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Abstract

Cement production plays a significant role in global CO2 emissions. Advanced control

algorithms could reduce its environmental impact by improving the efficiency of the

process. Nonlinear Model Predictive Control (NMPC) is a technique particularly fit for

this role, since it minimizes a cost function while satisfying a set of constraints. A key

element required by NMPC is an accurate mathematical model of the controlled system.

However, its derivation could be challenging, especially for complex systems such as cement

production plants. As an alternative, learning-based approaches are being investigated.

They leverage historical data to design the entire controller or part of its components.

In this work, Gaussian Processes regression is used to obtain a black-box model of key

system variables of a clinker production plant. A CV-informed GP-NOE model was trained

on historical data and compared to a MIMO transfer function model. The results show

slight improvements in long multi-step-ahead predictions. The developed model has the

potential to be implemented within a learning-based NMPC framework to control the

clinker production plant.
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Sommario

La produzione di cemento svolge un ruolo significativo nelle emissioni globali di CO2.

Algoritmi di controllo avanzati potrebbero ridurne l’impatto ambientale tramite un miglio-

ramento dell’efficienza del processo. Il controllo predittivo non lineare (NMPC) è una

tecnica particolarmente adatta a questo ruolo, poiché minimizza una funzione di costo

soddisfacendo una serie di vincoli. Un elemento chiave richiesto dal NMPC è un modello

matematico accurato del sistema controllato. Tuttavia, la sua derivazione può risultare

onerosa, soprattutto per sistemi complessi come gli impianti di produzione del cemento.

Una possibile alternativa sono gli approcci learning-based, attualmente in fase di studio.

Essi sfruttano i dati storici per lo sviluppo dell’intero controllore o di alcuni suoi com-

ponenti. In questo elaborato, tecniche di regressione gaussiana vengono utilizzate per

ottenere un modello black-box delle variabili chiave di un impianto di produzione di clinker.

Un modello CV-informed GP-NOE è stato addestrato su dati storici e confrontato con una

funzione di trasferimento MIMO. I risultati mostrano leggeri miglioramenti nelle predizioni

multipasso a lungo termine. Il modello sviluppato ha il potenziale per essere implemen-

tato all’interno di un approccio learning-based NMPC per il controllo dell’impianto di

produzione di clinker.
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1 Introduction

Cement is one of the most important building materials in the world. It is a fundamental

component of concrete, essential for building construction and infrastructure development

[12]. The estimated global cement production in 2021 was 4.40 billion metric tons, up

4.8% compared to the previous year [29]. The cement industry is energy-intensive and is

one of the largest emitters of CO2 in the world. In particular, clinker production is the

process that contributes the most in terms of both energy demand and pollution. The

intensity of direct emissions from cement production reached 0.59 metric tons of CO2 per

ton of cement in 2021, with an increase of approximately 1.5% per year since 2015. To

get on track with the Net Zero Emissions by 2050 scenario (NZE), 3% annual reductions

to 2030 are necessary [13]. In order to reduce CO2 emissions while meeting demand,

several innovative techniques are being developed and implemented. This process has been

incentivized by regulatory action that mandates emission reductions and funds research

and development. Larger kiln sizes, waste heat recovery, the use of alternative fuels and

raw materials, improvements in grinding efficiency, and carbon capture and storage (CCS)

technologies are among the main approaches currently investigated [25]. However, they

can present a challenge and significant costs, as they require hardware modifications of

the plant.

A different approach that has been developed in parallel to the aforementioned techniques

and requires minimal changes in the equipment is energy efficient production automation

[33]. In recent decades, the cement industry has seen an increasing adoption of automated

control systems. The initial PID controllers were quickly replaced by more complex expert

systems based on fuzzy logic. Nevertheless, after the initial success their adoption dwindled

in favor of more advanced linear model predictive controllers (MPC). This approach has

enjoyed widespread use in recent years due to its ability to handle constrained multi-input

multi-output (MIMO) systems [6]. While early automatic control solutions were designed

to aid human operators in their day-to-day management of the plant, the advanced

capabilities offered by linear MPCs promoted the development of controllers aimed at

optimizing production efficiency. One of the main challenges of using MPCs is their reliance

on accurate models of the systems that they control. Mismatches can be handled at the

cost of control performance. Cement factories are complex MIMO, time-varying, nonlinear

systems characterized by multiple interacting chemical and physical processes [24]. This

poses significant challenges to the modeling approach, which result in an unavoidable

plant-model mismatch exacerbated by the need for linearization. A possible solution to

this problem is the use of data-driven techniques to derive nonlinear gray-box or black-box

models of the system. They can then be combined with nonlinear model predictive control,
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to better suit the intrinsic structure of the clinker production plant [6]. This approach is

called learning-based NMPC [10] and will be investigated in this work.

1.1 State of the Art

The modeling techniques of the clinker production systems found in the literature can

be divided into two main categories: empirical models and predictive models [12]. The

former rely on in situ data collection to derive simplified input-output relationships of

the plant variables. Examples of this methodology can be found in [3], [30], and [36].

The latter use first principles derived from either physics, chemistry, or both to provide a

description of the system dynamics. Physics-based approaches can vary considerably in

complexity but are all based on energy and mass balance equations. Simpler methods rely

on a “sinks and sources” description of the plant [28], while more refined models tend to

compartmentalize the system [27]. The use of differential equations describing multiple

phenomena, combined with detailed knowledge of multiple plant parameters, produces the

most complex models found in the literature [8, 18]. Chemistry-based approaches rely on

chemical equilibria to describe the dynamics of the system [12].

The main control technique applied to clinker production plants is linear model predictive

control. As described previously, MPCs are often designed to minimize energy consumption

while meeting production demand and quality requirements. Further constraints on the

combustion process can be imposed to satisfy emission limits. The technique is quite well

established, thus multiple examples of its application can be found in the literature [3,

18, 21, 27, 30]. In contrast, learning-based MPC is a very new active area of research,

gathering the interest of the control community only in more recent years. An extensive

literature review of the topic is provided in [10]. In it, the author groups the different

implementations that are being actively researched within the LbMPC framework into

three distinct classes:

• learning the system dynamics: this approach leverages machine learning techniques

to automatically adjust the model representation of the system dynamics. It can

either improve a gray-box model based on a priori knowledge by using data to

compensate for unmodeled dynamics, or it can directly derive a black-box model of

the system;

• learning the controller design: this technique uses data to shape the whole closed-loop

MPC behavior by acting on its cost function, constraints, or terminal components;

• model predictive control for safe learning: this solution decouples the optimization

of the cost function, which is achieved by the learning-based component, from the

satisfaction of system constraints, which is satisfied by MPC techniques.

Since LbMPC techniques are in the early stages of research, limited applications to the
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cement industry can be found in the literature. A single paper was found [33]. In it, the

author used an identified NARMAX model combined with an NMPC for the control of

a rotary kiln. Closed-loop simulation showed that the control goal could be met by the

designed LbNMPC architecture.

