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Abstract

Depth Map Estimation from stereo devices and time of flight range cameras has been a
challenging issues in Computer Vision. Distance Estimations from single-pixel histograms of
time-of-flight sensors are exploited in numerous fields. Beyond the several drawbacks such
as degradation caused by strong ambient light, scattered and multi-path possibilities, most
of the prediction algorithms could be applied to resolve these problems effectively. As these
two different tasks are handled in connection with each other, supervised approaches are
considered since they provide more robust results. These results are used to train the model
to improve three-dimensional geometry information and against major difficulties such as
complicated patterns and objects. These approaches are observed according to their accuracy
with help of metrics and get improved their performances.

This thesis focuses on the analysis of Time-of-Flight and stereo vision systems for depth
map estimation and single-pixel distance prediction. State of art algorithms are compared
and implemented with additional strategies which are integrated to minimize the error ratio.
The histograms which are obtained from Time of Flight Sensor Simulation are exploited as a
dataset for single-pixel distance prediction and after that, NYU Dataset is selected for depth
map estimation.
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Sommario

La stima della mappa della profondità da dispositivi stereo e telecamere del tempo di volo sono
stati problemi impegnativi in Computer Vision. Le stime della distanza da istogrammi a pixel
singolo dei sensori di tempo di volo sono sfruttate in numerosi campi. Al di là dei numerosi
inconvenienti tali poiché il degrado causato dalla forte luce ambientale e le possibilità sparse
e multi-percorso, la maggior parte degli algoritmi di previsione potrebbe essere applicata
per risolvere efficacemente questi problemi. Poiché questi due diversi compiti sono gestiti
in connessione l’uno con l’altro, vengono presi in considerazione approcci supervisionati
poiché forniscono risultati più solidi. Questi risultati vengono utilizzati per addestrare il
modello a migliorare le informazioni sulla geometria tridimensionale e contro le maggiori
difficoltà come modelli e oggetti complicati. Questi approcci vengono osservati in base alla
loro accuratezza con l’aiuto di metriche e migliorano le loro prestazioni.

Questa tesi si concentra sull’analisi dei sistemi di visione del tempo di volo e stereo per la
stima della mappa di profondità e la previsione della distanza a pixel singolo. Gli algoritmi
all’avanguardia vengono confrontati e implementati con strategie aggiuntive integrate per
ridurre al minimo il rapporto di errore. Gli istogrammi ottenuti dalla simulazione del sensore
del tempo di volo vengono sfruttati come set di dati per la previsione della distanza a pixel
singolo e, successivamente, viene selezionato il set di dati NYU per la stima della mappa di
profondità.
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1
Introduction

Analysis and recognition of the environment in which we live, for human perception, is
considered extremely simple. When the accuracy of this estimation is handled how it is
robust, there are several variables such as color, shadow, light, and object structures. All
these parameters are exploited for human depth sense as a part of 3D geometry with high
sensitivity.

In spite of Image Processing and Computer Vision branches have been focusing on how
the visual systems work, this subject has not been explained in full detail. Meanwhile, many
techniques, scientific approaches have been developed to recover the 3D geometry of objects
in imagery. Stereo devices and time of flight sensors are examples of the most common systems
for depth estimation. Stereo devices were developed with gained inspiration from the human
vision system. It is based on the difference between two adjacent cameras which record the
pictures to merge. After that, the time of flight technology is introduced as a method that
can calculate the distance directly for every scene. In recent times, some additional devices
are released such as Microsoft Kinect, they lead increasing of usage 3D data estimation. It
provides us new possibilities to improve the results and increase the usage fields.

Essentially, Stereoscopic Imaging is a method for creating or enhancing the illusion that
an image has depth by showing two slightly offset images separately to each eye of the viewer.
These images belong to the same scene but they have some differences between each other
such as visual angle and perspective. It does not provide us with more robust results for
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fundamental problems (e.g textureless fields). Nevertheless, it is exploited as one of the most
common techniques. Especially, it handles 3-D information and high-resolution color images
efficiently.

Following then, time-of-flight cameras were made available. A time of flight camera is
a device that uses ToF measurement to estimate distances between the camera and objects
or surroundings in order to create pictures made up of individually measured points. It
determines depth information using infrared light (lasers that are invisible to the naked
eye). It was inspired by bats’ ability to discern distance. The sensor sends out a light signal
that is intercepted by the item and returned to the target. The time it takes to bounce back
is then calculated, allowing for depth mapping. We may think of laser-based scanner-less
LIDAR imaging systems, motion sensing and tracking, object recognition for machine vision
and autonomous driving, topography mapping, and more as ToF camera applications. As
the applications of a ToF camera, we may consider laser-based scanner-less LIDAR imaging
systems, motion sensing and tracking, object detection for machine vision and autonomous
driving, topographic mapping, and more.

Even if they need more power consumption and they have more production cost, they solve
drawback of stereo cameras such as the geometry of textureless object and occlusion problem
of stereo systems.The most common disadvantages of these systems are low resolution and
fail of success about background illumination, multi-path and scattered light scenarios. In
addition, building ToF camera is complex due to calibration requirement.

Both of these two technologies have some drawbacks and advantages on different aspects.
Single Pixel Distance Detection and Image Depth Maps need these divergent benefits to
provide a sufficient result. For this reason, usage of these methods for the different distance
and data estimation contribute to improve results.

In this thesis, the main technical details and principles of time of flight algorithm and
stereo devices being exploited for distance and depth estimation on single pixel and images
are investigated. Both of these approaches are analyzed and observed with help of hyper-
parameters for the related datasets. The 2nd Chapter covers a general description for time of
flight camera and stereo vision devices. The 3rd Chapter discusses more details for related
techniques, after that the 4th, 5th and 6th Chapters concern these technologies separately
according to related datasets (single pixel distance detection, image based depth maps for
stereo and monocular devices). First, working principles are introduced after that structure
of datasets and pre-operations and then the algorithms which are exploited to estimate the
distance and depth map are merged with essential details of these methods.

Finally, Results of these algorithms,conclusions and possible future works are presented
in the 7th Chapter.
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Literature Review

Time of Flight Algorithms have been used to handle a range of challenges in Image Processing
and Computer Vision. According to [1], it may be applied to both direct and indirect variations.
Direct ToF (dToF) is a technique for determining the amount of time required for a reflection
to occur. Indirect ToF (iToF) calculates distance by collecting reflected light and measuring
the phase shift between emitted and reflected light. The phase shift of the received beat
or balanced light is used to determine the depth data in i-ToF devices. This is typically
accomplished using pixel-level photo-demodulators, and in reality requires the acquisition of
three or more sub-frames, obtained sequentially, and appropriately combining modulation-
demodulation schemes to reduce background and increase target reflectivity. After that, it
determines the depth. I-ToF is an excellent choice for short-range, high-resolution 3D imaging,
particularly when a solid foundation is nearby (bounded by pixel full well capacity).

On the other hand, [2] concentrates on the correction method for indirect Time of Flight
Sensors and emphasizes the critical role of single-photon LIDAR in depth imaging. Their
approach is based on the creation of a histogram using the time delays between generated
light pulses and observed photon arrivals.

[3] mentions that the histogram may be used for picture segmentation. It classifies a
picture based on the density of its pixels into one of many predefined types. It is employed
recurrent neural networks as a recursive technique for resolving distance mistakes for image
segmentation. The study generates a learnable histogram layer from the photos. This
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learnable histogram approach can be adaptable to increase the accuracy of depth estimation
as well.

