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Chapter 1

Quantum computing

1.1 Introduction

The variational quantum eigensolver (VQE) [1] is a method that uses a hy-
brid quantum-classical computational approach to find the eigenvalues of a
Hamiltonian. VQE has been proposed as an alternative to fully quantum
algorithms, which require hardware not yet available and has been success-
fully applied to solve the electronic Schrödinger equation for a variety of
small molecules. The scalability of this method is limited by two factors:
the complexity of the quantum circuits and the complexity of the classical
optimization problem. Both of these factors are affected by the choice of the
variational ansatz used to represent the trial wave function.

The purpose of this work is to discuss the outlines of the VQE method,
within the general framework of quantum computing. Therefore, I shall
firstly present the core principles of quantum computing to solve compu-
tational chemistry problems [2]. I shall then discuss briefly which limiting
factors exist for our present computational technology and comment on the
circuit models that can be used to describe both classic and quantum algo-
rithms.[3, 4, 5] Finally I will focus on the rules that govern the action of
these circuits, after introducing basic quantum chemistry concepts like the
density operator and its matrix representation.[6] An historical view of the
implementation of quantum computing algorithms will be also provided, to-
gether with a comment on the potential usefulness of quantum computing to
solve chemical computaitional problems.[7] Lastly some perspectives on the
state of the art in quantum computing will be provided.[8, 9, 10, 11, 12]

5



6 CHAPTER 1. QUANTUM COMPUTING

1.2 Density Matrix

Quantum computing is a type of computation that uses quantum states to
perform calculations, on devices named quantum computers. In quantum
computing, a qubit is the basic unit of information, i.e. a two-state (or
two-level) quantum-mechanical system, one of the simplest quantum systems
displaying the peculiarity of quantum mechanics. Operation are performed
on qubits in circuits (see above) through the application of operators.

In quantum computation and quantum communication, there are many
practical scenarios in which the state of our qubits cannot be written down
as linear combinations in a given basis, but instead must be expressed in
terms of ensembles (statistical mixtures) of multiple states, each with an
associated probability of occurrence. Simply put, the density matrix is an
alternative way of expressing quantum states. However, unlike the state-
vector representation, this formalism allows us to use the same mathematical
language to describe both the more simple quantum pure states, as well as
the quantum mixed states that consist of ensembles of pure states.

1.2.1 Pure state

Pure states are those for which we can precisely define their quantum state
at every point in time. In general, we know that in the conventional state
vector notation, an n−qubit pure state can be expressed as

|Ψ⟩ =











α0

α1
...

αN−1











(1.1)

where N = 2n. An alternative way to express this pure quantum state is
in the form of a matrix. This can be done by using the density operator
representation, which is defined as

ρ ≡ |Ψ⟩ ⟨Ψ| (1.2)
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Here, the term |Ψ⟩ ⟨Ψ| represents the outer product of the state Ψ with itself

ρ =











α0

α1
...
αn











[α∗
0
, α∗

1
, ..., α∗

n
] =











|α0|2 α0α
∗
1 · · · α0α

∗
N

α1α
∗
0 |α1|2 · · · α1α

∗
N

...
...

. . .
...

αNα
∗
0 αNα

∗
1 · · · |αN |2











(1.3)

1.2.2 Mixed state

Mixed states are those that consist of a statistical ensembles of different
quantum states. This means that, unlike pure states, mixed states cannot be
represented as linear superpositions of normalized state vectors. In general,
a mixed state consisting of an ensemble of n pure states can be expressed in
the form of a list of outcome elements

{|Ψ⟩}nj=1 = {|Ψ1⟩ , |Ψ2⟩ , ..., |Ψn⟩} (1.4)

where each item has a corresponding probability of occurrence given by

{pj}nj=1 = {p1, p2, ..., pn} (1.5)

Here pj correspond to the classical probability of the system being in state
|Ψj⟩, and the total number of possible states, n, need not be equal to the
dimension of the underlying Hilbert space. A mixed state, consisting of
several possible outcome pure state |Ψj⟩, each with probability of occurrence
pj, is defined as a density matrix of the form

ρ ≡
∑

j

pj |Ψj⟩ ⟨Ψj| (1.6)

It is easy to see that this general definition of the density matrix also holds
for pure state, for which we will only have one |Ψj⟩ term with pj = 1. A very
natural question to ask at this point is: how do mixed states evolve under
unitary operations? It can be shown that if an initial arbitrary state |Ψj⟩
with probability pj evolves into the state Û |Ψj⟩ after unitary evolution, then
the evolution of a density matrix, consisting of an ensemble of normalized
states {|Ψj⟩}nj=1 with probabilities {pj}nj=1 is given by

ρ =
∑

j

pj |Ψj⟩ ⟨Ψj| → ρ′ =
∑

j

pjÛ |Ψj⟩ ⟨Ψj| Û † = ÛρÛ † (1.7)

Here, Û† is the conjugate transpose of the operator Û .
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1.2.3 Matrix elements

We understand that in the case of pure state in the state vector representa-
tion, each vector element corresponds to a probability amplitude. But what
what do the elements of the density matrix represent? Consider, once again,
a general mixed state ρ consisting of an ensemble of pure states {|Ψj⟩}nj=1,
each with probability of occurrence {pj}nj=1:

ρ =
∑

j

pj |Ψj⟩ ⟨Ψj| (1.8)

We know that each individual pure state |Ψ⟩j can be written as a linear
superposition of elements forming a complete orthonormal basis |ϕu⟩mu=1:

|Ψj⟩ =
∑

u

α(j)
u |ϕu⟩ (1.9)

We can then replace this expression into our definition of our general mixed
state, and get a density matrix in terms of the orthonormal basis elements:

ρ =
∑

u,v

(
∑

j

pjα
(j)
u (α(j)

v )∗) |ϕu⟩ ⟨ϕv| =
∑

u,v

ρuv |ϕu⟩ ⟨ϕv| (1.10)

where ρuv are the individual matrix elements in the {|ϕu⟩}mu=1 basis. Written
in matrix form, ρ is given by:

ρ =











ρ11 ρ112 · · · ρ1m
ρ21 ρ22 · · · ρ2m
...