1.2 Thesis Contributions

The goal of this work was to investigate learning-based techniques for modeling key system

variables of a clinker production plant. In particular, Gaussian Processes Regression was

applied to historical data collected at a cement factory to derive a black-box model capable

of estimating the dynamics of the kiln motor current. The GP-NARX and GP-NOE models

described in [15] were used as a base and expanded upon. Since the work was developed

within the learning dynamics approach of LbNMPC, the GP model was evaluated on its

capability of multi-step-ahead prediction. Further knowledge and characterization of the

plant was provided by Alperia Green Future, which developed the current linear MPC

implementation that manages the plant. Their model was also used as a benchmark to

evaluate the performance of the GP-NOE produced in this work.

1.3 Thesis Outline

This work is organized as follows: background information on the manufacturing of cement

is provided in chapter 2. A detailed process description is provided, together with an in-

depth review of the state of the art in modeling and control of the clinker production phase.

Lastly, the plant investigated in this work is described. chapter 3 offers an overview of the

learning-based techniques used for system identification, including a short introduction

to the LbMATMPC toolbox [20]. The results obtained are presented in chapter 4, where

comparisons between the designed models and the current implementation are described.

Lastly, in chapter 5 concluding remarks and future implications are discussed, together

with a critical reflection on the limitations of the results obtained and possible solutions.
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2 Cement Production

2.1 Concrete Composition

Concrete is a man-made composite material widely used in construction. In its simplest

definition, it is made of a filler and a binder. The filler, also known as aggregate, is

composed of coarse granular material. Different types of filler exist; they are the inert

component of conventional concrete and make up approximately three-quarters of its total

volume. The remaining volume is constituted by the binder. Two main categories of binders

can be identified on the basis of their composition: organic and inorganic. Nowadays, the

most popular inorganic binder is Portland cement; this is due to the wide availability of

the raw materials used in its production and to its ease of use. Portland cement is made of

95-97% clinker and 3-5% gypsum or calcium sulfate. Clinker itself is obtained by sintering

the basic raw materials: calcium carbonate (limestone), aluminum silicate (argillaceous

materials), and corrective materials (silicious, ferruginous, or aluminous) inside a rotary

kiln as part of the cement manufacturing process. [17]

2.2 Manufacturing of Portland Cement

Portland cement manufacturing involves a number of steps and advanced operations that

are summarized in Figure 2.1. In particular, the so-called dry-process will be described

because of its almost exclusive use in modern plants. The procedure starts with the

procurement of raw materials, usually from local quarries. Of these, the most important

is limestone, followed by clay minerals and, when required, corrective materials, such as

sand, iron ore, and bauxite. After being sourced, the different minerals are crushed and

milled to obtain fine powders of the desired particle size distribution. Various crushing and

milling machines are used in the industry, including hammer and ball mills. The raw mix

design is then performed. This is a process in which the proportions of the different raw

materials are calculated using equations derived from chemistry. The resulting mixture,

called raw meal, has the desired composition and burning behavior. These characteristics

ensure the quality of the cement produced while minimizing overall energy consumption

and manufacturing costs. [4]

The raw meal then enters the pyroprocessing stage. This is regarded as the main phase

of the cement manufacturing process since the most important chemical reactions take

place here. Through them, the raw meal is transformed into clinker, thus this stage is also

called clinkering process. To perform pyroprocessing, modern plants employ a five-stage

preheater-precalciner kiln system, illustrated in Figure 2.2. Inside it, the following chemical

4



Figure 2.1: Simplified diagram of a Portland cement manufacturing plant. The clinker
production phase is highlighted in red. Source: own edit of [17].

processes take place:

• dehydration and dehydroxylation: removal of H2O and OH respectively, occurring

between 27°C and 600°C;

• decarbonation of limestone, also called calcination: removal of CO2, occurring

between 550°C and 1000°C;

• solid-state reactions of lime and other oxides, occurring between 550°C and 1280°C;

• liquid-phase sintering, occurring between 1280°C and 1450°C;

• consolidation of the clinker microstructure through cooling, occurring between 1000°C
and 1300°C. [5]

The clinkering process begins with the raw meal being fed into the preheating system,

which is composed of four stages of cyclones, also known as suspension preheaters. Here,

the mixture, pulled down by gravity, encounters an upward stream of hot gases that exit

from the rotary kiln and are drawn by an induced draft fan (ID fan). The temperature

of the raw meal increases from ambient conditions to approximately 800°C, leading to

complete dehydration and dehydroxylation. Furthermore, the limestone is calcinated to a

degree of about 30%.
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Figure 2.2: Schematic diagram of a five-stage preheater-precalciner kiln system. Source:
own edit of [4].

Next in line is the precalciner, a specialized combustion chamber in which the raw meal

is entered before reaching the rotary kiln. Its role is to further increase the extent of

limestone decarbonation while avoiding excessively high temperatures and oxygen levels.

This reduces the thermal load of the kiln, allowing more of its total length to be reserved

for solid-state reactions and liquid-phase sintering. Various precalciner designs have been

employed in the industry due to the multiplicity of secondary goals to be fulfilled, these

include:

• allowing the use of alternative fuels, thus reducing the energy and environmental

costs of cement production. Rates of up to 100% alternative fuels have been achieved

for decades and their use is now spreading to the kiln burner as well, although slowly

due to their impact on the operation of the kiln and the quality of the clinker [25];

• reducing NOX emissions, to comply with regulatory norms on pollution;

• achieving a controllable degree of limestone decarbonation that ranges between 85%

and 95%.

The rotary kiln is a slanted steel cylinder that rotates about its longitudinal axis. The

mix exiting the preheater-precalciner stage is fed into the kiln through its upper end. As

the cylinder rotates, the material slowly moves downward toward the lower end, where a

multiple-channel burner is placed. It utilizes a combination of conventional fuels, such

as petroleum coke (petcoke), air, and optionally alternative fuels, to produce a stable
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flame. Since the heat source is located at one end of the kiln, a temperature gradient

develops inside of it. This allows the completion of calcination, solid-state reactions, and

liquid-phase sintering to occur in succession. After these chemical processes take place,

the raw meal exits the cylinder as clinker.

The last step of the pyroprocessing stage is the cooling of the clinker. This serves multiple

functions:

• ensuring the consolidation of the clinker microstructure;

• reducing the temperature of the clinker for further conveying, storing and processing;

• recovering a significant amount of the clinker heat for reuse in the previous steps.

The first portion of the cooling occurs inside the kiln, after the material has passed the

burning zone. Here, the temperature drops to approximately 1200-1250°C. After being
discharged, the clinker enters a cooler. Although a wide variety of models are used in the

industry, their goal is the same: to quickly cool the clinker down to about 100°C. This
slow-fast cooling schedule has been shown to produce the best clinker quality.

