
1

Università degli Studi di Padova

DEPARTMENT OF INFORMATION ENGINEERING

Master Degree in ICT for Internet and Multimedia

RGB-D Multicamera Object Detection and

Tracking Implemented through Deep Learning

Supervisor

Dr. Stefano Ghidoni

Master Candidate

GuangZheng Zhang

Student ID: 1178043

Academic Year 2018/2019
Date: 07/10/2019

Session: third period 2018/2019

Abstract

In this thesis we present the development of a multi object detection and
tracking system in low light environment implemented by using a RGB-D
multicamera system and the deep learning framework. For better under-
standing how the system works, some hardware and software components
are presented such as RGB-D sensor cameras, multi object detection and
tracking techniques. In addition a brief introduction of the main concepts of
the neural networks are presented.

4

Abstract

In questa tesi viene presentato un sistema di identi�cazione e tracking di
oggetti in ambienti poco illuminati implementato usando un sistema a mul-
ticamere RGB-D e l'ambiente del deep learning. Per capire meglio come il
sistema funzioni, alcune componenti hardware e software vengono presentate
e descritte come i sensori RGB-D, tecniche di identi�cazione e tracking di più
oggetti. Inoltre viene presentata una breve introduzione ai concetti principali
delle rete neurali.

Contents

1 Introduction 1
1.1 Introduction . 1

2 RGB-D Sensor Camera 5
2.1 Characteristics of the RGB-D camera 5

2.1.1 Passive triangulation technology: Stereo Vision 6
2.1.2 Active triangulation technology: Structured Light . . . 7
2.1.3 The Time of Flight (ToF) technology 8

2.2 RGB-D Camera Devices . 10
2.2.1 Devices . 11
2.2.2 Project Camera Selection 17

2.3 Di�erence Between RGB-D Camera and
RGB Camera . 17

3 RGB-D Multicamera System 19
3.1 Requirements for a Multicamera System 20

3.1.1 Interference . 20
3.1.2 Total Area Coverage 21
3.1.3 Setup Modularity . 22
3.1.4 Workload and USB Extension Cable 22
3.1.5 RGB-D Multicamera Calibration 23

3.2 RGB-D Multicamera Topology 25
3.2.1 Array of RGB-D cameras 25
3.2.2 Matrix of RGB-D cameras 25
3.2.3 Circle of RGB-D cameras 26

4 Neural Networks 27
4.1 Arti�cial Neural Network Model 27

4.1.1 Basic Computing Devices: Neurons 28
4.2 Fully Connected Neural Networks 34

4.2.1 Training Process . 35

8 CONTENTS

4.3 Deep Convolutional Neural Network 36
4.3.1 How a CNN works . 37

4.4 Typologies of Image Data Input for CNNs 40
4.4.1 RGB Image Data . 40
4.4.2 Depth Image Data . 41
4.4.3 RGB Plus Depth Image Data 42
4.4.4 Point Cloud Data . 43
4.4.5 Video and Camera Streams 44

5 Object Detection and Tracking 45
5.1 Object Detection Through CNN 46
5.2 Object Recognition Through CNN 47
5.3 Object Tracking . 50

5.3.1 Multi Object Tracking 52

6 Bumper Cars Tracking in Low Light Environments 55
6.1 Goal of the Project . 55
6.2 Project Setup: Hardware Components 56
6.3 Project Setup: Software Components 58

6.3.1 The Bumper Cars Detection CNN 59
6.3.2 The Bumper Cars Tracking 64
6.3.3 Issues of the Tracking System 67
6.3.4 The Video Game . 67

7 Conclusions and Future Works 69
7.1 Conclusions . 69
7.2 Future Works . 70

Bibliography 76

Chapter 1

Introduction

1.1 Introduction

Multi object recognition and tracking are two challenging problems in the
computer vision applications, so a lot of works, studies and researches are
done in these two areas.
In the recent years object recognition algorithms, in the RGB image domain,
have achieved good results for a lot of computer vision, arti�cial intelligence
and autonomous robotics applications [1, 2, 3].
With the advent of the Convolutional Neural Network (CNN) and the Deep
Neural Network (DNN), it is possible to learn and extract more accurate
features with respect to the hand-crafted feature representations such as
Scale-Invariant Feature Transform (SIFT), Histogram of Oriented Gradients
(HOG) and Spatio-Temporal Laplacian Pyramid Coding (STLPC) [1] and
consequently it is possible to achieve high accuracy detections and make the
object recognition more robust against false detections [4].
However, there are still several limitations for the object recognition using
data information only from the RGB image domain in many real world ap-
plications [5]. These limitations are caused by the fact that the real world
applications operate in a 3 dimensional space while the RGB domain is only
a projection of the 3D space into a 2 dimensional space which leads to an
inevitable data loss. Moreover, object recognition faces other challenging
problems such as complicated background, illuminance variations and occlu-
sions. Thanks to the development of low cost depth sensor cameras such as
Intel RealSense and Azure Kinect, that allow to provide high quality RGB
images and to open a new dimension, i.e. depth data for each pixel, it is pos-
sible to overcome the above described challenges [1, 4]. These depth sensors
give the possibility to use depth information of a scene in order to extract

2 CHAPTER 1. INTRODUCTION

more informative features since the depth data is more robust against the
color, illuminance, rotation angle and scale variations with respect to the
RGB images. Despite all the success obtained in the object recognition with
RGB images, in the RGB plus Depth (RGB-D) image domain this task is
still an open problem. Thanks to the more common use of applications that
use this type of data, the RGB-D image domain becomes an interesting re-
search area and allows the researchers to study and implement a lot of new
applications such as autonomous driving [6], 3D object recognition [7, 8, 9]
and robot objects picking [10], that are di�cult to implement without depth
information of the scene.
Object tracking is a novel procedure for detecting moving objects beyond
time by utilizing video sequences and in the recent years it becomes, with
the object recognition, one of the most challenging problem for computer
vision applications and intelligent video surveillance systems [11]. The prin-
cipal aim of the object tracking algorithm is to relate the target objects,
their features or shapes, their location in the scene in a successive video se-
quences. However there are several issues like occlusion of an object in the
scene, objects overlapping, deformation, complex object motion and real-
time processing requirements [11, 12, 13]. All these issues can make the
tracking systems inaccurate and causing a drift in the tracking process and
consequently it is possible to lost the tracked target [11, 14]. In addition,
the object classi�cation and detection are essential for all object tracking
algorithms, so a robust object detection algorithm can contribute to obtain
a good object tracking system.
Since in a video surveillance system there is the need to cover a wide area and
due to the �nite camera �eld of view, it is di�cult to track the complete ob-
ject trajectory of the object of the interest in a wide area. For these reasons, a
multi camera system is introduced in order to solve the above problems [14].
By introducing the multicamera system, the problem of overlapping in the
cameras views is introduced and how to link the di�erent images captured
from the various cameras become an important research argument [14, 15].
A multi object tracking system aims to �nd the optimal trajectories of a set
of moving targets in a video sequence that can have an inde�nitely duration.
This task is typically formulated as a data association task in which an ob-
ject detection algorithm detects and localizes the objects and their bounding
boxes in each frame. Finally the tracking algorithm associates the corre-
sponding bounding boxes across the video frames [16].
However, it is also di�cult to track and maintain an assigned identity for
each tracked object in the multiple objects tracking system [17], especially
in the case when the target objects, in some frames of the video sequence,
are occluded or overlapped [18, 19].

1.1. INTRODUCTION 3

In this thesis an object detection and tracking system developed for a low
light environment will be presented. In order to better understand how the
components of the system work, a review of the various RGB-D cameras
present in the market, the importance of the CNN for the object detection
and tracking and the usage of multicamera in various con�gurations will be
presented. The next chapters of the thesis are organized in the following way:
�rstly the characteristics of the RGB-D cameras, how they work, di�erences
between the various sensors, comparison with RGB only cameras and their
advantages in low light environments will be presented in the chapter 2. Then
the multicamera system will be introduced in the chapter 3, where there will
be presented also the di�erent con�guration of the cameras positions and the
problems related to the overlapping of the camera views. Since the usage
of CNNs give an important improvement in the accuracy of the detection of
the objects, this argument is presented in the chapter 4, where a description
of how they work, their main concepts, di�erent types and their contribu-
tion in the imaging processing, are discussed. In the chapter 5 the object
detection and tracking process and their concepts will discussed. Then the
project setup and the algorithm idealized for a low light environment, its
testing settings, the results and some consideration of the algorithm will be
presented in chapter 6 and �nal considerations, issues and future works are
discussed in the chapter 7.

4 CHAPTER 1. INTRODUCTION

Chapter 2

RGB-D Sensor Camera

The detection and tracking system that will be presented in the chapter 6,
will work in a low light environment. For this reason, the RGB-D sensor
cameras are more suitable than the RGB cameras. This type of sensor cam-
era combines the RGB color information with per pixel depth information.
These type of sensors exist for years but initially their prices are very high and
they are not for commercial purposes. In the recent years, more precisely in
November 2010, Microsoft launched its �rst commercial RGB-D sensor cam-
era named Kinect. It is developed as a new Natural User Interface (NUI) for
its XBOX 360 gaming console with a price that is some order of magnitude
cheaper than the non commercial ones. [20, 21]. After the success of the
Microsoft Kinect, more and more low-cost commercial RGB-D cameras are
developed by other manufacturers like Asus, Intel and Primesense with com-
petitive prices [21]. Thanks to all these new RGB-D sensors, the researchers
become more and more interested to study and develop new application, us-
ing these type of cameras, such as object reconstruction and 3D scanning, 3D
mapping like the Simultaneous Localization And Mapping (SLAM) process
[22], implementation of Virtual Reality (VR) and 3D Augmented Reality
(3D-AR) [20] and scene reconstruction [21, 23].

2.1 Characteristics of the RGB-D camera

Traditionally there are di�erent technologies of range sensing on which the
low-cost RGB-D cameras mentioned above are based. These technologies can
mainly grouped into two categories [21, 24]:

• Range sensing by triangulation that can be subdivided again into pas-
sive (i.e. stereo vision) and active (i.e. structured light) technologies.

5

6 CHAPTER 2. RGB-D SENSOR CAMERA

• Range sensing by using the Time of Flight (TOF) technology.

2.1.1 Passive triangulation technology: Stereo Vision

Stereo vision is an area of computer vision in which the aim is the reconstruc-
tion of the 3D coordinates of the points in order to estimate its depth values
[25]. Traditionally a stereo vision system is composed by the so called stereo
camera that is a set of two RGB cameras aligned and placed horizontally,
one on the left and one on the right (see Figure 2.1). The system capture
the two images from the two cameras simultaneously, then the images are
processed in order to retrieve the visual depth information by computing the
disparity between the two images and creating a disparity map as the result
of the process (see Figure 2.2) [21, 25].
This technology can reproduce disparity maps with high resolution at the
expense of a more computation demanding stereo matching algorithms, es-
pecially when the global optimization techniques are used [26]. The stereo
vision system is suitable for both outdoor and indoor environments but only
in places with a good illumination since the technology is passive and it is
based on the re�ection of the natural light on the target in order to capture
and process the images [24].