In [4], robust posture estimation utilizing Time of Flight sensors is based on depth
information. It does this by maximizing the quality of the findings by utilizing the confidence
value for each pixel in the 3D range picture. It utilizes depth range sensors to determine the
modulation frequency’s confidence value.

For the image depth map part, [5] is about an algorithm that is based on re-projecting
ToF data on the stereo camera viewpoint and up-samples the data. The spatial resolution
of stereo devices is improved by combinational segmentation and filtering. The proposed
method aims to merge the time of flight camera values and stereo devices values to obtain
better confidence information for depth estimation.

Instead of additional resources and merged architectures in [6] is based on only time of
flight sensors with filters which are used to ignore the external factor such as sunlight and
reflectivities. It aims to reduce the dataset dimension without losing the crucial details for
3D data estimation. Nevertheless, the degree of data aggregation for the pose estimation
process may lead to longer run-time and precision progress. To support these steps with help
of monochromatic images, the algorithms which work for 3D data are applied (e.g. ICP, SIFT,
KLT).

In [7] follows the data transfer technique to obtain better results in monocular depth
estimation. Instead of standard stereo camera data, it is based on image pairs extracted from
the stereoscopic film. This situation requires a sufficient approach for disparity extraction
because standard disparity approaches are designed for stereo images. For this reason, smaller
disparity ranges cannot be handled effectively. The academic study is based on an optical
flow algorithm to overcome this issue.

In [8] focuses on image segmentation with increasing the depth information quality via
convolutional neural networks. It is based on encoder-decoder architecture. Two different
branches are dedicated to features that are based on RGB and depth images. After these
decoder steps, features have been merged with each other. Comprehensive results illustrate
that these fusion-based proposed techniques provide us results that are as sufficient as the
results of the state-of-art method.
[9] offers a network that successfully utilizes the spatio-temporal structures of ToF fre-

quency data. This method yields more robust findings for the performance of the join multi
path elimination, denoising, and phase unwrapping method on a variety of difficult problems.
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SET-UP FOR TIME OF FLIGHT SYSTEMS

This chapter is based on a crucial general introduction to both two systems before the
explanation of single-pixel estimation and image-based depth map estimation. Even if stereo
devices are commonly used in our lives, especially the ToF is a newer technology for which
practical applications are starting to appear(e.g it is in the last iPhones). This part aims
to provide a sufficient introduction to the systems which are used in this thesis and some
technical expressions, and general concepts.

3.1 Fundamentals for ToF

The essential logic of time of flight sensors is based on distance calculation with help of
illumination of the target object. The reflection which returns from the target object is
analyzed. The first part of the thesis involves this sensor system and considers its technology
for the implementation of the single-pixel distance.

The picture makes a point about the operation of time-of-flight devices. The distance L
between target and sensor is calculated using the time T required for an electromagnetic wave
to cross that distance. As a scientific calculation, the speed of light is assumed to be constant
in the air (c = 3x108

m/s). Thus, the distance between target and sensor is calculated as
the product of light speed and the time interval between them. The needed hardware is
developed in accordance with the ideas in [10], consisting of a radiation emitter (TX) and a
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Figure 3.1

receiver (RX), which are preferably co-located. At time t = 0, the transmitter releases a light
pulse that travels directly toward the scene for a distance L until it reaches the target at time
t= T/2. After reaching the destination, it is reflected back to the source t=T and detected
by RX. The relationship between time and distance in this case enables us to determine the
distance of a single point from the Time-of-Flight sensor.

Figure 3.2: Time-of-Flight Sensor

This technology is defined as LIDAR technology, It is exploited for the creation of high-
resolution depth maps in spectacular wide fields. Time-Flight sensors detect the distance
between two constant points. For this reason, it cannot be adapted for dynamic systems
efficiently.

Time of Flight Camera systems are a more advanced version of LIDAR sensors, with a
matrix of N x M ToF sensors measuring the relevant scene. It provides the quick availability
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of depth maps, which is critical for real-time applications. Although there is no direct
relationship between emitters and receivers owing to physical constraints, IR LEDs can be
arranged in a regular pattern to simulate a single emitter in the receiver matrix’s center.
We can get depth information without doing any additional computations by integrating
N x M receivers on a single CMOS chip, which is reasonably compact and easy to build.
The primary shortcomings of this design are its low resolution in contrast to a conventional
camera, poor quality across the region with depth discontinuities, and extreme sensitivity to
light fluctuations. Additionally, it can be affected by other light sources in the area, such as
the sun, or by an item’s lack of reflectivity.

3.2 Fundamentals for Stereo Devices

Stereo systems are defined as a framework that is generated from two regular cameras(identical),
which are inspired by human stereopsis. A stereo vision system is a computer vision imple-
mentation that uses stereoscopic ranging techniques to estimate a 3D model of the scene.

Stereo vision employs triangulation, a classic range technique, to compute depth from 2D
images. Stereopsis is defined as binocular vision, in which our brain combines information
about this three-dimensional structure gathered by our eyes from two slightly different
perspectives of the same image. This idea may be extended to cameras that capture the same
scene but are separated by a set distance, such as human eyes. The left camera, denoted by
L, serves as a reference point, and the right camera, denoted by R, serves as a target.

3D coordinates of a point may be measured by triangulation of the correspondent points.
The system starts with a standard form of two cameras (aligned and parallel), and then
measures a point in the space P = [x , y, z]. The projections of the left and right cameras
are calculated pl = [ul , vl] and pr = [ur , vr] as left and right. Especially, The process of
triangulation handles the determining the coordinates of P for depth information.

At that point, it is clearly understandable that the only difference in the coordinates of pl

and pr is horizontal coordinate (u), vertical coordinates (v) will not be changed.
Given the geometry depicted and similar triangles properties, the following equations

can be derived.

f

z
=
�ul

x
(3.1)

f

z
=

ur

x � b
(3.2)
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z =
b f

ur � ul

=
b f

d
(3.3)

After the some calculations are applied to Formulae 3.1 and 3.2, The expression is given
above are obtained. f is the focal length of the two cameras, b is the distance between the
two optical centers, also known as baseline and d = uR � uL is called as disparity is related
with projection center of the left camera(pL)

Calibration allows for the estimation of f and be values, as well as the calculation of the
disparity (d) between two pictures using corresponding points, also known as conjugate
points. As seen in Figure (a), Given a point pL (the projection center of the left image), the
dependent image’s equivalent point pL must be found. Due to the tiny difference between
the two photos, the matching point can be located in any pixel. Due to the fact that the most
frequent similarity procedures investigate each and every point, locating the corresponding
point might be a lengthy process. As a result of the epipolar restriction, the search domain can
be constrained to a single dimension (along u). According to geometric analysis, the conjugate
point of pL in the second picture must lie on a straight line termed the epipolar line of pL.
Although these two cameras may not be perfectly aligned in more realistic surroundings, it is
always feasible to apply a linear transformation to the pictures collected by the camera to
accomplish the operation of correspondence selection. This is referred to as the correction.

With help of calibration operation, f and b values can be estimated, the disparity (d) can
be calculated with corresponding points also known as conjugate points of two images. As it is
illustrated on Figure(a), Given a point (projection center of the left image), the correspondent
point pR in dependent image has to be found. Since the two images are slightly different,
the corresponding point can be in any pixel.Finding of correspondent point can be a long
progress due to the most common similarity strategies analyze every single point. Therefore,
the search domain can be limited to a one dimension (along u) thanks to epipolar constraint.
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A geometrical analysis shows that the conjugate point of pL in the second image, must lie in a
straight line called epipolar line of pL .For more realistic environments these two cameras may
not be aligned properly. Nevertheless it is always possible to apply a linear transformation to
images which are captured by camera to implement the task of correspondence selection.
This operation called as rectification. [11]
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4
General Concept of Time-of-Flight Range Camera

In the previous chapter, the Time-of-Flight operating concept has been introduced. Despite
its basic simplicity, the real design requires significant effort from all major manufacturers
of ToF cameras, including MESA Imaging, PMD Technologies, SoftKinetic, and Microsoft,
since measurements require high precision over a few picosecond clock periods. Even a little
change in resolution needs multiple clock cycles, which is the time required for the light
pulse to traverse that distance back and forth. However, depth measurement accuracy must
be managed due to a variety of harmful effects, which may be classified as internal, such as
noise or calibration, or environmental.

