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SOMMARIO 

 

Il presente lavoro di tesi illustra l’esperienza svolta presso l’Istituto Veneto di Medicina Molecolare di 

Padova (V.I.M.M.). Lo scopo dell’attività di laboratorio è stato l’ottimizzazione di un microscopio laser 

scanning a due fotoni, proprietà del Dipartimento di Fisica e Astronomia, attraverso l’implementazione 

di tecniche di microscopia avanzate, quali la microscopia multicolor multiphoton e la nanoscopia STED. 

Una volta ottimizzato, lo strumento potrà essere sfruttato per l’imaging intravitale in modelli animali e 

costituirà uno strumento senza precedenti per lo studio dei processi biologici in vivo sulla nano scala, 

con la possibilità di osservare contemporaneamente dettagli diversi del campione biologico in esame. Il 

lavoro di tesi è consistito nell’assemblaggio, taratura ed ottimizzazione di un banco ottico che 

permettesse di generare due fasci laser pulsati opportuni per generare effetti di florescenza in multicolor 

e STED. Le due modalità di imaging richiedono configurazioni ottiche intercambiabili, la cui  

progettazione è stata parte del lavoro di tesi. Le nuove potenzialità acquisite dal microscopio 

multifotone sono state validate su campioni fluorescenti, in attesa di caratterizzarne le performance 

direttamente su modelli animali. Un setup di imaging con tali potenzialità è ciò che attualmente manca 

a Padova nel campo della ricerca contro il cancro per raggiungere una più profonda comprensione dei 

processi biologici del microambiente tumorale.     
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INTRODUCTION 

 
The aim of the present work is the optimization of a two-photon laser scanning microscope by 

means of simultaneous implementation of two advanced microscopy techniques, multicolor 

multiphoton microscopy and STED nanoscopy. Once optimized, the instrument will be suitable 

for intravital multiphoton imaging in live models, like mice, and will be a great resource for 

biomedical studies. 

 

The possibility of imaging biological processes in living multicellular organisms constitutes the 

basis of present and future research in biomedical fields, such as neurobiology, immunology 

and cancer biology. Intravital microscopy (IVM), the term we refer to this practice, has an 

enormous impact on cell biology studies, opening the way to direct observations of dynamic in 

vivo processes not only in live tissues, but also at cellular and subcellular scales. 

 

The first attempt to perform imaging in live animals dates back to the nineteenth century, when 

the available technique was the brightfield transillumination (1).  This approach has been used 

for over a century, until the development of technologies allowed fundamental improvements 

in the direction of high-resolution cellular processes investigation. First of all, scientists obtained 

access to tissues not directly observable from the outside, by implanting optically transparent 

windows on model organisms, often mice (2). Subsequently, the introduction of fluorescence 

microscopy permitted to follow the dynamics of single cells and subcellular structures.  

In the last decades several techniques have been developed to carry out advanced IVM. In 

particular the use of femtosecond lasers, able to provide intensities in the order of tens GW per 

square centimeter but relatively low average powers (milliwatts), marked the beginning of a 

new class of optical observations, derived from time-varying polarization at higher order. This 

nonlinear polarization is currently produced by light pulses with temporal duration in the range 

of 10 fs. Multiphoton excitation microscopy (MPE), that achieved high contrast imaging in thick 

and scattering specimens, and STED microscopy, which broke the diffraction limit, with other 

not linear optical techniques are destined to supply increasing quality images of biological 

specimens. 

  

The opportunities offered by IVM can be exploited in the study of tumor growth and its 

response to therapy; in particular, understanding cell-cell communication through intracellular 

signalling is now within reach. Cancer progression is a process that consists of alternated phases 

of deregulated cell growth and migration, resulting from an altered survival signalling due to 

interactions between cancer cells and the reactive tumor microenvironment (3). We define 

“tumor microenvironment”, also called “stroma”, as the tissue environment surrounding the 
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tumor, composed of supporting structures, extracellular matrix (ECM), vasculature, immune cells 

and other non-malignant cells. It has a fundamental and often ambiguous role in cancer 

invasion and migration: it is actively involved in cancer progression, undergoing modifications 

such as remodeling of blood and lymphatic vessels, new vessels construction, different 

organization of matrix proteins. This can produce a cancer promoting effect derived from 

adjacent environment, especially from vasculature, nerves, trafficking routes of leukocytes, 

along which the invading tumor cells move and spread (3). Simultaneous detection of tumor 

cells and physical microenvironment by means of intravital microscopy over time can disclose 

the key mechanisms of tumor growth and response to therapy. This kind of analysis becomes 

essential for a deeper comprehension of biological effects of anti-cancer treatments and for 

addressing the therapy approach. In conclusion, intravital superresolution microscopy can and 

will undoubtedly be exploited to advance our knowledge of tumor progression mechanisms 

and consequently to develop cures to oppose it. A high performance optical setup for intravital 

microscopy will have the chance to provide new insights in the scope of microenvironment and 

cancer interaction as well as cancer cell-cell signalling.  

 

In the present thesis we propose to optimize the advanced optical imaging apparatus currently 

under construction in a laboratory of the Venetian Institute of Molecular Medicine of Padua.   It 

is composed of a new laser scanning confocal multiphoton microscope fed by two laser beams 

and the connected beams conditioning optics. Starting from the optimization of the 

performance of each component in the setup, such as beam power modulation system, 

fluorescence signal acquisition, temporal and spatial overlap of the two beams, the further aim 

is to set the best conditions to perform intravital multicolor multiphoton microscopy deep into 

biological tissues. The new acquired potentialities of the imaging apparatus must be tested 

observing fixed biological samples, looking forward to characterize its capabilities in live 

models. 

 

The first chapter provides an overview about the development of optical imaging techniques, 

from traditional fluorescence microscopy to more recent and advanced methods exploited in 

top research in physical and biomedical fields. In particular, the optical nonlinear phenomena 

which will be employed as imaging techniques in the apparatus are illustrated. 

 

The second chapter contains the detailed description of each element in the setup, pointing out 

its functionality with respect to the final purpose of setting the conditions required to perform 

multicolor multiphoton microscopy or STED nanoscopy.   

 

In the third chapter the methods for the beams alignment, temporal synchronization of pulses 

and beam analysis are elucidated.    
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The fourth chapter presents the achievements obtained in the setup optimization and exhibits 

the experimental results of the tests executed to verify the capability of the imaging apparatus 

to perform multicolor multiphoton microscopy.    
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1 INTRAVITAL MICROSCOPY TECHNIQUES 

 

In this chapter, taking the first steps describing the foundations of conventional modern microscopy, we 

present the principles underling the techniques that will be implemented in the imaging setup of the 

laboratory. First of all, some non-linear optic effects of materials exploited in microscopy are described, 

such as multi-photon absorption and higher harmonic generation; secondly STED microscopy is 

illustrated, the imaging technique that improves resolution under the limit dictated by diffraction. Finally, 

we give an overview of how the potentialities of these technologies can be employed in biology and 

medicine.   

   

1.1 FLUORESCENCE MICROSCOPY 

 
The phenomenon of fluorescence in specific molecules, called “fluorophores”, is the main tool 

used to image subcellular structures in biological studies. Spontaneous fluorescence emission 

is a radiative de-excitation mechanism through which a molecule, brought in a superior energy 

level S1 by the absorption of a quantum of light, can reach again its ground state S0.  

When a fluorophore absorbs light energy, it is usually carried to a higher vibrational level of an 

excited state, for example S1, but  it rapidly reaches the lowest vibrational level of the same 

state, S1(0), by means of internal conversion. In this kind of vibrational relaxation the excess 

energy is transferred from vibrational to kinetic modes in the molecule or to its neighbours, 

with a characteristic time of 10-12 seconds. Later, many mechanisms can compete to de-excite 

the molecule to the ground state; if the process occurs through the emission of a photon after 

a period on the order of 10-9 seconds, it is termed spontaneous fluorescence emission. The 

sequence of processes is summed up in Figure 1.1.1a. 

 

     
Figure 1.1 Fluorescence emission mechanism  

(a) Excitation and relaxation of a fluorophore  (b)   Fluorophore absorption and emission spectra      



5 
 

The spectrum of fluorescence emission wavelengths depends on the energy gap between final 

and initial states the electron experiences in the transition. As a rule, the emission wavelength  

is always longer than the excitation wavelength, since some of the absorbed energy is lost 

during vibrational relaxation. This fact causes a relative shift, named Stokes shift, between 

absorption and emission spectra of a molecule, whose size can range from few to several 

hundreds of nanometers. The two are however similar in shape because of the comparable 

structure in the vibrational energy levels spacing both in ground and excited states. The 

situation is described in Figure 1.1b. 

The difference between excitation and emission wavelengths allows the construction of the 

fluorescent microscope, whose working principle is to irradiate the specimen with light 

belonging to the absorption spectrum and collect fluorescence light, separating the two by 

means of a combination of  dichromatic mirror, also called beam splitter, and filters, that act as 

follows, with reference to the Figure 1.2b: 

 the excitation filter selects a narrow band of excitation wavelengths from the 

illumination beam in entrance to the mirror; 

 the beam splitter, positioned at 45° with respect to the optical axis, transmits only over 

a certain value wavelengths, while the remaining light is reflected. The fluorophore 

excitation wavelength used is under threshold, so it is reflected towards the objective, 

that focus it on the specimen; 

 longer fluorescence emitted wavelength crosses the objective again, which behaves 

also as a condenser, the mirror and the following emission filter for a finer selection; 

finally it proceeds along the axis up to the ocular and the detector.   

 

 
Figure 1.2 Fluorescence microscope 

(a) Dichromatic mirror joined to filters    (b) Scheme of fluorescence upright microscope 

The presented mode of operation for the microscope is also known as “epifluorescence 

microscopy”, where the configuration is compact because the function of objective and 

condenser is carried out by the same optical element, automatically ensuring the perfect 

alignment of objective and condenser. 
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The illumination condition in conventional fluorescence microscopy is in “widefield”: a collection 

of plane waves, incident at different angles, illuminates a large volume of the sample, allowing 

the image formation of a wide portion of the focal plane, observed with a camera.  

1.2 FROM WIDEFIELD TO CONFOCAL MICROSCOPY 

1.2.1 Point Spread Function 

 

 
Figure 1.3 Ideal optical system 

To form an image of a source of spherical waves, such as a fluorescent molecule, an optical 

system able to reverse diverging wavefronts into converging ones is needed (Figure 1.3).  The 

ideal work of the optical system in geometrical optics is to establish a univocal relation between 

points in the object space and points in the image space. Because of the diffraction of the 

wavefront at the borders of the system circular exit pupil, this relation is not one-to-one, but 

the image of a geometrical point O in the object space always corresponds to a spot with a 

certain volume around the point expected to be the geometrical image point or focal point O' 

in the image space.  The volume of the spot, defined by light distribution near focus, has a 

precise shape both in axial direction (along the optic axis) and radial direction (in the normal 

plane to the optical axis). The three-dimensional irradiance distribution near focus is called 3D 

Point Spread Function (3D-PSF). It can be calculated in an approximated way considering the 

model represented in Figure 1.4: 

 a is the radius of the optical system exit pupil; 

 W indicates the converging spherical wavefront of radius R at the exit of the optical 

system pupil; 

 Q is a generic point belonging to it; 

 P can be any point past the circular aperture, whose position relative to the focus  is 

individuated by the vector V ; 

 s is the distance between Q and P ; 

 θ is the angle between QP direction and the optic axis; 
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 μ ≅  sin μ =  
a

R
 is the angular aperture of the system. 

 

 

 
Figure 1.4 Scheme for PSF calculation 

The Rayleigh-Sommerfeld diffraction integral (equation 1) expresses the diffracted field U(P) 

knowing the incident field Ui(Q) on the aperture, with λ and k respectively the incoming wave 

wavelength and wave number.   

  

 U(P) =  ∬ Ui(Q) [
1

jλ

exp (jks)

s
]

W
cos θ  dΣ  (1) 

 

This expression is nothing but the mathematical transcription of Huygens-Fresnel principle, 

according to which every point of an illuminated diffracting structure becomes a secondary 

source of spherical waves. This equation holds under validity of diffraction conditions, namely 

𝜆 ≪ 𝑠, and it is often expressed in dimensionless variables, known as optical coordinates (u, v), 

defined as follows: 

 

{
 

 
 

u =
2π

λ
(
a

R
)
2

z    axial coordinate

v =
2π

λ

a

R
r        radial coordinate

   (2) 

 

where r =  √x2 + y2 . After imposing the boundary condition Ui(Q) =  
e−jkR

R
, which describes 

the converging spherical wave at the exit of the optical system, thanks to a series of 

approximations and calculations the final expression for U(P) is obtained; the 3D-PSF is 

 

   h(u, v) ≡ |U(u, v)|2 ≅ I0 |2 ∫ J0(vρ)
1

0
exp (− 

1

2
juρ2) ρ dρ|

2
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with 0 ≤  ρ ≤  1  and I0 = (
πa2|A0|

λR2
)
2

. 

 

Its normalized form (divided by the irradiance at geometrical image point I0) is often used. The 

irradiance distribution is drawn in Figure 1.5, where the lines locate the surfaces with constant 

value luminous intensity.  

 

 
Figure 1.5 Point Spread Function contour lines 

 

The obtained pattern near the focus represent the diffraction limit on focusing light by means 

of an optical system. In the context of fluorescence microscopy, the volume of light spot in the 

image space (see Figure 1.5) determines the extension of the excited region in the specimen, 

consequently it constitutes the inferior limit in imaging resolution. 

According to Rayleigh criterion, two equally bright points are just resolvable in the image when 

the maximum of one intensity distribution coincides with the minimum of the other, as 

represented in Figure 1.6. We can then quantify the optical axial and radial resolutions as the 

distance between the two maxima, namely the coordinate value corresponding to PSF first zero 

in axial and radial directions respectively.  
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Figure 1.6 Rayleigh criterion for resolution determination 

(a) Minimal condition for resolvable images  (b) Airy diffraction image 

 

Therefore, in order to calculate them, it is necessary to extract the intensity distribution along 

the optic axis v = 0 and in the focal plane  u = 0:  
 

h(u, 0) =  (
sin u 4⁄
u 4⁄

)
2

,   first zero |u| = 4π,

h(0, v) =  (
2J1(v)
v )

2

,   first zero |v| = 1.22π
 

 

J1(v) is the first order Bessel function; h(0, v), the PSF in the image plane, is called Airy diffraction 

image. It is composed of a series of alternated bright and dark rings surrounding the central 

illuminated disk (Figure 1.6b). This last contains more than 80% of light and it is confined by the 

first dark ring, corresponding to the first minimum of h(0, v), therefore lateral resolution 

coincides with its radius, the Airy radius.   
Finally, axial and radial resolutions are expressed in cylindrical coordinates inverting equations 

(2), 

Δz =  
2λ0n

NA2
 

   

Δr =  
0.61 λ0
NA

 

 

where NA = n sin μ is the numerical aperture of the system.  
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1.2.2 Confocal microscope 

 

The main problem in widefield fluorescence microscopy derives from contributions of out of 

focus sample regions, which produce unwanted light that is collected by the objective. The 

consequence is a reduction of contrast due signals emitted by fluorescent sources placed in the 

focal plane, which can seriously compromise the ability to resolve the specimen details.  The 

problem is known as “axial blurring”.  

The decisive idea was found by Lee Minsky in 1955 (4): to avoid axial blurring the object has to 

be illuminated and imaged point-by-point through the use of two pinholes, one placed at the 

exit of the source of a collimated light beam, the source pinhole, the other positioned just 

before the photodetector, called detection pinhole, as can be seen in Figure 1.7. The invention 

was not immediately available just because the microscope in this configuration can see only a 

point of specimen at a time, therefore it needs a system to scan the illumination spot over the 

entire focal plane to obtain an image of the object.  The method started to be applied in biology 

later, during the 80’s.  

 
Figure 1.7 Scheme of a confocal microscope 

In 1979 Brakenhoff and others (5) tested the goodness of the technique, experimentally proved 

its potentialities and expanded its application into cell biology. They also first used the word 

“confocal” to refer to this kind of microscopy, to underline the fact that both illumination and 

detection are confined to diffraction limited spots, which are optically conjugates.  The results 

showed that confocal microscopy presents a high intrinsic capability of “axial optical 
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sectioning”, removing almost completely the blurring effect; furthermore, resolution (measured 

as full-width at half maximum of imaged PSF) is improved by a factor √2 compared to traditional 

microscope (6).   

The physical reason for better performances of confocal microscope lies in the approximately 

square dependence of the effective PSF on illumination intensity. The illumination point spread 

function h(u, v) is nothing but the probability density for a photon belonging to the laser beam 

to reach the point (u, v). In order to take part in image formation, this photon must excite a 

fluorescent molecule and the emitted photon must be detected. We expect a detection 

probability density similar to the illumination one, since light can travel the same optical path 

from one point to another and in the opposite way. The only difference between the two PSF is 

the wavelength, emission being longer than excitation, which enters in the definition of optical 

coordinates at denominator, as seen in equations (2); as a consequence, detection PSF 

coordinates are contracted by a factor β =  
λem

λex
, namely the irradiance distribution occupies a 

broader volume. The effective intensity distribution for confocal image formation is computed 

as the product of illumination and detection PSF because excitation of a point (u, v) and 

consequent detection of photon emitted in that point are statistically independent events. 

Considering typical values of the Stokes shift, 50-70 nm, it is possible to approximate λem with 

λex and to affirm that confocal PSF is the square of illumination PSF. As a consequence, 

contributions from points out of focus, which have a small probability to be illuminated, thanks 

to the quadratic dependence, have an even smaller probability to take part to the image 

formation and so are effectively suppressed.  The resulting PSF is shown in Figure 1.8 and 

compared with the PSF produced by a single lens. 

