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Abstract

Center-based clustering is a fundamental primitive for data analysis and becomes
very challenging for large datasets. In this thesis, we focus on the popular k-center,
k-median, and k-means variants which, given a set P of points from a metric space and
a parameter k < |P |, require to identify a set S of k centers minimizing respectively
the maximum distance, the sum of the distances, and the sum of the squared distances
of all points in P from their closest centers. Our specific focus is on general metric
spaces for which it is reasonable to require that the centers belong to the input set
(i.e., S ⊆ P ). We present a general coreset construction primitive which allows us
to design coreset-based 2-round distributed approximation algorithms for the above
problems using the MapReduce computational model. The algorithms are rather
simple and obliviously adapt to the intrinsic complexity of the dataset, captured by
the doubling dimension D of the metric space. Remarkably, the algorithms attain
approximation ratios that can be made arbitrarily close to those achievable by the best
known polynomial-time sequential approximations, and they are very space efficient
for small D, requiring local memory sizes substantially sublinear in the input size.
While in the literature similar results were already achieved for the k-center problem,
to the best of our knowledge, no previous distributed approaches were able to attain
similar quality-performance guarantees for k-median and k-means in general metric
spaces. Moreover, we address the NP-hard computational problem of the estimation
of the doubling dimension of a set of points with two novel methods: a sequential
algorithm, whose performance is slightly better than known approaches, and a 2-round
MapReduce algorithm, which is more suitable to tackle large datasets, but yields a
poorer approximation.
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Chapter 1

Introduction

1.1 Introduction

Clustering is a fundamental primitive in the realms of data management and machine
learning, with applications in a large spectrum of domains such as database search,
bioinformatics, pattern recognition, networking, operations research, and many more
[18]. A prominent clustering subspecies is center-based clustering, whose goal is to
partition a set of data items into k groups, where k is an input parameter, according
to a notion of similarity, captured by a given measure of closeness to suitably chosen
representatives, called centers. There is a vast and well-established literature on
sequential strategies for different instantiations of center-based clustering [3]. However,
the explosive growth of data that needs to be processed often rules out the use of these
sequential strategies, which are often impractical on large data sets, due to their time
and space requirements. Therefore, it is of paramount importance to devise efficient
distributed clustering strategies tailored to the typical computational frameworks for
big data processing, such as MapReduce [26].

In this thesis, we focus on the k-center, k-median, and k-means clustering problems.
Given a set P of points in a general metric space and a positive integer k ≤ |P |, the
k-center problem requires to find a subset S ⊆ P of k points, called centers, so that
the maximum distance between a point of P to its closest center is minimized. In
the k-median problem, we want to find the set S ⊆ P which minimizes the sum of
the distances between the points of P to their respective closest center; similarly, in
the k-means problem, we seek to minimize the sum of the squared distances. Once S

is determined, the association of each point to the closest center naturally defines a
clustering of P . While scarcely meaningful for general metric spaces, for Euclidean
spaces the widely studied continuous variant of the k-center, k-median, and k-means
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problems removes the constraint that S is a subset of P , hence allowing a much richer
choice of centers from the entire space. These clustering problems are the most popular
instantiations of center-based clustering, whose efficient solution in the realm of big data
has attracted vast attention in the recent literature [10, 5, 6, 32, 7]. One of the reference
models for big data computing, also adopted in most of the aforementioned works,
is MapReduce [9, 29, 26], where a set of processors with limited-size local memories
process data in a sequence of parallel rounds. Efficient MapReduce algorithms should
aim at minimizing the number of rounds while using substantially sublinear local
memory.

A natural approach to solving large instances of combinatorial optimization problems
relies on the extraction of a much smaller “summary” of the input instance, often
dubbed coreset in the literature [16], which embodies sufficient information to enable
the computation of a good approximate solution of the whole input. This approach
is profitable whenever the (time and space) resources needed to compute the coreset
are considerably lower than those required to compute a solution by working directly
on the input instance. Coresets with different properties have been studied in the
literature to solve different variants of the aforementioned clustering problems [28].

For the Euclidean Space Rd, the value d describes the “complexity” or “dimensionality”
of a space. Likewise, in the case of a general metric space, a widely adopted notion to
measure its complexity is its doubling dimension. The concept of doubling dimension
naturally extends to characterize any subset of points of a metric space, as the subset
can be seen as a metric space on its own. While the doubling dimension of the input
data is generally unknown, the design of algorithms whose performance is parametrized
by this dimensionality has gathered momentum in recent years, as they generally
feature unmatched performance for low doubling dimensions [7, 17].

This thesis features novel coreset-based space/round-efficient MapReduce algorithms
for k-center, k-median, and k-means. In addition, it presents new sequential and
MapReduce algorithms to estimate the doubling dimension of an input set of points.

1.2 Related work

The k-center, k-median, and k-means clustering problems in general metric spaces
have been extensively studied, and constant approximation algorithms are known for
these NP-hard problems [3, 12]. Lately, there has been growing interest towards the
development of distributed algorithms to attack these problems in the big data scenario
(see [32, 7] and references therein). While straightforward parallelizations of known
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iterative sequential strategies tend to be inefficient due to high round complexity, the
most relevant efforts to date rely on distributed constructions of coresets of size much
smaller than the input, upon which a sequential algorithm is then run to obtain the
final solution.

For k-center, in [10] it is presented a randomized MapReduce algorithm which
provides a 10-approximation. This result is improved in the work in [27], which features
a deterministic 2-round 4-approximation MapReduce algorithm with local memory
O
(√
|P |k

)
. Lately, Ceccarello et al. [7] have presented a deterministic 2-round (2 + ϵ)-

approximation algorithm with local memory O
(√
|P |k(16/ϵ)dd(P )

)
, where ϵ ∈ (0,1) is

a user chosen parameter which represents the accuracy-space tradeoff, and dd(P ) is
the doubling dimension of the input dataset.

For k-median, Ene et al. [10] present a randomized MapReduce algorithm which
computes a coreset of size O(k2|P |δ) in O(1/δ) rounds, for any δ < 1. By using a
α-approximation algorithm on this coreset, a weak (10α + 3)-approximate solution
is obtained. In the paper, the authors claim that their approach extends also to
the k-means problem, but do not provide the analysis. For this latter problem, in
[5] a parallelization of the popular k-means++ algorithm by [1] is presented, which
builds an O(k log |P |)-size coreset for k-means in O(log |P |) rounds. By running an
α-approximation algorithm on the coreset, the returned solution features an O(α)
approximation ratio. A randomized MapReduce algorithm for k-median has been
recently presented in [32], where the well known local-search PAM algorithm [23] is
employed to extract a small family of possible solutions from random samples of the
input. A suitable refinement of the best solution in the family is then returned. While
extensive experiments support the effectiveness of this approach in practice, no tight
theoretical analysis of the resulting approximation quality is provided.

In the continuous setting, Balcan et al. [6] present randomized 2-round algorithms
to build coresets in Rd of size O

(
kd
ϵ2 +Lk

)
for k-median, and O

(
kd
ϵ4 +Lk log(Lk)

)
for

k-means, for any choice of ϵ ∈ (0,1), where the computation is distributed among L

processing elements. By using an α-approximation algorithm on the coresets, the
overall approximation factor is α +O(ϵ). For k-means, a recent improved construction
yields a coreset which is a factor O(ϵ2) smaller and features very fast distributed
implementation [4]. It is not difficult to show that a straightforward adaptation of
these algorithms to general spaces (hence in a non-continuous setting) would yield
(c ·α +O(ϵ))-approximations, with c≥ 2, thus introducing a non-negligible gap with
respect to the quality of the best sequential approximations.
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The problem of determining the doubling dimension dd(P ) of an input set of points
P has already been studied by the literature, and proved to be NP-hard [13]. Also in
[13], it is presented a 2-approximation algorithm to estimate dd(P ) which has time
complexity O

(
|P |32O(dd(P ))

)
. This algorithm is based on the point hierarchy in [24],

which does not provide a precise bound on the term O(dd(P )) of the time complexity. A
faster algorithm with time complexity O

(
2O(dd(P ))|P | log |P |

)
is known [17], although

it has worse O(1)-approximation factor.
Finally, it is worth mentioning that there is a rich literature on sequential coreset

constructions for k-median and k-means which mostly focus on the continuous case in
Euclidean spaces [11, 16, 15, 19, 31, 8]. We do not review the results in these works
since our focus is on distributed algorithms in general metric sapces.

1.3 Contribution

We devise new distributed coreset constructions and show how to employ them to
yield accurate space-efficient 2-round MapReduce algorithms for k-center, k-median
and k-means. Our coresets are built in a composable fashion [20] in the sense that
they are obtained as the union of small local coresets computed in parallel (in a single
MapReduce round) on distinct subsets of a partition of the input. The final solution is
obtained by running a sequential approximation algorithm on the coreset in a second
MapReduce round. The memory requirements of our algorithms are analyzed in terms
of the desired approximation guarantee, and of the doubling dimension dd(P ) of the
metric space induced by the input set of points P , a parameter which generalizes the
dimensionality of Euclidean spaces to general metric spaces and is thus related to the
increasing difficulty of spotting good clusterings as the parameter dd(P ) grows.

Let α denote the best approximation ratio attainable by a sequential algorithm for
either k-median or k-means on general metric spaces. Our main results are 2-round
(α + O(ϵ))-approximation MapReduce algorithms for k-median and k-means, which
require O

(√
|P |k(c/ϵ)2dd(P ) log2 |P |

)
local memory, where c > 0 is a suitable constant

that will be specified in the analysis, and ϵ ∈ (0,1) is a user-defined precision parameter.
To the best of our knowledge, these are the first MapReduce algorithms for k-median
and k-means in general metric spaces which feature approximation guarantees that
can be made arbitrarily close to those of the best sequential algorithms, and run in few
rounds using local space substantially sublinear for low-dimensional spaces. In fact,
prior to our work existing MapReduce algorithms for k-median and k-means in general
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metric spaces either exhibited approximation factors much larger than α [10, 5], or
missed a tight theoretical analysis of the approximation factor [32].

For k-center, we develop a 2-round (2+ ϵ)-approximation MapReduce algorithm
which requires O

(√
|P |k(16/ϵ)dd(P )

)
local memory. For comparison, the best sequential

algoritm achieves a 2-approximation, and the problem is NP-hard to approximate
within a smaller factor. Even if similar results performance-wise were already obtained
in previous works [7], this result substantiates the generality of our method.

Our algorithms revolve around novel coreset constructions somehow inspired by
those proposed in [16] for Euclidean spaces. As a fundamental tool, the constructions
make use of a procedure that, starting from a set of points P and a set of centers
C, produces a (not much) larger set C ′ such that for any point x ∈ P its distance
from C ′ is significantly smaller than its distance from C. Simpler versions of our
constructions can also be employed to attain 2-round MapReduce algorithms for the
continuous versions of k-median and k-means, featuring α + O(ϵ) approximation ratios
and O

(√
|P |k(c/ϵ)dd(P ) log |P |

)
local space requirements. While similar approximation

guarantees have already been achieved in the literature [6, 4] using even smaller local
space, this result provides further evidence of the general applicability of our novel
approach.

We want to point out that a very desirable feature of our MapReduce algorithms is
that they do not require a priori knowledge of the doubling dimension dd(P ) and, in
fact, they naturally adapt to the dimensionality of the dataset.