...
. . .

...
ρm1 ρm2 · · · ρmm











(1.11)

It’s worth noticing that, in ρuv, the diagonal terms ρkk actually correspond
to the probability of finding the system in a particular basis state |ϕk⟩:

ρkk =
∑

j

pjα
(j)
k (α

(j)
k )∗ =

∑

j

pj

∣

∣

∣
α
(j)
k

∣

∣

∣

2

(1.12)

Here,
∣

∣

∣
α
(j)
k

∣

∣

∣

2

corresponds to probability of finding the basis state |ϕk⟩ within
a given |Ψj⟩ state, so summing over all pj values gives us the total probability
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of the whole system being in state |ϕk⟩. On the other hand, the off-diagonal
terms of the matrix are a measure of the coherence between the different basis
states of the system. In other words, they can be used to quantify how a
pure superposition state could evolve (de-cohere) into a mixed state. Lastly,
it can be shown from the definition of ρuv that ρ∗uv = ρuv, which basically
means the density matrix is Hermitian.

1.2.4 Trace and Positivity

A density matrix that represents a valid pure or mixed state must satisfy two
conditions:

• Its trace must be equal to one

• The matrix must be positive-semidefinite

Remembering that the trace of a matric (denoted as Tr) is the sum of its
diagonal terms, we have:

Tr(ρ) =
∑

k

ρkk =
∑

k

∑

j

pj

∣

∣

∣
α
(j)
k

∣

∣

∣

2

=
∑

j

pj
∑

k

∣

∣

∣
α
(j)
k

∣

∣

∣

2

= 1 (1.13)

This follows as all basis states are normalized, and all probabilities must add
to 1:

∑

k

∣

∣

∣
α
(j)
k

∣

∣

∣

2

= 1 and
∑

j

pj = 1 (1.14)

and for an arbitrary state |Φq⟩ that is part of the state space

⟨Ψq| ρ |Ψq⟩ =
∑

j

pj ⟨Ψq|Ψj⟩ ⟨Ψj|Ψq⟩ =
∑

j

pj|⟨Ψq|Ψj⟩|2 ≥ 0 (1.15)

A very useful property of the density matrix is that when taking the trace
Tr of its square ρ2, we obtain a scalar value γ that is good measure of the
purity of the state the matrix represent. For normalized states, this value is
always less than or equal to 1, with equality occurring for the case of pure
state.
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1.2.5 Reduced density matrix

Another advantage of working with the density matrix notation is that, when
dealing with composite systems, it provides a practical way to extract the
state of each subsystem, even if they are entangled. This is done in the form
of what os known as the reduced density matrix. Consider a quantum system
composed of subsystem A and B, and fully described by the density matrix
ρAB. The reduced density matrix of subsystem A is then given by:

ρA = Trb(ρAB) (1.16)

Here, TrB is an operation known as the partial trace, which is defined as:

TrB(|ξu⟩ ⟨xiv| ⊗ |χu⟩ ⟨χv|) ≡ |ξu⟩ ⟨ξv|Tr(|χu⟩ ⟨χv|) (1.17)

|xiu⟩ and |ξv⟩ are arbitrary state in the subspace of A, and |χu⟩ and |χv⟩
arbitrary states in the subspace of B. Tr is the standard trace operation,
which for two arbitrary states Tr(|χu⟩ ⟨χv|) = ⟨χv|χu⟩. Similarly, we can
calculate the reduced density matrix of subsystem B using the partial trace
over A:

TrA(|ξu⟩ ⟨ξv| ⊗ |χu⟩ ⟨χv|) ≡ Tr(|ξu⟩ ⟨ξv|) |χu⟩ ⟨χv| (1.18)

1.3 Qubit and quantum circuit model

A quantum bit(qubit) is a two-level quantum system, described by a two-
dimensional complex Hilbert space. In this space, one may choose a pair of
normalized and mutually orthogonal quantum states,

|0⟩ ≡
[

1
0

]

, |1⟩ ≡
[

0
1

]

(1.19)

to represent the values 0 and 1 of a classical bit. These two states form a
computational basis. From the superposition principle, any state of the qubit
may be written as

|Ψ⟩ = α |0⟩+ β |1⟩ , (1.20)

where the amplitudes α and β are complex numbers, constrained by the
normalization condition

|α|2 + |β|2 = 1. (1.21)
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Since state vectors are defined only up to a global phase of no physical
significance, one may choose α real and positive (except for the basis state
|1⟩, in which α = 0, and one may take β = 1). Thus, the generic state of a
qubit may be written as

|Ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ =

[

cos θ
2

eiϕ sin θ
2

]

(1.22)

with (0 ≤ θ ≤ π, 0 ≤ ϕ < 2π). Therefore, unlike the classical bit, which can
only be set equal to 0 or 1, the qubit resides in a vector space, parametrized
by the continuous variables α and β (or θ and ϕ). Thus, a continuum of
stats is allowed. However, there is a catch: to extract this information we
must perform a measurement and quantum mechanics tells us that from the
measurement of the polarization state σn of a qubit along any axis n, we
obtain only a single bit of information (σn = +1 or σn = −1).

1.3.1 Bloch sphere

The Bloch sphere representation is useful in thinking about qubits since it
provides a geometric picture of the qubit and of the transformations that one
can operate on the state of a qubit. Owing to the normalization condition
(|α|2+ |β|2 = 1, the qubit’s state can be represented by a point on a sphere of
unit radius, called the Bloch sphere. This sphere can be embedded in a three-
dimensional space of Cartesian coordinates (x = cosϕ sin θ, y = sinϕ sin θ,
z = cos θ). Thus, the state cos θ

2
|0⟩+ eiϕ sin θ

2
|1⟩ can be written as

|Ψ⟩ =







√

1 + z
2

x+ iy
√

2(1 + z)






. (1.23)

By definition, a Bloch vector is a vector whose components (x, y, z) single
out a point on the Bloch sphere. Therefore, each Bloch vector must satisfy
the normalization condition x2 + y2 + z2 = 1.