 

 
Figure 1.8 Comparison between single-lens and confocal PSF 
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The improvement of a factor √2 in confocal fluorescence microscope resolution applies to both 

lateral and axial extents of PSF intensity, both about 30 % narrower than those of conventional 

fluorescence microscope. In fact, axial and lateral resolutions are 

 

 

Δzconf ≅ 0,7Δz =  
1,4λ0n

NA2
 

    

Δrconf ≅ 0.7Δr =  
0.4 λ0
NA

 

 

In conclusion, in the history of microscopy the confocal technique turned out to be a 

fundamental tool for investigating biological specimens, in particular for the possibility to 

obtain the z-stack, a series of thin optical sections produced by modifying finely in incremental 

steps the position of focus along the optical axis. Converting these images through a digital 

image processor, it is possible to build a tomographic three-dimensional reconstruction of the 

object.  

The main problem with conventional confocal point-scanning imaging is that regions above 

and under the focal plane in specimens are subjected to intense cones of excitation light. In 

fact, they can produce both an unwanted effect of fluorophores bleaching (photon-induced 

damage) in large areas and a considerable loss in signal: absorption of photons by intervening 

material prevents them to reach the focus, moreover scattering of fluorescence emission light 

keeps out the majority of photons from the objective angular acceptance (7). This phenomena 

lead to an inefficient signal generation, until deep in specimen confocal microscopy becomes 

completely unacceptably; an increased excitation light intensity would cause an even more 

serious damage, therefore the technique is not recommended for biological tissues,  while it is 

best applied to thin specimens like cultured preparations or superficial cell layers in the tissue 

(< 20 μm) (8). The problem of loss of signal in scattering samples and the impossibility to image 

deeper in thick objects have been overcome later, with the advent of multi-photon microscopy.   

1.3 MULTIPHOTON MICROSCOPY 

 

Multiphoton microscopy (MPM) is a form of laser-scanning microscopy based on nonlinear 

excitation of fluorescence, strongly localized within the raster-scanned plane. The process is 

defined “nonlinear” because the absorption rate depends on a higher than first power of 

illumination intensity. MPM allows to contain the problem of signal-loss due to light scattering 

in regions above the focal plane and constitutes the best noninvasive means to image deep in 
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explanted tissues or in living animals (9; 10). It has provided unprecedented possibilities to study 

angiogenesis, metastasis, lymphocyte traffics, embryos development, thanks to its capability to 

perform high-resolution imaging, fundamental to analyze physiology, morphology and cell-cell 

interactions deep in tissues or live animals (10).  

 

1.3.1 Two-photon and multi-photon excitation 

 

The primary signal source in MPM is fluorescence induced by two-photon excitation. The 

technique is based on absorption of two photons by a fluorophore in a single quantum event. 

The possibility for a molecule to absorb simultaneously two photons was predicted by Maria 

Goeppert-Mayer in 1931 (11), but experimentally verified only after the invention of lasers in 

1961 (12). 

 

 
Figure 1.9 Schemes for 1P and 2P excitation processes 

The principle of two-photon excitation (2PE) process is represented in Figure 1.9. and compared 

to single photon absorption (1PA). The energy required by the electron to perform the 

molecular electronic transition is the same in both cases, but in two-photon excitation it is 

provided in nearly equal parts by the combination of the energies of two different photons, 

through the passage in an intermediate virtual state. As the photon energy is inversely 

proportional to the wavelenght, the two photons must have wavelengths λA ≈ λB ≈ 2λ1P, 

double with respect to the one used for 1PA. The occurrence of the event is determined by both 

photons interaction with the fluorophore, therefore they must incide upon the molecule with 

relative delay less than ~ 10−16 s, the intermediate virtual state life time (10). Two-photon 

excitation rate depends on the second power of light intensity (8), but it is very small, about 

10−14 times smaller than 1P absorption rate. This is the reason why high photon fluxes are 

needed (1030 photons/s cm2), in fact the relatively wide spread use of multiphoton microscopy 
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in biomedical fields had to wait for the development of mode-locked lasers, with pulse 

durations below 1 ps and frequencies about 100 MHz (7).  

Although 2PE requires elevated light intensities, it is convenient because it presents several 

advantages compared to single-photon excitation. First of all, the wavelengths used in 2P 

microscopy, deep red and near IR, are less subjected to scattering and absorption from tissue 

above the focal plane; this determines a deeper penetration inside specimens. Moreover, the 

technique allows great localization of excitation light, in volumes that can be small as ~ 0.1 μm3 

(10): the effective two photons PSF contains a quadratic dependence on illumination intensity, 

because the absorption of two different photons are statistically independent events, so the  

total probability density is the product of two excitation probability densities h(u 2⁄ , v 2⁄ ), each 

one at wavelenght λ2P ≈ 2λ1P. The resulting illumination PSF is 

h2P(u, v) =  [h(u 2⁄ , v 2⁄ )]2. 

It leads to imaging resolutions slightly worse than confocal microscopy (with about a factor 

1.3 for lateral and 1.5 for axial resolution (13)), as expected in theory, since they are linearly 

dependent on light wavelength, which is approximately doubled in 2PE.    

On the contrary, thanks to localization of excitation, both ballistic (not scattered) and scattered 

fluorescence photons that are detected by the objective contribute to the signal, while in 

widefield or single-photon excitation the majority of scattered emitted photons is lost (excluded 

by the detection pinhole), or worse, part of background (8). This fact determinates the 2PE 

intrinsic ability to perform axial sectioning of samples, without the presence of pinholes and 

also the increased confinement of bleached fluorophore volume, which is restricted to the focal 

plane (13).  

Multi-photon excitation is based on the same principles at longer wavelengths. It presents the 

same advantages of 2PE, but simultaneous events become rarer (the probability of absorption 

of n photons is proportional to the n-th power of illumination intensity), it requires higher 

instantaneous photon densities at the diffraction-limited focal volume of the objective in the 

specimen. Such concentrations of photons can be achieved only thanks to shorter laser pulses, 

to provide extremely high instantaneous intensities delivered to the sample, while the received 

average power remains not excessive.         

In biologic microscopy the advantages offered by multi-photon excitation technique, in 

particular deeper penetration inside samples, are fundamental because they extend the analysis 

in the range of about 1 mm from the surface of the sample.    
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1.3.2 Higher harmonic generation 

 

The phenomena of harmonic generation are widely exploited in biological microscopy. They are 

optical nonlinear processes, due to higher order terms in the expression of material system 

polarization P(t) in presence of external electrical field E(t) (here for simplicity assumed as scalar 

quantities). In fact, in nonlinear optics the optical response is described as a power series in the 

external field  

P(t) =  ϵ0[χ
(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + … ] =  (3) 

= P(1)(t) + P(2)(t) + P(3)(t) + ⋯ 

where ϵ0is the vacuum permittivity, χ(1) the linear susceptibility,  χ(2)and χ(3) the second- and 

third-order nonlinear susceptibilities, which, if not vanishing, give raise to higher order nonlinear 

polarizations and consequently to higher order nonlinear processes, such as second harmonic 

generation (SHG) and third harmonic generation (THG) respectively. The emission frequency in 

these processes is a higher harmonic of the incident frequency ω (2ω, 3ω…), namely the emitted 

wavelengths are1 2⁄ , 1 3⁄ … of the incident wavelength. Note that P(t) in equation (3) is assumed 

depend on the instantaneous value of the electric field strength; this is true only for lossless and 

dispersionless media, as implied by the Kramers-Kronig relations (see Appendix B). In the 

general case for dispersive medium, susceptibilities becomes complex quantities that relate 

complex amplitudes of electric field and polarization. 

Phenomena of harmonic generation are examples of parametric processes (a process is 

“parametric” when the initial and final states of the system are identical). The population in the 

system is removed from the ground state only for a brief interval of time, according to the 

indetermination principle, for about  ħ δE⁄ , where δE is the energy gap between the virtual level 

and the nearest real level. This kind of process always conserves energy and it can be described 

through a real susceptibility. On the contrary, a process that involves only real levels is called 

“nonparametric” and it is described by means of complex susceptibility, namely there is 

dissipation, so photon energy doesn’t need to be conserved because an energy exchange with 

material medium can happen.   

Similarly to 2PE, nonlinear dependency on incident light intensity allows a greater localization 

of excitation and consequently an ability of optical axial sectioning of specimens. Since 

harmonic generation is exploited as a contrast mechanism, no fluorescence is needed; the main 

consequence is the elimination of photodamage and phototoxic effects, together with the 

possibility to avoid the use of fluorophores, which are instead commonly used in MPM (14). 

Harmonic generation is a particularly important source of signal in intravital microscopy 

because it reports the distribution of collagen, which delineates the boundaries between 
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different tissues and cells within the extracellular matrix. Furthermore, harmonic signals are 

easily identified because they are distinct from other potentially confounding sources.  

 In the present work we will limit to a qualitative description of main optical nonlinear processes 

actually observed in laboratory, referring to Boyd (15) for further details. 

 

Second Harmonic generation (SHG) 

The discovery of SHG in 1961 marked the beginning of nonlinear optics study (16). The 

technique finds important application in the field of nonlinear microscopy, often coupled with 

confocal imaging and excitation through femtosecond laser pulses. This configuration was first 

used by Curley (17).  

Given a laser beam with harmonic electric field strength E(t) and frequency 𝜔 

E(t) =  E0e
−iωt + E0

∗eiωt , 

in the illuminated material system with nonzero second-order susceptibility, a second-order 

polarization is created 

P(2)(t) =  ϵ0χ
(2)E2(t) =  2ϵ0χ

(2)E0E0
∗ + (E0

2e−i2ωt + (E0
∗)2ei2ωt) 

The first term is at zero frequency, instead the second is at frequency 2ω; while the former does 

not lead to any radiation generation because its second time derivative vanishes (optical 

rectification), the latter is responsible for the emission of signal at the second harmonic 

frequency.  

 

Figure 1.10 Second Harmonic Generation  

(a) Scheme of the process     (b) Energy-level diagram 

The process can be interpreted as an exchange of photons between different frequency 

components of the electric field: in a single quantum event two photons of frequency ω are 

destroyed and simultaneously one photon of frequency 2ω is created, as can be seen in Figure 



17 
 

1.10b. The dashed lines represent virtual energy levels, not eigenstates of free illuminated atom 

or molecule, but a level resulting from the interaction between it and incident radiation photons.   

SHG does not occur in media that present inversion symmetry, called “centrosymmetric”. The 

fact is easy to demonstrate in the case of instantaneous response to the applied harmonic 

electric field E(t). Because of inversion symmetry, if the field sign is changed, also the 

polarization sign will result inverted; in particular, for second-order contribution we would have 

−P(2)(t) =   ϵ0χ
(2)(− E(t))

2
= ϵ0χ

(2)E2(t) =  P(2)(t) ≡ 0, 

therefore the only possible solution is   

χ(2) = 0. 

 

Third Harmonic generation (THG)       

Third-order contributions to medium polarization produces a radiative phenomenon at the 

third harmonic frequency. The THG signal is weaker than the SHG signal by orders of magnitude 

(14), but it is well observed, especially in centrosymmetric materials, such as several crystals. 

Given a laser beam with electric field strength E(t) and frequency ω 

E(t) =  E0 cosωt, 

using the identity (10) 

(cosωt)3 = 
1

4
cos 3ωt + 

3

4
cosωt 

third order polarization results 

P(3)(t) =  ϵ0χ
(3)E3(t) = 

1

4
ϵ0χ

(3)E0
3 cos 3ωt + 

3

4
ϵ0χ

(3)E0
3 cosωt. 

The first term leads to a process of radiative emission at third harmonic, which is microscopically 

described as destruction of three photons of frequency ω and following construction of one 

photon of frequency 3ω (Figure 1.11b).  
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Figure 1.11 Third Harmonic Generation 

(a) Scheme of the process                    (b) Energy-level diagram 

Also third harmonic generation can be used in biological microscopy, as Muller (18) 

demonstrated, especially for imaging of transparent objects.  

 

Sum-frequency generation 

When a total optical field incident upon a second-order nonlinear medium is composed of two 

different frequency components ω1 and ω2 (like in the case of two different excitation beams), 

in addition to SHG related to each of them, other nonlinear optical effects can occur. In fact, if 

we visualize the electrical field as  

E(t) =  E1(t) + E2(t) = E1e
−iω1t + E1

∗eiω1t + E2e
−iω2t + E2

∗eiω2t , 

 second-order contribution to nonlinear polarization results  

P(2)(t) =  ϵ0χ
(2)[E1

2(t) + E2
2(t) + 2(E1E2e

−i(ω1+ω2)t + E1E2
∗e−i(ω1−ω2)t + c. c. )] 

c. c. standing for complex conjugate. The first two terms leads exactly to SHG for both incident 

frequency components plus a static term, while second and third correspond respectively to the 

process of sum-frequency generation (SFG) 

P(ω1 +ω2) = 2ϵ0χ
(2)E1E2e

−i(ω1+ω2)t 

and difference-frequency generation (DFG) 

P(ω1 −ω2) = 2ϵ0χ
(2)E1E2

∗e−i(ω1−ω2)t. 

These phenomena appear like radiative emissions at frequencies equal to the sum or the 

difference between the incident frequencies.  

A sum-frequency generation effect is exploited in optical microscopy because in experiments 

with two laser beams, where it provides a third virtual channel of excitation useful to image 
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further details of the specimen. In other words, it allows to perform simultaneous three-color 

imaging of samples.  

 

Figure 1.12 Sum-frequency generation 

(a) Scheme of the process     (b) Energy-level diagram 

 

1.3.3 Two-beam multicolor fluorescence imaging 

 

When a sample is illuminated by two laser beams with wavelengths λ1and λ2, it can experience 

two-photon excitation of two different chromophores; in addition to these nonlinear 

independent processes, another chromophore can be excited by the simultaneous absorption 

of two photons, each belonging to one of the beams. The phenomenon, called two-color two-

photon mechanism (2C2P), takes place when the pulses are temporally synchronized and 

present a submicrometer overlay of focuses (19). This combination provides an additional 

“virtual” excitation wavelength, which permits to perform simultaneous three-color imaging of 

the same specimen, provided suitable fluorophores are present. 

In 1996 Gryczynski et al. (20) observed fluorescence emission from a fluorophore using two 

different wavelengths λ1= 380 nm and λ2= 760 nm. These wavelengths were obtained from the 

frequency-doubled and fundamental outputs of a dye laser, which was synchronously pumped 

with a mode-locked argon-ion laser, and cavity dumped at 1 MHz. The pulse width was near 7 

ps. If the sample was illuminated with both beams, the emission intensity showed a square 

dependence on the total illumination power, when both sources were simultaneously 

attenuated to the same extent, indicating two-photon excitation. Instead, when the intensity at 

one wavelength was attenuated, the signal depended linearly on the power at each wavelength, 

indicating the participation of one-photon at each wavelength to the excitation process. 

Observation of the 2C2P signal required temporal and spatial overlap of the 380- and the 760-

nm pulses. The emission spectrum generated by 2C2P overlapped with the emission spectrum 

observed for one-photon excitation with an equivalent energy of 250 nm (20).   
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To explain these experimental observations, let us consider the energies of photons belonging 

to the two beams, namely ϵ1 = 
hc

λ1
 and ϵ2 = 

hc

λ2
 . In order to realize three-color imaging, their 

sum has to be equal to the energy required for one-photon absorption:  

ϵ1 = 
hc

λ1
+ 
hc

λ2
 

Hence 

λ3(1p)  ≅ 250 nm 

whereas, for two-photon absorption, 

λs = 2λ3(1p) = 
2

(
1

λ1
+ 

1

λ2
)
 ≅ 500 nm 

As shown by Mahou et al. (19), the three emission intensities, assuming Gaussian temporal 

profiles of the pulses and no overlap between excitation spectra, scale as 

Iλ1~ (P1)
2
,
    Iλ2~ (P2)

2,   Iλ3~ 2P1P2exp (−
τ2

2σ2
), 

where P1and P2 are the two average beam powers, τ is the temporal delay and σ the half 

1 e2⁄  width of the temporal intensity intercorrelation function between the two pulses. 

Assuming Gaussian profiles for both incident pulses, temporal intensity intercorrelation function 

can be treated as temporal intensity autocorrelation function, whose 1 e2⁄  width measures 

about √2-fold the pulse temporal width. 

The described method is more convenient than other multicolor imaging techniques, such as 

single-beam excitation of multiple chromophores or sequential excitation at different 

wavelengths. For quantitative multicolor imaging it is crucial to have independent control of 

different chromophores signals; actually the main advantage in 2C2P microscopy is the 

possibility to adjust simultaneously and independently the intensities of the three emissions, 

together with a reduction of acquisition time. For these reasons, multicolor two-photon imaging 

is likely to find several applications in experimental biology (19).    
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1.4 STED MICROSCOPY 

 
Although imaging performances in confocal and multiphoton imaging are largely improved 

compared to widefield microscopy, the resolution limit is still dictated by diffraction. Two atomic 

emitters can not be distinguished if they both fall within the extent of the (effective) point 

spread function (PSF) of the microscope, which is never limited to a geometrical point. The 

method proposed in 1994 by Hell and Wichmann (21) to break the diffraction limit is known as  

stimulated-emission-depletion (STED) microscopy. The method has earned by Stefan W. Hell 

the 2014 Nobel Prize in Chemistry “for the development of super-resolved fluorescence 

microscopy”1. 