Finally, we present novel sequential and MapReduce algorithms to estimate the
doubling dimension dd(P ) of a set of points P . In particular, we devise a sequential 2-
approximation algorithm which slightly improves the time complexity to O

(
|P |322dd(P )

)
from the previously best-known [13] complexity O

(
|P |32O(dd(P ))

)
. The super-cubic

complexity of the algorithm makes it unusable for large sets of points. In order to be
able to tackle larger datasets, we exhibit a novel 2-round MapReduce algorithm with
local memory O (|P |/L+L), which returns an estimate D of the doubling dimension
such that dd(P )≤D ≤ 8 ·dd(P )+ log2 L, where L is a user-defined parameter. As far
as we know, no previous work has ever tackled the distributed computation of the
doubling dimension for large set of points.

1.4 MapReduce

Many algorithms presented in this thesis are designed for the MapReduce model of
computation which has become a de facto standard for big data algorithmics in recent
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years. A MapReduce algorithm [9, 29, 26] executes in a sequence of parallel rounds. In
a round, a multiset X of key-value pairs is first transformed into a new multiset X ′

of key-value pairs by applying a given map function (simply called mapper) to each
individual pair, and then into a final multiset Y of pairs by applying a given reduce
function (simply called reducer) independently to each subset of pairs of X ′ having
the same key. The model features two parameters, ML, the local memory available to
each mapper/reducer, and MA, the aggregate memory across all mappers/reducers. In
our algorithms, mappers are straightforward constant-space transformations, thus the
memory requirements will be related to the reducers.

1.5 Organization of the thesis
The rest of the thesis is organized as follows. Chapter 2 introduces some preliminary
concepts, formally introduces the notion of doubling dimension and investigate some
of its properties, and presents two algorithms which can be used to estimate this
dimensionality. Chapter 3 describes the k-center, k-median, and k-means clustering
problems, introduces various properties of coresets that are needed to achieve our
results, and presents our novel coreset constructions primitive. Based on the latter,
Chapter 4 derives the MapReduce algorithms for the three clustering problems. Finally,
Chapter 5 offers some concluding remarks and briefly discusses possible future work.



Chapter 2

Doubling Dimension

The doubling dimension is a notion that captures the intrinsic complexity of a generic
metric space. In our work, we will develop coreset construction algorithms to efficiently
solve the k-center, k-median, and k-means clustering problems which are sensitive to
the dimensionality of the space. We remark that the task of spotting a small coreset
which “summarizes” the structure of the input set of points can become arbitrarily
hard for generic metric spaces. For the sake of explaination, consider a finite set P

such that any two different points in P are at distance 1. Any subset of P (i.e. any
candidate coreset) gives no information on the structure or properties of the other
points, as they all have the same distance 1 from the subset. As such, it is inherently
hard to develop an algorithm that can extract a small-sized and meaningful coreset
from this specific P .

It turns out that the concept of doubling dimension is very convenient to determine
how succint a summary (to be used for clustering) we may expect to extract from
a pointset. In this context, the concept of doubling dimension turns out to be very
convenient. In our coreset construction algorithm, we exploit the properties expressed
by the definition of this dimensionality, so that the output coreset size is a function of
the (possibly unknown) doubling dimension dd(P ) of the input P . The idea is that
we can extract coresets of small size as far as dd(P ) is low. Note that this algorithm
doesn’t aim to be efficient for any input. Consider again the set P of equi-distant points.
As we will see later in this Chapter, this set has a doubling dimension dd(P ) = log2 |P |,
which is the highest possible, and so our coreset construction algorithm will possibly
return a very large-sized coreset. However, this is not really a problem, as the high
doubling dimension also implies that the set of points is indeed hard to cluster. In
fact, with reference again to the previous example, there is no meaningful choice of
k centers from P . In other words, a large doubling dimension value indicates that
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it is difficult to find significant representatives, whether they are cluster centers or
points of a coreset. If our coreset construction algorithm fails to return a small coreset
because of the dimensionality of the input, then it is also improbable that a meaningful
center-based clustering exists.

Although our coreset construction is oblivious to the value of the doubling dimension,
the problem of estimating the value of this dimensionality is undoubtedly interesting.
The ability to systematically and efficiently estimate the doubling dimension of real
datasets would make it possible to give concrete evidence of the effectiveness of this
type of approach.

In this chapter, after introducing some preliminary concepts, we provide a formal
definition of doubling dimension and an overview of its properties. Then, we present
two novel algorithms for estimating the doubling dimension.

2.1 Preliminaries

A metric space is an ordered pair (M,d), whereM is a set and d is a metric. A metric is
a function d :M×M→R such that for any x,y,z ∈M, the following properties hold:
(i) d(x,y) = 0 ⇐⇒ x = y (identity); (ii) d(x,y) = d(y,x) (simmetry); (iii) d(x,y)≥ 0
(non-negativity); and (iv) d(x,z)≤ d(x,y) +d(y,z) (triangle inequality). The function
d is also called distance. Throughout this thesis, input pointsets will always consist of
points which share the same distance function d. We introduce the two following useful
notations. For any sets of points P ,Q, and x ∈ P , we define d(x,Y ) := miny∈Y d(x,y)
and xY := argminy∈Y d(x,y). Note that d(x,Y ) = d(x,xY ).

In what follows, we will also consider weighted sets of points. In a weighted set,
every point is assigned a non-negative real value according to a weight function w.
Formally, given a set of points P , a function w : P → R is said to be a weight function
for P if it is non-negative. We will use the notation Pw to denote a weighted set
of points, where w is its weight function. The computation of the distance of two
points is not affected by their weights. Note that an unweighted set of points P can
be considered weighted with unitary weights, that is, its implicit weight function is
w(p) = 1, ∀x ∈ P .

2.2 Definition of doubling space

The doubling dimension is a value which can be used to describe a specific property of
a set of points. To give a formal definition, we first need to introduce some preliminary
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notation. Let P be a set of points. Given r ≥ 0 and a point x, we define the ball
of radius r centered at x, ballP (x,r) := {y ∈ P : d(x,y)≤ r}. That is, ballP (x,r) is
the subset of P at distance at most r from x. A ball that contains a set of points
is said to cover those points. A set of points C is said to be an r-cover of P if
P ⊆ ∪c∈CballP (c,r). Given a set of points P , we define m-cover(P,r) to be the set
of points T ⊆ P of minimum cardinality such that T is an r-cover of P .

I Definition 2.2.1. Let P be a set of points. Its doubling dimension dd(P ) is defined
as

dd(P ) = sup
x∈P,r≥0

log2 |m-cover(ballP (x,r), r

2)|

An alternative and common way to describe the doubling dimension of a set of points
is the following: any ball of radius r centered in a point x ∈ P has an r/2-cover C ⊆ P

of cardinality at most 2dd(P ).
We observe that a set infinite pointset can have a finite doubling dimension. For

example, it is easy to show that dd(R)≤ 1. In fact, for any x ∈ R and r ≥ 0, the set
{x + r/2,x− r/2} is a r/2-cover of ballP (x,r). However, there exist sets of points
which have infinite doubling dimension. For example, consider a set of infinite points
P such that for any x,y ∈ P , x ̸= y, d(x,y) = 1, that is any point in P is at the same
distance from all the others. In this case, for r = 1 and for any x ∈ P , we have that
ballP (x,1) = P . Clearly, a 1/2-cover of P must contain all points in P , and it is thus
infinite. Indeed, assume that it exists a set C which is a 1/2-cover of P and does
not contain a point x ∈ P . This implies that it exists a point y ∈ C, y ̸= x, such that
d(x,y)≤ 1/2, which yields a contradiction.

In the examples above, we have shown that a set with an infinite number of points
can have either a finite or infinite doubling dimension. The following result formally
states that if a set of points is finite, its doubling dimension cannot be larger that the
base-2 logarithm of its cardinality.

I Lemma 2.2.2. Let P be a set of points such that |P |<∞. Then, dd(P )≤ log2 |P |.

Proof. For any x ∈ P and r ≥ 0, we have that |m-cover(ballP (x,r), r
2)| ≤ |P |, as

ballP (x,r) is a r/2-cover of ballP (x,r), and |ballP (x,r)| ≤ |P |. The statement
immediately follows. J

The bound of the previous lemma is strict, as shown by the next example. Consider
again a set P such that for any x,y ∈ P , x ̸= y, d(x,y) = 1, however let P have finite
cardinality this time. Arguing as in the previous case, for any x ∈ P , we have that any
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1/2-cover of ballP (x,1) = P must contain all points in P . Hence, dd(P ) ≥ log2 |P |.
Since by Lemma 2.2.2, dd(P )≤ log2 |P |, we have that dd(P ) = log2 |P | for this particular
P .

The definition of doubling dimension can be recursively applied in order to describe
the number of points required at most to have an r/2i-cover of any ball of radius r

centered at a point of P , for any integer i≥ 1.

I Lemma 2.2.3. Let P be a set of points. For any r ≥ 0, x ∈ P , and integer i ≥ 1,
there exists a set C such that C is an r/2i-cover of ballP (x,r) and |C| ≤ 2i·dd(P ).

Proof. Consider the tree of height i constructed as follows. Any node is labelled by
a real value, denoting the radius, and a point. The root is labeled by r and x. For
any internal node u, let S denote the set of its children. If u is labelled by the value
of the radius r, then any v ∈ S is labelled by radius r/2. Moreover, the union of the
point labels of S must be a minimum cardinality r/2-cover of ballP (y,r), where y

is the point label of u. Then, by the definition of doubling dimension, every internal
node has at most 2dd(P ) children. By induction, it is easy to prove that the leaves are
labeled with radius r/2i. Let L denote the union of the point labels of the leaves. By
induction, we can easily show that ballP (x,r) ⊆ ∪y∈LballP (y,r/2i). Hence L is a
r/2i-cover of ballP (x,r). Since every internal node can have at most 2dd(P ) children,
and the tree has height i, the maximum number of leaves is (2dd(P ))i. J

It is of theorethical interest to study the properties of the doubling dimension when
partitioning sets of points. We will extensively use the properties featured by the
following lemmas throughout this and next chapters.

I Lemma 2.2.4. Let S ⊆ P . If dd(P ) <∞, then dd(S)≤ 2 ·dd(P ).

Proof. Fix arbitrarily x ∈ S and r ≥ 0. By Lemma 2.2.3, there exists a set C ⊆ P

such that C is an r/4-cover of ballP (x,r) and |C| ≤ 22dd(P ). We now construct a set
C ′ as follows. For any c ∈ C, consider ballP (c,r/4). There are two cases. In the first
case, ballP (c,r/4)∩S is empty, and we don’t add any point to C ′. In the second
case, there exists y ∈ ballP (c,r/4)∩S, and we add y to C ′. It’s easy to see that
ballP (c,r/4) ⊆ ballP (y,r/2). We claim that C ′ is an r/2-cover of ballS(x,r). In
fact, ballS(x,r)⊆ ∪c∈CballS(c,r/4)⊆ ∪c∈C′ballS(c,r/2), where the last relation is
due to how C ′ is constructed. Since for any point in C, we add at most one point to C ′,
it holds that |C ′| ≤ |C| ≤ 22dd(P ). It immediately follows that dd(S)≤ 2 ·dd(P ). J

The following proposition is convenient to prove the next lemma.
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I Proposition 2.2.5. Consider a point x ̸∈ P and a radius r ≥ 0. Then, there exists a
set C ⊆ P such that C is an r/2-cover of ballP (x,r) and |C| ≤ 22dd(P ).