Diverse methods have resulted in a variety of technologies, while the continuous wave
(CW) intensity modulation technique is the most commonly used in commercial solutions.
[12] contains information on alternative approaches such as optical shutters (OS) and single-
photon avalanche diodes (SPAD).

This chapter presents an overview of ToF cameras and related practical challenges, as
well as a discussion of the thesis’s primary method, the Time Correlated Single-Pixel Counting
(TCSP) system. Additionally, it provides critical strategies for data processing of time-of-flight
cameras, including data reduction techniques and solutions to their shortcomings.
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4.1 Background

Single-photon LIDAR has established itself as a significant tool for depth imaging in recent
years. The technology essentially works by generating a histogram of the time delays between
the emission of light pulses and the detection of photon arrivals to determine the depth of
a target. Due to the great precision of the time-stamps and the large amount of photons, a
significant data processing bottleneck emerges. The complexity of the image reconstruction
and the associated factors deteriorate the situation further.

Existing LIDAR approaches have a limiting bottleneck, which may be overcome by con-
structing a compressive statistic from a sketch of the time delay distribution, which is ad-
equate to infer spatial distance and intensity. [12] Rather than the number of photons or
the time-stamp resolution, the size of this drawing scales with the degrees of freedom of the
time-of-flight model (number of objects). Additionally, the drawing is well-suited for on-chip
online processing.

A histogram may be generated by determining the time delay between the photons sensed
by each pixel and the light pulses emitted, as well as the percentage of photons originating
from background or ambient light (e.g. the sun).

The number of counts per time histogram bin informs us about the object’s depth and
reflectivity. The presence of a peak point in the histogram indicates the presence of an object
within the range of the LIDAR system. This item is at the same location as the impulsive
response. Picture restoration can be used to determine the positions and intensities of the
histogram peaks for each pixel in the image if the target item is semi-transparent.

Figure 4.1

For small sketch sizes, it is demonstrated theoretically that the loss of information due to
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compression is controlled and that the mean squared error of the inference soon converges
to the optimum Cramér-Rao bound (i.e. no loss of information). [12] The compressed single
LIDAR framework is used to reduce the data in order to build more efficient histograms
without compromising any critical information. This reduction may be made up to 1/150 in
practice without affecting the reconstructed image’s overall resolution.

The process of developing Time-of-Flight image sensors that meet critical requirements
such as high rate, high resolution, and low power consumption is difficult due to the massive
required data quantities. When the large quantity of photons per pixel and the temporal
resolution are combined, this circumstance results in significant data processing issues for the
devices. With all of these disadvantages, power consumption as a result of this complexity
has a detrimental effect on the data processing problem. Numerous approaches have been
proposed to address the trade-off between depth resolution and computational/space com-
plexity. The majority of academic works, such as [13] and [15], present novel perspectives for
resolving the conflict between the depth resolution and complexity of the TCSPC histogram.
None of these approaches is capable of handling the approximations made on-chip to impair
the image’s depth resolution. In [14] and [15], a technique is described that gathers the
histograms of photon detections during periods of substantial activity. Among all these
academic research, only this strategy minimizes data transfer since it is used only at specified
points in time.

Nonetheless, these approaches are insufficient when activity is stable and also cannot
compensate for the loss of temporal precision caused by narrow histogram binning. Even if
[16] introduces a novel way for data reduction during photon transmission, these strategies
cannot overcome the disadvantage of repeated histograms of increasing resolution.

The most effective compressive sensing algorithms have been successfully implemented
with LIDAR and have concentrated on compressing data across pixels. In [17] provides a
strategy for reducing the signal acquisition costs by using the sparsity of natural sceneries
in a certain representation domain (e.g wavelet transform). The depth accuracy is limited
by the size of the amplitude noise and the decay rate of the impulse response. Therefore,
this constraint is associated with a single surface per pixel. In a similar vein, [18] suggests a
scene-dependent adaptable sampling technique. By iteratively recreating regions of interest
and depth maps derived from data, the reduction ratio of predicted circumstances may be
increased to eight-fold.

However, these approaches may be used to compress data inside the spatial domain,
rather than across the depth or time domain, as the method used for the single pixel detection
component does, and are thus fundamentally different in practice.
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4.2 Time Correlated Single Photon Counting

Time-correlated single-photon counting (TCSPC) is a common technique to measure impulse
decays in the time domain. In the core case, single-photon events are detected and their
arrival time is correlated to the laser pulse which was used for the excitation of the sample.

In this section, theoretical structure of the TCSPC has been introduced with associated
expressions.

4.2.1 Data Distribution

A Poisson distribution is used to represent the photon count at time-stamp t 2 [0, T � 1] for
every given pixel.

yt k|(r, b, tk)⇠ P(rh(t � tk) + b) (4.1)

where r � 0, r signifies the measured surface’s reflectance, h(.) the system’s impulse
response, and b denotes the intensity of background photons. T is the number of discretized
time-stamp bins throughout the range of interest. Depending on the time-stamp resolution
�t, the time-stamp t is given in the range [0, T � 1]. To clarify, despite the fact that the
distribution may handle more complicated scenarios, we can assume that the integral of the
impulse response H =

P
T

t=0 h(t = 1)�t is stable. [12]

Furthermore, in [19], a mixture distribution is provided, from which the arrival time of
the observed pth photon may be modeled. Assuming K different reflecting surfaces, we may
state that ↵k and ↵0 denote the probability that the detected photon originated from the kth
surface and background sources, respectively. If we indicate the time-stamp of the pth photon
as xp 2 [0, T � 1] where n� p � 1 is a mixture distribution, then xp may be described by a
mixture distribution.

⇡(xp|↵0, ...,↵K , t0, ..., tK) =
KX

k=1

↵k⇡s(xp|tk) +↵0⇡b(xp) (4.2)

The uniform distribution ⇡b(xp) = 1/T and the ⇡s(xp|t) = h(xp � t)/H define the
distribution of photons arisen from signal and background. In practice, the signal distribution
⇡s is generally represented by either a discretized Gaussian distribution spanning the range
[0, T � 1] or a data-driven impulse function derived through research and experiments.
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4.2.2 Statistical Evaluation

In the previous subsection, we discussed mixture distribution in the context of time-stamp
photon detection. The parameter estimation is based on the set of parameters ✓ 2 ⇥ ⇢ R

2K+1

associated to the probability model ⇡(.,✓ )which is specified in a space x 2 R
d . The dimension

d refers to the situation of a single-photon LIDAR. In Maximum likelihood estimation (MLE),
the finite data-set X = xi

n

i=1 of n samples, which we assume is sampled and observed on
a regular basis, is one of the most common parameter estimation methods from the given
distribution, and a likelihood function associated with the finite data is maximized with
respect to the model parameters.