The final step in Portland cement manufacturing consists in grinding the clinker together

with 3-5% gypsum and optionally other additives. The role of gypsum is to prevent flash

setting, i.e. the quick stiffening of cement following the addition of water. Other additives

are used to control the cement’s pH value; this is of particular interest when concrete is

reinforced with steel rebar. In the industry, a variety of grinding equipment, including ball

mills, is used to obtain cement of the desired particle size distribution. After this step, the

cement is stored and prepared for dispatch to markets. [17]

2.3 Challenges in Modeling and Control of Cement

Production

Cement production plants come in many different configurations. Variability is present in

both the plant design and in the individual machinery used at each step [4], as previously

described. Furthermore, due to their decades-long lifespans, plants generally experience

a number of changes to their process structure. For these reasons, it is convenient to

divide plant models and control algorithms into separate generic compartments [27]. These

can then be tuned to match different plants, resulting in a reduction of engineering and

commissioning costs. Modeling and control techniques for cement mills [23], precalciners

[28], rotary kilns [27], preheater-precalciner and kiln systems [3], and clinker coolers [31]

have been presented in the literature. All these compartments exhibit challenges due to

their nature; in fact, they are multivariable, strongly-coupled, time-varying, nonlinear,

large time-delay systems [24].

This work focuses on the modeling and control of the pyroprocessing stage. In particular,
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only the preheating, precalciner and kiln systems are of concern, thus excluding the cooling

phase. For this reason, further descriptions of techniques proposed in the literature are

now presented.

2.3.1 Modeling of Preheater-Precalciner Kiln Systems

The main challenge faced by engineers when modeling preheater-precalciner kiln systems

is due to their complexity. In fact, the clinkering process consists of multiple chemical

and physical subprocesses, which are distributed in time and space across the production

plant [12]. The approaches presented in the literature can be categorized according to

their characteristics. Empirical models use data collected in situ to derive simplified

relationships between input and output variables. In particular, open-loop step response

experiments are performed to estimate the parameters of a multi-input multi-output

(MIMO) first-order transfer function with pure time delay as in Equation 2.1:

G(s) =

⎡⎢⎢⎣
g11 · · · g1n
...

. . .
...

gm1 · · · gmn

⎤⎥⎥⎦ with gij(s) = e−θijs
Kij

τij s+ 1
(2.1)

The gain Kij, the time delay θij, and the time constant τij of each transfer function

gij(s), linking the j-th input to the i-th output, are evaluated. The main downside of this

approach is its low robustness against process parameter variations. Examples of this

methodology can be found in [3] and [30].

In contrast, predictive models rely on first principles to provide a description of the plant’s

dynamics. These can be based either on physical or chemical models [12]. The former

utilize mainly approaches deriving from energy and mass balance equations. Simpler

methods, such as the one presented in [28], leverage a “sinks and sources” representation

to obtain a discrete model of the heat energy present in the system, given in Equation 2.2.

Q[k + 1] = Q[k] +
∑︂
i

qi[k]−
∑︂
j

qj[k] (2.2)

In it, Q[k] represents the heat of the system at time k, qi are the heat inflows (“sources”)

and qj are the heat outflows (“sinks”). An adaptive bias term is included to handle possible

variations in the model parameters. The mass balance is represented by a transport model

consisting of a series of time delays. They account for the different transport modes of the

various mass inputs to the system (raw meal, fuel, and air).

More complex models, such as the one illustrated in [27], segment the pyroprocessing

stage into compartments. The thermodynamic relations and mass transport dynamics are

then described separately for each section. In contrast to the previous approach, the raw

meal and gas temperature dynamics are modeled individually. Equation 2.3 describes the
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thermodynamics of the raw meal in a given section.

crmmṪ
rm

=

∆Eraw meal⏟ ⏞⏞ ⏟
crmuin

L
(uT − T rm)+

Etransfer⏟ ⏞⏞ ⏟
kt(T g − T rm)+

Echem⏟ ⏞⏞ ⏟
uvmkc

L
−

Eloss⏟ ⏞⏞ ⏟
klT rm

L
(2.3)

The parameters listed in Table 2.1 are used to derive a more advanced sinks and sources

representation that takes into account the energy transfers due to mass flow, gas and raw

meal interactions, chemical reactions, and environmental losses. An equivalent equation

Table 2.1: Description of the parameters of Equation 2.3. Adapted from [27].

Symbol Description

crm specific heat capacity of raw meal
kc energy source (+1) or sink (-1) due to chemical reaction
kl energy loss in the compartment
kt heat transfer coefficient between gas and raw meal
L compartment length
m average mass density
T g gas temperature
T rm raw meal temperature
uin raw meal input flow
uT raw meal input temperature
uv raw meal transport velocity, proportional to kiln rotational speed

is used to describe the gas thermodynamics. The dynamics of mass transport for the

raw meal assume homogeneous mass distribution in each section and are described by

Equation 2.4.

ṁ =
uin −m · uv

L
(2.4)

This methodology allows to obtain a sufficiently accurate model that can satisfy the

existing computational limitations.

The most advanced methods, such as the one presented in [18], extend the energy and

mass balance approach by taking into account the geometry of the different components

of the plant. The primary focus is on the kiln and on the distribution of the raw meal

inside of it. The clinker bed behavior is modeled, its angle of repose inside the kiln is

necessary to accurately predict its interaction with the gas phase. The air mass balance is

also taken into account. Furthermore, the thermodynamic role of the walls of the kiln is

included in the model. The final result is a set of partial differential equations that are

then discretized in space to convert them into ordinary differential equations. Overall,

approximately 100 parameters are used to describe the system, thus requiring high levels

of expertise to apply this approach to new plants. Physical models based on finite element

methods are also present in the literature, e.g. [1].

Chemical models, such as the one illustrated in [12], rely on chemical equilibria to represent
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the dynamics of the preheater-precalciner kiln system. The main chemical compounds

that make up the raw meal are: calcium carbonate CaCO3, silicon dioxide SiO2, aluminum

oxide Al2O3, and iron oxide Fe2O3. The first comes primarily from limestone, while the

other three are found mostly in clay and sand. Often in the literature on cement chemistry,

the chemical formulae for these and other compounds are replaced by their abbreviations;

a list of the most common ones can be found in Table 2.2. The dominant reactions that

take place during the pyroprocessing stage are as follows:

• decarbonation of limestone CaCO3 −−→ CaO + CO2(g);

• formation of belite 2CaO + SiO2 −−→ (CaO)2 · SiO2;

• formation of alite 3CaO + SiO2 −−→ (CaO)3 · SiO2;

• formation of aluminate 3CaO + Al2O3 −−→ (CaO)3 ·Al2O3;

• formation of ferrite 4CaO + Al2O3 + Fe2O3 −−→ (CaO)4 ·Al2O3 ·Fe2O3. [11]

Table 2.2: Common abbreviations of chemical compounds used in cement literature, also
known as cement chemist notation.

Abbreviation Chemical formula

C CaO
A Al2O3

S SiO2

F Fe2O3

T TiO2

M MgO
K K2O
N Na2O

Figure 2.3 illustrates how the different chemical species and their relative proportions

change throughout the conversion from raw meal to clinker. As the temperature increases,

the different reactions listed above take place. The work presented in [12] uses them to

model the behavior of the plant. The system is first separated into seven sections and

then for each one chemical equilibria are used to predict the dynamics of the process. The

parameters required for the different calculations are: standard enthalpy of formation,

absolute standard entropy, coefficients of heat capacity, thermodynamic data on the

different chemical compounds, their amounts, pressures, and temperatures. This approach

has the advantage of relying on fixed parameters derived from scientific principles. The

physics-based methodologies described above take into account the chemistry of the process

to a very limited extent. In [28] and [27] a simple model of oxygen dynamics is included,

while [18] uses a more comprehensive description of the combustion process and of the

behavior of oxygen concentration. None of the works takes into account chemical equilibria.