 

Stimulated emission is a radiative molecular transition mechanism first described by Einstein in 

1917 (22). When a photon carrying an energy (approximately) equal to the gap between a 

higher S1(0) state and a lower vibrational state S0
vib interacts with the molecule in the excited 

state S1(0), it promotes the transition from S1(0) to S0
vib and generates another photon 

indistinguishable from itself. The principle on which is based STED microscopy is to tightly 

intertwine in time and space an illumination beam, responsible for spontaneous fluorescence 

excitation in the proximity of the geometrical focus, and a STED beam, responsible for molecular 

de-excitation outside the focal point. To this end, the STED beam focused on the sample by the 

microscope objective features a zero intensity point in the geometrical focus. By a suitable 

combination of excitation and depletion, it is possible to lower the resolution limit to few tens 

of nanometers, well below the value of the emission wavelength, tipically in the order of 

hundreds of nanometers. 

The best STED microscopy results have been obtained with pulsed lasers by satisfying 

simultaneously three critical conditions:  

1) Spectral conditions: the STED beam wavelength must be selected within the fluorophore 

emission spectrum, with minimal overlap with the absorption spectrum, in order to 

maximize stimulated emission and to avoid re-excitation by the STED beam; as a 

consequence, the STED wavelength is red-shifted compared with the best single-photon 

excitation wavelength.  

2) Temporal conditions: these are rather strict, because several factors must be considered 

for each type of laser pulses; first of all, the excitation pulse width τexc must be shorter 

than the average vibrational relaxation time τvib ≤ 1 ps. This situation prevents the 

vanishing of excited molecules population caused by quenching even during excitation; 

typical pulse duration are ~ 200 fs. Furthermore, in order to block spontaneous 

fluorescence emission in the regions around geometrical focus, the STED pulse must 

follow the excitation pulse with a delay significantly shorter than  τf ~ 1 ns, the 

characteristic spontaneous fluorescence lifetime. Another potential problem arises in 

                                                           
1 http://www.nobelprize.org/nobel_prizers/chemistry/laureates/2014/hell-facts.html 

http://www.nobelprize.org/nobel
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fluorophore re-excitation by the STED pulse, in the presence of a large population in 

higher vibrational state S0
vib; the solution consists in keeping the STED rate lower than 

vibrational decay rate, namely the STED pulse width τsted has to be considerably larger 

than τvib, so that re-excitation is prevented simply by vibrational quenching within S0. 

Typical STED pulse widths are in the range of several picoseconds. 

3) Spatial conditions impose that the two beams are co-axial. Upon traversing the 

microscope objective, excitation generates an ordinary three dimensional PSF around 

the geometrical focus. Instead, the STED beam is phase-modulated prior to entering the 

objective. A common procedure consists in producing a Gauss-Laguerre beam 

(characterized by a spiral shape of the wavefront), by means of a vortex phase-plate 

positioned in the beam path. Once focalized by the objective, the phase-encoded STED 

beam produces a destructive interference at its geometrical center, resulting in a radially 

symmetric three dimensional PSF hSTED with a central zero. In the focal plane hSTED is 

shaped like a doughnut centered on the geometrical focus. In the focal plane, the two 

irradiance functions can be approximated as  

 

{
h(r) ≅  cos2(ar)

hsted(r) ≅  sin
2(ar) 

 

 

where  r =  √x2 + y2 is the radial coordinate in the focal plane and a =  
π

2δrmin
= 

πnsinμ

λ0
 

(Figure 1.13). 

 

 
Figure 1.13 Focal distribution of light in STED microscopy 

(a) focal spots of excitation (top) and STED (bottom) beams          (b) irradiance profiles vs. radial distance from the focal point 

 

δrmin is the value of the first minimum of  h(r), namely the diffraction limited resolution. After 

the incidence of the STED pulse, the effective excitation PSF is a product between excitation PSF 

h and the population of molecules still in the excited state n1
sted:  
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heff(v, u) = h(v, u)n1
sted(v, u). (4) 

 

n1
sted represents the remaining spontaneous fluorescence probability. To evaluate the efficacy 

of depletion we can refer to the depletion ratio d; for a Gaussian STED pulse of duration τsted, 

it is defined as the ratio between the excited state population after a time t = 4τsted with and 

without exposure to the STED pulse 

 

d =  
n1
sted(t = 4τsted)

n1(t = 4τsted)
 

 

For a given τsted ≪  τ (τ spontaneous fluorescence lifetime), we can assume n1(t = 4τsted) ≈ 1, 

hence 

d ≅  n1
sted(t = 4τsted) ≅ exp (−

Isted
Isat

) 

 

𝐼𝑠𝑎𝑡 is known as STED saturation irradiance and it is defined as the irradiance at which the 

depletion ratio is reduced by a factor 1 e⁄ . Typical values for Isat are comprised between 1 and 

100 MW cm2⁄  in order of magnitude. 

After the STED pulse is terminated, we can express the fluorescence probability of a molecule 

as 

 

n1
sted(v, u) ≅ exp[− hsted(v, u) Imax Isat⁄ ], 

 

with  Imax the peak irradiance of the STED pulse. Imax is fixed by the source and the microscope 

setup, usually ~ 1 GW cm2⁄  ≫  Isat, but always limited by the photodamage of specimen and 

the photobleaching of fluorophore. Substituting the approximated forms for excitation and 

STED point spread functions in the expression (4) and making use of the asymptotic series for 

sine, cosine and exponential up to the second order, we obtain  

 

heff(r)  ≈ 1 − (1 +
Imax

Isat
) a2r2. 

 

Since resolution can be defined through the FWHM of the effective irradiance, namely the 

double radial distance for which  heff(r) =  1 2⁄ , we can invert (19) and solve for r,   

 

r ≈  
1

√2a √1 + Imax Isat⁄
 

 

In conclusion, using a = πn sin μ λ0⁄ , the new inferior limit for optical microscopy resolution is 
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δrsted = 2r ≈  
√2

π

λ0

nsinμ

1

√1+Imax Isat⁄
.  

 

The crucial change with respect to diffraction limited resolution is the presence of the factor 
1

√1+Imax Isat⁄
: the higher the ratio Imax Isat⁄ , the smaller the inferior distance that can be 

distinguished with the microscope. This theoretically infinite resolution is obviously limited, in 

particular for increasing Imax, by practical constraints such as photodamage of samples and how 

deep is the central zero in STED irradiance distribution at focal plane.  

 

The great possibility offered by STED microscopy finds fundamental applications in molecular 

biology, medicine and in physics of matter: for example in the field of neuroscience dendritic 

spines have been imaged with 60-nm resolution (23) or in solid state physics nitrogen vacancy 

centres in diamond have been observed at nanoscales, with measured point spread function 

FWHM of 6 nm (24). Because of these surprising results, where the resolving power exceeds the 

wavelength of light by two orders of magnitude, STED microscopy gained the epithet of 

“superresolution technique”, furthermore referring to this method it would be actually more 

appropriated to speak about “nanoscopy”.  

 

    

1.5 INTRAVITAL MICROSCOPY OF THE TUMOR MICROENVIRONMENT  
 

During the past decades scientists have tried to understand the mechanisms that underlie 

tumor growth, migration and metastasis. The goal still remains a challenge because of high 

variability of tumor cell behaviors, due to interdependence between the cancer development 

and the local microenvironment reactions. To construct a more complete comprehension of the 

dynamic biological processes in tumors, they have to be monitored over time at cellular scales 

and in their natural environment: the living animals. The emerging techniques and protocols of 

intravital microscopy (IVM) can give insights not only about tumor progression mechanisms, 

but also about optimization of candidate drugs and success or failure of therapies (25). 

 

The importance of intravital microscopy resides in the fact that it can provide information about 

the real dynamics of biological processes, otherwise unpredictable by in vitro or ex vivo studies. 

In fact, the in vivo environment has such a profound effect on tumor progression that it gained 

the adjective “reactive”; as an example, it can determinate the mode of tumor cell migration. 

The first step to perform long-term high-resolution imaging in live models (mice) is to ensure 

the optical access to tissues that have to be observed. With exception of superficial tissues like 

skin (or cerebral cortex, which can be imaged even through the method of skull thinning), this 

aim requires a surgical procedure for the implantation of an optically transparent window. It 

consists in the surgical exposure, accomplished in sterilized and controlled environment of the 
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site, followed by the setting of a glass coverslip, fixed by glue. The procedure is invasive, but it 

provides direct access to large areas (from ~ 0.8 to 12 mm2) lasting for several weeks or months, 

even if duration depends on the quality of surgical operation (26). The optical windows become 

available to study tumors are the dorsal skin-fold chamber (subcutaneous tumors), the ear 

chamber, the cranial imaging window (brain tumors), the mammary imaging window (breast 

tumors), and the abdominal imaging window (tumors in the intestine, pancreas and liver) (25).  

Most tissue structures generate intrinsic signals when illuminated with appropriate wavelengths; 

this fact enables a multispectral analysis of tumor microenvironment through label-free imaging 

methods. As an example, the extracellular matrix can be mapped by second harmonic 

generation (SHG) signals, which highlight fibrillary collagens, while third harmonic generation 

(THG) is used to image water-lipid and water-protein interfaces, such as cellular membranes 

and tissue discontinuities, or interfaces along vessels and nerves. When intrinsic signals are not 

delivered, as in the case of vasculature, the study is carried out by means of injection of 

fluorescent tracers like quantum dots and fluorescently labelled dextran or red blood cells. The 

alternatives are to use genetically modified fluorescent reporter mice, in which fluorescent 

proteins are expressed in endothelial cells, or adopt the technique of immunolabelling. Tumor 

cell cytoplasm and nuclei are usually labelled by different fluorophores. The described overview 

shows how multi-parameter IVM can create a map of tumor cell functions and behaviors with 

regard to stromal structures, best realized by combining different contrast mechanisms (3; 25).  

 

The risk of cancer-related death is represented by tumor metastasis. It is a dynamic, 

microenvironment-dependent process in which only a minority of tumor cells, the “invading 

cancer cells”, separate from solid tumor, develop different morphologies and kinetics, migrate 

and invade other tissues. They can be single cells or cohesive multicellular units. In contrast to 

in vitro models where the substrate is uniform, in vivo observation accounts for the behavior of 

invading cells in relation to tissue geometry: to move collectively, they often exploit already 

existing tracks in the tissue, such as blood vessels (perivascular or intravascular migration), 

nerves, myofibres or 1D fibrillary strings of individual collagen fibers to spread until reaching 

the sessile state and beginning a new tumor growth. Intravital microscopy experiments show 

that extracellular matrix and its modifications during disease have a fundamental role in 

successful organ invasion: tumor colonization is just an adaptive and reciprocal process 

between invading cells and local microenvironment, with contribution of other circulating cells 

and factors (3). Among the enormous number of cells in the solid tumor, only a small minority 

takes part to metastasis formation; IVM can contribute to the identification those rare cells that 

present intrinsic motility properties, combined to the description of the microenvironment 

metastasis promotion. A fundamental component in cancer progression is the process of 

angiogenesis, the formation of new blood vessels which will supply nutrients for tumor growth. 

Nowadays the effects of anti-angiogenic treatments are not satisfying: IVM offers the capability 

of monitoring vasculature, variations of blood flow or vessel permeability during the 

progression or under therapy conditions, for example through the quantification of oxygen level 
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by imaging oxygen probes.  Another expression of the paradoxical role of tumor 

microenvironment is the behavior of the immune system: immune cells infiltrated in the tumor 

stroma can either attach cancer or have a pro-tumor action. IVM of fluorescently labelled 

lymphocytes that infiltrate tumors can clarify the role of immune system, indicating the 

convenience of stimulating it to enhance cancer rejection or not, identifying the best therapy 

approach (25).    

 

The deregulated growth of tumor mass essentially derives from an alteration of normal 

apoptosis process, namely the form of programmed cell death that is responsible for the 

maintenance of a constant number of cells in a system. One of the aim of anti-cancer therapy 

in general is to enhance apoptosis induction in tumor cells, a goal for which a profound 

knowledge of inter- and intra-cellular signaling is needed. Monitoring cell-cell communication 

and biological signal transduction by IVM is currently challenging: it has a crucial significance, 

considered for example the importance of calcium (Ca2+) signaling in the regulation of cell 

death, in fact the dynamics of Ca2+ can change cell sensitivity to apoptosis (27). Although 

intracellular Ca2+ transport mechanisms have been successfully studied in vitro, at present 

scientists are trying to construct a complete comprehension of their physiological role in the 

tumor microenvironment. Intravital imaging techniques are joined to the use of photo-

activatable fluorophores; this kind of fluorophores remain in a dark non-fluorescent state until 

they are activated by multiphoton excitation. The strategy allows to push even deeper 

multiphoton imaging depth limit in scattering samples because of the greater contrast created 

by the disparity of bright-dark states in space (28). This approach is exploited just to identify 

the stimulus able to induce an apoptotic Ca2+ signal within the tumor mass under cancer 

therapy conditions. 

 

Intravital microscopy has become a fundamental tool in biomedical studies; it enabled an 

unprecedented exploration in living animals, but it still presents some important limitations: 

imaging depth up to 1 mm for fluorescent signals, acquisition speed, resolution, light 

aberrations, sensitivity to low fluorescent signals, access to organ with minimal invasion. To 

improve temporal resolution, confocal and two-photon microscopes can be equipped with 

resonant scanners that allow a scanning speed of 30 frames per second (29). Recent researches 

demonstrated the successful employment of spatial light modulators for parallel acquisition 

over multiple points of interest, without the need of mechanically moving parts; in such a way, 

the imaging system achieves frame rates up to 1 kHz (30). Light aberrations, in vivo mostly 

specimen-induced aberrations, affect both imaging resolution and maximum depth of 

penetration. They can be overcome thanks to adaptive optics, for example applying sensorless 

adaptive techniques to correct spherical aberrations and improve quality of multiphoton images 

(31). More sensitive detectors could permit detection of low signals, furthermore permanently 

implanted microlenses into living models could minimize the exposure of the organs and 

consequently the risk of altering their physiology. In the last few years the effort was directed 
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also through the development of strategies to minimize the motion of specimen caused by the 

heartbeat or the respiration of the animal. This attention made possible to image subcellular 

structures with temporal and spatial resolution comparable to those achieved in vitro models 

(32). 
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2  MATERIALS 

This chapter describes a fluorescence laser scanning imaging system of the UNIPD Department of Physics 

and Astronomy, currently under construction in a laboratory of the Venetian Institute of Molecular Medicine 

of Padua. The following test provides insight into the position, function and potentialities of each optical 

element or device which compose the system.  

 

The system is built around a two-photon excitation laser scanning microscope (Bergamo II 

System B232, Thorlabs Inc., Newton, New Jersey, USA) fed by two high power laser beams which 

travel along separate paths on the optical bench before being merged at the entrance of the 

microscope. Once completed and optimized, the system is designed to perform two-beam 

multicolor multiphoton microscopy as well as super-resolution STED nanoscopy.  

Both techniques require the simultaneous use of two laser beams, which must be focused with 

sub-micrometric precision in the proximity of the geometrical focus. The beams are generated 

by a mode-locked Ti:Sapphire laser (Chameleon Ultra II, Coherent Inc., Santa Clara, California, 

USA), with tunable wavelength in the range 680-1080 nm, which provides 140 fs pulses at 

frequency of 80 MHz. This laser is used as a pump for an optical parametric oscillator 

(Chameleon Compact OPO, Coherent), which extracts a fixed percentage from the main beam 

power to produce a second beam, henceforward called “OPO beam”, tunable in the interval 

1000 - 1550 nm, with pulse duration of 200 fs. Pump and OPO pulses are intrinsically 

synchronized, but temporal alignment is lost the moment the two beams travel different paths.  

The imaging setup is divided basically into three parts: laser sources, beam conditioning optics 

(laid down on the optical bench which supports both lasers and microscope) and the 

microscope itself. The beams are accessible and can be manipulated manually while travelling 

on the optical bench, but access is precluded after they are recombined at the entrance of the 

periscope which feeds the beams to the microscope body.     

To perform multicolor multiphoton imaging, each beam provides excitation light at predefined 

wavelength. Instead, to perform STED nanoscopy the OPO beam is used for sample excitation, 

while the pump beam is used for depletion. The two working modalities require different spatial 

and temporal conditions to be satisfied: 

Multicolor multiphoton microscopy 

 Focusing of the pump and the OPO beam in the same spatial region of the sample, with 

sub-micrometric precision in the overlay; 
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 temporal synchronization of the two pulses with precision in the order of ten 

femtoseconds. 

STED nanoscopy 

 Focusing of the pump and the OPO beam in the same spatial region of the sample, with 

sub-micrometric precision in the overlay; 

 delay of the pump pulse with respect to the OPO pulse less than one hundred 

picoseconds; 

 temporal stretching of the pump pulse up to a duration of some picoseconds through a 

single mode optical fiber; 

 modulation of the intensity distribution of the pump beam at focal plane, shaped as a 

doughnut through a spiral phase plate for the spontaneous fluorescence emission 

depletion. 

For the beam conditioning optics it has been necessary to implement simultaneously two 

configurations, equipping the system with mechanical devices to quickly switch from one to the 

other. This is obtained by the introduction of four sledges in the pump beam pathway; they 

support some optical elements that have to be inserted in the case of STED nanoscopy and 

removed in the case of multicolor microscopy. In Figure 2.1 the multicolor configuration is 

presented (all the elements are present also in the STED configuration). 

 

 

Figure 2.1 Multicolor microscopy setup configuration  
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Legend 

OPTICAL BENCH 

The mirrors are marked through the letter “M” and a growing number, with exception of the 

dichroic mirror, aimed at beams recombination, indicated with “DM”. The other elements 

are marked only by numbers.     

