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Abstract 

The primary manufacturing of active pharmaceutical ingredients for oral solid dosage 

medicines is characterized by a high variability of the final powder form, that is likely 

to affect the downstream manufacturing operations. The effects caused by the raw 

materials variability in the secondary continuous processes are often ignored in the early 

stage of the drug and development design, since the approach to predict powder 

behaviour in the equipment is still knowledge-based and semi-empirical. The lack of 

first principle understanding of the powder processability and flowability along the 

process is an obstacle that is complicated to be overcame. Moreover, the univariate 

approach to the general understanding of the powder phenomena does not produce a 

comprehensive solution to the problem. This causes several problematics in the start-up 

operations of new continuous processes that are likely to cause delays in the 

manufacturing campaigns.  

In this Thesis, a data-driven procedure of investigating raw materials variability in an 

industrial database is presented, together with a multivariate statistical modelling 

approach for the first unit operation of continuous tableting lines, i.e. the loss-in-weight 

feeder. The main objective of the Thesis is to explore the capabilities of using statistical 

pattern recognition techniques to identify and model hidden patterns of similarities in a 

powder materials dataset and analyse the general problem of how materials variability 

can affect powder feeding modelling. Firstly, a general procedure to reorganise a 

materials dataset, explore the general structure, recognize patterns and build up a 

classification system for new incoming materials is developed. The application on a 

case study dataset of raw materials powders showed excellent results in terms of 

patterns identification and classification, maximizing the amount of information that 

can be extracted from a restricted number of materials descriptors. Secondly, some few 

different scenarios of how to use a data-driven approach for the prediction of a targeted 

quality variable for predicting feeding performance are introduced and a case study 

example is presented. The lack of first principle understanding of powder flowability in 

feeding equipment is addressed from a multivariate statistical approach, combining data 

from the equipment setup, materials properties data and process data from the feeder 

sensors in order to explain the correlation between these variables and the feed factor 

profile. The results of this analysis seem promising in terms of the speed up of the 

continuous tabletting manufacturing development. 

 

The Thesis is the result of a 6-month Erasmus internship at GlaxoSmithKline R&D center of 

Ware (UK) as part of a collaboration research project between the CAPE-Lab group at the 

University of Padova and GlaxoSmithKline R&D. 



 
 

 

  



Riassunto 

 

L’industria chimica tradizionale, come ad esempio l’industria petrolchimica, l’industria 

chimica delle commodities e quella fine, è continua per sua natura. Altre industrie, come 

ad esempio l’industria chimica alimentare, cambió velocemente da una realtà 

manifatturiera discontinua ad una più moderna realtà continua per incrementare 

l’efficienza e allo stesso tempo soddisfare un mercato caratterizzato da grandi volumi 

di produzione. I vantaggi di operare un processo in maniera continua sono vari e non 

difficili da intuire, tra i quali i più menzionati sono una maggiore flessibilità e facilità 

nelle fasi di scale up/down, una diminuzione dei tempi di produzione, una 

massimizzazione della produzione stessa con una riduzione degli scarti e dell’energia 

consumata e, infine, una velocizzazione dell’intera catena produttiva e di distribuzione 

[1]. Nonostante questo, l’industria farmaceutica continua a produrre gran parte dei suoi 

prodotti secondo un approccio tradizionale discontinuo. Questo ritardo tecnologico è 

principalmente dovuto alla complessa regolamentazione, prevista enti regolamentatori 

esterni, che spesso scoraggia le compagnie farmaceutiche ad investire verso nuovi 

sistemi più avanzati e redditizi [2] [3]. A maggior ragione, l’alto margine di profittabilità 

tradizionalmente ottenuto anche senza investire nell’ottimizzazione dei processi, ha 

spinto le aziende a focalizzare gli investimenti verso altre aree di ricerca. Tuttavia, 

l’incremento dei costi e dei rischi associati alla ricerca e sviluppo di nuove molecole, 

insieme all’introduzione di farmaci generici altamente competitivi sul mercato, ha 

portato ad un calo del ritorno economico ed una conseguente necessità di revisionare e 

migliorare i processi già esistenti. 

Grazie anche ad una serie di iniziative promosse dalle agenzie regolatorie come la Food 

and Drug Administration (FDA) e la European Medicines Agency (EMA), da alcuni 

decenni le aziende farmaceutiche, in parallelo al grande sforzo profuso dalla ricerca 

accademica, stanno gradualmente esplorando la possibilità di convertire alcuni impianti 

manifatturieri alla produzione in continuo [5][6]. Questo sviluppo tecnologico è guidato 

da un postulato fondamentale, chiamato comunemente quality-by-design (QbD) che 

significa propriamente qualità attraverso la progettazione, esplicitando chiaramente 

come la progettazione di processo e di prodotto contega al suo interno il risultato stesso 

della qualità e delle specifiche ricercate. Questo significa che per conoscere e 

controllare la qualità finale del prodotto si deve raggiungere una conoscenza 

comprensiva della relazione tra proprietà delle materie prime, parametri di processo e 

specifiche di qualità. In questa nuova concezione di sviluppo di prodotto, la 



 
 

modellazione matematica acquisisce un ruolo chiave nell’integrare l’esperienza nel 

settore pregressa e la progettazione di prodotto [7].  

In questo caso rientra anche la produzione di compresse (oral solid dose, comunemente 

denominate OSD), che ancora ricopre la maggior parte delle forme farmaceutiche in 

commercio. Tutte le linee continue per la produzione di compresse cominciano con 

un’alimentazione costante delle polveri in ingresso, che costituiscono il principio attivo 

o l’eccipiente prevista dalla formulazione del farmaco finale, attraverso 

un’apparecchiatura standard chiamata alimentatore o dosatrice a perdita-in-peso (loss-

in-weight feeder).  

Questa apparecchiatura è particolarmente progettata per assicurare una certa stabilità e 

accuratezza in un ampio intervallo di materiali polvirulenti differenti. Tuttavia, le 

prestazioni di uno specifico alimentatore che opera in condizioni normali, dipende 

fortemente dalle proprietà delle materie prime alimentate, con particolare attenzione 

alle proprietà che caratterizzano la scorrevolezza della polvere. Per esempio, materiali 

dalla facile scorrevolezza hanno mostrato una migliore in termini di variabilità della 

portata alimentata, ma possono comunque nascondere qualche problematica che 

comporta un’oscillazione della portata se la polvere è soggetta ad una pressione 

improvvisa (fenomeno chiamato flushing). Contrariamente, materiali difficilmente 

scorrevoli (anche noti come coesivi), hanno mostrato diverse problematiche, che 

comportano una instabilità nell’alimentazione dei materiali richiesti dalla formulazione, 

anche in condizioni operative normali. Questo è dovuto alla loro capacità di aderire alla 

superficie delle pareti della tramoggia, della coclea (vite) e della tramoggia di carico o 

formare aggregati (effetto bridge) [8]. 

È dunque importante classificare un nuovo materiale prima di iniziare a processarlo 

nell’apparecchiatura sulla base delle proprietà di scorrimento. Allo stato attuale, una 

corretta classificazione deve essere attribuita da un ingegnere o uno scienziato dei 

materiali e, solo successivamente, porta alla stima delle prestazioni all’interno 

dell’apparecchiatura grazie alla conoscenza di un esperto del processo. Dunque, lo stato 

dell’arte in questo campo si basa fortemente su un approccio empirico tradizionale che 

si affida alla conoscenza accumulata nel passato. Tuttavia, mancano completamente 

strumenti che possano predirre sistematicamente e quantitativamente le prestazioni di 

un nuovo materiale sconosciuto all’interno della linea continua. Inoltre, le proprietà dei 

materiali legate alla scorrevolezza sono ancora poco oggettivamente e 

complessivamente definite a causa dell natura intrinsica multi-dimensionale del 

problema,  in cui diversi parametri e tecniche di caratterizzazione non sono sufficienti 

a descrivere completamente la dinamica associata alla processabilità nelle varie 

apparecchiature di processo [9]. A maggior ragione, la complessità di descrivere la 

movimentazione dinamica delle polveri è  confermata da una storica mancanza di 



conoscenza dei principi primi che stanno alla base dei fenomeni fisici associati alla 

stessa [10]. 

Lo scopo di questa Tesi è esplorare le capacità di un supporto alla progettazione di 

processo e di prodotto basato sull’analisi dei dati che favorisca lo sviluppo e la selezione 

di nuovi materiali per le linee secondarie continue per la produzione di compresse. 

La parte principale del progetto ruota attorno allo sviluppo di una procedura generale 

per supportare l’analisi e l’espansione di un database di materiali farmaceutici 

polvirulenti usando un approccio basato sull’analisi dei dati per riconoscere ed 

eventualmente modellare schemi (patterns) ricorrenti nascosti nei dati stessi. Con 

l’ausilio di un caso studio basato su un database industriale, viene proposta una 

metodologia sistematica per riorganizzare i dati, esplorare il sistema, identificare 

schemi non noti e modellare un sistema di classificazione per definire classi di 

scorrimento delle polveri. Il livello di conoscenza che può essere ottenuto da questa 

analisi strutturata è propenso ad apportare un alto valore aggiunto nello sviluppo di linee 

secondarie continue. La procedura è inoltre facilmente estendibile ad altre aree di 

interesse industriale sia nella realtà farmaceutica che in altre realtà manifatturiere.  

Le metodologie applicate e suggerite vanno dall’applicazione di tecniche multivariate 

comuni come l’analisi delle componenti principali [11] per l’analisi esplorativa e la 

visualizzazione dei dati a tecniche più complesse come l’utilizzo di algoritmi di 

clustering [39] per l’identificazione di patterns nascosti nei dati o tecniche di 

classificazione che spaziano dall’analisi multivariata lineare [49] a tecniche di 

modellazione non-lineare delle classi basate su applicazioni machine learning [43][44].  

L’applicazione al caso studio ha mostrato ottimi risultati per quanto riguarda 

l’identificazione di classi di scorrevolezza, identificando quattro possibili classi, 

partendo da un set limitato di proprietà disponibili. La modellazione delle classi per la 

costruzione di un modello per la classificazione ha invece dimostrato come sistemi di 

classificazione non-lineare risultino più appropriati per descrivere la conformazione dei 

limiti fra classi.  

Nella seconda e ultima parte della Tesi, diversi approcci multivariati per la 

modellazione di un alimentatore a perdita-in-peso vengono proposti. Lo scopo di questi 

modelli è fornire degli strumenti flessibili e facilmente interpretabili per la predizione 

di eventuali variabili di qualità. Le applicazioni vanno dalla semplice caratterizzazione 

o simulazione di un profilo per investigare la processabilità di alcuni materiali 

nell’apparecchiatura ad applicazioni più complesse come la progettazione di sistemi di 

monitoraggio in linea e l’identificazione di possibili guasti o deviazioni dalle condizioni 

operative normali.  

In questo caso si è cercato di costruire dei modelli statici [12] e dinamici [34] di questa 

unità di processo tramite la regressione di una variabile importante per la qualità (feed 



 
 

factor) a partire dai parametri di ingresso, quali setup dell’apparecchiatura, proprietà 

dei materiali e variabili dinamiche registrate dall’apparecchiatura durante la fase 

operativa. Oltre ai vari spunti modellistici presentati, un esempio applicativo su un caso 

studio ripreso da alcuni dati sperimentali permette di apprezzare come dei modelli 

dinamici, basati sui dati raccolti in passato, possano produrre delle stime del profilo di 

feed factor che risultano essere molto prossime ai valori reali. La convalida esterna del 

modello mostra infatti dei risultati più che soddisfacenti per lo scopo per cui è stato 

concepito ed apre la porta all’utilizzo di questo approccio per scopi modellistici più 

sofisticati.  
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Introduction 

Many traditional chemical industries, such as petrochemical, fine and bulk chemicals, 

are continuous by nature, others (like the food industry) rapidly changed from batch to 

continuous manufacturing to improve their efficiency and adapt to a large volume 

market. The advantages of a continuous way of operating are various, e.g. an increasing 

flexibility and facility in scaling up, a decreasing manufacturing time, a maximization 

of the production with a minimization of wastes and energy consumption and a 

consequent speeding up of the supply chain [1].  Despite that, the pharmaceutical 

industry is still manufacturing a wide majority of products using a batch environment. 

This technology delay is mainly due to a lack in the regulatory sphere for continuous 

pharmaceutical processes that discouraged the company to invest in the past pushing 

forward to more advanced and efficient production routes [2] [3]. Nonetheless, the 

remarkable characteristic of the pharmaceutical industry has been its incredibly high 

reported profitability even with a relatively scarce optimization of the production 

processes. This fact prevented the companies to focus the investments in this area of 

research for several decades. However, the increasing costs and risks in the drug 

discovery and development field and the new competition for the introduction of low-

price generic substitutes, caused a downturn of the return of investments and a 

consequent need of revising the processes to maximize the profit margin [4]. 

Thus, thanks to several initiatives launched by regulatory agencies such as the Food and 

Drug Administration (FDA) and the European Medicines Agency (EMA), in the last 

decades the pharmaceutical industries, in parallel with a wide research effort of the 

academic organizations, gradually explored the possibilities of continuous 

manufacturing [5] [6]. This technology development has been driven by the 

fundamental postulate, commonly named quality-by-design (QbD), which clearly states 

that the product quality must be “embedded” inside the product itself since its design 

process. This statement means that, in order to know and control the final quality of a 

product, a comprehensive knowledge of the relationships between material properties, 

process parameters and quality specifications must be achieved. In this new concept of 

product development, mathematical modelling acquires a leading role to integrate 

experience-based knowledge and product design [7].  

This is also the case of tablet manufacturing, that still cover most of the used drug 

product forms in the market. All continuous tablet manufacturing processes begin with 

a constant feeding of the powder materials required by the formulation into the system 

using a standard equipment, called loss-in-weight feeder.  
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Loss-in-weight feeders have been designed to ensure a certain feeding stability and 

accuracy over a wide range of different powder materials. However, the performance 

of a particular feeder, during normal operating conditions, highly depend on the raw 

material properties, specifically, material flow properties. For example, easy flowable 

materials have shown better performances in terms of feed rate variability but they can 

be responsible of “flushing” phenomena, when the powder is subjected to sudden 

pressure drops, that may lead to relevant oscillation in the flow rates. Contrarily, 

cohesive powders have shown several problems that may lead to a relevant instability 

even during normal operations, because of their capability to adhere to the hopper walls 

or bridge across the same or, eventually, to stick to the screw surface [8].   

Therefore, it is important to classify a new material based on its flow properties before 

starting to process it in the equipment.  

Nowadays, a correct classification of a specific powder needs to be performed by 

material scientists and, ultimately, it would lead to a qualitative estimation of the 

feeding performance carried out by process experts. Consequently, the state of art in 

this field heavily relies on the empirical knowledge accumulated in the past and the lack 

of a systematic and quantitative tool, to predict the feeder performance, might cause 

several unexpected problems when new materials are firstly introduced in the 

continuous line.  

Moreover, the flow-related behaviour of powders is still poorly understood because of 

its multi-dimensional intrinsic characteristic, in which several parameters and 

characterization techniques are not enough to fully describe the powder dynamics in the 

specific manufacturing context and they often present a high non-linearity descriptive 

space [9]. A univariate method of investigation and classification based on a single 

parameter or single characterization test might not be sufficient to fully represent the 

real behaviour of the material. Nonetheless, the complexity of the description of powder 

systems is confirmed by the historical shortage of first principle understanding of the 

physical phenomena associated to the same [10].  

The purpose of this thesis project is to explore the capability of data analytics to support 

the early stage of input material selection and the consequent product and process design 

of secondary continuous manufacturing processes. The core of the project is dedicated 

to the development of general procedure to aid the analysis and the development of a 

pharmaceutical raw materials database using a data-driven approach to recognize and 

model hidden patterns in the data. A systematic methodology to reorganize the data, 

explore the system, identify unknown patterns and design a supervised recognition 

system is proposed and illustrated going through an example of an industrial 

application.  
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The degree of knowledge about the system that can be obtained by this investigation is 

likely to provide a support in the development of secondary continuous line, especially 

as concerns the feeding unit operation and the possibility of using a data-driven 

approach to understand and predict the flowability performance of new powder 

materials in the equipment.  

To this end, in the last part of the project a possible modelling application is presented 

about how to combine input material information and other input process data (e.g. 

equipment setup) in order to develop a multivariate statistical modelling approach to 

predict the feeder performance. 

  



 
 

 



Chapter 1 

Chemometrics modelling and data 

analysis  

In this Chapter the mathematical description of the chemometrics methods used in this 

Master Thesis research project is given. The two main aspects described are the pattern 

recognition techniques in reference to clustering and classification and the linear 

multivariate regression techniques in the context of the prediction of the quality 

performances of a response variable. The wide majority of the data analysis carried out 

in this research project is based on multivariate statistical techniques; thus, a relevant 

section of this chapter is dedicated to latent variable modelling either for pattern 

determination and exploratory analysis, process optimization and quality prediction. 

However, a specific section is dedicated to a relatively novel technique in non-linear 

classification, originally introduced in the machine learning community, and called 

support vector machines (SVM). This classification technique is then compared to some 

more classical statistical pattern recognition models, such as partial least-squares 

discriminant analysis (PLS-DA) and k nearest neighbours (k-NN). Although all the 

chemometrics techniques discussed have broader applications, the discussion here 

refers solely to the context of the related applications presented in the next chapters.  

1.1 Multivariate statistical analysis techniques 

Nowadays industrial processes have thousands of sensors that record and store a 

massive amount of data and even a single unit operation might have dozens of them. 

Moreover, input materials are always characterized by a significant number of material 

properties to try to establish the link between input and output quality. The same 

laboratory instruments used for the characterization measure tens of thousands 

variables.  The results are significantly large datasets that may result impossible to be 

fully explored using a univariate approach with a consequent wastefulness of the 

available resources. It is in this context that multivariate statistical analysis (MSA) 

becomes a powerful tool for the off-line or in-line data analysis.  

MSA techniques, also known as latent variables (LVs) techniques, allow the 

construction of models that represent the system taken into consideration through the 
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definition of a new restricted set of variables, latent variables precisely, generated from 

the original data available, but able to capture in an optimal way the variability structure 

and the correlation of the data.  