10



Figure 2.3: Proportions of different chemical species throughout the conversion of raw
meal to clinker. Cr is an abbreviation for cristobalite. Source: [11].

2.3.2 Control of Preheater-Precalciner Kiln Systems

As highlighted above, the pyroprocessing stage is a multi-input multi-output, strongly-

coupled, nonlinear process. Large time delays and time-varying relationships further

increase the complexity of the system. Due to these characteristics, control of precalciner-

preheater kiln systems has historically been difficult. The first approaches relied on

proportional-integral-derivative (PID) controllers. Equation 2.5 shows the PID control

function.

u(t) = Kpe(t) +Ki

∫︂ t

0

e(τ)dτ +Kd
de(t)

dt
(2.5)

The control action at a given time instant u(t) depends on the error, which is defined as

the difference between the reference value for the system output and its measured value

e(t) = r(t) − y(t). The proportional Kp, integral Ki and derivative Kd terms are three

tunable parameters that can be adjusted to obtain the desired control characteristics.

Later, more advanced strategies began to be employed in the field. Expert systems were

developed during the 1980s and 1990s. They relied on rules-based fuzzy logic to achieve

the desired plant behavior. Figure 2.4 illustrates the working principle of the control

architecture. The main component of a fuzzy logic controller (FLC) is the knowledge

base. It comprises a data base containing the definitions of the membership functions

and a rule base listing the “if-then” statements used for decision making. In the first

step, the error e(t) is fed to the FLC as input and undergoes fuzzification. This procedure

uses membership functions to assign the value of e(t) to one or more fuzzy sets. Next,
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Figure 2.4: Diagram of a fuzzy logic control scheme applied to a generic plant.

the inference engine computes the actions to take according to the rule base. Lastly, the

output u(t) is converted into numerical values through the process of defuzzification and it

is applied to the plant. A feedback loop allows the controller to assess whether the applied

control action yielded the desired plant behavior. After their initial success, the adoption

of expert systems dwindled as they failed to achieve the required performance. This was

due to the poor robustness against disturbances, the lack of sufficient knowledge bases,

the inadequacy of human expertise, and the challenging adaptation and maintenance of

the rule bases to different operating conditions. [6]

In recent years, linear model predictive control (MPC) has been widely applied in the

cement production industry. Its success stems mainly from its inherent capability to handle

constrained MIMO processes with time delays. One of the defining features of MPC is the

use of a model to predict the future behavior of the system given a set of inputs. This is

used to simulate the forced evolution of the system throughout a given control horizon

Hc, after which the final control action is kept constant over the prediction horizon Hp.

The optimal input set U = [u0, · · · , uHc−1] is obtained by minimizing the following cost

function:

J(k) =

Hp∑︂
i=1

∥y(k + i)− rmpc(k + i)∥2Q(i) +
Hc−1∑︂
i=0

∥∆u(k + i)∥2R(i) (2.6)

This defines the control goal of reaching the desired output reference rmpc(k) applying the

minimal control effort required ∆u(k). Q and R are weight matrices used to adjust the

importance of each goal. After the optimal control sequence is determined, only the first

control output u∗(k) is applied to the plant. Its effect is measured, and the optimization

is computed again starting from the new initial conditions in a technique called receding

horizon control. As presented in subsection 2.3.1 a variety of approaches are available

to obtain a model capable of describing the pyroprocessing dynamics. However, their

accuracy is the key factor that influences the control performance of the MPC. Having

considered this, it must be noted that the intrinsic structure of preheater-precalciner kiln

systems demands the use of nonlinear model predictive controllers. This technique is

described in detail in chapter 3. [6, 16]
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2.4 Investigated Clinker Production Plant Descrip-

tion

The plant investigated in this thesis is a five-stage preheater-precalciner kiln system that

uses a dry-process to produce clinker. A schematic of the system is provided in Figure 2.5.

A total of four manipulated variables (MVs), one disturbance variable (DV), and 18

4
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Figure 2.5: Schematic diagram of the investigated clinker production plant, highlighting
the different manipulated, controlled and disturbance variables.

controlled variables (CVs) are monitored. Table 2.3 summarizes their names, descriptions,

and units of measure. The MVs are the inputs to the system, they include the flow rates for

raw meal and fuel, and the induced draft fan speed. DV1 is the setpoint for the flow rate of

alternative fuels that burn inside the precalciner. This is manually controlled by the plant

operators; thus, although it is an input to the plant, it is treated as a disturbance, since it

is not directly regulated by an automated process. The CVs are the outputs of the plant.

They were selected by plant managers because they can be used to evaluate production

performance. [36] They include the current drawn by the kiln motor, which indirectly

measures the overall load of the system, various temperatures distributed throughout
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Table 2.3: List of all manipulated, disturbance and control variables of the investigated
clinker production plant.

Variable Description Units

MV1 Raw meal input flow rate t/h
MV2 Kiln fuel input flow rate t/h
MV3 Precalciner fuel input flow rate t/h
MV4 Induced draft fan speed rpm
DV1 Precalciner alternative fuels input flow rate (manual setpoint) t/h
CV1 Kiln motor current A
CV2 Kiln duct temperature °C
CV3 First stage right cyclone exit temperature °C
CV4 First stage left cyclone exit temperature °C
CV5 Fifth stage cyclone exit temperature °C
CV6 Kiln combustion chamber temperature °C
CV7 Kiln inlet oxygen O2 concentration %
CV8 Kiln inlet carbon monoxide CO concentration %
CV9 Kiln inlet nitrogen oxides NOx concentration ppm
CV10 Fourth stage cyclone oxygen O2 concentration %
CV11 Fourth stage cyclone carbon monoxide CO concentration %
CV12 Fourth stage cyclone nitrogen oxides NOx concentration ppm
CV13 Exhaust outlet oxygen O2 concentration %
CV14 Precalciner tertiary air temperature °C
CV15 Kiln inlet depression mmH2O
CV16 Kiln duct depression mmH2O
CV17 Exhaust outlet temperature °C
CV18 Calculated specific heat consumption kcal/kg

the plant, redundant oxygen, carbon monoxide, and nitrogen oxide gas concentrations

for improved reliability, and depressions in key sections of the system. Lastly, CV18 is a

calculated variable expressed as the ratio of total calorific input Etot to raw meal input

mrm:

CV18 =
Etot

mrm

=
∆Hc,k ·mc,k +∆Hc,p ·mc,p +∆Haf,p ·maf,p

mrm

(2.7)

where ∆H.,., m.,. represent the heat of combustion and the mass of coal c, . or alternative

fuels af, . fed to the kiln ., k or to the precalciner ., p. Measurements of all variables are

collected and stored with a sampling time of 30 seconds.