Proof. Consider an arbitrary point y ∈ ballP (x,r) ⊆ P . The following relation
surely holds: ballP (x,r) ⊆ ballP (y,2r). In fact, for any z ∈ ballP (x,r), we have
that d(z,y) ≤ d(z,x) + d(x,y) ≤ 2r, so z ∈ ballP (y,2r). By Lemma 2.2.3, there
exists a set C such that C is a (2r)/4-cover of ballP (y,2r) and |C| ≤ 22dd(P ). As
ballP (x,r) ⊆ ballP (y,2r), the set C is also an r/2-cover of ballP (x,r), and the
statement immediately follows. J

I Lemma 2.2.6. Let P1, ...,PL be a partition of P and c≥ 2. If dd(P ) <∞, then

dd(P )≤ log2

L∑
ℓ=1

2c·dd(Pℓ) ≤ log2 L+2c ·dd(P )

Proof. The second inequality is trivial from Lemma 2.2.4. We want to show the first
inequality. Fix a value of radius r and a point x ∈ P . For any ℓ = 1, ...,L, let Cℓ be the
set of Proposition 2.2.5 which is a r/2-cover of ballPℓ

(x,r). Let C =∪L
ℓ=1Cℓ. The set C

is an r/2-cover of ballP , and by the union bound, |C| ≤∑L
ℓ=1 22dd(Pℓ) ≤∑L

ℓ=1 2c·dd(Pℓ).
The statement immediately follows. J

The definition of doubling dimension in Definition 2.2.1 requires to compute the
maximum over an infinite number of elements, even if the considered set of points is
finite. This is due to the fact that in principle, all real values of the radius r must
be checked. However, one can compute the doubling dimension by only focusing on
specific values of the radius. This fact is shown in the following lemma and it is crucial
to the development of algorithms which estimate the doubling dimension.

I Lemma 2.2.7. Let P be a set of points. Then,

dd(P ) = sup
x,y∈P

log2

∣∣∣∣∣m-cover
(

ballP (x,d(x,y)), d(x,y)
2

)∣∣∣∣∣
Proof. Let D be the right-side of the equation in the statement of the lemma. For
every point x ∈ P , we are testing only O(|P |) values of the radius. By comparison
with Definition 2.2.1, we are restricting the set on which the sup is taken, therefore
D ≤ dd(P ).
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To complete the proof, we will now show that D ≥ dd(P ). In order to do so, we
will demonstrate that for any x ∈ P and r ≥ 0, there exists y ∈ P such that:

(1)
∣∣∣∣m-cover

(
ballP (x,r), r

2

)∣∣∣∣≤
∣∣∣∣∣m-cover

(
ballP (x,d(x,y)), d(x,y)

2

)∣∣∣∣∣
Fix a point x ∈ P and a value of the radius r. Let y be the farthest point from x

such that d(x,y)≤ r. For construction, it holds that ballP (x,d(x,y)) = ballP (x,r).
Suppose by contradiction that the inequality (1) does not hold. As by hypothesis
d(x,y)≤ r, the set m-cover

(
ballP (x,d(x,y)), d(x,y)

2

)
is also a r/2-cover of ballP (x,r),

which is an absurd as any r/2-cover of ballP (x,r) should have a bigger cardinality. J

2.3 Estimation of the doubling dimension

Given a set of points P , it is NP-hard to compute its doubling dimension [13]. The
proof is by reduction from the dominating set problem, and this reduction preserves
the hardness of approximation. As the authors of [13] argue, this implies it is NP-hard
to approximate the value 2dd(P ) within a factor Ω(ln |P |). However, it is possible to
find constant approximation algorithms for the doubling dimension. We say that an
algorithm (α,β)-approximates the doubling dimension, if for any input set of points P ,
it computes a value D such that dd(P )≤D≤ α ·dd(P )+β. Always in [13], the authors
present a (2,0)-approximate algorithm which has time complexity O

(
|P |3 ·2O(dd(P ))

)
.

We will slightly lower this complexity to O
(
|P |3 ·4dd(P )

)
, while preserving the same

approximation. It is possible to sacrifice the quality of the estimation in order to reduce
this time complexity. In [17], an (O(1),0)-approximate algorithm is presented which
runs in O

(
2O(dd(P ))|P | log |P |

)
. The approximation term (O(1),0) is not satisfying as

it does not give precise bounds on how much worse the approximation could be. In
this section, we will see a parallel approach to lower the time complexity, at the cost of
a moderately worse approximation

We will now describe the algorithm SimpleEstimateDD, which (2,0)-approximates
the doubling dimension. The pseudocode of the algorithm can be found in Algorithm
1. The algorithm is based on the result of Lemma 2.2.7. We iterate over all
possible pairs of points x,y ∈ P , and for each pair we compute a set C which is
a d(x,y)/2-cover of ballP (x,d(x,y)). Ideally, we would like to be able to compute
m-cover

(
ballP (x,d(x,y)), d(x,y)

2

)
, but this is not possible unless P = NP (remember

that it NP-hard to calculate the doubling dimension of a set of points). However, the
strategy adopted in the while loop of Algorithm 1 computes a set C whose cardinality



2.3 Estimation of the doubling dimension | 13

Algorithm 1: SimpleEstimateDD(P )
1 D← 0
2 foreach x ∈ P do
3 foreach y ∈ P do
4 T ← ballP (x,d(x,y))
5 C←∅
6 while T ̸= ∅ do
7 p← arbitrary point in T
8 C← C ∪{p}
9 foreach z ∈ T do

10 if d(p,z)≤ d(x,y)/2 then
11 T ← T −{z}
12 end
13 end
14 end
15 D←max{D, log2 |C|}
16 end
17 end
18 return D

is not substantially bigger. In order to do so, we must guarantee that the points in C

are spread apart, more specifically that for any u,v ∈ C, u ̸= v, d(u,v) > d(x,y)/2.

I Lemma 2.3.1. Let x,y ∈ P . Let C ⊆ ballP (x,d(x,y)) be a d(x,y)/2-cover of
ballP (x,d(x,y)), and suppose that for any u,v ∈ C, u ̸= v, d(u,v) > d(x,y)/2. Then
|C| ≤ 22dd(P ).

Proof. Let r = d(x,y). By Lemma 2.2.3, there exists a set C ′ which is a r/4-cover
of ballP (x,d(x,y)) and |C ′| ≤ 22dd(P ). Also, for any point u ∈ C ′, there can be at
most one point v ∈ C such that d(u,v) ≤ r/4. This claim can be simply proven as
follows. By construction, any two different points in C must be at distance greater
than r/2. Suppose that together with v there is another point w ∈ C such that
d(u,w)≤ r/4. Then by the triangle inequality, d(v,w)≤ d(v,u) + d(u,w)≤ r/2, which
is a contradiction. Since C ′ is a r/4-cover of C ⊆ ballP (x,d(x,y)), we conclude that
|C| ≤ |C ′|. J

I Lemma 2.3.2. The algorithm SimpleEstimateDD (2,0)-approximates the doubling
dimension.

Proof. Let P be the input set. Let Cxy be the set C computed in the While loop of
the algorithm for x,y ∈ P . By construction, the set Cxy satisfies the hypothesis of
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Lemma 2.3.1. We can write:

dd(P ) = sup
x,y∈P

log2

∣∣∣∣∣m-cover
(

ballP (x,d(x,y)), d(x,y)
2

)∣∣∣∣∣≤ sup
x,y∈P

log2 |Cxy|

The first equality is due to Lemma 2.2.7, and the second inequality is due to the
optimality of m-cover. Also, by Lemma 2.3.1, we have that |Cxy| ≤ 22dd(P ). Thus:

dd(P )≤ sup
x,y∈P

log2 |Cxy| ≤ 2 ·dd(P ).

The statement follows by observing that supx,y∈P log2 |Cxy| is the output D of the
algorithm. J

The time complexity of the algorithm is O
(
|P |3 ·4dd(P )

)
. In fact, there are O

(
|P |2

)
iterations of the first two foreach, and each of these iterations requires at most
O (|C| · |P |) operations, with |C| ≤ 22dd(P ) by Lemma 2.3.1.

The algorithm presents a high time complexity and therefore cannot be used with
a large number of points. However, we are mostly interested in the estimation of the
doubling dimension in the case of big datasets. In fact, if the points are few, the
doubling dimension is always relatively low thanks to Lemma 2.2.2.

The strategy we adopt is to partition the points into different subsets and estimate
the doubling dimension in each of these subsets in parallel. Then, we collect these
local estimantes and use Lemma 2.2.6 to determine the final estimate on the whole
set of points. The 2-rounds MapReduce algorithm MR-EstimateDD uses the approach
just described. Formally, this algorithm receives in input a set of points P , and is
parametrized by an integer L. The algorithm performs the following operations:

1. Partition the set P into L equally-sized subsets P1, ...,PL, and assign each to a
different reducer.

2. For ℓ = 1, ...,L, the reducer whose input is Pℓ computes Dℓ← SimpleEstimateDD(Pℓ).
3. Gather all values Dℓ and return D = log2

∑L
ℓ=1 22Dℓ

The algorithm requires two rounds: a first round for the first two steps, and a second
round for the third step. The local memory required by the algorithm is O(L+ |P |/L),
where the term is O(L) is due to Step 3, and the term O(|P |/L) is due to the fact
that SimpleEstimateDD requires linear working memory with respect to the input size.
The aggregate memory is O(|P |).

I Lemma 2.3.3. The algorithm MR-EstimateDD (8, log2 L)-approximates the doubling
dimension.
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Proof. Let D be the value returned by MR-EstimateDD with input P . By Lemma 2.3.2,
for any ℓ = 1, ...,L, it holds that dd(Pℓ)≤Dℓ ≤ 2 ·dd(Pℓ). By Lemma 2.2.6 with c = 2,
we have that

D = log2

L∑
ℓ=1

22Dℓ ≥ log2

L∑
ℓ=1

22dd(Pℓ) ≥ dd(P )

By setting c = 4, Lemma 2.2.6 also implies that:

D = log2

L∑
ℓ=1

22Dℓ ≤ log2

L∑
ℓ=1

24dd(Pℓ) ≤ 8dd(P )+ log2 L

J

In practice, L must be carefully chosen based on the input size and the resources
available. Focusing only on efficiency, the value L =

√
|P | would yield the lowest

local memory. However, the choice L =
√
|P | gives an

(
8, 1

2 log2(|P |)
)
-approximate

algorithm, which has a very poor approximation, if we consider that dd(P )≤ log2 |P |
by Lemma 2.2.2. As we are interested in obtaining a good approximation, one should
reduce L as much as possible.

The two algorithms SimpleEstimateDD and MR-EstimateDD prove the main result
of this chapter, condensed in the following theorem.

I Theorem 2.3.4. There exists an algorithm which (2,0)-approximates the doubling
dimension with time complexity O

(
|P |34dd(P )

)
.

There exists a 2-rounds MapReduce algorithm which (8, log2 L)-approximates the doubling
dimension with O (|P |/L+L) local memory and O (|P |) aggregate memory.