The most known and used methods are the principal components analysis (PCA) [11], 

to explore the correlation between variables in a single dataset and the projection on 

latent structures or partial least squares regression (PLS), to develop regression models 

and determine the correlation between two blocks of data: the so called predictor (X) 

variables and predicted (Y) variables [12] [13] [14]. The areas of application of MSA 

in the pharmaceutical industry are numerous, e.g. general understanding of raw material 

attributes and batch differentiations [15][16], increasing the knowledge of the process 

[17] and aiding the optimization of the process parameters [18], real time prediction of 

quality attributes [19], and calibration models for process analytical technology (PAT) 

control systems [20] [21] [22].  

 

1.1.1 Principal components analysis 

The concept of PCA has its first appearance in 1901 by Karl Pearson, although the first 

to present in its formal general procedure as we know it today was Harold Hotelling in 

1933. However, the delineation of the basis for the systematic application of the method 

to reasonably sized problem had to wait for the advancement of the computers and it is 

attributed to J. Edward Jackson in 1981 [23]. 

The basic idea behind PCA is based on the fact that, in any dataset, the key informations 

are embedded in just some dominating variables and in the way the change respect to 

one another, known as co-variance [24]. The other sources of variability instead, do not 

add any relevant information to the analysis and this is easy to be understood in the 

chemical systems where noise in the process or instrument measurements and redundant 

variables are always present. Thus, it is necessary a method to compress the essential 

information in such a way that the general trend of the data might be easily explained 

and displayed, whereas the noise is excluded in some sort of signal averaging. PCA is 

exactly the method that is able to extract the information of covariance and correlation 

between the original variables, identifying the linear combinations that better describe 

the variability in the data [25].  

Mathematically, considering X [N × V] a matrix of N rows and V columns, in which 

the rows are the samples or elements (e.g. powder materials, experiments, samples) and 
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the columns are the variables of the system (e.g. material properties, process variables), 

PCA decomposes X as the sum of r vectors t and p: 

𝑿 =  𝒕𝟏𝒑𝟏
𝑻 + 𝒕𝟐𝒑𝟐

𝑻+ . . . + 𝒕𝒓𝒑𝒓
𝑻 , (1.1) 

where r is the rank of the matrix and must less or equal than the smaller dimension of 

X, i.e., 𝑟 ≤ min{𝑁, 𝑉}. 

The vectors t and p collect the ti and pi elements and are ordered progressively by the 

amount of variance captured. The vectors t are known as score vectors and they describe 

how the samples are related each other. The vectors p are known as loading vectors and 

they contain the information of how the variables relate each other. Usually the resulting 

PCA model considers just z components of the respective vectors that describes the 

wide majority of the variance of the data, so that the remaining small variance factors 

are consolidated into a residual matrix E:  

𝐗 =  𝐭𝟏𝐩𝟏
𝐓 + 𝐭𝟐𝐩𝟐

𝐓+ . . . + 𝐭𝐤𝐩𝐤
𝐓 + 𝐄 , (1.2) 

where E is also known as the matrix of the errors, which is generated by the 

reconstruction of the original X [26]. 

The value of z can be determined by different approaches but for this research project 

the cumulative percent variance and the average eigenvalue methods have been used 

according to the description given by Valle et al. [27].  

The score and loading vectors are calculated starting from the eigenvector 

decomposition of the covariance or correlation matrix of the original X defined as: 

cov(𝐗) =
𝐗𝐓𝐗

N − 1
  , (1.3) 

in which the relative eigenvectors λ, constituted of the λi eigenvalues, are in fact the 

loading vectors p so that: 

cov(𝐗)𝐩 = λ𝐩 . (1.4) 

The scores vectors t are obtained from combination of the original dataset following: 

𝐭 = 𝐗𝐩 . (1.5) 

As a matter of fact, the scores t form an orthogonal set and are collected in the respective 

matrix T, while the loading p are orthonormal and are collected in the respective matrix 

P. These important properties guarantee that scores and loadings are orthogonal each 

other and so the resulting principal components are not correlated.  In this way, the 

original problem can be re-formulated as in Figure 1.1: 

𝐗 = 𝐓𝐏𝐓 + 𝐄,              𝐗𝐚𝐩𝐩𝐫 = 𝐓𝐏𝐓,                 𝐄 = 𝐗 −  𝐗𝐚𝐩𝐩𝐫 . (1.6) 
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Geometrically, PCA identified in the principal components the directions of maximum 

variability of the data. Because of their orthogonality, it is possible to build up a new 

fictitious space with a reduced number of latent variables in which the samples are 

projected. Generally, two or three latent variables already explained a relevant 

proportion of the variance in the data, so that it is easy to represent the data structure 

into a two or three-dimensional scatter of the new reduced space. From this point of 

view, the loadings explain the rotation of the new coordinate system respect to the 

original one and the scores are the coordinates of the samples within the new space [28].   

An intuitive example of how it is possible to reduce three original dimensions in a new 

system of two latent variables is given in Figure 1.2, but the concept is easily translated 

when the original space is multidimensional.  

  

Figure 1.1 Geometrical representation of PCA reduction from a three-dimensional space to 

a two-dimensional space according to the variance information explained by the data [26]. 

 

Figure 1.1 Approximate reconstruction of an original dataset X from PCA scores T and 

loadings matrix P using z latent variables. E is the so-called error or residual matrix.   

 

z 

 

z 
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1.1.2 Data preprocessing 

Data preprocessing is a fundamental step before starting any kind of MSA, especially 

in chemical and process data where the unit dimensions might be really different among 

the process variables or material properties characterization. Thus, data need to be 

pretreated and the most common operations are mean-centering and variance scaling.  

Mean-centering subtracts to each column of the original matrix the relative average in 

such a way to translates the axes coordinate system to the centroid of the data. Variance 

scaling instead has the aim of levelling off the effect of the variance captured when 

different unit dimensions have considerable impact on the system variation and this is 

achieved dividing each column for the standard deviation of the same. The application 

of these techniques is a standard requirement for manufacturing or process data and it 

is common refer as autoscaling. Figure 1.3 shows the geometrical meaning and impact 

of each of these techniques on the final PCA result. 

However, the pretreatment is always selected based on the nature of the original data 

and autoscaling is not necessarily the best choice. 

 

 

            a) 

 

 

 

 

 

 

 

            b) 

Figure1.2 (a) The two plots at the top show the effect of mean-centering preprocessing on PCA scores. 

(b) The two plots at the bottom show the effect of scaling preprocessing on PCA scores already mean-

centered. From the top-left corner to the bottom-right corner the overall representation of autoscaling is 

highlighted [29]. 
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1.1.3 Partial least-squares 

Partial Least-Squares, also known as Projection on Latent Structures was introduced in 

the late seventies by the statistician Herman Wold for the numerical analysis of chains 

of matrices in econometrics [30] [14]. The method was then extended to the 

chemometrics field by his son Svante Wold and many others [31] [14] [32] in the 

eighties. 

PLS is defined as a multivariate linear regression method to correlate and find the 

relationship between two blocks of data X and Y, with the final purpose of generating 

a predictive model to estimate the relative variables in Y. As suggested by the name, 

the projection technique concept is similar to an extension of the PCA to a regression 

problem between two matrices, but with an important difference in the application of 

the algorithm. As a matter of fact, if in the PCA the single block is decomposed to 

sequentially extract the principal components maximizing the amount of variance 

captured by each of them, in the PLS the principal components selection needs to take 

into account the directions that explain the larger amount of variance in the predictor 

block X [N x VX] that is highly and linearly related with variance in the interesting 

properties in the predicted block Y [N x VY].  

Geometrically, PLS is a projection of the predictors and predicted elements into a new 

common space in which the correlation between X and Y is maximized and in which 

the dimensionality is defined by the new appropriate set of latent variables (lv). 

From the mathematical perspective, the problem can be reformulated as follows: 

𝐗 = 𝐓𝐏𝐓 + 𝐄𝐗 , 

𝐘 = 𝐉𝐐𝐓 + 𝐄𝐘 , 

𝐓 = 𝐗𝐖 , 

(1.7) 

(1.8) 

(1.9) 

where T [N x lv] and J [N x lv] are the score matrix of X and Y, PT [N x lv] and QT [N 

x lv] are the loading, EX [N x VX] and EY [N x VY] are the residuals matrix to reconstruct 

the original X and Y. W [N x lv] is an additional block of vectors, known as weights, 

that are required to maintain orthogonal scores.  

As a result, PLS is a powerful linear regression method that allows the handling of a 

large number of initial variables because of its capability of reducing the original space 

preserving the maximum linear correlation between input and output with a relatively 

small number of PLS components used for regression.  

 

1.1.4 Multiple responses PLS 

One of the several advantages of using PLS instead of other linear regression methods 

is the ability to model and analyze several Y responses together, which is particularly 
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useful when the Y’s are correlated and it is likely to have an overall representation of 

the quality variables. This concept is well explained by S. Wold et al. [12] and it is 

something to keep in mind when a problem required the modelling of a set of responses. 

If the multivariate Y block is measuring different variables that are fairly independent 

each other, a single PLS model would result to have many components and thus it is 

difficult to be analyzed. In this case building up separate models for each Y with fewer 

latent variables is a smart solution to simplify the interpretation. If this is not the case 

and the Y’s are correlated there are no reasons to prefer separate single models. To 

understand the degree of correlation in the response block, it is suggested to perform a 

PCA on the Y matrix, in such a way that the practical rank of Y is obtained and if it is 

small compared to the number of Y variables, it means that the variables are highly 

correlated and a single PLS with multiple responses is warranted. Contrarily, if the 

practical rank is not close to one and it required the use of several latent variables, so 

that the resulting score plot clusters the Y’s in different groups, separate PLS models for 

each group should be developed [12].  

Modelling a profile response, instead of singular separated variables, gives the 

advantage of removing background noise uniformly based on the fact that the 

correlation between input variables and output variables is modelled in a single model. 

An example of a situation where a multiple responses PLS model is required to predict 

the quality profile of a target variable is given in the case study presented in Chapter 4. 

 

1.1.5 Multi-way PLS 

Multi-way Partial Least-Squares, also referred as MwPLS, is the natural extension of a 

PLS model to handle three-dimensional matrices of data. Manufacturing data developed 

along three dimensions are very common in all the type of industries that are dealing 

with batch processes, where a prescribed amount of materials is processed for a finite 

time. Thus, the two-way data matrix consisting of i=1,2,...,I batch runs and j=1,2,...,J 

process measurements can be extended over a k=1,2,...,K time data points, resulting in 

a three-dimensional matrix 𝐗̅ [I × J × K], in which the batches are organized along the 

vertical side, the process variables along the horizontal side and their time progression 

along the last dimension. Analogously, one or more quality response variables, 

m=1,2,...,M , can be disposed in a three-way response matrix 𝐘̅ [I × M × K] as shown 

in Figure 1.4. 

Although several direct modelling approaches to three dimensional matrices have been 

proposed, the PLS model is a bilinear model and for this reason it requires an unfolding 

procedure to reorganize the data in two dimensions and finally perform a normal PLS. 

The choice on the direction of unfolding is determined by the source of variability that 
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is more likely to be modelled and, particularly, for batch data analysis the most common 

unfolding techniques are variable-wise unfolding and batch-wise unfolding [33]. 

Variable-wise unfolding rearranges the data in a such a way that all the batches are 

disposed one below another and each sampling point becomes a sample (row) of the 

resulting two-dimensional X or Y matrix as: 

𝑿̅ (𝐼 ×  𝐽 ×  𝐾) ⇒ 𝑿 (𝐾𝐼 ×  𝐽) , (1.10) 

On the other hand, batch-wise unfolding reshapes the data to obtain a final two-

dimensional matrix X or Y where the batches are placed side by side in a such a way 

that a complete batch is a sample as: 

𝑿̅ (I ×  J ×  K) ⇒ 𝑿 (I ×  JK) . (1.11) 

In the first case, only the variances and instantaneous cross-covariances of the variables 

are taken into account and, as a consequence, the dynamic of the batches is not 

modelled.  

In the second case, due to the fact that the batches are one aside the other, variances and 

instantaneous cross-covariances are now captured by the model at every sampling time.  
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The implication of this unfolding technique is that the dynamics of the variation around 

the average trajectory at each point time are explained, thus when a PLS model is 

applied between X and Y a prediction of the average trajectory of a quality response 

variable for future batches based on a historical database can be obtained [34]. 

The capabilities of this latter approach are spread across a wide range of applications, 

e.g. they include the possibility of on-line soft sensing to predict end-quality point 

during the batch evolution, modelling dynamic system for process analysis or control 

system design [19][35]. However, the major drawback of this procedure is that the batch 

runs need to all have the same length in order to be unfolded. This problem can be 

solved applying several different strategies of batch alignment or synchronization, 

depending on the origin of the processed data [36]. 

 

1.2 Statistical pattern recognition 

The availability of an enormous quantity of data and the need to extract from them as 

many information as possible is one of the challenge of the next future in order to make 

an effective and profitable use of them.   

Nowadays the problems of automatic identification, characterization, classification and 

grouping of patterns in dataset where nothing or little is known about, are common and 

frequent in all the scientific disciplines such as engineering, chemistry, biology, drug 

discovery and many more. However, giving a general but accurate definition of what is 

a pattern is not trivial. Watanabe specifies a pattern “as opposite of a chaos; it is an 

entirely vaguely defined, that could be given a name” [37]. It appears clear that in the 

recognition of a certain pattern the decision-making part plays a fundamental role and 

it involves the use of an arbitrary intelligence to attribute a certain qualification to the 

patterns identified. 

Depending on the amount of initial information available for a given dataset, the 

exercise of pattern recognition may lead to one of the two following tasks: 

• unsupervised pattern recognition (e.g. clustering), in which multiple patterns 

needs to be discovered and grouped based on the similarity of the feature’s 

descriptors; 

• supervised pattern recognition (e.g. discriminant analysis), also known as 

classification, in which new objects need to be assigned to predefined known 

classes. 

The statistical approach to these situations can be defined as a more general problem 

where each element is represented in terms of d features or measurements, and it can be 

viewed as a point projected into a d-dimensional space. For unsupervised pattern 
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recognition, the goal is to identify compact and disjoint regions of elements in the d-

dimensional space and select the set of features that better described each of them. For 

supervised pattern recognition, the set of features that describes a certain pattern needs 

to be learnt from the training set, so that the objective is to establish the decision 

boundaries in the feature space that better separate elements belonging to different 

classes. In both the cases the effectiveness of the feature set recognition is given by how 

well patterns from different classes can be divided [38]. 

In practice, applications may happen that both these tasks need to be performed one 

after the other, even if this is not the most common situation. However, an example of 

this scenario is given in the case study presented in Chapter 3.  

 

1.2.1 Unsupervised pattern recognition  

Unsupervised pattern recognition techniques, usually referred as “clustering 

techniques”, are very common in the data mining context where the information 

available for a database of samples is very limited. The final goal of these techniques is 

to systematically organize into groups the elements of the matrix in such a way that the 

distances within elements of each singular group is minimized, whereas the distances 

between the different groups is maximized. The main concept of clustering can be 

summarized as the formation of groups of records with similar features. The problem is 

to find the most suitable criteria, that has to be translated into an algorithm, to 

quantitatively define the concept of similarity as a mathematic statement for measuring 

proximity between records and grouping them into meaningful clusters.  

The importance of the capability of identifying and labelling records appears obvious, 

but, as sharply pointed out by Gelbard et al. [38], there are several reasons that explain 

why this approach is still seen with some perplexities in the industrial applications. 

Firstly, the variety of techniques developed in this field raise the issue of standardization 

because different algorithms produce different outcomes and there is any standard 

procedure to compare them. Secondly, a consistent effort and responsibility has to be 

dedicated to the interpretation of the various clusters results and it requires the support 

of some expertise of the system analyzed. As a matter of fact, the clustering process 

might be unpredictable and not always the results match the expectations. Finally, the 

quality of the clustering algorithms is not clearly measurable and a comparison between 

several techniques needs to be performed in order to select the most suitable method for 

the specific problem. 
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However, cluster analysis is a very powerful tool to rapidly organize large amounts of 

complex data if its use is smartly applied considering the boundary conditions of the 

original system. 

 

1.2.1.1 Hierarchical Clustering Analysis 
 

Hierarchical cluster analysis (HCA) is an agglomerative method of clustering in which 

the data are organized in a nested sequence of groups according to a linkage rule. The 

general concept behind agglomerative methods is that it begins with each object 

forming its own cluster to then progress by combining the initials clustering into larger 

ones based on a distance selection criterion between the elements and the clusters.  

Even in this case, there are several distance measures between samples that can be used 

and a wide choice of linkage algorithms to guide the clustering formation. 

Initially, a distance measure needs to be defined and the choice can affect the decision 

of applying it to the original elements’ space dimension or to the reduced space if a 

preliminary PCA is performed. The two most popular distances used in the 

chemometrics applications are: 

• Euclidean distance   bx,y = √∑ (𝒙d − 𝒚d)2D
d=1  , (1.12) 

• Mahalanobis distance bx,y =  √(𝒙 − 𝒚)𝑇 ∙ 𝒁−𝟏 ∙ (𝒙 − 𝒚) , (1.13) 

where x and y are two vectors in a d-dimensional space that represent two generic 

records x and y with d=1,...,D measurements, and Z is the variance-covariance matrix 

whose elements are the covariance between each pair of variables. The Euclidean 

distance is the simple geometrical concept of distance between two objects in a 2-

dimensional space that can be easily generalized to a d-dimensional space, where d is 

used to define a generic dimension that is equal to the D measurements in this specific 

case. In this case, each variable is considered equally important in determining the final 

distance between observations. It can be used even in the case of data compression, e.g. 

PCA reduction, and in this case the distance in the new reduced space is calculated 

between the new set of coordinates given by the scores.   

On the other hand, the Mahalanobis distance can directly take into account and 

compress the effect of correlation between variables by decreasing the weight 

associated to such variables because it involves the calculation of the inverse of the 

covariance matrix. It is usually used to avoid the principal component reduction and the 

consequent principal component selection on the original dataset, but the computation 
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of the variance-covariance matrix might cause problems if the original dataset present 

a high degree of multicollinearity [40].   

Once the distances between elements have been calculated, the new distance between 

clusters need to be computed and the clusters need to be linked using what it is normally 

referred as “cluster method” and its “linkage rule”. Once again, there are several 

possible alternatives to obtain the inter-cluster distances. 

A short description of the most used methods is given below and Table 1 summarizes 

the methods’ differences according to the Eigenvector® documentation 

(http://wiki.eigenvector.com/index.php?title=Main_Page) : 

• nearest neighbour: The distance between any two clusters is defined as 

the minimum of all possible pair-wise distances of objects between the two 

clusters; the two clusters with the minimum distance are grouped together. This 

method tends to perform well with data that form elongated "chain-type" 

clusters. 

