smaller gradient and, therefore, the assumption of plane wave in the

stationary phase approximation is satisfied. Moreover, the previous relation suggests a limit condition for the

phase strength α of the input multipole-phase beam, which is

α� kaw0

fmbm
(138)

where we have assumed, as an estimation of the average radius, r, of the input beam, its waist w0.

For instance, in figure 25, it is reported the demultiplexing of two multipole-phase beams of phase strength α(1)

= 100 mm−2 and α(2) = 300 mm−2, for the same parameters of circular-sector transformation: a = 1.0 mm, b

= 0.4 mm, f = 10.0 mm and for the same beam waist w0 = 312 µm of the input beam. Notice how, due to

the high value of α(2), the demultiplexing of this multipole-phase beam produces an output light spot which is

more distorted, with respect to the one obtained with the phase strength α(1). Indeed, from the equation 138,

with the parameters adopted, the limit of the phase strength is α ≈ 970 mm−2, which is not so far from α(2).

3.6 Quasi-orthogonality of the multipole-phase beams

Until now, we have supposed a perfect orthogonality of a set of multipole-phase beams with different values

of the phase strength {αi} and/or phase orientation {θ0,i}. In order to verify this, we have considered a double

configuration of multipole-phase beams. The first set is made up of three multipole-phase beams with the same

phase strength value α1 = 120 mm−2 but different orientations in the range of 2π (beams 1, 2 and 3). Then, a

second set is considered, where the beams have, now, the same three orientations of the first configuration, but

different phase strength value α2 = 60 mm−2 (beams 4, 5 and 6). In this way, the orthogonality of multipole-

phase beams with same orientation but different phase strengths, and beams with same phase strength, but

different phase orientations, are both investigated. The double configuration is reported in figure 26, where,

on the left, we can see the multipole-phase beams, obtained from Gaussian spots of wavelength λ = 632.8 nm

and waist w0 = 0.312 mm, after the application of a phase term as expressed in equation 90. Notice, from the

colours of the simulated beams, how the first three fields have a higher 2π-phase density due to a higher phase

strength with respect to the others three beams. Therefore, in according to the equation 113, the two set of

beams will be demultiplexed onto two concentric distributions of light spots: the internal one, related to the

lower phase strength α2 = 60 mm−2, and the external one corresponding to the phase strength α1 = 120 mm−2.

On the right of the figure, these two output distributions are shown.

Now, the orthogonality of these beams has to be investigated. Imposing with ψαi,θ0,i the multipole-phase

beam of phase strength αi and phase orientation θ0,i, the overlap between them are expressed by the following

normalized integral:

wi,j =
|〈ψαi,θ0,i |ψαj ,θ0,j 〉|2

〈ψαi,θ0,i |ψαi,θ0,i〉〈ψαj ,θ0,j |ψαj ,θ0,j 〉
=
|〈ψαi,θ0,i |ψαj ,θ0,j 〉|2

|ψαi,θ0,i |2|ψαj ,θ0,j |2
(139)

The results of this computation are reported on the left of the figure 27. Notice how the integrals wi,j are
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Figure 26: A configuration of six multipole-phase beams {ψαi,θ0,i} with different phase strengths and orientations, for the same
phase order m = 2, and obtained from an initial set of Gaussian beams, with wavelength λ = 632.8 nm and waist w0 = 0.312 mm,
using a circular-sector transformation of parameters: a = 1.0 mm, b = 0.4 mm, and fCS = 10 mm. The output configuration of the
light spots (on the right, in figure), is obtained thanks to a Fourier lens with focal length fL = 400 mm, and it is composed by two
concentric distribution of spots. The external one, is made up of N1 = 3 beams related to multipole-phase beams of phase strength
α1 = 120 mm−2 and orientations θ0 ∈ [0; 2π

m
] with steps of 1

m
2π
N1

. The internal one, instead, corresponds to multipole-phase beams

with the same orientations but with a phase strength α2 = α1 ∗ 0.5. The dashed white circles on the right indicate the theoretical
radial coordinates of the sorted beams, related to the phase strength values as expressed in equation 113 Brightness and colours
refer to intensity and phase, respectively.

plotted as a M ×M matrix, where M = 6 is the number of distinct multipole-phase beams analysed, {ψαi,θ0,i}
with i = 1, ...,M . As expected, the off-diagonal elements are negligible, only the overlaps between a multipole-

phase beam and itself are significant, and the beams can be assumed orthogonal, at least in a telecommunication

meaning. Indeed, as it will be described in detail in the chapter 6, in the telecommunication system, in order to

quantify the independence of communication channels transmitted together, it was introduced the Cross-Talk

XT quantity.

3.6.1 Cross-Talk in the overlap analysis

Considering the i-channel, whose information content is transmitted by a field ψαi,θ0,i , the relative Cross-

Talk value, XTi, is defined as the amount of signals,
∑
j 6=i wi,j , collected into this channel, but due to the others

fields {ψαj ,θ0,j}j 6=i, normalized for the total information collected by that channel:

XTi = 10 log10

∑
j 6=i wi,j∑
j wi,j

(140)

Using this equation, the Cross-Talk values for the configuration of multipole-phase beams analysed, are

computed and plotted on the right of the figure 27. In the telecommunication, XT-values lower than -15dB are

considered acceptable.
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Figure 27: The overlapping maps of the configuration of multipole-phase beams reported in figure 26, computed with the integral
139, and the relative XT values. The two concentric distribution were analysed separately (last two rows) and together (first row).
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4 Demultiplexing of a multipole phase beam

In chapter 3 we have seen that applying an n-fold circular-sector transformation with n = −1/m, a multipole-

phase beam of order m is mapped onto a linear phase gradient. The importance of this phenomenon is that,

applying a Fourier transformation in sequence, we can produce a light spot whose position depends on the

intensity and the orientation of this linear gradient. However, according to the equation 92, these characteristics

of the phase pattern are related to the two parameters of the initial multipole-phase beam: the phase strength,

α, and the phase orientation, θ0. For this reason, a superposition of multipole-phase beams, characterized by

different values of α and/or θ0, can be sorted onto a set of isolated light spots which can act as independent

channels of information. As introduced in chapter 3, and as it can be seen in figure 28, this demultiplexing

process is performed by three optical elements. The first one, the circular-sector plate (CS), transforms the

phase of the wavefront onto a linear phase gradient. The second element, the phase-corrector (PC), corrects

the phase distortion introduced by the propagation after the (CS) plate. Finally, a lens transforms the linear

phase gradient into a single light spot, where its position depends on the (α, θ0) values of the original multipole

phase beam.

Figure 28: Demultiplexing of two multipole-phase beams with different phase strength and orientation. A first phase plate (the
Transformer) is used in order to transform the initial superposition of multipole-phase patterns into a sum of linear phase gradients,
while a second plate (the Phase Corrector) compensates the phase distortion introduced by the propagation after the Transformer.
Finally, a Fourier lens focalizes the demultiplexer output into two distinct light spots related to the two different initial multipole-
phase beams.

4.0.1 Dependence on θ0

We know that changing the value of θ0, the circular-sector transformation produces linear phase gradients

with different orientations on the plane orthogonal to the propagation direction. For example, a multipole-phase

beam with four different values of θ0 is reported in figure 29 (first row). The corresponding fields after the Phase

Corrector, with the expected linear phase gradients, are also reported (second row). It is possible to notice the

orientation variations of the coloured stripes, as a function of the θ0 value (remember that the colour represents

the phase value in a range of 2π).

At this point, however, we recall that applying a Fourier transform to a generic linear phase gradient that

rotates on the transversal plane, for example using a lens (of focal length fL and characterized by a phase term

ΩF = −k r
2

2f ) in a fL − fL setup (as the one reported in figure 30), one gets a configuration of single spots

distributed on a circle, as reported in the third row of figure 29. In a system of polar coordinates (r, θ), each

spot is, therefore, identified by its angle θ = −mθ0 (see equation 91), which is related to the orientation of the

linear phase gradient and, therefore, by the θ0 value of the initial multipole-phase beam of order m.
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Figure 29: Four multipole-phase beams with the same phase strength, α = 1.5×102mm−2, but different orientations θ0 ∈ [0;π],
are reported in the first row of the figure. The linear phase gradients obtained by the circular-sector transformation of these initial
multipole-phase beams are shown in the second row. The parameters of the transformation are: fCS = 10 mm, a = 0.5 mm and b
= 0.3 mm. Finally, these linear phase gradients are sorted in the final light spots reported in the last row of the figure. As usual,
brightness and colours refer to intensity and phase, respectively.

Figure 30: The fL − fL configuration used, in the simulation of the figure 29, for the transformation of the linear phase gradients
into isolated light spots at the distance z. The Fourier lens has a focal length of fL = 200 mm and is placed in zL corresponding
to the position of the Phase Corrector. Alternatively, in our simulation, the phase correction of the beam and the focusing of the
spots are performed by the same plate, whose phase pattern is the sum of the focusing term ΩF and the phase term ΩPC of the
Phase Corrector.
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Figure 31: On the top, seven multipole-phase beams characterized by the same phase strength α = 100 mm−2 but different
orientations θ0 ∈ [0, 2π

m
] (a.1, ..., a.7). Brightness and colours refer to intensity and phase, respectively. In the second row (b.1,

..., b.7), we found the fields after the demultiplexing of the input multipole-phase beams with the following parameters of the
circular-sector transformation: fCS = 10 mm, a = 0.5 mm, b = 0.3 mm, while the focal length, used in the sorting of the light spots,
is fL = 200 mm. On the bottom, instead, we have the cross-sections of the intensity of the output light spots as a function of the
polar coordinate (c) and the plot of the spots positions obtained from the fit with a Gaussian profile (d).

These observations tell us that the phase orientation, θ0, is a first degree of freedom regarding the propagation

of independents channels in a communication system. Indeed, we can propagate a bundle of multipole-phase

beams with the same phase strength but different orientations, and then, sort them into a circular configuration

of isolated spots. That is, choosing a proper set of phase orientations {θ0,1, ..., θ0,N} in a range of [0, 2π
m ]1, we

are able to produce light spots sufficiently far from each other in order to detect them unambiguously. In figure

31, for example, are reported the input multipole-phase beams of order m = 2 (a) and the output spots (b) for

seven different values of θ0 (and the same α = 100 mm−2). In order to evaluate the simulated spots angular

positions as a function of θ0 (d), a Gaussian fit of the intensity of the electromagnetic field, along the circle of

the expected positions of the spots, is performed (c). The correct slope = -2, correspondent to θ = −mθ0 with

m = 2, is found (red line in (d)).

4.0.2 Dependence on α

The other degree of freedom we can play with is the phase strength α. Indeed, as reported in figure 32,

multipole-phase beams with different α-values, after the circular-sector transformation, produce spots with a

linear phase gradient that complete its 2π-phase period a number of times that increases with |α|. However,

as it can be seen from the last row of the figure, inserting a lens in the same fL − fL configuration as seen

before, the higher ”dense” linear phase gradients produce the most external light spots. Therefore, controlling

the phase strength, one can set the displacement of the spots from the centred one, corresponded to α null.

In this way it is possible to create, this time, a linear configuration of isolated channels keeping θ0 fix and

changing α. For example, in figure 33, a simulation of an input multipole-phase beams of order m = 2 (a), and

the output spots (b), for seven different values of α ∈ [−200, 200]mm−2 (and the same θ0 = 0°) is reported. In

order to evaluate the spots positions as a function of α (d), a Gaussian fit of the intensity of the electromagnetic

field, along the line of the expected arrangement of the spots, is performed (c). It is worth noting, from the fit

results, that the position of each simulated output beam intersects correctly the theoretical line (red in figure).

This means that the spots are actually arranged in a row, i.e., no variation of their azimuthal coordinate is

1The factor 1
m

is necessary in order to have the final spots arranged on the entire circumference. Indeed, we remember that
mapping a multipole phase beam into a linear phase gradient, the angular coordinate undergoes the transformation: θ0 −→ −mθ0
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Figure 32: Five multipole-phase beams with the same phase orientation, θ0 = 0, but different phase strength α ∈ [−2.5; +2.5] ×
102mm−2, are reported in the first row of the figure. The linear phase gradients obtained by the circular-sector transformation
of these initial multipole-phase beams are shown in the second row. The parameters of the transformation are: fCS = 10 mm, a
= 0.5 mm and b = 0.3 mm. Finally, these linear phase gradients are sorted in the final light spots reported in the last row of the
figure. As usual, brightness and colours refer to intensity and phase, respectively.

Figure 33: On the top, seven multipole-phase beams characterized by the same phase orientation θ0 = 0° but different phase
strength in the range α ∈ [−2.0,+2.0]× 102mm−2 (a.1, ..., a.7). Brightness and colours refer to intensity and phase, respectively.
In the second row (b.1, ..., b.7), we found the fields after the demultiplexing of the input multipole-phase beams with the following
parameters of the circular-sector transformation: fCS = 10 mm, a = 0.5 mm, b = 0.3 mm, while the focal length, used in the sorting
of the light spots, is fL = 200 mm. On the bottom, the cross-sections of the intensity of the output light spots as a function of the
position (c) and the plot of the spots positions obtained from the fit with a Gaussian profile (d).
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induced if θ0 is kept constant. Similarly, in the previous case, we had seen that the final spots were correctly

placed onto the expected circle (the dashed line in b.1, ..., b.7 of the figure 31); i.e., there is no variation of the

radial coordinate if α is kept constant. These two results show that the phase strength and the phase orientation

are, actually, independent degrees of freedom for the final arrangement of the light spots.

4.1 Demultiplexing simulation of a set of multipole-phase beams

Now, we want to analyse in detail the simulation steps, with the relative MatLab code, necessary to perform

the demultiplexing of a set of multipole-phase beams as seen, from a theoretical point of view, until now. In

particular, referring to the example configuration of final light spots shown in the figure 34, will be considered

the evolution of the multipole-phase beam corresponding to the second spot (in anticlockwise order starting

from θ0 = 0) along the whole multiplexing chain.

Figure 34: The output of the simulation considered in this section. Starting from eight initial multipole-phase beams of order m
= 2 and characterized by a phase strength α(1) = 120 mm−2 and θ0 ∈ [0, 2π

m
], we have obtained the shown result thanks to a

circular-sector transformation of parameters: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm. Brightness refers to intensity.

4.1.1 Definition of the observation plane

The first step is the definition of the coordinates of the plane on which we will simulate and sample the

wavefront of our light beams. Indicating with L the linear size and with M the number of samples along each

axis, the discretization of the observation plane is the following

x→
[
−L

2
: ∆x :

L

2
−∆x

]
(141)

where ∆x = L
M as already described in the section 2.2.1. In the following is reported the MatLab code of

this discretization.

Listing 4.1.1: space discretization

1 dx = L/M; % sample i n t e r v a l

2 x = −L/2 : dx : L/2−dx ; % x coords

3 y = x ; % y coords
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4 [X,Y] = meshgrid (x , y ) ; % c a r t e s i a n coords

5 [ theta , r ] = ca r t 2po l (X,Y) ; % po la r coords

In figure 35 it is represented the observation plane and the polar coordinates used in the field propagation.

Notice that the sampling is the same on both x and y-axis.

Figure 35: A representation of the squared observation plane of side L used in order to compute the simulated wavefronts reported
in this section. It is also shown the mesh grid with the same sampling interval ∆x = L/M for both axes. Notice how, each pixel
of the mesh, is defined by the coordinates (X,Y ) of one of its vertexes. The relative polar coordinates are also reported.

4.1.2 The initial light beam

Once defined the observation plane, in order to generate a multipole-phase beam, an initial Gaussian beam,

u0(r, θ), is produced:

u0(r, θ) = exp

{
−
(
r

w0

)2
}

(142)

where w0 is the beam waist. The simulated wavefront of this initial field is reported in figure 36, while the

MatLab code of its generation is the following:

Listing 4.1.2: initial gaussian beam

1 u0 = exp(−( r /w0) . ˆ 2 ) ;

4.1.3 Definition of the multipole-phase beam

After the creation of the initial Gaussian beam, each i-th multipole-phase beam, u
(i)
1 , of our configuration,

is generated individually2. In figure 36, for example, is reported the wavefront of the multipole-phase beam

related to the spot corresponding to θ0 = π
8 of the configuration in figure 34. As usual, the colours represent

the phase values in a range of 2π and brightness refers to intensity.

2Thanks to the orthogonality of multipole phase beams with different α and/or θ0 and to the linearity of the optical system this
is irrelevant on the final result
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Figure 36: On the left, a simulated Gaussian beam with wavelength λ = 632.8 nm and waist w0 = 312 µm. On the right, the
relative multipole-phase beam, characterized by a phase strength α(1) = 120 mm−2 and orientation θ0 = π

8
, corresponding to the

second light spot in clockwise order of the configuration reported in figure 34. Brightness and colours refer to intensity and phase,
respectively.

The MatLab code is reported in the following where we have applied, to each points (r, θ) of the wavefront of

the initial field, u0, the multipole-phase term expressed by the equation 90:

Ω(r, θ) = αrm cos[m(θ − θ0)] (143)

Listing 4.1.3: i-th multipole phase beam

1 u1 ( : , : , i ) = u0 .∗ exp (1 i ∗ alpha ( i ) ∗( r . ˆm) .∗ cos (m∗( theta−theta0 ( i ) ) ) ) ;

4.1.4 Circular-sector transformation

At this point, the multipole-phase beams of order m generated, have to be sorted in the final isolated light

spots. For this reason, the n-fold circular-sector transformation with n = −1/m, is implemented by the first

optical element: the Transformer (CS). This phase plate produces the unwrapping of the multipole phase

beam (first line of the MatLab code 4.1.4) and its transformation into a linear phase gradient at the distance

fCS , where is placed the second element: the Phase Corrector (PC). For this reason, the beam is free space

propagated for a such distance fCS (second line of the code) using the macro described in the chapter 2. Finally,

the beam arrives at the Phase Corrector (PC), which compensates the phase distortion introduced during the

free space propagation between these two phase plates (third line of the code). We call ΩDm,1 the phase function

of the Transformer (”Phase1” in the MatLab code) and ΩDm,2 the one of the Phase Corrector (”Phase2 in the

code).