Chapter 3

k-center, k-median, k-means and
coresets

In this chapter, we formally introduce the k-center, k-median, and k-means clustering
problems. For each of these three problems, we give multiple definition of coresets with
different properties. In the next chapter, these kinds of coresets will play a fundamental
role in the design and analysis of the final clustering MapReduce algorithms. The latter
are all based on the same common coreset construction primitive which is presented in
the last section of this chapter.

3.1 k-center
Let X and Y be two set of points, we define rX(Y ) = maxx∈X d(x,Y ). This value is
also referred to as radius (of Y with respect to X). In the k-center problem, we are
given in input an instance I = (P,k), with P a set of points and k a positive integer.
A set S ⊆ P is a solution of I if |S| ≤ k. The objective is to find the solution S with
minimum radius rP (S). Given an instance I of the k-center problem, we denote with
optI its optimal solution. Moreover, for α ≥ 1, we say that S is an α-approximate
solution for I if its radius is within a factor α from the radius of optI . In this case, the
value α is also called approximation factor. An α-approximation algorithm computes
an α-approximate solution for any input instance.

The k-center problem is NP-hard to approximate within a factor 2− ϵ, for any ϵ > 0
[12]. Always in [12], a 2-approximation algorithm is presented with time complexity
O(|P | ·k). In the literature, this algorithm is referred to as Gonzalez’s algorithm, and
it is based on a farthest-first traversal. A farthest-first traversal is a set of points where
the first point is selected arbitrarily, and each successive point is as far as possible
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from the set of previously selected points. Gonzalez’s algorithm exploits the fact that a
farthest-first traversal S of size k built from the input set of points P is a 2-approximate
solution of the instance I = (P,k). The pseudocode of the algorithm can be found in
Algorithm 2.

Algorithm 2: Gonzalez(P,k)
1 S← { arbitrary point in P}
2 for i← 2 to k do
3 p← argmaxx∈P d(x,S)
4 S← S∪{p}
5 end
6 return S

The algorithm can be implemented to run in O(|P | ·k) time by using an auxiliary
data structure (e.g. a vector) that stores for any x ∈ P , the point in S which is nearest
to x. This auxiliary data structure must be kept up do date at every iteration.

I Lemma 3.1.1. Let I = (P,k) be a k-center instance. The set S returned by the
execution of Gonzalez(P,k) is a 2-approximate solution of I.

Proof. Let z = argmaxx∈P d(x,S) and r = d(z,S) = rP (S). For the greedy criterion
with which the points to be added to S are chosen, we have that for any x,y ∈ S, x ̸= y,
it holds d(x,y) ≥ r. Also, d(z,x) ≥ r for any x ∈ R. Hence, S ∪{z} are k + 1 points
which are at least at distance r from one another. By the pigeonhole principle, there
must exist a point o∗ ∈ optI such that there are at least two points x,y ∈ (S∪{z})
for which d(x,o∗) = d(x,optI) and d(y,o∗) = d(y,optI). By triangle inequality, we
conclude:

rP (S) = r ≤ d(x,y)≤ d(x,o∗)+d(o∗,y)≤ 2 · rP (optI)

J

The coresets summarize the input instance based on some properties. The property
that is used must be useful in describing the input instance entirely, and it must be
possible to exploit it when the coreset is used. In this thesis, following the ideas in [7],
we have chosen to use the following definition of coreset for the k-center problem.

I Definition 3.1.2. Let I = (P,k) be a k-center instance. A set of points C is an
ϵ-bounded coreset of I if it exists a map τ : P → C such that d(x,τ(x))≤ ϵ · rP (optI)
for any x ∈ P .
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The coreset property stated in the previous definition allows to obtain a relationship
between solutions computed from the reduced instance I ′ = (Cw,k) and optI .

I Lemma 3.1.3. Let A be an α-approximation algorithm for the k-center problem.
Let I = (P,k) be a k-center instance. Let C be an ϵ-bounded coreset of I. Let S

be the solution returned by the execution of A on the instance I ′ = (C,k). Then,
rP (S)≤ (2α + ϵ) · rP (optI).

Proof. Let τ be the map from P to C of Definition 3.1.2. By triangle inequality, it
holds that:

rP (S) = max
x∈P

d(x,S)≤max
x∈P

d(x,τ(x))+max
x∈P

d(τ(x),S)

By definition of ϵ-bounded coreset, we have that maxx∈P d(x,τ(x))≤ ϵ ·rP (S). Also, we
observe that maxx∈P d(τ(x),S) = maxx∈C d(x,S). As S is an α-approximate solution
of I ′, it results that maxx∈C d(x,S)≤ α · rC(optI′). Now, let G = {xC : x ∈ optI}. By
optimality of optI′ , we have that rC(optI′) ≤ rC(G). Using triangle inequality, we
obtain:

rC(G) = max
x∈C

d(x,G)≤max
x∈C

[
d(x,xoptI )+d(xoptI ,G)

]
≤ 2max

x∈C
d(x,xoptI )

In the last inequality, we used the fact that d(xoptI ,G)≤ d(x,xoptI ) by construction
of G. Since C ⊆ P , we have that maxx∈C d(x,xoptI )≤maxx∈P d(x,xoptI )≤ rP (optI).
Wrapping it up, it results that rP (S)≤ (2α + ϵ)rP (optI). J

It is important to highlight that the use of a coreset, together with a straightforward
application of Lemma 3.1.3, worsens the approximation factor of the algorithm by a
factor of approximately 2. However, if we restrict to the Gonzalez’s algorithm, we can
obtain a better result.

I Lemma 3.1.4. Let A be the Gonzalez’s algorithm. Let I = (P,k) be a k-center
instance. Let C be an ϵ-bounded coreset of I. Let S be the solution returned by the
execution of A on the instance I ′ = (C,k). Then, rP (S)≤ (2+ ϵ) · rP (optI).

Proof. Proceeding as in the proof of Lemma 3.1.3, we have that:

rP (S)≤ ϵ · rP (optI)+ rC(S)

Let z be the farthest point to S in C and let r = d(z,S) = rC(S). Arguing as in the proof
of Lemma 3.1.1, it results that S∪{z} are k +1 points which are at least at distance r
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from one another. By the pigeonhole principle, there must exist a point o∗ ∈ optI such
that there are at least two points x,y ∈ (S∪{z}) for which d(x,o∗) = d(x,optI) and
d(y,o∗) = d(y,optI). By triangle inequality, we conclude:

rC(S) = r ≤ d(x,y)≤ d(x,o∗)+d(o∗,y)≤ 2 · rP (optI)

J

The lemma above shows how the Gonzalez’s algorithm fits well with the definition
of ϵ-bounded coreset. The properties of the Gonzalez’s algorithm lead to a final
approximation factor which is much lower than in the general case. If we were to apply
Lemma 3.1.3, we would obtain 4 + ϵ, which is much higher than the factor 2 + ϵ of
Lemma 3.1.4.

Bounded coresets have the nice property to be composable. That is, we can partition
the input points into different subsets and compute a bounded coreset separately in
each subset: the union of those coresets is a bounded coreset of the input instance.
This property, which is formally stated in the following lemma, is crucial to develop
efficient MapReduce algorithms for the clustering problems

I Lemma 3.1.5. Let I = (P,k) be an instance of k-center. Let P1, . . . ,PL be a partition
of P . For ℓ = 1, . . . ,L, let Cℓ be an ϵ-bounded coreset of Iℓ = (Pℓ,k). Then C = ∪ℓCℓ

is a 2ϵ-bounded coreset of I.

Proof. For ℓ = 1, ...L, let τℓ be the map of Definition 3.1.2 from Pℓ to Cℓ. Now, for any
x ∈ P , let ℓ be the integer such that x ∈ Pℓ; we define τ(x) = τℓ(x). By construction,
we have that:

max
x∈P

d(x,τ(x)) = max
ℓ=1,...,L

max
x∈Pl

d(x,τℓ(x))≤ ϵ · max
ℓ=1,...,L

rPℓ
(optIℓ

)

Fix a value of ℓ. We rephrase the last part of the proof of Lemma 3.1.3 in order to
show that rPℓ

(optIℓ
)≤ 2rP (optI) for any ℓ. Let G = {xPℓ : x ∈ optI}. By optimality

of optIℓ
, we have that rPℓ

(optIℓ
)≤ rPℓ

(G). Using triangle inequality, we obtain:

rPℓ
(G) = max

x∈Pℓ

d(x,G)≤max
x∈Pℓ

[
d(x,xoptI )+d(xoptI ,G)

]
≤ 2max

x∈Pℓ

d(x,xoptI )

In the last inequality, we used the fact that d(xoptI ,G)≤ d(x,xoptI ) by construction of G.
Since Pℓ ⊆ P , we have that maxx∈Pℓ

d(x,xoptI )≤maxx∈P d(x,xoptI )≤ rP (optI). J
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3.2 k-median and k-means

Let Xw and Y be two weighted set of points. We define νXw(Y ) =∑
x∈Xw

w(x)d(x,Y )
and µXw(Y ) =∑

x∈Xw
w(x)d(x,Y )2. The values νXw(Y ) and µXw(Y ) are also referred

to as costs.
In the k-median problem (resp., k-means problem), we are given in input an instance

I = (P,k), with P ⊆M and k a positive integer. A set S ⊆ P is a solution of I if
|S| ≤ k. The objective is to find the solution S with minimum cost νP (S) (resp.,
µP (S)). Following the lines of the definitions given for k-center in the previous section,
we say that the optimal solution of an instance I of one of these two problems is optI .
Moreover, for α≥ 1, we say that S is an α-approximate solution for I if its cost is within
a factor α from the cost of optI . We will also use the notion of bi-criteria approximation
[30]. For k-median and k-means, an (α,β) bi-criteria approximation algorithm returns
a set of ≥ βk centers (β ≥ 1) such that its cost is within a factor α from the cost of the
optimal solution with k centers. In other words, in a bi-criteria approximation we are
allowed to select more centers than k in order to obtain a smaller cost. The k-median
and k-means problems are immediately generalized to the case of weighted instances
(Pw,k). In fact, all known approximation algorithms can be straightforwardly adapted
to handle weighted instances, keeping the same approximation quality.

Observe that the squared distance does not satisfy the triangle inequality. During
the analysis, we will use the following weaker bound.

I Proposition 3.2.1. Let x,y and z be three points. For every c > 0 we have that
d(x,y)2 ≤ (1+1/c)d(x,z)2 +(1+ c)d(z,y)2.

Proof. Let a,b be two real numbers. Since (a/
√

c− b ·
√

c)2 ≥ 0, we obtain that
2ab ≤ a2/c + c · b2. Hence, (a + b)2 ≤ (1 + 1/c)a2 + (1 + c)b2. The proof follows since
d(x,y)2 ≤ [d(x,z)+d(z,y)]2 by triangle inequality. J

Both the k-median and the k-means problems are NP-hard, and they are also hard
to approximate respectively within a factor 1+ 2

e [21] and 1.0013 [25]. Now, we will
briefly present the local search algorithm which can be used to obtain a constant-
approximation factor for both k-median and k-means [2, 14]. The algorithm starts
with an arbitrary set of k points of the input set P as the solution, and iteratively
tries to improve it until a local minimum is reached. The operation allowed to change
the solution at each iteration is called t-swap. A t-swap is an operation that changes t

points of the actual solution S with t distinct points of P −S. At each iteration, the
algorithm finds the t-swap that leads to the lowest cost. If no t-swap lowers the cost
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with respect to the actual solution, then the algorithm terminates. At each iteration,
the number of possible t-swaps is

(
|P |−k

t

)(
k
t

)
.