• furthest neighbour: The distance between any two clusters is defined as 

the maximum of all possible pair-wise distances of objects between the two 

clusters; the two clusters with the minimum distance are grouped together. This 

method has better results with data that form "round", distinct clusters. 

• pair-group average: The distance between any two clusters is defined as the 

average distance of all possible pair-wise distances between objects in the two 

clusters; the two clusters with the minimum distance are grouped together. This 

method shows similar performances with both "chain-type" and "round" 

clusters. 

• centroid: The distance between any two clusters is defined as the difference in 

the multivariate means (centroids) of each cluster; the two clusters with the 

minimum distance are grouped together. 

• median: The distance between any two clusters is defined as the difference in 

the weighted multivariate means (centroids) of each cluster, where the means 

are weighted by the number of objects in each cluster; the two clusters with the 

minimum distance are joined together. Because of the weighted distance, this 

method is supposed to perform better than the Centroid method if the number of 

elements is expected to vary substantially between clusters. 

• Ward's method: This method does not require calculation of the cluster centres; 

it links the two existing clusters such that the resulting pooled within-cluster 

variance (with respect to each cluster's centroid) is minimized. 

 

http://wiki.eigenvector.com/index.php?title=Main_Page
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Table 1.1 Cluster methods description based on inter-custering distances calculation and linkage rule.  

Method 
Distance Between Existing 

Clusters 
Linkage Rule 

Nearest Neighbour 

Minimum of pair-wise distances 

between any two objects in each 

cluster 

Join 2 nearest clusters 

Furthest Neighbour 

Maximum of pair-wise distances 

between any two objects in each 

cluster 

Join 2 nearest clusters 

Pair-Group Average 
Average distance between all 

pair of objects in each cluster 
Join 2 nearest clusters 

Centroid 
Distance between the means 

(centroids) of each cluster 
Join 2 nearest clusters 

Median 
Distance between the weighted 

means (centroids) of each cluster 
Join 2 nearest clusters 

Ward’s Method N/A 

Join clusters such that the 

resulting within-clusters 

variance (with respect to the 

centroids) is minimized 

 

One of the greatest features of HCA is the possibility of displaying the overall results 

of the clustering in the form of a dendrogram, that is the mathematic formalization of a 

tree representation to illustrate the relationship between observations, according to the 

different distance levels.  

However, the easy reading level of this graphic representation and the variety of 

different grouping methods might lead to an inconsistent pattern identification and 

therefore it is advisable to test all the possible method and compare the different results. 

This task usually includes a quality evaluation of the clustering outcomes guided by 

some possible statistical indicators. A dendrogram is mathematically defined as the 

graphical representation of a cophenetic matrix (matrix of similarities between clusters). 

Thus, a comparison between the cophenetic matrix and the original distances matrix of 

the unmodeled data can be calculated by means of a cophenetic correlation coefficient 

(ch), defined as: 

ch =
∑ ( bxy − b̅ )( txy − t ̅)x<y

√[∑ ( bxy − b̅ )2][∑ (  txy − t ̅)2]i<jx<y

 
(1.14) 

where bxy is the Euclidean distance between the x-th and the y-th observations, txy is the 

cophenetic distance, that is height of the node at which two elements are first grouped, 

and 𝑏̅ and  𝑡̅  are respectively the average of bxy and txy. A value of the cophenetic 

correlation coefficient close to 1 means that the distances in the cophenetic matrix are 

consistently preserved with respect to the original one [41].  However, the estimation 

of this coefficient to compare different algorithms is not necessarily an absolute 
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indicator of which one of the methods is the “best” one. Generally, a good method 

should preserve the original information about the similarity between samples and this 

means that the cophenetic coefficient should be high, but this does not imply that the 

method with the higher coefficient is the most well-performing in terms of correct 

clustering. This concept will be better exemplified in the case study of Chapter 3.  

 

1.2.2 Supervised pattern recognition  

Supervised pattern recognition, commonly called “classification”, is a standard task for 

most of the scientific disciplines because it responds to the demand of classifying new 

elements according to a list of known groups. The classification of a new molecule 

starting from its functional groups or the identification of a genetic disease by 

identifying the sequence of the protein-code are just some possible examples of real 

situation where large dataset of classified samples can be used to create a training set 

for a future automatic classification. Mathematically, the formalization of the so called 

training set is a mathematical model between some measurements or variables that 

defines G classes previously determined. A practical example, that anticipates the case 

study of Chapter 3, is about whether it is possible or not to identify the classes of 

flowability of new powder materials based on their material characterization properties. 

Usually a limited existing dataset where the classes are established is available but it is 

not always possible to test a relevant amount of a new powder to understand their 

flowability. Much easier is to characterize few relevant indicators and try to identify the 

pattern similarity compared to the existing classes in the training set.  

Several classification methods, also called “classifiers”, have been proposed in the last 

fifty years of research, but the statistical approach to the problem is the one that has 

been most strongly investigated and used in practice. Because of the increasing 

complexity required by the novel applications, more sophisticated techniques like 

artificial neural networks and methods imported from statistical learning theory are 

taking hold. However, in spite of the numerous methods proposed in the literature, it is 

not possible to state that a method is superior to the others and it is able to solve any 

kind of problem of supervised pattern recognition. Furthermore, a more complex 

method is not a synonym of a major suitability for complicate systems and vice versa. 

As for unsupervised pattern recognition, the choice of the method is highly related to 
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the nature of the original dataset to be modelled and a comparison between many 

algorithms is the only way to determine the one to be used. 

The performance of a classification method can be evaluated using a simple statistical 

parameter like the percentage of samples correctly classified (% CC).  

Generally, the procedure to determine the quality of predictions of a model is called 

“validation” and it can be done following two subsequent steps: 

 internal cross-validation of the training set; 

 external validation on an independent test set. 

The first consists in an iterative process where the original matrix of data is split in 

subsets, each of them constituted of one or more samples. A model is then trained using 

a subset as training set to train the supervised learning algorithm and the remaining data 

are used for testing the model performance. This procedure is then repeated several 

times randomly partitioning the original data for the next iteration and calculating the 

cross-validation error associated. The average cross-validation error is finally used as a 

statistical indicator to prevent overfitting during training. The strategy of the data 

partition can be randomly selected or it can be standardized using some common 

techniques like k-fold, leave-one-out and many others.  Usually, this model assessment 

technique is not suggested for a stand-alone use unless the number of original samples 

is limited.    

The second next step of external validation on a “blind test” is always recommended 

and it consists on considering a series of samples to be unknown class membership since 

the beginning and now the model, built up using just the training set, is applied to the 

external set of data to test the percentage of correct classification. In this case a common 

and robust rule of thumb to determine the test size is 80% of the data should be used for 

training and 20% for external validation. However, once again this is largely dependent 

on the dimension of the original dataset and its class partition [42] [38]. 

As already mentioned, existing classifiers algorithms are numerous and they follow a 

wide variety of classification approaches that generate different features and related 

suitable applications. Nevertheless, in the statistical approach classifiers can be 

distinguished as local or global, if only a small part or all samples are taken into account 

for class assignment; class-modelling, when a specific and delimited space for each 

class is identified and object projected outside are not classified; parametric or non-

parametric, if the form of the analytical distribution is known or not, distance-based if 

the classification is based on a distance criteria between elements; linear or non-linear, 

on the basis of how class boundaries are derived; probabilistic if they assume a certain 

probability distributions of the samples [43]. 
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1.2.2.1 Support vector machines 

 

Support Vector Machines (SVM) are a non-linear data modelling technique developed 

by Vapnik in 1995, in the context of machine learning classification and, few years later, 

it has been extended to solve non-linear regression problems [44] [45]. In the following 

years, this new approach for solving classification problems has gained a very high 

popularity not only in the machine learning framework, but also in the chemometrics 

community. The reasons behind this unique success are the interesting novel features 

and promising performance of the method compared to other traditional approaches, 

that ensure a flexibility in solving problems with a high degree of complexity. 

Among all the attractive features of SVM, the key characteristic is that class definitions 

are obtained “drawing” the boundaries between classes using the samples that are laying 

in the proximity as “supports”. The mathematical formulation revolves around the 

structural risk minimisation (SRM) concept: 

 

Re ≤ Remp +
√

dVC (𝑙𝑜𝑔 (
2N
dVC

) + 1) − 𝑙𝑜𝑔 (
η
4)

N
 

 

(1.15) 

where N is the number of samples in the training set, dVC is the Vapnik-Chervonenkis 

dimension that roughly relates to the complexity of the boundaries, Re is the expected 

risk that relates to the true error, Remp is the empirical risk that relates to misclassification 

error as observed during model building, and lastly, 𝜂 is 1 – the probability that the 

upper bound defined for Re holds. In particular,  Remp relates to the error measured on 

the training sample itself, while Re relates to the “true” underlying error [45]. 

Consequently, the best classifier is the one that minimises the upper bound on Re and 

not the one that minimises the error on the training data as in the traditional empirical 

risk minimisation (ERM), employed by conventional neural networks.  

Furthermore, SRM formalises the important conception that the complexity of the 

classifiers should always be linked to the size of the training set available (the number 

of samples N), in such a way that the complexity has to be controlled in order to avoid 

underfitting or overfitting during modelling. This key feature of SVMs allows to relax 

and generalise the class definition problem, which is the main goal in statistical learning 

[47].   

Despite the complex formulation of the SVM algorithm, its mathematical derivation 

can be summarized in three parts: 

• basic definition for linearly separable classes; 



21 
 

Chapter 1 

• extension to the non-linearly separable case thanks to the use of kernels 

functions; 

• generalised solution and implementation of trade-off parameters to control 

complexity. 

 

 

In the first case, a binary classification problem for linearly separable classes can be 

considered as in the example of Figure 1.5. The classification function to determine the 

boundary between the two classes can be constructed as a hyperplane, i.e. a line if two-

dimensional, a plane if three-dimensional and, generalizing, a n-dimensional 

hyperplane if the space is n-dimensional. 

It is not difficult to understand that an infinite number of hyperplane that split the two 

classes respecting the class membership can be found. Thus, the problem is to determine 

which is the one that separates them in an optimal manner and that corresponds to the 

situation where the distance between closest samples and the hyperplane is maximal. 

Mathematically, the optimal hyperplane must be equally spaced from the two classes 

and the space between the classes takes the name of margin. Hence, the problem is 

reduced to an optimisation problem of minimization of the margin expressed by a 

Lagrange function through a quadratic convex programming problem. As previously 

mentioned, to construct this margin only the observations that lies on the margin will 

be used and they are actually named support vectors since they solely determine the 

solution. As a result, all the other samples could potentially be removed from the 

training set and the boundaries definition would remain the same. 

Extending the case to a non-linear separable problem, the boundaries identification task 

becomes more complicated. An intuitive example is given in Figure 1.6 where two 

Figure 1.4 (a) Two classes example of the numerous possible separating hyperplanes and (b) 

identification of the optimal hyperplane for a two class linearly separable case using the closest 

samples (square marks) as support vectors to maximise the margin (black dotted lines) [46].  
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classes are present but it is not possible to find a suitable hyperplane to split them as 

required. 

In fact, this complex situation is not so uncommon as the descriptors of the system are 

linearly not correlated. However, SVM are able to handle this situation, in a very smart 

and efficient way, adding an extra step to the optimisation problem previously 

explained. In order to do that, the data needs to be “projected” into a very high-

dimensional space (compared to the original data space) by the mean of a feature 

function 𝜑(𝑥) . Then, the algorithm finds the optimal hyperplane through the margin 

minimization always using the closest samples as supports. The feature function 𝜑(𝑥)  

is selected from a restricted family of functions called kernels and this dimensional 

stratagem is known as kernel trick. Figure 1.6 schematizes the concept through the 

simplest example of a 2-dimensional space projected to a 3-dimensional space, but as it 

has just been outlined the kernel trick is applied to a much higher dimensional space 

increasing the capabilities of modelling very complex distributions. Several different 

kernel functions can be chosen in order to model the boundaries shape but the most 

popular choice is the so called Radial Basis Function (RBF) because of its singular 

tuneable parameter (the radial width γ).  

 

The last step of the algorithm procedure is the introduction of a trade-off parameter to 

control the complexity of the system since the kernel trick might lead to very intricate 

boundaries with the risk of overfitting. As a matter of fact, the radial width of the kernel 

γ is not enough to shape the boundaries taking into account simultaneously the margin 

maximisation and training error minimisation accordingly to the SRM concept. Thus, 

an additional parameter C, called penalty error or cost, is introduced to balance which 

of the two aspect should be emphasised. A lower penalty error will accentuate the 

margin maximisation, whereas a higher penalty error will increase the bias towards the 

training error minimisation. This new parameter is particularly important when the 

Figure 1.5 Boundary construction for a non separable case after projection into a higher dimensional 

space, where the optimal hyperplane is defined. The squares indicate the support vectors [46]. 
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system is characterized by highly non-linear boundaries and the risk of degrading the 

performance of predicting new samples membership is likely to happen.  

An intuitive representation of the effect of both γ and C on the boundaries modelling 

construction is given in figure 1.7 and figure 1.8, keeping firstly C and then γ constant 

respectively to isolate the singular effect of the parameters. 

Although the method was initially developed for two classes separation problem, 

several different procedures have been proposed to treat multiclass problems since they 

are common to be encountered in practical applications. However, the general approach 

to the classifiers definition does not change [48].   

For a more rigorous mathematical description of the SVM algorithm, refer to [48] [46] 

[47] [44]. 

 

 

 

 

Figure 1.6 Intuitive two classes example of margin distortion effect varying γ parameter 

with cost constant C=1.0 and (a) γ =0.0001, (b) γ =0.001, (c) γ =0.01, (d) γ =0.1. 

(http://wiki.eigenvector.com/index.php?title=Svmda) 

 

a) γ =0.0001 

 

b) γ =0.001 

 

c) γ =0.01 

 

d) γ =0.1 
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1.2.2.2 Partial least-squares discriminant analysis 

A partial least-squares discriminant analysis (PLS-DA) is nothing more than an 

extension of PLS for problems of classification and discrimination [49]. A multivariate 

regression model is constructed maximizing the covariance between the matrix of the 

samples features X and a class membership matrix Y. For multi-class problems, the 

class membership matrix Y is obtained by binary column encoding of the assigned class, 

where 1 indicates that a sample belongs to that class and 0 does not belong to that class 

[50]. 

The resulting model is able to project onto a lower dimensional space the relationship 

between data that explains their class affinity and this is done by a linear multivariate 

regression with the advantage of the capability of handling numerous co-linear input 

descriptors. Moreover, a PLS discriminant model, contrarily to conventional regression, 

does not need to model a response to fit exactly the data, so that the inner connection 

Figure 1.7 Intuitive two classes example of margin distortion effect varying C parameter 

with γ constant γ=0.01 and (a) C=0. 1, (b) C =1, (c) C=10, (d) C=100. 

(http://wiki.eigenvector.com/index.php?title=Svmda) 

 

 

a) C =0.1 

 

b) C =1.0 

 

c) C =10 

 

d) C =100 
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between the respective assigned class is more likely to be identified and learnt by the 

original training set. 

 

1.2.2.3 K nearest neighbours 

A very common reference method to test the performance among classifiers is the k-

NN, or k-nearest neighbours. This is mainly due to its formulation simplicity and its 

non-linear approach to supervised pattern recognition of complex dataset. Compared to 

the methods above, k-NN requires a much simpler algorithm and a very reduced 

computational effort. As a matter of fact, it is a distance-based method where a sample 

is classified according to the majority class of its k-nearest neighbours in the original 

data space [43]. As a result, the algorithm just need to calculate and analyse the 

distances between all the possible pairs of samples and identify which class shows the 

prevailing appearance among the selected k closest neighbours. 

Despite its simplicity, this method has several advantages because it does not require 

the formulation of numerous underlying assumptions, e.g. probability density function 

or normality of noise distributions and so on, and it has also the great feature of handling 

multiclass problem in a non-linear environment. Moreover, the original space can be 

reduced by principal component technique like PCA to take into account co-linear 

variables and noise reduction. 

On the other hand, this method has several limitations that need to be considered before 

applying it to any kind of dataset. Firstly, it is very sensitive to the choice of the distance 

measure and data pre-treatment. Secondly, the numbers of samples in each class of the 

training set should be approximately equal to not compromise the consistency of the 

majority vote paradigm. In addition, unless otherwise implemented, each variable 

assumes the same importance and the spread or variance in a class is not taken into 

account. Finally, ambiguous or outlying samples can hardly influence the resultant 

classification and the method becomes not sensitive to complex class boundary 

definitions [42]. 

 

  



 
 



 

 Chapter 2 

Continuous direct compaction tablet 

manufacturing and powder feeding 

This Chapter gives an overview of continuous manufacturing of solid oral dosage to 

contextualize the framework of the data analysis applications that are described into 

details in the next chapters. A particular focus is given to the next generation of 

continuous direct compression lines for tablet manufacturing, defining extensively the 

powder feeding equipment and its modes of operation. Finally, a generic description of 

the modelling flowchart approach, used in this Master Thesis project, concludes the 

Chapter.  

2.1 Continuous manufacturing of solid oral dosage 

pharmaceuticals 

2.1.1 General overview  

Oral solid dosage (OSD) forms, such as tablets and capsules, are still the most common 

products form commercialized in the pharmaceutical market after almost two centuries 

since their introduction.  This is not just the result of an established marketing 

confidence of this kind of products, but tablets and capsules still represent about half of 

all new medicines licensed by FDA [51] [52].   

The pharmaceutical manufacturing process of a solid drug is the result of two sequential 

phases:   

- upstream, or so called primary manufacturing, in which the active pharmaceutical 

ingredient (API) is produced by several alternatives of synthesis methods; 

- downstream, or so called secondary manufacturing, in which the API is combined 

with other pharmacologically inert solid substances, known as excipients, to 

complete the final dosage form. 

In the context of secondary tablet manufacturing, different methods can be used based 

on the inherent material properties of all the compounds to meet the final goal of 

ensuring the best quality product. Historically, the most common routes of 

manufacturing are implemented in a sequence of batch modes techniques, even if, as 



28 
 

Chapter 2 

already mentioned, over the last twenty years the pharmaceutical industry is pushing 

forward the development of continuous lines.   Among all the solutions, three major 

routes can be identified: direct compression, dry granulation and wet granulation 

(Figure 2.1). The choice of the most adapt way of manufacturing is related to the 

material properties of the powders required by the specific drug formulation. 