✓ = ar g✓min
1
n

nX

i=1

log⇡(xi |✓ ) (4.3)

1) Generalised Method of Moments: In some cases, the likelihood function might not
have a closed form solution nor a computationally trackable approximation. The generalised
method of moments [20], [21] (GeMM) is a technique for estimating parameters that involves
matching a collection of generalised moments to their empirical counterparts computed over a
set of finite data drawn from the distribution ⇡(x |✓ ). Given a nonlinear function g : R

d ! C
m,

then we define the expectation constraint

Eg(x;✓ ) = 0 (4.4)

where E is the expectation of the probability distribution ⇡(x |✓ ). To try to enforce the
moment constraints of (4), the GeMM estimator is often derived by minimising a quadratic
cost of the empirical discrepancy with respect to ✓ . Let us begin by defining

gn(X ;✓ ) :=
1
n

nX

i=1

gi(x;✓ ), (4.5)

GeMM can be stated in the form shown below if it is determined for X = {xi}ni=1.

✓ = ar gmin✓ gn(X ;✓ )T Wgn(X ;✓ ) (4.6)

where W is a symmetric positive definite weighting matrix that depends on ✓ .
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2) Compressive Learning: Compressive learning [22], [23] builds on the notion of GeMM
by utilizing generalised moments of data, but with the unique purpose of lowering signal
acquisition, spatial, and temporal complexity. The connection to GeMM is formed by dividing
the function g into the following form:

g(x;✓ ) = �(x)�E✓�(x) (4.7)

where � : Rd 7�! Cm is commonly referred to as the feature function. The separable form
dissociates the measured moment, �(x), from the parameters ✓ to be estimated. This is not
a common assumption in GeMM, but it may occur in rare circumstances. By referring to the
empirical mean or so-called sketch as

zn :=
1
n

nX

i=1

�(xi) (4.8)

It can be approximated with help of ✓ using the sketch zn by minimising

✓ = ar gmin✓ ||zn �E✓�(x)||2w (4.9)

which is the specific compressive GeMM loss of (6). In Section III, we define the weighting
matrix W for compressive single-photon LIDAR directly.

The separable form of g in (7) enables the formation of a sketch statistic zn with a single
pass of the data without the need to keep X, and it can be quickly updated on the fly with
minimum computational expense. The sketch statistic has size m, or size 2m if separated
into its real and imaginary components, and scales essentially irrespective of the dataset X

dimensions, which in the case of single-photon LIDAR are the photon count n or the binning
resolution T.

4.2.3 Compressing Single Depth Data

The sample mean of all photon time-stamps (�(x) = x) is the simplest summary statistic for
estimating the single location parameter t1 in the absence of photons from background sources
and the presence of a single surface or object. This is only true in the noiseless scenario, since
when background photons are detected, the sample mean estimation is substantially inclined
toward the center of the histogram.

Assume instead that we measure the cosine and sine of each photon count x x with angular
frequency w= 2⇡

T
,
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�(x) =

ñ
cos(2⇡x

T
)

sin(2⇡x

T
)

ô
(4.10)

where zn is the real valued sketch of size 2(m = 1) generated across the dataset X as seen
in (8). The trigonometric sample mean may be used to obtain an estimate of the single depth
location parameter t1 straight from the drawing, without using the data X.

t1 =
T

2⇡
ar g

ß nX

j=1

cos

Å2⇡x j

T

ã
+ i

nX

j=1

sin

Å2⇡x j

T

ã™
(4.11)

where arg denotes a complicated argument. Because the background photons are spread
equally over the [0, T � 1] range.

If the preceding is summarized using a simulated example, where a pixel of T = 1000
histogram bins with a signal-to-background ratio (SBR) of 1 and a total of n = 600 photons is
simulated, with the time-stamp of each photon given by X = {xi}ni=1. The data was simulated
using a Gaussian impulse response function with � = 15 and a real position of time-stamp
with t1 = 320; the drawing is shown below. The graphic depicts both standard and circular
mean estimations. In particular, circular mean estimation can suffer from the noise effect in
TCSPC illustration.

Figure 4.2: Illustration of Photon Detection and the Ground Truth

The TCSPC histogram is shown with t1 = 320. The circular mean estimate (yellow) is
placed on the standard mean estimate (red).

The Single Photon Counting section is based on a simulation of a synthetic dataset
generated from this technical information. in figure 4.2
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Next the technical major phases of Time Correlated Single Photon Counting, the following
sections will explore distance prediction using classical methodologies and machine learning
techniques.

4.3 Pile-up Effect

The Pile-Up effect outlines the consequences of photons lost due to the TCSPC devices’ dead
period at high photon count rates. There is a dead period in most single photon counting
detectors and TCSPC circuits. Following the detection of one photon, the device requires
some time to prepare for the detection of the next photon.

Let’s use a 40 MHz laser repetition rate as an example. A laser pulse is delivered to the
fluorescence molecules every 25 nanoseconds. After one laser blast, we can only detect one
photon due to the dead period. The term "pile up" refers to the impact of photons wasted
based on the TCSPC devices’ dead period at high photon count rates. There are two effects:

• The average measured lifespan decreases.

• With the inclusion of a shorter component, a mono-exponential decay becomes bi-
exponential.

The pile-up effect must be avoided since it distorts the histogram. To do so, the count rate
monitored should not surpass a particular threshold in regard to the laser repetition rate.

Figure 4.3: Illustration of Pile-up Effect

(a) When photon collection rates are high in TCSPC, the instrument dead periods ends
with the loss of information (X) of photons that are arriving late. The probability density
function is inclined towards shorter lifespan values, resulting in a decrease in photon efficiency.
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(b) To eliminate photon pileup effects, most TCSPC systems use low laser intensities and
low photon count rates ( 1 photon/100 excitation pulses). As a result, image detection times
are in the order of minutes.

4.4 TCSPC-Based Distance Estimation

Distance Estimation with histogram dataset have many difficulties due to dimension (iteration
number:10, bin:20 , histogram points:1024) histogram size for every distance sample) of
the dataset. To provide a sufficient model can be possible help of higher epoch counts, on
the other hand, there is a trade-off between performance and high accuracy. The approach
makes a comparison among more traditional distance estimation process such as threshold
based estimation and most common ML approaches which are exploited for prediction task.

To reduce the data dimension for histogram bins, the first approach, threshold calculation.
Due to real laser light is reflected from target in t time, the biggest magnitude of the histogram
bin should remarks the time (t). With help of this logic first the method calculates maximum
and minimum values of the histogram, in which time slots have the highest and lowest photon
count, and then to reduce the 1024 points, the average value is taken as a threshold value
and then we can eliminate the half of histograms, without accounting them to the estimation.
Before the training step, this preprocessing diminishes the dataset effectively

In addition, this approach can be exploited directly for distance estimation with inaccurate
results. The peak point of the threshold value is considered as index value of the histogram
and then with speed of light, it gives the distance estimation. Moreover, half time should
be accounted for this calculation and the system works in picoseconds. Especially, shortest
distances can be calculated with help of this approach. Nevertheless, to handle more robust
results, ML approaches should be implemented.

For the main approach, the base distance which is created with data of histogram is used,
This histogram has the lowest distance which can be detected by the time-of-flight sensor
(e.g=0). With optimal target reflectivity and base distance are exploited as a reference point
for the similarity calculation. Deep Regression ML algorithm is implemented for this task
as a single and multi layer architectures, instead of more complicated models, this method
provides us more acceptable running time and results for this dataset. To obtain a model
which can be exploited in the real time or preferably real time is the most important criteria
for the project.

Therefore, single layer deep regression with feature number: 1024 , hidden neuron: 400,
output neuron: 1 is implemented. Furthermore, multi layer deep regression with same
hyper-parameters is implemented to observe the results and make a comparison for the best
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combination. The optimizer is selected SGD with learning rate: 104.The methods are analyzed
for the analysis which will be explained in Results chapter consider the base distance.