Figure 2.1: The aspect of a stereo camera.

Figure 2.2: Image captured by the left camera (left), image captured by the
right camera (center) and the computed disparity map (right).

2.1. CHARACTERISTICS OF THE RGB-D CAMERA 7

2.1.2 Active triangulation technology: Structured Light

Structured light sensors can be a valid alternative to the passive stereo vision
cameras in some speci�c cases like controlled environment, weakly lighted
environment and weakly textured environment [27]. A triangulation based
structured light sensor is similar to the classic stereo vision sensor with one
of the cameras replaced by a light source projector that can be a laser or a
slide projector [27, 28]. The structured light pattern form can be a single
dot, single slit, stripe patterns or grid, multiple dots (see Figure 2.3).

Figure 2.3: Geometry of a structured light sensor.

The structure light typology, instead, can be divided into three categories
based on the type of the used light source or pattern [27]:

• InfraRed Structured Light (IRSL): it use generally the near-infrared
light spectrum (i.e. from 640 nm to 2500 nm) as the light source.
Thanks to the spectral sensitivity of the CCD cameras (from 300 nm
to 1100 nm), the is no need to use an infrared camera and a CCD
camera is su�cient to acquire the images.

• Imperceptible Structured Light (ISL): the system is composed by one
light source and two cameras. The light source is composed by a light
pattern followed by its inverse pattern and it is projected onto the
scene with high frequency in order to have an uniform light pattern.
One camera is synchronized with the �rst light pattern while the second
retrieves classical gray scale or color images.

8 CHAPTER 2. RGB-D SENSOR CAMERA

• Filtered Structured Light (FSL): the light source in this case is �ltered
by an infrared �lter, placed in front of the light source, that allows only
some speci�c wavelengths to passing through. After the �lter, it is very
similar to the IRSL case.

The IRSL is one of the most commonly used technology in the low cost RGB-
D cameras and these type of cameras will be used in the setup of the project
that will be presented in the chapter 6.

2.1.3 The Time of Flight (ToF) technology

This technology is implemented in the so called ToF cameras. These cameras
measure the distance of an object by calculating it from the time an emitted
light signal takes to return to the camera. There are two main di�erent ToF
principle [29, 30]:

• Pulse modulated ToF: it measures the distance by means of a direct
measurement of the time of a pulse light to do a round trip.

• Continues Wave (CW) modulated ToF: it uses an amplitude modulated
light and it measures the distance by measure the phase di�erence
between the emitted and the received signals (see Figure 2.4).

Because of the complex readout schemes and a low frame rates, the pulse
modulated one is less used in the commercial 3D imaging, while the other
one is already implemented in several commercial 3D camera systems (see
Figure 2.5) [30].

Figure 2.4: Distance measurement using the phase o�set.

2.1. CHARACTERISTICS OF THE RGB-D CAMERA 9

Figure 2.5: Current commercial ToF cameras. (a-b) Mesa Imaging AG c©. (c)
Ifm electronic c©. (d) CanestaVisionTM. (e-f) PMD[Vision] R©.

In the CW type, every pixel on the sensor measure 4 times the re�ected light
(m0,m1,m2,m3 in Figure 2.4) and this allows the parallel computing of the
phase

ϕ = arctan

(
m3 −m1

m0 −m2

)
(2.1)

the o�set

B =
m0 +m1 +m2 +m3

4
(2.2)

and the amplitude

A =

√
(m3 −m1)2 + (m0 −m2)2

2
(2.3)

10 CHAPTER 2. RGB-D SENSOR CAMERA

Using these information, it is easy to calculate the distance

D = L
ϕ

2π
(2.4)

where L is the ambiguity-free distance range that can be calculated, once
the modulation frequency fm is known, by using the following equation

L =
c

2fm
(2.5)

where c is the speed of the light in vacuum.
The ToF camera measurements usually su�er from some systematic errors
such as the multipath e�ect, the scattering artifacts and the mixed pixel. All
these errors compromise the accuracy of the measurements.

2.2 RGB-D Camera Devices

After the �rst version of Microsoft Kinect presented in 2010 and the big
success that has obtained, in the recent years, lots of companies invest and
develop their own RGB-D cameras for commercial purposes. Since these
RGB-D cameras was created as NUI devices, their characteristics su�er some
limitations like the Field Of View (FOV) is not enough large for mapping
applications and the depth resolution deteriorates notably with the distance
of the object from the camera increases (see Figure 2.6) [20].

Figure 2.6: Microsoft Kinect depth resolution vs. depth (Khoshelham &
Elberink 2012). Theoretical random error is shown in red (bottom curve),
while the theoretical resolution is shown in blue (top curve).

2.2. RGB-D CAMERA DEVICES 11

In the following subsection, some RGB-D cameras are presented with their
technical speci�cations.

2.2.1 Devices

Microsoft Kinect v1

Figure 2.7: The Microsoft Kinect v1.

This is the �rst commercial RGB-D camera presented in 2010 by the
Microsoft for its XBOX 360 gaming console. Since it is developed as a NUI
device, it has also an array of microphones (see table 2.1 for the technical
speci�cations).

Field of View 43◦ vertical, 57◦ horizontal

Depth Range 1.2 m up to 3.5 m

Frame Rate (depth and color stream) 30 frame per seconds (fps)

Stream Resolution (depth and color) VGA (640× 480)

Audio Format 16 kHz, 16 bit mono Pulse
Code Modulation (PCM)

Table 2.1: The Microsoft Kinect technical speci�cations.

12 CHAPTER 2. RGB-D SENSOR CAMERA

Azure Kinect

Figure 2.8: The Azure Kinect.

Figure 2.9: The Azure Kinect exploded.

The Azure Kinect is the newest version of kinect presented by the Mi-
crosoft Azure in this year. It incorporates the best AI sensors (see Fig-
ure 2.9): 1 MegaPixel time of �ight depth camera (1), 7 microphone array
(2), 12 MegaPixel RGB camera (3), Accelerometer and gyroscope, the so
called Inertial Measurement Unit (IMU) for sensor orientation and spatial
tracking (4). The Azure Kinect has an external sinc pins (5) that allows

2.2. RGB-D CAMERA DEVICES 13

to retrieve a synchronize sensor stream from multiple Kinect devices and it
can be combined with the Azure services. The Azure Kinect is designed for
industrial purposes and not for entertainment as the Microsoft Kinect v1 and
v2 that were designed for the XBOX console.
The depth and RGB camera technical speci�cation of the Azure Kinect can
be found respectively in the table 2.3 and in the table 2.2.

Resolution
(HxV)

Aspect
Ratio

Format Options FPS Nominal
FOV (HxV)
post-
processed

3840×2160 16:9 MJPEG 0, 5, 15,
30

90◦ × 59◦

2560×1440 16:9 MJPEG 0, 5, 15,
30

90◦ × 59◦

1920×1080 16:9 MJPEG 0, 5, 15,
30

90◦ × 59◦

1280× 720 16:9 MJPEG, YUY2, NV12 0, 5, 15,
30

90◦ × 59◦

4096×3072 4:3 MJPEG 0, 5, 15 90◦ × 74.3◦

2048×1536 4:3 MJPEG 0, 5, 15,
30

90◦ × 74.3◦

Table 2.2: The Azure Kinect RGB camera technical speci�cations.

14 CHAPTER 2. RGB-D SENSOR CAMERA

Mode Resolution Field of
Illumi-
nation
(FOI)

FPS Depth
Range

Exposure
Time

Near FOV
unbinned

640× 576 75◦ × 65◦ 0, 5,
15, 30

0.5 - 3.86 m 12.8 ms

Near FOV
2x2 binned

320× 288 75◦ × 65◦ 0, 5,
15, 30

0.5 - 5.46 m 12.8 ms

Wide FOV
2x2 binned

512× 512 120◦×120◦ 0, 5,
15, 30

0.25 - 2.88 m 12.8 ms

Wide FOV
unbinned

1024× 1024 120◦×120◦ 0, 5,
15

0.25 - 2.21 m 20.3 ms

Passive IR 1024× 1024 N/A 0, 5,
15, 30

N/A 1.6 ms

Table 2.3: The Azure Kinect depth camera technical speci�cations.

Pico Zense DCAM710

Figure 2.10: The Pico Zense DCAM710 camera.

The Pico Zense DCAM710 is a RGB-D camera designed by the Pico
Technology company. The depth information is retrieved by using the ToF
technology combined with the Charge Coupled Device (CCD) sensor. The
light in this case is emitted by a laser emitter with a wavelength of 850/940
nm, other technical speci�cation can be found in the table 2.4.

2.2. RGB-D CAMERA DEVICES 15

Laser emitter 850/940 nm

Depth sensing FOV 51◦ vertical, 69◦ horizontal

Depth Range 0.2 m up to 5 m

Frame Rate (depth and color stream) 30 fps

Depth Stream Resolution 640× 480

RGB Stream Resolution 1920× 1080

Output Format Depth Map (RAW12), RGB
(H.264)

Table 2.4: The Pico Zense DCAM710 technical speci�cations.

Intel RealSense D435

Figure 2.11: The Intel RealSense D435 camera.

The Intel RealSense D435 is an active stereo system designed by Intel.
It uses an IR structured light and a stereo system in order to retrieve the
depth information. Thanks to the small factor and the stereo component of
the device, it is easy to be integrated into any solutions like robotics, VR or
AR, drones in both indoor and outdoor environments. Principal technical
speci�cations are grouped in the table 2.5.

16 CHAPTER 2. RGB-D SENSOR CAMERA

Use Environment Indoor/Outdoor

Depth Technology Active IR Stereo

Depth FOV (HxVxD) 87◦ × 58◦ × 95◦

Depth Range 0.105 m up to 10 m

Depth Stream Resolution &
Frame rate

Up to 1280× 720 & up to 90 fps

RGB FOV (HxVxD) 69.4◦ × 42.5◦ × 77◦

RGB Stream Resolution &
Frame Rate

1920× 1080 & 30fps

Table 2.5: The Intel RealSense D435 camera technical speci�cations.

MYNT EYE D1000-IR-120/Color

Figure 2.12: The MYNT EYE D1000-IR-120/Color camera.

The MYNT EYE D1000-IR-120/Color camera is an active stereo depth
camera that uses the structured light technology and it is designed by the
MYNTAI company. The camera integrated also an IMU that allows to re-
trieve information of the orientation and spatial position of the device. The
camera can be used both in indoor and outdoor applications like service
robots, drones, VR/AR, Volume Measurements, autonomous driving, indus-
try, gesture, face and object recognition. The other technical speci�cations
are described in the table 2.6.