This project aims to aid the development of a continuous direct compression line, 

therefore, this alternative only will be presented in the next section, particularly 

focusing on   powder feeding equipment.  

 

 

Figure 2.1 Continuous OSD manufacturing process flow 

(https://www.tabletscapsules.com/enews_tc/2016/editorial/images/tc_ask_10_10_16f

ull.jpg). 
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2.1.2 Continuous direct compression process 

Direct compression is the simpler route to implement a continuous compaction 

manufacturing plant. Therefore, it has generated interested in developing it in a 

commercial scale. Contrary to dry and wet granulation, it does not require a size 

enlargement of particles during processing because of the suitable granular flow and 

dissolution properties of the API. Thus, the core technologies of this process become 

the initial continuous powder feeding and mixing phase, and the final tablet 

compression. A schematic block flow diagram of the direct compression process is 

illustrated in Figure 2.2. 

 

Figure 2.2 Direct compression block flow diagram. 

 

Multiple feeders at the beginning of the line provide the API and the excipients 

according to the formulation. Feeders feed in the same point the continuous blender and 

it is very important to constantly reach the set point feed rate to avoid content uniformity 

issues in the final tablet. The mass flow rate set point depends on the recipe of the 

specific product. Problems arisen in the feeding phase of the process can compromise 

the final quality specifications, i.e. the content of API in the tablets. Eventually, the 

blending unit is designed to damp small disturbances in the mass flowrate fed to the 

unit and ensure a homogeneous concentration within certain acceptability limits.  Once 

the powder is homogeneously blended, the material is supplied downstream to a rotary 

tablet press and the blend uniformity is measured by an integrated near-infrared (NIR) 
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spectroscopy probe just before entering the rotary press to eventually reject the product 

or adjust the process via an advanced feedback control system. The tablets are obtained 

by a simple compaction of powder and during the compression weight, thickness and 

hardness specifications are monitored to eventually reject them when they are out of the 

limits. At this point, tablets within specification targets are sent to a metal check device 

and they are finally ready to be coated. 

The tablet coater can be manually loaded in the line or automatically loaded by a 

vacuum transport system. The transfer from the press to the coater permits an auto-

dedusting effect and dust is sucked via a dedicated vacuum line. The tablet coater 

consists of multiple rotating wheels that can operate in parallel with different aliquots 

of tablets. The wheels rotate at high speed allowing a centrifugal redistribution of the 

tablets against the perforated wall of the coater. When the tablets are well distributed, a 

central nozzle sprays the coating fluid and some air nozzles force the tablets away from 

the wall and dry the tablets’ surface at the same time.  

Finally, the product is discharged and it is ready to be packaged and commercialized. 

 

 

2.2 The loss-in-weight feeder 

The loss-in-weight feeder, as shown in Figure 2.3, simply consists in: 

 a hopper; 

 a single or twin screws; 

 a load cell; 

 a feedback control system.  

 

 

 

 

 

 

 

 

Figure 2.3 Sketch of a loss-in-weight feeder. 

The loss-in-weight feeding technology is based on achieving the target mass flow rate 

by re-weighting constantly the total system (feeder, hopper and material contained in 

it) to determine weight loss per unit time, which is equal to the mass flowrate fed into 

the process. The feedback control system adjusts the controlled variable (i.e. mass 
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flowrate) by acting on the manipulated variable (i.e. the motor speed). A transmission 

provides a controlled speed and torque conversions from the motor to the screw(s) 

through a gearbox system. The relation between motor speed and screw speed is linear, 

thus from a conceptual point of view speaking about motor speed or screw speed does 

not make any difference. 

This control approach ensures a high accuracy, but has some drawbacks, especially at 

high feed rates and long-term campaigns. To avoid the use of large-volume hoppers, a 

periodic refill of the hopper is required. It is during the refill phase that significant 

deviation in the feed rate may occur due to intrinsic inaccuracies in the control. The 

problem of the refill can be avoided if large and expensive systems are designed, so that 

refill phases are minimized. Nevertheless, this causes several problems in terms of cost 

for structural changes to the equipment and to the plant itself and the problem persists 

at high feed rate or long term campaigns [54].  

During the refill, the weight-based gravimetric control must be temporarily bypassed 

by a volumetric control because the introduction of new material perturbs and 

compromises the load cell mode of operation. In this situation, the load cell is 

technically “blind” and the control strategy must change to face the different 

phenomena that produce some variations in the process conditions. 

Figure 2.4 helps to understand the different cyclic operating phases of a feeder plotting 

the weight versus time. It is important to anticipate that cycles can have a different 

evolution in time and amount of material refilled because the mass flowrate is not 

perfectly constant in the industrial operation of the plant.   

 

 

Figure 2.4 Cyclic operating phases of a loss-in-weight feeder system looking at 

the net hopper weight profile [54]. 
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Moreover, the refill starts rather before the hopper does empty, and that occurs for two 

main reasons. Firstly, because it is necessary to assure a constant supply of powder to 

the process to reach the target required without discontinuities. Secondly, the incoming 

aerated powder from the refill may increase the pressure and may cause uncontrolled 

flooding in the output rate, if the level of powder in the hopper is too low. 

Nevertheless, it is reasonable to expect an increase of the density of the heel of material 

that remains in the hopper during the refill due to the fact that the new material entering 

the hopper has the effect of compacting the powder already there. This change in the 

density profile has been confirmed by several tests and manufacturing trial, and causes 

a progressive overfeeding of material to the downstream process that can vary in a range 

between +1% for relatively constant density material and +10-15% for powders whose 

density can vary substantially [53]. The geometry and the design of the feeder and the 

refill system contribute significantly to the entity of the overfeeding variation, but the 

control strategy still plays the major role. 

Feeder manufacturers proposed several control strategies and equipment design 

solutions to solve the problem experimenting various and different routes and 

approaches to face the challenges presented during the refill of the hopper.  

Traditionally, the control loop was maintained opened throughout the refill phase and 

the screw speed kept constant to the last value assigned by the controller just prior to 

entering the volumetric phase. This approach drives the system out of control during 

the entire refilling phase and even for some time after refill completion because the 

weighing system and the feedback control needs some seconds to accumulate some 

measured data and stabilize the gravimetric control.  

The new generation of loss-in-weight feeders aims to maintain the gravimetric accuracy 

even during the refill, implementing a complementary control system to gradually 

adjust the screw speed to counterbalance the effects of what is happening in that 

situation. This result can be achieved by storing in the controller’s memory an array of 

new variables called feed factor that it is defined as the ratio between the mass flowrate 

flowing out from the output of the screw and the screw velocity as shown in eq. 2.1: 

𝑓𝑓 =
𝑚̇

𝑣𝑠
= [

𝑔
𝑠⁄

𝑟𝑒𝑣
𝑠⁄

] = [
𝑔

𝑟𝑒𝑣
] (2.1) 

This new variable is somehow representative of the density of powder since it measures 

the grams of powder released in a revolution of the screw, thus higher feed factor values 

means higher density of the powder since the powder contained in a single revolution 

increases. 
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This new array of values is continuously evaluated during the gravimetric exercise of 

the feeder operation. Problems arise when the load cell is blind, so no information about 

the mass flowrate can be directly retrieved. In this case, the estimation of the situation 

inside the feeder through the feed factor evaluation should maintain the system under 

control. However, estimating the real situation inside the feeder is not easy since many 

phenomena concur at the same time. As a matter of fact, when the gravimetric operation 

of the equipment has begun, the density of the material inside the hopper should slightly 

decrease in time because less material in the higher portions of the hopper is adding 

pressure. The weight constantly decreases to maintain constant the feed rate of powder 

(Figure 2.5a). Therefore, the motor speed is relatively constant in a first gravimetric 

phase and successively increasing when the level decreases (Figure 2.5b) and less dense 

powder must be supplied. In this situation, the feed factor profile gradually decreases 

with the weight of powder in the hopper until the density profile is gradually changing, 

but depending on the inherent material properties of the powder, it will drop down, more 

or less depending on the flow properties, dramatically when the powder reaches a 

certain level in the hopper. Figure 2.5d shows the time profile of the feed factor for a 

typical cohesive material. In this case, the feed factor decreases fast and in a constant 

manner until the refill happens. At that point, the compression of the powder at the heel 

of the hopper during the refill would lead to a rise in the density, as already mentioned. 

Then, the velocity of the motor speed should be adjusted, and particularly quickly 

decreased (Figure 2.5b), to minimize the mass flow error associated (Figure 2.5c).  

Observing Figure 2.5 from an overall perspective, the profiles of the variables involved 

in the dynamic operation of the equipment can be understood and the effect of the speed 

array correction on motor speed and mass flowrate can be appreciated. However, 

industrial experience shows that providing the controller with the right feed factor 

profile during refilling is not so trivial, especially when operating with different 

materials in terms of characterization properties, i.e., PSD, density, flowability and so 

on. Moreover, to minimize the variability in the screw speed profile associated to the 

inversion of tendency caused by the change in the density along the hopper and 

subsequent to the refill, planning a proper refill strategy that varies depending on the 

material is fundamental.  
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Figure 2.5 Dynamic profiles of the variables involved during the feeder’s operation: a) weight; 

b) motor speed; c) mass flow; d) feed factor. (Image partially adapted from [54]) 

2.3 Data analysis and modelling flowchart 

As already demonstrated by several publications, a comprehensive knowledge of the 

dynamic phenomena involved in the normal continuous operating conditions of the 

equipment is the result of a strong correlation between the design and the setup of the 

equipment and the material properties of the powder flowing through it [55][56][57]. 

Thus, to predict the variation of the density in the gravimetric phase, the possibility of 

developing a “mechanistic” first-principles model has been evaluated, but because of 

the complexity interactions of several parameters in the system, this approach seems to 

not produce valuable results in a short-term period, especially when the design of the 
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equipment is not similar to conventional powder storage and conveying units [58] [59] 

[1].  

Any possible application of discrete element method (DEM) simulations of the system 

have been discarded since the beginning, because of their prohibitive evaluation time 

associated to multiple units required in a single continuous manufacturing line [60] [61] 

[62] [63].   

Furthermore, a model based approach developed from experimental and manufacturing 

campaigns datasets would suggest a more systematic way to develop a predictive, easy-

to-update and flexible tool.  It is in this context that a data-driven modelling strategy to, 

firstly, cluster and classify new materials and, secondly, predict the feed factor profile 

during the gravimetric phase, has raised interest. 

In the next chapter, a structured approach for data-mining of an essential powder API 

materials dataset is proposed. The aim of this case study is to outline the pattern 

similarities in terms of powder flowability in order to evaluate the processability of new 

materials for secondary continuous tabletting line. The general modelling flowsheet 

starts from an unsupervised pattern recognition of the data to define possible classes of 

surrogate materials. Then, some possible supervised pattern recognition models are 

tested to classify new incoming materials. 

In the last chapter, a possible strategy for multivariate statistical modelling of a loss-in-

weight feeder is delineated. The equipment setup data and material properties 

characterization of the processed powder are combined in the input of the model to 

predict the feed factor profile during a gravimetric run. This approach may help 

studying the effect of raw materials variability into the equipment, with potential 

positive implications during process developments studies of new APIs.



 
 



 

Chapter 3 

Powder materials clustering and 

classification 

In this Chapter, a general procedure to aid the analysis of pharmaceutical raw materials 

database using a data-driven approach is illustrated and supported by an example of 

application on an industrial dataset of powder materials candidates for secondary 

continuous manufacturing processes. 

3.1 Introduction 

Active pharmaceutical ingredients (API) synthesis and finish routes during primary 

manufacturing lead to a final form of powder materials that is difficult to be fully 

predicted, especially when one moves from an early to a late stage of process 

development. The reasons for material variability are various and intricate to be 

identified because they lie in every detailed choice made at each stage of the process 

design life cycle. This leads to unexpected differences in the API material properties 

that are not always easy to be understood and corrected by a reverse-engineering 

approach. The effect of raw material variability in the downstream processes is even 

harder to be forecast and many manufacturing problems appear in the transition from 

conceptual to detailed design of secondary continuous manufacturing processes, 

compromising the final product quality and deliverability.  

One of the major limitations in this scenario is the empirical or semi-empirical approach 

to evaluate the material processability in the equipment of the line. A significant amount 

of a new raw material needs to be available in order to test its behaviour across the line 

or alternatively to be fully characterized by laboratory analysis. The bottleneck in this 

approach is that in the early stage of process development only a very small amount of 

drug product is available and it might not be enough even to perform a full set of 

characterization tests. Even in the case that a sufficient amount of powder is available 

for a limited number of tests, the problem is to decide which kind of test should be 

preferred to investigate how particle properties might affect process performance in the 

equipment, and how to assess the impact of multiple characterization measurements 

upon downstream processability [64]. 
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Thus, a systematic and reliable procedure to understand the relationship between raw 

material properties and process performance is required to establish the design space 

and to enhance the robustness of the process control strategy, meeting the requirement 

of the Quality by Design paradigm [7]. In this connection, Oka et al. [65] theorise that, 

in the context of secondary continuous manufacturing, collecting material information 

“paves the road for the development of an adaptive, self-learning material database, 

which aids in future process development”. 

However, there is no trace in the literature of the formalization of a general procedure 

to develop and investigate raw material database in order to extract the maximum 

amount of information and support the product and process development. 

This is an area of great interest for many companies in the pharmaceutical sector, 

particularly when they are referred to the API field rather than excipients. However, the 

question arises about how it is possible to develop a structured approach to concretely 

build up a comprehensive material database starting from limited information. Which 

is the correct approach to explore, mine and model an industrial powder materials 

dataset in order to support the input materials selection of new active ingredient 

candidates in the early phase of process design? Which are the inherent common 

features of raw material datasets, and how should they be taken into account in the data 

analysis and modelling phase?  

The purpose of this Chapter is to address these questions through the analysis of a 

primitive dataset of powder candidates for a continuous direct compaction process 

where limited characterization tests are available for each of them. A standard 

systematic procedure to investigate and model these common structured experimental 

datasets is delineated as in Figure 3.1 and the generalization of the approach to a more 

complete dataset that includes more properties and materials is also discussed. 

3.2 Materials and methods 

The proposed methodology consists of four consecutive steps, also called stages: 

1. dataset organization; 

2. exploratory analysis; 

3. unsupervised pattern recognition; 

4. supervised pattern recognition. 

In each step, a series of activities are suggested in order to maximize the amount of 

information that can be extracted from the dataset and create specific models for cluster 

identification and class delineation. The level of subjectivity in the decision-making 

process for each recommended action is strongly related to the dataset structure, the 

degree of complexity that is likely to be introduced by the modeller, the experience of 
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the people involved in the analysis, and the requirements of the final users (e.g. 

engineers, formulators or project stakeholders). Nevertheless, the proposed procedure 

is thought to be a general and flexible approach that can be adopted with none or minor 

changes to any pharmaceutical raw material database in order to help the development 

of the manufacturing process. 

 

In the first step, all the data for the raw materials of the area of interest need to be 

collected and systematically organized to create a significant dataset of materials with 

various features and properties. Then, the materials must be screened and the relevant 

material properties must be selected depending on the final aim of the analysis. 

Materials that have multiple missing entries should be rejected or, eventually, the 

missing measurements must be collected, to avoid the recognition of artificial patterns 

due to automatic imputation of extrapolated data. However, in case of a single missing 

property for a relative small proportion of samples in the dataset, several strategies to 

deal with missing entries can be adopted, but their use is advised only if strictly 

necessary [68]. The size of the resulting dataset should be approximately of 50 materials 

to ensure the robustness of the application of statistical methods of investigation. 

Actually, there are no strict rules about the size required by the dataset for applying 

Figure 3.1 Schematic of the general procedure to aid the analysis of a pharmaceutical raw 

materials database using a data-driven approach in agreement with the QbD framework. 
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pattern recognition techniques, but it is strongly recommended that the number of 

variables has to be correlated to the number of samples, such that the greater the number 

of variables included, the larger should the dataset size be. In unsupervised pattern 

recognition, a rule of thumb suggested by Formann (1984) and commonly used is that 

the minimal sample size should be 2k, where k is the number of descriptors [66]. Thus, 

if a latent variable reduction is used before performing a cluster analysis, the expected 

number of principal components for approximately 10-15 descriptors is around 3-5 and, 

consequently, a safe approximation on the minimum number 25=32 can be exceeded to 

50. Prior to any analysis, the data need to be preprocessed to level the variables 

importance and centre the columns. Lastly, a general recap of the previous knowledge 

of the materials investigated needs to be done with a special focus on the materials that 

are well known to be troublesome or straightforward. This latter point will help the 

hypothesis formulation of the expected results of the investigation or, eventually, it will 

highlight some gaps in the status of the materials characterization. 

The second step involves an exploratory analysis of the dataset created in the first step. 

Dealing with materials experimental database is problematic in terms of investigating 

the possible correlations between properties and representing the samples in a multi-

dimensional space, when a classic univariate approach is used. Then, latent variables 

techniques are much more than useful, since they allow the creation of simple 

multivariate charts to emphasize the correlation and anti-correlation between properties 

and to allow the visualization of the samples in a tangible reduced space. For these 

reasons, a preliminary PCA is suggested at this stage, followed by a careful analysis of 

scores and loading plots to understand the general structure of the data and, eventually, 

recognize some possible evident, or less evident, patterns. 

The third step of the procedure aims to structurally identify clusters of elements in the 

data through the application of unsupervised pattern recognition techniques of research.  

At this stage, the modelling aspect can be highly customizable by the user since dozens 

of clustering techniques are available. Despite that, a complex approach, for a relatively 

small and simple database of pharmaceutical raw materials, does not offer any 

guarantees in terms of final outcomes. For this reason, the choice can be restricted to 

two different standard categories of algorithms: i) partitional clustering techniques, if 

the number of clusters is known a priori; ii) agglomerative clustering techniques, if the 

number of clusters is unknown. Several different possible clusters might result from the 

clustering identification and they can all have a statistical meaning in terms of patterns 

similarities. Nonetheless, only one or few of this cluster models are physically 

meaningful and an objective correct evaluation needs to be done by a cross comparison 

of some statistical indices of the methods performance and an a posteriori clustering 

analysis of the clusters with the support of an expert of the system. Testing the 
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hypothesis formulated in the first step is also helpful in order to assess the outcomes of 

clustering analysis and define the class partition for each material considered in the 

study. Potentially, this step of the procedure might be not necessary if in the dataset 

exists a categorical variable that leads to the definition of groups of materials with 

similar features. 