Listing 4.1.4: Circular-sector transformation

1 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase 1 ) ; % CS trans form

2 u1 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f CS ) ; % prop . CS − PC

3 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase 2 ) ; % Phase Correc t ion

Remembering the equations 101, 103 and using the substituting n ←→ −1/m, we obtain the following

expressions for ΩDm,1 and ΩDm,2:
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Figure 37: A detailed representation of a circular-sector transformation of a multipole-phase beam into a linear phase gradient.

ΩDm,1 = ΩCS − k
r2

2fCS
(144)

ΩDm,2 = ΩPC − k
r2

2fCS
(145)

where ΩCS and ΩPC are defined as:

ΩCS = k
ab

fCS

(r
b

)1+m cos[(1 +m)θ]

1 +m
(146)

ΩPC = k
ab

fCS

( r
a

)1+ 1
m cos[(1 + 1

m )θ]

1 + 1
m

(147)

with k = 2π
λ , which is the wave vector. Notice in the equation 144, the addition of the focusing term k r2

2fCS

and, in equation 145, the addition of the same term which acts as a Fresnel correction. All the phase patterns

are plotted, in period of 2π, in figure 38, where the parameters of the transformation are: fCS = 10 mm, a =

1.0 mm and b = 0.4 mm.

The whole circular-sector transformation is schematized in figure 37, while, in figure 39 we can see a sim-

ulation of it. In the first frame we have the multipole phase beam at the input of the Transformer, then it is

reported the wavefront of the field at different distances of the travel between the (CS) and (PC) phase plates.

Finally, we have the field after the phase correction, where it is possible to see the coloured stripes of the linear

phase gradient. Notice also, from figure 39, how the phase pattern ΩPC is found on the wavefront structure of

the output electromagnetic field. Similarly, for the phase pattern ΩCS in the wavefront of the field in z null.

4.1.5 Focusing of the final spots

Finally, the demultiplexer output beams, whose wavefronts are characterized by linear phase gradients, are

focalized into isolated light spots thanks to a Fourier lens of focal length fL and phase function

ΩF (r, θ) = − k

2fL
r2 (148)

After the application of the previous phase term (first line of the MatLab code 4.1.5), and a free-space
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Figure 38: The phase patterns,
∥∥∥ Ω

2π

∥∥∥, of the plates performing the circular-sector transformation of the simulation analysed in

this chapter. From the top left, in clockwise order: the phase pattern, ΩDm,1, of the Transformer completed of the focusing term

−k r2

2fCS
(equation 144), the pattern of the Phase Corrector, ΩDm,1, including the same focusing term (equation 145) and, finally,

the same two patterns, ΩCS and ΩPC , without the focusing terms (equations 146 and 147, respectively). The parameters used in
order to generate these patterns are: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm.

Figure 39: The circular sector transformation of the multipole-phase beam, reported in figure 36, of phase strength α(1) = 120 mm−2

and θ0 = π
8

. The parameters of the circular-sector transformation are: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm. In the first and

second frames, respectively, it is reported the multipole-phase beam before and after the application of the phase term ΩDm,1. In the
following frames we have the evolution of the field between the Transformer and the Phase Corrector placed in z = fCS . Finally,
the output beam with the linear phase gradient is shown in the last frame. As usual, brightness and colours refer to intensity and
phase, respectively.
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propagation for a distance equal to fL (second line of the code), the spots appear.

Listing 4.1.5: Fourier transformation

1 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase F ) ; % l e n s

2 u2 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f L ) ; % f i n a l l i g h t spot

In figure 40 it is reported the intensity of the final field u2(r, θ) for fL = 400 mm. It is possible to see that

the multipole phase beam was converted into a single spot, placed at the angular coordinate θ = −mθ0 and

radial coordinate given by the equation 113.

R = fL
λ

2π

αbm

a
(149)

Figure 40: On the left, the Fourier phase term ΩF , for a focal length fL = 400 mm, used in order to transform the linear phase
gradient reported in the last frame of the figure 39 into the final light spot shown on the right of this figure.

4.2 Multipole-phase beam of higher orders

Until now, in order to get orthogonal multipole phase beams, which propagate independently, we have

considered only the two parameters α and θ0. However, even multipole-phase beams with the same (α, θ0)

couple of values, but different order parameter m, can be orthogonal. Therefore, m, is a further degree of

freedom. On the top of the figure 41, for instance, it is shown three multipole-phase beams of order m = 2,

3 and 4 for the same phase strength, α = 100 mm−2, and phase orientation, θ0 = π
3 . These beams reported,

tell us that changing the order m, new real families of multipole-phase beams with different phase structure are

generated. This is quite obvious if one notice that the phase patterns, equations 146 and 147, of the two optical

elements of the circular-sector transformation depend on m. For all these reasons, higher values of the phase

order were investigated, in particular it was considered the demultiplexing of multipole-phase beams with m

= 3 and m = 4. As shown on the bottom of the figure 41, multipole-phase beams, characterized by the same

(α, θ0) couple of values, but for different order, m, are demultiplexed into a set of light spots placed at different

positions. Indeed, we remember that demultiplexing a multipole-phase beams, one obtain a light spot of polar

coordinates r = fL
λ
2π

αbm

a

θ = −mθ0

(150)
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Figure 41: On the top, the wavefront of multipole-phase beams of order m = 2, 3 and 4 for the same modulus α = 100 (but
different units) of the phase strength and the same phase orientation θ0 = π

3
. On the bottom, the relative sorted light spots after

a demultiplexing characterized by the following parameters: fCS = 10 mm, a = 0.5 mm, b = 0.3 mm and fL = 400 mm. Notice
how the different phase order m implies different positions of the light spots. Brightness and colours refer to intensity and phase,
respectively.

where the radial coordinate depends on the phase order thanks to the factor bm while the azimuthal angle

is proportional to m. For instance, the light spots shown in figure 41, are produced by the same setup with the

following parameters: a = 0.5 mm, b = 0.3 mm and fL = 400 mm. Since b < 1, the spots occupy a circle whose

radius decreases to increasing m, while, the angle that define their position on these circle, increases with m

(in the counterclockwise direction, due to the minus sign in the second equation of the system 150). For this

reason, in the following chapters, in order to optimize the design of a demultiplexer for multipole-phase beams

of different phase orders, the channels configuration will be defined by phase orientations {θ0} in the range

θ0 ∈
[
0,

2π

m

]
(151)

In this way, defining the θ0 in units of m, the final light spots will be arranged on the whole circle.

In order to understand the differences in the phase structure of the multipole-phase beams of order m =

2, m = 3 and m = 4, in figure 42 it was reported the phase patterns, ΩCS and ΩPC , of the Transformer

and of the Phase Corrector, respectively, of the circular-sector transformation used for the generation of the

multipole-phase beams shown in figure 41. It is worth noting that it is shown the phase patterns without

the usual focusing term, − r2

2fCS
, in ΩCS and without the same Fresnel’s correction term in ΩPC . From the

phase structure of the CS-plates, for the different phase orders, it is possible to understand the analogy of

the multipole-phase beams with the magnetostatic multipole field [58]. Indeed, incrementing m, more two-

dimensional ”lobes” are generated on the plane transversal to the propagation direction. Instead, as usual, the

phase structure of the PC-phase plate is found in the output beam of the demultiplexer, as can be seen in figure

43 for the case m = 2. In the others two cases, the same pattern is less recognizable but still presents.
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Figure 42: The phase patterns of the Transformer (ΩCS) and the Phase Corrector (ΩPC), without the focusing terms −k r2

2fCS
,

used for the circular-sector transformation of the multipole-phase beams reported in figure 41. The parameters of the circular-sector
transformation are the same: fCS = 10 mm, a = 0.5 mm and b = 0.3 mm.
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Figure 43: In analogy with the figure 37, here it is reported the simulations of the circular-sector transformation performed with the
phase plates shown in figure 42 for the three multipole-phase beams of order m = 2, 3 and 4 analysed in this section. In particular,
the input beams, the beams after the Transformer and the Phase Corrector, are shown. Brightness and colours refer to intensity
and phase, respectively.
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5 Multiplexing of a multipole-phase beam

In the previous chapter, we have seen the demultiplexing of multipole-phase beams into isolated light spots.

Here we want to simulate the inverse process, i.e., the multiplexing of several input beams into a collimated

bunch of multipole-phase beams with the same order m but differing in phase strength α and rotation angle

θ0. Indeed, each spot can be labelled by the polar coordinates of its centre (rc, θc), which are related to the two

parameters (α, θ0) of the final multipole-phase beam by the following transformation:θ0 = − 1
mθc

α = 2π
λ

a
fLbm

rc
(152)

where α is simply give by the inverse of the equation 113. As it will be demonstrated from the simulation

results, the optical setup needed for a multiplexing process is the same3, but in reverse order, as the demulti-

plexing case, and it is reported in the figure 44. Starting from a set of isolated light spots, thanks to a Fourier

phase term (produced by a lens of focal length fL), each beam is converted into an electromagnetic field with a

wavefront characterized by a linear phase gradient. Then, the field is propagated through the same two optical

elements of the circular-sector transformation seen for the demultiplexing, but in the reverse order. In this

way, at the end, we obtain the superposition of the multipole-phase beams related to the starting light spots

configuration.

Figure 44: Multiplexing of two multipole-phase beams of the same order m = 2 but different phase strength and orientation. In
particular, it is shown how two initial light spots are converted, by a Fourier lens, into a superposition of linear phase gradients,
which undergoes the ”reverse” circular-sector transformation performed by the two phase plates: the Transformer and the Phase
Corrector. At the end, the superposition of the two multipole-phase beams, related to the initial light spots, is obtained.

In the demultiplexing case, indeed, we have already seen that when a plane wave, with a wavefront charac-

terized by a linear phase gradient, is Fourier transformed, for instance using a lens in a fL− fL configuration, a

light spot is generated. The radial coordinate of the spot, rC , is related to the 2π-phase period enclosed in this

phase gradient, i.e., related to the component on the plane perpendicular to the propagation direction of the lin-

ear momentum of the photons (see section 3.3). Instead, its angular coordinate, θC , depends on the orientation

of the gradient, i.e., on the direction of the linear momentum component on the plane. The setup can also work

in the reverse configuration, where a light spot is transformed into an electromagnetic field characterized by

that linear phase gradient whose orientation, and the 2π-phase period density, are related to the spot position.

3Actually, as we will see in a while, the first element is not exactly the same as the second element of the demultiplexer.
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Figure 45: Multiplexing of multipole-phase beams of order m = 2 with the same orientation θ0 = 0° but seven different phase
strengths in the range [−30; 30] mm−2 (c.1, ..., c.7). The parameters of the circular-sector transformation used are: fCS = 250 mm,
a = 2.0 mm and b = 0.85 mm. While the focal length, of the Fourier lens used in order to transform the initial light spots (a.1, ...,
a.7) into the linear phase gradients (b.1, ..., b.7), is fL = 400 mm. The initial light spots have a wavelength of λ = 632.8 nm and
waist w0 = 50 µm. As usual, brightness and colours refer to intensity and phase, respectively.

As anticipated, these phase gradients can be used to generate a multipole-phase beam with a phase strength, α,

related to the 2π-phase period density of the linear phase gradient and, so, thanks to equation 152, depending

on the radial coordinate of the spot, rC . Similarly, for the phase orientation, θ0, that will be related to the

rotation of this gradient and, so, on the θC value.

5.0.1 Dependence on α

To better understand this ”reverse” circular-sector transformation in figure 45 it is reported a simulation of

seven initial laser spots (a.1, ..., a.7) characterized by the same θC = 0° but different radial coordinates. The cor-

responding multipole-phase beams (c.1, ..., c.7) have a phase strength α that varies in the range [−30, 30]mm−2

and the same phase orientation θ0 = 0°. The intermediate beams, with their linear phase gradient, are also

reported (b.1, ..., b.7). Notice how the number of the coloured stripes, an indicator of the modulus of this phase

gradient, increases with the displacement of the initial light spot. Indeed, we remember that each colour corre-

sponds to a different phase value and, in a complete phase period of 2π, each colour is repeated only once. This

increment does not regard only the input spots of the multiplexer but also the output multipole-phase beams

where, to a more dense colour profile, corresponding a higher value of the phase strength α. In the particular

case of α null, i.e., the initial light spot is centred in the origin of the system, the Fourier transformation of the

spot returns a beam without any phase gradient, i.e., a planar wavefront. Therefore, the final multipole-phase

beam will be characterized by a wavefront with a uniform phase. Indeed, if we set α = 0 in the equation 90, of

the phase pattern of a generic multipole-phase beam, Ω(r, θ) will be zero.

5.0.2 Dependence on θ0

In figure 46, instead, it is reported the case of laser spots with different angular coordinate θC but the same

radial coordinate. The spots, therefore, will be placed along a circle, the dashed line in the frames a.1, ..., a.7 of

the figure. The radius of this circle is related, thanks to equation 152, to the α value of the final multipole-phase

beams, which will be, therefore, the same for all the fields. Indeed, from the multiplexer outputs reported in

figures (c.1, ..., c.7), one can see how the phase pattern is identically for each beam but simply rotated by an

angle θ0, which is half of θC and it goes in the opposite direction (clockwise in figure). This is quite obvious

if one notices the minus sign in the first equation of the system 152 and remembers that we are considering a

phase order m = 2.
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Figure 46: Multiplexing of seven multipole-phase beams of order m = 2 with the same phase strength α = 20 mm−2 but different
phase orientation in the range

[
0; 2π

m

]
(c.1, ..., c.7). The initial light spots (a.1, ..., a.7), of wavelength λ = 632.8 nm and waist w0

= 50 µm, are transformed into linear phase gradients (b.1, ..., b.7) by the same Fourier lens of the figure 45 with fL = 400 mm.
The parameters of the circular-sector transformation are also the same: fCS = 250 mm, a = 2.0 mm and b = 0.85 mm. Brightness
and colours refer to intensity and phase, respectively.

Figure 47: The starting Gaussian spots configuration analysed in this section (on the left) and its multiplexing into a superposition
of multipole-phase beams of order m = 2 (on the right). In particular, the initial configuration is composed by N1 = 10 external
spots, related to multipole-phase beams of phase strength α(1) = 16 mm−2 and phase orientations in the range [0;π], and N2 = 6
internal spots related to multipole-phase beams of phase strength α(2) = 8 mm−2 and the same θ0 range. These initial light spots
have a wavelength of λ = 632.8 nm and a waist of w0 = 50 µm, while the parameters of the circular-sector transformation are: fCS
= 250 mm, a = 2.0 mm and b = 0.85 mm. As usual, brightness and colours refer to intensity and phase, respectively.
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5.1 Multiplexing simulation

In the following, we want to analyse in detail each simulation step of the transformation of a single light

spot into the corresponding multipole-phase beam. In particular, it will be considered the third external spot

(in anticlockwise order starting from θ = 0°) of the configuration reported on the left of the figure 47. This

configuration is composed by N1 = 10 external spots, distributed on a circle characterized by the value α(1) and

radius given by the equation 113, and N2 = 6 internal spots defined by α(2) = gα(1) with g = 0.5. The angular

coordinates of the spots are arranged over a range of [0, 2π], and correspond to −m times the phase orientation

θ0 of the final multipole-phase beams of order m = 2. On the right of the figure, instead, it is reported the

superposition of the multipole-phase beams generated in the multiplexing process by this spots configuration.

The algorithm of the simulation is the following one. After the definition of the initial Gaussian beams, they

are propagated for a distance equal to the focal length, fL, of the lens used in order to produce the Fourier

transform (which is characterized by the phase term reported in equation 148). The field is so propagated for

a further distance fL, obtaining the usual fL − fL configuration. Then, it is performed the reversed circular-

sector transformation, where the first element is not exactly as the second one in a demultiplexer. Indeed,

since the multiplexing transformation is a mapping of the phase pattern onto a circular sector (characterized

by an amplitude of 2π
|m| ), in order to obtain an output beam defined over the whole range of 2π, a first |m|-fold

multiplication is needed. This is performed by the first optical element called, for this reason, ”multiplier”.

Recalling the equation 101 of a circular-sector transformation of order n:

ΩCS = k
ab

fCS

(r
b

)1− 1
n cos[(1− 1

n )θ]

1− 1
n

(153)

it is easy to visualize that, in order to have an |m|-fold multiplication of the phase of the input beam, the

required expression of the first term, ΩMm,1, must be the combination of two phase patterns (|m| patterns in the

general case) performing an n-fold circular-sector transformations with n = −m and rotated with respect to

each other of a 2π
|m| term. Therefore, taking in account also the focusing factor −k r2

2fCS
, we obtain

ΩMm,1(r, θ) = arg


|m|∑
p=1

eiΩ
D,(p)
m,2

 (154)

which is a combination of terms as:

Ω
D,(p)
m,2 (r, θ) = k

ab

fCS

( r
a

)1+ 1
m

cos
[
θ
(
1 + 1

m

)
+ (p− 1) 2π

|m|

]
1 + 1

m

− k r2

2fCS
(155)

Notice that this expression is, actually, equal to the equation 103 of the second element, ΩDm,2, of a demul-

tiplexer but with the correction factor (p − 1) 2π
|m| which performs the above-mentioned rotation (equal to π in

this m = 2 case). Then the second element, in order to generate the final multipole-phase beam, has to perform

a simply |m|-fold circular-sector transformation and, so, has a phase expression identical to the first element of

the demultiplexer:

ΩMm,2 = ΩDm,1 = k
ab

f

(ρ
a

)1+m cos((1 +m)φ)

1 +m
− k r2

2fCS
(156)

These two phase patterns, ΩMm,1 and ΩMm,2, are reported, modulo 2π, in figure 48.

In figure 49 it is shown a simulation of the whole transformation. The multiplexer input beam, with

its characteristic linear phase gradient (first frame of the figure), undergoes to a 2-fold wrapping during the

propagation for the distance, fCS , between the two phase plates ΩMm,1 and ΩMm,2. Notice how the phase pattern

of the multiplier (on the left of figure 48), is found in the phase structure of the wavefront of the electromagnetic

field after the application of this optical element (at z = 0 in figure 49). Finally, at the output of the multiplexer,

after the application of the second phase term ΩMm,2, we find the multipole-phase beam.
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Figure 48: The phase patterns, modulo 2π, of the two phase plates used for the circular-sector transformation (whose output is
reported on the right of figure 47). In particular, on the left, it is reported ΩMm,1 (equation 154), while, on the right, it is reported

ΩMm,2 (equation 156). The parameters of the phase patterns are: fCS = 250 mm, a = 2.0 mm and b = 0.85 mm.