The current control system has been developed by Alperia Green Future. It is a linear model

predictive controller aimed at increasing plant productivity and efficiency while ensuring

product quality and limiting pollution and fuel consumption. A detailed description of the

methodology used can be found in [34, 35, 36]. After defining the control inputs, outputs,

and disturbances as illustrated above, a black-box modeling approach was employed to

derive a model of the system. A series of step tests were performed on the manipulated

variables and on the disturbance variable, while the controlled variables were monitored.

The collected data was then used to obtain a MIMO first-order transfer function with
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pure time delay that relates the MVs to the CVs, as shown in Equation 2.1. Some of the

entries have zero value, as it was determined that there is no direct relation between some

MV-CV combinations. The resulting control matrix is similar to the one presented in [3].

First-order filters for various controlled variables were also designed to reduce measurement

noise before feeding the data to the MPC. The controller has been developed with a 60

second sample time, a control horizon of 10 steps (600 seconds), and a prediction horizon

of 60 steps (3600 seconds). The cost function minimized by the linear MPC at a generic

time instant k is the following:

Vss(k) = cTMV ·∆MVss + cTCV ·∆CVss + ρTss min · εss min + ρTss max · εss max (2.8)

In it, cTMV and cTCV are the costs associated with the control action ∆MVss and the plant

output ∆CVss, while εss min and εss max are the slack variables for CV constraint relaxations

with their respective weights ρTss min and ρTss max. The MPC’s objective is to minimize fuel

consumption (MV2 and MV3) while ensuring that the constraints for all CVs are met. This

is achieved by setting a positive, non-zero cost only for the relevant manipulated variables.

The upper and lower bounds of each CV can be manually adjusted by plant operators to

account for changes in operating conditions. Additionally, a decoupling selector is available,

this allows to exclude any controlled variable from the MPC formulation, which is useful

for redundant sensors or in the case of defective ones. The current control formulation

significantly improved performance compared to the PID controllers installed previously,

however it is incapable of fully capturing the process nonlinearities, leading to sub-optimal

performance.
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3 GP-based LbNMPC

In recent years, model predictive control has experienced widespread applications in a

variety of fields. Its ability to handle constrained MIMO systems makes it particularly

suitable for process control, which includes the cement production industry, as described

in chapter 2. A sufficiently accurate model capable of describing the plant’s behavior is at

the core of the MPC. If this condition is not met, the reliability and performance of the

controller can deteriorate significantly. As illustrated previously, obtaining a descriptive

model of a cement plant, and in particular of the pyroprocessing stage, is a daunting task

that requires high levels of expertise and possibly a multidisciplinary approach. Recent

developments in computational power, sensing, and data collection capabilities, combined

with advances in the field of machine learning, have sparked renewed interest in automated

controller design techniques. Learning-based model predictive control (LbMPC), as the

technique is known formally, is quickly gathering the attention of the control community.

This approach combines machine learning techniques with advanced control strategies;

it has the potential to improve performance while reducing the burden of model design

and controller tuning. Different implementations are being actively researched within the

LbMPC framework, they are listed in section 1.1. This work uses the learning dynamics

approach described in [10] to derive a black-box model of the clinker production plant

described in section 2.4. This choice was motivated by several factors. First, the inability

to access the real plant or a high-fidelity reproduction of it prevented the evaluation of

the closed-loop MPC performance necessary for a learning design approach. Second, the

lack of prior knowledge of the system precluded the use of a gray-box model. Last but not

least, LbMATMPC, an open-source toolbox, was recently developed and tested [20], and

is described below.

3.1 Gaussian Processes Regression

A Gaussian Process is defined as “a collection of random variables, any finite number of

which have (consistent) joint Gaussian distributions.” [22]. A GP is fully characterized by

its mean function m(x) and its covariance function k(x,x′), also known as kernel, and it

defines a distribution in the form

f(x) ∼ GP(m(x), k(x,x′) (3.1)

In the framework of system identification by means of GP, the mean function m(x) can

be used to encode a priori knowledge of the system. However, if the identification and

validation data are preprocessed to ensure zero mean, m(x) = 0 can be assumed without
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loss of generality. One of the most commonly used covariance functions k(x,x′) when

assuming smooth model behavior is the Squared Exponential (SE); its equation is the

following:

k(x,x′ | θ) = σ2
y exp

[︄
−1

2

D∑︂
d=1

(xd − x′
d)

2

l2d

]︄
(3.2)

where θ = {σy, ld}; d = 1, ..., D is the vector of kernel parameters to be optimized during

training, σ2
y is the signal variance, also called vertical scaling factor, that represents the

possible variations of the function, D is the number of regressors or training inputs, and ld

is the set of horizontal length scales. The case in which different length scales are used

for different regressors is called Automatic Relevance Determination (ARD). This is an

embedded method for regression selection, meaning that it is carried out during the model

optimization procedure. The resulting values of ld can be used to identify which inputs to

the GP contribute more to the prediction of the outputs. Different techniques can be used

to train Gaussian Processes models; this work uses log marginal likelihood maximization

within the Statistics and Machine Learning Toolbox available in MATLAB [19]. After

optimizing the model parameters, it is possible to calculate the predictive distribution of a

new test point x∗, which is Gaussian. Its maximum a posteriori estimator corresponds to

the posterior mean given by the following equation:

f̄(x∗) =
n∑︂

i=1

αik(xi,x∗) (3.3)

where k(xi,x∗) is the vector of covariances between the new test point and the n training

points, and

α =
(︁
k(x,x′) + σ2

nI
)︁−1

y (3.4)

is a vector of kernel functions, each one centered on one of the training points. It is realistic

to assume that the observations used for fitting the GP present white Gaussian noise

ν ∼ N (0, σ2
n) with zero mean and σ2

n variance. In Equation 3.4 I ∈ Rn×n is the identity

matrix. In the case where the mean m(x) of the Gaussian Process in Equation 3.1 is

different from zero, it can be defined by a linear basis function h = [1,x]. The equations

of the posterior mean and of the vector of kernel functions then become:

f̄(x∗) = h(x∗)
Tβ +

n∑︂
i=1

αik(xi,x∗) (3.5)

α =
(︁
k(x,x′) + σ2

nI
)︁−1

(y − hβ) (3.6)

where the vector of parameters β is optimized during the training of the GP model,

together with the kernel parameters and the Gaussian noise covariance σ2
n. [14, 22, 32]

One of the challenges of Gaussian process prediction is that it scales as O(n3). Therefore,

large-scale datasets (n > 10, 000), like the one considered in this work, require the use of
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approximations. A straightforward but effective method is the Subset of Data (SoD or

SD) technique. It consists of selecting an active set of size m < n from the whole training

dataset, thus reducing the complexity to O(m3). The selection of the active set is made

so that the approximate GP achieves sufficiently accurate predictions. Different methods

exist, as this is an active area of research. After the kernel parameters are optimized, the

resulting GP is a nonlinear model of the system that generated the training data. [14, 32]

3.1.1 GP-NARX and GP-NOE Models for System Identification

Consider historical input-output data collected from a nonlinear system. Denote by y the

measured plant output, by u the plant inputs, and by ν the measurement noise. The goal

of system identification methods is to derive a model capable of estimating the output ŷ

from a set of regressors x as:

ŷ = f(x) + ν (3.7)

Gaussian Processes can be applied to this problem. Two common structures used in this

context are the Nonlinear AutoRegressive model with eXogenous input (NARX), and the

Nonlinear Output Error model (NOE) [14]. They play different roles, as the former is used

for prediction, while the latter is applied to simulation problems. Their characteristics are

now described in more detail.