The fourth step is the design of a suitable classifier using supervised pattern recognition 

techniques. The goal of this step is to train a classification model using the labelled 

training samples obtained from the previous step in order to classify new materials that 

are going to be added to the database in the future. Even in this case, a wide variety of 

different approaches can be used to choose the best classifier, but to be confident about 

the choice, a comparison between alternative methods is always suggested. In 

particular, if the boundaries between classes are not clearly linearly separable, a 

comparison between the performance of linear and non-linear classifiers is required.  

3.3 Step 1: dataset organization 

The first step of the procedure is a general dataset reorganization and preprocessing. 

Forty-seven powder materials were used in this study, of which are APIs forty-four and 

only three are excipients. Prior to the analysis, materials were pre-screened from a 

slightly larger dataset in order to have a complete characterization of at least these eight 

measurements: particle size distribution (d10, d50, d90), specific surface area (SSA), 

bulk density (BD), tapped density (TBD), CARR index (CARR) and Hausner ratio 

(HR).  

The choice of using these specific characterization descriptors was not driven by 

sophisticate criteria. The simple fact that these tests are the only available for the largest 

number of APIs explains the reason by itself. As a matter of fact, these are basic tests 

that are usually carried out for all the drugs in the early stage of development since they 

do not require a high amount of powder and they are usually sufficient to describe the 

general crystal properties of the powder and hypothesize the expected bulk behaviour.  

There are several evidences in the literature and pharmaceutical knowledge that powder 

packing efficiency and powder flow are a function of particle shape, particle size and 

surface properties [16] [67]. Thus, a more comprehensive database should include more 

properties related to particle shape and surface forces in such a way that more 

information about powder processability might be extracted even without using a lot of 

resources to investigate flowability and packing efficiency. However, there are several 

obstacles that have prevented this optimal scenario up to date. For example, particle 

size data are easy to be obtained and they are frequently collected even during the 

manufacturing process, but there is a lack of suitable and objective techniques for 
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particle shape analysis characterization of bulk powders. The most accepted and used 

(e.g. scanning electron microscopy or optical microscope) are often time-consuming 

and limited to relative small numbers of sampled particles [67]. Surface properties, as 

for example surface energy and electrostatic charging, are known to play a crucial role 

in the description of the electrostatic effects that can reduce the flowability in 

continuous manufacturing since it can be conditioned by the formation of electrostatic 

bridges, but the tests usually require a laborious procedure and a relevant quantity of  

powder [64]. The powder flow itself can be measured by dozens of indices, but in 

addition to the trials just mentioned, it is well recognised that there is not a single test 

that can fully describe the flow properties of a powder since the powder itself it is 

exposed to various levels of shear, normal stress and charging along the process. The 

problem is therefore to determine which of them are more pertinent in order to describe 

their behaviour in the equipment minimizing the available resources.  

Nevertheless, the importance of extending the approach to a more thorough dataset is 

recognized and the collection of few important properties regarding particle shape and 

surface forces is suggested even if it is not going to influence the general investigation 

methodology presented and the evaluation of the possible benefits produced are beyond 

the aim of this work.  

Six of the selected materials (M35, M36, M37, M38, M39, M40) were missing only the 

SSA test, but they were considered anyway to study the possible effect of a single 

missing variable for a relatively small part of the database. Several different and 

sophisticated methods can be used to deal with missing entries in a dataset, but for 

simplicity a mean of the column for that variable was used in order to avoid failures in 

extrapolation given by the standard best guess replacement used by the PLS Toolbox in 

which the missing data are replaced using the projection and loadings of the model 

constructed from the known data.  Nevertheless, it is important to recognize that the 

replacement by a single value reduces artificially the variance of the imputed variable 

and alters the correlation between variables. However, because it is applied to about 1 

% of the data with random distribution, this approach is still considered satisfactory 

[68]. 

The main hypothesis that comes out from a first analysis of the properties available for 

this primitive dataset is that a combination of particle size (PSD), surface (SSA), 

packing (BD and TBD) and compressibility indices (HR, CARR) should already bring 

relevant information about powder flow and processability. The API materials collected 

in this database should span the entire range of flowability from cohesive to easy flow 

powders, and this is an important fact that should reflect in the data analysis outcomes. 

It is common practice in powder technology to split the classes of flowability in four: 
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very cohesive and easy flow (also called free flowing) are the outer classes, poor flow 

and medium-poor flow are the respective intermediate classes. 

Table 3.1 General features of the material dataset analysed in the case study. 

 

 

 

 

 

 

 

A synthesis of the general features of the material dataset is reported in Table 3.1. 

Before proceeding to the second step of data exploration, an autoscale (i.e., mean 

centering and scaling to unit variance) preprocessing is required in order to give to all 

the variables the same importance and to centre the data off-set. 

3.3 Step 2: exploratory data analysis 

The second step of the proposed procedure involves an exploratory analysis of the data 

to visualise the samples in a dimensionally reduced space and understand the general 

correlation and anti-correlations between properties using a multivariate statistical 

approach, e.g. a simple PCA. 

Three principal components (PCs) were selected since they describe 85.7 % of the 

cumulative variance of the data with PC1, PC2 and PC3 accounting for 52.3 %, 20.17 

% and 13.1 % of the variance respectively.  

(a)       (b) 

n° of total samples 47 

n° of API samples 44 

n° of excipients samples 3 

n° of measurements for each sample 8 

% missing data  ~1 % 

Figure 3.2 PC1 vs PC2 (a) and PC1 vs PC3 (b) loading plots of the PCA exploratory model.  
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Loadings scatter plots representing PC1/PC2 and PC1/PC3 are reported in Figure 3.2. 

The loading plots indicate which variable/s are explaining most of the variance along a 

certain principal component and the positive or negative correlation between the 

properties. In this case, the main factors of variance along PC1 are the PSD descriptors 

and the bulk density, that are highly and positively correlated. The Hausner ratio and 

CARR index are anti-correlated to the latter along PC1, but together with tapped bulk 

density, they are the main factors of variability along PC2. Specific surface area (SSA) 

shows a minor contribution to the variance of the first two principal components, but it 

dominates PC3. 

 

Figure 8.3 PC1 vs PC2 (a) and PC1 vs PC3 (b) scores plots of the PCA exploratory model. The 

graphs (c) and (d) are a three-dimensional representation of the scores from two different angular 

perspectives. 

a) b) 

c) d) 
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Scores scatter plots representing PC1/PC2 and PC1/PC3 can be used to identify 

similarities between materials and visually recognize if the samples cluster with some 

pattern or they distribute undistinguishably in the reduced space. However, since three 

PCs are used, an alternative representation is given by a three-dimensional scatter plot 

as shown in Figure 3.3. In this case, it can be immediately noticed that samples M1, 

M2, M30, M31 are clustering quite far from all the other materials, whereas at least two 

different clusters can be observed along the second principal component axis. In fact, a 

more accurate examination shows that four different clusters can be approximately 

identified if PC1/PC2 scores are analysed: i) a first cluster on the right side; ii) a second 

cluster in the top-left quarter; iii) a third cluster including most of the elements that are 

in the top-right quarter and that are close to the axis origin; iv) a fourth cluster including 

most of the samples in the bottom-left and bottom-right quarter. A cross-reading 

analysis of the three-dimensional scores plot of figure confirmed this first bi-

dimensional interpretation, but a systematic unsupervised pattern recognition procedure 

needs to be applied in order to establish pattern similarities among the data in a rigorous 

way. 

 

3.4 Step 3: unsupervised pattern recognition  

The third step of the proposed procedure aims to quantitatively identify and define 

unknown patterns in the data using an unsupervised pattern recognition approach.  

The support of an expert in the field of the specific materials in question is required to 

analyse the output results.   

As discussed in Chapter 1, several different clustering methods can be found in the 

literature, but for an industrial dataset of materials like this one, a hierarchical clustering 

analysis seems more reasonable than partitional clustering because the number of 

clusters in the system is usually unknown and the possible estimation from the 

exploratory analysis is not fully trustworthy.  

The current clustering methodology involves three level of decision: i) the space 

dimension of investigation, ii) the distance criteria definition, and iii) the clusters 

formation’s algorithm selection. 

Firstly, dimensionality reduction of the original d-dimensional space needs to be 

evaluated since the hierarchical clustering methods can be applied both to the original 

projection space of the samples and to the reduced multivariate space (like in the PCA 

reduction obtained in the previous step). Thus, the choice here is done based on the 

output considerations from the exploratory analysis, particularly which kind of 
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advantages are caused by a principal component reduction prior to a clustering 

identification for the specific data structure of the original database. In this case, the 

main advantage is noise elimination because 14.3 % of the variance in the data can be 

attributed to noise and it is well known that clustering algorithm are sensitive to noisy 

data. Moreover, the collinearity of some of the material properties was solidly 

confirmed by the physical interpretation of the loading plots and these two facts enhance 

the level of confidence in using a multivariate reduction prior to a clustering analysis. 

These two reasons are quite common for any kind of materials database, but it is highly 

recommended to carefully analyse the data to determine some possible deviations from 

this scenario in order to exclude special artefacts in the data or a superficial level of 

comprehension of the PCA results.  

Secondly, the distance function between elements in the new space of reference given 

by the scores coordinates needs to be defined. As previously stated, the choice might 

involve several geometrical distance criteria (see Chapter 2), but in the specific case a 

Euclidean distance is the simplest and the most suitable choice since the space was 

already compressed to take into account the effect of correlation between variables.  

Finally, the selection of the cluster method and its linkage rule is the crucial step to 

search for pattern similarities in the data. In hierarchical agglomerative clustering, there 

is not a method that is objectively superior to the others because the clusters’ 

distribution is highly dependent on the inherent structure of the dataset and on the level 

of base knowledge of the system. The suggestion proposed in this study is a systematic 

comparison of the six most common HCA cluster methods through the simultaneous 

analysis of two indicators: i) the evaluation of the preservation of “original” information 

using the cophenetic correlation coefficient, and ii) a knowledge-based analysis of 

dendrogram outcomes with the help of a system expert (e.g. materials scientists). 

To this end, a simple script to test all the methods was developed and for each of them 

a dendrogram, as summarized in Figure 3.4 and a cophenetic correlation coefficient, as 

reported in Table 3.2 were computed considering the scores coordinates as the 

“original” reference, because the methods were applied to the reduced space.  

The cophenetic correlation coefficients show that all the cluster methods seem to 

maintain intact the similarities between samples in a similar manner, because all the 

coefficients are around 0.8, with the only exception of the Ward cluster method that is 

around 0.7, but this discrepancy is not significant since the value is still close to a 

theoretical maximum value of 1.  
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Table 3.2 Cophenetic correlation coefficient calculated for each of the six cluster 

methods. 

 

 

 

 

On the other hand, a very different scenario can be interpreted by the dendrograms 

representation of Figure 3.4. The median (Figure 3.4e), the centroid (Figure 3.4f) and 

the k-NN (Figure 3.4b) methods produce meaningless clustering identification, since 

they are able to distinguish only the materials that are far from the centre of the PC1/PC2 

scores plot. These results can be considered unsatisfactory since they do not add any 

physical value to the definition of hidden patterns in the data. The average-paired 

distance method (Figure 3.4d) is able to identify four clusters and this can match well 

with the initial hypothesis, but a more accurate analysis shows that one of the cluster 

consist of the single material M11, that is a micronized material with a very high 

specific surface area that explains the reason why it is clustering in an outer position 

along the PC3. However, this API is not supposed to be so different from the closest 

samples in terms of processability and it is expected to be paired with other close 

cohesive material with similar patterns in the other directions. On the contrary, the Ward 

(Figure 3.4a) and the furthest neighbour (Figure 3.4c) methods reveal some interesting 

and similar partitions of the dataset since they both identify four different clusters 

according to the consideration that came out in the exploratory analysis. The only 

difference in the final clusters is in the samples M6, M11, M13, M19 and M27 that are 

mixed up in the adjacent classes C2 and C3. In this case, the furthest neighbour 

clustering algorithm is preferred because of the resulting higher cophenetic correlation 

coefficient together with a more meaningful explanation by system experts, that 

confirmed the superior affinity of the mismatched samples with the class C3 rather than 

C2. A summary of the differences between clusters is reported in Table 3.3 and Table 

3.4. 

The last important action, which must be taken before proceeding with the next step of 

the procedure, is a detailed interpretation analysis of the selected clustering output and 

the hypothesis testing of the preliminary consideration on the system. In Figure 3.5, an 

updated two-dimensional and three-dimensional representation of the data in the 

reduced space is reported, together with the new clusters division obtained by the 

furthest neighbour linkage method. 

It is now possible to state that four groups of materials are forming four different and 

evident clusters according to the space distribution assumed in first instance in step 2, 

but with a certain irregular profile of the related boundaries between classes. 

Ward k-NN Furthest neighbour Pair-group average Median Centroid 

0.73 0.86 0.81 0.82 0.84 0.82 
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fact that the boundaries are overlapping each other in some regions of the space is an 

exact demonstration of a non-linearity in the pattern structure. However, this non-linear 

boundaries’ shape is not so explicitly marked and trusted since the number of samples 

is still very low, but it suggests that linear methods of classification might have low 

quality performance and it is well worthy to test both types of classifiers in the next step 

of the procedure. 

 
Table 3.3 Summary analysis of the clusters identified by the hierarchical clustering 

with furthest neighbour linkage method.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3.4 Summary analysis of the clusters identified by the hierarchical clustering 

with Ward linkage method.  

 

   

Class name n° of materials Materials 

C1 4 M1,M2,M30,M31 

C2 14 
M11,M13,M17,M19,M27,M32,M36,M39,M43, 

M44,M45,M46,M47,M6 

C3 15 
M12,M14,M15,M16,M20,M28,M29,M3, 

M33,M34,M37,M41,M7,M8,M9 

C4 14 
M10,M18,M21,M22,M23,M24,M25,M26, 

M35,M38,M4,M40,M42,M5 

Class name n° of materials Materials 

C1 4 M1,M2,M30,M31 

C2 9 M17,M32,M36,M39,M43,M44,M45,M46,M47 

C3 20 

M12,M14,M15,M16,M20,M28,M29, 

M3,M33,M34,M37,M41,M7,M8,M9, 

M11,M13,M19,M27,M6 

C4 14 
M10,M18,M21,M22,M23,M24,M25,M26, 

M35,M38,M4,M40,M42,M5 
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Figure 3.4 Dendrograms of the six different clustering methods: Ward (a), k-NN (b), furthest 

neighbour (c), pair-group average (d), median (e) and centroid (f).  

(a) (b) 

(c)

) 

(d) 

(e) (f) 
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A more technical analysis of the clusters’ characteristics has been done with the help of 

the materials scientists involved in the data collection and drug design and formulation, 

with the final goal of understanding the principles that lead to pattern formation and 

how this information can be used in the early stage of process development. From the 

very beginning, it appeared quite clear that the four groups are reflecting the four 

metrics of flowability that were expected. In particular, the four materials of class C1 

are well known to be the easy flow materials that never caused any processability 

problems in the past. Some of the materials in the furthest class C4 are known to be 

very cohesive because their bulk behaviour was intensively studied after that some 

problems, (e.g. stickiness; formation of electrostatic bridges), appeared when they were 

Figure 3.5 PC1 vs PC2 (a) and PC1 vs PC3 (b) scores plots with the four different clusters differentiation 

as identified by the furthest neighbour method. (c) and (d) are highlighting the clusters in the three-

dimensional representation of the scores from two different angular perspectives 

a) b) 

c) d) 
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used in some of the downstream equipment. Similar considerations can be done for 

some of the powders in class C3, but the phenomena appeared with less intensity and 

frequency than in the previous case. A slightly better situation can be found for the 

materials included in class C2, since their flow and packing behaviour is not optimal as 

for the samples in class C1, but it is still fairly good and not considered to be problematic 

for downstream processability.  

Despite this qualitative experience-based clusters analysis, a more rigorous study has 

been done to highlight how these considerations are likely to be reflected in some of the 

descriptors of the system. In fact, now that the materials have been grouped together, it 

is possible to analyse some features of the system and draw some conclusions on the 

patterns similarities. In order to do that, a summary of the class mean values of the most 

important features for the identified clusters are reported in Table 3.5. 

 
Table 3.5 Summary analysis of the features of the clusters identified by the HCA with 

furthest neighbour linkage method.  

 

 

 

 

 

 

CARR index and Hausner Ratio are traditionally used to assess powder flow because 

they measure the change in density when the powder is subjected to force by tapping. 

Thus, it makes perfectly sense that at least the class mean value of these properties 

increases when the class of flowability moves from easy flow to cohesive. This is well 

shown in Table 3.5, but it not necessarily true that a material with a slightly higher 

CARR index, or Hausner ratio, is more cohesive than another one. This would mean 

that powder flow can be evaluated just from a univariate perspective of one of these two 

variables, but this is exactly the opposite of what this kind of approach is going to 

demonstrate.  

A good example to show this concept is considering two materials with similar CARR 

index, but clustering in different classes, e.g. M30 and M44. M44 has a slightly lower 

CARR index than M30, but the latter is clustered with no doubts as easy flow or free 

flowing whereas the first is considered medium-poor flow. Why does it sound 

contradictory and it is likely to lead to a wrong conclusion? The correct reason can be 

found if the other variables of these materials are observed together with the trend of 

the respective classes. For example, the PSD values are greatly higher for M30 and for 

the relevant class than for the other materials. Of course, this kind of analysis is 

Class name n° of materials CARRmean HRmean Class label 

C1 4 23.4 1.3 “Easy flow” 

C2 14 35.5 1.6 “Medium-poor flow” 

C3 15 43.6 1.8 “Poor flow” 

C4 14 55.7 2.3 “Cohesive” 
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extremely simplified if a multivariate approach is used like in this case, but the trend of 

the average of CARR index and HR is still a good indicator and it seems to perfectly 

match the qualitative analysis results conducted by the experts.  

Some further considerations can be done if the cluster observation is conducted by 

looking at some other properties that are not present in the initial dataset because they 

are available just for a limited number of samples, e.g. flow function coefficient (ffc) 

from shear cell data that are available just for 15 samples as reported in Table 3.6.  