2.3. DIFFERENCE BETWEEN RGB-D CAMERA ANDRGB CAMERA17

Use Environment Indoor/Outdoor

Depth Technology Structured light Stereo

Depth FOV (HxVxD) 105◦ × 58◦ × 121◦

Depth Range 0.32 m up to 7 m

Depth Stream Resolution 1280× 720, 640× 480

RGB Stream Resolution Up to2560× 720, 1280× 480 & 30fps

Frame Rate (depth and
color)

Up to 60 fps

Output Data Format Depth map (RAW16), RGB
(YUYV/MJPG)

Table 2.6: The MYNT EYE D1000-IR-120/Color camera technical speci�-
cations.

2.2.2 Project Camera Selection

For the project that will be discussed in the chapter 6, the last three devices
presented in the previous subsection are chosen for di�erent setups. Since
there are some compatibility problems between the Pico Zense DCAM710
cameras and the active USB extension cable, these ones have been discarded
from the possible setup for the project. While the other two, Intel RealSense
D435 and MYNT EYE D1000-IR-120/Color, are both suitable for the setup
of the project. Since the MYNT EYE cameras have larger FOV than the
Intel RealSense cameras, it is preferable to use the �rst one than the second
one because it is possible to reduce the number of cameras used for covering
the entire area of interest of the project.

2.3 Di�erence Between RGB-D Camera and

RGB Camera

The RGB-D camera, in the hardware components, is essentially composed
by one or two RGB sensors, a light emitter and a receiver. In the case of two
RGB sensor, it is possible to create stereo systems that can be passive (only
RGB cameras) or active (RGB cameras plus a light emitter for IR or laser
light). In these systems, the depth information can be calculating by using
the ToF technology or the structured light technology with the triangulation
and epipolar geometry theory [21, 24].

18 CHAPTER 2. RGB-D SENSOR CAMERA

Thanks to the additional depth sensor with respect to the traditional RGB
camera, the RGB-D camera is more suitable for low light indoor environ-
ments. This is because the RGB camera do not have enough natural light in
order to capture high quality images from the scene and the depth camera
uses the active depth system, i.e. it has the light emitter, to illuminate the
scene and capture good depth data for the request applications. The RGB-D
camera is also more suggested for outdoor environments or applications that
require the knowledge of the spatial position of the objects or the obstacles
in the scene.
Unfortunately, due to the fact that the FOV of the RGB-D cameras are rel-
atively small, it is di�cult to cover the entire scene with a single camera.
So there is the need of developing systems with multiple RGB-D cameras.
All the necessary requirements, troubles and di�erent con�gurations will be
presented and discussed in the next chapter.

Chapter 3

RGB-D Multicamera System

The RGB-D sensor cameras, presented in the previous chapter, are all com-
mercial low cost cameras. For this reason, its depth FOVs are much smaller
than the high cost mapping specialized sensors and the quality of the depth
data deteriorates with the increasing of the distance of the object from the
camera [20]. So they cannot cover a wide area scene with a reasonable qual-
ity of the depth information. In order to overcome this problem, a system
with multiple RGB-D cameras is introduced. With a multicamera system, it
is possible to assign a speci�c area of the entire scene to one RGB-D cam-
era, then combine the information retrieved from all the cameras in order to
reconstruct the interested wide area [31].
In order to create an useful multicamera system, some important require-
ments have to be met [32]:

• The interference between the cameras should be as minimum as possible
in order to guarantee an high accuracy of the depth measurement.

• The total area coverage should be as big as possible with a minimum
number of cameras.

• The setup should be modular in order to be scalable for other installa-
tions.

• The workload of the image processing should be well distributed over
multiple computers if there is the possibility to install more than one
computer. Otherwise the single computer must have more than one
USB-controller installed since a single camera uses the whole bandwidth
of a USB-controller.

19

20 CHAPTER 3. RGB-D MULTICAMERA SYSTEM

After all these requirements are met and depending on the dimensions
and the shape of the wide area and the FOVs of the RGB-D cameras, the
latters can be positioned in di�erent con�gurations:

• Con�gured as an array of cameras.

• Con�gured as a matrix of cameras.

• Con�gured as a circle of cameras.

3.1 Requirements for a Multicamera System

The requirements described above are essential for the implementation of a
good multicamera system but there exist also other requirements such as
the use of USB extension cables that are related to the physical position
and distance between the RGB-D cameras and the computers in the system
setup and the need of an intrinsic and an extrinsic calibration of the cameras
[32, 33]. In the following subsections, these requirements will be presented
in detail.

3.1.1 Interference

For structural light sensors such as the RGB-D cameras presented in the pre-
vious chapter, its depth signal degrades drastically when multiple cameras
are pointing to the same scene or to an overlapping area [31, 32, 34]. This sig-
nal degrading is principally caused by the projection of multiple structured
light dot patterns of the multiple cameras onto the scene in a continuous
way and without modulation. When a dot pattern of a device interferes with
the others, it is called crosstalk [34] and it can cause a drastically drop of
the accuracy of the depth measurement. For solving the interference prob-
lem, Butler et al. [34] presented the Shake'n'Sense method (see Figure 3.1).
This method consists in a minimally vibration of the RGB-D camera using
an o�set-weight vibration motor in order to introduce an arti�cial motion
blur. Since both the structured light di�ractive optical element illuminator
and the IR camera of the RGB-D camera are moving in harmony, its depth
sensing works normally. However, this minimal motion causes a blurring of
the structured light pattern from the other cameras and it can be used to
eliminate the most of the crosstalk.

3.1. REQUIREMENTS FOR A MULTICAMERA SYSTEM 21

Figure 3.1: The depth noise caused by multiple overlapping Kinect patterns
(left), the depth map obtained by using the Shake'n'Sense method (right).

3.1.2 Total Area Coverage

Figure 3.2: Using the illustrated formula, it is possible to determine the
dimensions of the interested area.

When a multicamera system is implemented, it is a good practice to
make the setup with possibly the minimum number of cameras to cover
a maximum possible area. The number of used cameras depends on the
dimension of the wide area to be covered, the FOVs of the RGB-D cameras
and its location in the scene. Since the depth resolution deteriorates with the
distance of the scene from the camera [20], the cameras need to be installed

22 CHAPTER 3. RGB-D MULTICAMERA SYSTEM

at a right distance in order to guarantee a good depth resolution. By �xing
an opportune distance, it is possible to determine the dimensions of the
interested area covered by the camera (see Figure 3.2). Then, depending on
the application, the cameras can be positioned in di�erent con�gurations and
in an overlapping or a non overlapping way in order to cover the entire scene.
The �rst introduce the interference since in the overlapping areas there are
more than one structured light pattern [34], while the second try to avoid the
interference by positioning the cameras in the way that the overlapping area
is very small and the interference is negligible [31]. The di�erent topology of
the cameras will be presented and discussed later in a dedicated section.

3.1.3 Setup Modularity

During the implementation of the multicamera system, it is better to make
the setup as much modular as possible in order to allow a future extension
of the current setup. If the setup is composed by modules and there is the
need to cover more space in the scene, it is su�cient to add more than one
of these modules including the additional computers if needed. An example
is shown in Figure 3.3.

Figure 3.3: Example of setup with one module (left), example of extension
of the setup with three modules (right).

3.1.4 Workload and USB Extension Cable

The number of RGB-D cameras that can be connected to a single computer is
directly proportional to the number of the USB controller installed in it [32].
This is because the datastream of a RGB-D camera uses all the bandwidth
available on a USB controller. So, if there is only one USB controller in the
computer, it is possible to connect only one RGB-D camera on it.

3.1. REQUIREMENTS FOR A MULTICAMERA SYSTEM 23

The total workload of the imaging processing can be equally distributed
on the multiple computers if there is only one USB controller per computer.
Otherwise the single computer must have a number of USB controller greater
than or equal to the number of used cameras. This single computer must
have an adequate hardware in order to process the incoming data without
visible delay.
Since in most of the setups it is impossible to install the computers near to
the RGB-D cameras that are spreaded in the scene and the USB cables of
the cameras have more or less one meter long, the USB extension cables are
needed to connect the cameras to the computers. Depending on the topology
of the cameras and the location where the computers are installed, the length
of the USB extension cable can vary from 10m to 20m. The power of the
transmitted signal decreases with the increasing of the length of the cable.
This is due to the attenuation induced by the cable, so for these lengths, it
is suggested to use the active USB extension cable instead the normal one in
order to amplify the transmitted signal.

3.1.5 RGB-D Multicamera Calibration

Since it is a multicamera system, there is the need to do two di�erent type of
calibration: intrinsic calibration and extrinsic calibration. The latter is sub-
divided again into extrinsic calibration on every RGB-D camera and extrinsic
calibration between all the RGB-D cameras.

Intrinsic calibration of the RGB-D camera

Intrinsic calibration is a method used in order to estimate the focal length,
optical center and camera distortion, radial and tangential, coe�cients of
the sensors that compose the RGB-D camera (i.e. RGB and IR camera)
[32, 33]. The calibration procedure consists in holding a checkerboard with
di�erent positions in front of the camera, then using the Harris-Stephen
corner detector and the Zhang's algorithm in order to detect the corners of
the checkerboard and calculate the intrinsic parameters. This procedure is
done multiple times, one for each sensor of the RGB-D camera.

Extrinsic calibration of each RGB-D camera on its own

Since the RGB-D camera is composed by two sensors, RGB and IR sensor,
it is necessary to calibrate the relative position of the two sensors in order to
overlay the captured color image on the depth one (see Figure 3.4).

24 CHAPTER 3. RGB-D MULTICAMERA SYSTEM

Figure 3.4: Example of color image overlays the depth image after calibration.

Extrinsic calibration between the RGB-D cameras of the setup

Since the setup has more than one RGB-D camera, it is necessary to cali-
brate all the cameras between them in order to create one single wide image
or one single pointcloud with a common coordinate system. Unfortunately
the calibration procedure can calibrate only two devices at time [31, 32], so
it is necessary to �x one camera as the reference camera and calibrate all
the others with respect to the reference one. In this way the calibration
procedure need to be repeated n − 1 times with n the number of RGB-D
cameras used for the setup. Essentially the calibration process consists in
the rotation and translation of the coordinate system of the camera with
respect to the reference one by using the rotation and the translation matrix
(see Figure 3.5).

Figure 3.5: Rotation (left), Translation (right) of a coordinate system with
respect to the reference one.

3.2. RGB-D MULTICAMERA TOPOLOGY 25

3.2 RGB-D Multicamera Topology

In a multicamera system, it is better to install the cameras in order to ob-
tain the coverage of the entire scene with the minimum number of cameras.
Dpending on the dimensions of the scene and the kind of retrieved data, it
is possible to have di�erent topology con�gurations: array, matrix or circle
of cameras.