1. Pockels cells: beams power modulation 

2. Mobile delay line (DL1): temporal synchronization of the two pulses 

3. Quarter-wave plates: circular polarization of light 

4. Recombination mirrors (M7 and DM) 

5. First pinhole (P1): first reference for the alignment 

6. Photodetection system: supervision of the pulses at the oscilloscope 

7. Second pinhole (P2): second reference for the alignment 

MICROSCOPE 

8. Periscope (two mirrors) 

9. Scan head (two galvo/resonance mirrors) 

10. Objective 

11. Sample site 

12. Photomultipliers (PMT) 
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In Figure 2.2 the STED configuration is shown: the four elements marked with the letters are 

mechanically removable from the pump laser path.    

  

 

Figure 2.2 STED microscopy setup configuration 

     Legend 

A. Fixed delay line (DL2): temporal synchronization of the two pulses 

B. Optical fiber: temporal stretching of the pump pulse 

C. Glass rod: protection for the single mode optical fiber 

D. Spiral phase plate: modulation of the intensity distribution of the pump beam 

wavefront  

2.1 LASER SOURCES 

 

The pump laser source Chameleon Ultra II is able to furnish a beam power up to 4 W, dependent 

on the selected wavelength, with the maximum at 800 nm. As shown in Figure 2.3, the output 

beam is immediately guided into the entrance of the OPO. Inside this auxiliary source the pump 

beam is split in two: one part is directed unvaried to the first OPO exit, the other is effectively 

converted into higher wavelength light and sent to the second OPO exit; in such a way the two 

beams are constructed. They have an initial diameter about 1 mm, destined to become larger 

because of a small divergence of the collimated light, until about 4 mm the end of their paths. 
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The pump beam at the beginning of its path has a power between 360 mW and 610 mW, 

dependent on the selected wavelength, the OPO beam from 225 mW to 700 mW. Each exit of 

the laser sources is equipped with a shutter to block the beam without turning off the pump.     

  

 

Figure 2.3 Laser sources: OPO on the left, pump on the 

right                                                                 

Figure 2.4 Pockels cells 

        

2.2 BEAM CONDITIONING OPTICS 

 

Pockels cells 

The setup is equipped with a system for beams power modulation, in order to work with lower 

powers than those produced at the sources (especially during the optics alignment procedures). 

This system is composed of two Pockels cells placed in front of the laser sources exits (Figure 

2.4). Each one is alimented by a power supply console. 

The Pockels cell device exploits the linear electro-optic effect of a uniaxial crystal to modulate 

the intensity of the light passing through it (33). A crystal is defined optically uniaxial when there 

is only one direction through which the phase velocity is the same for both planes of 

polarization. In other words, there is only one direction, called optic axis and parallel to the 

crystallographic z-axis, with a different refractive index, the extraordinary index ne. The other 

two orthogonal axes x and y are associated to the ordinary index no. A wave propagating along 

the optic axis sees the crystal as an isotropic mean, while a wave propagating orthogonally to 

the optic axis finds out the crystal anisotropy.  The electro-optic effect is the change of the 

refractive indices caused by an external electric field. When the material refractive indices are 

voltage sensitive, the electric field can transform an isotropic material into an anisotropic one. 
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It is possible to express the ordinary refractive index as a function of the electric field E through 

a Taylor series (the equation is scalar for simplicity, but it should be in tensor form) 

n(E) = n + a1E + a2E
2 + … 

The contribution to index variation due to the linear term is known as Pockels effect, manifested 

only by noncentrosymmetric crystals (coefficient a1 not null). Pockels effect can be described as 

a deformation of the index ellipsoid, corresponding to a variation of the indices values, which 

can be different for different directions. As a consequence, an isotropic material, whose index 

ellipsoid is a sphere, can become uniaxial or a uniaxial material can turn into a biaxial one (three 

different values for the principal refractive indices). Typical materials that exhibit linear electro-

optic effect are uniaxial crystals like Potassium dihydrogen phosphate (KDP) or Ammonium 

dihydrogen phosphate (ADP). Since index variations correspond to light phase velocity changes, 

a uniaxial crystal presenting Pockels effect can be exploited as a dynamic phase retarder, in a 

device called Pockels cell. The instrument exists in the longitudinal or transverse configuration; 

in the former the external electric field is applied parallel to the optic axis, while in the latter it 

is applied in orthogonal direction.  

In longitudinal Pockels effect the beam travels along the optic axis (z-axis). With no external 

electric field applied, the x and y refractive indices are equal, so the index ellipsoid projection 

on a plane perpendicular to the optic axis is a circle. In the ideal case the emergent ray is 

unchanged in amplitude and relative phase between the two polarization components along x 

and y directions, hence it will arise with the initial polarization form. This means that the crystal 

is not birefringent in the direction of the optic axis. However, in reality there are possible 

absorption or reflection amplitude losses and the available crystals are always slightly 

birefringent, but the effect in absence of external electric field is quite insignificant (34). When 

an electrical field is applied in parallel to the optic axis, the refractive indices in x and y directions 

change differently. As a consequence, the shape of the index ellipsoid changes: from a circle its 

projection becomes an ellipse with the induced axes x′ and y′ making a 45° angle with the x 

and y crystallographic axes, as shown in Figure 2.5. The lengths of the ellipse axes in the x′and 

y′ directions are proportional to the reciprocals of refraction index associated to those 

directions.  In such a way the crystal appears to be birefringent in the direction of the optic axis: 

the vibrations of light electric field do not have the same velocity along x′ and y′ directions 

anymore and a phase difference or retardation between these two polarization components 

now exists. Light rays propagating along the optic axis, polarized in the direction of induced 

axes x′ and y′, will have velocities which are functions of the electric field modified refractive 

indices. The consequence of these modified indices can be observed also propagating along 

the optic axis a linearly polarized beam in x or y direction; the output beam can be resolvable 

into two orthogonal components in x′ and y′ directions.  At zero voltage, they are equal and 



32 
 

project a circle as perpendicular section of the index ellipsoid, while at non zero voltage one is 

elongated and one reduced, forming a projected ellipse. The degree of eccentricity is indicative 

of the phase difference between the two. If two orthogonal polarization components of light 

undergo to a relative phase shift, an elliptically polarized wave will be generated. For a given 

wavelength of light, the produced retardation between the two components is independent on 

crystal dimensions and it is directly proportional to the voltage applied to the crystal in parallel 

to the optic axis: 

δ =  
η0
3r vz

λ
,  

where 

δ = number of retarded wavelengths 

η0= ordinary refraction index of the crystal  

r = electro-optic constant in µm/Volts  

vz = longitudinally applied voltage in Volts 

λ = light wavelength in µm 

By increasing or decreasing the applied voltage, the phase shift between the two components 

can be varied to produce a phase difference from 0° to any value up to the voltage breakdown 

limit of the crystal. Light with different wavelengths requires different voltage values to obtain 

the same retardation.       

                          
Figure 2.5 Change in shape of the index ellipsoid induced 

in a crystal by an external longitudinal electric field 

Figure 2.6 Configuration of an electro-optic modulator 

between crossed-polarizers  

The transversal Pockels cell works in a similar way, but the geometry is different. Consider 

linearly polarized light which propagates through the crystal perpendicularly to the optic axis 

(it is polarized in the plane which contains the optic axis) in absence of external electric field, 

with the polarization direction forming an angle of 45° with respect to the crystal axis. The 

electric field wave has one component parallel to the optic axis (refractive index ne) and one 
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perpendicular to it (refractive index no), with equal amplitudes. They propagate with different 

phase velocity, therefore they experience a growing phase shift. The output wave is the result 

of two waves polarized at 90° between them with different phase, namely an elliptically 

polarized wave. Hence, in the transverse geometry the crystal exhibits a natural birefringence 

also in absence of an external electric field.  

The described phenomenon is used to modulate the light intensity. In fact, the simplest way to 

produce light intensity control is positioning an input polarizer before the crystal to produce 

linearly polarized light and an output polarizer, or analyzer, after the crystal. The polarization 

directions of the two polarizers can be either parallel or orthogonal (crossed polarizers, see 

Figure 2.6). In the longitudinal modulator, when no voltage is applied, in the first case the 

maximum transmission is obtained, instead in the second case the minimum transmission is 

found. Instead, the transverse modulator exhibits an arbitrary modulation operating point at 

zero applied voltage. To practically use the transversal modulator referring to the same 

transmission curve of the longitudinal one, is necessary to compensate the natural 

birefringence. In crossed polarizers configuration the correction is performed by means of a DC 

voltage offset which moves the crystal transmission curve from the arbitrary zero operating 

point to the condition of minimum transmission in correspondence to zero applied AC voltage 

(quiescent operation point). The graph in Figure 2.7 represents the process. 

 

 

Figure 2.7 Setting of the quiescent operating point by applying DC offset voltage in the transversal modulator 
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Set this condition, the longitudinal and transversal modulators have the same intensity 

transmission curve as a function of the applied AC voltage. 

The absolute value of the transmission minimum Imin is never really null and it is influenced by 

several factors, such as the uniformity of the applied electric field, the quality of polarizer and 

analyzer and the accuracy of their orientation, the alignment of the input beam with respect to 

the crystal optic axis, the incident beam divergence. The ratio between maximum and minimum 

output intensity is called extinction ratio or contrast ratio ER = 
Imax

Imin
; it is controlled by the value 

of null transmission level Imin and it determinates the modulator performance: a poor null 

transmission value can be a serious limitation to the resulting modulation. The Pockels cell 

quality is affected also by contingent factors, such as thermal changes in the ambient, 

absorption of laser energy, electrical heating of crystal or electrodes. The Pockels cells in 

configuration of crossed polarizers usually provides better extinction ratios. In this 

configuration, when the AC voltage across the crystal is increased the transmitted light is also 

increased, until reaching a maximum, Imax; this condition coincides with a relative phase shift of 

180° between the two components and a 90° rotation of the plane of polarization. Placing an 

output linear polarizer after the crystal, it will produce a beam of varying intensity dependent 

on the variable phase relation between polarization components. The output intensity Iout is 

related to the input intensity Iin and to the phase shift δ by the relation (2) 

     Iout = Iinsin
2(πδ) =  Iinsin

2 (π
η0
3r vz

λ
) =  Iinsin

2 (
𝜋

2

vz

Vλ 2⁄
),   (2) 

where Vλ 2⁄ = 
λ

2 r η0
3 
 is the halfwave voltage, namely the voltage to apply in order to obtain a 

180° shift. The relative transmission has a sine-squared relation to the applied voltage (Figure 

2.8). 

The Pockels cells used in the setup are electro-optic modulators (350-80LA for the pump beam 

and 360-80LA for the OPO beam, ConOptics Inc., Danbury, Connecticut, USA) in transverse field 

with a KDP crystal. The transversal geometry has the advantage of requiring approximately 100 

Volts as opposed to the kilovolts of the longitudinal design.  
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Figure 2.8 Transfer function of longitudinal electro-

optic modulator between crossed polarizers 

 

 

 

 

 

 

 

 

For the reasons discussed before, the power supply of Pockels cells is divided into a DC 

component and an AC component. The former adjusts the natural birefringence offset and is 

regulated manually acting on the controller of the power supply console. The latter requires the 

voltage effectively responsible for the light modulation and is set by means of the software 

ThorImage, where the user must specify the maximum AC voltage required by the Pockels cell 

VAC,max (better defined in section 3.1) and the desired percentage of beam power he wants to 

work with. ThorImage also controls the imaging acquisition parameters and the shutter set at 

the exit of the pump laser source.        

 

Variable delay line 

The two advanced microscopy techniques implemented in the setup require particular 

conditions of temporal synchronization between the two pulses. Since the OPO and the pump 

beam pathways are different, even if both pulses have 80 MHz frequency and are intrinsically 

synchronized, they will arrive delayed at the recombination dichroic mirror (DM in Figure 2.1) 

within their period of 12.5 ns. The necessity imposes the presence of a variable delay line. It 

consists of two mirrors mounted on a longitudinal rail in the pump beam path, which allows to 

modify the path length by manual control (Figure 2.9). The rail length is about 40 cm, so the 

total variation of path length is about 80 cm, that means the delay line is able to modify the 

pulse delay up to tmax = 
0.8 m

3 ∙ 108 m s⁄
 = 2.7 ns. The position of the variable delay line system 

correspondent to pulses synchronization condition will be different in the case of multicolor 

multiphoton microscopy or STED nanoscopy. 
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Figure 2.9 Variable delay line in the pump beam path Figure 2.10 Recombination mirrors 

 

Recombination mirrors 

The spatial superposition of the two beams is crucial to obtain from both the best illumination 

of the back aperture of the microscope objective and consequently the overlap between the 

two beams focal spots. The beams must enter in the microscope body parallel to the optical 

bench and coaxial with high precision. To set these conditions, special kinematic mirror mounts 

with piezoelectric adjusters (POLARIS-K1PZ, Thorlabs) are used to hold a mirror (Polaris Mirror) 

and a dichroic mirror (Polaris Dichroic), shown in Figure 2.10. Polaris mirror guides the pump 

beam towards Polaris Dichroic, through which the recombination is effectively performed. The 

kinematic mirror mounts are equipped with 3-axes manual or piezo-electric control. The angular 

resolution for piezoelectric control is 0.5 µrad/0.1 V applied. The piezoelectric systems are 

alimented by two power supply consoles, one for each mirror, in which the three axes voltage 

values can be set manually or even from the user emplacement through the software MDT693A 

Piezo Controller. 
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Photodetection system 

To analyze the temporal delay between the two pulses, a photodetection system is set in the 

last part of the light pathways, after beams recombination. It consists of a small mirror with low 

reflectivity (~ 0.5 %) which can be mechanically inserted and removed from the pathway, which 

guides a small percentage of power to a Free-Space InGaAs detector (DET08CL, rise time < 70 

ps, operating wavelength range 800-1700 nm, Thorlabs). This last is connected to an 

oscilloscope (PicoScope 6400 C, 500 MHz bandwidth, Pico Technology Inc., St Neots, UK) 

through which the temporal profile of the pulses and their delay can be monitored.     

 

Figure 2.11 Photodetection system 

 

 

 

 

 

 

 

Stretching line: optical fiber and glass rod 

To perform STED nanoscopy, the pump beam must be stretched temporally up to a duration of 

several picoseconds. This condition is achieved by means of a polarization-maintaining single 

mode optical fiber (PM780-HP, NA 0.12, operating wavelength range 710 – 1100 nm, Thorlabs).  
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Figure 2.12 Temporal stretching line for the pump beam pulse 

(a)  Glass rod                                      (b)  Launch in fiber through ZEISS objective and 3-axes fiber launch 

 

Before passing through the optical fiber, the beam crosses a simple rod of glass, inserted in the 

path thanks to a rail. It protects the fiber generating a first temporal stretch of the pulse from 

~ 140 fs to ~ 1 ps, otherwise the fiber core would not endure the passage of such a short pulse 

without damages. The glass rod is ~ 20 cm long, its transversal surfaces are coated with an anti-

reflection film, specific for the wavelength range 680 - 1100 nm. The optical fiber instead is 100 

m long and it stretches the pulse from ~ 1 ps till ~ 10 ps. As its core diameter measures 4.6 µm, 

the beam needs to be accurately focused to be injected inside. For this purpose, the rail that 

enables to insert the fiber in the path holds a special alignment system, the fiber launch 

(MBT616D, Thorlabs). It is a compact flexure stage with differential micrometers, with coarse 

and fine adjustment range of 500 μm/revolution and 50 μm/revolution respectively. This 

resolution makes this stage ideal for optimizing the coupling efficiency in a fiber alignment 

because it allows a positioning precision with respect to the beam axis up to of 0.5 µm. The 

fiber launch holds the fiber entrance and exit, but also a focusing optical element, an objective 

or a lens, suitable to produce a focal spot with small diameter to inject the beam inside the core 

of the optic fiber. Switching the setup in STED configuration, both rails for the glass rod and for 

the fiber are manually inserted in the pump beam path. 

  

Spiral phase plate 

The wavefront modulation required by STED nanoscopy is realized by a polymeric spiral phase 

mask replicated on a glass substrate (VPP-1a, operating wavelength range 350 – 2000 nm, RPC 

Photonics, Rochester, New York, USA) placed after the exit of the optical fiber. 
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Figure 2.13 Spiral phase plate on the left, scheme of its mounting system on the right  

 

Fixed delay line 

To perform STED nanoscopy the depletion beam must closely 

follow the excitation one (delay ~ 10 ps). At the oscilloscope 

(500 MHz bandwidth, rise time 70 ps) the two pulses are 

visualized overlapping. Since STED configuration includes more 

elements which introduce a higher delay with respect to the 

OPO beam, the condition of temporal synchronization is 

different from the one in multicolor multiphoton configuration. 

In particular, the pump beam needs to proceed along a fixed 

length delay line to be synchronized to the OPO pulse (as 

justified in Chapter 3, section 3.3). It is composed of four 

mirrors. Two mirrors have been inserted after the pump beam 

Pockels cell by means of another mobile sledge, while the other 

two face them at a distance aroud 65 cm on the optical bench 

(Figure 2.14). The first mirror deflects the light out from the 

normal travel and the last one allows it to return into the path 

and continue towards the variable delay line.   