The NARX structure, also known as equation-error or series-parallel model, uses the past

m input values u(k−m) and n output values y(k− n) as regressors for the GP. The value

to be estimated by the model is the output at the next step. This procedure is called

prediction and can then be formulated as follows:

ŷ(k) = f(x(k − 1)) + ν

= f (y(k − 1), y(k − 2), ..., y(k − n), u(k − 1), u(k − 2), ..., u(k −m)) + ν
(3.8)

Figure 3.1 shows a schematic representation of the GP-NARX model.

GP model

u(k-1)

u(k-m)

y(k-1)

y(k-n)

..
.

..
.

𝜈

ŷ(k)

Figure 3.1: GP-NARX model, where the output prediction ŷ(k) is a function of m previous
inputs u(k −m) and n previous outputs y(k − n); ν is Gaussian noise. Source: [14]

18



The NOE structure, also known as output-error or parallel model, is used to perform

simulation. The goal of this procedure is the multi-step-ahead prediction of the output

over a desired horizon of length p. The GP-NOE methodology achieves this by using past

predictions to obtain future ones. In other words, the prediction ŷ(k) is a function of the

past m inputs u(k −m) combined with the past n predicted outputs ŷ(k − n).

ŷ(k) = f(x(k − 1)) + ν

= f (ŷ(k − 1), ŷ(k − 2), ..., ŷ(k − n), u(k − 1), u(k − 2), ..., u(k −m)) + ν
(3.9)

The new output ŷ(k) is then used to predict ŷ(k+1). This procedure is applied iteratively

until the desired horizon ŷ(k+p) is reached. Figure 3.2 displays a schematic representation

of this approach.
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Figure 3.2: GP-NOE model, where the output prediction ŷ(k) is a function of m previous
inputs u(k −m) and n previous estimated outputs ŷ(k − n); q−1 is the backshift operator
and ν is Gaussian noise. Source: [14]

3.2 LbMATMPC Toolbox

LbMATMPC is an off-the-shelves instrument for the implementation of learning-based

nonlinear MPC. It uses Gaussian Processes Regression (GPR) for gray-box and black-box

modeling, combined with MATMPC, a MATLAB-based fast nonlinear MPC solver [7].

Given the strong nonlinearities that characterize the investigated preheater-precalciner

kiln system, the use of NMPC should result in better control performance compared to the

linear MPC implementation described in section 2.4. Furthermore, Gaussian Processes are

particularly suitable for capturing complex nonlinear relationships [14, 26]. This property

is beneficial as manual nonlinear model design can prove to be particularly challenging.

The black-box GP model can be trained from input-output data collected by interaction

with the system.
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3.2.1 Nonlinear Model Predictive Control

NMPC is an extension of model predictive control that uses nonlinear system models to

perform prediction. This makes its combination with system identification by means of

GP straightforward. MATMPC offers a number of algorithmic modules for implementing

NMPC strategies. Its functioning is now described. Similarly to linear MPC the goal

is to solve an Optimal Control Problem (OCP) by minimizing a cost function, which in

this case is nonlinear. The first step is to apply direct multiple shooting to the OCP over

the desired prediction horizon. This returns a Non-Linear Programming (NLP) problem,

which can be solved by means of Sequential Quadratic Programming (SQP). This iterative

procedure reformulates the NLP into a series of approximate QP subproblems. MATMPC

offers a number of QP solvers for added flexibility. The procedure is repeated at every

time step k of the control task. [7]
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4 Results

The purpose of this work was to investigate the application of learning-based nonlinear

model predictive control techniques to the clinker production phase of a cement factory.

In particular, real historical data collected at a cement plant was used to train a Gaussian

Processes regression model with the goal of later integrating it with an NMPC. This

approach was pursued within the learning dynamics framework described in chapter 3. It

leverages machine learning techniques, in this case GP, to obtain a black-box model of the

system dynamics, which can then be used by a nonlinear model predictive controller to

compute the optimal control action needed to reach the desired plant behavior. In this

chapter, the results obtained with the different methodologies selected are described and

their interpretation is provided.

4.1 Data Processing

The raw dataset was provided by Alperia Green Future. It contained 146,881 samples

of the four manipulated variables, one disturbance variable, and 18 controlled variables

described in Table 2.3. The measurements were collected every 30 seconds between the 7th

of January 2020 and the 26th of February 2020. After a first inspection of the data, it was

noticed that the plant was not operational for a significant portion of the time, spanning

from January 13th to February 4th. Furthermore, faulty sensor readings from some CVs

were observed immediately after the startup until February 10th. During the remainder of

the time, the plant was operational and its dynamics were controlled by the linear model

predictive controller described in section 2.4. For these reasons, the original dataset was

divided into:

• training dataset containing 46,080 samples collected between February 11th and 26th;

• test dataset containing 11,520 samples collected from January 8th to 11th.

Before being used to optimize the GP and test its performance, the two datasets were

preprocessed. First, they were subsampled with a sampling time of 60 seconds, matching

that of the linear MPC. This ensures that the predictions are compatible with the NMPC

formulation. Next, a first-order filter, in the form

H(s) =
1

τs+ 1
(4.1)

was applied to all CVs. The time constant τ is different for each one of them and was

determined by Alperia Green Future during the design of the linear MPC. This procedure

removes some of the measurement noise and improves the controller’s performance. A

21



comparison between unfiltered and filtered measurements of CV1 is shown in Figure 4.1.

In this case, the original data are particularly noisy; thus, the time constant was set to

Figure 4.1: Plot comparing the unfiltered and filtered measurements of CV1 collected
during a 9 hour window on February 13th 2020.

τ = 360s and is the largest among all CVs. It can be observed that the application of

the first-order filter reduces noise at the expense of introducing a delay. The last stage

of the preprocessing procedure was the manual removal of faulty sensor reads. Only a

few controlled variables required this step, namely CV7, CV8, CV10, CV11, and CV18.

The oxygen sensors (CV7 and CV10) presented negative readings and sudden out-of-scale

peaks. The carbon monoxide sensors (CV8 and CV11) showed only instances of negative

measurements. Lastly, the calculated variable CV18 presented extremely high peaks, due

to the denominator term of Equation 2.7 reaching values close to zero. After the faulty

data points were identified, they were replaced by applying a zero-order hold to the last

value recorded before the error.