I Theorem 3.2.2. (Theorem 3.5 of [14]). The local search algorithm with t-swaps
returns:

1. (3+ 2
t )-approximate solution for k-median

2. (5+ 4
t )-approximate solution for k-means

As discussed in the previous section, a coreset is a small (weighted, in the case of
k-median and k-means) subset of the input which summarizes the whole data. The
concept of summarization can be captured with the following definition, which is
commonly adopted to describe coresets for k-means and k-median (e.g., [16, 11, 19]).

I Definition 3.2.3. A weighted set of points Cw is an ϵ-approximate coreset of an
instance I = (P,k) of k-median (resp., k-means) if for any solution S of I it holds that
|νP (S)−νCw(S)| ≤ ϵ ·νP (S) (resp., |µP (S)−µCw(S)| ≤ ϵ ·µP (S)).

Informally, the cost of any solution is approximately the same if computed with respect
to the ϵ-approximate coreset rather than with respect to the full set of points. In the
thesis, we will also make use of the following different notion of coreset (already used
in [16, 10]), which upper bounds the aggregate “proximity” of the input points from
the coreset as a function of the optimal cost.

I Definition 3.2.4. Let I = (P,k) be an instance of k-median (resp., k-means). A
set of points Cw is an ϵ-bounded coreset of I if it exists a map τ : P → Cw such
that ∑x∈P d(x,τ(x))≤ ϵ ·νP (optI) (resp., ∑x∈P d(x,τ(x))2 ≤ ϵ ·µP (optI)) and for any
x ∈ Cw, w(x) = |{y ∈ P : τ(y) = x}|. We say that Cw is weighted according to τ .

The above two kinds of coresets are related, as shown in the following two lemmas.

I Lemma 3.2.5. Let Cw be an ϵ-bounded coreset of a k-median instance I = (P,k).
Then Cw is also an ϵ-approximate coreset of I.

Proof. Let τ be the map of the definition of ϵ-bounded coreset. Let S be a solution
of I. Using triangle inequality, we can easily see that d(x,S)−d(x,τ(x))≤ d(τ(x),S)
and d(τ(x),S)≤ d(τ(x),x)+d(x,S) for any x ∈ P . Summing over all points in P , we
obtain that

νP (S)−
∑
x∈P

d(x,τ(x))≤ νCw(S)≤
∑
x∈P

d(x,τ(x))+νP (S)

To conclude the proof, we observe that ∑x∈P d(x,τ(x))≤ ϵ ·νP (optI)≤ ϵ ·νP (S). J
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I Lemma 3.2.6. Let Cw be an ϵ-bounded coreset of a k-means instance I = (P,k).
Then Cw is also an (ϵ+2

√
ϵ)-approximate coreset of I.

Proof. Let τ be the map of the definition of ϵ-bounded coreset. Let S be a solution of
I. We want to bound the quantity |µP (S)−µCw(S)|=∑

x∈P |d(x,S)2−d(τ(x),S)2|.
We rewrite |d(x,S)2− d(τ(x),S)2| as [d(x,S)+d(τ(x),S)] · |d(x,S)− d(τ(x),S)|. By
triangle inequality, we have that d(x,S) ≤ d(x,τ(x)) + d(τ(x),S) and d(τ(x),S) ≤
d(τ(x),x) + d(x,S). By combining these two inequalities, it results that |d(x,S)−
d(τ(x),S)| ≤ d(x,τ(x)). Moreover, d(x,S)+d(τ(x),S)≤ 2d(x,S)+d(x,τ(x)). Hence

|µP (S)−µCw(S)| ≤
∑
x∈P

d(x,τ(x)) [2d(x,S)+d(x,τ(x))]

≤ ϵ ·µP (S)+2
∑
x∈P

d(x,τ(x))d(x,S)

where we used the fact that ∑x∈P d(x,τ(x))2 ≤ ϵ ·µP (optI)≤ ϵ ·µP (S). We now want
to bound the sum over the products of the two distances. Arguing as in the proof of
Proposition 3.2.1, we can write:

2
∑
x∈P

d(x,τ(x))d(x,S)≤
√

ϵ ·
∑
x∈P

d(x,S)2 + 1√
ϵ

∑
x∈P

d(x,τ(x))2 ≤ 2
√

ϵ ·µP (S)

To wrap it up, it results that |µP (S)−µCw(S)| ≤ (ϵ+2
√

ϵ) ·µP (S). J

In our work, we will build coresets by working in parallel over a partition of the input
instance. The next lemma provides known results on the relations between the optimal
solution of the whole input points and the optimal solution of a subset of the input
points.

I Lemma 3.2.7. Let Cw ⊆P . Let I = (P,k) and I ′ = (Cw,k). Then: (a) νCw(optI′)≤
2νCw(optI); and (b) µCw(optI′)≤ 4µCw(optI).

Proof. We first prove point (b). Let X = {xCw : x ∈ optI}. The set X is a solution
of I ′. By optimality of optI′ , we have that µCw(optI′)≤ µCw(X). Also, by triangle
inequality, it holds that µCw(X)≤∑x∈Cw

w(x)
[
d(x,optI)+d(xoptI ,X)

]2
. We observe

that d(xoptI ,X)≤ d(x,optI) by definition of X. Thus, we obtain that µCw(optI′)≤
4µCw(optI). The proof of (a) follows the same lines with a factor 2 less since we do
not square. J

As for k-center, bounded coresets for the k-median and k-means problems are
composable, and we will extensively use this property in the development of efficient
MapReduce algorithms for those clustering problems.
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I Lemma 3.2.8. Let I = (P,k) be an instance of k-median (resp., k-means). Let
P1, . . . ,PL be a partition of P . For ℓ = 1, . . . ,L, let Cw,ℓ be an ϵ-bounded coreset of
Iℓ = (Pℓ,k). Then Cw = ∪ℓCw,ℓ is a 2ϵ-bounded coreset (resp., a 4ϵ-bounded coreset)
of I.

Proof. We prove the lemma for k-median. The proof for k-means is similar. For
ℓ = 1, . . . ,L, let τℓ be the map from Pℓ to Cw,ℓ of Definition 3.2.4. Now, for any x ∈ P ,
let ℓ be the integer such that x ∈ Pℓ; we define τ(x) = τℓ(x).

∑
x∈P

d(x,τ(x))≤
L∑

ℓ=1

∑
x∈Pℓ

d(x,τℓ(x))≤ ϵ
L∑

ℓ=1
νPℓ

(optIℓ
)≤ 2ϵ ·νP (optI)

In the last inequality, we used the fact that νPℓ
(optIℓ

)≤ 2νPℓ
(optI) from Lemma 3.2.7.

J

We will also need the following additional characterization of a representative subset
of the input, originally introduced in [16].

I Definition 3.2.9. Let I = (P,k) be an instance of k-median (resp., k-means). A set
C is said to be an ϵ-centroid set of I if there exists a subset X ⊆ C, |X| ≤ k, such that
νP (X)≤ (1+ ϵ)νP (optI) (resp., µP (X)≤ (1+ ϵ)µP (optI)).

Simply put, a centroid set contains a solution which is almost as good as optI when
the cost is calculated on the whole input P .

3.3 Coreset building primitive
Our coreset constructions are based on a suitable point selection algorithm called
CoverWithBalls, somewhat inspired by the exponential grid construction used in [16]
to build ϵ-approximate coresets for k-median and k-means in Rd for the continuous
case. For ease of explaination, we will give the intuition of the algorithm restricting our
focus on k-median. However, the same algorithm will be a fundamental building block
of all our final MapReduce clustering algorithms. Suppose that we want to build an
ϵ-bounded coreset of a k-median instance I = (P,k) and that a β-approximate solution
T for I is available. A simple approach would be to find a set Cw such that for any
x in P there exists a point τ(x) ∈ C for which d(x,τ(x)) ≤ (ϵ/2β) · d(x,T ). Indeed,
if Cw is weighted according to τ , it can be seen that Cw is an ϵ-bounded coreset of
I. The set Cw can be constructed greedily by iteratively selecting an arbitrary point
p ∈ P , adding it to Cw, and discarding all points q ∈ P (including p) for which the
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aforementioned property holds with τ(q) = p. The construction ends when all points
of P are discarded. However, note that the points of P which are already very close
to T , say at a distance ≤ R for a suitable tolerance threshold R, do not contribute
much to νP (T ), and so to the sum ∑

x∈P d(x,τ(x)). For these points, we can relax the
constraint and discard them from P as soon their distance to Cw becomes at most
(ϵ/2β) ·R. This relaxation is crucial to bound the size of the returned set as a function
of the doubling dimension of the space. Algorithm CoverWithBalls implements the

Algorithm 3: CoverWithBalls(P,T,R,ϵ,β)
1 Cw←∅
2 while P ̸= ∅ do
3 p←− arbitrarily selected point in P
4 Cw←− Cw ∪{p},w(p)←− 0
5 foreach q ∈ P do
6 if d(p,q)≤ ϵ/(2β)max{R,d(q,T )} then
7 remove q from P
8 w(p)←− w(p)+1 /* (i.e. τ(q) = p, see Lemma 3.3.1) */
9 end

10 end
11 end
12 return Cw

coreset construction discussed above. The algorithm receives in input two sets of points,
P and T , and three positive real parameters R, ϵ, and β, with ϵ < 1 and β ≥ 1 and
outputs a weighted set Cw ⊆ P which satisfies the property stated in the following
lemma.

I Lemma 3.3.1. Let Cw be the output of CoverWithBalls(P,T,R,ϵ,β). Cw is
weighted according to a map τ : P → Cw such that, for any x ∈ P , d(x,τ(x)) ≤
ϵ/(2β)max{R,d(x,T )}.

Proof. For any x ∈ P , we define τ(x) as the point in Cw which caused the removal of x

from P during the execution of the algorithm. The statement immediately follows. J

While in principle the size of Cw can be arbitrarily close to |P |, the next theorem
shows that this is not the case for low dimensional spaces, as a consequence of the fact
that there cannot be too many points which are all far from one another. We first
need a technical lemma. A set of points X is said to be an r-clique if for any x,y ∈X,
x ̸= y, it holds that d(x,y) > r. We have:
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I Lemma 3.3.2. Let 0 < ϵ < 1. Let M be a metric space with doubling dimension
dd(M). Let X ⊆M be an ϵ · r-clique and assume that X can be covered by a ball of
radius r centered at a point of M. Then, |X| ≤ (4/ϵ)dd(M).