Figure 2.14 Fixed delay line 
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2.3 LASER SCANNING MULTIPHOTON CONFOCAL MICROSCOPE  

 

             

Figure 2.15 Bergamo II microscope: frotal view (left) and lateral view (right)  

 

The laser scanning multiphoton confocal microscope included in the setup is a Bergamo II 

System B232, Thorlabs. The first element encountered by the light beams at the entrance of the 

microscope is the periscope. It is composed of two mirrors separated by a vertical path (Figure 

2.16a); it guides the light towards the scan head of the system. The scan head is made up of 

two galvo/resonance scan mirrors able to raster the sample at 8 KHz rate (Figure 2.16b). The 

galvo mirrors realize the illumination of the objective back aperture; the beam is therefore 

focused at the focal plane on the sample placed below. The microscope is in epifluorescence 

configuration, namely the roles of objective and condenser is played by the only objective: it is 

crossed before by the illumination light going towards the sample, after by the emission light 

coming from the sample. The two are physically separated through a longpass 705 nm dichroic 

mirror, which transmits the illumination light, while reflects the emission light towards the 

detection module (Figure 2.17a). The detection module is composed of four photomultipliers 

(4x GaAsP PMT) associated to the following band-pass filters   

 Channel A: [UV] (395 ± 25) nm 

 Channel B: [Blue] (460 ± 50) nm 



41 
 

 Channel C: [Green] (525 ± 40) nm 

 Channel D: [Red] (625 ± 90) nm 

for the detection of a broad range of wavelengths. The emission light is directed towards the 

correct detection channel by means of three dichroic mirrors which reflect light at 

 425 nm (Ch. A and B); 

 495 nm (Ch. B and C); 

 565 nm (Ch. C and D). 

 

Figure 2.16 Microscope illumination path (before the objective) 

             

(a) Periscope                              (b) Scan head 

 

The microscope also allows imaging in transmitted light. In this case, the light transmitted by 

the sample is collected by the condenser placed below the sample site and sent to an InGaAs 

detector (DET08CL, operating wavelength range 800-1800 nm) visible in Figure 2.17b. The light 

can reach the detector only if a preceding mirror placed inside a mounting cube is removed. 

On the contrary, when the mirror is inserted it allows the illumination of the sample by a LED 

source; this last is necessary to find the coarse focus condition of the specimen before starting 

an experiment, observing it directly through the provided binoculars.      
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Figure 2.17 Detection module.  

(a) The fourth PMT is hidden by the module. The blue dotted lines show the light 

path reaching each PMT. 

 

(b)Transillumination detector 

(green box) and LED source (yellow 

box). The red dotted line shows the 

transmitted light path when the 

mirror in the cube is removed. 

 

 

 

 

 

 

 

2.4 CALIBRATION SAMPLES 
 

Quantum Dots 

Quantum dots (QD) are semiconductor nanoparticles with high photostability and broad 

emission spectrum, from the visible to the mid infrared region, depending on their size and 

composition (35). The QD samples we used were fabricated at the Department of Industrial 

Engineering of the University of Padua. They consist of nanoparticles produced in non-polar 

solvents and thereafter transferred into sol-gel matrices. A ZnO-SiO2 hybrid sol-gel glass films 

was doped with PbS quantum dots. Both the absorption and the emission properties of the 

semiconductor nanocrystals are only slightly affected by the incorporation into the sol–gel 

matrix. The glass film containing the QDs is simply laid on a glass slide and set in the sample 

site for the observation at the microscope. These samples are fundamental to characterize the 

microscope and objectives performances, in particular in terms of resolution and achromaticity, 

as well as to check the beams alignment. 

 

FluoCells 

FluoCells prepared slide #3 (Thermo Fisher Scientific Inc., USA) is a fixed biologic specimen 

containing a 16 µm cryostat section of mouse kidney stained with three different fluorophores, 

whose spectra are shown in the Figure below. 
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Figure 2.18 DAPI, Alexa Fluor 488 and Alexa Fluor 568 fluorescence spectra (1P excitation and emission)2 

 

This auxiliary sample was used to quantify the fluorescence signal increment obtained thanks 

to the synchronization of the acquisition with respect to the excitation pulse. 

 

KDP powder 

A fine powder of Potassium dihydrogen phosphate (KDP, J. T. Backer, Center Valley, PA, U.S.A.) 

was spread on a slide, within a barrier made of vaseline, then the slide was sealed by a coverslip 

for imaging under the microscope. This specimen is useful for the observation of parametric 

processes (SHG, SFG).  

 

Alexa  Fluor samples 

Some drops of Alexa Fluor 594, 568 and 556 fluorophores were placed between a glass slide 

and a coverslip, with an aqueous mounting solution in order to reduce photobleaching. Each 

sample is finally sealed with varnish. 

                                                           
2 From https://www.chroma.com/spectra-viewer/fluorochromes 
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Figure 2.19 Alexa Fluor 594 fluorescence spectra (1P excitation and emission)3 

 

 

 

 

 

 

 

 

 

 

                                                           
3 From https://www.chroma.com/spectra-viewer/fluorochromes 
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3 METHODS 

This chapter presents the procedures for the calibration and characterization of the instrument, as well as the 

methods used to set the basic spatial and temporal working conditions required by the advanced microscopy 

techniques. Furthermore, some choices of optical elements rather than others for the setup are discussed 

according to the features required.    

3.1 PROCEDURE FOR THE OPTIMIZATION OF POCKELS CELL TRANSMITTANCE 

 

All the beams power measurements are performed by means of the power meter, a thermal 

power sensor (S305C, Thorlabs). 

Procedure for the Pockels cells alignment  

To avoid light losses it is necessary to finely align entrance and exit of the Pockels cell with 

respect to the incoming laser beam axis.  

The steps of the alignment procedure are: 

 switch off the Pockels cell; 

 position the power meter in front of the Pockels cell exit; 

 maximize light passage by power meter reading while moving the device in x and y 

directions and rotating it around its axis; 

 switch on the Pockels cell; 

 determinate the values of the cell DC power supply that correspond to maximum (Pmax) 

and minimum (Pmin) light transmission. Compute the extinction ratio, defined as 

ER =  
Pmax

Pmin
; 

 set the power supply controller to the value Vmin,DC corresponding to Pmin; 

 slightly rotate the screw which controls yaw (Figure 3.1) in the cell 6-degrees-of-freedom 

support (x-y-z-pitch-yaw-roll). After every movement compute ER as described above. 

The movement is accepted if it increases or keeps Pmax constant  and decreases Pmin; 

 repeat the last step acting on the pitch control; 

 in the final configuration, Vmin,DC corresponds to the optimal value of minimum 

transmission and ER is maximized. 
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Figure 3.1 Three degrees of freedom of the Pockels cell 

support 

 

 

 

 

 

 

Procedure for the optimization of Pockels cell transmittance 

The Pockels cell introduces an intensity modulation dependent on the laser beam wavelength, 

therefore the values of DC and AC power supply requested for maximum and minimum 

transmission change according to the selected wavelength. Before working with the 

microscope, it is necessary to find out the required DC and AC supply voltages as a function of 

wavelength. The operative procedure is described below. 

DC VOLTAGE 

 Select the desired wavelength; 

 position the power meter in front of the Pockels cell exit; 

 verify that the power supply controller output is set on “unipolar positive”; 

 identify through power meter reading the DC voltage value Vmin,DC corresponding to 

the condition of minimum transmission, acting on the power supply controller; maintain 

the power supply controller set on Vmin,DC during the following AC voltage calibration. 

AC VOLTAGE 

 Apply a supplementary AC voltage by means of the apposite software NI PCI e-6363 

Measurement and Automation. Vary the applied voltage until the value Vmax,AC that 

maximizes the transmission is determined through power meter reading; 

 Vmax,AC obtained for a certain wavelength and Vmin,AC = 0 V for all must be set on 

ThorImage software to work with that specific wavelength; 

 repeat the entire procedure for other wavelengths. 

 

Arranging the obtained values of Vmin,DC and Vmax,AC as a function of wavelength, DC and AC 

supply calibration curves are produced for each Pockels cell. Before starting any experiment, 
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the user has to make reference to these curves and set the values of Pockels cells supply 

required for the desired wavelengths.    

3.2 PROCEDURE FOR THE ALIGNMENT OF THE MULTIPHOTON BEAMS 

 

The procedure basically consists in the careful positioning of the mirrors required for beam 

stirring on the optical bench. The pump and OPO beams start their travel from two ports on the 

OPO, where they exit parallel to each other and at the same height over the optical bench. 

Thereafter, the beams encounter different optical elements before being recombined. The 

recombined beams must enter the microscope periscope at the same point and with the same 

angle so that the objective back aperture can be equally illuminated by both. In addition, under 

suitable achromaticity conditions, the two beams should be focused by the objective onto the 

same spot.  

To meet the above requirements, each mirror is initially positioned roughly at 45° with respect 

to the beam optic axis. Then, the mirrors are finely oriented by means of two screws which 

permit to adjust the direction cosines of the outgoing beam. The process requires a system of 

fixed reference points chosen among the optical elements available on the bench. It is 

mandatory to center both beams perfectly in each of those elements and to ensure that 

movement of the variable delay line does not introduce any shift or bending of the beam optic 

axes. The standard procedure for centering the beam at a reference point consists on acting on 

two preceding optical elements in an iterative way. The alignment procedure is simplified in the 

first part by the use of fluorescent test targets which can be mounted on the optical elements 

entrance or exit. The targets permit to visualize the beam entry point and to correct it if required. 

The second step is to replace the fluorescent target with a variable diaphragm, which can be 

reduced to a pinhole. The power meter is placed behind the pinhole and the measured power 

must be maximized by stirring around the incoming beam. With reference to Figure 2.1 (Chapter 

2) the reference points we selected are:  

for the pump beam 

 M3, at the entrance of the variable delay line; 

 M5, immediately after the variable delay line and the glass rod in STED configuration; 

for both beams 

 the two pinholes placed after the recombination mirrors (P1) and before the periscope 

(P2). 
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Alignment of the variable delay line  

1) The alignment of the pump beam to the center of M3 (Figure 2.1) requires placing a test 

target on M3. The steps followed are:  

 

 place DL1 as close as possible to M1; 

 shift DL1 in x and y directions by means of the suitable positioning screws to center 

the beam in M3; 

 place DL1 as far as possible from M1; 

 center the beam in M3 target by means of M1 screws; 

 repeat iteratively the previous four actions until the screws sensibility limit is reached.   

 

1) The alignment of the pump beam to the center of M5 (Figure 2.1) requires placing a test 

target on M5. The steps are:  

 place DL1 as close as possible to M5; 

 center the beam in M5 target by means of M3 screws; 

 place DL1 as far as possible from M5; 

 center the beam in M5 target by means of M4 screws; 

 repeat iteratively the previous four actions until the screws sensibility limit is reached. 

For a very fine orientation adjustment, the points 1 and 2 can be repeated substituting the 

target with a pinhole and placing the power meter immediately after the reference mirror (M3 

or M5). 

 

Alignment of the recombination mirrors   

For the pump beam, the manipulation is performed on M6 and M7. It requires placing a test 

target on P1 and one on P2. The steps are: 

 center the beam in P1 target by means of M6 screws; 

 center the beam in P2 target by means of M7 screws; 

 repeat iteratively the previous two actions until the screws sensibility limit is reached; 

 repeat the previous three points using the power meter sensor behind the pinholes, 

without the targets. 

For the OPO beam the procedure is exactly the same, with M2 instead of M6 and DM instead 

of M7. 
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Alignment of the optical fiber 

When the optical bench is switched from multicolor multiphoton configuration to STED 

configuration, a realignment of the fiber launch (which holds the focusing element and the fiber 

entrance and exit) is required. Since the fiber core diameter is really small, it can be necessary 

to proceed by steps and to align the fiber launch progressively with the help of auxiliary 

multimode optic fibers with decreasing diameters. The fibers available in the laboratory have 

core diameters of 400, 105 and 50 µm. The steps of the procedure are: 

 place the thermal sensor at the exit of the mounted fiber; 

 locate and maximize the output signal by moving the x, y, z screws of the fiber launch; 

 swipe to a fiber with a smaller core diameter and repeat the maximization; 

 insert the single mode optic fiber and optimize the final beam-fiber coupling as the last 

step.  

Alignment of the periscope 

 Remove the protective Aluminum cylinders from the vertical path between the two 

periscope mirrors and mount a test target on the upper one; 

 center the beam in the upper mirror target by regulating the screws of the lower mirror; 

 the alignment can be checked observing directly the beam projected on a fluorescent 

target placed in the sample site, without the objective; it can be corrected slightly 

moving the two mirrors screws. 

 

The real end of the alignment procedure of all the setup is performed before starting the 

experiment. Over time some small optic elements drifts or some vibrations can deteriorate the 

quality of the objective back aperture illumination and the two beams coaxiality. The user has 

the possibility to correct the alignment without modifying anything in the setup manually, but 

exploiting the piezoelectric systems available in the recombination mirrors holders. In fact, by 

applying separately in x, y or z axes an appropriate voltage (between 0 and 150 Volts) to M7 or 

to DM piezo controllers via software (MDT693A Piezo Controller), the pump or the OPO beam 

respectively moves. The operation is concluded when, observing a sample at minimum 

magnification (0.6x), the pupil appears entirely and uniformly filled. Alternatively, the correction 

can be applied observing QDs (see section 2.4) on a slide at maximum magnification (32x). The 

QDs size under the optical resolution limit makes them behave as point sources. A single 

quantum dot is selected and imaged by both beams; acting on piezoelectric voltages, the 

perfect alignment is achieved when the two images overlap in (x, y) plane. The procedure is 

illustrated in Figure 3.2: the QD is imaged through the pump beam and centered in a ROI; the 
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illumination is switched into the OPO beam, visualizing the same ROI. The OPO beam alignment 

is corrected by mean of piezoelectric control until the two QD images overlap. 

 

  Figure 3.2 Alignment correction through piezoelectric control at 32x magnification 

 

     (a) pump beam                (b) OPO beam before correction             (c) both beams after correction 

 

3.3 PROCEDURE FOR THE TEMPORAL SYNCHRONIZATION OF THE PULSES 
 

Multicolor multiphoton configuration 

The synchronization of the two pulses is fundamental to perform both two-beam multicolor 

multiphoton imaging and STED nanoscopy. In case of multicolor multiphoton imaging in fact, 

the relative delay τ must be small enough to permit a good efficiency in the emission of the 

third signal. As we saw in section 1.3.3, the intensity of the third fluorescence signal decreases 

exponentially with τ2. In order to get as much information as possible about the sample from 

multicolor multiphoton imaging, we can fix the maximum borne loss due to temporal mismatch 

between pump and OPO pulses at 1 %.  

Iλ3

I0
= exp (− 

τ2

2σ2
) = 0.99, 

where I0is the theoretical emitted intensity if the pulses were perfectly synchronized. The 

1 e2⁄  width (2σ) of the temporal intensity intercorrelation function between two Gaussian pulses 

with durations τTi:s ~ 140 fs and τOPO ~ 200 fs is   

2σ =  2√σTi:S2 + σOPO2 ~ 244 fs, 

from which 
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σ =  
τpulse

√2
~ 122 fs 

therefore the maximum acceptable delay is 

τ = √−2σ2 ln (
Iλ3

I0
) ~ 17 fs ~ τpulse 10⁄ . 

In such an interval of time the light travels for  

∆x = cτ = 3 ∙ 108 m/s ∙ 17 ∙ 10−15s = 5.1 µm. 

This suggests  that the sensibility needed to regulate the temporal synchronization condition 

by means of the movement of the mobile delay line is 1 µm. This limit is not reachable simply 

manually, but the help of a graduated micrometric head is required.  

The first step to set the temporal multicolor multiphoton condition is the overlapping of the 

two pulses at the oscilloscope, moving simply by hands the delay line. The oscilloscope available 

in the laboratory has a rise time of 70 ps: a femtosecond pulse will be shaped as a bell large 

140 ps. The coarse positioning at the oscilloscope at maximum allows a precision of 

∆X =  3 ∙ 108
m

s
∙ 140 ∙ 10−12s = 42 mm, 

among which the zero delay condition between the two is included. The second step is using 

the micrometric head for a fine position adjustment. Since the movement of the variable delay 

line for a distance ∆x produces a double variation of the light path 2∆x (it is composed of two 

mirrors), the total travel of the micrometric head must be at least 21 mm. 

The choice relapsed into the DM17-25 differential micrometer (Thorlabs), with the following 

features: 

 25 mm coarse travel;   

 1 mm fine travel; 

 10 µm coarse graduation; 

 1 µm fine graduation. 

The small mobile mirror with low reflectivity has been inserted in the path in order to analyze 

the temporal profile of the beams through the fast photodetector described in section 2.2. Both 

beams were present at the same time, so that three signals were simultaneously visualized at 

the oscilloscope: the two beams pulses detected in the last region of their paths and the pump 

pulse extracted directly from the source output. This last is used as trigger for the oscilloscope 

and as reference for the visualization. The coarse temporal synchronization is an iterative 

process: the temporal delay of the pump pulse compared with the OPO pulse is measured first, 
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then the path length variation (a reduction or an extension according to the need) to produce 

through the delay line movement is computed ∆xDL = − 
c∆t

2
, with ∆t =  tpump − tOPO. After the 

delay line movement is accomplished manually, the synchronization condition must be checked 

again because the oscilloscope precision is in the order of tens of ps, spatially correspondent 

to a light travel of 3 mm, furthermore the manual positioning is affected by a similar error. Once 

the temporal delay between the pulses cannot be shortened anymore by means of this 

procedure, the coarse temporal alignment is concluded. The Figure 3.3 shows the final coarse 

temporal alignment condition set at the oscilloscope as starting point for finer synchronization. 

The pulses are overlapping and the measurement result is comparable to the instrument 

precision.    