3.2.1 Array of RGB-D cameras

The RGB-D cameras are installed inline on the same direction of one of the
dimension of the scene with all FOVs pointed inline on the same direction
(see Figure 3.6). In this way the cameras are aligned along one axis. This
eases the combination of the images obtained from the di�erent cameras into
a single bigger image. For maximizing the coverage area, the cameras are
installed with a distance between them in order to avoid the overlapping and
consequently reduce the interference [31].

Figure 3.6: Example of an array of RGB-D cameras.

3.2.2 Matrix of RGB-D cameras

When using an array of cameras is not su�cient to cover the scene in both
the dimensions, a matrix of cameras is needed in order to cover the entire
scene. Depending to the distance of the scene from the cameras, it is possible
to have both overlapping (see Figure 3.7) and non overlapping con�guration.
The second one is more suggested for the same reasons explained for the
array topology.

26 CHAPTER 3. RGB-D MULTICAMERA SYSTEM

Figure 3.7: Example of an overlapping matrix of RGB-D cameras.

3.2.3 Circle of RGB-D cameras

This con�guration is usually used to retrieve a pointcloud of the scene from
the cameras. Here the cameras are installed in a circle way in order to cover
all the directions of the scene (see Figure 3.3 (left)). In this way, it is possible
to drastically reduce the occlusion of some part of the scene. Occlusions that
are present if the cameras are all pointing in only one direction. With this
con�guration, the resulting pointcloud is more detailed than the pointcloud
captured from only one camera (see Figure 3.8).

Figure 3.8: Example of a circle of RGB-D cameras.

Chapter 4

Neural Networks

An Arti�cial Neural Network (ANN) is a model of computation inspired
by the structure of neural network present in the human brain. The �rst
concept of this type of network was proposed in the mid of the 20th cen-
tury [35, 36, 37, 38] and the �rst practical applications were proposed in the
80-90s. Unfortunately the performances of these �rst applications are lower
than the Support Vector Machine (SVM) and other techniques. In the recent
decades, with the improvement of the computational power of the computers,
the neural network applications achieved an impressive improvement in the
performances allowing in this way to use them for a lot of machine learn-
ing algorithms [35, 39]. In the following sections, the main concepts, how
they work, di�erent type of neural networks and their applications in image
processing will be presented.

4.1 Arti�cial Neural Network Model

Since the ANN is a simpli�ed model of the human brain, it is composed by a
large number of basic computation devices called neurons that are connected
to each other with a sophisticated communication network (see Figure 4.1).
The neural network can be represented as a directed graph that goes from
the input neuron to the output neurons, respectively the input and output
layer depicted in the �gure 4.1. In this graph the nodes represent the neurons
and the edges are the links between the neurons.

27

28 CHAPTER 4. NEURAL NETWORKS

Figure 4.1: A neural network graph representation.

As we can see in the �gure above, in addition to the input and output
layer, in the graph there are other layers called hidden layers. These layers,
as their names suggests, are hidden to the users of the neural network algo-
rithms. The complexity of the neural network is proportional to the number
of hidden layers present in it. More hidden layers there are, more speci�c
features the network can learn but also the computational complexity in-
creases. So there is a trade-o� between the number of hidden layer and the
computational complexity of the neural network when we design it.

4.1.1 Basic Computing Devices: Neurons

The neuron, sometimes called also perceptron, is the basic computing element
of a neural network. It can be basically decomposed into two part [36, 37]:

• Linear weighted sum operator function z.

• Non linear activation function σ.

A representation of a neuron is shown in the Figure 4.2.

4.1. ARTIFICIAL NEURAL NETWORK MODEL 29

Figure 4.2: The representation of a neuron.

Weighted Sum Function

In this part the function takes as input all the outputs of the previous layer
weighted by their own weights and gives as result their sum with also a bias
element. Mathematically speaking, the formula is

z =
n∑

k=1

wkxk + wn+1 (4.1)

where wk is the weight of the k-th input, xk is the k-th input, n the number
of the input and wn+1 is the bias.

Activation Function

In this part the function takes as input the result of the previous part and
through the activation function, it gives the output of the neuron.
There are many activation functions that we can choose to use [36, 37].

Sign and Threshold Function

The sign function gives as output the sign of the input (see Figure 4.3).

σ(z) = sign(z), Rn → [−1; 1] (4.2)

30 CHAPTER 4. NEURAL NETWORKS

Figure 4.3: The sign activation function.

The unit step threshold function gives as output

σ(z) =

 0 if z < t

1 if z ≥ t
(4.3)

where t is the threshold (see Figure 4.4).

Figure 4.4: The unit step threshold activation function.

4.1. ARTIFICIAL NEURAL NETWORK MODEL 31

These two functions have similar characteristics and consequently same pros
and cons.
Pros

• They are simple/fast functions.

• They are a nice interpretation as the �ring rate of the neuron

� -1 (sign) or 0 (threshold) = not �ring

� 1 (both) = �ring

Cons

• The output is not smooth or continuous.

• They saturate and kill gradients, thus the neural network will barely
learn.

Sigmoid Function

This function takes a real valued number and maps it into a range between
0 and 1 (see Figure 4.5).

σ(z) =
1

1 + e−z
, Rn → [0, 1] (4.4)

Figure 4.5: The sigmoid activation function.

32 CHAPTER 4. NEURAL NETWORKS

Pros

• The output is smooth.

• It is a nice interpretation as the �ring rate of a neuron

� 0 = not �ring at all

� 1 = fully �ring

Cons

• Sigmoid neurons saturate and kill gradients, thus neural network will
barely learn.

• When the neuron's activation is 0 or 1 (saturate)

� gradient at these regions is almost zero

� almost no signal will �ow to its weights

� if initial weights are too large, then most neurons would saturate

Hyperbolic Tangent Function

This function takes a real valued number and maps it into a range between
-1 and 1 (see Figure 4.6).

σ(z) = tanh(z), Rn → [0, 1] (4.5)

Characteristics

• Similar to the sigmoid function, the hyperbolic tangent neurons satu-
rate.

• The output of this function is zero-centered.

• The hyperbolic tangent is substantially a scale sigmoid as shown in the
following equation.

tanh(z) = 2sigm(2z)− 1 (4.6)

where the sigm(·) is the sigmoid function described above.

4.1. ARTIFICIAL NEURAL NETWORK MODEL 33

Figure 4.6: The hyperbolic tangent activation function.

Recti�ed Linear Unit (ReLU) Function

This function takes a real valued number and gives as output the maximum
between zero and the input (see Figure 4.7).

σ(z) = max(0, z), Rn → Rn
+ (4.7)

Characteristics

• It is the most used activation function in the neural networks nowadays.

• It trains much faster

� accelerates the convergence of the Stochastic Gradient Descent
(SGD)

� due to linearity, there is no saturation

• It has less expensive operations

� compared to the sigmoid or tanh functions

� implemented by simply thresholding a matrix at zero

• It is more expressive and prevents the gradient vanishing problem.

34 CHAPTER 4. NEURAL NETWORKS

Figure 4.7: The ReLU activation function.

4.2 Fully Connected Neural Networks

The network depicted in the �gure 4.8 is called fully connected neural net-
work. In this network, each neuron of a layer takes as input all the outputs of
the neurons of the previous layer and its output is the input for every neuron
of the next layer. This is true for all layers with exception of the �rst layer
where there is no previous layer and the last layer where the outputs are the
outputs of the neural network. The number of neurons for each hidden layer
can be di�erent from layer to layer. More hidden layers there are, more deep
becomes the neural network and consequently the number of connections
and computational complexity increase. For this reason it is also called Deep
Neural Network (DNN) [39]. When the represented graph of the network has
no cycles, it is called Feedforward network [36, 37, 39]. This type of neural
network is typically used for classi�cation purposes. In fact, the number of
the output neurons can represent the number of classes of the problem and
the maximum value between all the outputs is the selected class for a given
input data.

4.2. FULLY CONNECTED NEURAL NETWORKS 35

Figure 4.8: The representation of a DNN.

4.2.1 Training Process

In order to predict the given input data, a neural network need to be trained
with a set of labeled data (i.e. supervised learning) that is forwarded through
the network and predicted the corresponding label at the output of the neural
network. Then, this predicted label is compared with the ground truth label
and the prediction errors are calculated. The process continues with the back
propagation of these errors from the last layer to the �rst one and updates
the network weights (see Figure 4.9). This training process loops these steps
until a small training error or a small marginal improvement in the error or
an upper bound on the number of iterations is reached. The pseudocode of
the training algorithm is shown in the �gure 4.10.

Figure 4.9: The training process of a DNN.

36 CHAPTER 4. NEURAL NETWORKS

Figure 4.10: The pseudocode of the training algorithm of a DNN.

4.3 Deep Convolutional Neural Network

The standard neural networks have as input a vector of data, so for image
processing, it is necessary to do a pre-processing of the images features before
using them as the input of the neural networks. One approach is to vectorize
the input image directly by orginizing the pixels based on a linear index.
The resulting vector is given as the input of the neural network. Howerver,
this approach totally ignores all the information that can be retrieved from
the spatial relationship between the pixels in an image [37]. In order to
overcome this problem and use all the possible information derived from
the neighborhood pixels, the Convolutional Neural Networks (CNNs) are
proposed (see Figure 4.11) [37, 40, 38, 39]. This type of neural networks are
speci�cally designed to mimic the human visual cortex [39] and to elaborate 2
dimensional array data with a grid like topology as its input data like images
and videos [35, 38, 41]. The main di�erence between a DNN and a CNN is
that the CNN can learn 2D features directly from the raw image data since
the input format is a 2D array against the 1D vector of the DNN. Despite this
di�erence, the computations performed by the two type of neural networks
are very similar: a sum of products is performed, then the bias value is added;
the result is passed through an activation function and it becomes a single
input for the next layer.

4.3. DEEP CONVOLUTIONAL NEURAL NETWORK 37

Figure 4.11: The representation of a CNN.

4.3.1 How a CNN works

The advantages of using the CNNs are that only the neighborhood nodes
are connected, so only a set of weights and a bias value are used and shared
between the nodes. This is called weight sharing [37, 40]. Using shared
weights, it is possible to reduce the number of weights to train and the
computational complexity of the network decreases.

Figure 4.12: An example of the convolution.