Proof. Applying Lemma 2.2.3, we observe that the ball of radius r centered at x

which covers X can be covered by 2j·dd(M) balls of radius 2−j · r, where j is any non
negative integer. Let i be the least integer for which 2−i · r ≤ ϵ/2 · r holds. Any of
the 2i·dd(M) balls with radius 2−i · r can contain at most one point of X, since X

is an ϵ · r-clique. Thus |X| ≤ 2i·dd(M). As i = 1 + ⌈log2 (1/ϵ)⌉, we finally obtain that
|X| ≤ (4/ϵ)dd(M). J

I Theorem 3.3.3. Let Cw be the set returned by the execution of
CoverWithBalls(P,T,R,ϵ,β). Suppose that P ∪ T ⊆ M, and that M is a
metric space with doubling dimension dd(M). Let c be a real value such that, for any
x ∈ P , c ·R≥ d(x,T ). Then,

|Cw| ≤ |T | ·
[
(8β/ϵ)dd(M) + ⌈log2 c⌉(16β/ϵ)dd(M)

]
Proof. Let T = {t1, . . . , t|T |} be the set in input to the algorithm. For any i, 1≤ i≤ |T |,
let Pi = {x ∈ P : xT = ti} and Bi = {x ∈ Pi : d(x,T ) ≤ R}. In addition, for any
integer value j ≥ 0 and for any feasible value of i, we define Di,j = {x ∈ Pi : 2j ·R <

d(x,T )≤ 2j+1 ·R}. We observe that for any j ≥ ⌈log2 c⌉, the sets Di,j are empty, since
d(x,T )≤ c ·R. Together, the sets Bi and Di,j are a partition of Pi.

For any i, let Ci = Cw ∩Bi. We now want to show that the set Ci is a ϵ/(2β) ·R-
clique. Let c1, c2 be any two different points in Ci and suppose, without loss of
generality, that c1 was added first to Cw. Since c2 was not removed from P , this
means that d(c1, c2) > ϵ/(2β) ·max{d(c2,T ),R} ≥ ϵ/(2β)R, where we used the fact that
d(c2,T ) ≤ R since c2 belongs to Bi. Also, the set Ci ⊆ Bi is contained in a ball of
radius R centered in ti, thus we can apply Lemma 3.3.2 and bound its size, obtaining
that |Ci| ≤ (8β/ϵ)dd(M).

For any i and j, let Ci,j = Cw ∩Di,j . We can use a similar strategy to bound the
size of those sets. We first show that the sets Ci,j are ϵ

4β · 2
j+1R-cliques. Let c1, c2

be any two different points in Ci,j and suppose, without loss of generality, that c1

was added first to Cw. Since c2 was not removed from P , this means that d(c1, c2) >

ϵ/(2β) ·max{d(c2,T ),R} ≥ ϵ/(4β)2j+1R, where we used the fact that d(c2,T ) > 2j ·R
since c2 belongs to Di,j . Also, the set Ci,j ⊆Di,j is contained in a ball of radius 2j+1R

centered in ti, thus we can apply Lemma 3.3.2 and obtain that |Ci,j | ≤ (16β/ϵ)dd(M).
Since the sets Ci and Ci,j partition Cw, we can bound the size of Cw as the sum of the
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bounds of the size of those sets. Hence:

|Cw| ≤
|T |∑
i=1
|Ci|+

|T |∑
i=1

⌈log2 c⌉−1∑
j=0

|Ci,j | ≤ |T | ·
[
(8β/ϵ)dd(M) + ⌈log2 c⌉(16β/ϵ)dd(M)

]

J





Chapter 4

MapReduce algorithms for
clustering via coreset

In this chapter, we present the coreset-based MapReduce algorithms for the k-center,
k-median and k-means clustering problems. All the algorithms use the primitive of
Section 3.3 as a fundamental building block. The chapter starts with the k-center
problem, which has the simplest coreset construction (Section 4.1) and final MapReduce
algorithm (Section 4.2). In Section 4.3, a similar construction is applied for k-median,
however it does not lead to an approximation factor which can be made arbitrarily
close to the best known sequential algorithm for the problem. In order to achieve this
result, we improve the coreset construction in Section 4.4, and use an analogous method
for k-means in Section 4.5. Finally, in Section 4.6, we present the final MapReduce
algorithms for k-median and k-means.

4.1 Coreset construction for k-center
In this section we present a 1-round MapReduce algorithm that builds a coreset C ⊆ P

of a k-center instance I = (P,k). The algorithm is parametrized by a value ϵ ∈ (0,1),
which represents a tradeoff between coreset size and accuracy.

This MapReduce algorithm operates as follows. The set P is partitioned into L

equally-sized subsets P1, ...PL. In parallel, on each k-center instance Iℓ = (Pℓ,k), with
ℓ = 1, ...,L, these computations are performed:

1. Tℓ←− Gonzalez(P,k)
2. Rℓ←− rPℓ

(Tℓ)
3. Cℓ←− CoverWithBalls(Pℓ,Tℓ,Rℓ, ϵ,2)

The set C = ∪L
ℓ=1Cℓ is the output of the algorithm.
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In Step 3, the output of the algorithm CoverWithBalls should be a weighted set.
However, for the k-center problem, the weights are not needed and can be dropped.
As the Gonzalez’s algorithm requires only linear space in the input, the entire coreset
construction can be implemented in a single MapReduce round using O(|P |/L) local
memory and O(|P |) aggregate memory.

I Lemma 4.1.1. For ℓ = 1, ...L, the set Cℓ is an ϵ/2-bounded coreset of Iℓ.

Proof. Fix a value of ℓ. By Lemma 3.3.1, there exists a map τℓ : Pℓ→ Cℓ, such that
for any x ∈ Pℓ, it holds that d(x,τ(x))≤ (ϵ/4)max{Rℓ,d(x,Tℓ)}. For our choice of Rℓ,
it holds that max{Rℓ,d(x,Tℓ)}= Rℓ. Hence, we have that:

max
x∈Pℓ

d(x,τℓ(x))≤ ϵ

4Rℓ ≤
ϵ

2rPℓ
(optIℓ

)

In the last inequality, we used the fact that Rℓ = rPℓ
(Tℓ), and that Tℓ is a 2-approximate

solution of Iℓ (Lemma 3.1.1). J

As noted in the proof of the previous lemma, the algorithm CoverWithBalls can
be simplified in this case, as for any ℓ, and x ∈ Pℓ, it holds that max{Rℓ,d(x,Tℓ)}= Rℓ

(line 6 of the pseudocode of CoverWithBalls).
The next lemma is immediate consequence of Lemma 4.1.1 and Lemma 3.1.5.

I Lemma 4.1.2. Let I = (P,k) be a k-center instance. The set C returned by the
above MapReduce algorithm is an ϵ-bounded coreset of I.

It is possible to bound the size of C in function of the doubling dimension dd(P ).

I Lemma 4.1.3. Let I = (P,k) be a k-center instance. The set C returned by the
above MapReduce algorithm has size |C|= O

(
L ·k · (16/ϵ)dd(P )

)
.

Proof. Fix a value of ℓ. For any x ∈ Pℓ, we have that 1 ·Rℓ ≥ d(x,Tℓ), and Tℓ∪Pℓ ⊆ P .
We can invoke Theorem 3.3.3 with c = 1 and M= P , thus |Cℓ|= O

(
k · (16/ϵ)dd(P )

)
.

As C = ∪L
ℓ=1Cℓ, we prove the statement with a union bound. J

4.2 MapReduce algorithm for k-center
In this section, we present a 2-rounds MapReduce algorithm which computes a (2 + ϵ)-
approximate solution of an instance I = (P,k). The algorithm operates as follows: in
the first round we compute a coreset C by using the algorithm described in Section
4.1, and in the second round we use the Gonzalez’s algorithm on the coreset C to
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obtain the final solution. By setting L =
√
|P |/k, and combining Lemma 4.1.3 and

Lemma 3.1.4, we obtain the next theorem.

I Theorem 4.2.1. Let I = (P,k) be an instance of k-center. For any ϵ ∈ (0,1), the
2-round MapReduce algorithm described above computes a (2 + ϵ)-approximate solution
of I using local space O(

√
|P |k(16/ϵ)dd(P )).

In principle, it is possible to use another α-approximation algorithm for the k-center
in problem in the second round of the algorithm. However, in this case we would
need to use Lemma 3.1.3, and the the final solution would be a (2α + ϵ)-approximate
solution. For this reason, it is advantageous to use the Gonzalez’s algorithm.

4.3 A first approach to coreset construction for k-
median

In this section we present a 1-round MapReduce algorithm that builds a weighted coreset
Cw ⊆ P of a k-median instance I = (P,k). The algorithm is parametrized by a value
ϵ ∈ (0,1), which represents a tradeoff between coreset size and accuracy. The returned
coreset has the following property. Let I ′ = (Cw,k). If we run an α-approximation
algorithm on I ′, then the returned solution is a (2α +O(ϵ))-approximate solution of
I. Building on this construction, in the next section we will obtain a better coreset
which allows us to reduce the final approximation factor to the desired α + O(ϵ) value.
The coreset construction algorithm operates as follows. The set P is partitioned into
L equally-sized subsets P1, . . . ,PL. In parallel, on each k-median instance Iℓ = (Pℓ,k),
with ℓ = 1, . . . ,L, the following operations are performed:

1. Compute a set Tℓ of m≥ k points such that νPℓ
(Tℓ)≤ β ·νPℓ

(optIℓ
).

2. Rℓ←− νPℓ
(Tℓ)/|Pℓ|.

3. Cw,ℓ←− CoverWithBalls(Pℓ,Tℓ,Rℓ, ϵ,β).
The set Cw = ∪L

ℓ=1Cw,ℓ is the output of the algorithm.
In Step 1, the set Tℓ can be computed through a sequential (possibly bi-criteria)

approximation algorithm for m-median, with a suitable m≥ k, to yield a small value
of β. If we assume that such an algorithm requires space linear in Pℓ, the entire
coreset costruction can be implemented in a single MapReduce round, using O(|P |/L)
local memory and O(|P |) aggregate memory. For example, using one of the known
linear-space, constant-approximation algorithms (e.g., local search [2]), we can get
β = O(1) with m = k.
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I Lemma 4.3.1. For ℓ = 1, . . . ,L, Cw,ℓ is an ϵ-bounded coreset of the k-median instance
Iℓ.

Proof. Fix a value of ℓ. Let τℓ be the map between the points in Cw,ℓ and the points
in Pℓ of Lemma 3.3.1. The set Cw,ℓ is weighted according to τℓ. Also, it holds that:

∑
x∈Pℓ

d(x,τℓ(x))≤ ϵ

2β

∑
x∈Pℓ

(Rℓ +d(x,Tℓ))≤
ϵ

2β

(
Rℓ · |Pℓ|+νPℓ

(Tℓ)
)
≤ ϵ ·νPℓ

(optIℓ
)

J

By combining Lemma 4.3.1 and Lemma 3.2.8, the next lemma immediately follows.

I Lemma 4.3.2. Let I = (P,k) be a k-median instance. The set Cw returned by the
above MapReduce algorithm is a 2ϵ-bounded coreset of I.

It is possible to bound the size of Cw as a function of the doubling dimension dd(P ).
For any ℓ = 1, . . . ,L and x ∈ Pℓ, it holds that Rℓ · |Pℓ|= νPℓ

(Tℓ)≥ d(x,Tℓ), thus we can
bound the size of Cw,ℓ by using Theorem 3.3.3 (with c = |P | ≥ |Pℓ| and M= P ) Since
Cw is the union of those sets, this argument proves the following lemma.