4.5 Dataset

For Time Correlated Single Photon Counting task, the simulation which is provided by
Fondazione Bruno Kessler, IRIS Research Team was exploited.

Figure 4.4: A histogram sample which is taken from simulation

The figure 4.4 shows a histogram of ToF simulation which shows photon counts during
period. Horizontal line shows histogram time stamps [0,1024], the vertical line shows
number of total hits which are recognized by sensor. The green light illustrates the estimated
histogram bin for the distance is selected and red line shows average point of the horizontal
line. The dataset comes to vision with distance histograms which are collected from this
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simulation tool. This tool provides us synthetic time of flight histogram values, with changing
hyper-parameters to obtain a model which satisfies all conditions. For this reason, the dataset
created with images between 1-10 meters (the max flight range: 15.27 meters) with different
reflectivity and optical transmittance parameters. For this dataset, as it was explained in the
previous sections, dead time is considered as 100ns , and then other parameters ; number
of histogram points: 2000, laser divergence: 0.18� , laser peak power: 0.3W . The dataset
contains histogram inputs from 1 meter to 10 meters for every 0.1-meter distance. As a part
of the supervised approach, all data is labeled by its distance.
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5
Stereo Vision System

In spite of stereo devices are produced by several companies , additionally, two single standard
cameras can be exploited for this task. On the other hand commercial stereo products
may be considered as a base point for solid framework. Baseline, focal length, calibration
and synchronization issues are handled by the devices properly. Source code , Software
Development Kit (SDK) including drivers, additional libraries, programs ,and interfaces are
provided for integration process. Nevertheless, using two single cameras provides more
flexibility for the users, in particular selection of parameters on the system is easier.

In this chapter, before describing the procedure used to compute disparity map and
depth maps for stereo devices, more details on stereo algorithms are discussed. Especially,
essential issues of correspondence selection, or disparity computation, are analyzed in order
to understand the reasoning behind depth estimation.

5.1 Stereo Matching Algorithms

The purpose of stereo matching algorithms is to connect points in one picture to corresponding
pixels in another image based on specific criteria.

• Similarity: it is implied in the correspondence issue that the points on both pictures
must be comparable.
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• Epipolar geometry: By definition, the projection of P onto the second image must be
on the second image’s epipolar line. Thus, using a common idea of epipolar geometry,
we may establish a strong constraint between picture pairings without understanding
the scene’s three-dimensional structure. As previously stated, the conjugate point is
located in a straight line.

• Smoothness: Smooth surfaces have a constant depth away from the edges.

• Uniqueness: Each point in one image must match to a single point in the next image.
This assumption can be disproved if transparent things exist.

• Monotonic order constraint: If a point p1 in one picture corresponds to p
0
1 in another,

the counterpart of another point p2 to the right (left) of p1 must be p
0
1. This criterion

is violated if p2 is located between the optical centers of the two cameras in a specific
conoid region represented by p1.

The majority of academic works on stereo algorithms, for example Scharstein and Szelisky
[27], examine the following basic implementation blocks: computation, cost aggregation,
matching cost, disparity computation, and disparity refining.

The first step is to determine the cost of matching. The most often used techniques
for pixel-based matching costs are the sum of squared differences (SSD), sum of absolute
differences (SAD), normalized cross correlation (NCC), and census transform. This strategy
can benefit from a variety of pre-processing techniques, including Laplacian, Gaussian, and
bilateral filtering. Calculating the mean value of the window may be useful for reducing
noise and photometry distortion. In both local and window-based systems, cost aggregation
is accomplished by summing or averaging throughout a support zone. The support zone
may be two-dimensional in the simplest cases or three-dimensional in more complex cases
to provide additional support for slanted surfaces. Aggregation may be achieved well by
convolution or box-filtering.

Local and global approaches can be used to compute disparity. In the academic study
[27], another strategy is included that is based on semi-global approaches, which is similar to
dynamic programming and cooperative algorithms. Local approaches may be thought of as
those that identify only similarities between the region surrounding a pixel and similar-shaped
regions around all possible conjugate points on the other picture. The window’s dimension
can be either stable or unstable in order to get more robust findings for all places in the
picture. The disparity is chosen in accordance with the approach of maximizing of similarity
(Winner Takes All).

As will be demonstrated in the next sections, local approaches cannot meet all major
stereo vision expectations. As a result of the lack of regularization, the findings are not free of
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noise. [25] discusses a possible solution to this problem using a weighted box filter and the
cost volume. Another significant issue is the "edge-fattening effect," which occurs as a result
of aggregation across a support window in stereo systems. This issue can be resolved using
the approach outlined in [24]. This technique protects the edges more well than bilateral
filters, and its execution time is not dependent on the filter size.

On the other side, global approaches do not focus on individual point pairings, but they
may estimate all disparity values concurrently when global optimization schemes are used.
The basic principle is to design a disparity function (d) that minimizes the global energy
generated by a component that quantifies how well the disparity function agrees with the
input picture pair. Bayesian formulations are a frequently used strategy in global approaches.
These techniques, in particular, treat the entire scene as a Markov random field (MRF) and
entail the calculation of unique framework values based on local comparisons between the
two pictures and scene depth smoothness requirements.

Additionally, after global approaches, semi-global methods are used to estimate discrep-
ancy. To decrease complexity, the cost function is minimized using a reduced model for
all points in the disparity picture, as opposed to global techniques that estimate the whole
disparity image. In contrast to global strategies, it does not attempt to evaluate the whole
gap simultaneously. For example, the two most well-known semi-global approaches, Dynamic
Programming and Scanline Optimization, operate in the one-dimensional domain and op-
timize each horizontal picture row independently. Semi Global Matching (SGM) is a more
advanced version of the semi-global stereo method.

Regardless of the fact that new methods are being developed to achieve a more robust
solution to the correlation problem, the quality of stereo reconstruction is fundamentally
dependent on the scene features.

Besides, another widely used approach method can be used to improve stereo matching
computations, particularly in uniform areas. The system may be utilized with the assistance
of an external lighting device. Active stereo requires two cameras, and this external light aids
with correspondence selection.

5.2 Keypoints for Matching

The detection of pairs of conjugate pixels is considered the most difficult phase in the
calculation of the depth map. This is, in general, one of the most difficult problems in
computer vision. The essential premise is that the correspondence problem is based on
slightly different images that must exhibit a certain amount of discrepancy. Fundamentally,
the majority of issues are driven by correspondence detection, which cannot be improved while
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the baseline increases. Nonetheless, a sizable baseline is necessary to achieve a statistically
meaningful disparity. The following sections discuss the key difficulties associated with
correspondence selection:

• Occlusions and discontinuities: Due to the discontinuities in the surfaces and the
object’s specific displacement in the scene, some of the points in the first picture may
not correspond to the points in the second image. For such locations that lack the
relative conjugate, there is no rationale or meaning to characterize the disparity. This is
the most prevalent problem in stereo vision and may be detected by first gazing at the
edge of an item and then recognizing it with one of the two eyes. To recognize detection
occlusions, a process called Left-Right consistency check might be used. Nonetheless,
there is no adequate answer for resolving the gap in these areas.

• Radiometric distortion and noise: Additionally, for Lambertian materials, the
observed spots may not be same in these two pictures. Due to the presence of noise, the
hue and intensity of two scenes may differ, complicating the correspondence search.

• Specular surfaces: As with the last item, glossy materials can reflect light directly
into the camera. Due to the two cameras’ differing view angles, a section of the picture
may be visible while the same location in the other image may be overexposed. When
the scene’s illumination system does not rely on a direct spotlight, the probability of
overexposed sections reduces.