Figure 3.3 Coarse temporal synchronization of the pulses for multicolor multiphoton configuration 

 

The oscilloscope is no more useful to find the correct fine position of the mobile delay line; the 

temporal synchronization must be improved observing at the microscope an auxiliary non 

fluorescent specimen, such as KDP powder on a slide, and maximizing the signal obtained from 

the sum frequency generation phenomenon (explained in section 1.3.2). 
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STED configuration 

The procedure is the one previously described for multicolor configuration. The first 

measurement in this case gave a temporal delay between the pump and the OPO pulse around 

∆t ≅  − 5 ns, equivalent to a position correction 

∆xDL = − 
c∆t

2
 ≅ 1.5 m. 

The correction is clearly out of the variable delay line range, which provides a maximum path 

variation of around 80 cm. Since there is no possibility to anticipate the OPO pulse reducing its 

travel on the optical bench, the only way to make the pulses coincide is retarding the pump 

pulse of the appropriate interval of time, by increasing its travel distance. The solution has been 

the introduction of the second delay line described in section 2.2 in the pump beam path. As a 

result of this improvement in the setup, the movement of DL1 now is sufficient to set also the 

STED configuration temporal synchronization condition.  

 

3.4 LASER LAUNCH INTO SINGLE MODE OPTICAL FIBER FOR STED 

NANOSCOPY 

 

To perform STED nanoscopy strict conditions must be set. As seen in section 1.4 for what 

concern temporal conditions, the pump pulse must closely follow the excitation pulse and be 

large enough to allow higher vibrational states in the lower energy level, S0
vib, to relax to the 

ground state S0. Since the characteristic vibrational relaxation time of fluorophores is τvib  ≤ 1 

ps, pump pulse duration has to be in the order of several picoseconds. The Ti:Sapphire laser 

pulses are ~ 140 fs long, therefore in the pump beam pathway an optical fiber is included to 

extend temporally the pulse and reach the order of picoseconds. 

The chosen fiber is a polarization-maintaining single mode optical fiber (PM780-HP, Thorlabs), 

with following specifications: 

 100 m length; 

 4.6 µm core diameter;  

 0.12 numerical aperture (NA); 

 770 - 1100 nm operating wavelength range; 

 ≤ 4 dB/Km attenuation at wavelength 850 nm. 

The beam launch in the fiber is a critical step for success of the imaging setup, because power 

drops at the fiber entrance are usually significant; at the fiber exit, the beam energy must be 
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sufficient to deplete fluorophore spontaneous emission at sample, therefore losses must be 

reduced as much as possible. For this purpose, the beam is focalized before the fiber and 

adapted to it. In particular, there are two parameters to be matched between the beam and the 

fiber: the numerical aperture NA and the spot diameter. This matching imposes inflexible 

conditions for the focal length f of the lens used to inject the light in the fiber. In fact, to 

minimize the energy loss caused by attenuation inside the fiber, the first condition is 

 

NAfiber ~ NAbeam ~ 0.12. 

 

Under hypothesis of small angles, sine can be approximated with tangent, therefore  

 

NAbeam = nsin μ~ tan μ =
Dbeam
2 f

 

 

with  n ~ 1 refraction index of the air, μ half aperture angle of the focal light cone and Dbeam 

beam diameter. 

With regard to the spot diameter, for Gaussian beams it is given by 

dspot =
2λ

π NAbeam
 

 

consequently the second condition turns out to be 

 

dspot =
2λ

π NAbeam
~ dfiber = 4.6 μm  

 

Replacing in the previous expression the approximated NAbeam formula we obtain, solving for 

f  
 

f ~ 
Dbeamπ dfiber

4 λ
 ≅ 3.61 

Dbeam
λ

 μm 

 

with Dbeam and 𝜆 measured with the same unit.  

 

In order to make the choice of the lens with the correct focal length, we need to measure the 

value of Dbeam. The measurement of the beam diameter in x and y directions is performed 

through the Shack-Hartmann wavefront sensor, after the mirror M6 in the region where the 

beam must be injected in the fiber. The average estimate between x and y direction is 

 

Dbeam = 2.5 ± 0.2 mm, 

 

hence 



54 
 

f ~ 12 mm. 

 

Two solutions with the lower possible focal length f were tested for beam injection in the 

fiber: 

 an achromatic doublet, ACA254-030-B, f = 30 mm (Thorlabs); 

 an objective, N-ACHROPLAN 5x, NA = 0.13, f =mm (ZEISS). 
 

3.5 BEAM WAVEFRONT ANALYSIS 

 

The measurement of shape, curvature and diameter of the beam wavefront is performed by 

way of a Shack-Hartmann sensor (WF150-5C, Thorlabs). The Shack-Hartmann (S-H) sensor is a 

fast CCD camera placed at the focal plane of a two-dimensional lenslet array. As we can see in 

Figure 3.4, the lenslet array divides the incoming wavefront into an array of smaller beams: if 

the wavefront is uniform and planar, each lenslet forms a spot along its optical axis and a 

regularly spaced grid of spots is created at the detector plane. Instead a distorted wavefront 

causes some lenslets to focus with the spot displaced from the optical axis. Therefore, the 

pattern becomes irregular, some spots are regularly spaced and some others are displaced or 

missing. The shape of a generic wavefront is computed through an algorithm starting from the 

displacements of spots positions compared with the ones in the plane wavefront pattern. This 

kind of wavefront sensor is used to characterize the performance of optical systems or in 

adaptive optics.  

 

Figure 3.4 Working principle of the Shack-Hartmann sensor4 

  

The Figure 3.5 is a detail of a wavefront incident on a single microlens. For a wavefront which is 

distorted in the region of the microlens, the spot position is deviated in the x and y direction 

with respect to the position taken by the planar wavefront spot. Every displaced spot lies away 

                                                           
4 From https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2946 
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from the optical axis z of its associated microlens by an angle α, which is the same as the angle 

between the distorted wavefront and the planar wavefront. 

 

Figure 3.5 Spot displacement caused by wavefront distortion in the Shack-Hartmann sensor5  

The instrument sensitivity is given by αmin, the minimum detectable wavefront slope that can 

be measured, which is a function of the minimum detectable spot displacement δymin. In the 

small angle approximation in fact αmin = 
δymin

fML
, where fML is the focal length of the microlens. 

The minimum detectable spot displacement δymin depends on the pixel size of the detector, 

the accuracy of the centroid algorithm, and the signal to noise ratio of the sensor. The S-H 

wavefront sensor is capable of providing information about the intensity profile as well as the 

calculated wavefront. In fact, each spot is analyzed for location, but also for intensity. Using this 

method, Shack-Hartmann wavefront sensors can dynamically measure the wavefronts of laser 

sources or characterize the wavefront distortion caused by optical components.  

The instrument available in the laboratory is composed of a CCD camera with 15 Hz frame rate 

and a lenslet array with a pitch of 150 µm and focal length 3.7 mm. The operating wavelength 

range is 300-1100 nm. The minimum detectable spot displacement δymin. is λ 50⁄  (root mean 

square of the centroid), hence αmin ~ 5 µrad. The sensor is very sensitive and can endure only 

low powers, in the order of some mW, without saturating. Thus, a birefringent polarizer 

designed for high power laser light (GL10, Thorlabs) is placed in the path during the 

measurements; thanks to a rotating support it is able to cut off most of the beam power. The 

configuration is shown in Figure 3.6. 

 

                                                           
5 From https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2946 
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Figure 3.6 Shack-Hartmann sensor and auxiliary polarizer   

 

3.6 EXTERNAL TRIGGERING OF THE ACQUISITION 

 

The acquisition is managed by the user through the software ThorImage that controls the 

acquisition board (ATS9440, 14 bit, 4 channels, AlazarTech, Inc.). It normally works with a real-

time sampling rate of 125 MHz, but it is provided with an external trigger input with software-

selectable rate. Since the sources produce pulses at a rate of 80 MHz, the best sampling 

condition is achieved setting the board external trigger at 80 MHz rate. The external trigger 

signal is constructed extracting the SYNC-OUT signal from the pump and sending it to the 

circuit represented in Figure 3.7, realized by technicians of LaFSI laboratory, department of 

Physics and Astronomy Galileo Galilei, University of Padua. The SYNC_OUT signal is a square 

wave, while the acquisition board needs as input a sinusoidal wave. The phase retarder circuit 

is basically a double resonant circuit: it must extract the fundamental sinusoidal component 

from the square wave with a narrow frequency band and retard or anticipate it through a 

variable capacity. The simple resonant circuit produces a very narrow band selection, with a 

rapid rise and slope, presenting the risk of information losses. The best choice is to couple two 

simple resonant circuits with roughly the same resonance frequency (same components), to 

sufficiently enlarge the pass band. Each resonant circuit contains a coil split in two by the input 

signal connection; this makes them equivalent to an autotransformer: the output signal is 

proportional to the turns ratio, at present equal to 8 (4 turns/0.5 turns). The entire double 

resonant circuit will return a final output signal proportional to the square of this ratio, namely 

the gain factor is 64. The output signal phase can be changed modifying the variable capacity 

C2 through a screw. 
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Figure 3.7 Schemes of the phase retarder circuit. 

       (a)  Real compact configuration  (b)  Extended scheme. C (from 37 pF to 87 pF) is the equivalent   

        capacity of C1 and C2 parallel. 
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4 RESULTS 

4.1 OPTIMIZATION OF POCKELS CELL TRANSMITTANCE VS WAVELENGTH 

 

The alignment and the optimization of Pockels cell transmittance are performed for both 

devices, the one for the pump beam and the one for the OPO beam, following the procedures 

described in section 3.1. For the cell that controls the pump beam, the DC power bias VDC,min 

remains constant at (-108 ± 1) V over the entire range of wavelengths (700-900 nm), whereas 

VAC,max exhibits a linear trend (Figure 4.1):  

 

  

Figure 4.1 Linear regression for the maximum value of AC voltage applied to the pump Pockels cell 

The resulting parameters of linear regression y = ax + b are:  

a = (1.60 ± 0.02) mV/nm 
b = (- 0.150 ± 0.003) V  

 

For the cell that controls the OPO beam, DC power bias Vmin,DC increases with parabolic trend 

(Figure 4.2) y = ax2 + bx + c for growing wavelength (from 1200 to 1500 nm):  
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Figure 4.2 Parabolic regression for the minimum value of DC voltage applied to the OPO Pockels cell 

a = (0.00018 ± 0.00004) V/nm2 

b = (- 0.0 ± 0.1) V/nm 
c = (38 ± 66) V 

 

Also Vmax,AC curve is a parabola:  

 
Figure 4.3 Parabolic regression for the maximum value of AC voltage applied to the OPO Pockels cell  
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a = (1.3 ± 0.2) ∙ 10-6 V/nm2 

b =( - 0.0022 ± 0.0006) V/nm  

c = (2.0 ± 0.4) V 

 

The previous curves are fundamental for every future use of the setup: before starting an 

experiment at certain wavelengths, the user must set the right DC and AC alimentation values, 

respectively on the Pockels cells supply consoles and on ThorImage software.    

The maximum transmission of the Pockels cell is obtained when VDC,min  and VAC,max  are the 

supply values and the power modulation control of the beam is set on 100% in ThorImage 

software. Both Pockels cells transmittance was estimated at different values of beam wavelenght 

in the optimal conditions described above; the beam power was measured by means of the 

power meter before and after the device, for each wavelength. The transmittance is defined as 

the ratio between the output and the input power. The produced graphs are shown in Figure 

4.4. 

 

Figure 4.4 Percentage transmittance of Pockels cells for pump beam (left) and OPO beam (right) 

 

The average values of maximum transmittance over the entire wavelength range are  

Pump beam Pockels cell OPO beam Pockels cell 

86 ± 1 % 78 ± 4 % 
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4.2 PUMP BEAM ANALYSIS 

 

The pump beam wavefront was monitored through Shack-Hartmann sensor along all its 

pathway on the optical bench (~ 3.5 m) to ensure there were no shape deformation. In fact, the 

pump beam encounters in its travel many optical elements that could introduce wavefront 

distortions, which must be carefully avoided in order to guarantee good wavefront modulation 

by the phase mask for STED nanoscopy. The position within the beam path is measured as the 

distance at which the S-H sensor is placed from the Pockels cell exit. In the first measurements 

some shape deformations were pointed out, as can be seen in Figure 4.5a. The wavefront never 

looked radially symmetric and the deformation became more and more serious while distancing 

from the Pockels cell. Therefore, the reason was identified in the Pockels cell alignment, which 

was repeated again. After this intervention the problem was solved, as shown in Figure 4.5b. 

 

 

Figure 4.5 Pump beam wavefront measurements with S-H at distance 105.5 cm (after variable delay line)  

(a) before Pockels cell realignment    (b) after Pockes cell realignment 

 

Shack-Hartmann sensor provides the instantaneous measurement of beam diameter in x and y 

directions. The detector was placed ta some distances along the beam path and for each of 

them, repeated measurements of x and y beam diameters were performed. The values obtained 

for x and y directions were averaged to get a beam diameter estimation at different positions.  

The beam width w(z) (radius) of the Gaussian beam is a function of the distance z along the 

beam optic axis according to the expression 
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w(z) =  w0√1 + (
z

zR
)
2

, 

where w0, called “waist radius”, is the minimum value of the beam radius and zR, named 

“Rayleigh range”, equal to the distance along the z axis from waist position at which w(z) =

 √2w0 (see Saleh and Teich (36)). On this basis, the average diameter values were squared, 

plotted in a graph and fitted by the curve f(z) =  a + b(z − c)2 (Figure 4.6). In this way the 

following correspondence is established: 

w0 = 
√a

2
, zR = 

2w0

√b
. 

 

 

Figure 4.6 Square average pump beam diameter as a function of distance along the optic axis  

The resulting parameters are: 

a = (1.5 ± 0.5) mm2 

b = (1.9 ± 0.3) mm2 

c = (43 ± 229 cm  
 

Consequently, the parameters which characterize the pump Gaussian beam are computed 

 
w0 = 0.61 ± 0.09 mm  
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  zR = 89 ± 13 cm 

 

4.3 SYNCHRONIZATION OF THE ACQUISITION  

 
An important goal in the setup optimization is the maximization of the acquired fluorescence 

signal. Since the sources produce pulses at a rate of 80 MHz, the best sampling condition is 

achieved setting the board external trigger at 80 MHz rate. In this way sample excitation and 

acquisition occur at the same frequency. Since the fluorescence emission has a decreasing 

exponential trend as a function of time, the optimal situation would be triggering the acquisition 

in correspondence to the emission maximum, as represented in Figure 4.7. Since the absorption 

and emission times are fluorophore-dependent, the fluorescence signal maximization through 

optimal triggering can be realized one fluorophore at a time. The synchronization of the 

acquisition is a technical strategy that allows the optimization of imaging result, especially when 

the excitation or emission conditions of a specific fluorophore are disadvantageous.     

 

 
Figure 4.7 Scheme of the synchronization between signal emission and acquisition 

 

The emission starting instant is a priori unknown; it is only possible to monitor the pump signal 

at the oscilloscope from the SYNC-OUT output. Nevertheless, the pulse produced in the pump 

source travels along all the path on the optical bench, then is focused through the objective on 

the specimen and finally it excites the fluorophores. The time of excitation (very fast, in the order 

of 10-15 s) and consequent spontaneous fluorescence emission (characteristic time 10-9 s) is 

different from what we are able to measure directly. The only way to identify the excitation 

instant is introducing a delay in the pump output signal through the circuit described in section 

3.4, then sending it to the acquisition board in external trigger and consequently measuring the 

variation of the acquired signal.  
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The acquisition synchronization experiment is performed monitoring the fluorescence signal of 

a fixed sample, some mouse kidney cells on a slide (Fluocells, see section 2.4). Only one 

fluorophore excitation is sufficient to analyze the fluorescence signal maximization. Fluocells 

are illuminated by the OPO beam at wavelenght of 1100 nm, to produce 2PE of Alexa Fluor 568. 

The detection is in channel D (red). The sample and the excited fluorophore have been chosen 

in particular for the lifetime. In fact, the pulses period is 12.5 ns because the generation 

frequency is 80 MHz, thus the range of possible phase shift between the pump signal and the 

external trigger signal lays between 0 and 12.5 ns. In this period the fluorescence variation must 

be significant, namely the lifetime must be at least shorter than 12.5 ns. The delay between the 

retarded external trigger signal and the pump SYNC_OUT signal is measured at the oscilloscope 

to evaluate the introduced phase shift. The double resonant circuit output is connected also to 

the acquisition board to trigger effectively the sampling, as shown in Figure 4.8. The variable 

capacity is able to introduce a delay between pump and external trigger signals with a maximum 

excursion of about 4 ns in a certain configuration of cables. Hence, more cables configurations 

are required to explore all the 12.5 ns period, considering that a 1 m cable introduces a delay 

of 5 ns in the signal phase.   

 

Figure 4.8 Cable configuration for the measurement of the introduced phase shit 

 

For every measurement the signals delay configuration is set acting on the circuit variable 

capacity by means of the screw and a region of the specimen is fixed and focused for the 

observation. Primarily, a first image with the board set in internal trigger (125 MHz) is acquired 

as a reference. Thereafter, the sampling trigger is converted into external and one image is 

captured every 90 seconds during an interval of thirty minutes. Every image is acquired in gray 

scale, 16 bit, with the same magnification, as an average of 30 frames in order to minimize the 
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background signal.  At the same time, the delay is monitored at the oscilloscope to characterize 

the circuit stability in time in that specific configuration and check the absence of a phase drift. 

The procedure is repeated for each signals delay configuration; every time the observed 

specimen region is changed to avoid signal losses caused by fluorophore bleaching. This is 

allowed because the meaningful data obtained thanks to this procedure are the ratios between 

external and internal trigger signals and not the absolute values. In this way the measurements 

can be divided into more measuring sessions.  