Figure 49: The circular-sector transformation of the third spot (in anticlockwise order starting from θ = 0°) of the external circle
spots configuration reported on the left of figure 47. In the first frame, we have the linear phase gradient, obtained by the Fourier
Transform of the initial light spot, impinging the ΩMm,1 phase plate (i.e., the Transformer). Then it is reported the field after this

phase plate (z = 0 mm) and its evolution between the Transformer and the Phase Corrector, ΩMm,2, placed in z = fCS . Finally, the
output multipole-phase beam is shown in the last frame. As usual, brightness and colours refer to intensity and phase, respectively,
while the patterns of the two phase plates used in the circular-sector transformation are shown in figure 48.
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5.2 MatLab code

In the following, it will be described the MatLab code used in order to simulate the multiplexing process.

5.2.1 The observation plane

The first step is the definition of the observation plane, where it will be defined the wavefront of our

electromagnetic field for the various propagation steps. The observation plane has already been described in

the section 4.1.1 but, for simplicity, we report again the spatial discretization 35:

x→
[
−L

2
: ∆x :

L

2
−∆x

]
(157)

where ∆x = L
M is the sampling interval along both x and y-axis, L is the side of the observation plane

(supposed squared) and M the number of samples. The MatLab code is the following, where the mesh of the

Cartesian coordinates [X,Y] is converted to the more convenient polar coordinates [theta,r] (line 5).

Listing 5.2.1: space discretization

1 dx = L/M; % sample i n t e r v a l

2 x = −L/2 : dx : L/2−dx ; % x coords

3 y = x ; % y coords

4 [X,Y] = meshgrid (x , y ) ; % c a r t e s i a n coords

5 [ theta , r ] = ca r t 2po l (X,Y) ; % po la r coords

5.2.2 The initial light spot configuration

After that, we can define the initial isolated light spots, u
(i)
0 (r, θ), one for each i-th different channel of

communication and identified by the coordinates of their centres (rC , θC)(i). A Gaussian shape is assumed

u
(i)
0 (r, θ) = exp

−
(X − x(i)

C

w0

)2

+

(
Y − y(i)

C

w0

)2
 (158)

where w0 is the beam waist of these light spots and (xC , yC)(i) are the Cartesian coordinates of the centre

of the i-th spot: x
(i)
C = r

(i)
C cos θ

(i)
C

y
(i)
C = r

(i)
C sin θ

(i)
C

(159)

The corresponding MatLab code is the following one, where the for-loop is repeated for all the values of

the vector ”alpha”, which contains the phase strength α(i) of each i-th multipole-phase beam associated to the

relative light spot. By introducing an amplitude factor for the Gaussian profile, it is possible to further control

the weight of each generated multipole-phase contribution.

Listing 5.2.2: Gaussian beams definition

1 f o r i = 1 : l ength ( alpha )

2 xC( i ) = rC( i ) ∗ cos ( thetaC ( i ) ) ;

3 yC( i ) = rC( i ) ∗ s i n ( thetaC ( i ) ) ;

4 u0 ( : , : , i ) = exp ( −(((X − xC( i ) ) /w0) .ˆ2 + ( (Y − yC( i ) ) /w0) . ˆ 2 ) ) ;

5 end
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Figure 50: The optical path of the multipole-phase beam multiplexer simulated in this section. From the left, the initial light
spots are transformed into linear phase gradients by a Fourier lens in a fL − fL configuration. Then, we have the two phase plates
(i.e., the Transformer and the Phase Corrector) which perform the circular-sector transformation of these linear phase gradients,
producing the final multipole-phase beams.

5.2.3 The phase patterns of the circular-sector transformations

Now, before propagating the input beams, u
(i)
0 , as reported in the figure 50, we have to define the phase

patterns, ΩMm,1 and ΩMm,2, of the two elements of the multiplexer.

• The first one, ΩMm,1, which performs the |m|-fold multiplication is called ”Phase1” in the MatLab code

reported in the following (lines 6-12). This phase plate is described by the equation 154 which is a

combination of |m| terms that we rewrite in a more compact notation as:

Ω
D,(p)
m,2 (r, θ) = A

( r
a

)B cos
[
θB + (p− 1) 2π

|m|

]
B

− C (160)

where we have defined the two constants A, B and the focusing term C as:


A := k ab

fCS

B := 1 + 1
m

C := k r2

2fCS

(161)

• The second phase plate, ΩMm,2, which performs the circular-sector transformation in order to obtain the

multipole-phase beams associated to the initial light spots, is described by the equation 156. We rewrite

this equation in the same notation as before

ΩMm,2(r, θ) = A
(r
b

)1+m cos[(1 +m)θ]

1 +m
− C (162)

In the code (line 15) is called ”Phase2”.

Listing 5.2.3: the phase patterns

1 A = k∗( a∗b/ f CS ) ;

2 B = 1+1/m;

3 C = k∗( r . ˆ 2 ) /(2∗ f CS ) ;

4

5 % phase pattern o f the 1 s t mux element

6 Phase1 = ze ro s ( l ength ( x ) , l ength ( y ) ) ;

7 f o r p = 1 : abs (m)
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8 Omega = A∗ ( ( r /a ) . ˆB) .∗ cos ( theta ∗B+(p−1)∗2∗ pi /abs (m) ) /B − C;

9 Phase1i = exp (1 i ∗Omega) ;

10 Phase1 = Phase1 + Phase1i ;

11 end

12 Phase1 = angle ( Phase1 ) ;

13

14 % phase pattern o f the 2nd mux element

15 Phase2 = A∗ ( ( r /b) .ˆ(1+m) ) .∗ cos ( theta ∗(1+m) ) /(1+m) − C;

5.2.4 Multiplexing of the initial light spots

At this point, we have to multiplex the initial Gaussian spots into a superposition of multipole-phase beams

of order m. We know that this procedure consists, initially, in the transformation of the light spot into an

electromagnetic field characterized by a wavefront with a linear phase gradient. This transformation is performed

by a lens in a fL − fL configuration (lines 2-4 of the MatLab code reported below), characterized by a phase

term

ΩF (r, θ) = − k

2fL
r2 (163)

Then, we have the multiplier which, as already said, performs the |m|-fold multiplication in order to have

an output multipole-phase beam defined in the whole range of 2π (line 5). Finally, after a further free-space

propagation for the distance that separates the two phase elements ΩMm,1 and ΩMm,2 (line 6 of the code), we have

the circular-sector transformation (line 7). This procedure is so repeated for each i-th beam.

Listing 5.2.4: multiplexing of the spots into a multipole-phase beams

1 f o r i = 1 : l ength ( alpha )

2 u1 ( : , : , i ) = FreeSpaceProp ( u0 ( : , : , i ) ,L , lambda , f L ) ;

3 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp(−1 i ∗( k/(2∗ f L ) ) ∗ r . ˆ 2 ) ;

4 u1 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f L ) ;

5 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase1 ) ;

6 u1 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f CS ) ;

7 u2 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase2 ) ;

8 end
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6 Cross-talk in the communication system

In the previous chapter we have seen that, thanks to their orthogonality, a set of multipole-phase beams of

the same order m, characterized by different parameters (α, θ0), can be propagated simultaneously at the same

frequency and, then, separated into isolated light spots. In this way, each spot acts as an independent channel

of communication. It appears clearly that, in order to realize a good telecommunication system, the level of this

independence is a crucial design parameter. To better understand this aspect, we can consider the following

example. Image a two-level digital communication link where each bit of information is carried by a pulse of

light, which is on, if the bit is value is 1, off otherwise. Then, in order to reduce the time necessary to propagate

the total information, we want to propagate more bits simultaneously. We could use a bunch of optical fibres,

where each fibre is a different communication channel. We suppose now that the propagation, from the emitter

to the receiver of our link, cannot be performed via optical fibre but only in free space. It is quite obvious that

propagating this set of channels as parallel light beams for a long distance, without any interference, is very

difficult due to the divergence of a collimated beam in a free space propagation. Therefore, we can multiplex

them into a single superposition of multipole-phase beams (we have seen the multiplexing process in the previous

chapter 5), propagate this single field and, finally, demultiplex the beam into the original set of light spots (as

seen in the chapter 4). Then a set of detectors, placed in correspondence to each spot, detects the values of the

bits from the light intensities collected on their detection areas. However, if these spots are too close to each

other, it could happen that, for example, the l-th bit, whose value is 0 (and the relative light beam is off), can

be confused, due to the luminosity of the neighbouring channels, as a 1. This example tell us that we need to

introduce a new parameter that quantifies the independence level of the channels of our communication system.

For this reason, it was introduced the Cross-Talk (XT ). Considering the channel l∗, the relative Cross-Talk,

XTl=l∗ , is defined as the ratio of the intensity, Il∗,ALL/l∗ , detected in correspondence to the spot of the channel

l∗ when the channel l∗ is off, and all the others are on, and the same intensity, Il∗,ALL, when all channels are

on, included l∗. The lower is this ratio, the lower is the light intensity, collected in the detection area of l∗, due

to the others channels:

XTl=l∗ = 10 log10

Il∗,ALL/l∗

Il∗,ALL
(164)

Typically, in a telecommunication system, the cross-talk has to be lower than −15 dB. For this reason, the

final step of our simulation is the computation of the Cross-Talk defined by equation 164.

6.1 Cross-Talk implementation in a MatLab simulation

First of all, we have to compute the intensity of the final field, u2(r, θ), of each single multipole-phase beam

as

I(r, θ) = |u2(r, θ)|2 (165)

The MatLab code is simply the following, where I will be a vector, of length equal to the number of channels

of our link, of X×X square matrices (remember that the observation plane is sampled with a mesh [X,Y] with

the same number of samples for both x and y-axis).

Listing 6.1.1: Intensity definition

1 I = abs ( u2 . ˆ 2 ) ;

6.1.1 Mask generation for the communication channels

Now, for each i-th light spot, we have to obtain the coordinates of the detection areas which are disks of

radius RI placed in correspondence to the theoretical centre of the spot (XC , YC):
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Figure 51: On the left, the light spot, corresponding to the demultiplexer output, for a superposition of eight multipole-phase beams.
On the right, the mask of the second spot (i.e., the detection area of that channel), used for the computation of the Cross-Talk.
The mask is a two-levels digital mesh (where the white and the black colour correspond to the values 1 and 0, respectively), defined
in order to obtain the portion of the observation plane where the light intensity has to be integrated. The boundaries of the others
detection areas are plotted with a dashed line.

X
(i)
C = R(i) cos

(
−mθ(i)

0

)
Y

(i)
C = R(i) sin

(
−mθ(i)

0

) (166)

where R is given by the equation 113. Once created the two arrays, XC and YC , it was defined, for each

spot, a logical mask for the mesh [X,Y] of the observation plane. The values of the mask are equal to 1, if the

point (X,Y ) is inside the i-th spot detection area, 0 otherwise.1 if

√
(X −XC)

2
+ (Y − YC)

2 ≤ RI
0 otherwise

(167)

For example, in figure 51, it is reported the demultiplexer output beams, for a configuration of eight channels,

and the relative mask corresponding to the second light spot. Notice that the mask is, actually, a two-levels

digital mesh where the white colour corresponds to the value 1 and the black colour to the value 0, as described

in the equation 167. Superimposed to this mask are plotted the boundaries of the others (dashed line). In figure

52, instead, a representation of the mask relative to the same spot of the figure 51 is reported.

In the following, it is reported the MatLab code for the generation of the masks, which is simply the

application of the equation 167 to each i-th spot.

Listing 6.1.2: mask of the detection area

1 mask = f a l s e ( l ength (X) , l ength (Y) , l ength (Xc) ) ;

2 f o r i = 1 : l ength (Xc)

3 mask ( : , : , i ) = mask ( : , : , i ) | hypot (X − Xc( i ) , Y − Yc( i ) ) <= RI ;

4 end

6.1.2 Computation of the Cross-Talk

With the so-defined masks, we are able to measure the total intensity detected for each channel, simply

integrating the intensity on the whole observation plane after the application of the mask. Indeed, since outside

the i-th detection area the i-th mask values are all null, after the application of the mask, the field is different
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Figure 52: A representation of the mask of the second spot reported in figure 51. The value of each pixel (related to the white and
black colours of that figure) is also shown. According to the conditions 167, these values are equal to 1 if the (X,Y ) coordinate,
of the left-bottom corner of the pixel considered, is inside the detection area of radius RI and centred in the expected position
(XC , YC) of that light spot.

from zero only in that detection area of radius RI . In this way, the equation 164 is easy to compute, as reported

in the MatLab code below. We define, with q on(j), the integral of the intensity detected by the j-th channel

when all the multipole phase beams are on, included the j-th beam (i.e., the denominator of the equation 164).

Then, we define, with q off(j), the same integral when all the multipole-phase beams, except for the j-th, are

on (i.e., the numerator of the equation 164). The algorithm is the following. We apply the i-th mask to the

intensity, I(:,:,j), of j-th multipole-phase beam, obtaining the intensity, I XT(:,:,j,i), of the j-th beam detected

on the i-th channel (line 11). This I XT(:,:,j,i) is then integrated on the all observation plane (line 14). The

result of this integration, q(i,j), is then summed up to q on(j) (line 17) and the procedure is repeated for each

i-th mask, obtaining the final value of q on(j). Then the index j changes and the algorithm is repeated. In order

to get q off(j), inside the i-th loop, we check if j is different from i and, if it is true, we sum q(i,j) to q off(j)

(lines 20-22). Finally, the j-th cross-talk, XT(j), is computed as the ratio, expressed in decibel, of q off(j) over

q on(j).

Listing 6.1.3: Cross-talk computing

1 q = ze ro s ( l ength (Xc) , l ength (Xc) ) ;

2 q on = ze ro s ( l ength (Xc) ) ;

3 q o f f = ze ro s ( l ength (Xc) ) ;

4 I XT = ze ro s ( l ength (X) , l ength (Y) , l ength (Xc) , l ength (Xc) ) ;

5 XT = zero s ( l ength (Xc) ) ;

6

7 f o r j = 1 : l ength (Xc)

8 f o r i = 1 : l ength (Xc)

9

10 % I n t e n s i t y o f j−spot detec ted by i−mask

11 I XT ( : , : , j , i ) = I ( : , : , j ) .∗ mask ( : , : , i ) ;

12

13 % I n t e g r a l o f j−spot detec ted by i−mask I XT ( j , i )
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14 q ( j , i ) = sum( trapz ( I XT ( : , : , j , i ) ) , ' a l l ' ) ;

15

16 % I n t e g r a l o f j−spot with a l l mask on

17 q on ( j ) = q on ( j ) + q ( j , i ) ;

18

19 % I n t e g r a l o f j−spot with a l l \ j mask on

20 i f i ˜= j

21 q o f f ( j ) = q o f f ( j ) + q ( j , i ) ;

22 end

23

24 end

25

26 % Cross−t a l k o f j−spot

27 XT( j ) = 10∗ l og10 ( q o f f ( j ) / q on ( j ) ) ;

28 end

From the integral q(i,j) of the j-th spot detected by the i-th channel, we are able to produce a map like

the two reported in the central column of figure 53. Notice that the gray level of the cell is the value of q(i,j)

in arbitrary unit, while the ”channel id” indicates the i-th channel activated to the detection of the field (i.e.,

the i-th mask), and ”id” indicates the j-th multipole-phase beam turned on. In a good configuration, with low

Cross-Talk between the channels (as the bottom one in the figure), the off-diagonal elements are very small

while the diagonal elements have very high values. On the right of the figure, it is reported the corresponding

Cross-Talk values of each channel of the simulated configuration reported on the left.

Figure 53: The Cross-Talk computation for two example configurations of demultiplexed multipole-phase beams. In the first frame,
it is shown the final light spots and their detection areas (dashed line). In the second and the last frames, we have the intermodal
overlapping map of the channels and the corresponding Cross-Talk values, respectively. In the first case (on the top), an excessive
proximity of the spots produces interference between the channels, as can be seen from the not negligible values of the off-diagonal
elements in the intermodal map. Consequently, the Cross-Talk values are very low with respect to the second case, where the spots
are well separated.
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7 Optimization of a multipole-phase beams demultiplexer

In the previous chapters, we have seen the theory of the multipole-phase beams and how this new type of

structured light can be handled in order to multiplex and demultiplex a set of several independent signals in a

communication system. In order to estimate the transmission quality of this system, we have also introduced

the Cross-Talk (XT ) and the procedure for its computation. Typically, in the telecommunication technologies,

an acceptable XT value is lower than −15 dB. For this reason, the purpose of this section is the design of

an apparatus able to perform the demultiplexing of a set of multipole-phase beams, keeping the Cross-Talk of

each channel around this −15 dB limit. In order to do this, we have to start from the choice of a channel’s

configuration in which the light spots are well isolated from each other. We recall that for a family of multipole-

phase beams of order m, there are two degrees of freedom: the phase orientation, θ0, and the phase strength, α.

We remember also that changing the first one, the output beams will be characterized by different azimuthal

angles, i.e, the light spots will be distributed onto a circular configuration. Conversely, changing only the phase

strength, one gets a linear spot configuration. In order to maximize the number of separated channels, but

keeping the Cross-Talk around the −15 dB, it was chosen to work with both α and θ0, generating a double

circular distribution of the output light spots.

7.1 Demultiplexer for m = 2

As anticipated, it was chosen a set of {α, θ0} in such a way that the final spots were arranged over two

concentric circles. The internal one, characterized by a lower radius (i.e., a lower phase strength), contains N2

= 6 light spots. In the external one, instead, N1 = 14 beams are distributed, for a total of twenty channels.

These two configurations are described in the following.