4.2 GP Models for the Prediction of CV1

Together with the engineers at Alperia Green Future, controlled variable 1 was identified

as the most relevant for the clinker production process. CV1 records the current fed to

the kiln motor required to power its rotation. It can also be interpreted as an indirect

measure of the plant’s activity, since it is directly proportional to the amount of material

being processed inside the rotary oven. For these reasons a black-box Gaussian Processes

model capable of predicting the one-step-ahead value of CV1 was developed. The different

methodologies applied are now detailed.
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4.2.1 Simple GP-NARX Model

The first implementation investigated was the Nonlinear AutoregRessive model with

eXogenous input (NARX) structure described in subsection 3.1.1. In this approach, the

past m input values u(k−m) and n output values y(k− n) are used as the GP regressors.

The control matrix designed by Alperia Green Future was used to aid in the selection of

the relevant plant inputs. According to their work [36] the behavior of CV1 is directly

impacted by the raw meal flow rate and the fuel flow rates, thus excluding the ID fan

speed. For this reason, the inputs selected as regressors of the GP-NARX model are the

following:

u(k) = [MV1(k),MV2(k),MV3(k),DV1(k)] (4.2)

Different values of maximum input lag m were tested, namely 2, 4, and 6 minutes.

Regarding the choice of output delay n = 3 was selected, as it showed better performance

compared to other values. The squared exponential covariance function with ARD, reported

in Equation 3.2, was chosen. This embedded method for regressor selection automatically

adjusts the weights of the input features, tuning out less important ones. A linear basis

function h = [1,x] was considered in order to better capture the variations of the output.

The prediction was then computed as reported in Equation 3.5. Lastly, a subset of data

approximation was used; an active set of size mas = 1500 was selected because it achieved

a good compromise between accuracy and computational execution time.

The results of the one-step-ahead prediction on training and test datasets for the case

m = 4 are reported in Figure 4.2. It can be seen that the accuracy of the estimation is

comparable between the two datasets. A substantial difference between the two, with

poorer performance in the test dataset, would be an indication of overfitting [32]. Another

observation is that the model performance decreases when the measured data experience

positive and negative peaks. Trend inversions appear to be slightly more challenging to

predict for the GP-NARX. The metric used to evaluate the quality of the one-step-ahead

prediction is the coefficient of determination R2 [9], defined as:

R2 = 1−
∑︁p

i=1(yi − ŷi)
2∑︁p

i=1(yi − ȳ)2
(4.3)

where p is the size of the dataset, y are the measured values of CV1, ȳ is their mean value,

and ŷ are the corresponding estimated values generated by the GP-NARX model. The

coefficient of determination is a goodness-of-fit measure. Values close to 1 indicate that

the model predictions accurately capture the variance present in the true data. As R2

decreases, so does the quality of the estimates provided by the model being evaluated.

Negative values can arise in the case of nonlinear regression and indicate extremely poor

performance.

Since the GP model obtained has to be implemented within the LbNMPC framework,
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Figure 4.2: Plot of a 100 minute long detailed view of the one-step-ahead predictions (in
red) on training (left) and test (right) datasets obtained using the GP-NARX model with
input lag m = 4.

its purpose is the multi-step-ahead prediction over a desired horizon. This technique,

also known as simulation, can be achieved through the use of a NOE model as described

in subsection 3.1.1. In this context, a more representative metric of the GP model’s

performance is the average R2 value over multiple prediction horizons:

pR2̄ =
1

d

d∑︂
i=1

R2
i (4.4)

where pR2̄ is the average coefficient of determination for the prediction horizon of length p

and d = st − p is the number of simulated horizons defined by the size of the test dataset

st. Throughout this work, five different horizons, with a duration p of 5, 10, 20, 30, and

60 minutes, were used to evaluate the performance of each model. The three GP-NARX

models described previously were converted to GP-NOE models and used to perform

simulations. The five horizons of length p = [5, 10, 20, 30, 60] were simulated starting

at each of the points contained in the test dataset; the simulation results ŷ were then

compared to the true output y by means of R2̄. The results for the three models, with

input lag m of 2, 4, and 6 minutes, are reported in Table 4.1. It can be observed that all

three models present large negative values of pR2̄ for every prediction horizon investigated.

This is indicative of poor simulation performance, thus making these models unsuitable

for control purposes. Furthermore, a trend is present in the results. Increasing the input

lag, which corresponds to using a higher number of regressors, reduces the simulation

performance of the GP model. This could be due to the fact that the extra regressors,
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Table 4.1: pR2̄ values for three GP-NOE models with input lag m = [2, 4, 6]. The results
were obtained by averaging all simulations of a given horizon over the whole test dataset.
* indicates the best model.

Model input lag
Prediction horizon p [min]

5 10 20 30 60

m = 2∗ -31.12 -33.72 -40.70 -44.48 -28.14
m = 4 -34.55 -37.82 -47.71 -49.58 -28.63
m = 6 -32.22 -36.01 -52.94 -60.82 -59.84

being highly correlated, do not provide additional information regarding the system’s

dynamics. This could lead to worse results as the optimization of the model becomes more

complex. [14]

4.2.2 GP-NARX Model with Extended Input Delays

The approach presented in the previous subsection was extended to include prior knowledge

about the system. In fact, Alperia Green Future provided a matrix of input/output delays

relating all MVs and CVs. These values were estimated during the design of the linear

model predictive controller described in [36]. The identified delays between the plant

inputs and controlled variable 1 are reported in Table 4.2. This information was used to

Table 4.2: Delays between plant inputs and controlled variable 1 expressed in seconds and
in time steps. MV4 is not directly related to CV1 thus no delay was provided.

MV1 MV2 MV3 MV4 DV1

CV1 [seconds] 1200 900 900 n/a 3900
CV1 [steps] 20 15 15 n/a 65

augment the set of regressors used for prediction by the GP-NARX model. Rather than

using m consecutive past values of the input u, a larger time window md, determined

by the set of delays, was selected. Due to the large number of regressors resulting from

this approach, not every value was used; instead, the inputs were subsampled every 5

steps (300 seconds). Furthermore, the time window was extended by one step. This was

done to account for the additional delay introduced by the first-order filters during the

preprocessing step and for possible inaccuracies in the delay estimation. The resulting

inputs are the following:

uMV1(k) = [MV 1(k − 25),MV 1(k − 20), ...,MV 1(k − 5),MV 1(k)]

uMV2(k) = [MV 2(k − 20),MV 2(k − 15),MV 2(k − 10),MV 2(k − 5),MV 2(k)]

uMV3(k) = [MV 3(k − 20),MV 3(k − 15),MV 3(k − 10),MV 3(k − 5),MV 3(k)]

uDV1(k) = [DV 1(k − 70), DV 1(k − 65), ..., DV 1(k − 5), DV 1(k)]

u(k) = [uMV1(k), uMV2(k), uMV3(k), uDV1(k)]

(4.5)
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The output delay was set to n = 3 as described in the previous subsection. The same

selection of linear basis function, SE covariance function, and SoD approximation was

made. A GP-NARX model was trained using the aforementioned regressors. The results

of the one-step-ahead prediction on training and test datasets are comparable to those

obtained in subsection 4.2.1.