The fluorescence signals analysis is performed through the software ImageJ, through which the 

average gray value within a selected region of interest (ROI) of an image can be measured. The 

values of internal trigger and external trigger signals are measured with exactly the same ROI, 

as shown in Figure 4.10. The external trigger image used for this analysis is the first acquired in 

the time series, so that the two compared images were captured one immediately after the 

other. This choice permits to avoid the introduction of random errors due to unintentional 

defocus of the specimen, system mechanical drifts or sources power fluctuations, which would 

alter the experimental imaging conditions between the two measurements. The delay is 

estimated as the average of repeated measurements at the oscilloscope (Figure 4.9). As an 

example, in Figure 4.10 we display two images of the specimen acquired in internal and external 

trigger in the delay configuration ∆tpulses = (0.654 ± 0.006) ns. The background subtraction was 

performed by subtracting from fluorescence signals the average background value measured a 

posteriori in ImageJ thanks to other ROIs.  
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Figure 4.9 Measurement of the delay between pump (red) and external trigger (green) signals at the oscilloscope 

 

 

         

Figure 4.10 Fluocells fluorescence signal at 0.6 ns delay configuration  

(a) Internal trigger image     (b) external trigger image  

 

The ratios between external and internal trigger fluorescence signals can be plotted in a graph 

as a function of delay. These experimental data were divided into increasing and the decreasing 

subsets, which were fitted with two exponential functions. The results are shown in Figure 4.11. 
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Figure 4.11 Increasing and decreasing data subsets 

 

The fitting parameters are: 

 

f(x) = a + becx 
a = 0.7 ± 0.2  

b = (0.3 ± 1.2) ∙ 10-3  
c = 0.6 ± 0.3 ns-1  

g(x) = d + fe−gx 
a = - 0.3 ± 0.2  
b = 1.1 ± 0.2 
c = 0.18 ± 0.08 ns-1 

The increasing exponential function is shifted for 12.5 ns on the x axis to find out the intersection 

point which corresponds to maximum fluorescence signal acquisition of Alexa Fluor 568 

emission. The curves intersection is shown in Figure 4.12. The intersection point is found 

computationally; the x coordinate represents the delay between pump output signal and 

external trigger signal that permits maximum signal acquisition, the y coordinate (averaged 

between the results of the two curves) is the signal enhancement gained with optimization of 

the acquisition.  

xint = (1.0 ± 0.2) ns 

yint
average

= 1.20 ± 0.03 

Therefore, if the optimal delay condition is set during external trigger sampling of Alexa Fluor 

568 fluorescence emission, the percentage increment of signal fext
optimal

 compared with the 

internal trigger signal fint is 
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fext
optimal

− fint

fint
= (20 ± 3) % 

 

 

Figure 4.12 Research of the maximum acquisition delay for Alexa Fluor 568 emission 

 

The optimal delay condition is a priori different for each fluorophore because each one has a 

characteristic absorption and emission time. The present study demonstrates that the 

synchronization of the acquisition yields to a significant fluorescence signal increase. The same 

experiment can be repeated for the most frequently used fluorophores in order to construct a 

lookup table of the delay configurations that enhance the acquired signal of a certain 

fluorophore, so that the user can refer to it before starting an experiment.   

 

Characterization of the phase retarder circuit 

The stability of the retarding circuit used to introduce the phase shift in the external trigger 

signal is analyzed. The goal is determining whether there is a phase drift or not and, if it is 

present, how much it affects the signal acquisition level.  For all delay configurations, the values 

of delay and fluorescence signal were monitored in time for half an hour at least. Both delay 

and fluorescence signal are ideally supposed to be constant (even if fluorophore bleaching is 

expected), so the average values are computed. The residuals of the two data samples from the 

average values are plotted in percentage to be compared over time, in order to point out a 

possible correlation of fluorescence signal fluctuations to retarder circuit instability. For every 
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condition of phase delay, there are delay fluctuations around the average value, but they are 

much smaller than fluorescence signal variations during all the measurement time. In fact, while 

the standard deviation of delay sample is in the order of some percentage point, the standard 

deviation of fluorescence signal data is one order of magnitude greater. As an example, we 

exhibit the results for the delay configuration ∆tpulses = (5.09 ± 0.01) ns in Figure 4.13. 

 

Figure 4.13 Percentage residuals around the average value of delay and fluorescence signal in time, ∆𝑡𝑝𝑢𝑙𝑠𝑒𝑠 = 5.09 ns 

 

Table 1 

 Delay Fluorescence signal 

Average value 5.09 ± 0.01 326 ± 11 

Standard deviation 

of the sample 

0.082 

~ 1.6 % 

60 

~ 18 % 

 

Clearly delay fluctuations cannot explain the trend of fluorescence signal. This last is more 

reasonably due to fluorophore bleaching added to a probable focal plane mechanical instability. 

The measurements demonstrate that the device is robust, it does not present any drift in time, 

but only casual fluctuations which do not affect fluorescence signal acquisition.     
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4.4 CHARACTERIZATION OF TWO MULTIPHOTON MICROSCOPY OBJECTIVES  

 

Two-beam multicolor multiphoton imaging technique, as well as STED nanoscopy, requires the 

use of objectives with high performance, especially in terms of achromaticity (correction of 

chromatic aberrations), great resolution, high transmittance, deep focusing, high signal-to-

noise ratio. Two different objectives supposed to satisfy those requests have been tested in the 

laboratory, to find out which one presents the best features for our purpose. They are 

 XL Plan N 25x, Olympus (25x, NA 1.05, water immersion),  

 Apo LWD 25x, Nikon (25x, NA 1.1, water immersion). 

The same tests are performed on both objectives, with the aim to compare them. They are 

described in the following list. 

 

Achromaticity test  

A fundamental requirement of both multicolor multiphoton microscopy and STED nanoscopy 

is the spatial overlap between the two beams 3D-PSF created by the objective on the sample. 

Consequently, the used objective must be highly corrected for chromatic aberrations.  

The achromaticity test consists on recording some z-stacks of a single QD at maximum 

magnification (32x). A z-stack is a series of images collected at different planes, equally spaced 

in the z-direction with a fixed pitch. The movement of the microscope head along its axis and 

the acquisition are automatized. The aim is measuring the focus movement in the axial direction 

as a function of wavelength. It is not possible to get this information by repeating more 

consecutive z-stacks of the same QD and with the same starting and stopping positions, in fact 

it would takes much time during which a mechanical drift of the microscope head could occur. 

Furthermore, the measurements would be affected by an accumulated error derived from a 

mechanical imperfection on the head z-positioning at very small steps (usually from 200 nm to 

500 nm to analyze a QD). Since for our purpose the maximum acceptable distance between the 

foci at different wavelengths is lower than 1 µm, very tiny mistakes can compromise the measure 

and affect the valuation of the objective achromaticity. The solution is to excite the sample 

alternately at two wavelengths at every z-plane and only after move to the next step. In this way 

two QD images series are produced with a single z-stack. All the images are acquired as an 

average of 30 frames to reduce background signal. Plotting the intensity z-profile of the two 

series with ImageJ sofware, the quantum dot axial PSF shape is measured. The meaningful 

information is given by the distance between the maximum of the two curves, namely the 
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distance between the foci of the same object imaged at different wavelengths. The smaller the 

distance ∆z between the two, the better the chromatic aberration correction.  

As an example, the z-profiles stemming from the z-stack for wavelengths couple 800 - 1200 nm 

is shown in Figure 4.14; data are fitted with Gaussian functions. In the Table 3 the measured 

differences between OPO beam focus and pump beam focus are displayed for each 

wavelengths couple and for both objectives. The smallest axial separation is highlighted for 

each wavelengths couple.  

 

 

Figure 4.14 Axial distance between OPO and pump beam foci for Nikon (Left) and Olympus (Right) objectives 

 

Table 2 

Wavelengths couple Difference with Nikon 

objective (µm) 

Difference with 

Olympus objective (µm) 

750 nm - 1075 nm  -1.0 ± 0.2 0.3 ± 0.1 

800 nm – 1000 nm -0.4 ± 0.2 0.00 ± 0.02 

800 nm – 1075 nm -0.6 ± 0.1 0.2 ± 0.1 

800 nm – 1100 nm -0.1 ± 0.2 0.05 ± 0.07 

800 nm – 1200 nm 1.3 ± 0.2 0.45 ± 0.09 

850 nm – 1100 nm 0.7 ± 0.1 0.11 ± 0.05 
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If we take the position of the focus at 800 nm as reference point (origin of the z-axis), it is 

possible to construct a graph that shows the variation of the axial position of focus as a function 

of wavelength. In fact, the distance between the focus at 750 or 850 nm and the origin is inferred 

knowing the distance of that focus and of the origin from another reference wavelength focus 

(for example 1000 nm, knowing the differences 750 nm – 1000 nm and 800 nm – 1000 nm). The 

result is illustrated in Figure 4.15 for both objectives. 

 

 

Figure 4.15 Valuation of Nikon (Left) and Olympus (Right) achromaticity 

 

Furthermore, the width σ of z-intensity profile is an estimation of the axial PSF extent. In Figure 

4.16 a comparison between the axial widths σ  of the two objective PSF at different wavelengths 

is carried out. 
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Figure 4.16 Axial width of the two objectives PSF 

 

The axial PSF appears to be wider for the Nikon objective at every tested wavelength. 

 

Lateral PSF size estimate  

As concerns the lateral resolution of the microscope, it depends on the lateral extent of the PSF 

in focal plane of the objective. In terms of resolution, it is advantageous to choice the objective 

which leads to the smaller PSF extent. The measurement can be done on the objective PSF 

formed observing a single QD, which behave as a point source.         

The image presenting the maximum intensity PSF (at the focal plane) of the z-stacks performed 

in achromaticity tests is extracted. For each of them, four intensity profiles along four different 

directions (vertical, horizontal and the two diagonals) of the quantum dot lateral PSF are plotted 

through the software ImageJ, thanks to four linear ROIs, as shown in Figure 4.17a. The four 

curves obtained in such a way are averaged. This final average profile is fitted with a Gaussian 

function to extract its width σ (as an example see Figure 4.19). The FWHM (FWHM = 2σ√2ln (2)) 

of the average profile corresponds to the average diameter of the objective lateral PSF at the 

focal plane.    
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Figure 4.17 PSF at the focal plane of Nikon objective 

 

(a) pump beam illumination at wavelength 800 nm 

 

(b) OPO beam illumination at wavelength 1200 nm 

 

Figure 4.18 PSF at the focal plane of Olympus objective 

 

(a) pump beam illumination at wavelength 800 nm 

 

 

(b) OPO beam illumination at wavelength 1200 nm 
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Figure 4.19 Gaussian fit of the average profile of Olympus lateral PSF at wavelength 800 nm 

 

The analysis provides the results  

Table 3 

Wavelength                  

(nm) 

Nikon objective FWHM 

(µm) 

Olympus objective FWHM 

(µm) 

800  0.44 ± 0.03 0.44 ± 0.04  

1200  0.8 ± 0.1 0.46 ± 0.05  

 

Transmittance measurement 

The imaging of thick biological specimen needs high powers at the focal plane; the beam during 

its travel on the optical bench wastes much power, therefore it is advantageous to avoid other 

losses at the objective as much as possible. The test is not a real objective transmittance 
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measurement, because in this case the beam power should be measured before the back 

aperture of the objective and at the focal plane. Instead, the incoming beam power can be 

measured only before the entrance in the periscope and below the focal plane because of the 

geometry of the thermal sensor aperture (recessed and tight in comparison to the objective 

head). However, it is possible to perform the same measurements for both objectives at the 

same experimental conditions, keeping in both cases the objective head at contact with the 

edges of the sensor aperture to be sure not to lose power outside. The results do not have 

meaning as absolute values, but can be compared to each other. In Figure 4.20 we display the 

relative difference between the objectives transmittance 
TNikon−TOlympus

TNikon
 as a function of 

wavelength. The wavelength ranges where one objective transmittance is higher than the other 

are highlighted. 

 

 

Figure 4.20 Relative difference between Nikon and Olympus transmittances 

 

The results provide information about how good is one objective transmittance compare to the 

other. Olympus transmittance is about 10 % superior to the Nikon one in the range 700 – 1000 

nm, while Nikon transmittance is about 9 % higher in the range 1025 – 1200 nm. At higher 

wavelengths the two are comparable. 
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4.5 TWO-BEAM MULTICOLOR MULTIPHOTON TEST  

 

The test of the setup capability to perform two-beam multicolor imaging is carried out on a 

simple non fluorescent specimen to avoid the problems related to the biological samples 

(staining, fluorophore bleaching, imaging deeply…). It consists on a KDP powder prepared on a 

glass slide for the imaging under the microscope (see section 2.4). The illumination by OPO and 

pump beams produces second harmonic generation signals for both excitation wavelengths; if 

the two PSF are overlapped at submicrometric precision and a sufficient temporal 

synchronization between the pulses is achieved, the two beams undergo to a mixing parametric 

process called sum-frequency generation, described in section 1.3.2. It raises with an 

intermediate wavelenght luminous emission. Since higher harmonic generation phenomena are 

not isotropic, but the light is emitted in the forward direction, the detected signal by a 

microscope in epi-fluorescence configuration is composed only by back scattered photons, with 

low detection efficiency, therefore the acquisition requires high PMT gains or high excitation 

powers.   

 

First test 

Starting from the coarse temporal alignment of the beams set at the oscilloscope as described 

in section 4.3, the position of the variable delay line is slightly changed acting on the coarse 

ferrule of the micrometric head, observing simultaneously the sample with acquisition in live 

modality. In the Tables 5 and 6 the illumination and detection settings are displayed. 

 

Table 4 Illumination parameters 

Beam Wavelength Pockels cell value 

Pump beam λ1 = 880 nm 15 % 

OPO beam λ2 = 1350 nm 27 % 
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Table 5 Detection parameters (all PMTs are acquiring simultaneously) 

 

Signal PMT Channel  PMT gain 

Blue (SHG) B 1 

Red (SHG) D 10 

Green (SFG) C 60 

 

When both beams are incoming on the sample, SFG signal is expected to be detected on 

channel C (green), because λSFG = 
𝜆1𝜆2

𝜆1+𝜆2
 ~ 530 nm. When the SFG green signal starts to be 

visible, it must be maximized through the coarse and fine ferrules of the differential micrometer. 

In the figures below the raising of SFG phenomenon is evident. Every image is acquired 

simultaneously by three PMTs, in blue, red and green channels, while the difference is the 

illumination condition. The first (Figure 4.21a) was captured with the only incoming OPO beam, 

which generates SHG of KDP crystals at a wavelength ~ 675 nm (channel D, red). The second 

(Figure 4.21b) is acquired during pump beam illumination, which produces SHG at ~ 440 nm 

(channel B, blue). Finally, the third (Figure 4.21c) exhibits SFG signal in channel C while both 

beams are incoming.   
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Figure 4.21 Two-beams multicolor imaging of KPD powder 

 

(a) OPO beam illumination at wavelength 1350 nm  

 

(b) pump beam illumination at wavelength 880 nm  
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(c) both beams illumination 

 

 

We can be sure that channel C signal corresponds to SFG phenomenon because it disappears 

when one of the beams is blocked. In fact, in Figures 4.22a and 4.22b there is no green signal 

in channel C, apart from low and localized background signal caused probably by luminescence 

of some dirt on the slide.   

 

Second test 

After the first result, the test was repeated with the same experimental conditions to better 

characterize the control on SFG phenomenon by varying the temporal superposition of the two 

pulses. The first time it is performed with the Nikon objective, the second time with the Olympus 

objective. Primarily, the best temporal synchronization condition is identified by moving the 

variable delay line and simultaneously monitoring the signal in channel C (a ROI is 

superimposed on the image with acquisition in live modality). The maximum signal position 

found in such a way for Nikon objective is set as the origin of the positions axis; with respect to 

it, one image is acquired moving the variable delay line back and forward with a 10 µm pitch (1 

nick in the coarse graduation). The same zero position is maintained also for the second test 

with Olympus objective.   All the images are acquired as an average of 20 frames to minimize 
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the background signal. The measurement of SFG signal is performed through ImageJ equally 

for all the images. A threshold is set in order to cut off the much frequent less luminous pixels 

belonging to the PMT background. Thereafter, the ROI 1 (Figure 4.22) is picked and the average 

value of the signal in the selected pixels is computed. Another background subtraction is 

performed by means of the ROI 2 placed in a dark region. 

 

 

Figure 4.22 ROIs for the measurement of SFG signal over threshold 

 

In Figure 4.23 a comparison between the images obtained with Nikon objective in conditions 

of synchronized beams and not synchronized beams is proposed. Two graphs of SFG signal as 

a function of the distance from the zero position are produced, one for Nikon and one for 

Olympus, and displayed in Figure 4.24. The data were fitted with Gaussian functions. 
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Figure 4.23 SFG signal from KDP powder with synchronized (0 µm)  and not synchronized (-30 µm) pulses  

 

 

 

Figure 4.24 SFG signal as a function of variable delay line position for Nikon (Left) and Olympus (Right) 

 

The estimation of  1 𝑒2⁄  width (namely 2𝜎) of the temporal intercorrelation function between 

the two pulses is for the two objectives: 

Table 6 

 Nikon Olympus Weighted average 

 Spatial width 40 ± 7 µm  43 ± 2 µm 43 ± 2 µm 

Temporal width  133 ± 23 fs 143 ± 8 fs 142 ± 8 fs 
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Preliminary tests on fluorescent samples 

The experiment is repeated with the fluorescent sample described in section 2.4. Similarly to 

what was done in the previous tests, some images were captured in channel C varying the 

variable delay line position with a pitch of 10 µm, with both beams illumination. The emission 

of two-color two-photon excited fluorophore is plotted in the graph displayed in Figure 4.25, 

after background subtraction. The curve represents the cross-correlation function between the 

two pulse trains as a function of space instead of time delay (related by light speed c).  