External spots distribution For the external circle, characterized by a phase strength α(1) (which deter-

mines the radius of the distribution), the orientation values θ
(1)
0,i=1,...,N1

are assumed in the range [0; 2π
m ] and

they are separated by an angle of

∆θ
(1)
0 =

1

m

2π

N1
(168)

Internal spots distribution For the internal circle, characterized by a strength of α(2) = gα(1) with g ∈ [0; 1],

we have a similar distribution θ
(2)
0,i=1,...,N2

∈ [0; 2π
m ] with steps of

∆θ
(2)
0 =

1

m

2π

N2
(169)

but, in this case, each θ
(2)
0 is shifted of

∆θ
(1)
0

2 . This shifting factor was adopted to avoid excessive Cross-Talk

between the spots of the two circles that are close to each other.

These two distributions are shown in figure 54, where it is reported the simulation output of our demultiplexer

working with multipole-phase beams of order m = 2 with phase strength α(1) = 100 mm−2, g = 0.5 and

wavelength λ = 632.8 nm. The radius of the two circular distributions is related to the phase strength by the

equation 113:

R = fL
λ

2π

αbm

a
(170)

where, in our design, a = 1.0 mm, b = 0.4 mm and fCS = 10 mm are the parameters of the circular-sector

transformation and fL = 400 mm is the focal length of the Fourier lens.

In order to evaluate the performance of this demultiplexer, the Cross-Talk computation was performed with

a detection area, of each channel, characterized by a radius of 100 µm. These detection areas and the results of

this XT computation are shown in the figure 55. In the left frame, it is reported the simulated demultiplexer

output, with the boundaries of the detection areas (dashed lined) and the channel’s index wrote in white. In

the central frame, it is shown the overlapping map of the light intensities collected by each spot’s detection
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Figure 54: In the figure, it is shown the set of multipole-phase beams at the input of the demultiplexer (whose simulation is
described in this chapter), and their relative sorted beams. The output configuration, reported in the centre, is composed by
twenty light spots arranged over two concentric circles. The external one has N1 = 14 beams, which are related to multipole-phase

beams of order m = 2, phase strength α(1) = 100 mm−2 and phase orientation θ0 ∈ [0; 2π
m

] with steps of ∆θ
(1)
0 = 1

m
2π
N1

. The

internal distribution, instead, is composed by N2 = 6 light spots corresponded to multipole-phase beams of the same order, and

range of θ0, but characterized by a phase strength α(2) = 50 mm−2 and a shift of the orientations equal to
∆θ

(1)
0
2

. The parameters
of the circular-sector transformation, used in the demultiplexing process, are: a = 1.0 mm, b = 0.4 mm and fCS = 10 mm, while
the focal length, of the Fourier lens used for the final sorting of the beams, is fL = 400 mm. As usual, brightness and colours refer
to intensity and phase, respectively.
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Figure 55: In the first frame, it is reported the demultiplexer output, as shown in the centre of figure 54, with the channel’s index,
related to each light beam, wrote in white. The detection areas used for the Cross-Talk computation are plotted with a dashed
line. In the second frame, the intermodal overlapping map, with the intensities in arbitrary unit, is reported. Finally, in the last
frame, the XT values of each channel are plotted. Case m = 2

area. Notice the absence of significant values of the off-diagonal elements. This means that, for each channel,

the detected field, produced by the other channels, is very low. Indeed, the XT values reported in the right

frame, are all around the −12 dB, which is a remarkable result considering the high number of channels.

7.2 Demultiplexer for m = 3

The same design, with the final light spots distributed over a double circular configuration, was used also for

a set of multipole-phase beams of order m = 3, as reported in figure 56. The external circle, composed by N1 =

11 light spots, is related to multipole-phase beams with a phase strength α(1) = 550 mm−3 and phase orientation

in the range θ
(1)
0 ∈ [0; 2π

m ] with regular steps of 2π
mN1

. On the internal distribution, instead, N2 = 6 beams are

placed, related to an initial set of multipole-phase beams characterized by a phase strength α(2) = gα(1) with g

= 0.5 and phase orientation, again, in the range [0; 2π
m ] with steps of 2π

mN2
but, now, with an additional shift of

π
mN2

. Due to the dependence of m on the phase functions of the circular-sector transformation, equations 101

and 103, the simulation’s parameters have to be different. In particular, it was adopted the following values for

the two phase plates: a = 2.0 mm, b = 0.4 mm and fCS = 10 mm. The increment of the parameter a produces

an important consequence, as can be seen from the equation 170. Indeed, in order to have a radius of the two

circular spot distributions sufficiently high, which permits to have the spots well separated, the increment of a

has to be followed by an increment of α too.

However, higher phase strengths can produce phase distortions, as described in section 3.5, providing a

misalignment of the spots with respect to their expected coordinates, which can produce a worsening of the

Cross-Talk. For this reason, a manual correction of the positions of the detection areas was adopted during

the computation. Then, the Cross-Talk is obtained as usual and the results are reported in the figure 57. The

XT -values are similar to the m = 2 case, but with a total number of channels reduced.

7.3 Demultiplexer for m = 4

Similarly to before, also the demultiplexing of multipole-phase beams of order m = 4 has been investigated.

In this case, the output configuration is composed by thirteen light spots arranged over two concentric circles.

The external one has N1 = 9 beams, which are related to a phase strength α(1) = 2000 mm−4 and phase

orientation θ0 ∈ [0; 2π
m ] with steps of ∆θ

(1)
0 = 1

m
2π
N1

. The internal distribution, instead, is composed by N2 = 4

light spots corresponded to a phase strength α(2) = 1100 mm−4, and the same range of θ0 but shifted of
∆θ

(1)
0

2 .

58.

The parameters of the circular-sector transformation used are: a = 2.0 mm, b = 0.4 mm and fCS = 5 mm.

Notice that in this case, a and b are kept the same of the demultiplexer for beams of order m = 3, but it was

reduced fCS . At the same time, even g was changed (g = 0.55 in this case) in order to keep the spots, of

the internal circle, sufficiently far from each other. Indeed, due to the phase distortions produced by a higher
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Figure 56: In the figure, the input and the output of a demultiplexer for multipole-phase beams of order m = 3 are reported. The
output configuration, shown in the centre, is composed by seventeen light spots arranged over two concentric circles. The external
one has N1 = 11 beams, which are related to multipole-phase beams with phase strength α(1) = 550 mm−3 and phase orientation

θ0 ∈ [0; 2π
m

] with steps of ∆θ
(1)
0 = 1

m
2π
N1

. The internal distribution, instead, is composed by N2 = 6 light spots corresponded to

multipole-phase beams of the same order, and range of θ0, but characterized by a phase strength α(2) = 275 mm−3 and a shift of

the orientations equal to
∆θ

(1)
0
2

. The parameters of the circular-sector transformation used are: a = 2.0 mm, b = 0.4 mm and fCS
= 10 mm, while the Fourier lens, used for the final sorting of the beams, has a focal length fL = 400 mm. Brightness and colours
refer to intensity and phase, respectively.
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Figure 57: In the first frame, the demultiplexer output, of the multipole-phase beams reported in figure 56, is shown. The channel’s
index, related to each light beam, is also reported, while the detection areas (of radius RI = 100 µm) used for the Cross-Talk
computation are plotted with a dashed line. In the second frame, the intermodal overlapping map, with the intensities in arbitrary
unit, is reported. Finally, in the last frame, the XT values of each channel are plotted.

value of the phase strength (α = 2000 mm−4), the spots are more spread, causing a higher interference in the

neighbouring beams. For the same reason, it was also incremented the radius of the detection areas: from

100 µm to 150 µm. After a manual correction of the external spots, as in the previous case, we have obtained

the results reported in the figure 59. Also in this setup we were able to get a Cross-Talk level around the −12 dB

but for a further reduction of the number of total channels.
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Figure 58: In the figure, it is shown a set of multipole-phase beams at the input of a demultiplexer, and their relative sorted beams.
The output configuration, reported in the centre, is composed by thirteen light spots arranged over two concentric circles. The
external one has N1 = 9 beams, which are related to multipole-phase beams of order m = 4, phase strength α(1) = 2000 mm−4 and

phase orientation θ0 ∈ [0; 2π
m

] with steps of ∆θ
(1)
0 = 1

m
2π
N1

. The internal distribution, instead, is composed by N2 = 4 light spots

corresponded to multipole-phase beams of the same order, and range of θ0, but characterized by a phase strength α(2) = 1100 mm−4

and a shift of the orientations equal to
∆θ

(1)
0
2

. The parameters of the circular-sector transformation, used in the demultiplexing
process, are: a = 2.0 mm, b = 0.4 mm and fCS = 5 mm, while the focal length, of the Fourier lens used for the final sorting of the
beams, is fL = 400 mm. As usual, brightness and colours refer to intensity and phase, respectively.
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Figure 59: In the first frame, it is reported the demultiplexer output, as shown in the centre of figure 58, with the channel’s index,
related to each light beam, wrote in white. The detection areas used for the Cross-Talk computation are plotted with a dashed
line. In the second frame, the intermodal overlapping map, with the intensities in arbitrary unit, is reported. Finally, in the last
frame, the XT values of each channel are plotted. Case m = 4
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8 Communication links in the multipole-phase beams framework

In the recent years, there has been more and more interest regarding the optical communication technologies

that use the light propagation in free space in order to perform wireless transmission of data. These free-space

optical communication systems (FSO) differ from the transmission via optical fibres for the absence of a solid

medium supporting the electromagnetic field. This implies the possibility to create communication links where

a cable connection is prohibitive, for example when there is the necessity to connect two or more buildings

in a city, or between a building and a satellite or between vehicles in movement like cars, aeroplanes, and

ships. These and more examples are well represented in figure 60. Also, the FSO can be a cheaper solution,

with respect to the installation of long underground optical fibre cables, and this is particularly useful in the

developing world. For instance, the Africa continent takes into account for the 16% of the world’s population

but only 4% of Internet access, due to the prohibitive capital costs of US$100,000 per km of optical fibres, which

creates an impenetrable economic barrier for many countries [2].

Figure 60: Different types of FSO communications. Arun K. Majumdar - “Optical Wireless Communications for Broadband Global
Internet Connectivity”.

Consequentially, the possibility to increment the efficiency of these FSO communication systems, propagating

more information channels in the same electromagnetic frequency thanks to the properties of the multipole-

phase beams, is very interesting. For this reason, we want now to analyse an entire link of communication,

where an initial set of laser spots is, at first, transformed into a superposition of multipole-phase beams, which

are so propagated in free space for a long distance and, finally, the electromagnetic field is converted into a

bright spot constellation correlated to the input configuration of laser beams. Each beam corresponds to a

single channel of information, the set of which, thanks to the orthogonality properties of the multipole-phase

beams, can be multiplexed into one electromagnetic field without thus losing the information content. Therefore,

this single light beam so obtained can be easily propagated in the free space between the transmitter and the

receiver of the link. Finally, thanks to a demultiplexer, the single channels are again separated in the form

of isolated bright spots. For these light beams, which we can imagine as generic Gaussian beams carrying a

structured phase, the waist w0, and the divergence Θ0, are inversely proportional (w0Θ0 = λ
π ) [53]. Therefore,

beams excessively collimated, diverge a lot during the propagation. For this reason, in order to propagate the

light beam for a distance of several kilometres, the size of the intensity pattern of the multiplexer output field

must be in the order of the centimetres. However, keeping in mind possible future practical applications, it is

convenient to keep the size of the optical setup, which performs the multiplexing/demultiplexing of the light

spots, miniaturized. In this way, it is possible to have a better coupling with the integrated electronic circuits

used to control the communication link. Accordingly, the electromagnetic field obtained after the multiplexing

must be magnified before the propagation. Similarly, the received light beam must be demagnified before the

demultiplexing. These two operations can be performed by a simple telescope system. Finally, the sorting
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Figure 61: The initial light spots of a link with three different channels of communication. The spots are obtained by a back
forward propagation starting from linear phase gradients of wavelength λ = 632.8 nm and waist w0 = 1 mm, using a Fourier lens
with a focal length fL = 400 mm in a fL − fL configuration.

process can be performed, obtained the final detected light beams.

8.1 Simulation of a communication link

In the theory chapter 3, we have seen that during the transmission of a multipole-phase beam of phase order

m, the transmitted beam is still endowed with a multipole-phase but characterized, now, by an order m′ given

by the relation 124

m′ =
m

m− 1
(171)

This expression tell us that the only family of multipole-phase beams which can be transmitted for a long

distance conserving successfully the phase structure is the one characterized by a phase order m = 24. For this

reason, in this section, we want to analyse in detail the evolution of a set of multipole-phase beams, of order m

= 2, along an entire communication link. In particular, will be considered the example configuration of three

channels reported in figure 61. In particular, for the case m = 2 the multiplexer and the demultiplexer are

based on the same architecture, in reverse, which is not true for different values of m. However, as shown in

previous chapters, a communication link can be established also using different values of m, taking into account

the above-mentioned implications.

8.1.1 Multiplexing of the initial laser inputs

The starting point of our simulation are the linear phase gradients associated to the initial light spots of

the three different channels characterized by a wavelength λ = 632.8 nm. Indeed, we already know that a light

spot can be Fourier transformed into an electromagnetic field with a wavefront characterized by a linear phase

gradient. This implies that the initial information content, of each communication channel, is totally enclosed in

the linear phase gradient of the beam related to that particular channel. For this reason, we want to maximize

4The trivial solution for m = 0 (i.e., a Gaussian beam) is ignored in this description
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Figure 62: The three linear phase gradients related to the spot configuration of figure 61, and their superposition. Brightness and
colours refer to intensity and phase, respectively.

the resolution of these gradients, starting the simulation from the definition of them rather than from the initial

light spots, which can be obtained, afterwards, from a back-forward propagation. Therefore, if (α, θ0)(i) are the

phase strength and orientation of the (i)-th multipole-phase beam, related to the spots of the configuration in

figure 61, we can define a first Gaussian beam

u0(r, θ) = exp

{
−
(
r

w0

)2
}

(172)

and, then, applying to u0(r, θ) the phase term 92

Φ(i)(r, θ) = β(i)r cos
(
θ − φ(i)

0

)
(173)

we get the (i)-th beam, u
(i)
2 (r, θ), characterized by the linear phase gradient described by the equation 173,

where β(i) is the component of the wave vector k on the simulation plane, and it is related to the period

of the linear phase. Indeed, we remember that this phase gradient will be characterized by an orientation,

given by the angular coordinate of the initial light spot, and a modulus, which depends, instead, on the radial

coordinate of the spot and defined by the on-plane component of the linear momentum. Since the channels, of

the configuration in figure 61, have the same radial coordinates, the three linear phase gradients obtained, will

differ only for the orientation. Indeed, as can be seen from the figure 62, the coloured stripes of the gradients

simulated change their direction but not their period (remember that each colour is a different phase value in

the 2π-phase period).

At this point, thanks to the orthogonality of linear phase gradients with different orientation, we can multiplex

these three beams together

u2(r, θ) =
∑
i

u
(i)
2 (r, θ) (174)

This superposition, u2(r, θ), is shown in the last frame of the figure 62, where the three single beams,

characterized by the orientations φ
(1)
0 = 0°, φ(2)

0 = 120° and φ
(3)
0 = 240°, are also reported.

We remember now that a linear phase gradient can be transformed, thanks to a circular-sector transformation,

into a multipole-phase beam with phase orientation θ0 and phase strength α, given by the following conditionsθ0 = −φ0/m

α(i) = ab−mβ(i)
(175)

where a = 1.0 mm and b = 0.4 mm are the parameters of the circular-sector transformation, m = 2 is the

order of the multipole-phase beams obtained and α = 100 mm−2.

MatLab code The relative source code, used for the generation of each u
(i)
2 beam, is reported in the following.

The (i)-th phase gradient Φ(i) is called ”Phi”, the relative beam is defined as ”u2i” and the multiplexed field

is named ”u2” as in the equation 174. As usual, ”x” and ”y” are the coordinates of the observation plane
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Figure 63: The initial electromagnetic fields (i.e., the input beams of our communication link) of the configuration reported in
figure 61, obtained by a back forward propagation in a fL− fL system with a Fourier phase term ΩF as described in equation 176.

along the two axis and ”alpha” is the array of the phase strengths of the multipole-phase beams related to the

channel’s configuration to simulate.

Listing 8.1.1: linear phase gradients defintion

1 % Gaussian beam

2 u0 = exp(−( r /w0) . ˆ 2 ) ;

3

4 % l i n e a r phase g r a d i e n t s

5 u2 = ze ro s ( l ength ( x ) , l ength ( y ) ) ;

6 u2i = ze ro s ( l ength ( x ) , l ength ( y ) , l ength ( alpha ) ) ;

7 f o r i = 1 : l ength ( alpha )

8 Phi ( i ) = alpha ( i ) ∗bˆm∗ r .∗ cos ( theta + m∗ theta0 ( i ) ) ;

9 u2i ( : , : , i ) = u0 .∗ exp (1 i ∗Phi ( i ) ) ;

10 u2 = u2 + u2i ( : , : , i ) ;

11 end

8.1.2 The initial light beams

Now we can get the initial light spots, u1(r, θ), thanks to a back-forward propagation of u2(r, θ) through a

Fourier lens with the usual phase function

ΩF (r, θ) = − k

2fL
r2 (176)

and a further free-space propagation for a distance fL = 400 mm, which is the focal length of the lens. In

figure 63 it is reported the light spots so obtained, while the MatLab code is the following:

Listing 8.1.2: initial light spots

1 OmegaF = −(k/(2∗ f L ) ) ∗ r . ˆ 2 ; % l e n s phase

2 u1 = u2 .∗ exp (1 i ∗OmegaF) ; % Four ie r t r a n s f .