1.3.2 Bloch ball

The above construct can be generalized by applying the density-operator for-
malism. There is a one-to-one correspondance between the density matrices
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for a qubit and the points on the unit ball 0 ≤ |r| ≤ 1, which is known as the
Bloch ball. The vector r is known as the Bloch vector for a generic state of
the qubit. In the case of a pure state, the density matrix has his determinant
equal to 0, which in turn implies |r| = 1. One can conclude that pure states
are located on the boundary of the Bloch ball.

1.3.3 Circuit model of quantum computation

As seen above we defined a computation as the implementation, by a suitable
configuration of Boolean logic gates, of the mapping f : {0, 1}n → {0, 1}m.
In the circuit model, the n input wires are place-holders for members of
the set {0, 1}n and in a typical electronic circuit, the diagrammatic wire

represents a physical wire whose state or bit assignment is determined by
a voltage presence. In a quantum circuit, each wire lead represent a qubit
ket. We assume that the ”wire” in a quantum circuit diagram represents a
qubit in a definite quantum state. That is not altered until the wire enters
a quantum gate or a measurement device. By convention, time is assumed
to run from left to right in the diagram, and the wire lead on the far left-
hand side of a diagram denotes the initial qubit state. The qubit state is
processed by a quantum gate and the wire lead exiting the gate from its
right represents the output state of that qubit. Typically, quantum gates are
shown as labeled boxes or solid and empty nodes. The initial qubit ket could
be in |0⟩ or |1⟩ bases state, or in a linear combination of the two. Because
Hilbert space operators induce maps between vectors in Hilbert space, they
serve as quantum analogs of classical gates. One crucial difference between
a classical Boolean logic gate and a quantum logic gate is that the ladder
is reversible. Because adj(U) = U−1 unitary operators are quantum logic
candidates. Notably the Pauli matrices σx, σy, σz are unitary operators and
serve as elementary quantum gates. The Hadamard quantum logic gate is
widely used in quantum circuits; its representation is

H =
1√
2

[

1 1
1 −1

]

(1.24)
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With the computational basis |0⟩ , |1⟩ as inputs, the Hadamard gate outputs
the linear superposition states

|−⟩ = 1√
2
(|0⟩+ |1⟩)

|+⟩ = 1√
2
(|0⟩ − |1⟩)

(1.25)

Now we generalize the quantum gate concept for application in multi-qubit
circuits. The computational basis states for a two-qubit system are |00⟩,|01⟩,|10⟩,|11⟩.
Quantum gates are operators in this Hilbert space and, as is the case for a
single qubit, they must be unitary. It can be shown that

(Ua ⊗Ub)
† = Ua

† ⊗Ub
†

(Ua ⊗Ub)
†(Ua ⊗Ub) = (Ua

†Ua)⊗ (Ub
†Ub) = I⊗ I

(1.26)

Therefore
I⊗ σx, σx ⊗ σz, I⊗ I (1.27)

are just a few possible two-qubit quantum gate candidates. Some multi-qubit
gates cannot be expressed as the direct product of qubits. Of these, one of
the most important is the controlled-not, or CNOT gate. The state of the
first qubit, xc, is not altered under the action of the CNOT gate (control
qubit). If the state xc = 0, the state in the lower wire is also unaffected,
and the gate acts as an identity operator. However if the state of the first
qubit xc = 1, the lower bit flips as in a classical NOT gate. Symbolically,
the gate, denoted by operator UC , is described by rule UC |x1x0⟩ → |y1y0⟩,
where y1 = x1 and y0 = x0 ⊕ x1. UC can also be expressed as UC =
|00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10|+ |11⟩ ⟨11| or

UC =
1

2
I⊗ I+

1

2
σz ⊗ I+

1

2
I⊗ σx −

1

2
σz ⊗ σx = I4 (1.28)

Therefore, the CNOT gate is a sum of direct product operators that cannot
be factored, in fact the result of the CNOT is that the two-qubit system is in
an entangled state. The usefulness of the circuit model in classical computa-
tion is due to the fact that a sequence of elementary operations (NOT, OR,
AND,...) allows one to build up arbitrarily complex computations. A similar
result exists for quantum computation, that is, any unitary operation in the
Hilbert space of n qubits can be decomposed into one-qubit and two-qubit
CNOT gates.
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Chapter 2

VQE algorithm

2.1 A description of the VQE algorithm

The VQE is grounded in the variational principle (and more precisely in
the Rayliegh-Ritz functional), which optimizes an upper bond for the lowest
possible expectation value of an observable with respect to a trial wavefunc-
tion. Namely, providing a Hamiltonian Ĥ, and a trial wavefunction |Ψ⟩, the
ground state energy associated with this Hamiltonian, E0, is bounded by:

E0 ≤
⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩ (2.1)

The objective of the VQE is therefore to find a parametrization of |Ψ⟩, such
that the expectation value of the Hamiltonian is minimized. This expec-
tation value forms an upper bound for the ground state energy, and in an
ideal case should be indistinguishable from it to the level of accuracy desired.
In mathematical terms, we aim to find an approximation to the eigenvector
|Ψ⟩ of the Hermitian operator Ĥ corresponding to the lowest eigenvalue,
E0. In order to translate this minimization task into a problem that can
be executed on a quantum computer, one must start by defining a so-called
ansatz wavefunction that can be implemented on a quantum device as a se-
ries of quantum gates. Given that we can only perform unitary operations
or measurements on a quantum computer, we do this by using parametrized
unitary operations. We hence express |Ψ⟩ as the application of a generic
parametrized unitary U(θ) to an initial state for N qubits, with θ denoting
a set of parameters taking values in ] − π, pi]. The qubit register is gen-
erally initialized as |0⟩⊗N , written as |0⟩ for simplicity, although low-depth