In the CNNs terminology, the neighborhoods are called receptive �elds
(see Figure 4.11) and it only selects a region of pixels in the input image.
The set of weights arranged in the receptive �elds is called kernel. The �rst
operation of the CNN is the convolution. It is performed by moving the

38 CHAPTER 4. NEURAL NETWORKS

receptive �eld over the image and at each location, the result is given by
the convolution between the location and the kernel (see Figure 4.12). The
number of spatial increments for the movement of the kernel is called stride.
This number can be one or also grater than one. Using a bigger stride is es-
sentially for the data reduction and substitution of the subsampling process.
If n is the stride, the image resolution is reduced by 1/n times in each spatial
dimension and the total amount of data per image is reduced by (n2− 1)/n2

times. After the convolution, a bias value is added and the activation func-
tion is performed (see Figure 4.13). The output of the activation function

Figure 4.13: An example of the adding bias and activation function.

is stored in the 2D array of the next layer and it is called feature map since
the role of the convolution is to extract features from the input image. Since
usually the kernel size is small, it is possible to extract multiple feature maps
by using multiple kernels and the collection of the feature maps of a layer is
called convolutional layer.
After the convolution and activation functions, the feature maps are subsam-
pled (i.e. pooled) in order to reduce the spatial resolution and to achieve the
translational invariance. Pooling process is done by subdivided the feature
map into small regions, typically a 2 × 2 matrix, and replacing the value of
the considered region with a single value. This value can be computed by
considering the maximum value of the values in the region (i.e. max pooling)
or by considering the average value of the values in the region (i.e. average
pooling). Usually the pooling regions are considered without overlapping
(see Figure 4.14).

4.3. DEEP CONVOLUTIONAL NEURAL NETWORK 39

Figure 4.14: An example of the two types of pooling.

Figure 4.15: An example of the vectorizing of the last pooling layer and the
fully connected layers.

All the processes describe above are repeated more times based on the
number of convolutional layer of the considered CNN. Since the �nal objective
of the CNN is to use the extracted features for classi�cation purposes, the last
part of the CNN is composed by a classic fully connected neural network.
Since the latter accepts only vector inputs, the results of the last pooling
layer are vectorized by using a linear indexing process (see Figure 4.15). At
the end of the fully connected layers, for each class, a probability that the
input image belongs to it is given. The �nal predicted class is the class with
the biggest probability.

40 CHAPTER 4. NEURAL NETWORKS

4.4 Typologies of Image Data Input for CNNs

As explained in the previous section, the CNNs are especially suitable for
processing matrix like data such as images, videos and camera streams [35,
38, 41]. Since a video or a camera stream is composed by a �nite (video) or
in�nite (camera stream) sequence of images called frames, it is possible to
focus only on the analysis of di�erent data provided by the cameras. Then
make some considerations for the delay introduced by the image analysis
in the real-time applications with the camera streams. The retrieved data
depends on the typology of the used camera and can be only RGB data
for the RGB cameras and RGB plus depth data for the RGB-D cameras.
Since the latters are of interest for this thesis, the focus is on them and on
the di�erent type of data that the RGB-D cameras can retrieve through the
di�erent con�gurations described in the previous chapter:

• Only RGB images.

• Only Depth images.

• RGB and depth images together.

• Point cloud.

4.4.1 RGB Image Data

The RGB images are composed of Red, Green and Blue channels. For this
reason when the image is the input of a CNN, it is necessary to do the con-
volution over all the three channels and then combine the results before the
bias and the activation function (see Figure 4.13).
At the beginning the computation power is based only on the CPUs. So
training a huge CNN with huge amount of data can require also months to
�nish the process [42]. For this reason, the �rst image datasets are only on
the order of tens of thousands images such as NORB, CIFAR-10/100 [41, 43].
In the recent years, with the introduction of the GPU computing systems, the
computational power increases a lot especially for image processing because
of the particular ability of the GPUs to perform linear matrix operations.
Thanks to this property, using the GPUs for training the CNNs can reduce
drastically the computation time and consequently the training process be-
comes much faster [41, 42, 43]. So with the decreasing of the time of the
training process, it is possible to create datasets with a huge amount of im-
ages. The dataset can be of order of hundreds of thousands images like the
LabelMe dataset or of order of millions of images like the ImageNet dataset

4.4. TYPOLOGIES OF IMAGE DATA INPUT FOR CNNS 41

[43]. The RGB images are usually used when the scene is well illuminated
because in the low light environments the RGB cameras cannot capture well
de�ned and low noise images, so it is di�cult to recognize object in the scene
or segment the captured images.

4.4.2 Depth Image Data

With the technologies described in the section 2.1, it is possible to obtain a
depth representation of the scene. In this representation a lower luminance
value in the depth map means that the objects are farther away from the
depth camera (see Figure 4.16).

Figure 4.16: RGB image of two bumper cars (left), the corresponding depth
image (right).

Since the depth image is a distance map of the scene, it is su�cient to store
the depth information in a single channel instead in three channels as the
RGB images. For this reason in the convolution process of the CNN, it
is su�cient to do the convolution on a single channel. Usually the depth
images are used in low light environments where it is di�cult to extract
useful information from RGB images or in environments where the distance
of the objects in the scene from the depth camera is an important �eld.

42 CHAPTER 4. NEURAL NETWORKS

4.4.3 RGB Plus Depth Image Data

Using only RGB images, it is not possible to obtain and use information
about the spatial position, geometry and shape cues of the object in the
scene with respect to the camera. Using only depth images, instead, it is
not possible to obtain and use the color and texture information contained
in the images. Since the RGB-D cameras can capture both RGB and depth
images, it is possible to combine and use the information contained in both
type of images [1, 3, 5]. There are two di�erent methods for combining the
information: one is to extract the features separately using two CNN and
combine the results through concatenation layers in order to obtain a single
result (see Figure 4.17) [1, 3, 5, 8, 44]. The other one is to combine the RGB
and depth images before giving it as input of the CNN and then extract the
features from the resulting images (see Figure 4.18) [1, 4].

Figure 4.17: RGB-D features concatenation.

In the second method, the depth map can be treated as the fourth channel of
the input image as shown in �gure 4.18 and train the CNN on four channels
[45]. Or the RGB image can be overlayed on the depth image and creating
an image with the depth information distributed on the R, G and B three
channels as shown in the �gure 3.4.

4.4. TYPOLOGIES OF IMAGE DATA INPUT FOR CNNS 43

Figure 4.18: Deep features from RGB-D fusion.

4.4.4 Point Cloud Data

Figure 4.19: A voxel representation of a chair.

A point cloud is a 3D representation of the scene captured by the RGB-D
cameras, so each point of the scene is a 3D point that contains its spatial
position and color information. Most of the existing 3D object detection
methods encode the point cloud into a voxel (i.e. volumetric pixel) represen-
tation before giving it to the CNN (see Figure 4.19) [46, 47, 48].

44 CHAPTER 4. NEURAL NETWORKS

Since the voxels are 3D points, also the dimensions of the convolution kernel
need to be changed from 2D to 3D by creating 3D convolutional layer with
3D sliding window and 3D pooling window (see Figure 4.20) [47, 48, 49].

Figure 4.20: A CNN designed with 3D convolutional layers.

4.4.5 Video and Camera Streams

When processing video or camera streams, the most important thing is the
delay introduced by the processing of each frame especially in the real-time
applications where a big delay can compromise the proper functioning of
the applications. For this reason, it is necessary to design a CNN with a
computational delay as minimum as possible in order to maintain the frame
rate of the video or camera stream at the output as closest as possible to the
input frame rate.

Chapter 5

Object Detection and Tracking

Object detection and tracking is one of the most important and critical re-
search area of real-time computer applications such as video surveillance,
robot vision and tra�c monitoring [11] because of the change in motion of
the object, occlusion of the object in the interested scene, object overlapping,
appearance and illumination variations and ground clutter [11, 12].
The main concepts of visual object tracking is to detect the features or shapes,
the locations of the moving objects in a successive video sequences. In the
recent years, much progress has been made in this research area but it is still
far from reaching the accuracy of the human tracking ability [12].
An object tracking system is composed principally by three steps (see Fig-
ure 5.1).

1. Detection of the object in the scene.

2. Recognition of the detected object.

3. Tracking of the detected object through the successive video sequences.

Figure 5.1: A basic �ow of a tracking system.

Thanks to the great successes obtained by the CNNs in several computer
vision tasks, they are extremely suggested for the implementation of the
object detection and recognition steps of the tracking system while for the

45

46 CHAPTER 5. OBJECT DETECTION AND TRACKING

tracking step, the CNNs are not used because of the huge amount of data
that the CNN requires for the training process. Data that is not yet available
in huge quantity for visual tracking [12].

5.1 Object Detection Through CNN

The main paradigm of the object detection implemented with CNNs is to
train object detectors that operate on sub-images and apply these detectors
in an exaustive way across all the locations and scales of the entire image
[50]. The window described by the sub-image outline is called sliding window
and it can have di�erent aspect ratio and sizes based on the di�erent scales
of the target objects (see Figure 5.2) [51].

Figure 5.2: An example of sliding window (left) with di�erent aspect ratio
and sizes (right).

Since this paradigm is based on the exhaustive search through the entire im-
age, the computational power demanding of the detection process increases
a lot especially when the number of object classes grows. This is because
many approaches, nowadays, are based on training separately multiple de-
tectors for the multiple classes of the problem [50]. In order to overcome
this issue, the training algorithms based on the GPUs are proposed since the
latters are more powerful and faster with respect to the CPUs in this type
of computations [41, 42, 43].
Using the sliding window paradigm, when the detector detects a target ob-
ject, it returns some characteristics of a bounding box that encloses the
detected object. These characteristics can be the coordinates in the entire
image of the top-left corner or the center of the bounding box and its width

5.2. OBJECT RECOGNITION THROUGH CNN 47

and height. With these information, it is possible to draw on the image the
corresponding bounding box. If there are more instances of the same object
category, the corresponding detector returns an array of the characteristics
of the instances (see Figure 5.3).

Figure 5.3: An example of the detection of two bumper cars with the corre-
sponding bounding boxes.

5.2 Object Recognition Through CNN

In the recent years, a lot of studies and researches are done in the object
recognition area and thanks to the advent of the CNNs and the availability
of an enormous amount of labeled data, it is possible to train networks with
a very high accuracy rate in recognizing objects [4]. Thanks to the surprising
results obtained by using CNNs, the object recognition algorithms are used in
many computer vision, arti�cial intelligence, autonomous driving and medical
applications [1, 2, 3, 42].
With the advent of the low cost RGB-D cameras in commerce, the object
recognition tasks can be used also for robotic grasping by detecting the object
grasp where the depth information of the object is an important property for
the robot that need to know how far is the object from itself (see Figure 5.4)
[52, 53, 54]. An example of a CNN architecture for the prediction of the
grasps is shown in the �gure 5.5 [53].

48 CHAPTER 5. OBJECT DETECTION AND TRACKING

Figure 5.4: A robot grasping an object (left), the object grasp in RGB and
depth images (right).

Figure 5.5: An example of CNN architecture for predicting the grasps.