3 u1 = FreeSpaceProp ( u1 , L , lambda , f L ) ; % prop . a f t e r l e n s

8.1.3 The multipole-phase beams

At this point, we have to generate the superposition, u3(r, θ), of multipole-phase beams of order m associated

to the initial set of beams, {u(i)
2 }, with the linear phase gradients. We know, from chapter 5, that this procedure

consists in the mapping of the pattern of the linear phase gradient onto a circular sector. This transformation

is performed by two optical elements and, for the definition of the first one, we remember that the final circular
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Figure 64: In the first three frames we have the multipole-phase beams of order m = 2, phase strength α = 100 mm−2 and phase

orientations θ
(1)
0 = 0°, θ(2)

0 = 60° and θ
(3)
0 = 120°, obtained after the multiplexing stage for the three linear phase gradients shown

in the figure 62. In the last frame, their superposition (u3 in the MatLab code) is reported. The parameters of the circular-
sector transformation used are: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm. Brightness and colours refer to intensity and phase,
respectively.

sectors generated are characterized by an amplitude of 2π
|m| . Accordingly, in order to obtain an output beam

defined over the whole phase range of 2π, an initial |m|-fold multiplication is needed. This multiplication can

be performed by a combination of p = 1, ...,m phase terms, where each of them is a n-fold circular-sector

transformation with n = −m and rotated with respect to the others by a factor (p− 1) 2π
|m| , as in the equation

154. Equation that, for simplicity, we report in the following:

ΩMm,I(r, θ) = arg


|m|∑
p=1

eiΩ
D,(p)
m,II

 (177)

where ΩMm,I is, therefore, the phase pattern of the first optical element, i.e., the multiplier, which is a

combination of |m| terms:

Ω
D,(p)
m,II (r, θ) = A

( r
a

)B cos
[
θB + (p− 1) 2π

|m|

]
B

− C (178)

where we have defined the usual constants A, B and C as:
A := k ab

fCS

B := 1 + 1
m

C := k r2

2fCS

(179)

Now, the second optical element, placed at a distance equal to fCS , has to perform a circular-sector trans-

formation of order m, characterized by the following phase pattern

ΩMm,II(r, θ) = A
(r
b

)1+m cos[(1 +m)θ]

1 +m
− C (180)

In our simulation, we have adopted the following values of the design parameters: fCS = 10 mm, a = 1.0 mm

and b = 0.4 mm.

At this point, the multiplexing procedure is completed. We have obtained an electromagnetic field, u3(r, θ),

as reported in figure 64, which is the superposition of the multipole-phase beams, {u(i)
3 (r, θ)}, associated to

the initial light spots. In the same figure, we show, also, these single multipole-phase beams related to the

linear phase gradients that can be seen in figure 62. Notice how the phase pattern of the beams is the same

but rotated. Indeed, the initial light spots have the same radial coordinate and, therefore, the multipole-phase

beams will have the same phase strength.

MatLab code Here it is reported the source code used in order to define the phase term of the phase plates

necessary for the circular-sector transformation. In particular, we have defined ΩMm,I as ”Phase I” and called

ΩMm,II as ”Phase II”.
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Listing 8.1.3: multiplexer phase plates

1 A = k∗( a∗b/ f CS ) ;

2 B = 1+1/m;

3 C = k∗( r . ˆ 2 ) /(2∗ f CS ) ;

4

5 % 1 s t phase p l a t e

6 Phase I = ze ro s ( l ength ( x ) , l ength ( y ) ) ;

7 f o r p = 1 : abs (m)

8 Omega = A∗ ( ( r /a ) . ˆB) .∗ cos ( theta ∗(B)+(p−1)∗2∗ pi /abs (m) ) /B − C;

9 Phase Ip = exp (1 i ∗Omega) ;

10 Phase I = Phase I + Phase Ip ;

11 end

12 Phase I = ang le ( Phase I ) ;

13

14 % 2nd phase p l a t e

15 Phase I I = A∗ ( ( r /b) .ˆ(1+m) ) .∗ cos ( theta ∗(1+m) ) /(1+m) − C;

Below, instead, it is reported the code used in order to generate the superposition, u3(r, θ), of the multipole-

phase beams, thanks to these two phase plates. Notice that, to the field u2(r, θ) is, before, applied the phase

term ΩMm,I (first line of the code), obtaining u
(I)
3 (r, θ). Then, the beam is free space propagated for the focal

length, fCS , of the focusing term C (second line). In this way, we get the field u
(II)
3 (r, θ) and, finally, also the

second phase term, ΩMm,II , is applied (last line of the code).

Listing 8.1.4: multipole-phase beams generation

1 u3 I = u2 .∗ exp (1 i ∗ Phase I ) ; % 1 s t phase p l a t e

2 u 3 I I = FreeSpaceProp ( u3 I , L , lambda , f CS ) ; % prop . between the p l a t e s

3 u3 = u 3 I I .∗ exp (1 i ∗ Phase I I ) ; % 2nd phase p l a t e

8.1.4 Magnification and propagation of the multiplexed beam

As initially said, before propagating the electromagnetic field from the transmitter to the receiver, this

light beam has to be magnified in the order of the centimetres, to avoid an excessive divergence of the field

over long distances. Remember, indeed, that we want to transmit the signals along a link of the order of the

kilometres. This magnification can be achieved thanks to a 4f configuration, i.e., a telescope. The two more

simple possibilities are the Galilean telescope, where a diverging lens, L1, is followed by a converging lens, L2,

and the Keplerian telescope, composed by two converging lenses. Each lens produces a phase term like the one

described in the equation 176 with the substitution fL ←→ f1, f2, where f1,2 are the two focal lengths of the

lenses of the telescope. Remembering that the magnification power, MP , of a telescope is the ratio of the two

focal lengths

MP =
f2

f1
(181)

choosing properly these two values, f1 and f2, one can set the size of the beam to transmit.

Then the beam can be correctly propagated in the free space between the transmitter and the receiver. However,

in order to focus, properly, the transmitter output beam into the receiver, a further phase term ΩFz has to be

introduced, where, now, f is the transmission distance

ΩFz (r, θ) = − k

2f2
r2 (182)
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In an experimental setup this can be achieved introducing a further lens after the telescope with a focal

length f . Moreover, in order to compensate the Fresnel term, ΩFz , another identically lens has to placed before

the detector. Now, the detected beam could be sorted in a spots configuration which is correlated to the input

one. However, we recall from the theory that, a multipole-phase beam of order m = 2 characterized, in the

original plane (r, θ), by a phase structure

Ω(i)(r, θ) = α0r
2 cos(2(θ − θ0)) (183)

after the propagation for the distance f1, the phase pattern of its wavefront becomes

Ω(1)(ρ, φ) = α1ρ
2 cos(2(φ− θ1)) (184)

where θ1 = θ0 + π
2 and the phase strength is given by the equation 127

α1 =
k2

4f2
1

1

α0
=

k2

4f2
2

M2
p

α0
(185)

where we have substituted f1 with the equation 181. At this point, supposing we are using a Keplerian

telescope, where the distance between the two lenses is the sum of their focal lengths (f1 + f2), the beam has

to be propagated for a further distance f2, and the same relation gives the new phase strength:

α2 =
k2

4f2
2

1

α1
=

α0

M2
p

(186)

where we have substituted α1 with the equation 185. Now the rescaled beam is propagated for the distance

f between the transmitter and the receiver stage. Therefore, we have:

α3 =
k2

4f2

1

α2
=

k2

4f2

M2
p

α0
(187)

Now, since in this case the beam waist has to be magnified from the order of the hundreds of micrometers to

the centimetres, the magnification factor is very high: Mp ∼ 102. Therefore, α3 << α0. However, we remember

that the centres, of the demultiplexed final light spots, have a radial coordinate, rC , which is related to the

phase strength by the following relation

rC = fL
λ

2π

αbm

a
∝ α (188)

This means that, reducing α, also the spot positions change. For this reason, a modification of α3 is needed

in order to obtain the same light spot configuration of the initial one. Therefore, a further rescaling of the beam

is necessary and can be performed with a second telescope. This telescope will be identical to the previous one,

but with the two lenses in the inverted order, producing a resize of the beam by the factor M−1
P . In this way,

after the further propagation between the two lenses of this second telescope, the final phase strength becomes

αf =
k2

4f2

M4
p

α0
(189)

Setting Mp properly, the multipole-phase beam transmitted can be correctly reduced to the original size and

the demultiplexing can be performed, producing a final configuration of light spots similar to the initial one.

Actually, the final spots will have a different angular coordinate, θC , with respect to the original light beams.

Indeed, from the equation 184, the phase orientation of the transmitted multipole-phase beam, is shifted of π/2

in respect to θ0 in each step: the first telescope, the link propagation and the final telescope. Therefore, in the

case of beams with phase order m = 2, the azimuthal coordinate of the final spot will be shifted of an angle of

2 · 3π/2 = 3π. This angle deviation, and the changing of the phase strength 189, have been correctly observed

in the simulation described in this chapter.

From a simulation point of view, in order to reduce the computational time, the rescaling of the beam is
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Figure 65: The transmission field at various intermediate distances between the transmission and the receiver stage of the com-

munication link simulated in this section. In the first frame, the multiplexer output (i.e., the field u
(2)
3 of figure 64) is reported.

In the following frames, it is shown the evolution of the rescaled wavefronts during the free space propagation along the commu-
nication link. Finally, in the last frame, it is reported the multipole-phase beam after the descaling (i.e., the impinging field to
the Transformer phase plate, ΩDm,1, of the demultiplexing receiver stage). Brightness and colours refer to intensity and phase,
respectively.

performed by simply resizing each pixel of the observation plane where the wavefront of our beams is simulated.

Indeed, we recall that the coordinates of this plane are defined by a mesh [X,Y], where each axis is sampled

with the usual spatial discretization

x←→
[
−L

2
: ∆x :

L

2
−∆x

]
(190)

where L is the side of the squared observation plane and M the number of samples. This means that the

initial size, of the single pixel of the mesh, is ∆x = L/M . In order to perform a rescaling of the beams, we can

multiply this size for the scaling factor Mp

L

M
←→ L

M
·Mp (191)

In this way, the matrix, X × Y , of the mesh of the rescaled beam, will have the same number of pixels as

in the original field, but with the wavefront magnified. Notice that even the coordinates, of the both axes of

the observation plane, have to be rescaled for the same Mp factor, in order to obtain, finally, images with the

proper axis values. Remember, indeed, that in a MatLab image, the values of the matrix elements (which make

up the image) and the arrays of the axis coordinates, are independent objects.

In order to perform this resizing, we can apply, directly, the phase term ΩFz to the multiplexer output beam,

u3(r, θ), remembering, however, to make the substitution r2 −→ (Mpr)
2 in the equation 182. In this way we

have implemented the above-mentioned rescaling, avoiding the use of a telescope (from a computational point of

view. The telescope is indeed necessary in practical implementations). After that, the field can be propagated,

keeping in mind that the observation plane has to be resized for the same factor Mp. In figure 65, for instance,

it is reported the wavefront of the simulated electromagnetic field, u
(2)
3 (r, θ), at various distances. Notice, from

the second frame of the figure, how the multiplexer output of the first frame has been correctly magnified to the

order of the centimetres. Notice moreover that, due to the Fresnel’s correction term with the same expression

182, also the receiver beam is rescaled, but by a factor M−1
p , as it can be seen from the last frame of the figure.
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Figure 66: Effect of the scaling factor Mp on the final light spots disposition

The scaling factor It is important to open a parenthesis about the scaling factor, Mp, due to its close

relationship with the phase strength of a transmitted beam, as previously seen. Indeed, even if the magnification

of the transmitter beam, and the rescaling of the received one, are executed with the same scaling factor, after

a free space propagation for a long distance, the detected beam can be different in size with respect to the

original one. This is due to the natural divergence of an electromagnetic field during a free space propagation.

However, we have seen that, a magnification of the wavefront is connected to a variation of the phase strength.

Consequentially, the final light spots can be displaced differently, in the radial direction, in respect to the initial

ones. In figure 66, for instance, the simulation outputs of the same communication link, for three different

scaling factors, are reported. It is easy to see that, incrementing the scaling factor, the radial coordinate of the

light spots increases. Conversely, the angular coordinates of the spots, remain the same. For this reason, in our

simulation, Mp is chosen in order to produce an output as close as possible to the original channel configuration,

whose radial coordinate are represented by the circle plotted with a dashed line in the figure 66.

MatLab code In the following it is shown the MatLab code used for the magnification of the beam, u3(r, θ),

and its propagation between the transmitter and the receiver. In the first line of the code it is defined the phase

term ΩFz , which is called ”OmegaFz”. Notice that this phase function contains the power M2
p as anticipated.

Indeed, since the beam has to be rescaled, also the radial coordinate r, has to be magnified by the same Mp

factor. Then, this focusing phase term ΩFz is applied to the multiplexer output beam u3(r, θ) (second line of

the code below). At this point, the field can be free space propagated for the distance zmax (third line). Notice

that, due to the necessary resizing of the beam, the side of the observation plane is multiplied by the same

factor Mp. Finally, at the received beam, the compensation of the Fresnel’s term − k
2zmax

r2 is applied (last line

of the code).

Listing 8.1.5: rescaling and propagation of the field

1 OmegaFz = −(k/(2∗ z max ) ) ∗( r . ˆ 2 ) ∗(Mpˆ2) ; % l e n s phase

2 u3 = u3 .∗ exp (1 i ∗OmegaFz) ; % f o c u s i n g

3 u3 = FreeSpaceProp ( u3 , L∗Mp, lambda , z max ) ; % f r e e space prop .

4 u3 = u3 .∗ exp (1 i ∗OmegaFz) ; % Fresne l c o r r e c t i o n

8.1.5 Demagnification and sorting of the received beam

After the propagation, the following simulation step is the reconversion of the received field, u3(r, θ), into

the initial configuration, where the single channels of information are identified by a set of isolated light spots.

This operation, described in detail in the chapter 4, is performed by a first optical element which transforms

each multipole-phase beam into a linear phase gradient thanks to a circular-sector transformation. This trans-

formation is described by a phase term, ΩDm,I , that is identical to the second element of the multiplexer, ΩMm,II .

After a phase correction, produced by the (PC)-phase plate, characterized by the following phase pattern
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Figure 67: On the top, the demultiplexer input beams (and their superposition), i.e., the multipole-phase beams of figure 64 after

the free space propagation between the transmitter and the receiver stages of the link, as reporting in figure 65 for the field u
(2)
3 .

On the bottom, instead, we have the demultiplexer output beams (and their superposition), i.e., the linear phase gradients used
in order to obtain the final light spots after the application of the phase term ΩF . Brightness and colours refer to intensity and
phase, respectively.

ΩDm,II(r, θ) = A
( r
a

)B cos [θB]

B
− C, (192)

where we remember that 
A := k ab

fCS

B := 1 + 1
m

C := k r2

2fCS

(193)

we obtain the demultiplexer output beams reported in the figure 67, where it is possible to see the coloured

stripes of the linear phase gradients of their wavefronts. In the top of the same figure, the demultiplexer input

fields {u(i)
3 } and their superposition, i.e., the rescaled multipole-phase beams detected at the receiver, are also

shown. Finally, after the application of the same phase term 176, these linear phase gradients are Fourier

transformed into the original light spots configuration, as reported in the bottom of the figure 68. Actually, the

spots are shifted of a π-angle, with respect to the initial positions (shown in the top of the figure).

MatLab code In the MatLab code below, it is reported the demultiplexing procedure used in the simulation.

The phase terms, ΩDm,I and ΩDm,II , called ”Phase III” and ”Phase IV” respectively, are reported in the line two

and three.

Listing 8.1.6: rescaling and propagation of the field

1 % phase p l a t e s f u n c t i o n s

2 Phas e I I I = Phase I I ; % 3rd phase p l a t e (CS)

3 Phase IV = A∗ ( ( r /a ) . ˆB) .∗ cos ( theta ∗B) /B − C; % 4th phase p l a t e (PC)

4

5 % propagat ion

6 u 3 I I I = u3 .∗ exp (1 i ∗Phase3 ) ; % 3rd phase p l a t e

7 u3 IV = FreeSpaceProp ( u3 I I I , L , lambda , f CS ) ; % prop . between the two p l a t e s

8 u3 IV = u3 IV .∗ exp (1 i ∗Phase IV ) ; % 4th phase p l a t e

9 u3 IV = u3 IV .∗ exp(−1 i ∗( k/(2∗ f L ) ) ∗ r . ˆ 2 ) ; % Four ie r t r a n s f . ( l e n s )

10 u4 = FreeSpaceProp ( u3 IV , L , lambda , f L ) ; % f i n a l prop .
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Figure 68: On the top, the initial light spot configuration as reported in figure 63 (i.e., the input signals of the communication link
analysed). On the bottom, the detected fields after the demultiplexing receiver stage (i.e., the output signals of the link).

8.2 Link optimization

The link described previously is, then, optimized in order to carry an higher number of channels but keeping

their Cross-Talk values under the just mentioned limit of −15 dB. In the simulation, it was adopted an initial

set of linear phase gradients characterized by a beam waist of w0 = 1.0 mm for an electromagnetic field with

the usual wavelength of λ = 632.8 µm. The orientations of the linear phase gradients, and their 2π-phase period

densities, are chosen correspondingly to the input configuration of light beams reported on the left of the figure

69. These input beams, corresponding to thirty different communication channels, are arranged over two circular

distributions. The internal one, characterized by a radius related to a phase strength of α1 = 100 mm−2, is

made up of sixteen beams. The external distribution, instead, is composed by fourteen light spots with a radial

coordinate corresponded to an α2 value of 150 mm−2. The parameters for the generation of superposition of

multipole-phase beams of order m = 2, used for the transmission of these thirty channels, are again: fCS =

10 mm, a = 1.0 mm and b = 0.4 mm. The focusing of the initial and the final light spots are, instead, performed

thanks to a Fourier lens with a focal length of fL = 400 mm. Finally, before the propagation, the beam is

magnified by a factor Mp = 140 and, after the propagation, the field is reduced by the same factor.

In the figure 69 are, also, reported the two constellations of spots after the propagation on the whole link, long

1 km. Notice how the fourteen external beams, after the transmission, have become the internal ones. Indeed,

from the equation 189, it can be seen that, the higher is the initial phase strength α0, the lower is the final

phase strength αf . Consequentially, from the equation 188, the lower is the radial coordinate of the spots.