 
Table 3.6 Flow function coefficients (ffc) from shear cell data on 15 materials and 

respective classes. The samples with the symbol * are all samples with missing entry 

in the SSA value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed that, even in this case, the ffc value of the materials are following an 

incremental distribution among classes, as for CARR and HR, when moving from “easy 

flow” to “cohesive” with the only exception of material M39 that is classified as 

“medium-poor flow” but it is in fact a cohesive material with a very low ffc. This 

discrepancy is probably due to the fact that material M39 was one of the materials with 

a missing value of SSA and as a consequence the replacement of the variable with the 

mean of the respective column is not appropriate for this API. Furthermore, it is 

important to clarify that the classes, that have been identified by the unsupervised 

pattern recognition, are not the same that are generally used to classify powder 

flowability accordingly to ffc only and the Janike classification, but the ranges have 

been slightly moved towards higher value [55]. However, the shear cell data collected 

Material Class  ffc 

M2 C1 7.7 

M39* C2 2 

M43 C2 5.9 

M44 C2 6.1 

M45 C2 5.6 

M46 C2 6.1 

M47 C2 5.6 

M12 C3 3.4 

M14 C3 4.8 

M28 C3 3.8 

M10 C4 2.3 

M18 C4 2.5 

M40* C4 1.7 

M42 C4 3.1 

M5 C4 3.2 
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are not enough to define some possible correlations between the original variables 

included and the ffc.   

In conclusion, the hierarchical cluster analysis recognized four different patterns in the 

data that are easy to be visualized in the reduced three-dimensional space and that seem 

to have a physical meaning that is coherent with the four grades of powder flowability 

assumed in the first step. This four groups identification is accepted as a starting point 

to train a classification method that is likely to classify new samples based on this 

pattern similarities.  

3.5 Step 4: supervised pattern recognition 

The fourth and last step of the proposed procedure involves the development of a 

classification model to perform a supervised pattern recognition and define standard 

classes of similarities for the identification of future “unknown” samples.  

The design of a suitable classifier is one of the most difficult tasks because the process 

of selection and design must be done according to the inherent features of the system 

under investigation. The proposed procedure of analysis allows us to challenge this last 

step with the confidence that sufficient knowledge about the dataset and its main 

characteristics has been gained from the previous steps. Consequently, the modelling 

approach is simplified and the decision-making process will become more agile even 

for a non-expert user of classification models. 

The crucial question mark at this point is to use either a linear or a non-linear model of 

classification, and which one, among the numerous possible choices, is the best 

performing. An iterative approach to test multiple types of classifiers at the same time 

seems a solid strategy to face the problem. 

In this case, several evidences about the non-linearity of the patterns’ structure should 

address the modelling options towards non-linear models of classification, but, as 

previously stated, a comparison between linear and non-linear models might be a good 

way of confirming this conclusion. Support vector machines (SVM) and k-nearest 

neighbours (k-NN) were selected as possible equivalent non-linear methods, whereas 

PLS-DA was picked as a linear alternative method. Hence, an iterative strategy of 100 

iterations is developed and at each step the data are randomly split in an 80% - 20% 

proportion to create a training or calibration set and a testing or validation set 

respectively. The models are then built, learning from the training set the patterns of the 

classes labelled in the learning phase, and testing the efficacy in prediction using the 

external validation set of samples in the consequent validation phase. To evaluate the 

performance of all methods in both the phases, a very simple index as the percentage of 
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samples correctly classified (% CC) is defined and the final average across the iterations 

(% CCavg) is calculated together with the standard deviation 𝜎. 

The SVM model is built on the original preprocessed data, without LVs reduction, since 

one of the most attractive feature of this classifier is the capability of handling numerous 

variables, even in a non-linear space and with a certain collinearity between descriptors. 

A non-linear radial basis function (RBF) kernel is used and the control on complexity 

is obtained following the PLS Toolbox package of optimization of model parameters, 

where cost and gamma are optimized through a "Random Subsets" cross-validation 

procedure with 5 data splits and 1 iteration, over a grid of appropriate parameters.  

The k-NN model is built on the original preprocessed data for the same reason of the 

SVM and the number of nearest neighbours selected is 5, since the smallest group of 

samples that form a class (C1) is made up of four components. This choice is expected 

to ensure a more robust class definition for all the training partitions with at least three 

materials from C1 and this should be true for the wide majority of the sampled 

iterations.  

Even for the PLS-DA model, the algorithm is applied to the original preprocessed data 

because this linear classification technique is based on the multivariate partial-least 

squares discrimination and the consequent latent variable reduction to obtain the class 

regression. The number of principal components selected is 3 and it has been 

determined by observing the consistency of the variance explained by some examples 

of PLS-DA models constructed using random partitions of the data and the information 

about collinearity between variables obtained by the PCA performed in the exploratory 

analysis (step 2). 

All the algorithms have been implemented to give probability estimates of the class 

membership accordingly to the respective different calculation for each of the 

classifiers. These probability calculation methods are exhaustively explained in 

http://wiki.eigenvector.com/index.php?title=Sample_Classification_Predictions. 

Therefore, two different result scenarios can be obtained: i) a first scenario where the 

correct classification for a given sample is based on choosing the class that has the 

highest probability, regardless of the magnitude of that probability; ii) a second scenario 

where the correct classification is based on the rule that each sample belongs to a class 

if the probability is greater than a specified threshold probability (e.g. 50% for this 

case). 

In this latter scenario, a sample is misclassified even in the case that two classes have 

the same probability (technically referred as unassigned sample) or that two different 

class attributions result from the classification exercise. As a matter of fact, when a 

threshold on the probability is defined, the sensitivity of the different classification 

http://wiki.eigenvector.com/index.php?title=Sample_Classification_Predictions
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methods to the ambiguous samples is highlighted and some weaknesses of some 

algorithms are likely to arise. 

The results of the scenario 1 are reported in Table 3.7 and it is possible to observe that 

the performance of SVMs in calibration are superior than k-NN and PLS-DA because 

of the direct boundary construction approach of the Vapnik’s method that is modelling 

the margin edges to respect the given classification of the training set. Rather similar 

are instead the validation results of the three models, where PLS-DA is the one showing 

the lower average % CC and the higher standard deviation, but the dissimilarities are 

not so marked as expected. 

Table 3.7 Results of the iterative procedure for testing the classifiers in the scenario 1 

(Most Probable). The average of the correct classified samples percentage across the 

iterations for each method is reported together with the standard deviation in both the 

calibration and validation phases. 

 

 

 

 

 

On the other hand, the resulting situation of the scenario 2, as reported in Table 3.8, is 

entirely different and the dissimilarities between linear and non-linear methods are 

evident. As a matter of fact, the performance of SVM and k-NN both in calibration and 

validation are very similar to the same methods’ performance in scenario 1, but the 

average % CC value of the PLS-DA has dropped of 15-20% compared to its 

performance in the first scenario, and even to the performance of the other methods in 

the same scenario. The worst results emerge in validation where the % CC is around 

0.70 and the standard deviation assumes the highest value of 0.15. 

Table 3.8 Results of the iterative procedure for testing the classifiers in the scenario 2 

(Class Pred Strict). The average of the correct classified samples percentage across the 

iterations for each method is reported together with the standard deviation in both the 

calibration and validation phases. 

 

 

 

 

 

 

These results are actually confirming that the non-linearity of the patterns’ shape is 

likely to be better modelled by non-linear methods, such as SVM and k-NN, rather than 

 Calibration Validation 
 

SVM k-NN PLS-DA SVM k-NN PLS-DA 

% CCavg 99 89 92 91 92 88 

𝝈 1 4 3 9 9 10 

 Calibration Validation  

SVM k-NN PLS-DA SVM k-NN PLS-DA 

% CCavg 98 84 77 89 86 70 

𝝈 2 5 5 9 12 15 
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linear models, like PLS-DA, where the degree of uncertainty on the ambiguous samples 

is very high.  

Furthermore, it can be concluded that a simple non-linear model like k-NN, that is 

computationally inexpensive and very easy to be implemented and interpreted, is not 

providing much worse results than SVM. However, it is important to highlight, once 

again, that the results of comparison are true for this case study only and the 

performance of the classifiers cannot be generalized to other datasets.  

3.6 Conclusions 

In this chapter, a general data-driven procedure to investigate a raw materials database 

of pharmaceutical ingredients have been presented and supported by the application on 

an industrial case study. The proposed procedure aimed at maximizing the amount of 

information that can be extracted from a database of material properties through the 

formalization of a series of consecutive steps and actions that need to be taken from the 

researchers and analysts when they are approaching similar problems from the very 

beginning, where none or little information about the data is known. The procedure is 

finalized to the identification and modelling of hidden patterns in the data through 

unsupervised and supervised pattern recognition techniques. The final goal is to build a 

classification model that is able to facilitate the comprehension of new materials that 

are going to be added to the system in such a way that the following phases of product 

and process design can be boosted and sped up. 

The data analysis introduced in this work, is based on a flexible statistical approach that 

can be highly customised by the user depending on his/her background and final scope. 

The techniques used in each step of the analysis can space from the multivariate 

statistical approach to the machine learning framework, but some important 

requirements need to be met in order to be confident with the modelling decisions. The 

support of one or more experts of the materials studied, e.g. materials scientists or 

formulators, is crucial in this first approach of exploration and model design, since the 

results need to have a sensible physical meaning and a reasonable applicability. 

The developed methodology has been successfully applied to an industrial case study 

of API candidates for secondary continuous manufacturing processes. 

The data on material properties measurements have been collected and reorganized in 

the first step with the aim of finding possible patterns that were indicative of flowability 

metrics of the powder, without having data of flow tests measurements. A set of eight 

commonly available powder descriptors for particle size, surface properties and packing 

behaviour have been selected to obviate the lack of first principle mechanistic 

understanding of the of the system, but supported by some scientific evidences of the 
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correlations between these properties and the powder bulk behaviour. Some general 

assumptions of the possible classification model outputs have been formulated 

according to the basic knowledge of the materials experts. The data have been pretreated 

and prepared to the next steps of data analysis. 

In the second step, an exploratory analysis using a multivariate latent variables approach 

showed good results in highlighting the relationship between the input variables and 

simplifying the interpretability of the data structure in a three-dimensional reduced 

space of investigation. 

The linear relationships between some descriptors, e.g. PSD and bulk density or HR, 

tap density and CARR index, were confirmed, together with the natural formation of 

clusters of data samples in the latent space that seem to respect the classes of flowability 

hypothesized in the previous step. The general non-linear framework of the patterns 

structure was emphasized to address the modelling strategy of the next step in the right 

direction. 

The third step of the procedure has identified four different patterns in the data using 

the hierarchical clustering analysis, an unsupervised pattern recognition technique 

particularly used in absence of certainty about the number of clusters. All the possible 

declinations of the agglomerative clustering algorithm have been tested in order to 

select the clusters analysis that is more meaningful in physical terms.  

The last step has shown why it is important to evaluate several different models of 

classification and, particularly, how the choice should always involve the comparison 

between linear and non-linear methods. The non-linearity of patterns framework was 

confirmed by the superior performance in both calibration and validation of non-linear 

classifiers such as SVM and k-NN. 

The outlined procedure can be used in the earlier stage of product and process 

development of secondary continuous line in order to aid the input materials selection, 

where the API variability of the input powders is very high and the systematic 

reorganization of the background knowledge is required to maximize the profit 

outcomes in using it. In this context, the identification of possible materials surrogates 

for design study of new products or the continuous improvement of existing ones is a 

sensible area of interest. It is also very helpful to understand some possible correlations 

among properties and build some possible model of regression between variables or to 

highlight the lack of experimental knowledge about some aspects of the powder 

characterization process. 

Furthermore, the outputs of this procedure can be used as input for a following stage of 

data-driven modelling of the unit operations of the continuous lines, facilitating the 

development of models to predict the performance of the equipment and the related 

final targeted quality of the products.



 

 

 



 

Chapter 4 

A multivariate statistical approach for 

powder feeding modelling 

In this Chapter, a multivariate statistical approach for powder feeding modelling is 

presented together with some examples of how it is possible to integrate the previous 

knowledge gained on the system with the raw materials database investigation 

illustrated in the previous Chapter. 

4.1 Introduction 

In Chapter 2, the importance of building a data-driven model for a loss-in-weight 

feeding unit in order to increase the equipment and process understanding and to 

enhance the control strategy has been highlighted.  

In particular, before developing a modelling strategy for the volumetric phase of refill, 

maximizing the amount of information and knowledge about the gravimetric phase is 

crucial. In this phase, the feeder is supposed to be controlled by its feedback control 

system and a constant mass flowrate target is deemed to be achieved. In fact, during 

normal gravimetric operating conditions the feeding system is far away from the 

theoretical stability assumed. This happens because every material has specific features 

that are then reflected in the “flowability” concept and this affects the control system 

performance. As mentioned in Chapter 2, the variation of the density profile across the 

equipment is different from material to material and, in particular, easily flowable 

materials are likely to experience less variation in the density profile than cohesive 

powders. 

This means that the feed factor of easily flowable materials should be constant and more 

stable for the largest part of the gravimetric exercise than what happen with poorly 

flowable materials, that are supposed to have a very rapid drop of the profile and an 

associated high internal variability.  

This variability in the feed factor is compensated for by acting on the speed of the 

conveying screws to stabilize the mass flowrate of the powder at the desired value, and 

only a small variation in the output variable is observed. This fluctuation is considered 

“normal” and under control when it is within the range of ± 5% of the set-point, because 
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it can be dumped by the subsequent blending unit operation without compromising the 

final tablet quality. When the feed factor profile is highly instable or drops too rapidly, 

the control system is likely to lose the control of the mass flowrate outside the 

confidence intervals. No matter if the materials are easily or poorly flow, at a certain 

point of the gravimetric run, the feed factor drops too quickly to be efficiently 

counterbalanced by the control system. Luckily, the dropping point is quite close to the 

end of the gravimetric run for materials with a good flowability, and a bit worse is the 

situation for cohesive materials. In both cases, there is the need of predicting the feed 

factor profile and variability in order to identify the dropping point and plan a refill 

phase that anticipates that occurrence, ensuring a more stable transition between the 

different phases.  

Therefore, it is important to develop a model able to predict the feed factor for a single 

material or that can possibly predict the feeder performance of different materials in the 

line, in such a way as to plan a consistent refill strategy. 

This Chapter provides some insights about the data available and the modelling 

possibilities that can be applied to meet the requirements that have been illustrated. 

4.2 Feeder data 

In this section, a recap of the feeder data that are commonly available in the relevant 

section of a commercial continuous direct compaction line are summarized. 

Table 4.1 Available categorical variables concerning the process condition and the 

setup of a commercial loss-in-weight feeder.  

 

 

 

 

Generally, a loss-in-weight feeder is not characterized by a significant number of 

parameters regarding the process conditions and the setup of the equipment. The most 

common ones are summarized in Table 4.1 and consist in screw type, gear box and mass 

flowrate set-point. Few different screw types and gear box settings can be changed in 

the initial configuration of the set of multiple feeders, and the choice is strictly related 

to the engineering consideration on the main features of the type of material that is going 

to be processed. On the other hand, the mass flowrate set-point is the only parameter 

that is given as input to the equipment, and its value is determined by the formulation 

of the drug that is processed in the line. Typical values range from few kg/h (for tablets 

with low API concentrations) up to 20 kg/h for excipients.  

Variable symbol Variable name 

s Screw type 

gb Gear box ratio 

𝑚̇𝑠𝑝 Mass flowrate set-point 
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Similarly, only few sensors are installed in these pieces of equipment and the most 

common variables recorded (or calculated in real time) are reported in Table 4.2. In 

fact, the mass flowrate and the feed factor are variables that are not recorded by a 

physical sensor, but are calculated by the controller logic as the derivative of the 

decreasing weight over the time, and the ratio of the mass flowrate over the screw speed, 

respectively.  

 Table 4.2 Available continuous variables recorded by a commercial loss-in-weight feeder. 

 

 

 

 

 

Other data, which are not collected by the feeder but can be relevant to delineate a feeder 

model, are powder properties presented in Table 4.3. Most of the powder properties 

reported in the table are the same of the ones used in the dataset discussed in the 

previous Chapter. The data collected by researchers and materials scientists can also be 

used as input for a feeder model in order to investigate or predict the variability in 

performance given by different powders. Some other useful material properties, that 

can especially affect the feeder operation, are suggested here as a valuable integration 

to better investigate which set of properties is giving the largest contribution.  

 In conclusion, to meet the requirements illustrated in the previous section, it is 

suggested to collect the data by the so called “gravimetric experiments”, that consist in 

experiments where the hopper is filled up with the maximum amount of powder and it 

is then discharge in the gravimetric mode until empty. Then, the data recorded for each 

experiment can be stored as “batch data” and treated as such. 

Table 4.3 Examples of powder materials properties that are usually collected in the 

drug product design phase and that are available for modelling purposes. 

 

 

 

 

 

 

 

 

 

Variable symbol Variable name 

𝑚̇ Mass flowrate 

𝑣𝑠 Screw speed 

w Weight 

ff Feed Factor 

Variable symbol Variable name 

d10 Particle size d10 

d50 Particle size d50 

d90 Particle size d90 

ffc Flow function coefficient 

WFA Wall friction angle 

𝐵𝐷 Bulk density 

𝑇𝐵𝐷 Tapped density 

HR  Hausner ratio 

CARR CARR index 

SSA Specific surface area 
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4.3 A “static” modelling approach for the prediction of the feed 

factor profile 

As previously mentioned, when dealing with loss-in-weight feeders, the time evolution 

of the feed factor becomes particularly important. For simplicity, the hopper of the 

equipment is conceptually divided in 10 theoretical zones of the same weight, also 

referred to as “bins”. For each bin an average value of the feed factor (ff) across that bin 

is calculated and this information can be used to delineate an approximate feed factor 

curve of 10 data points. This information is traditionally used to pass a “calibration” 

array of feed factor values before starting the manufacturing operations in the line. This 

is expected to help the control system to find an optimal initial screw speed of the feeder 

in such a way that the system can reach the set-point quickly and, eventually, to signal 

a possible wrong configuration of the feeder setup that may require a very high or low 

number of motor speed when the feeder is close to the end of the gravimetric phase. 

The calibration array is also somehow supporting the control system, but the way it 

interfaces to it is generally not disclosed by the equipment manufacturing companies. 

Nevertheless, having a model that predicts an array of feed factor values based on the 

historical data would be extremely useful. This kind of model could also be used to 

investigate if the equipment setup can affect the feeder performance and, eventually, 

establish the best setup for a specific material. 