• Perspective foreshortening: Due to the somewhat diverse views provided by each
stereo camera, the picture of the surface can be compressed and occupy a smaller area in
one view. The effect is more obvious when an item is horizontally tilted. Foreshortening
has disadvantages, particularly for approaches that aggregate costs using fixed-size
windows, because it is expected that objects fill the same extents in both pictures

• Transparent objects: Transparent objects have an inherent ambiguity. These things
would obscure or conceal the true background. Without a doubt, this circumstance has
a detrimental effect on both local and global methods, lowering their performance.

• Uniform regions: The majority of stereo matching methods are incapable of dealing
with poorly textured surfaces in the picture. Neither global nor local techniques are
enough for resolving this issue. The detection of comparable regions is dependent on
the function’s peak point, which is obtained using correlation or another approach.
Despite the fact that this is a typical limitation of all stereo matching methods, strategies
are capable of assigning a suitable disparity to all of these places.
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• Repetitive pattern: Regions devoid of texture or densely textured with periodic
patterns provide us with several obstacles when creating a scene. Due to a lack of global
information about the scene, it is extremely difficult to tell the difference between the
true correspondence and fake versions. The most often used technique is a checkboard
with a cost function for the points. Additionally, in this scenario, ambiguity can be
eliminated by the use of global techniques.

Figure 5.1: The General Flow Chart of Disparity Map

5.3 Depth estimation from stereo vision

Numerous suggestions for disparity computation have been published in the literature. Among
these academic papers, Hirschmuller’s Semi-Global Matching (SGM) was considered the
best option. It accurately depicts the scene’s three-dimensional structure using a point-wise
matching cost and a smoothness term. The majority of one-dimensional energy functions
computed using distinct pathways are individually and effectively reduced, and their costs
are added together. Eight to sixteen distinct separate pathways are utilized in academic
investigations that suggest SGM. The discrepancy corresponding to the lowest aggregated
cost is chosen for each point.

OpenCV [26], one of the most widely used computer vision libraries, implements a
modified version of this approach in an optimal manner. It differentiates itself by utilizing a
different matching cost computation. Instead of the original mutual information cost function,
the Birchfield-Tomasi sub-pixel metric is utilized.

Disparity maps can be exploited with data fusion frameworks for estimation. In previous
studies which involve stereo matching algorithms remark that Semi Global Matching is one
the of the most efficient and fastest approach for this task.

5.4 Depth Estimation with Neural Networks

After the explanation of more traditional approach for disparity maps and key-points of this
approach, this part introduces deep learning strategy for disparity maps as a catalyse for
performance and results.
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As it is illustrated in the figure, the flow chart is based on three main steps,

• (1) view-feature extraction

• (2) feature fusion

• (3) disparity regression

All these steps are merged with each other without any additional process. In the next
sections, these steps will be discussed.

5.4.1 View-feature extraction

Two sub-networks of a 2-D CNN are utilized to extract features from each view picture, as
seen in Figure 5.2 To begin, 5x5 convolutional filters with stride 2 are used to capture more
global information and build a 3-D feature map with half the resolution. The last layer is a 3x3
convolutional filter, followed by eight residual blocks composed of two 3x3 convolution layers
each. Each convolutional layer is followed by a ReLU activation layer to induce non-linearity.
The two sub-networks share the weights for feature extraction from the left- and right-view
pictures.

5.4.2 Building 4-D disparity-varying feature volume

Figure 5.2

Instead of using the original RGB intensities, the disparity information can be generated
by integrating the two 3-D feature maps taken from the left- and right-view images. It is tried
to concatenate the two feature volumes from Fig.5.2 across different disparity levels and
then pack them into a 4D volume, as suggested by [30], rather than merging them by typical
direct concatenation. The network will now be able to learn semantics as a result of this.

If it is assumed that 32 different disparities and 31 horizontal shifts (i.e., in the w axis)
for the right-view features with zero padding, as illustrated in figure which is given the above.
(the black area in Fig. 5.2). (w/2)x(h/2)x64x32 is the size of the final 4-D volume.
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5.4.3 Disparity regression

To regress the discrepancies from the 4-D feature volume, a 3-D CNN based on a modified
UNet [29] network (improvement from UNet) is utilized, as shown in Fig. 5.3. The original
U-Net employs a pyramid encoder-decoder design, with symmetrical encoder (i.e., contraction
path) and decoder (i.e., expansion path). In a pyramid, there are numerous levels (scales),
with reduced resolution at higher levels (i.e., near the pyramid peak in Fig 5.3) but a greater
number of channels. To achieve high accuracy, the encoder uses down-sampling to extract
image features at various scales, while the decoder predicts the class or output from the
extracted features by up-sampling and fusing the features at higher scales.

[29] improves UNet by re-scaling the direct connection between the encoder and decoder
paths. To fuse features at hierarchical scales, image features at a scale will be concatenated
with up-sampled features at higher scales before being fed into the decoder path. Before
feeding each CNN layer, UNet concatenates features with those generated from other CNN
layers at the same scale. The modified UNet network includes four tiers in the pyramid,
with 32, 64, 128, and 256 channels in the output feature map, respectively. After feeding
the 4D feature volume into the regression sub-network, a succession of 3D convolutional
layers, down-sampling,concatenation, up-sampling, and skip connection are used to create a
4-D feature volume of size wxhx6x32 that is then output. In addition, each convolutional
layer employs a 3x3x3 convolutional filter with padding of 1. Down-sampling is done via
max-pooling, and upsampling is done with bilinear interpolation.

Figure 5.3

By concatenating the 32 3-D feature volumes in channel dimension, the output of
UNet++’s 4-D feature volume (wxhx6x32) is transformed to wxhx192. For each pixel in the
left-view image, this refers a partition into 192 possible disparity values. The disparity for
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each pixel is then estimated using a soft-argmax function, which produces the final disparity
map. The output disparity d̂ can be computed as:

d̂ =
DmaxX

d=0

x�(cd) (5.1)

where cd is the possible disparity category, d is the corresponding disparity value, � is
the softmax function and Dmax is set to 191. [28]

5.4.4 Loss function

Before training, the model parameters are randomly initialized. After that, an end-to-end
supervised learning is carried out. Because some disparity ground truths are formed from 3D
point clouds, the disparity map that results may contain sparse pixels when contrasted to the
RGB input image. Only pixels with disparity ground facts are taken into account in the loss
function, which is defined as:

L(d, d̂) =
1
N

NX

n=1

||dn � d̂n||1 (5.2)

where d is the ground truth disparity d̂ is the estimated disparity, and N is the number of
labeled pixels.
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Monocular Depth Estimation

Estimating the depth of a scene from a single image is an easy task for humans, but is
notoriously difficult for computational models to do with high accuracy and low resource
requirements. Monocular Depth Estimation (abbr. as MDE hereafter) is this task of estimating
depth from a single RGB image. Some applications include scene understanding, 3D modeling,
robotics, autonomous driving, etc. Recovering depth information in these applications is
more important when no other information such as stereo images, optical flow, or point
clouds are unavailable. Monocular depth estimation is often described as an ill-posed and
inherently ambiguous problem. Estimating depth from 2D images is a crucial step in scene
reconstruction. The problem can be framed as: given a single RGB image as input, predict a
dense depth map for each pixel. This problem is worsened by the fact that most scenes have
large texture and structural variations, object occlusions, and rich geometric detailing. All
these factors lead to difficulty in accurate depth estimation.