In order to evaluate the performance of this link, the Cross-Talk of each channel was computed. The results

of this computation are shown in figure 70. In the first frame (from the left), it is possible to see the output

beams with the detection areas (dashed line) used in order to compute the XT values. These areas have a

radius of 50 µm for both the internal and external configuration. In the second frame, instead, it is plotted the

intermodal map of the collected light intensity on each channel’s detection area for each output light beam. It

is worth noting the negligible values of the off-diagonal elements, denoting the lower interference between the

channels, as it can be confirmed by the low values of the Cross-Talk reported in the last image.
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Figure 69: On the left, the initial configuration of the transmission channels of a 1 km communication link composed by N1 =
16 internal light spots, and N2 = 14 external spots, related to multipole-phase beams of order m = 2 and phase strength α1

= 100 mm−2 and α2 = 150 mm−2, respectively. These light spots are obtained by a back forward propagation in a fL − fL
configuration with fL = 400 mm, starting from a set of linear phase gradients of wavelength λ = 632.8 µm and waist w0 = 1.0 mm.
On the right, instead, the transmitted beams (i.e., the output signals of the link) are reported. Notice how the internal spots
are now the internal ones. The parameters of the circular-sector transformation of the transmission multiplexing stage, and the
receiving demultiplexing stage, are: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm, while the focal length of the focusing of the final
spots is, again, fL = 400 mm, and the rescaling factor of the multipole-phase beams during the free space propagation is Mp =
140.

Figure 70: The Cross-Talk analysis of the detected beams of the figure 69. From the left: the output of the link with the detection
areas (dashed line) used for the XT computation, the intermodal map and the final XT values.
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9 Design of an experimental free-space optical communication sys-

tem

In the chapter 7 we have seen three different possible designs of a demultiplexer working with the multipole-

phase beams of order m = 2, m = 3 and m = 4. Now we want to adapt these designs to an experimental

apparatus, in order to perform demultiplexing tests on the multipole-phase beams. However, due to some

experimental limits, the design parameters have to be changed, and further simulations are necessary. These

limitations are mainly related to the size and resolution of the optical elements available in the laboratory, which

dictates an increment of the focal length, fCS , of the focusing terms of the Transformer and the Corrector phase

plates. Actually, since these two elements are supposed to be implemented using a spatial light modulator

(SLM) with a resolution of 8 µm, the laser beam of the optical setup has to be magnified, from the scale

of the micrometers to the scale of the millimetres. This magnification is necessary to transfer properly the

phase functions of these phase plates to the light beam. Consequentially, the parameters of the circular-sector

transformation, used in the demultiplexing process are forced to be in a range where phase distortions can

appear. Therefore, the obtained final configuration of light spots, in terms of quality, is far away from the

results seen in the previous chapters, but they are still remarkable. In particular, the number of channels has to

be reduced in order to keep the Cross-Talk level around the −15 dB limit requested in the telecommunication

technologies. Moreover, due to these phase distortions, the manually positioning of the detection areas of the

light spots was used also for the multipole-phase beams of order m = 2 and not only for the higher phase orders.

However, despite all the these limitations, we are still able to increase the channels number of at least one order

of magnitude using spatial division multiplexing based on multipole-phase beams.

9.1 The light spot configuration

In the case of multipole-phase beams of order m = 2 it was adopted the same double circular configuration

seen in the chapter 7. This light spot disposition is composed by an external circle of N1 = 10 spots, whose

related multipole-phase beams are characterized by a phase strength α(1) = 16 mm−2 and phase orientations,

θ
(1)
0,i=1,...,N1

, assumed in the range [0; 2π
m ]. Therefore, these θ0 values are separated by an angular interval of

∆θ
(1)
0 =

1

m

2π

N1
(194)

The relative MatLab code, used for the generation of the array, ”theta0 1”, of these θ
(1)
0 values, is reported

below. Notice that, to avoid the superposition of the 0 and 2π spots, the last element of the array (corresponding

to 2π) was deleted, as done above. Then, in the last line, an array of the same length of ”theta0 1” and filled

with the α(1) values are defined. In this way, we have the two parameters (α, θ0)(1) for each multipole-phase

beam of the (1)-configuration of light spots.

Listing 9.1.1: external configuration definition

1 dtheta0 1 = 2∗ pi /(m∗N1) ; % spot s s epa ra t i on

2 the ta0 1 = 0 : dtheta0 1 : 2∗ pi /m; % theta0 1 array

3 the ta0 1 ( end ) = [ ] ; % avoid 0−2p i s u p e r p o s i t i o n

4

5 a lpha 1 = ones (1 , l ength ( the ta0 1 ) ) ∗ alpha1 ;

At this point, a further set of six channels are defined by multipole-phase beams with a phase strength

α(2) = gα(1) with g = 0.5 and orientations θ
(2)
0,i=1,...,N2

distributed in the same range [0; 2π
m ]. However, as just

seen in the chapter 7, an additional angle of ∆θ
(1)
0 /2 is summed up to these values in order to avoid excessive

interference from the spots of the two distributions. The relative MatLab code is reported in the following.

Notice that the code is identically to the previous one, except for the addition of the shift term
∆θ

(1)
0

2 to the
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array ”theta0 2” of the θ
(2)
0 values (fourth line). Notice also that the phase strength array is filled with gα(1)

in order to obtain the two parameters (α, θ0)(2) for each beam of the (2)-configuration of spots. Then, in the

last two line of the code, the arrays of the two distributions are unified, obtaining the complete set of the initial

multipole-phase beam parameters.

Listing 9.1.2: internal configuration and the total one

1 dtheta0 2 = 2∗ pi /(m∗N2) ; % spot s s epa ra t i on

2 the ta0 2 = 0 : dtheta0 2 : 2∗ pi /m; % theta0 2 vec to r

3 the ta0 2 ( end ) = [ ] ; % avoid 0−2p i s u p e r p o s i t i o n

4 the ta0 2 = theta0 2 + dtheta0 1 /2 ; % s h i f t

5

6 a lpha 2 = ones (1 , l ength ( the ta0 1 ) ) ∗ g∗ alpha1 ;

7

8 % f i n a l t o t a l c o n f i g u r a t i o n s

9 theta0 = [ the ta0 1 the ta0 2 ] ;

10 alpha = [ a lpha 1 a lpha 2 ] ;

Figure 71: The output light spots of the superposition of sixteen multipole-phase beams of order m = 2 demultiplexed in the
simulation analysed in this section. In particular, this output configuration is composed by N1 = 10 external spots, related to
multipole-phase beams of phase strength α(1) = 16 mm−2 and phase orientations in the range [0;π], and N2 = 6 internal spots
related to multipole-phase beams of phase strength α(2) = 8 mm−2 and the same θ0 range. The parameters of the circular-sector
transformation are: fCS = 250 mm, a = 2.0 mm and b = 0.85 mm.

In figure 71 it is reported the simulated demultiplexer output, where it is possible to see the configurations

of the N1 + N2 = 16 final light spots. Notice that the spot numeration is in the counterclockwise direction,

while the θ0,i=1,... values increase from 0 to 2π, as can be seen from the previous MatLab codes (line two). This

is not surprising if one remembers that a multipole-phase beam, of phase orientation θ0, is demultiplexed into

a spot of azimuthal angle θ = −mθ0. We recall also that the radius of the two circular distributions is defined

by the phase strength thanks to the equation 113:
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Figure 72: The whole experimental setup (a), a representation of the SLM#2 with the two phase plates used in the circular-sector
transformation (b), and the propagation of the electromagnetic field between the two phase plates (c). The focal lengths used are:
f1 = 2.54 cm, f2 = 15.0 cm, f3 = 20.0 cm, f4 = 25.0 cm.

R = fL
λ

2π

αbm

a
=

0.23 mm for the external circle

0.12 mm for the internal circle
(195)

where, in this case, we have assumed the following design parameters. For the circular-sector transformation

we have: a = 2 mm, b = 0.85 mm and fCS = 250 mm, while the spot focusing is performed thanks to a lens

of focal length fL = 400 mm. Notice, as anticipated, the high value of fCS (with respect to the one used in

the chapter 7), due to the experimental limitations that we will see in the following section 9.2. In order to

compensate this increment, and the use of an initial light beam with a waist in the scale of millimetres, the two

parameters, a and b, are also increased. This set of values, however, produces the irregularities that can be seen

in figure 71, in particular, for the external spots distribution.

9.2 Propagation of the light beam

Once defined the final desired spot configuration, we have to simulate the propagation of the electromagnetic

field along the demultiplexing chain of our experimental setup, reported in figure 72. A detailed description

of the apparatus can be found in the paper [6], where multipole-phase beams with phase order m = 2 have

been already experimental studied by our research group. Here we can limit us to say that a laser source is

propagated into a first spatial light modulator which provides the phase term necessary to generate a multipole-

phase beam. The beam is then propagated into a second SLM, which is divided into two parts, as it can be seen

in the (b)-frame of the figure. The first part invested by the beam provides the phase term necessary to the

circular-sector transformation of the multipole-phase beam into a linear phase gradient. Thanks to the mirror

M, the beam is so bounced back into the second half part of the SLM, which provides the phase correction of

this linear gradient and, also, adds the Fourier phase term necessary for the generation of the final light spot.

It is important to notice that the presence of the mirror M dictated the focusing term, of the circular-sector

transformation, to have a value of the focal length fCS in the order of the decimetres. Otherwise, if the mirror

is place too closely to the SLM, the input beam could be interrupted by the mirror itself. This limitation, as

anticipated, forces the values of the parameters of the circular-sector transformation, to be in a range that can

produce phase distortions.

Now, from a simulation point of view, we can idealize the experimental setup in a more simply configuration, as

described in figure 73. The generation of the initial light beam, its conversion to a multipole-phase beam and the

circular-sector transformation (CS), can be performed in the same position, for instance, set as the origin of the
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Figure 73: Demultiplexing simulation setup. From the left, the initial Gaussian beam is transformed into a multipole-phase beam,
to which it is applied the phase term ΩDm,1 (equation 199) in order to perform the circular-sector transformation. Then, after

the phase correction thanks to the phase plate ΩDm,2 (equation 200), we get the linear phase gradient, whose phase period and
orientation is related to the phase strength and orientation of the initial multipole-phase beam. Finally, at the same position, the
phase pattern ΩF (equation 203) is applied in order to get the final light spot at the distance fL, where, from an experimental
point of view, is placed the sensor CCD#2.

propagation axis (the z-axis in our notation). Then, the simulated beam can be free space propagated between

the two half parts of the SLM#2. After that, we have the phase correction (PC) and the application of the

phase Fourier term ΩF (characterized by a focal length fL). Finally, after a further free space propagation for

the distance fL, we get the final light spot related to the initial multipole-phase beam. The detailed descriptions

of these simulation steps, which are, actually, the same as seen in the chapter 4 for the demultiplexing of a

generic set of multipole-phase beams, are reported in the following.

9.2.1 Definition of the observation plane

The first step is the usual spatial discretization of the x and y-axis,

x→
[
−L

2
: ∆x :

L

2
−∆x

]
(196)

in order to sample the observation plane with a mesh of coordinates (X,Y), where we remember that L is

the linear size of the observation plane and M is the number of samples along each axis. The MatLab code is

still the following

Listing 9.2.1: space discretization

1 dx = L/M; % sample i n t e r v a l

2 x = −L/2 : dx : L/2−dx ; % x coords

3 y = x ; % y coords

4 [X,Y] = meshgrid (x , y ) ; % c a r t e s i a n coords

5 [ theta , r ] = ca r t 2po l (X,Y) ; % po la r coords

9.2.2 The initial set of multipole-phase beams

Once specified the observation plane, the initial laser beam can be defined. Our laser, of wavelength λ =

632.8 nm and waist size w0 = 240 µm, is expanded, thanks to the lenses, L1 and L2, in order to get a Gaussian

beam, u0, of waist size w0 = 2.5 mm (the starter point of our current simulation).

u0(r, θ) = exp

{
−
(
r

w0

)2
}

(197)
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Figure 74: On the left, the simulated Gaussian beam of wavelength λ = 632.8 nm and waist w0 = 2.5 mm. On the right, the relative
multipole-phase beam for α(1) = 16 mm−2 and θ0 = 72° (fifth spot of the figure 71). Brightness and colours refer to intensity and
phase, respectively.

The expansion of the laser beam is necessary to have a good resolution on the first SLM, which creates the

multipole-phase beam. The simulated wavefront, of the initial beam, is reported on the left of the figure 74,

while the MatLab code of its generation is, as usual, the following:

Listing 9.2.2: initial gaussian beam

1 u0 = exp(−( r /w0) . ˆ 2 ) ;

Obtained the Gaussian field, each i-th multipole-phase beam, one for each (α, θ0) of our configuration, is

generated individually in order to compute, in the end, the Cross-Talk map. For example, in figure 74 it is

shown the wavefront of the multipole-phase beam related to the fifth spot of the demultiplexer output reported

in figure 71. Remembering the phase function, Ω(r, θ), of a multipole-phase beam

Ω(r, θ) = αrm cos[m(θ − θ0)] (198)

the MatLab code for the generation of the i-th multipole-phase beam, u(i)(r, θ), is the following:

Listing 9.2.3: i-th multipole phase beam

1 u1 ( : , : , i ) = u0 .∗ exp (1 i ∗ alpha ( i ) ∗( r . ˆm) .∗ cos (m∗( theta−theta0 ( i ) ) ) ) ;

9.2.3 Circular-sector transformation

The multipole-phase beam, u1, generated by the SLM#1, is then propagated in the free space between the

two SLMs. In our simulation, the Gaussian beam and its transformation into a multipole-phase beam, are

generated in the same point (i.e., the origin of the z-axis) and the propagation between the two SLMs can be

ignored. Arrived at the second SLM, thanks to the mirror M, the beam is bounced between the two half sections

of the SLM#2 (as reported in the c-frame in figure 72) for a distance equal to the focal length, fCS , of the

circular-sector transformation plates. Indeed, the first half part (the transformer (CS)) produce the unwrapping

of the multipole-phase beam (first line of the MatLab code reported below) and its transformation into a linear

phase gradient at the distance fCS . For this reason, the beam is free space propagated for this distance (second

line of the code). Then, the beam arrives at the second half section of the SLM#2, the (PC)-phase plate, which

produces the correction to the phase distortion introduced during the free space propagation between the two

parts of the SLM#2 (third line). The MatLab code is, as usual, the following:

Listing 9.2.4: Circular-sector transformation

1 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase 1 ) ; % CS trans form

2 u1 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f CS ) ; % prop . CS − PC

3 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase 2 ) ; % Phase Correc t ion
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Figure 75: The phase patterns,
∥∥∥ Ω

2π

∥∥∥, of the plates performing the circular-sector transformation of the simulation analysed in

this chapter. From the top left, in clockwise order: the phase pattern, ΩDm,1, of the Transformer completed of the focusing term

ΩF = −k r2

2fCS
(equation 199), the pattern of the Phase Corrector, ΩDm,1, included the same focusing term (equation 200) and,

finally, the same two patterns, ΩCS and ΩPC , without the focusing terms (equations 201 and 202, respectively). The parameters
used in order to generate these patterns are: fCS = 250 mm, a = 2.0 mm and b = 0.85 mm.

where we remember that the two phase functions, ”Phase 1” ←→ ΩDm,1 and ”Phase 2” ←→ ΩDm,2, of the

unwrapper and the phase corrector, respectively, are expressed by the equations:

ΩDm,1 = ΩCS − k
r2

2fCS
(199)

ΩDm,2 = ΩPC − k
r2

2fCS
(200)

where ΩCS and ΩPC are defined as:

ΩCS = k
ab

fCS

(r
b

)1+m cos[(1 +m)θ]

1 +m
(201)

ΩPC = k
ab

fCS

( r
a

)1+ 1
m cos[(1 + 1

m )θ]

1 + 1
m

(202)
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Figure 76: The circular sector transformation of the multipole phase beam with phase strength α(1) = 16 mm−2 and orientation
θ0 = 72°, related to the fifth spot of the simulation output reported in figure 71. From the top left, in the first two frames, we
have the multipole-phase beam at the input of the Transformer and after it. Then we have the field at five different positions
between the Transformer and the Phase Corrector, in order to have an idea of the propagation of the beam between these two
phase plates. Finally, the field after the Phase Corrector is shown, where you can note the stripes of the linear phase gradient. As
usual, brightness and colours refer to intensity and phase, respectively.

These phase terms, ΩCS and ΩPC , and the same patterns with the focusing term and the Fresnel correction

term, respectively, are plotted in figure 75. Instead, in figure 76, we can see the whole circular-sector trans-

formation for the fifth multipole-phase beam reported on the right of the figure 74. In the first frame we have

the beam at the input of the first half part of the SLM#2, i.e., the (CS)-phase plate, then it is reported the

wavefront at various distances between the two parts of the SLM#2 and, finally, we have the field after the

(PC)-phase plate, where it is possible to see the coloured stripes of the linear phase gradient.

9.2.4 Focusing of the spots

Finally, the beam is Fourier transformed (first line of the MatLab code reported in the following) and

propagated in free space to the detector CCD#2, placed at the focal length fL, where the beam spot appears

(second line of the code).

Listing 9.2.5: Fourier transformation

1 u1 ( : , : , i ) = u1 ( : , : , i ) .∗ exp (1 i ∗Phase F ) ; % l e n s

2 u2 ( : , : , i ) = FreeSpaceProp ( u1 ( : , : , i ) ,L , lambda , f L ) ; % f i n a l f i e l d

Experimentally, the Fourier transformation is performed by the same optical element as the phase correction,

where the following phase term (called ”Phase F” in the previous code) is added to the second half section of

the SLM#2.

ΩF (r, θ) = − k

2fL
r2 (203)

In figure 77 it is shown the intensity pattern of the final field, u2, for fL = 400 mm and the final light spot

of the multipole-phase beam considered in this simulation description.

9.2.5 Computation of the cross-talk

The final step of the simulation is the computation of the Cross-Talk as described in the chapter 6. However,

as anticipated, due to the increment of fCS and w0, the multipole-phase beams associated to higher values of
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Figure 77: On the left, the Fourier transform phase term ΩF (equation 203) used to sort the linear phase gradient, reported in
the last frame of figure 76, into the final light spot shown on the right of this figure. Brightness and colours refer to intensity and
phase, respectively.