I Lemma 4.3.3. Let I = (P,k) be a k-median instance. Then, the set Cw returned by
the above MapReduce algorithm has size |Cw|= O

(
L ·m · (16β/ϵ)dd(P ) log |P |

)
Let S be an α-approximate solution of I ′ = (Cw,k), with constant α. We will

now show that νP (S)/νP (optI) = 2α +O(ϵ). Let τ be the map of from P to Cw (see
Lemma 3.3.1). By triangle inequality, νP (S)≤∑x∈P d(x,τ(x))+νCw(S). We have that∑

x∈P d(x,τ(x))≤ 2ϵ ·νP (optI) since, by Lemma 4.3.2, Cw is a 2ϵ-bounded coreset. By
the fact that S is an α-approximate solution of I ′ and by Lemma 3.2.7, we have that
νCw(S)≤ α ·νCw(optI′)≤ 2α ·νCw(optI). By Lemma 3.2.5, Cw is also a 2ϵ-approximate
coreset of I, thus νCw(optI)≤ (1+2ϵ)νP (optI). Putting it all together, we have that
νP (S)/νP (optI)≤ 2α(1+2ϵ)+2ϵ = 2α +O(ϵ). We observe that the factor 2 is due to
the inequality which relates optI and optI′ , namely νCw(optI′)≤ 2νCw(optI). In the
next section, we will show how to get rid of this factor.

Application to the continuous case The same algorithm of this section can
also be used to build a O(ϵ)-bounded (Definition 3.2.4) coreset in the continuous
scenario where centers are not required to belong to P . It is easy to verify that the
construction presented in this section also works in the continuous case, with the
final approximation factor improving to (α +O(ϵ)). Indeed, we can use the stronger
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inequality νCw(optI′) ≤ νCw(optI), as optI is also a solution of I ′, which allows us
to avoid the factor 2 in front of α. While the same approximation guarantee has
already been achieved in the literature using more space-efficient but randomized
coreset constructions [6, 4], as mentioned in the introduction, this result provides
evidence of the general applicability of our approach.

4.4 Coreset construction for k-median

In this section, we present a 1-round MapReduce algorithm which computes a weighted
subset which is both an O(ϵ)-bounded coreset and an O(ϵ)-centroid set of an input
instance I = (P,k) of k-median. The algorithm is similar to the one of the previous
section but applies CoverWithBalls twice in every subset of the partition. This idea
is inspired by the strategy presented in [16] for Rd, where a double exponential grid
construction is used to ensure that the returned subset is a centroid set. Specifically,
our MapReduce algorithm partitions P into L equally-sized subsets P1, . . . ,PL. In
parallel, on each k-median instance Iℓ = (Pℓ,k), with ℓ = 1, . . . ,L, the following steps
are performed:

1. Compute a set Tℓ of m points such that νPℓ
(Tℓ)≤ β ·νPℓ

(optIℓ
).

2. Rℓ←− νPℓ
(Tℓ)/|Pℓ|.

3. Cw,ℓ←− CoverWithBalls(Pℓ,Tℓ,Rℓ, ϵ,β).
4. Ew,ℓ←− CoverWithBalls(Pℓ,Cw,ℓ,Rℓ, ϵ,β).

The set Ew = ∪L
ℓ=1Ew,ℓ is the output of the algorithm. The computation of Tℓ can be

accomplished as described in the previous section. The local memory of the algorithm
is O(|P |/L) and the aggregate memory is O(|P |).

The following two lemmas characterize the properties and the size of Ew.

I Lemma 4.4.1. Let I = (P,k) be a k-median instance. Then, the set Ew returned by
the above MapReduce algorithm is both a 2ϵ-bounded coreset and a 7ϵ-centroid set of I.

Proof. The first three steps of the algorithm are in common with the algorithm of
Section 4.4. By Lemma 4.3.1, for ℓ = 1, ...,L, the sets Cw,ℓ are ϵ-bounded coresets of
Iℓ. Let Cw = ∪L

ℓ=1Cw,ℓ. By Lemma 3.2.8, the set Cw is a 2ϵ-bounded coreset of I,
and also, by Lemma 3.2.5, a 2ϵ-approximate coreset. Let τ(x) and τℓ(x) be the maps
respectively from P to Cw, and from Pℓ to Cw,ℓ, as specified in Definition 3.2.4. It holds
that νP (Cw)≤∑x∈P d(x,τ(x))≤ 2ϵ ·νP (optI) and that νPℓ

(Cw,ℓ)≤
∑

x∈Pℓ
d(x,τℓ(x))≤

ϵ ·νPℓ
(optIℓ

). Let φℓ be the map of Lemma 3.3.1 from the points in Pℓ to the points in
Ew,ℓ. By reasoning as in the proof of Lemma 4.3.1, we obtain that ∑x∈Pℓ

d(x,φℓ(x))≤
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ϵ/(2β)
[
|Pℓ| ·Rℓ +νPℓ

(Cw,ℓ)
]
. Since β ≥ 1 and |Pℓ| ·Rℓ = νPℓ

(Tℓ) ≤ β · νPℓ
(optIℓ

), we
conclude that ∑x∈Pℓ

d(x,φℓ(x))≤ ϵ ·νPℓ
(optIℓ

). Therefore, Ew,ℓ is a ϵ-bounded coreset
of Iℓ and, by Lemma 3.2.8, Ew is a 2ϵ-bounded coreset.

We now show that Ew is a 7ϵ-centroid set of I. Let X = {xEw : x ∈ optI}. We will
prove that νP (X)≤ (1+7ϵ)νP (optI). By triangle inequality, we obtain that:

νP (X) =
∑
x∈P

d(x,X)≤
∑
x∈P

d(x,τ(x))+
∑
x∈P

d(τ(x),X)

The first term of the above sum can be bounded as ∑x∈P d(x,τ(x)) ≤ 2ϵ · νP (optI),
since Cw is a 2ϵ-bounded coreset. Also, we notice that the second term of the sum can
be rewritten as ∑x∈P d(τ(x),X) =∑

x∈Cw
w(x)d(x,X), due to the relation between τ

and w. By triangle inequality, we obtain that:

∑
x∈Cw

w(x)d(x,X)≤
∑

x∈Cw

w(x)d(x,xoptI )+
∑

x∈Cw

w(x)d(xoptI ,X)

Since Cw is a 2ϵ-approximate coreset, we can use the bound ∑x∈Cw
w(x)d(x,xoptI ) =

νCw(optI) ≤ (1 + 2ϵ)νP (optI). Fix a point x ∈ Cw and let ℓ be the index such that
xoptI ∈ Pℓ. By definition of X, we have that d(xoptI ,X)≤ d(xoptI ,φℓ(xoptI )), and by
definition of φℓ, d(xoptI ,φℓ(xoptI ))≤ ϵ/(2β) ·

[
Rℓ +d(xoptI ,Cw,ℓ)

]
. We have:

∑
x∈Cw

w(x)d(xoptI ,X)≤ ϵ

2β

L∑
ℓ=1

∑
x∈Cw,ℓ

w(x)
[
Rℓ +d(xoptI ,Cw,ℓ)

]

≤ ϵ

2β

 L∑
ℓ=1
|Pℓ| ·Rℓ +

L∑
ℓ=1

∑
x∈Cw,ℓ

w(x)d(x,optI)


In the last inequality we used the simple observation that for any x ∈ Cw,ℓ,
d(xoptI ,Cw,ℓ) ≤ d(x,xoptI ) = d(x,optI). As argued previously in the proof, |Pℓ| ·
Rℓ ≤ νPℓ

(Tℓ) ≤ β · νPℓ
(optIℓ

) ≤ 2β · νPℓ
(optI), where the last inequality follows from

Lemma 3.2.7. Also, ∑x∈Cw,ℓ
w(x)d(x,optI) = νCw,ℓ

(optI). By using the fact that∑L
ℓ=1 νPℓ

(optI) = νP (optI), and that ∑L
ℓ=1 νCw,ℓ

(optI) = νCw(optI)≤ (1+2ϵ)νP (optI),
we finally obtain:

∑
x∈Cw

w(x)d(xoptI ,X)≤ ϵ

2β
(2β +1+2ϵ)νP (optI)≤ 3ϵ ·νP (optI)

We conclude that νP (X)≤ (2ϵ+1+2ϵ+3ϵ)νP (optI) = (1+7ϵ) ·νP (optI) J
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I Lemma 4.4.2. Let I = (P,k) be a k-median instance. Let Ew be the
set returned by the above MapReduce algorithm with input I. Then |Ew| =
O
(
L ·m · (16β/ϵ)2dd(P ) log2 |P |

)
.

Proof. From the previous section, we know that |Cw,ℓ|= O
(
m · (16β/ϵ)dd(P ) log |P |

)
.

Since Cw,ℓ is an ϵ-bounded coreset of Iℓ, for every x ∈ Pℓ we have that ϵ|Pℓ| ·Rℓ =
ϵ · νPℓ

(Tℓ) ≥ ϵ · νPℓ
(optI) ≥ νPℓ

(Cw,ℓ) ≥ d(x,Cw,ℓ). The lemma follows by applying
Theorem 3.3.3 to bound the sizes of the sets Ew,ℓ. J

We are now ready to state the main result of this section.

I Theorem 4.4.3. Let I = (P,k) be a k-median instance and let Ew be the set returned
by the above MapReduce algorithm for a fixed ϵ ∈ (0,1). Let A be an α-approximation
algorithm for the k-median problem, with constant α. If S is the solution returned by
A with input I ′ = (Ew,k), then νP (S)/νP (optI)≤ α +O(ϵ).

Proof. Let τ be the map from P to Ew of Definition 3.2.4. By triangle inequality, it
results that νP (S) ≤∑x∈P d(x,τ(x)) + νEw(S). The set Ew is a 2ϵ-bounded coreset
of I, so we have that ∑x∈P d(x,τ(x))≤ 2ϵ ·νP (optI). Since A is an α-approximation
algorithm, we have that νEw(S) ≤ α · νEw(optI′). As Ew is also a 7ϵ-centroid set,
there exists a solution X ⊆ Ew such that νP (X)≤ (1+7ϵ)νP (optI). We obtain that
νEw(optI′) ≤ νEw(X) ≤ (1 + 2ϵ)(1 + 7ϵ)νP (optI). In the last inequality, we used the
fact that Ew is a 2ϵ-approximate coreset of I due to Lemma 3.2.5. To wrap it up,
νP (X)/νP (optI)≤ α(1+7ϵ)(1+2ϵ)+2ϵ = α +O(ϵ). J

4.5 Coreset construction for k-means
In this section, we present a 1-round MapReduce algorithm to compute a weighted
subset Ew which is both an O(ϵ2)-approximate coreset and an O(ϵ)-centroid set of an
instance I of k-means and then show that an α-approximate solution of I ′ = (Ew,k)
is an (α +O(ϵ))-approximate solution of I. The algorithm is an adaptation of the one
devised in the previous section for k-median, with suitable tailoring of the parameters
involved to account for the presence of squared distances in the objective function
of k-means. As before, the input set P is partitioned into L subsets P1, . . . ,PL and
then, in parallel for each k-means instance Iℓ = (Pℓ,k), the following operations are
performed:

1. Compute a set Tℓ of m points such that µPℓ
(Tℓ)≤ β ·µPℓ

(optIℓ
).

2. Rℓ←−
√

µPℓ
(Tℓ)/|Pℓ|.
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3. Cw,ℓ←− CoverWithBalls(Pℓ,Tℓ,Rℓ,
√

2ϵ,
√

β).
4. Ew,ℓ←− CoverWithBalls(Pℓ,Cw,ℓ,Rℓ,

√
2ϵ,
√

β).
The set Ew = ∪L

ℓ=1Ew,ℓ is the output of the algorithm. As for k-median, the set Tℓ can
be computed through a sequential (possibly bi-criteria) approximation algorithm for
m-means, with a suitable m≥ k, to yield a small value of β. If the computation of Tℓ

requires linear space in |Pℓ| (e.g., using the local search algorithm [14, 22]), then the
MapReduce algorithm uses O(|P |/L) local memory and O(|P |) aggregate memory. The
analysis follows the lines of the one carried out for the k-median coreset construction.