15
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operations can be performed for alternative initializations before the unitary
is applied. Noting that |Ψ⟩ (as well as any U(θ) |Ψ⟩) is necessarily be a
normalized wavefunction, we can now write the VQE optimization problem:

EV QE = minθ ⟨0|U †(θ)ĤU(θ) |0⟩ (2.2)

This equation is also referred to as the cost function of the VQE optimization
problem, which is a term adopted from the machine learning and optimization
literature. We can continue this description by writing the Hamiltonian in a
form that is directly measurable on a quantum computer, as a weighted sum
of spin operators. Observables suitable for direct measurement on a quantum
device are tensor products of spin operators (Pauli operators) on the different
qubits. We can define these as Pauli string: P̂a ∈ {I,X, Y, Z}⊗N , with N the
number of qubits used to model the wavefunction. The Hamiltonian can be
rewritten as

Ĥ =
P
∑

a

ωaP̂a (2.3)

with ωa a set of weights, and P the number of Pauli strings in the Hamilto-
nian. We can now rewrite EV QE as

EV QE = minθ

P
∑

a

ωa ⟨0|U †(θ)P̂aU(θ) |0⟩ (2.4)

where the hybrid nature of the VQE becomes clearly apparent: each term
EPa

= ⟨0|U †(θ)P̂aU(θ) |0⟩ corresponds to the expectation value of a Pauli
string P̂a and can be computed on a quantum device, while the summa-
tion and minimization EV QE = minθ

∑P

a ωa is computed on a conventional
computer.

2.1.1 VQE stack

The VQE, as presented above, can be decomposed into a number of com-
ponents, which all involve a number of significant choices which impact the
design and overall cost of the algorithm. We refer to the layering of these
different components as the VQE stack. Most choices made on specific ele-
ments of this stack have significant implications on the entire VQE process.
We summarize the key components below and provide a brief introduction
to each of them and how they fit together:
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• Hamiltonian construction and representation: the first step in the VQE
is to define the system for which we want to find the ground state.
This is in general an ab initio molecular, a solid-state system, or a spin
lattice model. For each of these, one starts with a specific geometry
(or conformation) of the system, specifying the distance between each
atom, or the geometry of the lattice. Constructing the Hamiltonian de-
fines the quantum observable for the individual single-particle degree
of freedom. Given the Hamiltonian defines the quantum observable
for the total energy associated with an electronic wavefunction, the
choice of basis is critical to define the space spanned by the wavefunc-
tion. Furthermore, the ground state energy is in principle invariant to
a single-particle unitary transformations between these basis functions
in which the system Hamiltonian is represented. This allows these
degree of freedom defining the basis to be unitarily rotated amongst
each other, with the total energy remaining invariant to this operation.
These different representations could include, as examples, molecular
orbitals from prior mean-field calculation, plane-wave functions, or lo-
cal atomic functions, all representing the spatial distribution (or ’or-
bitals’) for the single-particle Fock states, from which the many-body
basis is formed. The choice of basis can have a significant impact on the
accuracy and cost of the final result, as the type of basis and number
of basis functions chosen both determine the size of the computation
required and the accuracy of the representation. Following the Pauli
exclusion principle the electronic wavefunction must be antisymmetric
with respect to the exchange of two electrons. From a mathematical
perspective, this means that we must decide whether we enforce this
antisymmetry through the definition of the wavefunction or through
the definition of the operators. These are referred to (for historical
reasons) respectively as first and second quantization. In second quan-
tization the Hamiltonian is expressed in terms of fermionic operators,

also known as creation (
ˆ
a
†
j) and annihilation (âj) operators. These cor-

respond to the action of adding, or removing an electron from a given
basis function with integer index j, respectively (e.g. an orbital or a
lattice site), ensuring appropriate fermionic antisymmetry with respect
to permutation of any two particles.

• Encoding of operators : qubit registers on quantum computers can only
measure observables expressed in a Pauli basis, due to the two-level
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nature of spins: P̂a ∈ {I,X, Y, Z}⊗N , for N qubits. In first quan-
tization operators can be directly translated into spin operators that
can be measured on quantum computers, as they are not used to en-
force antisymmetry of the wavefunction. In second quantization the
Hamiltonian is expressed as a linear combination of fermionic opera-
tors which are defined to obey this antisymmetry relationship, unlike
Pauli operators. The role of a fermionic to spin encoding is therefore
to construct observables, from Pauli operators, which maintain this re-
lationship. A transformation of fermionic operators to spin operators
that meets this criterion was demonstrated a long time ago, and recent
research has focused on improving on this initial work. The key factors
determining the efficiency of an encoding are their Pauli weight (the
maximum number of non-identity elements in a given spin operator).
It is worth noting that for certain ansatz choices, in particular those de-
fined in terms of fermionic operators, the encoding can have significant
implications on gate depth and trainability.

• Measurement strategy and grouping : The next step in the VQE stack
is to determine how measurements are distributed and organized to
efficiently extract the required expectation values from the trial wave
function. In general, to achieve a precision of ϵ on the expectation value
of an operator, we are required to perform O( 1