Figure 78: On the left, the misalignment of the light spots of the configuration reported in figure 71 with respect to their expected
positions, represented by the detection areas plotted with a dashed line. These expected positions are defined by radial coordinates
described by the equation 195 and polar coordinate given by θ = −mθ0. On the right, the manual correction implemented in a
MatLab macro.
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α can produce phase distortions, are described in section 3.5. Indeed, as it can be seen from the figure 78, the

detection areas of the external configuration, whose boundary are plotted on the expected positions given by

the phase strength, result misaligned with respect to the light spots. Since this misalignment can produce a

worsening of the Cross-Talk, a manual correction was implemented in the MatLab routine (see the code reported

below), and it was performed before the Cross-Talk computation, whose results are reported in the figure 79.

Notice that, despite the presence of remarkable phase distortions in the external light spots, the off-diagonal

elements of the intermodal overlapping map have negligible values. This fact entails that the Cross-Talk values

of the communication channels, remain below the −10 dB, which is an acceptable condition for our experimental

apparatus.

Listing 9.2.6: manual mask positioning

1 % t h e o r e t i c a l coords o f the beam spot s

2 r a d i u s f = @( alpha ) ( f L /k ) ∗( alpha ∗bˆm) /a ;

3 [ Xc , Yc ] = po l 2 ca r t (−m∗ theta0 , arrayfun ( r a d i u s f , alpha ) ) ;

4

5 % i n t e r a c t i n g p l o t o f the t o t a l i n t e n s i t y to s e t the masks p o s i t i o n s

6 h = f i g u r e ( ) ;

7 imagesc (x , y , I t o t ) ;

8 colormap ( ' gray ' ) ;

9 drawnow

10 g l o b a l pos ;

11

12 % f o r each l i g h t spot an c i r c l e −shaped mask i s c r ea ted ( rad iu s RI )

13 f o r i = 1 : l ength ( alpha )

14 h E l l i p s e ( i ) = i m e l l i p s e ( gca , [ Xc( i )−RI Yc( i )−RI 2∗RI 2∗RI ] ) ;

15 pos ( i , : ) = g e t P o s i t i o n ( h E l l i p s e ( i ) ) ;

16 addNewPosit ionCallback ( h E l l i p s e ( i ) ,@(p) getpos ( h E l l i p s e ( i ) , i ) ) ;

17 end

18

19 % the p o s i t i o n i n g remains ac t i va t ed u n t i l the ”p” button was pre s s ed

20 whi le t rue

21 pause (1 ) ;

22 i f strcmp ( get (h , ' CurrentCharacter ' ) , 'p ' )

23 break

24 end

25 end

9.3 Demultiplexer for order m > 2

The same experimental apparatus was design, for the first time, also for multipole-phase beams characterized

by a phase order m > 2. The only differences, with respect to the previous case, will be the phase patterns

loaded onto the two SLMs. Indeed, as seen in chapter 4.2, since the phase patterns of the Transformer and the

Corrector depend on m, the parameters, a and b, of the circular-sector transformation have to be different from

the case m = 2. For this reason, new simulations are performed for the two multipole-phase orders m = 3 and

m = 4.
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Figure 79: From the left, in the first frame, we have the demultiplexer output of the simulation for multipole-phase beams of order
m = 2. It is worth noting how the detection areas (dashed lines) have been modified with respect to the figure 78 in order to
compute the Cross-Talk correctly. In the second frame, instead, we have the intermodal overlapping map, where the indexes refer
to the spots numeration reported in white in the first frame. Finally, the plot of the Cross-Talk values is shown.

9.3.1 Demultiplexer for order m = 3

In figure 80 it is reported the best configuration obtain for m = 3, which is composed by an external circular

distribution of light spots related to a set of eight multipole-phase beams with a phase strength α = 120 mm−3.

In additional, there are two internal spots corresponding to multipole-phase beams with θ0 = 0° and α =

20 mm−3 and −60 mm−3. These parameters, as the θ0 values of the external distribution, were chosen one by

one in order to compensate the phase distortion produced by the high value of α. Indeed, due to the term bm

in the equation 150 (since b < 1), in order to keep the spots sufficiently far from each other, α has to be larger

than its value in the m = 2 case. However, a larger value of α implies a higher phase distortion and spots

less focused. This effect is theoretically described in the section 3.5, here we want simply remember that the

condition to be respected, in order to avoid excessive distortions, is expressed by the equation:

α� 2π

λ

aw0

fCSmbm
(204)

In our case, with a = 4 mm, b = 0.45 mm, fCS = 250 mm, w0 = 2.0 mm and λ = 632.8 nm, we have

αmax = 1.16 × 103 mm−3, only a factor ten bigger than the α = 120 mm−3 adopted. In order to increment

αmax, one can play with the parameters of the circular-sector transformation a, b and fCS , for example,

incrementing a and reducing b and fCS . However, as we have seen, fCS has to be equal to the distance travelled

by the beam from the first half of the SLM#2 to the second one. Changing the position of the mirror, it is

possible to reduce fCS . However, the range is limited by the need not to hinder the incident beam with the

mirror; for our experimental setup, fCS ≤ 250 mm is prohibitive. Even a and b cannot change a lot without

creating problems with the circular-sector transformation of the multipole phase beams. For all these reason,

in the design of our experimental setup, the phase order m, as a degree of freedom, is less practically controlled

with respect to α and θ0 and a configuration with a high number of channels and low cross-talk values is very

hard to achieve.

To better understand the phase distortions introduced by the high value of α that we have been forced to adopt,

in figure 81 the spot distribution and their theoretical positions in the absence of the phase alteration (dashed

line) are reported. It is easy to see that, in order to have spots equally spaced, a non-regular set of θ0 values

was adopted: {0°, 70°, 110°, 150°, 180°, 210°, 240°, 290°}/m.

9.3.2 Demultiplexer for order m = 4

Similarly to the previous case, it was adopted a circular configuration of 8 spots: α = 180 mm−4 and θ0 =

{0°, 70°, 115°, 150°, 180°, 210°, 240°, 290°}/m, plus an internal spot characterized by the values θ0 = 0° and α

= −20 mm−4, while the circular-sector transformation has the parameters a = 4 mm and b = 0.5 mm. The final

computation of the Cross-Talk has produced the results reported in the figure 82.
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Figure 80: From the left, in the first frame, we have the demultiplexer output of the simulation for multipole-phase beams of order
m = 3. In the second frame, we have the intermodal overlapping map, where the indexes refer to the spots numeration reported
in white in the first frame. Finally, the plot of the Cross-Talk values is shown in the last frame.

Figure 81: The misalignment of the spots with respect to their expected positions, for the case of multipole-phase beams of order
m = 3 (on the left), and m = 4 (on the right).

The results of the simulation analysed in this chapter have demonstrated how the higher phase orders, with

respect to the m = 2 case, are harder to be handled for space division multiplexing of a communication system

with a high number of channels. Moreover, experimental tests on multipole-phase beams with m > 2, needs

modifications on the experimental apparatus used by our research group for the m = 2 case and here illustrated.

In particular, as seen, the focal length of the circular-sector transformation has a crucial role in the limitation

of the channels number and a strategy in order to reduce it has to be studied. For instance, using metasurface

devices instead of the SLMs. For this reason, the advantages of the metasurfaces in the framework of multipole-

phase beams, will be discussed in the next chapter.

Figure 82: From the left: the demultiplexer output with the indexes of the spots and the detection areas (dashed lines), the
intermodal overlapping map and the relative Cross-Talk values. Case of multipole-phase beams of order m = 4.
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10 Manufacturing strategies for multipole-phase beams

In this chapter, it will be described a possible strategy for the manufacturing of the optical elements necessary

in order to perform the generation and the sorting of a set of multipole-phase beams, which we have seen to be a

new way in the framework of the spatial division multiplexing techniques. In the chapter 9, we have introduced

the spatial light modulator (SLM) as possible devices able to impart, on an impinging beam, the multipole-phase

structure required in order to produce multipole-phase beams or performing the circular-sector transformation

used for their sorting. The SLMs, however, are designed for experimental applications and their cost, and

sizes, are important obstacles in an industrial view, where cheap and miniaturized systems are requested. For

this reason, in the following, the two-dimensional multifunctional metasurfaces (MS) will be introduced and

described, reporting, moreover, a MatLab algorithm for their design. Briefly, we can say that a metasurface is a

phase plate extremely thin, typically with a thickness less than one micrometer, whose structure is characterized

by a bidimensional pattern designed in the nanometric scale. Controlling the geometry of this grating, we are

able to impart almost any desired phase term on an electromagnetic field impinging the surface. Differently to

the normal optics, moreover, a MS can transfer to a radiation a multifuctional phase term, as already seen for

the spatial light modulators, for instance, in the SLM#2 of the experimental apparatus described in chapter 9,

where the same element gives both the phase correction (necessary after the circular-sector transformation of

the initial multipole-phase beam), and the Fourier term used for the sorting of the final light spots. However,

due to resolution limitations, and bulk size of the optical elements, we were limited to use focal lengths, of the

transformation in the beams’ demultiplexing, bigger than 250 mm, providing an important constraint in the

number of channels which can be transmitted with that apparatus. In this scenario, the very compact sizes of

the metasurfaces act as a way out to go through the above-mentioned limitations. For example, in figure 83, a

compact sorter for OAM beams is shown [59].

Figure 83: On the left: (a) scheme of an OAM beams’ sorter, working with separated and coaxial optical elements. The azimuthal
phase gradients of the initial OAM-beams are transformed into linear phase gradients and focused at different positions at the
focal plane of a Fourier lens. (b) The same sorter in a non-paraxial compact configuration, where the two elements are fabricated,
side-by-side, on the same facet of a quartz slab with a reflective back-side. On the right: (a) picture of the fabricated sorter mounted
on the experimental setup. (b) SEM image of the zone between the Un-wrapper and the Phase Corrector. (c, d) Phase Corrector
pictures at higher magnifications.

A first phase pattern, called Un-wrapper, transforms the azimuthal phase gradients of the input OAM-

beams into linear phase gradients. Then, a second phase plate corrects the phase distortions introduced by the

propagation between the two optical elements. Finally, in complete analogy with the demultiplexers seen for the

multipole-phase beams, a lens produces the Fourier Transform of the linear phase gradients in order to generate

the final distinct light spots associated to different values of the orbital angular moment of the input beams.

This procedure, reported on the top of the figure in a coaxial configuration (a), is incorporated into a compact
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Figure 84: Examples of optoelectronic devices. Notice the mismatch between the sizes of the optical and electronic parts.

device (b), where the phase patterns are realized as two metasurfaces placed on the same quartz slab. The slab

has a reflective back-side, in this way, adding a tilt to the first phase plate, the unwrapping beam propagates

with a non-null angle and, after a back-reflection, illuminates the second patter performing the phase correction.

In this way, the focal length of the transformation is related to the thickness of the slab and can be chosen very

short (4.572 mm in the sorter reported in figure), providing more efficiency demultiplexers.

It should now be clear how the fabrication of bidimensional optical elements has a crucial role in the in technology

development. Today, indeed, there is an important gap between the size of the miniaturized electronic circuits

and the bulk optical elements integrated with them. For instance, in figure 84, are reported some examples

of optoelectronic sensors. It is quite obvious how the millimetric sizes, or even centimetric in some cases, of

the optical elements it is a limitation in the manufacturing of miniaturized optoelectronic devices. Moreover,

the classical bulk optics are realized in glass or plastic materials, which represent a mismatch with the silica

structure of the electronic boards[60]. For all these reasons, the real fusion between the optics and the silicon

photonics needs the designing of optics workable with the semiconductor manufacturing techniques [61]. In order

to achieve this, in the last decade, with the improvement of the nanotechnologies, many groups of research have

focused their studies on the realization of metasurfaces that could replace the current optics [62]. Moreover, we

have already introduced how the potentialities of the MS do not only consist in the reduction of the sizes but

permit, also, to produce new devices not realizable in the ”classical” way [23, 48, 63].

In more detail, we can say that a metasurface is a material not present in nature but engineered in the

nanometric scale in order to realize a two-dimensional periodical grating characterized by a period, Λ, which is

much smaller than the wavelength, λ, of the electromagnetic field impinging on the MS, as reported in figure

85. Notice that, with two-dimensional MS, we mean that the metasurface is a pattern composed by three-

dimensional object, called metaelements, of the same thickness, d. In this way, the variations in the geometry of

the grating it is only in the two directions parallel to the surface. Therefore, we can image to divide the pattern

in squared areas, called MetaPixel (MP), each of them filled with a metaelements of a particular shape. It is

useful to introduce the duty-cycle for the two spatial direction, dcx and dcy, defined as the length of the filled

part, of a metaelement, along that particular direction, normalized by the linear size of the MP (i.e., the period

Λ of the MS). For example, in figure 86, is reported a metasurface with squared metaelements of sides a and b.

10.1 Form birefringence

The above-mentioned condition Λ� λ is called subwavelength regime and, as we will see in a moment, set

the upper limit to the period that can be used5. Indeed, in the subwavelength regime, the radiation sees the

5The lower limit, instead, is related to the resolution achievable by the fabrication process used to realize the MS.
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Figure 85: The two polarization, TE and TM , of an electromagnetic field, of wavelength λ, impinging a metasurface (MS), of
period Λ, in the subwavelength regime [63]

Figure 86: Example of a metasurface, characterised by a grating of period Λ, composed by squared metaelements of side length a
and b. The filling fractions of each metapixel (MP) in the two axis-directions are the ratios dcx = a

Λ
and dcy = b

Λ
, where dcx, and

dcy , are called duty-cycles.
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Figure 87: A metasurface in the subwavelength regime appears, to an electromagnetic radiation, as a homogeneous medium with
an effective refractive index which is constant or different in the two polarization direction (TE and TM), if the grating of the MS
is composed by isotropic or anisotropic metaelements, respectively.

surface as an effective medium but with an effective refractive index which depends on the geometrical pattern

of the grating and varies from metapixel to metapixel. Indeed, how it easily to understand from the figure 87,

choosing the metalements asymmetrical, the amount of matter that a ray of light passes through of each MP is

different in the two polarization directions. The TM polarization (red in figure) has the electric field parallel

to the extraordinary axis, while the TE polarization (blue in figure) has the electric field orthogonal to that

axis. Therefore, we obtain an effective medium with two refractive indexes, nTM and nTE , that can change

from metapixel to metapixel, simply orienting the metaelement differently. The different value of the refractive

index in the two polarization, as we will see in a moment, produce a new phase term in the wavefunction of the

radiation, which can be used in order to realize optical elements imparting a desired phase transformation on

the impinging beam. This phenomenon is called form birefringence.

In general, the transmission matrix in the Jones formalism, τ , of a two-dimensional optical element of

thickness d, is the following

τ =

(
eikdnTM 0

0 eikdnTE

)
(205)

where k = |k| is the module of the wave-vector of the radiation impinging the metasurface. The previous

equation can be rearranged as the following

τ = eikd(
nTM+nTE

2 )

(
e−i

δ
2 0

0 e+i δ2

)
(206)

where we have introduced the phase shift, δ, between the two polarization

δ :=
2π

λ
(nTE − nTM ) d (207)

If now, we rotate the MS of a local angle, χ(x, y), as reported in figure 88, the transmissivity T (x, y) of the

metasurface becomes

T (x, y) = R(x, y)τ(x, y)R−1(x, y) (208)

where R(x, y) is the following rotation matrix

R(x, y) =

(
cos(χ(x, y)) − sin(χ(x, y))

sin(χ(x, y)) cos(χ(x, y))

)
(209)

Assuming δ fix, the matrix τ results spatially invariant and the unique parameter is the orientation of the

optical axis χ. Therefore, substituting the matrix τ , expressed by the equation 206, in the equation 208, we get:
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Figure 88: An anisotropic MS in the subwavelength regime with the metaelements rotated of an angle χ. In this way, the effective
medium results with the two otpical axes, i.e., two directions along which the refractive index assumes constant values, which are
rotated of the same angle. Therefore, the light propagation in the two polarization directions produces a phase shift depending on
χ. This effect is called birefringence in form.

T (x, y) =

(
e−i

δ
2 cos2(χ(x, y)) + e+i δ2 sin2(χ(x, y)) −i sin(2χ(x, y)) sin

(
δ
2

)
−i sin(2χ(x, y)) sin

(
δ
2

)
e+i δ2 cos2(χ(x, y)) + e−i

δ
2 sin2(χ(x, y))

)
(210)

If we consider now, an impinging beam with two circular polarization components:

E(+) =

(
1

+i

)
E(−) =

(
1

−i

)
(211)

the application of the transmission matrix (equation 210) to these two components, returns [64]
T (x, y)

 1

+i

 = cos
(
δ
2

) 1

+i

− i sin
(
δ
2

)
e+i2χ(x,y)

 1

−i


T (x, y)

 1

−i

 = cos
(
δ
2

) 1

−i

− i sin
(
δ
2

)
e−i2χ(x,y)

 1

+i

 (212)

Notice that for both polarization we have:

• a zero order term with the same polarization as the one of the impinging beam,

• a diffraction order polarized orthogonally to the incident beam and with a phase which is, in each point,

equal to two times the orientation, χ, of the optical axis.

Therefore, we can choose the phase shift equal to δ = π in order to eliminate the first term, which is

proportional to cos(δ/2), and leaving only the terms with the phase factor e±i2χ(x,y). In this way, if we want

that our metasurface impart a phase function, Ω(x, y), to the impinging radiation, we only need to rotate each

metaelement of an angle χ(x, y), which be half-times the phase function evaluated in correspondence to that

particular metapixel. Therefore, the two conditions required for the design of our metasurface are:

χ(x, y) =
Ω(x, y)

2
δ = π (213)

With these two ansatz, the system 212, will be reduced to

T (x, y)

(
1

±i

)
= −ie±iΩ(x,y)

(
1

∓i

)
(214)

10.2 Design of a metasurface

With the theory of the form birefringence just introduced, we want to design a metasurface in order to

transfer a multipole phase term on an impinging beam. In figure 89, for instance, is reported a rounded MS,
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Figure 89: In the frames a, b and c, are reported, with an increasing magnification, a metasurface designed in order to transfer, to
an electromagnetic field of wavelength = 1310 nm impinging the MS, a multipole-phase term (frame d) characterized by a phase
order m = 2, a phase orientation θ0 = π/3, and a phase strength α = 100 mm−2.

producing, when illuminated, a multipole-phase beam of order m = 2, phase orientation θ0 = π/3 and phase

strength α = 100 mm−2 for a wavelength of λ = 1310 nm. The MS is supposed in silica (nSi(λ) = 3.503), with

a period of Λ = 2.5 µm and composed by rectangular metaelements characterized by a duty-cycle dcx = 0.9.