The following lemma establishes the properties of each Cw,ℓ.

I Lemma 4.5.1. For ℓ = 1, . . . ,L, Cw,ℓ is an ϵ2-bounded coreset of the k-means instance
Iℓ.

Proof. Fix a value of ℓ. Let τℓ be the map between the points in Cw,ℓ and the points
in Pℓ of Lemma 3.3.1. The set Cw,ℓ is weighted according to τℓ. Also, it holds that:

∑
x∈Pℓ

d(x,τℓ(x))2 ≤ ϵ2

2β

∑
x∈Pℓ

[
R2

ℓ +d(x,Tℓ)2
]
≤ ϵ2

2β

[
R2

ℓ · |Pℓ|+µPℓ
(Tℓ)

]
≤ ϵ2 ·µPℓ

(optIℓ
)

J

Next, in the following two lemmas, we characterize the properties and the size of
Ew.

I Lemma 4.5.2. Let I = (P,k) be a k-means instance and assume that ϵ is a positive
value such that ϵ + ϵ2 ≤ 1/8. Then, the set Ew returned by the above MapReduce
algorithm is both a 4ϵ2-bounded coreset and a 27ϵ-centroid set of I.

Proof. By Lemma 4.5.1, Cw,ℓ is an ϵ2-bounded coreset of Pℓ, thus µPℓ
(Cw,ℓ) ≤ ϵ2 ·

µPℓ
(optIℓ

). Let φℓ be the map of Lemma 3.3.1 from the points in Pℓ to the points in Ew,ℓ.
We have that ∑x∈Pℓ

d(x,φℓ(x))2 ≤ ϵ2/(2β)
(
|Pℓ| ·R2

ℓ +µPℓ
(Cw,ℓ)

)
. Using the fact that

|Pℓ| ·R2
ℓ = µPℓ

(Tℓ)≤ β ·µPℓ
(optIℓ

), we conclude that ∑x∈Pℓ
d(x,φℓ(x))2≤ ϵ2 ·µPℓ

(optIℓ
).

Therefore, Ew,ℓ is an ϵ2-bounded coreset of Iℓ and, by Lemma 3.2.8, Ew is a 4ϵ2-bounded
coreset of I.

We now show that Ew is a centroid set of I. Let X = {xEw : x ∈ optI} and let
Cw = ∪ℓCw,ℓ. By Lemma 4.5.1 and Lemma 3.2.8, Cw is a 4ϵ2-bounded coreset. Also
by Lemma 3.2.6, Cw is a γ-approximate coreset of I, with γ = 4(ϵ+ ϵ2)≤ 1/2. Hence,
µP (X)≤ 1/(1−γ) ·µCw(X). By Proposition 3.2.1, we have:

µCw(X) =
∑

x∈Cw

w(x)d(x,X)2 ≤ (1+ ϵ)µCw(optI)+(1+1/ϵ)
∑

x∈Cw

w(x)d(xoptI ,X)2
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Since Cw is a γ-approximate coreset, it holds that µCw(optI)≤ (1+γ)µP (optI). By
reasoning as in the proof of Lemma 4.4.1, we have that ∑x∈Cw

w(x)d(xoptI ,X)2 ≤
(5ϵ2/2+γϵ2/2)µP (optI). Putting it all together, we conclude:

µP (X)/µP (optI)≤
(
1+γ +5ϵ2/2+γϵ2/2+7ϵ/2+3γϵ/2

)
/(1−γ).

Since γ ≤ 1/2, we have that 1/(1− γ) ≤ 1 + 2γ. By using the constraint on ϵ and
the definition of γ, after some tedious computations, we obtain µP (X)/µP (optI) ≤
1+27ϵ. J

I Lemma 4.5.3. Let I = (P,k) be a k-means instance. Let Ew be the
set returned by the above MapReduce algorithm with input I. Then, |Ew| =
O
(
L ·m · (8

√
2β/ϵ)2dd(P ) log2 |P |

)
Proof. For any ℓ = 1, . . . ,L and x ∈ Pℓ, it holds that Rℓ ·

√
|Pℓ|=

√
µPℓ

(Tℓ)≥ d(x,Tℓ).
By using Theorem 3.3.3, we obtain that |Cw,ℓ|= O

(
m · (8

√
2β/ϵ)dd(P ) log |P |

)
. Also,

for any x∈ Pℓ we have that
√

ϵ|Pℓ| ·Rℓ =
√

ϵ ·µPℓ
(Tℓ)≥

√
ϵ ·µPℓ

(optIℓ
)≥

√
µPℓ

(Cw,ℓ)≥
d(x,Cw,ℓ). Thus, the lemma follows by applying Theorem 3.3.3 to bound the sizes of
the sets Ew,ℓ. J

We are now ready to state the main result of this section.

I Theorem 4.5.4. Let I = (P,k) be a k-means instance and let Ew be the set returned
by the above MapReduce algorithm for a fixed positive ϵ such that ϵ+ ϵ2 ≤ 1/8. Let A
be an α-approximation algorithm for the k-means problem, with constant α. If S is the
solution returned by A with input I ′ = (Ew,k), then µP (S)/µP (optI)≤ α +O(ϵ).

Proof. By Lemma 4.5.2 and Lemma 3.2.6, Ew is a (4ϵ2 +4ϵ)-approximate coreset of I.
Therefore, µP (S)≤ (1/(1−4ϵ−4ϵ2)) ·µEw(S). SinceA is an α-approximation algorithm,
µEw(S)≤ α ·µEw(optI′). Also, Ew is a 27ϵ-centroid set, thus there exists a solution
X ⊆Ew such that µP (X)≤ (1+27ϵ) ·µP (optI). We have that µEw(optI′)≤ µEw(X)≤
(1+4ϵ+4ϵ2) ·µP (X)≤ (1+4ϵ+4ϵ2)(1+27ϵ) ·µP (optI), where the second inequality
follows again from the fact that Ew is a (4ϵ2 +4ϵ)-approximate coreset of I. Because
of the constraints on ϵ, we have that 1/(1−4ϵ−4ϵ2)≤ 1+8ϵ+8ϵ2. Therefore, it finally
results that µP (S)/µP (optI)≤ α · (1+8ϵ+8ϵ2)(1+4ϵ+4ϵ2)(1+27ϵ) = α +O(ϵ). J

As noted in Section 4.3, a simpler version of this algorithm can be employed if
we restrict our attention to the continuous case. Indeed, if we limit the algorithm
to the first three steps, and output the set Cw = ∪ℓCw,ℓ, it is easy to show that an
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α-approximate algorithm executed on the coreset Cw returns a (α+O(ϵ))-approximate
solution.

4.6 MapReduce algorithms for k-median and k-
means

Let I = (P,k) be a k-median (resp., k-means) instance. We can compute an approximate
solution of I in two MapReduce rounds: in the first round, a weighted coreset Ew is
computed using the algorithm described in Section 4.4 (resp., Section 4.5), while in
the second round the final solution is computed by running a sequential approximation
algorithm for the weighted variant of the problem on Ew. Suppose that in the first
round we use a linear-space algorithm to compute the sets Tℓ of size m = O(k), and cost
at most a factor β times the optimal cost, and that in the second round we run a linear-
space α-approximation algorithm on Ew, with constant α. Setting L =

√
|P |/k we

obtain the following theorem as an immediate consequence of Lemmas 4.4.2 and 4.5.3,
and Theorems 4.4.3 and 4.5.4.

I Theorem 4.6.1. Let I = (P,k) be an instance of k-median (resp., k-means). For
any ϵ ∈ (0,1) (with ϵ + ϵ2 ≤ 1/8 for k-means) the 2-round MapReduce algorithm
described above computes an (α + O(ϵ))-approximate solution of I using local space
O
(√
|P |k(16β/ϵ)2dd(P ) log2 |P |

)
(resp., O

(√
|P |k(8

√
2β/ϵ)2dd(P ) log2 |P |

)
).

Note that for a wide range of the relevant parameters, the local space of the MapReduce
algorithms is substantially sublinear in the input size. As concrete instantiations
of the above result, both the Tℓ’s and the final solution may be obtained through
the local search algorithm, which features approximations α = 3+2/t for k-median,
and α = 5 + 4/t for k-means, where t is the number of simultaneous swaps allowed
(see Theorem 3.2.2). With this choice, the result of the above theorem holds with
β = α = O(1). Alternatively, for the Tℓ’s we could use k-means++ [5] as a bi-criteria
approximation algorithm (e.g, see [33]), which yields a smaller β, at the expense of a
slight, yet constant, increase in the size m of the Tℓ’s. For larger dd(P ), this might be
a better choice as the coreset size (hence the local memory) is linear in m and β2dd(P )

(resp., βdd(P )). Moreover, bi-criteria approximations are usually faster to compute than
actual solutions.
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Conclusion

We presented deterministic, distributed coreset constructions that can be used in
conjunction with sequential approximation algorithms for k-median and k-means in
general metric spaces to obtain the first space-efficient, 2-round MapReduce algorithms
for the two problems, which are almost as accurate as their sequential counterparts.
The constructions for the two problems are based on a uniform strategy, and crucially
leverage the properties of spaces of bounded doubling dimension, specifically those
related to ball coverings of sets of points. The same construction strategy can be applied
to obtain a 2-round MapReduce algorithm for the k-center problem, whose performance
is on par with state-of-the-art approaches. One attractive feature of our constructions
is their simplicity, which makes them amenable to fast practical implementations.
Moreover, we designed a new sequential algorithm to estimate the doubling dimension
of an input point set, slightly improving existing approaches. However, this estimation
still has high time complexity, and in practice it is unfeasible on large datasets. To
address this problem, we presented a novel MapReduce algorithm, which sacrifices the
quality of the approximation in order to parallelize the computation.

Future work. The performance of our clustering algorithms depends on the doubling
dimension dd(P ) of the input. Given a point set, its doubling dimension can range from
0 to log2 |P |. This being the case, the estimation of the average doubling dimension of
real datasets appears to be a very interesting problem. If this value happened to be
low, it would strengthen the results achieved in this thesis, and provide evidence of
the applicability of methods based on the doubling dimension. In our case, we would
obtain coresets for k-median and k-means with sizes substantially linear in O(1/ϵO(1)),
which is on par with state-of-the-art approaches for the continuous variants in the
Euclidean Space. The MapReduce algorithm in Chapter 2 aims at solving this problem.
In future work, we would like to perform pratical experimentations in order to evaluate
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its performance and provide a first answer to the problem. Furthermore, it is an open
question whether it is possible to obtain a lower approximation factor than 2 on the
estimation of the doubling dimension.

It would be also interesting to generalize our approach for the (k,z)-clustering
problem. The goal is to identify a set of k centers such that the sum of the z-th
power of the distances from any point of the input to its closest center is minimized
(k-median for z = 1, k-means for z = 2, and k-center for z =∞). The definition of
bounded coreset and our coreset construction primitive could be easily adapted for
this problem, however the analysis of the approximation factor obtained by working
with the coreset remains unclear.
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