The proposed methodology consists in a PLS multivariate linear regression method to 

define the relation between a block X1, which is a dataset where the rows are the 

experiments and the columns are the variables that explain the feeder setup (e.g. the 

ones reported in Table 4.1), and the block Y1, which is the dataset that contains the 

respective arrays of the average feed factors. 
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Figure 4.9 Schematic use of PLS to estimate the feed factor array from the feeder setup information 

on data from a single material.  
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Figure 4.1 represents a scheme of this possible modelling strategy and it can be noticed 

that, in fact, this model is a multiple response PLS model that is likely to give a better 

overall prediction of the feed factor profile than multiple single model for each bin 

because of the internal correlation of the multiple Y’s. Moreover, the noise in the 

measurements of the average ff values will be removed uniformly along the profile, 

since the number of principal components is selected based on the correlation between 

the entire profile and not just on the single bin value. 

Matrix Y1 is supposed to have a strongly linear correlation between the Y’s profiles for 

different experiments. However, if this does not occur it would mean that there are some 

other sources of variability that have not been included in the matrix of the predictors 

X1 and that they need to be considered. As a matter of fact, the variability can be given 

by some experimental conditions (e.g. humidity of the air, temperature, and so on), and 

analysis of the loadings of the model can aid the identification of the source of variation 

in the design space.  

This model can easily be extended to include not only the data about a single material 

at a time, but considering multiple materials at the same time. The modification regards 

the input matrix of predictors X1 only, and basically consists in combining a second 

block of data X2 with the raw material properties of the powders, e.g. the ones suggested 

in Table 4.3 as shown in Figure 4.2. In this case, the capabilities of a multivariate 

approach become really evident since the PLS model is able to handle as many input 

Figure 4.10 Schematic use of a PLS model for the prediction of the feed factor array. The model is 

the result of the input combination of a matrix X1 of feeder setup information and a matrix X2 of 

materials properties data. The model can be used for the prediction of a new material feed factor 

array if the feeder setup and materials properties information are provided. Eventually, the model 

can be used for exploratory purposes.  



64 
 

Chapter 4 

variables as available, and this fact will greatly simplify the a posteriori analysis of the 

results.  

The number of materials that are included in the model input is a choice of the modeller 

and depends on the final purpose of the analysis. For example, if the aim of the model 

is an exploratory analysis of the effect of the different materials features on the response 

variable, then a global model that includes as many different materials as available is 

probably a good option. However, this model is likely to have very poor performances 

in prediction since the feed factor shape is affected by the processability of the materials. 

In order to overcome this problem, the selection of the materials can be done following 

a “similarity” approach, in the sense that only materials that have similar features are 

used as inputs for the prediction of a new material 𝑥𝑛𝑒𝑤 with unknown feed factor 

response 𝑦̂1,𝑢𝑛𝑘. The similarity rule between materials can be based on the classification 

model developed in the previous Chapter, thus selecting only the materials that come 

from the same class of “flowability”, or only a subset of the k nearest neighbours within 

the same class to increase the specificity of the model itself. 

4.4 A “dynamic” modelling approach for the prediction of the 

feed factor profile 

The previous PLS modelling approach was named “static” because in fact the 

information about the dynamic evolution of the experiments is lost in the modelling 

simplification of using a reduced array of ten average feed factor values. Even if the 

predicted multiple responses are modelled considering the correlation of Y’s and not 

just as independent values, there is no trace of the natural dynamic relation between the 

values of Y’s at different time instants.  

Furthermore, the way the Y data are pretreated to obtain an average value of feed factors 

for each of the ten bins, is an oversimplification of what really happens across the feeder 

during a gravimetric experiment. As a matter of fact, the average of target variable 

profile cannot give any precise information about some possible anomalous phenomena 

that happened in some specific zones of the feeder for some particular materials, e.g. 

the recurrence of a feed factor dropping point in a limited zone or of a high internal 

variability of the feed factor that is “masked” by the average.   

Hence, a new multivariate modelling approach should be adopted to make good use of 

the data available for the experiments in such a way as to consider the entire progression 

of each batch. 

The natural extension of PLS to deal with three-dimensional multivariate data is the 

multi-way PLS model with batch-wise unfolding of the dataset in order to include the 
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batch dynamics. A schematic procedure of how to rearrange the blocks of data to 

develop a MwPLS model for the above problem is shown in Figure 4.3. 

A single model for a specific material can be developed as for the first scenario of the 

previous section, but here a block of dynamics variables X3, as the ones presented in 

Table 4.2, needs to be added to the equipment setup information in order to model a 

dynamic response Y2. Then, Y2 becomes a matrix that contains the entire profile along 

the time of the feed factor and not just some intermediate average points. 

This approach allows for the prediction of the dynamic variation around the average 

trajectory of the targeted variable based on the historical database of gravimetric 

experiments for a single material. It has also the advantage of extending the application 

to other technical purposes, such as for example the online monitoring of the feeder 

equipment but, in order to achieve this target in commercial manufacturing operations, 

several improvements need to be done.  

Obviously, the fact that dynamic experimental data are required to develop this 

predictive model is a limitation for the practical use of the model itself, especially if the 

interest is focused on the prediction of new materials behaviour in the equipment. As in 

the previous case, to overcome this problem a possible approach is to improve the model 

including data from multiple materials and a block of data for the materials properties 

in order to include in the model some information about the design space that is likely 

to cause the variation in the feeder performance across the range of different materials. 

The representation of this extension of the model is given in Figure 4.4. 

X1

Feeder setup 

Y2

ff dynamic 

profile

E
x
p
e

ri
m

e
n

ts
 

X3

Dynamic 
variables

+

Figure 4.11 Schematic procedure of a MwPLS model for the prediction of the entire profile of the 

feed factor.  
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The benefits of having a model like this one are very similar to the benefits generated 

by the “static” multiple materials model of Figure 4.2, but with some advantages given 

by the fact that the introduction of the dynamic block of variables can explain some 

possible deviations from the expected behaviour of a new material that is typical of the 

group of similar materials used as predictors. 

Nevertheless, it has the limitation that producing a new set of dynamic variables 𝑥3,𝑛𝑒𝑤 

for the unknown material might require some adjustments in the input variable selection 

to include in the model and the specific regression of some of them.  

All the figures here are just a simplify scheme of the models’ structure but a proper 

rearrangement of the datasets needs to be done according to Nomikos and MacGregor 

[34]. 

4.5 Case study: a dynamic model for predicting feeder 

performances on a single material 

In the first part of the section 4.4, a dynamic modelling approach to predict the feed 

factor profile of a single material has been proposed (Figure 4.3). In this section, a case 

study on a pharmaceutical manufacturing application is illustrated. The model has been 

developed with the aim of providing a simple data-driven tool for feed factor prediction 

and that can be used by operators, materials scientists and other researchers involved in 

drug design and development. In particular, the has been designed to reduce the 

gravimetric feeder trials that are usually performed before a manufacturing campaign. 

Figure 4.12 Schematic procedure of a MwPLS model extended to multiple materials. 

Purposes and uses can be considered similar to the model proposed and schematized in 

Figure 4.2, but with some advantages. 
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However, with minor changes the area of application can be extended to more specific 

purposes, e.g. on-line faults detection.  

 

4.5.1 Available data 

The available data are from four gravimetric experiments conducted prior to a testing 

campaign on the feeding part of a new continuos tabletting line, and they refer to a loss-

in-weight feeder with a volume capacity of approximately 2.5x10-3 m3. The API 

material tested has the powder characterization properties reported in Table 4.4 and 

corresponds to material M18 in the dataset of the case study of Chapter 3. 

 

 Table 4.4 Material properties of the API powder tested in the loss-in-weight feeder. 

 

 

 

 

 

 

 

 

 

The material was previously classified (see results Chapter 3) as a “cohesive” powder. 

Therefore, the expected feed factor profile should rapidly decrease during the 

gravimetric run and a noisy irregular shape of the profile of both the feed factor and the 

mass flowrate is expected.  

The original experiments were conducted at three different mass flowrate setpoints: 5 

kg/h, 10 kg/h and 20 kg/h. In fact, two of the four original experiments used the same 

mass flowrate setpoint of 10 kg/h. Obviously, the batches have different lengths because 

of the different flowrates and a batch alignment is required in order to develop a MwPLS 

model using a batch-wise unfolding. The presence of a monotonic decreasing variable, 

such as the weight, suggested the indicator variables technique for resampling the 

trajectories with respect to this variable as proposed by Nomikos and MacGregor [70]. 

Since these are the only data available, thirty additional realizations of the same batches, 

i.e. ten for each mass flowrate setpoint, have been simulated by adding white noise to 

the original signals according to the standard deviation of each variable. The profiles of 

the two experiments at the same mass flowrate target have been averaged to produce 

the respective new ten batches. A total number of thirty-four batches can be used to 

build the model. A summary of the available and realized batches is given in Table 4.5. 

d10 12.9 [-] 

d50 31.1 [-] 

d90 63 [-] 

ffc 2.5 [-] 

WFA 31.7 [°] 

𝑩𝑫 0.29 [g/cm3] 

𝑻𝑩𝑫 0.54 [g/cm3] 

HR  1.86 [-] 

CARR 46 [-] 

SSA 0.39 [g/m2] 



68 
 

Chapter 4 

 Table 4.5 Number of available and realized batches at 5 kg/h, 10kg/h and 20 kg/h  

 

 

 

 

The batches have been ordered and numbered progressively starting from the original 

ones. The variables data collected by the feeder are the one reported in Table 4.2, i.e. 

weight, screw speed, mass flowrate and feed factor. To understand the general dynamic 

evolution of each batch in better terms, the time profiles for all the batches are shown 

in Figure 4.5.  

Lastly, all the experiments have been done using the same screw type and the same gear 

box ratio. Hence, no considerations or comparisons can be done on the effect of 

different screw design. 

  

 

 

Mass flowrate setpoint (kg/h) n° of available batches n° of realizations batches 

5 1 10 

10 2 10 

20 1 10 

(a) 

(b) 
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4.5.2 Modelling strategy 

In this case study, the only equipment setup parameter, which can be used as input for 

the MwPLS model, is the mass flowrate set-point. Since only feeder data from one 

material are available, the material characterization properties will not be included as 

inputs. In this context, the choice is mostly related to the selection of the dynamic 

variables to include as predictors to model the feed factor profile. The model will be 

used by the users to predict the feed factor at a specific mass flowrate, and this means 

that including all the dynamic variables in the model will create a problem in the 

definition of unknown related profiles such as the screw speed and the mass flowrate. 

However, if the weight is used in the model as the only known dynamic variable of the 

system, the users can simply specify the weight as a linear array of 90 elements with 

the first value equal to the maximum weight at the beginning of the experiment, and the 

last value equal to the minimum weight reached at the end of the experiment. In this 

way, the model will “map” the relationship between mass flowrate setpoint and weight 

profile based on the training data that are used to calibrate the model. 

For that purpose, four batches (batch #3, batch #12, batch #19, batch #27) at different 

flowrates were randomly selected to be used as external validation dataset and the 

Figure 4.5 Time profiles of the variables for the loss-in-weight for both the 

original and the realized batches: (a) weight; (b) screw speed; (c) mass 

flowrate; (d) feed factor. 

(c) 

(d) 
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remaining thirty batches are used to calibrate the model. Finally, the data were 

rearranged according to Nomikos and MacGregor [34]. 

 

4.5.3 Results 

A MwPLS model was built on the calibration dataset and two PC were selected to 

explain 96.3 % of the variability in the X block, and 39.7% of the variability in the Y 

block (see Table 4.6). 

Table 4.6 MwPLS model on the 30 batches calibration dataset: model diagnostic. 

 X Block Y Block 

Component 
Variance 

(%) 

Cumulative 

variance (%) 

Variance 

(%) 

Cumulative 

variance (%) 

1 82.5 82.5 17.7 17.7 

2 13.7 96.2 21.9 39.7 

The time averaged loading plots (Figure 4.6a and 4.6b) show that the mass flowrate 

explains most of the variance in the first principal component, while the weight explains 

most of the variance in the second principal component. These results match the initial 

expectations since they are the only input parameters selected.  

(a) (b) 
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The score plot (Figure 4.6c) shows clearly that the batches are clustering according to 

the mass flowrate setpoint and this indicates that the response variable profile, i.e. the 

feed factor, varies with reference to the mass flowrate target. Once again, this result 

confirms the existent knowledge of the system and the supposed discrimination power 

of the model based on the mass flowrate. 

The estimation performance for the feed factor profile shows a very good curve fitting 

in the model calibration with an average R2 = 0.91. If these performances will be 

confirmed also in the external validation, the capability of the model can be considered 

perfectly appropriate for the scope for which has been conceived. 

Therefore, the four validation batches were projected onto the existing model and the 

results on the score plot can be observed in Figure 4.7. 

 

Batches at 5 kg/h 

Batches at 10 kg/h 

Batches at 20 kg/h 

(c) 

Figure 4.6 MwPLS model on 30 batches calibration dataset: (a) PC1 time-

averaged loading plot; (b) PC2 time-averaged loading plot; (c) PC1 vs PC2 

score plot. 
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The score’s projection shows how the validation batches cluster close to the proper mass 

flowrate especially along PC1. Batch #3 shows a slight drift along the PC2. In fact, this 

batch was excluded on purpose from the calibration dataset since it is one of the original 

batches available at 10 kg/h. This means that, according to the way the new batches 

have been realized, no “noisy” profiles are matching this one (the white noise for these 

batches was added to the average of the two original batches at 10 kg/h). 

Hence, particularly interesting will be the comparison between the prediction results for 

this specific batch and the noisy ones. In Figure 4.8 the feed factor estimation for the 

validation dataset is reported together with the measured profile. The estimations is very 

good in all cases, with only some minimum discrepancies for the more noisy batches. 

However, even in that case the model is able to capture the general trend of the feed 

factor shape including some recurrent areas where the profile seems to drop more 

rapidly.   

Figure 4.7 Score projection of the four external validation batches on the 

MwPLS model. 
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The curve fitting performances for the validation dataset in terms of R2 are reported in 

Table 4.7 and this time the average value is approximately equal to 0.87.  

Table 4.7 R2 results for estimation of the feed factor profiles on the validation dataset. 

 

 

 

 

 

 

Even in this case, the results can be considered appropriate to the purpose of the model 

and promising in terms of future development of more sophisticated models for more 

complex purposes, e.g. faults detection or on-line multivariate control. 

Batch number Flowrate setpoint (kg/h) R2 

#3 10 0.92 

#12 5 0.85 

#19 10 0.90 

#27 20 0.83 

(d) 

Figure 4.8 MwPLS model results for the prediction of the feed factor of the validation 

dataset: (a) batch 3; (b) batch 12; (c) batch 19; (d) batch 27. 

(c) 

(b) (a) 
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4.6 Conclusions 

In this Chapter, a new data-driven approach for powder feeding modelling has been 

presented from a forward-looking perspective that is promising both for development 

and for manufacturing operations. The idea of integrating multivariate statistical 

analysis in powder feeding modelling is something that has been sought for in the last 

years [8], but no references can be found about using a latent variable modelling 

approach for the prediction of the feed factor. The idea discussed in this Chapter is 

likely to arise further interest for manufacturing applications. 

Two main concepts have been expanded in this Chapter from both a “static” and a 

“dynamic” perspective: 

• the development of single models for single materials which have already been 

tested in the line through a systematic revision of the data collected for 

gravimetric experiments; 

• the extension of the concept to multiple known materials models that are likely 

to produce good results in performance prediction for new unknown materials 

that cannot be tested in the line in the early stage of product development. 

The proposed approach requires the combination of the knowledge about the equipment 

and process conditions, the properties of the powders utilized and the data collected by 

the equipment during the operations. The data are collected directly through the 

executions of dedicated gravimetric experiments and organised consistently in a “batch” 

manner.  

Furthermore, the modelling methodologies require the use of a simple PLS extension 

for multiple response prediction for the “static” case and a more refined extension such 

as multi-way PLS for upgrading the model to a “dynamic” scenario. Both the methods 

can produce valuable results in prediction and address different purposes in the 

posteriori data-analysis. 

The latter point on the extension to multiple materials model requires a good level of 

knowledge about the historical materials tested in the line and a structured approach to 

guide the input materials selection of the model. It is in this context that a systematic 

data-driven approach for a raw materials database investigation, as the one presented in 

Chapter 3, gains added value and can be integrated and personalized by the final users 

to achieve optimal results in the identification of materials surrogates with similar 

equipment performance.  

The major drawback of this approach is the initial effort in constructing a various dataset 

of experiments for a relatively large number of powders. However, the efforts and the 

costs associated are estimated to be less than the cost of the actual manufacturing trials, 

both in terms of time, resources, and amount of powder required. Furthermore, the 
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estimation of feeder performance of a new drug formulation, based on materials 

surrogates tested in past, is a very powerful tool to aid and accelerate the drug 

development and design of new products for secondary continuous manufacturing line. 

The case study presented in this Chapter shows how it is possible to integrate a 

multivariate data-driven approach for the prediction of a target variables that is unlikely 

to be obtained in short time by the first principle understanding of the system. The good 

performance in estimation encourage a more frequent use of the available data to meet 

the modelling requirements of the manufacturing operations. 

Most of the concepts reported in this Chapter have been successfully tested using 

several datasets from an experimental campaign of feeder trials. However, not all the 

results and the output of these analysis are presented in this Thesis project because of 

confidentiality issues. Nevertheless, no sufficient knowledge about the prediction of the 

behaviour of unknown materials have been collected and some more intense efforts in 

proving this concept are suggested. 

In conclusion, addressing the generalised lack of first-principles understanding of 

powder flowability across a loss-in-weight feeder, a multivariate approach seems to be 

promising to speed up the development of feeding models for secondary continuous 

tableting lines, particularly with reference to the product and process design of new 

drug candidates.  

  



 
 

 



 

Conclusions 

In this Thesis, a data analytics approach for powder feeding modelling on continuous 

secondary pharmaceutical manufacturing processes has been proposed. In particular, 

this Thesis aims at providing an innovative data-driven approach to support the early 

stage of input materials selection in the product and process design phase of new 

continuous manufacturing lines. 

The main contributions given by this study can be summarized in two aspects: the 

outline of a general procedure to aid the investigation of a raw materials database of 

API powders, and the proposal of a multivariate statistical approach for the 

development of powder feeding unit operation models. 