The other duty-cycle value, dcy, is chosen in order to keep each metaelement inside its metapixel (which side is

equal to Λ). Notice how the pattern of the MS (frame b) reproduces the phase structure of the multipole-phase

beam (frame d), due to the proportional relation 213 between the phase, Ω(x, y), and the orientation of the

optical axis.

10.2.1 Thickness of the metaelements

Before to introduce the algorithm used for the generation of the MS reported in figure 89, we remember that,

in order to achieve the relation 214, we have assumed a fixed value (δ = π) of the phase shift between the two

polarization of the radiation impinging the metasurface. However, in order to keep this relation in each point

of our MS, an assumption on the thickness of the metaelements has to be done. Indeed, if d is their height,

when the radiation passed through the MS, for the two polarized component, TE and TM , the optical paths

are nTEd and nTMd, respectively. Therefore, we have the following phase shift between them:

δ =
2π

λ
(nTE − nTM )d (215)

Substituting δ = π, we get:

d =
λ

2(nTE − nTM )
(216)

which represents the metaelements thickness necessary to keep the condition δ = π. Notice, moreover, that

this relation sets a limit on the duty-cycle values, dcx and dcy, along the x and y-axis. Indeed, if the two sides of

our rectangular metaelements have too closely values, nTM and nTE become similar and the thickness, d, can

achieve prohibitive values for the fabrication processes. It is worth noting that, in order to obtain the refractive

indexes, nTM and nTE , along the two optical axes of the metasurface considered, computational simulations

are needed. In particular, it was used a MatLab macro, already developed by our research group, adopting the

rigorous coupled-wave analysis (RCWA) method [65]. In this way, the two refractive indexes can be computed
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Figure 90: A representation of a circular metasurface of radius Rmax with its grating composed of squared metapixels of side equal
to the period Λ of the grating.

for a MS of a certain material and period Λ of its grating.

10.2.2 Writing of the metasurface

At this point, we can introduce the MatLab macro realized in order to write the sequence of coordinates

which made up the metasurface reported in figure 89.

The first step is the definition of the mesh contains the coordinates of the MPs composing the metasurface,

where the metapixels have a side equal to the period, Λ, of the MS. Therefore, if Rmax is the size of the

metasurface (assumed with a circular shape), the coordinates (xxt, yyt) of the mesh will be defined in a range

of [−Rmax;Rmax], with steps of Λ. The MatLab code used is the following, while a representation of the mesh

and the metapixels is shown in figure 90.

Listing 10.2.1: defining of the mesh-grid of MPs

1 per iod = 2 . 5 ; % MP s i d e l ength [um]

2 Rmax = 3000 ; % MS rad iu s [um]

3

4 % MetaPixel mesh [um]

5 xxt = −Rmax : per iod : Rmax; % MPs X abso lu t e coords

6 yyt = −Rmax : per iod : Rmax; % MPs Y abso lu t e coords

7 [X,Y] = meshgrid ( xxt , yyt ) ; % mesh c a r t e s i a n coords

8 [ theta , r ] = ca r t 2po l (X,Y) ; % mesh po la r coords

The next step, is the definition of the metaelement of each MP, designed as a rectangle with a first side,

for instance the one in the x-axis direction, of length Lx given by the product of the size of the MP and the

duty-cycle value, dcx, chosen for that axis.

Lx = Λ · dcx (217)

Therefore, in order to keep the metaelements inside the metapixel (see figure 91), the second side of the

rectangle is computed as the following:
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Figure 91: A representation of the rectangular shape of the metaelement that will be placed in each MP of the metasurface reported
in figure 90. Notice that, in the relative MatLab code, the metaelements are generated centred in the origin. The placement of a
metaelement into the MP of a particular coordinate (xMP , yMP ) of the mesh, is performed after the computation of its rotation

angle χMP = ∆ΩMP
2

, where ∆ΩMP is the phase term that we want to transfer to the impinging beam in that coordinates (see
equation 213).

Ly = 2

√(
Λ

2

)2

−
(
Lx
2

)2

(218)

In this way, the coordinates of the four vertices of our metelements are:

A =

[(
Lx
2
,
Ly
2

)
;

(
Lx
2
,−Ly

2

)
;

(
−Lx

2
,
Ly
2

)
;

(
−Lx

2
,−Ly

2

)]
(219)

and the related metaelement is reported in figure 91. The MatLab code used in this step is the following:

Listing 10.2.2: defining of metaelement coordinates

1 % duty−c y c l e in X−d i r e c t i o n

2 dcX = 0 . 9 ;

3

4 % s i d e s o f r e c t a n g l e [um]

5 Lx = per iod ∗dcX ;

6 Ly = 2∗ s q r t ( ( per iod /2) ˆ2 − (Lx/2) ˆ2) ;

7

8 % r e l a t i v e coords o f the r e c t . v e r t i c e s ( be f o r e the roto−t r a s l a t i o n ) [nm]

9 x1 = (Lx/2) ∗1000 ;

10 x2 = (−Lx/2) ∗1000 ;

11 y1 = (Ly/2) ∗1000 ;

12 y2 = (−Ly/2) ∗1000 ;

13 A = [ x1 , y1 ; x1 , y2 ; x2 , y2 ; x2 , y1 ] ;

At this point, in order to obtain a circular metasurface, the centre (xc, yc) of each MP is computed and, if

its distance to the origin is less than Rmax, the phase shift ∆Ω that we want to impart to a wavefield impinging
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Figure 92: Rotation of the metaelements of an angle χ depending on the phase term that we want to transfer to the impinging
radiation. After the rotation, the beam is translated to the position of the MP considered, as expressed by the equations 223.

the metasurface in this particular position, is computed. In this case, our intent is the generation of a multipole-

phase beam of a particular phase order m, phase strength α, and phase orientation θ0, whose phase pattern is

described, in polar coordinates, by the equation 90:

ΩMP (r, θ) = αrm cos[m(θ − θ0)] (220)

The phase shift to impart to the impinging field is, therefore

∆ΩMP (r, θ) =

∣∣∣∣ΩMP (r, θ)

2π

∣∣∣∣ (221)

However, we have seen that, in order to transfer a generic phase ∆ΩMP (r, θ) to a field using a metasurface,

the condition to satisfy is expressed in equations 213

χ(r, θ) =
∆ΩMP (r, θ)

2
(222)

where χ is the rotation angle of the rectangular metaelement considered, as reported in figure 92.

With this rotational angle, we are finally able to compute the coordinates of the metaelement considered,

whose initial values A(x, y) will be transformed into the final coordinates B(x′, y′), defined by a rotation of an

angle χ and a translation of (xc, yx).x′ = xc + x cos
(

∆ΩMP
2

)
− y sin

(
∆ΩMP

2

)
y′ = yc + x sin

(
∆ΩMP

2

)
− y cos

(
∆ΩMP

2

) (223)

The coordinates obtained are then saved in a text file with a GDSII format, readable by the machines used

in the fabrication process. The procedure is so repeated for each MP of the mesh. The MatLab code is reported

in the following:

Listing 10.2.3: defining of metaelement coordinates
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1 % phase pattern

2 Omega = ( alpha ∗10ˆ−6) ∗( r . ˆm) .∗ cos (m∗( theta−theta0 ) ) ;

3 phase = mod(Omega , 2∗ pi ) ;

4

5 % f o r each i−th MP X−value

6 f o r i = 1 : ( l ength ( xxt ) −1)

7

8 % f o r each j−th MP Y−value

9 f o r j = 1 : ( l ength ( yyt ) −1)

10

11 % i f the ( i , j )MP i s a l l with in Rmax d i s t ance

12 i f ( r ( i , j ) <= Rmax)

13

14 % f i n a l coords o f the metaelement ( i , j ) [nm]

15 ch i = phase ( i , j ) /2 ;

16 xc = r ( i , j ) ∗ cos ( theta ( i , j ) ) + per iod /2 ;

17 yc = r ( i , j ) ∗ s i n ( theta ( i , j ) ) + per iod /2 ;

18 B = ze ro s ( l ength (A( : , 1 ) ) , l ength (A( 2 , : ) ) ) ;

19 f o r k = 1 : 4

20 % x ' = xc + [ x∗ cos ( ch i ) − y∗ s i n ( ch i ) ]

21 B(k , 1 ) = (A(k , 1 ) .∗ cos ( ch i ) − A(k , 2 ) .∗ s i n ( ch i ) ) + xc ∗1000 ;

22 % y ' = yc + [ x∗ s i n ( ch i ) + y∗ cos ( ch i ) ]

23 B(k , 2 ) = (A(k , 1 ) .∗ s i n ( ch i ) + A(k , 2 ) .∗ cos ( ch i ) ) + yc ∗1000 ;

24 end

25

26 % wr i t i ng GDSII f i l e

27 f p r i n t f ( f i l e I D , 'BOUNDARY\nLAYER 1\nDATATYPE 0\nXY ' ) ;

28 f p r i n t f ( f i l e I D , ' %.0 f : %.0 f \n ' ,B ' ) ;

29 f p r i n t f ( f i l e I D , ' \nENDEL\n\n ' ) ;

30

31 end

32

33 end

34

35 end

10.3 Metasurfaces for the Transformer and the Phase Corrector

In order to design a practical demultiplexer working with multipole-phase beams without the limitations of

the experimental apparatus discussed in chapter 9, in particular the high value of the focal length of the circular-

sector transformation due to the sizes of the two SLMs, two metasurfaces have been designed with the MatLab

macro described in the previous section. It is sufficient to substitute the expression of the variable ”Omega”

with the new phase term desired. The first MS designed, reported in figure 93, produces on the impinging

multipole-phase beams the phase term ΩDm,1 of the Transformer, which was given by the first half-section of the

SLM#2 in the experimental setup above-mentioned. The second MS, instead, imparts on the beams the Phase

Correction ΩDm,2, which was produced by the second half-part of the SLM#2 (see figure 94). For simplicity, we

remember here the expressions of the two phase terms:
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Figure 93: Metasurface designed in order to impart, on the impinging radiation, a phase term ΩDm,1 as the one expressed in equation
224 and reported, in modulo 2π, in the top-left corner of the figure. The parameters of the circular-sector transformation used are:
fCS = 10 mm, a = 1.0 mm and b = 0.4 mm.

ΩDm,1 = ΩCS − k
r2

2fCS
(224)

ΩDm,2 = ΩPC − k
r2

2fCS
(225)

where, are usual, ΩCS and ΩPC are defined as:

ΩCS = k
ab

fCS

(r
b

)1+m cos[(1 +m)θ]

1 +m
(226)

ΩPC = k
ab

fCS

( r
a

)1+ 1
m cos[(1 + 1

m )θ]

1 + 1
m

(227)

It is worth noting that the MS of the Phase Corrector, does not include the Fourier term −k r
2

2f used for the

final sorting of the multipole-phase beams into distinct bright spots, but it can be easily incorporated adding

this term to ΩDm,2 in the MatLab code. The parameters of the circular-sector transformation used for the design

of the two phase plates are: fCS = 10 mm, a = 1.0 mm and b = 0.4 mm, while the impinging multipole-phase

beams are supposed of phase order m = 2, and wavelength λ = 632.8 nm. These are the same parameters of the

link described in chapter 8, showing the potentialities of the metasurfaces in the design of apparatus working

with multipole-phase beams.

10.4 Briefly introduction to the fabrication of the MSs

We have seen that the MatLab macro, used in the design of our metasurfaces, produces an output text file

with a format called GDSII. This file is, practically, a list of instructions and coordinates used by an Electron

Beam Lithography (EBL) machine for the creation of a mask onto a resist layer, thanks to an energetic beam

of electrons (typically in the order of 100 keV). The choice of the EBL is due to the high resolution needed to

work with metasurfaces characterized by grating with a period in the order of the nanometres. Then the resist
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Figure 94: Metasurface designed in order to impart, on the impinging radiation, a phase term ΩDm,2 as the one expressed in equation
225 and reported, in modulo 2π, in the top-left corner of the figure. The parameters of the circular-sector transformation used are:
fCS = 10 mm, a = 1.0 mm and b = 0.4 mm.

not impressed by the electron beam is removed and the final mask is so obtained. At this point, the material

(for example TiO2) of the final desired metaelement is deposited on the mask, for instance with an Atomic

Layer Deposition (ALD) process [66]. After that, the excess material is removed with a plasma exposition, a

procedure called Reactive Ion Etching (RIO), and, finally, also the remaining resist is removed, obtaining the

MS.



10.4 Briefly introduction to the fabrication of the MSs 106

Figure 95: The main steps in the fabrication of a metasurface. A mask (B) is obtained via Electron Beam Lithography (EBL)
on a photoresist layer (A). Then, (C-D) a layer of TiO2 is deposited with Atom Layer Deposition (ALD). Finally, (E) the excess
material is removed with a Reactive Ion Etching (RIO), and the remaining resist is removed with a developer (F) [62].
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11 Conclusions

In the previous chapters, it was given a full immersion on a new and unique framework for the free-space

communication systems, based on the transmission of light beams with a wavefront characterized by a phase

with a multipole structure. We have seen that these beams arise from the general solutions of the Laplace’s

equation, which describes the phase structure of a generic electromagnetic field under reasonable assumptions

of analyticity. In particular, it was assumed that the evolution of the phase of the beam, during a free space

propagation, is described by a conformal mapping of the coordinates of the initial wavefront into the coordinates

of the final one. In this way, the information contained in the phase function of the beam is preserved during

the transmission and the multipole-phase beams are, therefore, a possible candidate in the free-space optical

communication systems. Moreover, we have seen that these type of structured light is characterized by three

parameters: the phase order, m, related to the number of poles of the phase structure, the phase strength,

α, which is related to the modulus of the phase gradient, and the phase orientation θ0, that indicates the

orientation of the phase pattern of the beam. With respect to the OAM beams exploited in the last years, the

multipole-phase beams present the following advantages:

• absence of phase singularities, which are detrimental for free-space transmission due to beams divergence;

• practical way to generate and measure such beams with conformal transformations;

• two dense degrees of freedom which can be practically controlled instead of only a discrete one (OAM).

We have seen, indeed, that the different values of the parameters of the multipole-phase beams define quasi-

orthogonal electromagnetic fields, suggesting that the multipole-phase beams can represent a new paradigm in

the spatial division multiplexing.

For this reason, the demultiplexing of these beams was investigated, showing that it can be practically imple-

mented with two phase plates: the Transformer, which converts different multipole-phase patterns into different

linear phase gradients, and the Phase Corrector, which corrects the phase distortions produced during the prop-

agation between the two optical elements. A final Fourier lens, which can be integrated in the second phase

plate, provides the generation of the final distinct light spots, corresponding to the different beams. We have

seen, moreover, that illuminating this setup in the reverse direction, the constellation of a set of isolated light

beams can be converted, thanks to the orthogonality above-mentioned, into a superposition of multipole-phase

beams, and propagated for long distances without loss of information and any significant interference. At this

point, the received beam can be demultiplexed, as already said, and an entire communication link is so estab-

lished.

In particular, it was simulated the propagation, for one kilometre in free space, of thirty channels as a single

beam (i.e., the superposition of the multipole-phase beams related to each light spot), showing the incredible

potentialities of this new type of structured light in the communication systems. The family of multipole-phase

beams used in this simulation was the one characterized by a phase order m = 2. Indeed, we have seen that this

is the only case in which the transmitted beam conserved the phase order and, therefore, its phase structure

and the information contained in it. However, the demultiplexing of multipole-phase beams of higher order was,

anyway, analysed with success, unlocking the phase order itself as a possible further degree of freedom (besides

α and θ0) in the spatial division multiplexing with multipole-phase beams.

At this point, a possible demultiplexing experimental setup, already used for a low number of channels in the

case of m = 2 [6], was considered also for the sorting of a higher number of channels and for further values

of the phase order: m = 3, and 4 in particular. However, the sizes of the laboratory optical elements have

shown the crucial role of the focal length of the circular-sector transformation used for the conversion of the

multipole-phase beams into fields with a linear phase gradient, which significantly affects the compactness and

number of available channels of such a such demultiplexer. Indeed, focal lengths bigger than few millimetres

implies the necessity of high values of the phase strength, producing not-negligible phase distortions in the final

sorted light spots. Therefore, the number of channels, that we were abled to transmits in the simulations is
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still remarkable, but far away from the simulations’ results obtained in an ideal apparatus, for instance in the

above-mentioned simulated link.

However, a way out is represented by the metasurfaces working in the sub-wavelength regime. As we have seen,

the possibility of create phase plate extremely compact, which can, moreover, integrates functionalities not

allowed with the common bulk optics, represents the future of the communication systems and of the structured

light in general. With respect to bulk refractive optics and diffractive optical elements, metasurfaces exhibit an

almost flat digital profile of subwavelength features which can be fabricated using the well-established techniques

of semiconductor manufacturing. The metasurface paradigm allows achieving the real merging between optics

and silicon photonics. For this reason, it was developed a MatLab algorithm in order to design a metasurface

which can impart, on an impinging radiations, an arbitrary phase term. With this further know-how, the fu-

ture in the free-space optical communication systems using multipole-phase beams is almost unlimited. Micro

optoelectronic devices, compatible with mass-production and silicon photonics technology, can be designed and

developed in order to transmit several parallel channels of information in the same electromagnetic field, im-

proving exponentially the information capacity of more than one order of magnitude, as shown in the design

of a link. This represents, moreover, a cheaper alternative in the developing countries with respect to optical

fibres networks, and a sustainable solution to the worrying menace of the optical crunch with limited energy

consumption and therefore reduced greenhouse emissions. For all these reason, this thesis work, paves the way

to a new and unique paradigm in the communications technologies.
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