In this part, Monocular Depth Estimation will be introduced with main details and
theoretical background after that, the neural network approach for depth estimation which is
based on supervised modelling will be discussed.
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6.1 Definition of Problem

The basic formulation of monocular depth estimation require this concept: RGB-depth (RGB-
D) pair images which are obtained from single camera resource. And then, monocular depth
estimation from single images may be considered as a pixel-level continuous regression
problem. This regression problem, is a standard mean square error (MSE) loss in log-space
or its variants are used as loss function. This approach is limited by supervised learning in
which the task is pixel-wise continuous regression.

If more details are given with a theoretical expression, it can be illustrated in below, Let I
be the space of RGB images and D the domain of real-valued depth maps. Given a training
set T = {(Ii , Di)}Mi=1, Ii 2 I and Di 2 D, the task is to learn a non-linear mapping � : I �! D.
This formulation is applicable to supervised learning algorithms where pixel- level ground
truth is available. Some methods relax this constraint by introducing different requirements
and constraints. [53]

6.2 Depth Map Prediction using a Multi-Scale Deep Network

Previous academic studies which are based on depth estimation, focus on Convolutional
Neural Networks with multi-scale features. The introduction of this approach to use multi-
scale information was introduced in this part . This network has two main components as one
that first estimates the global structure of the scene, after that a second which improves this
estimation with using local information. They use a specific scale-invariant loss to calculate
the scale dependent error.

Figure 6.1: General Input - Output Sequence
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Figure 6.2: U-net Architecture

6.3 U-net

U-net is a type of convolutional network architecture that is used to segment pictures quickly
and precisely. It has outperformed the previous best approach (a sliding-window convolutional
network) up to this point.

In spite of Convolutional Neural Networks expose effective results for image segmentation
and depth estimation issues, for complex datasets, they cannot be as good as U-net architecture.
First, it was designed for medical image segmentation and then different usage areas came
to vision.

The schema which is given the above illustrates the general concept of this approach with
sample layer dimensions.

6.4 Network Architecture

• Architecture: The figure demonstrates the depth estimation encoder-decoder network
in its entirety. The U-net architecture for this part makes use of pre-trained ImageNet
[53] weights and a feature vector encoded by the DenseNet-169 [44] network. Then,
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in order to reconstruct the final depth map with a resolution half that of the input, this
vector must be passed through a series of upsampling layers [48]. The decoder creates
these upsampling layers and associated skip-connections. The decoder also supports
Batch Normalization, however the design does not contain the extra advanced layers
recommended in current state-of-the-art techniques [41], [43].

• Complexity and performance: The performance of this surprisingly simple design
prompts further inquiry into the components that contribute most to the production
of these high-quality depth maps. Diverse state-of-the-art encoders [38] with greater
or lesser complexity than DenseNet-169 were seen, as well as a variety of decoder
approaches. Not only do more advanced encoder-decoder models give less trustworthy
outputs, but they also operate more slowly. As a result, they have no effect on perfor-
mance. Simple bilinear structures are utilized to combine upsampling steps effectively,
resulting in increased performance.

• Encoder-Decoder Networks: Encoder-decoder structure is integrated to many deep
network models for depth estimation [32], [33], [34], [35], [36]. According to one
formulation, the U-Net architecture may create skip connections between convolution
layers on the encoder path and upsampling layers on the decoder path that have the
same spatial dimension. All of these connections between feature maps are employed
to recover and enforce spatial information across several resolutions and to maintain
spatial consistency on the output picture, which requires alignment of the input and
output channels. [31] According to previous research [37], introducing an adversarial
term boosts high-level information while maintaining object borders and shape details.
The implementation of the U-net is based on 256 x 256 input images that are sampled
down to 1x1 pixel. Up-sampling and pooling are eliminated in favor of 4x4 convolution
filters with stride 2x2 and transposed convolutions.

6.5 Learning

Loss Function: The usual loss function for depth regression concerns the difference between
the true depth map (y) and the depth regression estimation (ŷ). Different loss function tech-
niques can significantly impact the training time and overall performance of depth estimation.
The major part of loss function adjustments employed in neural network optimization are
documented in the literature on depth estimation [40], [47], [50], [41]. This approach
proposes a loss function that finds a balance between recreating depth images and reducing
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the gap between depth values while penalizing distortions of high frequency features in the
depth map’s image domain.

These details are typically corresponded to the boundaries of objects in the scene. For
training the network, the loss L between y and ŷ can be expressed as the weighted sum of
three loss functions.

L(y, ŷ) = �Ldepth(y, ŷ) + Lgrad(y, ŷ) + LSSI M (y, ŷ) (6.1)

According to academic study [53], the first loss term Ldepth is the point-wise L1 loss
defined on the depth values:

Ldepth(y, ŷ) =
1
n

pX

n

|yp � ŷp| (6.2)

In addition, same academic study remarks a second loss term Lgrad is the L1 loss defined
over the image gradient g of the depth image:

Lgrad(y, ŷ) =
1
n

pX

n

|gx(yp, ŷp)|+ |gy(yp, ŷp)| (6.3)

where gx and gy , respectively, compute the differences in the x and y components for the
depth image gradients of y and ŷ. Lastly, LSSI M uses the Structural Similarity (SSIM) [51]
term which is a commonly-used metric for image reconstruction tasks. It has been recently
shown to be a good loss term for depth estimating CNNs [42]. Since SSIM has an upper
bound of one, we define it as a loss LSSI M as follows:

LSSI M (y, ŷ) =
1� SSI M(y, ŷ)

2
(6.4)

As another additional information, this academic study suggests to define one weight
parameter � for the loss term Ldepth. It was empirically found and set � = 0.1 as a reasonable
weight for this term.

One of the most common drawbacks in loss functions is when the ground-truth depth
values are bigger, also loss terms may tend to be larger. To solve this issue, disparity [50], [45]
where for the original depth map yorig is considered for calculation. If y refers to the target
depth map, y = m/yorig where m is the maximum depth in the scene (e.g. m = 10meters for
the NYU Depth v2 dataset). Nevertheless in this case, the loss value gets larger for smaller
values.

Augmentation Policy: Some pre-processing steps can improve the results rapidly
especially to handle the different data structures in the images lead to over-fitting. In [46]
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considers geometric and photometric transformations for generalization performance. Due
to the network is designed to robust results for every image in the dataset, only geometric
transformation cannot be sufficient in all cases. Vertical and horizontal flips, and image
rotations can be considered for the network. Among these strategies, exploiting the image
rotation and right left flip are the bests choice for the NYU Dataset. Therefore, these operations
are applied. Photometric transformations handle different color channels on the input and can
increase the performance. Furthermore, to increase the efficiency, this feature was integrated
to the network.

6.6 Implementation

6.6.1 Implementation Details:

The implementation of proposed depth estimation network using TensorFlow and trained
with 16GB memory. The encoder is selected as a DenseNet- 169 pretrained on ImageNet. The
weights of the model for the decoder part are randomly initialized. In this model, the ADAM
optimizer is exploited with learning rate 0.0001 and parameter values �1 = 0.9,�2 = 0.999.
The batch size is set to 8. The total number of trainable parameters for the entire network,
according to model summary is approximately 42.8M parameters. The training process is
completed with 300 iterations.