Another new application in which the object recognition algorithms imple-
mented with RGB-D cameras and CNN can be the detection and recognition
of objects in 3D spaces. In these applications it is possible to draw and re-
trieve spatial information of the 3D bounding boxes that outline the objects
(see Figure 5.6) [55].

5.2. OBJECT RECOGNITION THROUGH CNN 49

Figure 5.6: An example of 3D bounding boxes in a 3D scene.

In the object tracking systems, the object recognition is the second step of
the process. In this step by using the bounding boxes information obtained
from the object detector, the detected objects become the input images of
the recognition CNN and as output the network returns the corresponding
object labels with a recognition con�dence �eld. This �eld indicates the
probability that the detected object belongs to the returned label class (see
Figure 5.7).

Figure 5.7: Examples of recognized objects with the labels and the con�dence
rate.

50 CHAPTER 5. OBJECT DETECTION AND TRACKING

5.3 Object Tracking

The object tracking is the term used to indicate the continuously identi�-
cation of moving object position and its tracking in the video sequences or
in the camera streams [11] from its �rst appearance in the scene to the last
one [12] in order to generate the trajectory of the moving object [56]. In
the recent years, several types of tracking techniques are developed and they
can be essentially classi�ed into three categories: point, kernel and silhouette
based tracking (see Figure 5.8).

Figure 5.8: Principal tracking typologies.

Most of the existing algorithms are based on the kernel method due to the
high accuracy with less computational cost that this method can achieve.
But also the point based tracking methods are often used for its low com-
putational cost even if the accuracy is lower [11]. In addition to these three
types of tracking techniques, the correlation �lter tracking has gained a lot
of attention in the area of object tracking because of their computational
e�ciency and competitive performances [13, 57]. In this tracking technique,
the position of the tracked object in the current frame is predicted by using
the results of the correlation of the pixel information between the current
and the previous frame. Thanks to the pixel correlation between two suc-
cessive frames, this tracking method can quickly adapt to scale and rotation
changes. It is also capable to detecting tracking failure and recovering the
tracked object from occlusions during the movement of the target object (see
Figure 5.9) [57].

5.3. OBJECT TRACKING 51

Figure 5.9: Example of robustness of a correlation tracking.

With the advent of the CNNs in computer vision applications, another track-
ing technique is proposed and becomes rapidly an interest research area. This
technique is called tracking by detection [58, 59]. In this tracking technique,
the position of the object in the current frame is determined by the object
detector described in the section 5.1. Then the tracking algorithm links the
information of the detected object obtained in the successive frames in order
to generate a trajectory of the object (see Figure 5.10,5.11).

Figure 5.10: Example of the detection of a bumper car in three successive
frames.

52 CHAPTER 5. OBJECT DETECTION AND TRACKING

Figure 5.11: The reconstructed trajectory on the fourth frame.

5.3.1 Multi Object Tracking

The multi object tracking is important in many computer vision, security and
video surveillance applications [19, 17]. This is still a challenging problem
since when in the scene there are more instances of the same object category,
it is necessary to assign an identity (ID) to each instance and tracking them
without losing their IDs (i.e. without swapping or missing their IDs during
the tracking process over the frames). All the techniques presented above
are developed for tracking a single instance of an object category but the
tracking by detection method is one of the suggested method for tracking
multiple object tracking systems [18, 19] since the object detector can detect
multiple instances of the same object category and return them in an array.
Unfortunately using only this method, it is not possible to maintain the IDs of
the detected objects since there are no information about it that can be used
for linking the ID of an object from one frame to the next one. Furthermore,
there are no guarantees that the detector detects the objects in the same
order in two di�erent frames, so the index order of the array cannot be a
valid ID for the objects. Another problem of this method is that sometimes
the detector can fail the detection of some objects due to occlusions or false
negatives or can detect new objects. So the number of detected objects can
be di�erent in two successive frames. In order to overcome this problem
and link the correct IDs of the objects in di�erent frames, an ID association
algorithm based on the centroids is proposed.

5.3. OBJECT TRACKING 53

Method of Centroids

Starting from the �rst frame, the method assigns an ID for each detected
object, then it computes the centroid of each bounding box (see Figure 5.12,
top-left) and go to the next frame. From this frame, the method retrieves the
information related to the bounding boxes of the detected objects, computes
�rstly the new centroids, then it computes the euclidean distances between all
centroids of the current and the previous frame (see Figure 5.12, top-right).
Now, the method assigns the ID of the object to the one with the smallest
euclidean distance from it. After that, if there are still centroids without IDs,
they are treated as new instances and for this reason the method assigns to
them the next available IDs (see Figure 5.12, bottom-left,5.12, bottom-right).

Figure 5.12: Example of the ID association based on the method of centroids.

When the detector detects less objects in the current frame with respect
to the previous one, it is useful to use the correlation tracking technique
in order to update the missing objects and maintain their IDs. Since this
technique uses the correlation information between the sub-image enclosed

54 CHAPTER 5. OBJECT DETECTION AND TRACKING

by the bounding box of the previous frame and the same location in the
current one for updating the tracking object position, the ID association in
this case is naturally done. The correlation tracking technique can solve the
ID association problem between frames but it is still less accurate with respect
to the tracking by detection technique. This is because if the background
pixel information and the object pixel information are too similar, the result
of the correlation tracker can be inaccurate and it can cause a drifting in the
tracking of the object and consequently also loosing the target object.

Chapter 6

Bumper Cars Tracking in Low

Light Environments

In the recent years, also in the entertainment environments like amusement
parks, the computer vision and machine learning techniques become interest
research areas. In fact, the Image Studio Consulting company that belongs
to the Zamperla's Group, one of the biggest amusement park manufacturer
in the world, starts to develop solutions in order to transform traditional
and non interactive carousels into interactive ones by implementing add-ons
in which computer vision and machine learning techniques are applied. The
project that will be presented in the next sections of this chapter will be
about an add-on installed onto the bumper cars carousel in order to detect
and track the bumper cars inside the carousel in a indoor and low light
environment.

6.1 Goal of the Project

The goal of the project is design a system that is able to detect and track the
bumper cars and sending the positions of the detected bumper cars to a video
game designed by using the Unreal Engine. This video game is projected onto
the carousel and the tracked bumper cars become the players of the game.
In this way, the designed system can add an interactive game to the carousel
and give also a sense to the crashes of the bumper cars.

55

56CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

6.2 Project Setup: Hardware Components

Since we project the video game on the carousel, it is necessary to have an
indoor and low lighted environment otherwise it is impossible to see what
is projected if there are too much light in the environment. In this case,
using only RGB cameras for capturing the carousel track cannot give us a
well de�ned shapes of the bumper cars. In order to overcome this problem,
we decide to use the RGB-D cameras described in the chapter 2 and more
precisely the Intel RealSense D435 camera and the MYNT EYE D1000-IR-
120/Color camera. The testing carousel track has the dimensions of 6m×8m
(see Figure 6.1) and for an installation constraint, the camera cannot be
located at an height that is higher than 4.5m. So using only one camera we
cannot cover the entire carousel track.

Figure 6.1: The testing carousel track.

In this speci�c case it is su�cient to use two cameras con�gured as an array
of cameras as described in section 3.2.1. Both type of RGB-D cameras are
suitable for the project but thinking for the modularity of the add-on in
future installations where the carousel track has an area bigger than the
testing one, it is more suggested to use the MYNT EYE cameras. Since they
have FOVs that are larger than the Intel cameras, it is possible to cover more
area by using less cameras with respect to the Intel cameras. A con�guration
with the MYNT EYE cameras is shown in the �gure 6.2.

6.2. PROJECT SETUP: HARDWARE COMPONENTS 57

Figure 6.2: The setup of the cameras.

The cameras are oriented in the way shown in the above �gure because, at
this height, the long side of the covered area can reach more than 6m but
less than 8m (see Figure 6.3). So using the camera in the other orientation,
we cannot cover the long side of the carousel track.

Figure 6.3: The setup of the cameras viewed from the top.

58CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

Since the length of the USB cables of the cameras are more or less about
one meter long and the computer that processes the images captured by the
cameras is located near the control panel of the carousel, we use the active
USB extension cables of length 10 and 15 meters in order to extend the
USB connection (see Figure 6.4). As discussed in section 3.1.4, we use a
single computer with more than one USB controller in order to prevent the
saturation on the bandwidth of the controller itself.

Figure 6.4: The active USB extension cable of MutecPower used in the testing
setup.

Since the testing carousel is located in a factory that is dislocated from
the o�ces, we use the Asus ROG G752VM laptop computer for testing the
correct functioning of the designed system. Even if it is a laptop, with its
Intel Core i7-6700HQ CPU and its NVIDIA GeForce GTX 1070 GPU, it
can reach performances near to the real-time with also the video game in
execution.

6.3 Project Setup: Software Components

The designed system need to detect and track the bumper cars in a com-
pletely autonomous way without any human support. In order to overcome
this requirement, a neural network for detecting the bumper cars and a track-
ing algorithm are designed and they are better described in the following
subsections.

6.3. PROJECT SETUP: SOFTWARE COMPONENTS 59

6.3.1 The Bumper Cars Detection CNN

We design a neural network in order to give the system the total autonomy
to detect the bumper cars present in the carousel. The programs developed
for training and testing the neural network are written in C++ program-
ming language. While the structure of the CNN, shown in �gure 6.5 [60],
is designed by using the machine learning API of the dlib library [60]. This
library allows us to train and test the network using the computational power
of our GPUs. This reduce drastically the training time that is the most time
consuming part of the process.

Figure 6.5: The structure of the designed CNN.

The convolutional layers of the CNN have di�erent parameters: the �rst has
16 feature maps with �lter size 5× 5 and stride 2, the second and the third
have 32 feature maps with �lter size 5× 5 and stride 2, the fourth up to the
sixth have 55 feature maps with �lter size 5× 5 and stride 1 and the last one
has one feature map with �lter size 9×9 and stride 1. The loss_mmod layer
returns as output a vector of detections in which every instance corresponds
to the detection of a bumper car.
Using this CNN we train two di�erent detectors: the �rst detects the bumper
cars without any other speci�cations while the second, in addition to the
bounding boxes of the detected bumper cars, it speci�es also if the bumper
car is empty or with someone inside it by returning respectively a status label
"empty" or "full".

60CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

The training dataset is composed by 7804 labeled depth map images and the
testing dataset is composed by 396 depth images that are not present in the
training set. Both detectors are trained and tested with these two dataset
before testing them on the stream captured from the testing carousel. Ini-
tially we use the �rst detector for retrieving the bounding boxes information
of the bumper cars, but we realized that the status information can be an
important �eld for developing the video games for the carousel. For this
reason, we decide to use the second detector that give us also the status of
the bumper cars.