ϵ2
) repetitions (usually

denoted as shots) of the circuit execution, each completed with a mea-
surement at the end. The objective of the measurement strategy is to
make the number of repetitions as low as possible. Several techniques
are available to achieve this, in particular, the use of efficient weight-
ing of the number of measurements across the operators. This can be
further optimized by using properties of the Lie algebra in which Pauli
strings are defined. Via processing of the encoded Pauli strings to mea-
sure, it is possible to identify commuting groups of operators that can
be measured jointly, and subsequently find the measurement bases in
which all operators of a given group can be simultaneously measured.
In order to perform this joint measurement, a short quantum circuit
must therefore be designed and applied for each group, to rotate the
measurement basis and to perform this joint measurement. Alterna-
tively, because of information overlap between different Pauli strings,
one can also try to reduce the number of measurements required using
inference methods from fewer shots.
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• Ansatz and state preparation: once the Hamiltonian has been prepared
such that its expectation value can be measured on a quantum device,
we can turn to the preparation of the trial wavefunction. In order to
do this, one must decide on a structure for the parametrized quan-
tum circuit, denoted as ansatz. It is used to produce the trial state,
with which the Hamiltonian can be measured. Upon successful opti-
mization of the ansatz parameters, the trial state becomes a model for
the ground state wavefunction of the system studied. A wide range of
ansatz are possible, and the appropriate choice depends on the prob-
lem beng addressed. The key aspects of the ansatz are its expressibility
and trainability. The expressibility defines the ability of the ansatz to
span a large class of states in the Hilbert space, defining the maximum
accuracy its approximation of relevant low-energy states can achieve
(assuming all parameters can be perfectly optimized). Its trainabil-
ity describes the practical ability of the ansatz to be optimized using
techniques tractable on quantum devices (related to the total number
of parameters, their linear dependence, the structure of the optimiza-
tion surface, and to the related concept of barren plateaus, which can
arise when gradients almost vanish thereby preventing optimization).
A good ansatz must be sufficiently expressive to guarantee that it can
appropriately approximate the ground state wavefunction, however, it
must not be so expressive that it renders the search for the target
state intractable. Another important aspect of the ansatz choice is
the scaling and complexity of its circuit depth with system size. This
is particularly important for near-term application of the VQE, as it
determines in great part the noise resilience of the method employed.

• Parameter optimization: The parameters of the ansatz used need to
be updated iteratively until convergence. In general, this requires sam-
pling the expectation value of the Hamiltonian several times for a given
parameter set in the ansatz in order to define an update rule for the
parameters (i.e. the updated value of the parameters is a function of
the expectation value measured). The choice of optimization is critical
for at least three main reasons:

– it directly impacts the number of measurements required to com-
plete an optimization step, as e.g. computing the numerical gra-
dient of a quantum circuit can require value estimation of the
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Hamiltonian with respect to several slightly modified wavefunc-
tions

– certain optimizers have been designed to alleviate specific opti-
mization issues, such as the barren plateau problem

– it directly impacts the number of iterations required to reach con-
vergence

• Error mitigation: quantum noise is one of the main hurdles in the
viability of the VQE, given that the method is to be used without
error correction schemes on NISQ devices. Error mitigation aims to
reduce the impact of quantum noise through post-processing of the
measurement data (or occasionally through post-processing of the trial
wavefunction ahead of measurements).

There are many restrictions of quantum computing that this approach does
not take into account, and they suggested two more stringent conditions. The
first one is that VQE must demonstrate similar or higher accuracy than any
conventional method, but with lower computational time-to-solution. This
condition takes into account possible limitation due to hardware runtime,
potentially resulting in a large pre-factor for VQE computation. The pre-
factor refers to the multiplier applied to a scaling rule to obtain the actual
runtime of the method. If the VQE has better asymptotic scaling than con-
ventional method, but a large pre-factor, this means an advantage could only
be achieved in the asymptotic regime of very large systems. This would make
it difficult to demonstrate quantum advantage for practical moderately sized
system. The second condition exposed, which is also the most stringent form
of quantum advantage for the VQE, is to achieve at least as good accuracy,
and with faster compute time, for a system of sufficient complexity to accu-
rately model a real problem of physical and chemical relevance. This involves
demonstrations on systems, where the approximation error in defining the
specific Hamiltonian for the original problem is smaller magnitude than its
solution using the VQE.

One of the key challenges possibly holding back VQE is the very large
amount of samples that are required to accurately compute the relevant val-
ues of the algorithm. There are two main aspects to manage for efficiently
sampling these expectation values: the number of terms in the Hamiltonian
cost functions, the number of shots required to sample an expectation value
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at a certain level of accuracy. It is worth noting that the level of accuracy re-
quired changes throughout the optimization process. This could be because
optimizer gradients must be estimated precisely enough to be distinguished
from one another when the optimization landscape flattens.

2.1.2 Shot numbers in VQE

Generalized mappings for molecular Hamiltonian result in P ∼ O(n4) distinct
Pauli strings to estimate. With this in mind, let us consider the number of
shots required to achieve a given precision. In any sampling experiment, the
standard error is equal to ϵ = σ√

S
, where σ is the population standard devia-

tion, and S is the experimental sample size, in our case, the number of shots.
This means that the number of times an experiment needs to be repeated
to achieve a given expected error ϵ goes as O( 1

ϵ2
. More specifically, when

measurements are distributed optimally among the different Pauli strings,
such that the variance is minimized with respect to a given precision ϵ, the
number of measurements required is upper-bounded by

S ≤
(

∑P

a ωa

ϵ

)2

(2.5)

where ωa are the weights of the Pauli strings in the Hamiltonian. As a result,
for a given level of accuracy for each Pauli string measured independently,
the overall scaling of the number of shots required for an energy estimation is
O(N

4

ϵ2
. In the context of quantum chemistry, successful computing methods

are expected to produce results within a precision of ϵ = 1.6mEH to the
target. When results obtained numerically are within this level of precision
to experimental results, the simulation is deemed to reach chemical accuracy.
This metric can be used as a bound for target precision in the VQE context.
One should be cautious however not to assume too much of a relationship be-
tween this number and the number of shots required to perform VQE. That
is because the key bottleneck of VQE optimization is not the estimatin of the
wavefunction itself but the estimation of gradients and in particular the dif-
ference between these gradients. This difference may be orders of magnitude
smaller than the chemical precision threshold, requiring many more mea-
surements. While polynomial in scaling, it has been pointed out on several
occasions that the number of shots required to accurately compute a VQE
optimization process rapidly becomes unmanageable, suggesting the method
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might be unable to compete with its conventional computing counterparts.
As such, a significant amount of effort has been devoted to finding solutions
that reduce the pre-factor for the number of shots required.