6.6.2 Dataset for Monocular Depth Estimation

NYU Depth v2 is a dataset that provides images and depth maps for different indoor scenes
captured at a resolution of 640 × 480 help of Kinect Camera. Even if the dataset contains
120K training samples and 654 testing samples [40], the method uses a 40K subset. Missing
depth values are completed using the inpainting method which is proposed in [49]. The
bound depth maps for this dataset is approximately 10 meters . The network produces
predictions at half the input resolution, i.e. a resolution of 320 × 240.In training step, input
images are taken at their original resolution and downsample the ground truth depths to 320
× 240. With help of the preprocessing steps which are explained previous chapter, cropping
any of the input image-depth map pairs even if they contain missing pixels are not required.
For test process, the depth map prediction of the test image after that, the model upsamples
it by 2× to match the ground truth resolution and evaluate. At test time, the final output is
calculated by taking the average of prediction of the image and the prediction of its mirror
image. the Figure 6.3 illustrates the sample format of NYU v2 Dataset.
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Figure 6.3: Sample Input Image for U-net Architecture
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7
RESULTS

This part includes the main details of datasets which are exploited for the implementation
and analysis, the results and error illustrations with help of sample input-output and graphs.
After that, the comparison among these depth estimation approaches will be discussed.

In order to propose the results of the methods which are introduced in the previous
sections, a Python program has been developed which is separated to 2 parts for ToF based
distance estimation and U-net based depth map estimation. In ToF part, this software
allows us handle the distance histograms to provide a result for estimation. After the MATLAB
simulation of ToF sensor, threshold is applied to reduce the dimension and then deep regression
is implemented. In the second part, in order to provide an implementation of image based
depth estimation, sub-dataset of NYU Dataset V.2 is exploited (40k Images).

7.1 Results of ToF Based Distance Estimation

Time of Flight Camera simulation provides us histograms with synthetic data, after the the
base distance assumption which is explained in the Chapter 4, the first data shows in Fig1,
different peak points for every time stamp, make the required data space larger. In this
case, in order to reduce the data, raw cross correlation is applied. The figure is given the
below illustrates the raw correlation between destination signal (y value) and base signal
(distance=0), after that threshold is applied and smooth correlation is obtained as new datum
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for the model. With help of this approach, observing difference between target and base
becomes easier. Some wrong peak points can be seen after the correlation operation (e.g 5m
distance) due to last time stamp value or some environmental conditions (e.g ambient light).

After creation of model, back propagation updates the weights according to loss value
and then optimization step applies L1 regularization. The graphs are based on standard
deviation for every integer distance sample. To measure the sensitivity of the model, all
distance estimations are calculated and then the average distance estimation for a destination
distance are used for standard deviation.
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Figure 7.1: Single Layer, Neuron Count: 400, Accuracy: 70%

Figure 7.2: Multi Layer, Neuron Count: 400, Accuracy: 61%

Figure 7.3: Multi Layer, Neuron Count: 400, Accuracy: 87%
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Standard Deviation

Distance (m) Single Layer Multi Layer: 3 Multi Layer: 5

1 0.413 0.290 0.393
2 0.321 0.507 0.516
3 0.754 0.298 0.191
4 0.553 0.659 1.130
5 0.596 0.651 0.871
6 0.818 0.816 1.465
7 0.564 0.919 1.826
8 1.345 1.382 2.415
9 2.045 1.663 2.880
10 1.329 1.307 2.622

The table shows the standard deviation for every integer distance in the dataset.
Summary, as one of the most important case for time-of-flight based distance estimation,

when the destination distance is getting larger, sensitivity for estimation increases. This
situation affects the accuracy negatively for longer distances. The model which provides
us the most accurate results is multi layer deep regression algorithm. To make an effective
comparison among the layers, all hyper-parameters such as learning rate, number of neurons,
epoch number are selected same. According to Figure 7.3 the best accuracy is given by
multi layer, even if the highest standard deviation. On the other hand, the lowest standard
deviation is provided by single layer deep regression. There is trade-off between accuracy
and standard deviation. Despite of higher accuracy, error ratio for this strategy is the highest.

7.2 Disparity Maps with Neural Network

To improve the performance of the disparity maps, Neural Networks are exploited. Completing
of missing points and some benefits for exceptional textureless surfaces or conditions (e.g
further objects, optical reflection and losing some details about corners and edges) affect the
performance directly. As it is illustrated in Figure 7.6, implementation of NN for disparity
maps provides us clearer results. Specifically, instead of disparity maps (Figure 7.5), reliability
for edges is better in Figure 7.6. As a loss evaluation, the academic study [28] which is
followed uses EPE (end-point-end). It is based on average error between estimated disparity
and ground truth for every pixel. The images are taken from KITTI Dataset 2015, it is the
one of the most common dataset for the approach and in this part a sample image is placed
to demonstrate the positive effect of the Neural Networks.
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Figure 7.4: Original Image

Figure 7.5: Disparity Map

Figure 7.6: Estimated Disparity of Neural Network

7.3 Results of U-net

The output images are obtained from U- Architecture for monocular depth estimation. The
dataset is splitted to train set, validation set and test set. The trainset contains 80% of all
images and validation-set and test-set contain 10% of the image dataset.

Supervised learning is the one of the most common option for depth maps, U-net provides
us more sensitive results to handle the relation among pixels. Even if the stereo devices
provide better information a scene, single image sources are common in the real world. For
monocular depth estimation, U-net model exploit 2x2 upsampling size and for convolutional
layers, it uses 3x3 kernel size. The hyper parameters such as learning rate: 10�4 and epoch
limit is : 10 to prevent the overfitting case. The best score end of the last epoch is 93% for
training set , 91% for validation set and 83% for test set. Higher learning rates may lead
to divergent error for the model, on the other hand, smaller learning rates can involve the
overfitting. In order to improve the accuracy, k fold cross validation is integrated to span the
dataset properly.

As it is illustrated with sample output images, some missing details are occurred for edges
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Figure 7.7: Loss Plot for U-net

Figure 7.8: Accuracy

and corner information in the scenes. Increasing epoch number does not affect this drawback
properly. At the same time, it reduces run-time performance. Instead of epoch limit, early
stopping method can be integrated to the model.
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Finally, the model produces the depth estimation with input image and its Ground Truth.
As it is illustrated in below. The first column shows input images, the second column shows
its Ground Map and then the third column shows the prediction.
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Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12
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Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16
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Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20
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Figure 7.21

Figure 7.22

Figure 7.23

Figure 7.24
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8
Conclusion

This thesis introduces 3D Data Estimation with help of the most common approaches in
Computer Vision Field. Through, the first part provides a distance estimation tool via Single
and Multiple Layer Deep Regression, stereo vision part demonstrates the advantages of Neural
Networks for disparity maps and then last part implements U-net algorithm as a solution for
monocular depth estimation.

In Time-of-Flight part shows the catalysed performance for distance estimation with help of
Machine Learning Modelling which are supported by traditional threshold approach. The most
common drawback for this task could be eliminated via data reduction, and then Regression
Algorithm is implemented to satisfy to the expectations about real-time running performance.
For stereo vision devices part demonstrates the effective contribution of Neural Networks to
improve the disparity maps for depth estimation. Instead of additional calculation with more
traditional approaches, Neural Networks could handle the situation properly. Monocular
Depth estimation provides us robust results with an acceptable loss in edges and corners.
Even if, only one RGBD image for a scene leads to many advantages in Computer Vision. In
order to make a comparison among these methods, the results are observed to discuss about
their drawbacks and benefits.

For an extension to improve the results, some improvements could be applied for data
reduction and increase the sensor sensitivity to minimize to pile-up effect in time-of-flight
part. As a future work for stereo devices, some pre-processing steps can be integrated to
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improve image quality and diminish the running time. Furthermore, some pre-processing
steps can be considered for monocular depth estimation with U-net to preserve the edges
and corners.

From widely diverse industries to daily life, time-of-flight sensors, stereo image devices
and monocular devices are exploited for many tasks. Thus, we could be sure that in the future
there are many developments and research will be released to provide better performance
and scientific results.
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