 

Figure 4.25 Fluorescence signal as a function of variable delay line position  

 

The Gaussian fit f(x) = ae
−
(x−b)2

2(σint)
2
provides the value of the curve width σint = (34.5 ± 0.5) µm. 

Hence, the estimation of the  1 𝑒2⁄  width of the temporal cross-correlation function between 

the two pulses (namely 2σint) from the fluorescence curve is:  
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Spatial width (69 ± 1) µm 

Temporal width (230 ± 4) fs 

 

Since σint = √σOPO
2 + σTi:S

2  , the expected value for 2σint is ~ √1402 + 2002 = 244 fs. The 

experimental result appears underestimated around 6 %, but we must consider that Coherent 

declares the typical values for the pulses 1 𝑒2⁄  width (140 fs for the pump and 200 fs for the 

OPO) without specifying uncertainties.   

4.6 EFFICIENCY OF LASER LAUNCH INTO SINGLE MODE OPTICAL FIBER FOR 

STED NANOSCOPY 

 

Beam injection was carefully performed by way of procedures described in section 3.2 for both 

cases. Once the beam-fiber coupling has been maximized as much as possible through the fiber 

launch alignment, the final efficiency is estimated. The powers in input to the fiber and at its 

exit are measured through the power meter while varying the beam power modulation (setting 

different percentage values on software ThorImage, section Power Control). Both for doublet 

and for ZEISS objective a graph input power/output power is plotted; the fiber coupling 

efficiency is extracted as the linear coefficient computed through data linear interpolation f(x) =

a + bx (Figure 4.26).    

 
Figure 4.26 Fiber coupling efficiency 
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The parameter  b corresponds to the fiber coupling percentage efficiency:   

 

Doublet Objective 

0.3841 ± 0.0005  

(38.41 ± 0.05) % 

0.372 ± 0.001 

(37.2 ± 0.1) % 

 

The fiber coupling efficiency with the doublet results superior to the one with the objective of 

about 3 %. 

4.7 MODULATION OF PUMP BEAM WAVEFRONT FOR STED NANOSCOPY 

 

The modulation of pump beam wavefront is performed by a spiral phase mask placed after the 

exit of the optic fiber. The mask is mounted on a x-y stage for fine alignment of its center with 

the beam optic axis. The quality of the alignment is directly monitored by observing the beam 

wavefront at Shack-Hartmann sensor, after the passage through the phase plate and through a 

slightly converging telescope. The correct mask positioning yields to a wavefront shaped as a 

doughnut: in Figure 4.27 S-H output after optimization of the mask position is shown. 

 

 

Figure 4.27 Doughnut-shaped pump beam wavefront 
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The entire beam diameter must enter in the objective back aperture to be focalized in the 

doughnut on the specimen. Since the mirrors in the microscope scan head quite expand the 

beam diameter, a telescope has been necessary to reduce it. The telescope was composed of 

two aspheric plano-convex doublets with focal lengths f1 = 10 cm, f2 = 3 cm. When the lenses 

are disposed as shown in Figure 4.28, the effect is a beam diameter reduction of a factor f2/ f1. 

 

Figure 4.28 Configuration of the telescope for the beam diameter reduction 

 

Thanks to this expedient, the beam was introduced into the objective and we were able to see 

a doughnut-shaped PSF observing a single quantum dot (Figure 4.29). 

 

 

Figure 4.29 Doughnut-shaped PSF 
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4.8 DEPLETION TEST 

 

The stimulated emission depletion effect is observed on Alexa Fluor 594 sample, described in 

section 2.4. The alignment of the optical fiber with respect to the pump beam optic axis was 

quite good at the moment of the test, in fact the beam-fiber coupling efficiency was around 

30%. This condition allowed the beam power after the exit of the fiber to achieve the value of 

78 ± 2 mW at 90% of maximum power provided by the Pockels cell. The objective available  in 

the laboratory for this test was Nikon objective. The more efficient depletion effect is carried 

out when the depletion wavelength belongs to the tail of the fluorophore emission spectra; 

observing the emission spectra of Alexa Fluor 594 (Figure 2.20) a good choice can be 750 nm, 

while two-photon excitation is provided by the OPO beam at 1200 nm. In Nikon objective the 

axial distance between the foci at 750 nm and 1200 nm wavelengths is 1.0 ± 0.3 µm, according 

to the measurements of focal positions along the z-axis (Figure 4.15). To correct the objective 

chromatic aberration the telescope described in the previous section is exploited: by slightly 

increasing the distance between the two lenses with respect to the configuration depicted in 

Figure 4.31, a variable convergence is applied to the pump beam after the fiber exit. The 

distance between the doublets which makes the OPO and pump beams PSF overlap in axial 

direction is set moving one of the lenses through a micrometer head and simultaneously 

observing a single QD. As concerns temporal conditions, starting from the coarse 

synchronization condition set at the oscilloscope, the two pulses must have a delay inferior to 

one hundred of picoseconds between each other. To finely achieve this condition the 

oscilloscope is no more useful, therefore SFG process observed on KDP crystal is exploited to 

investigate the temporal difference between the pulses. The procedure is analogous to the one 

described in section 4.5 for the research of the maximum SFG signal, but now the setup is set 

in STED configuration (Figure 2.2). Once identified the position of the variable delay line 

correspondent to pulses synchronization (maximum SFG signal) the experiment can start.  Two 

images were acquired for each investigated position of the variable delay line, the first with only 

OPO beam illumination and the second with both beams illumination. To prove the presence 

of depletion produced by the incoming pump beam of spontaneous fluorescence excited by 

OPO beam, the fluorescence signal in the second image fdepl must be lower than the one 

measured in the first image, fexc. The measurements are performed through the software 

ImageJ. In Figure 4.30 the values of the ratios 
fdepl

fexc
 are plotted as a function of the pulses delay, 

considering that ∆t =
2∆x

c
, where ∆x represents the variable delay line position.  
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Figure 4.30 Depletion efficiency as a function of the delay between the pulses 

 

After positioning the variable delay line in correspondence to the maximum depletion efficiency, 

a streaming is recorded: the OPO beam is always incident in the sample, while the pump beam 

is started and stopped continuously. The fluorescence signal trend is affected by time-

dependent fluorophore bleaching, as can be seen in Figure 4.31. The correction that must be 

applied to emission intensity over time can be computed thanks to an exponential fit of data 

acquired with OPO illumination only. 

The parameters of the fit f(x) = a + be−
x

c are: 

a = (386 ± 4) a.u. 

b = (1490 ± 5) a.u. 
c = (18.1 ± 0.2) s-1  

 

c is an estimation of the characteristic time of Alexa Fluor 594 bleaching. Knowing the time-

dependent law that exponentially reduces fluorescence emission without the depletion effect, 
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data can be compensated by a normalization with the curve f(x). The result is displayed in Figure 

4.32. 

 

Figure 4.31 Bleaching of Alexa Fluor 594 

 

Figure 4.32 Streaming of Alexa Fluor fluorescence emission with occasional pump beam induced depletion 
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The graphs presented demonstrate that the imaging setup has been set in conditions of 

performing STED nanoscopy. It is proper to note that the present configuration do not actually 

provides a good depletion efficiency, in fact the maximum obtained fluorescence reduction is 

(26 ± 5) %.   
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5 DISCUSSION AND FUTURE PERSPECTIVES 

 

In the present work, an optical imaging setup suitable for multiphoton microscopy in living 

models has been optimized to perform advanced imaging techniques, i.e., multicolor 

multiphoton and STED. The setup is composed of a laser scanning multiphoton microscope 

(Thorlabs) equipped with two synchronized high power femtosecond laser sources (Coherent), 

namely a mode-locked Ti:Sapphire laser that is used to pump an optical parametric oscillator 

(OPO). The basic imaging configuration is the classical two-photon excitation (2PE), which can 

be performed simultaneously by the two laser sources. The advantage of using 2PE in 

biomedical research relies on the use of higher wavelengths compared to single-photon 

excitation. Photons with higher wavelengths, typically in the near-infrared range (760 nm -1300 

nm), cause less photodamage in biological specimen and are less exposed to scattering, 

yielding to a deeper penetration in biological tissues. Furthermore, providing temporal and 

spatial overlapping between the two laser pulses in the focal plane generates nonlinear 

processes in the fluorescent sample. We can refer to these processes (sum frequency 

generation, multicolor two-photon excitation) as “two-beam” processes, because they are 

produced by the combination of the two provided excitation wavelengths. Of course they add 

up to other nonlinear processes generated by single beam illumination (“single-beam” 

processes, as two-photon excitation or higher harmonic generation). The optimization of 

performances of the imaging apparatus is aimed to reach the capability of producing a selection 

of optical processes as wide as possible, in order to image the highest number of features in 

biological samples. An imaging setup with those capabilities can pave the way for further 

studies in the biomedical field, in particular in the imaging of tumor microenvironment in live 

animals. The resolution of multiphoton scanning microscopy is typically 30% poorer than single-

photon confocal scanning microscopy, therefore an additional improvement of the apparatus 

performance is the integration of multiphoton microscopy with stimulated emission depletion 

(STED) nanoscopy. This recent sub-diffraction resolution imaging technique will provide 

confinement of the two-photon excitation point spread function (PSF) in a volume of few tens 

nanometers, the actual inferior optical resolution limit. 

The setup optimization started from the correct installation of the beams power modulation 

system. Power modulation is realized by means of electro-optic devices, the Pockels cells, which 

require different voltages for DC and AC supply according to the beams wavelength selected 

at source. DC voltage sets the starting operating point of the device, while AC voltage is 

effectively responsible for the output power variation. The output power is expected to range 

from a minimum value Pmin (always higher than zero) to the maximum value Pmax (always lower 

than the source output). The optimization of Pockels cells transmittance consists in finding the 
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supply values which maximize the output power range, namely the difference between Pmin and 

Pmax. The result of the optimization procedure has been the construction of a look-up table 

containing the DC and AC values that must be set before the beginning of each experiment 

depending on used wavelengths, in order to obtain the best device transmittance at 100% of 

power. 

Since multiphoton microscopy technique requires a precise spatial and temporal overlap of the 

two laser trains, a great attention was put in the beams alignment procedures. The two beams 

travel along different paths on the optical bench enclosed by the setup, but must enter in the 

microscope perfectly coaxial to be focused in the same spatial region in the specimen. This 

condition is reached by manipulating manually the beams conditioning optics, with the support 

of fluorescent test targets to visualize the beam and a power thermal sensor. The path length 

of one beam can be varied through the movement of two mirrors placed on a rail, with a 

precision of 1 µm. This is a fundamental tool which allows to synchronize one pulse with respect 

to the other. A first temporal alignment is performed detecting the pulses temporal profile 

through a fast detector and observing the output at the oscilloscope. In particular the beams 

alignment procedure must be repeated over time to keep the alignment quality, which 

deteriorates because of drift and vibrations. 

The fluorescence signal acquisition constitutes another field in which the imaging setup can be 

optimized. The pump source Ti:Sapphire provides impulses at 80 MHz repetition rate, while the 

acquisition board sampling is carried out in internal trigger at 125 MHz frequency. The board is 

equipped also with an external trigger input with software-selectable level, thus the optimized 

condition for fluorescence signals acquisition is synchronization between the sampling at 80 

MHz rate and the fluorophore maximum emission (immediately after excitation). The external 

trigger signal at 80 MHz repetition rate can be extracted directly from the pump source output. 

The synchronization condition was identified thanks to measurements of fluorescence signal 

from the fluorophore Alexa Fluor 568 in a fixed biological sample, by varying the phase of the 

signal sent to the external trigger input of the acquisition board. The phase retardation is 

performed through a retarder circuit with a variable capacity. Since the lifetime is characteristic 

of each fluorophore, one can expect to find different phase shifts that yield to the 

synchronization condition for different fluorophore; however, the result of synchronization 

experiment for Alexa Fluor 568 demonstrate that optimization of the acquisition produces an 

enhancement of the detected fluorescence signal around 20%.  

The objective used on the microscope must be suitable for advanced multiphoton applications 

as two-color two-photon microscopy and STED nanoscopy. Two multiphoton objectives, Nikon 

and Olympus, were tested on the laboratory to determinate the one that best meets our 

requirements. The tests was aimed primarily to identify which objective exhibits the best 
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correction of chromatic aberrations because we need good spatial overlap between the focal 

spots of the two beams in the sample, both in multicolor multiphoton microscopy and STED 

nanoscopy. The measurement was performed through some z-stacks of a single quantum dot, 

namely series of images captured in the same field of view at different z-planes inside the 

specimen separated by an axial regular pitch. At every step the quantum dot was illuminated 

by first by one beam and then by the other and two images were acquired, so that two images 

series relative to different wavelengths were produced. Plotting the z-axis intensity profile of 

the two series, the information about the distance of the two foci is extracted. For each tested 

wavelengths couple the distance between the foci is lower for Olympus objective, which reveals 

a higher achromaticity, optimized for the couple 800 nm -1000 nm. Furthermore, the axial and 

lateral extents of the objective PSF were estimated analyzing the previous images. The smaller 

is the spatial volume occupied by 3D-PSF, the better is the imaging system resolution. On 

average, the axial size of Olympus PSF is around 40% narrower than the Nikon one. As concerns 

the lateral size of PSF, the average diameter of the PSF at the focal plane is comparable for 

Nikon and Olympus objectives at smaller wavelengths (800 nm), while the Nikon diameter 

measures nearly twice the Olympus one at higher wavelengths (1200 nm). Finally, a relative 

transmittance measurement is taken into account. Olympus transmittance is about 10% 

superior to the Nikon one in the range 700 – 1000 nm, while Nikon transmittance is about 9% 

higher in the range 1025 – 1200 nm; at higher wavelengths the two are comparable. In this case, 

looking forward to implement in the setup STED nanoscopy functionality, the beam responsible 

of the depletion must have as much power as possible to increase process probability. The best 

choice is to privilege higher transmittance in the lower wavelength range, in fact the depletion 

wavelength must be within the fluorophore emission spectrum, namely more in the range 700-

900 nm than at higher wavelengths. Thanks to all previous results the choice for more suitable 

objective is directed towards Olympus objective.  

The setup was set in conditions of spatial and temporal overlap of laser trains, so that two-beam 

multiphoton processes can be produced in the observed specimen. The quality spatial and 

temporal alignment was first tested on KDP powder, a not fluorescent and not biological 

sample. KDP crystals illuminated by a certain wavelength produce second harmonic generation 

signals; if two beams with different wavelengths are focused around the same geometrical point 

and synchronized, the nonlinear phenomenon of sum frequency generation is observed: the 

two waves frequencies sum up to provide a third equivalent wavelength; the result is the 

simultaneous detection of three colors signals. After this achievement, the multicolor 

multiphoton potentialities of the imaging apparatus were tried in preliminary tests on 

fluorescent samples. The simultaneous absorption of a photon belonging to the first beam and 

one coming from the second beam permits to excite a fluorophore whose absorption spectrum 

is intermediate between the two excitation beams wavelengths.  
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With regard to the implementation of STED nanoscopy technique in the setup, the first step has 

been the injection of one beam inside a single-mode optic fiber with 5 µm core diameter for 

the required temporal stretching of the pulse aimed to spontaneous fluorescence depletion. 

Two focusing optic elements were tried for the beam injection in the fiber, a doublet and an 

objective. Both reached in optimized conditions essentially the same efficiency in the beam-

fiber coupling, around 40%. This suggests that at present the quality of the coupling depends 

more on the sensibility limit that can be reached in manual alignment of the optics and on the 

precision of the mounting elements available on the bench (up to 0.5 µm). Since fluorescence 

depletion phenomenon in biological samples requires at least 50 mW on the back focal plane 

of the objective, a possible future improvement for beam injection in the fiber is represented 

by the automatization of the fiber entrance alignment with respect to the beam optic axis. An 

automatic 3-axis fiber launch with higher precision could increase the fiber coupling efficiency 

and reduced significantly the time spent for manual alignment. 

The final significant achievement was the observation of depletion effect in a fluorescent sample 

(Alexa 594). The test clearly confirm that the apparatus has the capability to perform imaging 

at the nanoscale resolution, once the depletion effect is combined with the modulation of the 

pump beam wavefront by the phase plate.  

In conclusion, the performance of many critical parts in the setup is now optimized (beam power 

modulation system, temporal synchronization of pulses, fluorescence signal acquisition). The 

imaging apparatus in able to perform with ease two-beam multicolor microscopy, over the basic 

2PE microscopy. The future goal is to accomplish the integration of multiphoton imaging with 

the super-resolution STED technique. In particular, a first experiment that can be accomplished 

is the imaging of a fixed biological specimen with very small structures (for example 

mitochondria), adding the phase plate for pump beam wavefront modulation to the setup 

configuration needed to obtain depletion. Depletion efficiency, currently amounting to 26%, 

can be improved by further optimization of the beam power in output from the fiber and 

improving the chromatic aberration correction. 

The combination of multicolor multiphoton imaging and STED techniques would bring the 

instrument to a powerful configuration for the study of in vivo biological processes at the 

nanoscale, simultaneously observing many different features of the specimen. An imaging setup 

with these capabilities is currently missing in Padova, and we believe it could achieve a better 

understanding of signal pathways in the tumor microenvironment.     
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