2.1.3 Weighted distribution of measurements

In this methods our aim is to focus on measuring more precisely the oper-
ators which contribute most to the total variance of the expectation value
estimated. With a given shot budget, one can improve the overall precision
of measurement by distributing these shots towards specific operators. A
straightforward manner to distribute these shots is to simply weight them
respect to the Pauli string weight (|ωA|) in the Hamiltonian. If we look at
the equation:

S = P

P
∑

a

ω2
aVar[P̂a]

ϵ2
(2.6)

we can see that reducing the number of shots on strings contributing less to
the total energy estimate (with lower |ωa| value) and adding these to strings
that contribute the most reduces total variance, as long as Var[P̂a] are similar

for all. It can be shown that Sa ∝ |ωa|
√

Var[P̂a], is optimal, and it is possible
to demonstrate numerically that when considering random states, variations
in |ωa| tend to be higher than variation in Var[P̂a], resulting in the weight
pro-rata distribution (where Sa ∝ |ωa|) of measurements outperforming the
uniform distribution in most cases. To address cases in which the number
of shots is limited, it is proposed to perform measurements on Pauli strings

randomly, with probabilities proportional to |ωa|
√

Var[P̂a], thereby allowing
unbiased estimates even with a low total shot number.

2.1.4 Term truncation

Another approach to consider is to remove from measurement scope terms
that have contributions significantly below the error tolerance threshold ϵ.
This method has been shown to significantly reduce the cost of quantum
chemistry calculations with negligible impact on accuracy. To implement
this, one must observe that the contribution of any Pauli observable to the fi-
nal energy estimate is bounded by the absolute value of its associated weight:
∣

∣

∣
⟨Ψ|ωaP̂a |Ψ⟩

∣

∣

∣
≤ |ωa|. By ordering these contributions in ascending order,
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one can construct a partial sum of the k ≤ P smallest contributor:

ek =
k
∑

a

|ωa| (2.7)

From there, one can choose a constant C ∈ [0, 1[, and include in the partial
sum the terms up to an index k that verify: ek ≤ Cϵ. This method intro-
duces a bias in total energy estimation, and as such the key to implement
successfully is to pick a constant C such that truncation bias is lower than
the mean square error reduction from measurements added to the remaining
terms. McClean et al. [4] present an adjusted estimate for the number of
shots required to achieve ϵ:

S = (P − k)
P
∑

a=k+1

ω2Var[P̂a]

(1− C2)ϵ2
(2.8)

If the expected number of shots is lower than without term truncation, then
the method provides an improvement regarding the precision to measurement
cost ratio.

2.2 Ansatz

Ansatz selection is a central part of the VQE stack. Choosing the right ansatz
is essential to guarantee that the final solution is close to the global minimum.
To achieve this, it is essential to maximize the chances of the ansatz covering
parts of the Hilbert space that contain the solution (i.e. a state that is
sufficiently close to the desired state which globally minimizes the expectation
value of the Hamiltonian). The span of possible states an ansatz can reach
is referred to as its expressibility. However, optimizing a general state could
easily become intractable due to the number of parameters, the number of
iterations required for convergence, or the number of shots required to achieve
sufficient gradient accuracy to continue the optimization. Whether an ansatz
can be optimized in a tractable manner is referred to as its trainability. In
practice, it is better to choose an ansatz spanning a smaller subspace, but
remaining trainable. Designing an ansatz for a given number of qubits hence
involves finding an optimal trade-off between expressibility and trainability.
The expressibility of an ansatz describes the uniformity of its span across the
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unitary space. One can measure the expressibility of an ansatz by assessing
the distance between the distributions of the unitaries that can be generated
by the said ansatz, and maximally uniform distribution of unitaries in the
corresponding Hilbert space, also known s the Haar measure. A given ansatz
is called a t-design if it is indistinguishable from the Haar measure up to the
tth moment. A 2-design ansatz can produce any possible state in the Hilbert
space considered, from any input state: it is maximally expressive. More
formally, one can define as U the set of unitaries accessible by an ansatz, and
U(N) the complete unitary group in which the ansatz is expressed (with N

the number of qubits it spans), such that U ⊆ U(N). The following super
operator, representing the second order difference between the Haar measure
on U(N) and the uniformity distribution of U can be constructed:

AU(·) :=
∫

U(n)

dµ(V )V ⊗2(·)(V †)⊗2 −
∫

U

dUU⊗2(·)(U †)⊗2 (2.9)

with dµ(V ) the volume element of the Haar measure, and dU the uniform

distribution over U, V ∈ UN and U ∈ U. If AU(Ô) → 0, then the ansatz
producing U approaches a 2-design and offers therefore maximal expressibil-
ity. From this super-operator, one can compute a metric for expressibility of
an ansatz as

ε
ρ
U
:=
∥

∥AU(ρ
⊗2)
∥

∥

2

εP̂
U
:=
∥

∥

∥
AU(P̂

⊗2)
∥

∥

∥

2

(2.10)

As such, the expressibility of an ansatz can be expressed with respect to an
initial input state (ρ in the formulas above), or with respect to a measure-
ment operator (P̂ ). Following the equations above, one can interpret that if
ε = 0 the ansatz is maximally expressive, while expressibility decreases as ε
increases. the trainability of an ansatz refers to the ability to find the best
set of parameters of the ansatz by (iteratively) optimizing the ansatz with
respect to expectation values of the Hamiltonian in a tractable time. More
specifically, an ansatz is considered trainable if its expected gradient vanishes
at most polynomially as a function of the problem’s features (e.g. system size,
circuit depth). On the other hand, if the gradient vanishes exponentially, it
is said to suffer from the barren plateau problem.
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2.2.1 Barren plateau problem

A key issue that is inherent to all types of variational quantum algorithms
is the risk of vanishing gradients, either during training or as a result of a
random initialization. This refers to the risk of the expected cost function
gradients vanishing exponentially as a function of specific properties of the
optimization problems. McClean et al.[4] provide the first formal characteri-
zation of this barren plateau problem, and show that cost function gradients
are vanishing exponentially in the number of qubits in the quantum register,
providing random initialization of the circuit parameters. Even though this
problem is akin to the vanishing gradient problem in machine learning, it
has two striking differences that make it significantly more impactful on the
prospects of variational quantum algorithms:

• The estimation of the gradients on a quantum device is essentially
stochastic. Any observable can only be measured to a certain precision,
increasing as the inverse square root of the number of shots. If gradi-
ents are exponentially approaching zero, it means that distinguishing
between a positive and a negative gradient becomes increasingly diffi-
cult. Failing to establish the sign of the gradient reliably transforms
the optimization into a random walk, overall requiring ana exponential
number of shots to continue optimization.