In the first part, the proposed procedure aims at maximizing the amount of information 

that can be extracted from an available dataset of APIs measurements through a 

systematic methodology that: i) reorganizes the data, ii) explores the system, iii) 

identifies unknown patterns in the data, and iv) trains a classification model for class 

membership prediction of new future candidates. The procedure has been consolidated 

using an example of API powders candidates for a continuous tableting line. The 

industrial case study has shown that an integration between data-based knowledge of 

the measurements collected and system-based knowledge of materials experts is 

required to address the analytics approach in the right direction, following the four basic 

steps proposed. Firstly, the data need to be reorganized according to the limited 

availability and the purpose of the analysis, e.g. the identification of patterns of powder 

flowability in the presence of a restricted set of powder measurements. Secondly, the 

data can be modelled following a latent-variable approach to determine a reduced space 

of investigation and identify possible linear correlations between variables, e.g. PCA 

reduction of the original variables. Thirdly, the application of unsupervised clustering 

models is necessary for the identification of unknown patterns, and the choice can be 

restricted to a partitional clustering approach (if the number of clusters is known) or to 

an agglomerative clustering approach (if the number of clusters is unknown). In this 

case study, a hierarchical clustering method have been selected after a careful 

comparison of several different possible algorithms and four classes of powder 

flowability have been determined. The results have been confirmed by a cross-reading 

analysis of the models’ outputs and the system-based knowledge of materials scientists. 

Lastly, a classifier must be designed to assign the correct class membership of new 

materials and a comparison between linear and non-linear methods is suggested in order 

to identify the correct training framework for the structure of the patterns analysed. In 
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this example, non-linear classifiers have shown superior performances than linear 

counterparts, since the patterns’ boundaries were showing a non-linear shape. The 

outcomes of this analysis are likely to support the identification of surrogates input 

materials, and define a possible data-driven integration of powder characterization 

measurements into a following stage of data-driven modelling of the unit operations of 

the line. 

The proposed methodology has been developed to be general and flexible, in such a 

way that it can be adapted and reproduced on any similar pharmaceutical raw materials 

database with none or minor changes in accord to the dataset structure, the users’ 

expertise and the final goal of the analysis. 

In the second part, the idea of using a data-driven approach for the prediction of a 

targeted quality variable for predicting feeding performance has been developed. The 

lack of first-principles understanding of powder flowability in feeding equipment has 

been addressed from a multivariate statistical approach, combining data from the 

equipment setup, materials properties data and process data from the feeder sensors in 

order to explain the correlation between these variables and the feed factor profile.  

The PLS regression models are built both in a “static” scenario (where the feed factor 

response is a sampled average of ten consecutive hopper zones) and in a “dynamic” 

scenario (where the feed factor profile is evaluated along the entire duration of a 

gravimetric experiment). These models can provide useful information on the 

equipment setup, the manufacturing conditions that affects the powder processability 

across the feeder, the materials variability, the feeder performance and the estimation 

of the feeding behaviour of unknown materials.  

Based on the promising results obtained, the future perspectives of this Thesis project 

are likely to be progressed in the next future. In particular, the first part on the raw 

materials database investigation can be extended to others downstream continuous 

processes. With the development of consistent and relatively large datasets of raw 

materials, some novel methodologies of unsupervised and supervised pattern 

recognition can be explored more into the details. In addition, many opportunities may 

arise from the extension of this general procedure to other raw materials databases, not 

only in the pharmaceutical industry. The second part contains several suggestions for 

the development of a multivariate modelling approach for powder feeding unit 

operations. Some possible areas for future research in this field are the integration of 

the database knowledge to predict new materials performances and the possibility of 

integrating a multivariate statistical tool for on-line control of the feeder operations, 

especially in the transition between the gravimetric and volumetric phases. 
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List of symbols 

N number of samples [-] 

V number of variables [-] 

r rank of the matrix [-] 

z number of principal components [-] 

lv latent variables [-] 

VX number of variables in the predictor variable matrix [-] 

VY number of variables in the predicted variables matrix [-] 

Y response variables in Y [-] 

K number of time data points [-] 

J  number of process measurements or variables [-] 

I number of batches [-] 

d number of descriptors for a generic dataset  [-] 

x generic sample [-] 

y generic sample [-] 

ch cophenetic correlation coefficient [-] 

bxy Euclidean distance between two generic samples x and y [-] 

txy cophenetic distance between two generic samples x and y [-] 

𝑏̅ average of the bxy [-] 

𝑡̅ average of the txy [-] 

% CC percentage of samples correctly classified [-] 

G number of classes [-] 

dVC Vapnik-Chervonenkis dimension [-] 

C cost parameter for SVM [-] 

ff feed factor [g/rev] 

𝑚̇ mass flowrate [g/s] 

𝑣𝑠 screw velocity [rev/s] 

PC1 principal component 1 [-] 

PC2 principal component 2 [-] 

PC3 principal component 3 [-] 

ffc flow function coefficient [-] 

w weight [g]  

s screw type [-] 

gb gear box type [-] 

SSA specific surface area [g/m2] 

BD bulk density [g/cm3] 
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TBD tapped bulk density [g/cm3] 

HR Hausner ratio [-] 

CARR Carr’s compressibility index [-] 

WFA wall friction angle [°] 

 

 

 

Greek letters 

λ eigenvectors [-] 

λi eigenvalues [-] 

𝜑(𝑥) kernel function [-] 

γ radial parameter of a radial basis kernel function [-] 

𝜎 standard deviation [-] 

   

 

 

 

Vectors and matrices 

X generic dataset or matrix of predictors (PLS)  

Y matrix of predicted variables   

t score vector  

p loading vector  

T matrix of the scores of X   

P matrix of the loadings of X  

E error or residual matrix  

Xappr approximate reconstructed matrix  

W matrix of weights  

J  matrix of the scores of Y  

Q matrix of the loadings of Y  

EX error or residual matrix of X  

EY error or residual matrix of Y  

𝐗̅ three-dimensional matrix of predictors  

𝐘̅ three-dimensional matrix of predicted variables  
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x vector of measurements for a generic sample x  

y vector of measurements for a generic sample y  

Z variance-covariance matrix  

X1 matrix of the feeder setup data  

X2 matrix of the material properties data  

X3 matrix of the dynamic data collected by the feeder  

Y1 matrix of the ten zones feed factor arrays  

Y2 matrix of the continuous feed factor   
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PCA principal component analysis  

PLS partial least-squares  

PAT process analytical technology  

MwPLS multi-way partial least-squares  

HCA hierarchical clustering analysis  

RBF radial basis function  

SRM structural risk minimisation  

ERM empirical risk minimisation  

OSD oral solid dosage  

FDA food and drug administration  

EMA European medicines agency  

QbD quality-by-design  

API active pharmaceutical ingredient  

NIR near-infrared  

PSD particle size distribution  

DEM discrete element method  

 

 



 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

References 

[1] Kleinebudde, P., Khinast, J., Ranten, J. (2017). Continuous Manufacturing of 

Pharmaceuticals, Wiley. 

[2]  Gernaey, K. V., Cervera-Padrell, A. E., & Woodley, J. M. (2012). A perspective 

on PSE in pharmaceutical process development and innovation. Computers & 

Chemical Engineering, 42, 15-29.  

[3] McKenzie, P., Kiang, S., Tom, J., Rubin, A. E., & Futran, M. (2006). Can 

pharmaceutical process development become high tech?. AIChE Journal, 

52(12), 3990-3994.  

[4] Scherer, F. M. (1993). Pricing, profits, and technological progress in the 

pharmaceutical industry. Journal of Economic Perspectives, 7(3), 97-115. 

[5]  FDA.  (2002). Guidance: Pharmaceutical cGMPs for the 21st century–A risk 

based approach. 

[6]  EMEA. (2004). ICH Q8, Q9, Q10 and Q11, Pharmaceutical Development. 

[7] Lawrence, X. Y. (2008). Pharmaceutical quality by design: product and process 

development, understanding, and control. Pharmaceutical research, 25(4), 781-

791.  

[8]  Wang, Y., Li, T., Muzzio, F. J., & Glasser, B. J. (2017). Predicting feeder 

performance based on material flow properties. Powder Technology, 308, 135-

148.  

[9] Koynov, S., & Muzzio, F. J. (2016). A quantitative approach to understand raw 

material variability. In Process Simulation and Data Modeling in Solid Oral 

Drug Development and Manufacture (pp. 85-104). Humana Press, New York, 

NY. 

[10] Rietema, K. (1984). Powders, what are they?. Powder Technology, 37(1), 5-23. 

[11] Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. 

Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.  

[12] Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of 

chemometrics. Chemometrics and intelligent laboratory systems, 58(2), 109-

130.  

[13] Gerlach, R. W., Kowalski, B. R., & Wold, H. O. (1979). Partial least-squares 

path modelling with latent variables. Analytica Chimica Acta, 112(4), 417-421.  

[14] Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. 

Analytica chimica acta, 185, 1-17. 



88 
 

References 

[15]  Sandler, N., & Wilson, D. (2010). Prediction of granule packing and flow 

behavior based on particle size and shape analysis. Journal of pharmaceutical 

sciences, 99(2), 958-968. 

[16]  Ferreira, A. P., & Tobyn, M. (2015). Multivariate analysis in the pharmaceutical 

industry: enabling process understanding and improvement in the PAT and QbD 

era. Pharmaceutical development and technology, 20(5), 513-527. 

 

[17]  Tomba, E., De Martin, M., Facco, P., Robertson, J., Zomer, S., Bezzo, F., & 

Barolo, M. (2013). General procedure to aid the development of continuous 

pharmaceutical processes using multivariate statistical modeling–An industrial 

case study. International journal of pharmaceutics, 444(1-2), 25-39. 

[18]  Muteki, K., Swaminathan, V., Sekulic, S. S., & Reid, G. L. (2011). De-risking 

pharmaceutical tablet manufacture through process understanding, latent 

variable modeling, and optimization technologies. AAPS PharmSciTech, 12(4), 

1324-1334. 

[19] Largoni, M., Facco, P., Bernini, D., Bezzo, F., & Barolo, M. (2015). Quality-

by-Design approach to monitor the operation of a batch bioreactor in an 

industrial avian vaccine manufacturing process. Journal of biotechnology, 211, 

87-96. 

[20] Sever, N. E., Warman, M., Mackey, S., Dziki, W., & Jiang, M. (2009). Process 

analytical technology in solid dosage development and manufacturing. In 

Developing Solid Oral Dosage Forms (pp. 827-841).  

[21] Luypaert, J., Massart, D. L., & Vander Heyden, Y. (2007). Near-infrared 

spectroscopy applications in pharmaceutical analysis. Talanta, 72(3), 865-883. 

[22] Knop, K., & Kleinebudde, P. (2013). PAT-tools for process control in 

pharmaceutical film coating applications. International journal of 

pharmaceutics, 457(2), 527-536. 

[23] Jackson, J. E. (1981). Principal components and factor analysis: Part III—What 

is factor analysis?. Journal of Quality Technology, 13(2), 125-130.  

[24] Jackson, J. E. (2005). A user's guide to principal components (Vol. 587). John 

Wiley & Sons. 

[25] Wise, B. M., & Gallagher, N. B. (1996). The process chemometrics approach to 

process monitoring and fault detection. Journal of Process Control, 6(6), 329-

348.  

[26] Wise, B. M., Gallagher, N. B., Bro, R., Shaver, J. M., Windig, W., & Koch, R. 

S. (2006). Chemometrics tutorial for PLS_Toolbox and Solo. Eigenvector 

Research, Inc, 3905, 102-159. 

[27] Valle, S., Li, W., & Qin, S. J. (1999). Selection of the number of principal 

components: the variance of the reconstruction error criterion with a comparison 

to other methods. Industrial & Engineering Chemistry Research, 38(11), 4389-

4401. 



89 
 

References 

[28] Esbensen, K. H., & Geladi, P. (2009). Principal component analysis: concept, 

geometrical interpretation, mathematical background, algorithms, history, 

practice. 

[29] Varmuza, K., & Filzmoser, P. (2016). Introduction to multivariate statistical 

analysis in chemometrics. CRC press. 

[30] Wold, H. (1982). Soft modelling: the basic design and some extensions. Systems 

under indirect observation, Part II, 36-37. 

[31] Wold, S., Ruhe, A., Wold, H., & Dunn, III, W. J. (1984). The collinearity 

problem in linear regression. The partial least squares (PLS) approach to 

generalized inverses. SIAM Journal on Scientific and Statistical Computing, 

5(3), 735-743. 

[32] Höskuldsson, A. (1988). PLS regression methods. Journal of chemometrics, 

2(3), 211-228. 

[33] Camacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch 

processes. Part I: theoretical discussion. Journal of Chemometrics, 22(5), 299-

308. 

[34] Nomikos, P., & MacGregor, J. F. (1995). Multi-way partial least squares in 

monitoring batch processes. Chemometrics and intelligent laboratory systems, 

30(1), 97-108. 

[35] Shi, R., & MacGregor, J. F. (2000). Modeling of dynamic systems using latent 

variable and subspace methods. Journal of Chemometrics, 14(5‐6), 423-439. 

[36] García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. 

(2003). Troubleshooting of an industrial batch process using multivariate 

methods. Industrial & engineering chemistry research, 42(15), 3592-3601. 

[37] Watanabe, S. (1985). Pattern recognition: human and mechanical. John Wiley 

& Sons, Inc.. 

[38] Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A 

review. IEEE Transactions on pattern analysis and machine intelligence, 22(1), 

4-37. 

[39] Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of 

clustering methods: An empirical comparison. Data & Knowledge Engineering, 

63(1), 155-166.  

[40] De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The 

mahalanobis distance. Chemometrics and intelligent laboratory systems, 50(1), 

1-18.  

[41] Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective 

methods. Taxon, 11(2), 33-40. 

  



90 
 

References 

[42] Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and 

chemical plant. John Wiley & Sons. 

[43] Todeschini, R., Ballabio, D., Cassotti, M., & Consonni, V. (2015). N3 and BNN: 

Two new similarity based classification methods in comparison with other 

classifiers. Journal of chemical information and modeling, 55(11), 2365-2374.  

[44] Vapnik, V. (2013). The nature of statistical learning theory. Springer science & 

business media. 

[45] Vapnik, V., Golowich, S.E., Smola , A.J. (1997). Support vector method for 

function approximation, regression estimation and signal processing. In 

Advances in neural information processing systems (pp. 281-287). 

[46] Xu, Y., Zomer, S., & Brereton, R. G. (2006). Support vector machines: a recent 

method for classification in chemometrics. Critical Reviews in Analytical 

Chemistry, 36(3-4), 177-188. 

[47] Gunn, S. R. (1998). Support vector machines for classification and regression. 

ISIS technical report, 14(1), 5-16. 

[48] Brereton, R. G., & Lloyd, G. R. (2010). Support vector machines for 

classification and regression. Analyst, 135(2), 230-267.  

[49] Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. 

Journal of chemometrics, 17(3), 166-173. 

[50] Górski, Ł., Sordoń, W., Ciepiela, F., Kubiak, W. W., & Jakubowska, M. (2016). 

Voltammetric classification of ciders with PLS-DA. Talanta, 146, 231-236. 

[51]  Gibson, M. (Ed.). (2016). Pharmaceutical preformulation and formulation: a 

practical guide from candidate drug selection to commercial dosage form. CRC 

Press. 

[52] Castle, B. C., & Forbes, R. A. (2013). Impact of quality by design in process 

development on the analytical control strategy for a small-molecule drug 

substance. Journal of Pharmaceutical Innovation, 8(4), 247-264. 

[53] Engisch, W. E., & Muzzio, F. J. (2015). Feedrate deviations caused by hopper 

refill of loss-in-weight feeders. Powder Technology, 283, 389-400. 

[54] K-Tron International, (2009). Smart Refill Technology in Loss-in-Weight 

Feeding, Technical Paper. 

[55] Engisch, W. E., & Muzzio, F. J. (2012). Method for characterization of loss-in-

weight feeder equipment. Powder technology, 228, 395-403. 

[56] Jenike, A. W. (1976). Storage and flow of solids. Bulletin No. 123; Vol. 53, No. 

26, November 1964 (No. NP-22770). Utah Univ., Salt Lake City (USA). 

 [57] Prescott, J. K., & Barnum, R. A. (2000). On powder flowability. Pharmaceutical 

technology, 24(10), 60-85. 



91 
 

References 

[58] Yu, Y. (1997). Theoretical modelling and experimental investigation of the 

performance of screw feeders. 

[59] D.M.-S. Tim Freeman, R. Weinekotter, 2015. Predicting feeder performance 

from powder flow measurements, Powder Bulk Solids  

[60] Cleary, P. W. (2007). DEM modelling of particulate flow in a screw feeder 

Model description. Progress in Computational Fluid Dynamics, An 

International Journal, 7(2-4), 128-138. 

 [61] Hu, G., Chen, J., Jian, B., Wan, H., & Liu, L. (2010, June). Modeling and 

simulation of transportation system of screw conveyors by the Discrete Element 

Method. In Mechanic Automation and Control Engineering (MACE), 2010 

International Conference on (pp. 927-930). IEEE. 

 [62]  Owen, P. J., & Cleary, P. W. (2010). Screw conveyor performance: comparison 

of discrete element modelling with laboratory experiments. Progress in 

Computational Fluid Dynamics, An International Journal, 10(5-6), 327-333. 

 [63]  Owen, P. J., & Cleary, P. W. (2009). Prediction of screw conveyor performance 

using the Discrete Element Method (DEM). Powder Technology, 193(3), 274-

288. 

[64] Stauffer, F., Vanhoorne, V., Pilcer, G., Chavez, P. F., Rome, S., Schubert, M. 

A., ... & De Beer, T. (2018). Raw material variability of an active 

pharmaceutical ingredient and its relevance for processability in secondary 

continuous pharmaceutical manufacturing. European Journal of Pharmaceutics 

and Biopharmaceutics, 127, 92-103. 

[65] Oka, S. S., Escotet-Espinoza, M. S., Singh, R., Scicolone, J. V., Hausner, D. B., 

Ierapetritou, M., & Muzzio, F. J. (2017). Design of an Integrated Continuous 

Manufacturing System. Continuous Manufacturing of Pharmaceuticals, 405-

446. 

[66] Dolnicar, S. (2002). A review of unquestioned standards in using cluster 

analysis for data-driven market segmentation.  

[67] Yu, W., Muteki, K., Zhang, L., & Kim, G. (2011). Prediction of bulk powder 

flow performance using comprehensive particle size and particle shape 

distributions. Journal of pharmaceutical sciences, 100(1), 284-293.  

[68] Dray, S., & Josse, J. (2015). Principal component analysis with missing values: 

a comparative survey of methods. Plant Ecology, 216(5), 657-667. 

[70] Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC charts for 

monitoring batch processes. Technometrics, 37(1), 41-59.

 

 



 

 

 