Training Process

Part of the images of the training set are captured directly from the testing
carousel with a resolution of 1280 × 720 without merging the images of the
two cameras, then we perform a data augmentation by rotating, eroding and
dilating the images in order to create the other part of the training data.
The input information for training the CNN, implemented by using dlib
library, must contain the input images and the ground truth bounding boxes
information for each image saved in a xml �le (see Figure 6.6,6.7) because
the library interprets that there is a detection in a speci�c location only if
there is a bounding box in that location saved in the xml �le.

Figure 6.6: The input image �le00000797.png of the training dataset.

6.3. PROJECT SETUP: SOFTWARE COMPONENTS 61

Figure 6.7: The corresponding ground truth bounding boxes of the image
�le00000797.png for the �rst (top) and second (bottom) detector.

Figure 6.8: The average loss graph of the �rst detector.

For training the neural network, we use a desktop computer with the following
hardware components: a Intel Core i7-6700 CPU, 32GB of RAM DDR4 and 2
NVIDIA GeForce GTX 1080 GPUs. Despite we use multi GPUs for training
the network, the training process still takes about 24 hours for completing
the process. Even if the number of training data is limited, the average
loss reached by the �rst and second detector during the training process
is respectively 0.0843139 and 0.168451. This is also thanks to the random
cropper of the dlib library that, during the training process, performs further
data augmentation. The �gures 6.8, 6.9 show the average loss trend in the

62CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

graphs average loss vs training iteration step obtained in the training process
for the two types of detector.

Figure 6.9: The average loss graph of the second detector.

On this training set, the two trained network have obtained an average preci-
sion of 0.97282 and 0.966157 respectively for the �rst and the second detector.

Testing Process

To get an idea if the trained networks really worked without over�tting,
we run them on a testing set that contains images that are not present in
the training set. The obtained average precision of 0.983207 and 0.976556
respectively for the �rst and second detector show us that both the networks
are well trained and without over�tting.
After the tests on the testing set, we perform the tests on the testing carousel
with the stream images captured by the installed cameras.

Input Image

Since we use an array of two cameras and for our project we need to have
a single view of the carousel track, we perform a fusion of the two captured
streams before using it as the input of the network. Thanks to the fact
that the cameras are located with a distance between them in order to have
as minimum as possible overlapping area, the interference inside this area is
negligible. The two streams have a resolution of 1280×720 and the computer
receives them in the orientation shown in the �gure 6.10. However, for a

6.3. PROJECT SETUP: SOFTWARE COMPONENTS 63

better compatibility between the detection program and the projected game,
the streams need to be rotated in order to create a fused stream with the
same orientation of the projector. Since the total area covered by the fused
stream is bigger than the carousel track (see Figure 6.3), we select in the
fused stream only the pixels that correspond to the carousel track and the
resulting stream becomes the input of the neural network after the resize
of the dimensions of the stream itself in order to speeding up the detection
process(see Figure 6.11).

Figure 6.10: The images of the two streams that capture the entire carousel.

Figure 6.11: The fused image after selecting only the carousel track.

64CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

6.3.2 The Bumper Cars Tracking

In a multi object tracking system, the occlusion of the target object by part of
the background scene, the overlapping between target objects and the entry,
exit and return of a target object in the scene can compromise the correct
functioning and the correct assignment of the IDs of the tracking system.
Fortunately, in our project these three issues do not exist because of the
following property of the setup:

• The cameras are located on the top of the carousel, so there are no
bumper cars that can be occluded by the background objects.

• The camera stream view is a top view of the carousel track, so the
bumper cars cannot be overlapped between them.

• The fused stream covers the entire carousel track, so the bumper cars
cannot go outside the cameras views.

These characteristics of our project simplify the tracking process of the
bumper cars.

Used Tracking Techniques

For tracking the bumper cars over the camera stream, we use principally the
tracking by detection technique with the detector trained by our designed
CNN presented in the previous subsection. When this technique gives some
missing detections, we perform the correlation tracking by using the correla-
tion tracker available in the dlib library. In our project, the detector returns
a vector of detections in which each instance contains the information of the
bounding box and the other information of the detected bumper car. For
maintaining the IDs assigned to the bumper cars over the frames without
swapping or missing them, we perform the method of centroids described in
section 5.3.1.

Tracking Algorithm

Our tracking algorithm, for this moment, is designed for tracking simultane-
ously 10 bumper cars and it is composed by the following steps:

1. For the �rst frame the algorithm detects the bumper cars present in
the carousel and assigns for each of them an unique ID.

2. For every next incoming frame, we perform the detection and using the
method of centroids in order to update the bounding box locations and
maintaining the IDs of the corresponding bumper cars.

6.3. PROJECT SETUP: SOFTWARE COMPONENTS 65

3. If there are missing detections, we perform the correlation tracking
technique exclusively on the missing ones in order to update their
bounding box locations and IDs.

4. If there are more detections than the real number of bumper cars, we
delete the false positives and update the information of the remaining
detections.

5. We save the IDs and the bounding boxes information in the JSON
format in order to sent it via UDP packets to the video game.

An example of the tracking result with the JSON format of the information
are shown in �gure 6.12,6.13.

Figure 6.12: The two consecutive frames with the bounding boxes depicted
on them.

66CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

Figure 6.13: The information of the above two frames sent in JSON format
to the video game.

Evaluation of the Algorithm

In order to evaluate the correctness of our tracking algorithm, we project
on each bumper car a full �lled colored circle, one color for each bumper
car. If the color of the bumper car does not change during the test then
the algorithm works in a proper manner. Thanks to the combination of
the tracking by detection and correlation tracking techniques, our tracking
algorithm can track the bumper cars without loosing them or changing their
color during all the game. While for evaluate the delay introduced by the
tracking system, we measure the computation time of the system from the
fusion of the images to the sending of the JSON string to the game. Since
the computation time of the system is a crucial �eld for design a real time
application, we save the images only once in all the tests that we performed.
In the saved frames, the algorithm uses 95.89% of the time the tracking by
detection technique and 4.11% of the time the correlation tracking technique.
These percentages indicate that the trained network works very well also
on the camera streams. While the average computation time per image is
28.0237ms. With this computation time we can process more or less 30
frames per second that is also the frame rate of the camera streams. This
means that our algorithm can already reach the real time requirement of the
project.

6.3. PROJECT SETUP: SOFTWARE COMPONENTS 67

6.3.3 Issues of the Tracking System

The detector is trained in order to be scale invariant, so if in the captured
images there are some noises that the detector detects as bumper cars, we
need to ignore them (see Figure 6.14). For this reason we put a lower and
an upper bound to the dimensions of the bounding boxes. So if a detected
bounding box is too small or too big to represent a bumper car, then it is
ignored and it is deleted from the vector of the detections. The bumper cars
can crash together. So when we perform the method of centroids, we need
to �x a minimum distance between the two centroids in order to determine
if they are two crashed bumper cars or they are the same one.
These three parameters depend on the resize scale of the input frame. For
this reason, if for di�erent installations, the resize scale changes, then also
these parameters need to be recalibrated.

Figure 6.14: An example of the detection of a false positive (green rectangle).

6.3.4 The Video Game

The results of the detection and tracking algorithm are sent via UDP packets
in the JSON format to the video game. These results are used in order to
create the players in the game, in this case they are the bumper cars of the
carousel. Then the game creates and spawns some targets that the players
can take by passing over them. All these things are directly projected on
the carousel and the people can drive the bumper cars in order to catch the
target and gain points.

68CHAPTER 6. BUMPER CARS TRACKING IN LOWLIGHT ENVIRONMENTS

At the end of the game, who gains more points becomes the winner. Some
images of the complete project are shown in the following �gures.

Figure 6.15: An example of the complete project.

Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this thesis we presented a bumper cars detection and tracking system in
a low light environment by using a CNN and a tracking algorithm designed
ad-hoc for the project. For better understanding how the various hardware
and software components work, we �rstly presented the stereo vision, struc-
tured light and ToF technologies that can be used for implementing RGB-D
cameras. Then we presented some low cost RGB-D devices and their charac-
teristics and chose from them the cameras used for our project. For increment
the covered area, we presented the requirements for designing a good mul-
ticamera system, the di�erent camera calibration process and the di�erent
topology con�guration of the cameras in this system. Since the deep learn-
ing framework gave us an important contribution in designing a completely
autonomous system for our project, we described its main concepts like the
basic computing devices (i.e. neurons) with their activation functions, the
main steps of the training process. Then we described how a CNN works
and we presented the typologies of image data input that can be used for
the CNNs. At this point we presented the concepts of object detection and
recognition using the CNNs and the di�erent typologies of tracking tech-
niques that can be used for tracking single or multiple objects. In particular
we described the characteristics of the tracking by detection and correlation
tracking techniques that are the two used in our project. Then we presented
the method of centroids for maintaining the IDs of the tracked objects. In
the chapter 6 we presented our project in which we de�ned the goal that we
need to reach, the chosen RGB-D cameras, USB extension cables and com-
puters. Then we presented the CNN architecture designed for the project, its
training and testing processes. Finally we described the tracking algorithm,

69

70 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

its evaluation and issues and an example of a designed video game.

7.2 Future Works

Since the project is only a prototype of the real add-on for the carousel, we
need to �ne tune the various parameters in order to reach a higher accuracy
with respect to the one reached in the prototype. Then there are also some
hardware limits that we need to test when we develop the real add-on such as
the maximum number of cameras that a single computer can manage without
increasing too much the image processing time and the maximum length of
the active USB extension cable that we can use before loosing the signal.
Finally, we need also to con�gure a computer with an adequate hardware
components in order to run both the tracking system and the video game
without decreasing the frame rate of the output since for the prototype we
use a laptop computer.
In this project we use the RGB-D cameras in order to retrieve the depth
map of the carousel in a 2D image. As an alternative to this approach, we
can study and develop a system that works in the 3D space by implementing
pointcloud fusion techniques that can achieve a computational time near to
the real-time and designing a 3D object detector that works directly on the
pointcloud in order to detect the bumper cars.

Bibliography

[1] L. Shao, Z. Cai, L. Liu, and K. Lu, �Performance evaluation of deep
feature learning for rgb-d image/video classi�cation,� Information Sci-
ences, vol. 385, pp. 266�283, 2017.

[2] O. Mees, A. Eitel, and W. Burgard, �Choosing smartly: Adaptive mul-
timodal fusion for object detection in changing environments,� in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 151�156, Oct 2016.

[3] Y. Cheng, X. Zhao, R. Cai, Z. Li, K. Huang, Y. Rui, et al., �Semi-
supervised multimodal deep learning for rgb-d object recognition,� 2016.

[4] H. F. M. Zaki, F. Shafait, and A. Mian, �Convolutional hypercube pyra-
mid for accurate rgb-d object category and instance recognition,� in 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1685�1692, May 2016.

[5] Z. Wang, J. Lu, R. Lin, J. Feng, et al., �Correlated and individual
multi-modal deep learning for rgb-d object recognition,� arXiv preprint
arXiv:1604.01655, 2016.