• The barren plateau problem is dependent on the number of qubits
(while the problem is dependent on the number of layers for the van-
ishing gradient problem). Additional research also shows that it can
be linked to other factors specific to quantum circuits, including ex-
pressibility of the ansatz, degree of entanglement of the wavefunction,
non-locality of the wavefunction, or quantum noise.

It is worth to briefly discuss the typical cost function landscape for single
parameters in the variational quantum eigensolver. Another problem that
affects this landscape is that of ’narrow gorges’. It refers to the fact that the
local minimum (well definied by the region starting from the end of a barren
plateau and going towards a local minimum) contracts exponentially in the
number of qubits. Interestingly, it was shown that these two problems are
equivalent. An alternative way to present the barren plateau problem is that
it implies the expectation value of an observable with respect to a random
state concentrates exponentially around the mean value of that obsevable,
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rendering intractable optimization away from the mean. In the context of the
VQE, the barren plateau problem can be formally characterized as follows.
Consider a VQE optimization problem with cost function:

E(θ) = ⟨Ψ(θ)| Ĥ |Ψ(θ)⟩ (2.11)

with Ĥ the molecular Hamiltonian operator, and |Ψ(θ)⟩ the parametrized
wave function with a vector θ of parameters. This cost function exhibits a
barren plateau if, for any θi ∈ θ and for any ϵ > 0 there is b > 1 such that:

Pr(|∂θiE(θ)| ≥ ϵ) ≤ O

(

1

bN

)

(2.12)

which is an immediate consequence of Chebyshev’s inequality and the result
from the above (for the expectation value and variance). This means that
the probability of a gradient being above a certain threshold (which could be
arbitrarily small), can always be upper-bound by a number that decreases ex-
ponentially in the system size n. It is however important to note that while
defined with respect to a cost gradient, the barren plateau problem also
affects gradient-free optimizers. It is easy to understand, as gradient-free op-
timizers usually rely on sampling the cost landscape of a specific parameters,
if variance across the landscape is minuscule, then it becomes impossible to
accurately progress through the optimization step.

2.2.2 The unitary coupled cluster (UCC) ansatz

The unitary coupled cluster ansatz is arguably the most studied ansatz for
VQE. It figures in the initial VQE work by Peruzzo et al. [1] and has taken
an important part in the literature since then. The UCC theory stems
from adapting the Coupled Cluster (CC) theory. CC is a post Hartree-
Fock method that aims at recovering a portion of electron correlation en-
ergy by evolving an initial wavefunction (usually the Hartree-Fock wave-
function) under the action of parametrized excitation operators. in general,
this are single-electron excitations and double electron excitations CC Single
and Double (CCSD), however, these can sometimes go to higher-order (e.g.
UCCSDT). Only excitation operators allowing transitions from an occupied
orbital to an unoccupied orbital are traditionally included in CC. The action
of these operators on the initial state is performed through exponentiation
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of part of the cluster operator T . For ν, the maximum allowed excitation we
have:

T̂ = T̂1 + T̂2 + · · ·+ T̂ν (2.13)

with for example the single and double excitation operators:

T̂1 =
∑

ia

tai
ˆ
a
†
aâi

T̂2 =
∑

ijab

tabij
ˆ
a
†
a
ˆ
a
†
bâj âi

(2.14)

Using the Hartree-Fock state as reference state, the CC ansatz wavefunction
is given by

|Ψ⟩ = eT̂ |ΨHF ⟩ (2.15)

The conventional resolution method for CC scales O(m2(N −m)4), with m

the number of electrons, andN the number of spin orbitals. CCSD is however
in general not variational and has been reported to fail in numerous cases,
in particular in system with strong correlation, with possible solutions to
avoid these failures usually scaling exponentially in the system size. Another
issue worth mentioning in the context of th VQE is that the operator eT̂ is
not unitary, and therefore the CC ansatz cannot be implemented as a series
of quantum gates. The UCC method was developed as a way to address
these caveats. It is based on the fact that for any linear operator T̂ , the
expression (T̂ − T̂ † is an anti-Hermitian operator. The exponential of an
anti-Hermitian operator is a unitary operator, and the difference between
the cluster operator and its complex conjugate can be used as an evolution
operator to form a unitary version of CC. Elements of the truncated cluster
operator for UCC are identical as for CC

|Ψ⟩ = eT̂−T̂ † |ΨHF ⟩ (2.16)

The energy can then be evaluated using a variational approach based on the
Ritz functional 2. Exact resolution of UCC is known to scale exponentially
in the system size. It is therefore natural to bring this ansatz to Quantum
Computation. By grouping the excitation terms in T̂ with their correspond-

ing conjugate in T̂ †, and noting them τ , we can obtain the parametrized
version of the UCC:

U
−→
(t) = e

∑

j tj(τj−τ
†
j ) (2.17)
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where tj correspond to the amplitude weights, and with j spanning all the
excitation operators included. Akin to our description of CC, UCC can
accept several level of excitations (UCCSD, UCCSDT). The next step is to
convert the UCC ansatz into a series of parametrized quantum gates which
can directly be implemented on a Quantum Computer. A usual step in the
process of building the UCC ansatz is to use a Trotter-Suzuki approximation
to separate the summation into a product of fermionic terms exponentials
such that

U
−→
(t) ∼ UTrotter

−→
(t) = (

∏

e
tj

ρ
(τj−τ

†
j ))ρ (2.18)

The Trotter number ρ defines the precision of the approximation, but also
the pre-factor impacting the overall depth of the quantum circuit required.
Using the mapping described before we can re-write each of the fermionic
operators as

τj − τ
†
j = i

∑

k

ˆPk,j (2.19)

where the subterm ˆPk,j is a product of Pauli operators. This conversion allow
to re-write ***, ssuming ρ = 1, into

U1

−→
(t) =

∏

j

22lk−a
∏

k

eitj
ˆ
P

j
k (2.20)

This illustrates the basic framework surrounding UCC and its application to
VQE. The required circuit depth for this version of UCC has been shown to
scale polynomially in the system size. More specifically, with η the number
of electrons and N the number of spin-orbitals, the circuit depth is shown
to scale O((N − m)2m) for each Trotter step. It is worth noting that, it
was numerically shown that a single Trotter step is sufficient for accurate de-
scription of the ground state in simple molecular system, because variational
optimization can absorb some of the Trotterization error. The UCC ansatz
can also be used in the context of restricted active space methods. Finally, it
has been shown that operators in the UCC ansatz contribute to the accuracy
of the ansatz a different extend, and that some can be discarded to increase
efficiency.
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2.3 Optimization strategy

The VQE being in essence an optimization problem, it aims at heuristi-
cally constructing an approximation of an electronic wavefunction through
iterative learning of ansatz parameters. For the algorithm to be viable, it
must be that it can learn a good enough approximation within a tractable
number of learning steps. It was already demonstrated that optimization
of the variational quantum ansatz is NP-hard, meaning that there exist at
least some problems in which finding an exact solution for the VQE prob-
lem is intractable. As such, efficient optimization strategies that provide a
well-approximated solution within an acceptable number of iterations are es-
sential for any variational algorithm to be put into practice. Compared to
the conventional numerical optimization problem, however, optimizing the
expectation value from a variational quantum ansatz faces additional chal-
lenges:

• sampling noise and gate noise on NISQ devices disturb the landscape
of the objective function. Such noise can be detrimental to the conver-
gence of optimization, and could limit the scope for quantum advantage

• While the precision of conventional numerical optimization is generally
not consider a problem, the precision of the measured expectation value
is limited by the sample shot number. The cost of optimization is
heavily dependent on the precision required for optimization

• Related to the point above, the landscape of the expectation value of
variational ansatz may cause the vanishing of gradient very easily as a
result of the barren plateau problem.

There is also positive news for optimizing variational ansatz parameters.
Studies from recent years show the landscape of expectation value has some
analytical properties that are useful to extract information, such as evaluat-
ing gradient directly on quantum devices. In addition, the ansatz landscape
can be efficiently approximated to accelerate the convergence. Utilizing such
prior knowledge helps to develop efficient optimization strategies for varia-
tional quantum algorithms. The objective function of a variational algorithm
is constructed conventionally based on the measurement outcome. Denote
O(θ) = (Ô1(θ

(1)), Ô2(θ
(2)), . . . , Ôa(θ

(a))) are the observables used to compose
the objective function and a is the number of observables. The objective
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function is given by
L(θ) = C(O(θ)) (2.21)

where C is a function maps the observed expectation value to the objective
function, and usually have the simple linear form

C(X) =
∑

i

ciXi (2.22)

where ci is constant value defined by the problem as the coefficient of each
measurement expectation value, Xi is the i-th component of X. Such lin-
ear form preserves the analytical properties and it is essential for using the
analytical methods to directly calculate the gradient or implement analyti-
cal gradient free optimization strategy. A measurement expectation value is
given by

< Ôk(θ
(k)) >= ⟨Ψ0|U (k)†(θ(k))M̂kU

(k)(θ(k)) |Ψ0⟩ (2.23)

where |Ψ0⟩ is the initial state on the quantum computer. M̂ (k) is a Hermi-
tian measurement operator, usually chosen to be the tensor product of Pauli
operators to match the physical measurement implementation of quantum
hardwares. U

(k)
k (θ(k)) is the variational ansatz defined as

U (k)(θ(k)) =
∏

j

U
(k)
j (θ

(k)
j ) (2.24)

and each Uj is a quantum gate, which is generalized as

U
(k)
j (θ

(k)
j ) = eiθ

(k)
j P

(k)
j (2.25)

where P
(k)
j is a Hermitian matrix, usually is a tensor product of Pauli ma-

trices. It is sometimes convenient to utilize the superoperator formalism and
consider the noise into the optimization process, the expectation value can
be written as

〈

Ôk(θ
(k))
〉

= Tr
[

M̂kΦ
(k)(θ(k))ρ0

]

(2.26)

where ρ0 is the initial density operator and Φ(k)(θ(k)) denote the transforma-
tion matrix, which is given by

Φ(k)(θ(k)) =
∏

j

Φ
(k)
j (θj(k)) (2.27)
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For devices that support single shot readout, each sample the quantum device
would yield a bit string s. For each string s a measurement value could be
calculated withMi(s), and the expectation value is the average of eachMk(s).

〈

Ôk(θ
(k))
〉

=
∑

j

Prob(s(θ(k)) = bjMkbj (2.28)

where bj ∈ B, B covers all possible single shot string (all binary number from
0 to 2n−1 of the measurement outcome. Due to the physical implementation
from the quantum hardware, not all quantum computing system support
single shot readout. Some systems can only yield expectation value by av-
eraging the signal from the readout. For example, some NMR systems use
an ensemble of molecules to implement quantum computing and cannot read
the state of each single molecule. In practice, the quantum hardware system
may directly yield an expectation value, and the measurement approaches
vary from different physical systems.
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