[6] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, �Frustum pointnets
for 3d object detection from rgb-d data,� in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[7] Z. Deng and L. Jan Latecki, �Amodal detection of 3d objects: Inferring
3d bounding boxes from 2d ones in rgb-depth images,� in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[8] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng,
�Convolutional-recursive deep learning for 3d object classi�cation,� in
Advances in neural information processing systems, pp. 656�664, 2012.

72 BIBLIOGRAPHY

[9] J. Wang, J. Lu, W. Chen, and X. Wu, �Convolutional neural network
for 3d object recognition based on rgb-d dataset,� in 2015 IEEE 10th
Conference on Industrial Electronics and Applications (ICIEA), pp. 34�
39, June 2015.

[10] A. Nguyen, D. Kanoulas, D. G. Caldwell, and N. G. Tsagarakis, �De-
tecting object a�ordances with convolutional neural networks,� in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2765�2770, Oct 2016.

[11] M. Tiwari and R. Singhai, �A review of detection and tracking of object
from image and video sequences,� Int. J. Comput. Intell. Res, vol. 13,
no. 5, pp. 745�765, 2017.

[12] T. Kokul, C. Fookes, S. Sridharan, A. Ramanan, and U. A. J. Pini-
diyaarachchi, �Gate connected convolutional neural network for object
tracking,� in 2017 IEEE International Conference on Image Processing
(ICIP), pp. 2602�2606, Sep. 2017.

[13] H. Nam and B. Han, �Learning multi-domain convolutional neural net-
works for visual tracking,� in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[14] W. Chen, L. Cao, X. Chen, and K. Huang, �An equalized global graph
model-based approach for multicamera object tracking,� IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 27, pp. 2367�
2381, Nov 2017.

[15] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah, �Multi-
target tracking in multiple non-overlapping cameras using constrained
dominant sets,� arXiv preprint arXiv:1706.06196, 2017.

[16] J. Son, M. Baek, M. Cho, and B. Han, �Multi-object tracking with
quadruplet convolutional neural networks,� in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[17] A. G. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and Wensheng
Hu, �Multi-object tracking through simultaneous long occlusions and
split-merge conditions,� in 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'06), vol. 1, pp. 666�
673, June 2006.

BIBLIOGRAPHY 73

[18] Y. Xiang, A. Alahi, and S. Savarese, �Learning to track: Online multi-
object tracking by decision making,� in The IEEE International Con-
ference on Computer Vision (ICCV), December 2015.

[19] Junliang Xing, H. Ai, and S. Lao, �Multi-object tracking through oc-
clusions by local tracklets �ltering and global tracklets association with
detection responses,� in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1200�1207, June 2009.

[20] K. Litomisky, �Consumer rgb-d cameras and their applications,� 2012.

[21] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nieÿner, R. Klein,
and A. Kolb, �State of the art on 3d reconstruction with rgb-d cameras,�
Computer Graphics Forum, vol. 37, pp. 625�652, 05 2018.

[22] F. Endres, J. Hess, J. Sturm, D. Cremers, andW. Burgard, �3-d mapping
with an rgb-d camera,� IEEE Transactions on Robotics, vol. 30, pp. 177�
187, Feb 2014.

[23] M. Dou, L. Guan, J.-M. Frahm, and H. Fuchs, �Exploring high-level
plane primitives for indoor 3d reconstruction with a hand-held rgb-
d camera,� in Asian Conference on Computer Vision, pp. 94�108,
Springer, 2012.

[24] A. Vit and G. Shani, �Comparing rgb-d sensors for close range outdoor
agricultural phenotyping,� Sensors, vol. 18, no. 12, 2018.

[25] R. A. Hamzah and H. Ibrahim, �Literature survey on stereo vision dis-
parity map algorithms,� Journal of Sensors, vol. 2016, 2016.

[26] R. Nair, R. Kai, F. Lenzen, S. Meister, H. Schäfer, C. S. Garbe, M. Eise-
mann, M. Magnor, and D. Kondermann, �A survey on time-of-�ight
stereo fusion,� Lecture Notes in Computer Science, vol. 8200, pp. 105�
127, 2013.

[27] Y. V. David Fo�, Tadeusz Sliwa, �A comparative survey on invisible
structured light,� 2004.

[28] D. Caspi, N. Kiryati, and J. Shamir, �Range imaging with adaptive color
structured light,� IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 470�480, May 1998.

[29] S. Foix, G. Alenya, and C. Torras, �Lock-in time-of-�ight (tof) cameras:
A survey,� IEEE Sensors Journal, vol. 11, no. 9, pp. 1917�1926, 2011.

74 BIBLIOGRAPHY

[30] F. Chiabrando, F. Nex, D. Piatti, and F. Rinaudo, �Integration be-
tween calibrated time-of-�ight camera data and multi-image matching
approach for architectural survey,� in Image & Signal Processing for
Remote Sensing XVI, 2010.

[31] E. J. Almazan and G. A. Jones, �Tracking people across multiple non-
overlapping rgb-d sensors,� in The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops, June 2013.

[32] W. Lemkens, P. Kaur, K. Buys, P. Slaets, T. Tuytelaars, and J. De
Schutter, �Multi rgb-d camera setup for generating large 3d point
clouds,� in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1092�1099, Nov 2013.

[33] M. Munaro, F. Basso, and E. Menegatti, �Openptrack: Open source
multi-camera calibration and people tracking for rgb-d camera net-
works,� Robotics and Autonomous Systems, vol. 75, pp. 525�538, 2016.

[34] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges, and D. Kim,
�Shake'n'sense: reducing interference for overlapping structured light
depth cameras,� in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1933�1936, ACM, 2012.

[35] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, �A survey
of deep neural network architectures and their applications,� Neurocom-
puting, vol. 234, pp. 11�26, 2017.

[36] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[37] R. C. Gonzalez and R. E. Woods, Digital image processing. Upper Saddle
River, N.J.: Prentice Hall, 2008.

[38] J. Schmidhuber, �Deep learning in neural networks: An overview,� Neu-
ral networks, vol. 61, pp. 85�117, 2015.

[39] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel,
and S. Gumhold, �Visualizations of deep neural networks in computer
vision: A survey,� in Transparent Data Mining for Big and Small Data,
pp. 123�144, Springer, 2017.

[40] F. Q. Lauzon, �An introduction to deep learning,� in 2012 11th Interna-
tional Conference on Information Science, Signal Processing and their
Applications (ISSPA), pp. 1438�1439, July 2012.

BIBLIOGRAPHY 75

[41] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, �Large-scale video classi�cation with convolutional neural
networks,� in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

[42] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber,
�Deep neural networks segment neuronal membranes in electron mi-
croscopy images,� in Advances in neural information processing systems,
pp. 2843�2851, 2012.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation
with deep convolutional neural networks,� in Advances in neural infor-
mation processing systems, pp. 1097�1105, 2012.

[44] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, andW. Burgard,
�Multimodal deep learning for robust rgb-d object recognition,� in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 681�687, Sep. 2015.

[45] L. A. Alexandre, �3d object recognition using convolutional neural net-
works with transfer learning between input channels,� in Intelligent Au-
tonomous Systems 13, pp. 889�898, Springer, 2016.

[46] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, �Multi-view 3d object
detection network for autonomous driving,� in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[47] D. Maturana and S. Scherer, �Voxnet: A 3d convolutional neural net-
work for real-time object recognition,� in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 922�928, Sep.
2015.

[48] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, �3d
shapenets: A deep representation for volumetric shapes,� in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

[49] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas, �Vol-
umetric and multi-view cnns for object classi�cation on 3d data,� in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

76 BIBLIOGRAPHY

[50] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, �Scalable object de-
tection using deep neural networks,� in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2014.

[51] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, �A uni�ed multi-scale
deep convolutional neural network for fast object detection,� in european
conference on computer vision, pp. 354�370, Springer, 2016.

[52] I. Lenz, H. Lee, and A. Saxena, �Deep learning for detecting robotic
grasps,� The International Journal of Robotics Research, vol. 34, no. 4-
5, pp. 705�724, 2015.

[53] S. Kumra and C. Kanan, �Robotic grasp detection using deep convo-
lutional neural networks,� in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 769�776, Sep. 2017.

[54] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, �Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,� arXiv preprint
arXiv:1703.09312, 2017.

[55] J. Lahoud and B. Ghanem, �2d-driven 3d object detection in rgb-d
images,� in The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[56] A. Yilmaz, O. Javed, and M. Shah, �Object tracking: A survey,� Acm
computing surveys (CSUR), vol. 38, no. 4, p. 13, 2006.

[57] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, �Visual
object tracking using adaptive correlation �lters,� in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
pp. 2544�2550, June 2010.

[58] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V.
Gool, �Robust tracking-by-detection using a detector con�dence parti-
cle �lter,� in 2009 IEEE 12th International Conference on Computer
Vision, pp. 1515�1522, Sep. 2009.

[59] M. Andriluka, S. Roth, and B. Schiele, �People-tracking-by-detection
and people-detection-by-tracking,� in 2008 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1�8, June 2008.

[60] D. E. King, �Dlib-ml: A machine learning toolkit,� Journal of Machine
Learning Research, vol. 10, pp. 1755�1758, 2009.

	Introduction
	Introduction

	RGB-D Sensor Camera
	Characteristics of the RGB-D camera
	Passive triangulation technology: Stereo Vision
	Active triangulation technology: Structured Light
	The Time of Flight (ToF) technology

	RGB-D Camera Devices
	Devices
	Project Camera Selection

	Difference Between RGB-D Camera and RGB Camera

	RGB-D Multicamera System
	Requirements for a Multicamera System
	Interference
	Total Area Coverage
	Setup Modularity
	Workload and USB Extension Cable
	RGB-D Multicamera Calibration

	RGB-D Multicamera Topology
	Array of RGB-D cameras
	Matrix of RGB-D cameras
	Circle of RGB-D cameras

	Neural Networks
	Artificial Neural Network Model
	Basic Computing Devices: Neurons

	Fully Connected Neural Networks
	Training Process

	Deep Convolutional Neural Network
	How a CNN works

	Typologies of Image Data Input for CNNs
	RGB Image Data
	Depth Image Data
	RGB Plus Depth Image Data
	Point Cloud Data
	Video and Camera Streams

	Object Detection and Tracking
	Object Detection Through CNN
	Object Recognition Through CNN
	Object Tracking
	Multi Object Tracking

	Bumper Cars Tracking in Low Light Environments
	Goal of the Project
	Project Setup: Hardware Components
	Project Setup: Software Components
	The Bumper Cars Detection CNN
	The Bumper Cars Tracking
	Issues of the Tracking System
	The Video Game

	Conclusions and Future Works
	Conclusions
	Future Works

	Bibliography