The obtained GP model was then used within the NOE framework to perform simulation.

Five horizons of length p = [5, 10, 20, 30, 60] minutes were simulated, and the resulting
pR2̄ values are reported in Table 4.3. Compared to the three models tested previously,

Table 4.3: pR2̄ values for the GP-NOE model with extended input delay. The results were
obtained by averaging all simulations of a given horizon over the whole test dataset.

Model
Prediction horizon p [min]

5 10 20 30 60

Extended input delay -24.67 -25.92 -36.08 -46.44 -45.60

this implementation achieves better performance over horizons shorter than 20 minutes.

However, the quality of the prediction degenerates for longer horizons: the 30 minute one

is comparable with that of the best model presented previously, and the 60 minute one is

noticeably worse. Figure 4.3 is a plot of two simulations obtained with both the m = 2

GP-NOE model of subsection 4.2.1 (in red) and the GP-NOE model with extended input

delays (in black). From it, it is possible to observe the behavior emerging in the pR2̄ values.

Compared to the measured values of CV1 (in blue), the GP-NOE with extended input

delays shows qualitatively good prediction capabilities at the beginning of the simulation

Figure 4.3: Comparison of four simulated 60 minute horizons obtained with the m = 2
GP-NOE model introduced in subsection 4.2.1 (in red) and with the GP-NOE model with
extended input delays (in black). The blue line represents the ground truth.
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horizon; however, it accumulates a large error as time goes on. On the other hand, the

simple GP-NOE can perform less adequately at the beginning of the horizon, but over

time, its prediction stays closer to the ground truth. Figure 4.3 has mostly qualitative

value, as it represents a small fraction of the data, nevertheless it can be explicative for

the overall trend reported in Table 4.3. Having considered this, it is clear that the large

negative pR2̄ values are indicative of poor simulation performance and that the GP-NARX

model with extended input delays is not suitable for control applications.

4.2.3 CV-informed GP-NARX Model

The performance of the models presented in the previous subsections cannot be considered

satisfactory. For this reason, a further extension of the regressor set was performed. Since

the provided dataset contains measurements of all controlled variables, they were used to

increase the number of inputs for the Gaussian Processes regression. This GP formulation,

augmented by the knowledge of other controlled variables, was denominated “CV-informed”

GP. The same output delay n = 3 used for CV1 was applied to all other CVs. A squared

exponential kernel with automatic relevance determination was used to train a GP model

with input u = [MV s,DV,CV s]. The lengthscales obtained through the optimization

were used to choose the most relevant regressors needed for the one-step-ahead prediction

of CV1. Furthermore, Alperia Green Future provided their expert knowledge of the plant

to aid in the selection. This step was performed with the goal of using only the necessary

information needed by the model; this is important to avoid excess complexity [14]. The

final set of controlled variables selected as regressors is the following:

uCVi = [CV i(k − 3), CV i(k − 2), CV i(k − 1), CV i(k)]

uCVs = [uCV2, uCV3, uCV4, uCV6, uCV7, uCV8, uCV10, uCV11]
(4.6)

The MVs and DV with extended input delays and CV1 with output delay n = 3 were

also used to train the CV-informed GP-NARX model as described in subsection 4.2.2.

The same choices of covariance function, basis function, and approximation were made.

Once again, the one-step-ahead prediction on training and test datasets showed results

comparable to those described previously.

In the CV-informed GP-NOE formulation, the estimation at any step of the prediction

horizon ŷ(k + tp) is a function not only of the plant inputs, but also of the controlled

variables uCVs(k + tp − 1). For tp > 1 the GP-NOE requires knowledge of future CV

measurements to estimate the plant output. Since these values cannot be directly accessed,

two approaches were considered to solve this problem. In the first one, called “updating-

CVs”, it was assumed that accurate predictions of the other CVs were accessible. This

assumption is reasonable, as GP-NOE models capable of simulating the relevant CVs can

be obtained by applying the same approach used for CV1. In this case, real measured data

was used as other models were not available. The second approach, called “fixed-CVs”,
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does not assume knowledge of the future values of the CVs. Instead, it keeps the last

measured value constant throughout the simulation horizon. This is valid assuming that

over sufficiently short time frames a variable is subject to small changes. Figure 4.4 is a

schematic representation of this method. Compared to Figure 3.2, it can be observed that

GP model

u    (k-1)

u    (k-m)

ŷ(k-1)

ŷ(k-n)

..
.

..
.

𝜈

ŷ(k)

q
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MVs

MVs
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Figure 4.4: CV-informed GP-NOE model, where the output prediction ŷ(k) is a function
of m previous inputs u(k −m), the measured CVs at time k0, and n previous estimated
outputs ŷ(k − n); q−1 is the backshift operator and ν is Gaussian noise. Source: own edit
of [14]

the GP model uses an additional input uCVs(k0) for its estimates. This is the measured

value of the CVs used as regressors at the beginning of the simulation horizon, and is

kept constant for every prediction step k. This corresponds to the following prediction

equation:

ŷ(k) = f (ŷ(k − 1), ..., ŷ(k − n), u(k − 1), uCVs(k0)) + ν (4.7)

with u(k − 1) defined as u(k) in Equation 4.5 backshifted by one step.

The simulation results for both the updating-CVs and fixed-CVs approaches are reported

in Table 4.4. As with previous models, prediction horizons p = [5, 10, 20, 30, 60] were

calculated throughout the test dataset. The updating-CVs model achieves a simulation

performance similar to that of the best GP-NARX model of subsection 4.2.1, with

marginally degraded results for the longest prediction horizon p = 60min. All pR2̄ values

are negative and indicate an extremely poor ability to capture the variance present in

the true output data. Considering the large amount of additional inputs used to train

Table 4.4: pR2̄ values for the updating-CVs and fixed-CVs GP-NOE models. The results
were obtained by averaging all simulations of a given horizon over the whole test dataset.

Model
Prediction horizon p [min]

5 10 20 30 60

Updating-CVs -30.39 -29.65 -38.75 -47.68 -33.13
Fixed-CVs -37.98 -34.94 -56.22 -72.81 -52.94
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the Gaussian Processes regression, the optimization appears to be unable to use them

effectively to extract additional information about the process dynamics. This could be

the result of different phenomena. The additional regressors could have a low prediction

value or the large size of the training dataset could negatively impact the optimization

process. The fixed-CVs model, on the other hand, shows significantly worse performance,

particularly for longer simulation horizons. This result is expected because the assumption

of small changes in the variables can be applied only to short time frames. The use of

old data, inadequate to describe the current state of the plant, causes the CV-informed

GP-NOE model to produce the worst predictions presented so far. Therefore, an accurate

simulation of the dynamics of each controlled variable is required. Since a complete

implementation of the LbNMPC architecture introduced in chapter 3 would be based on

the design of a GP-NOE model for all CVs, the simulation capability described should be

readily available.

4.2.4 GP-NARX Model of Rate of Change

The simulation capabilities obtained by training a GP-NARX model to perform one-step-

ahead prediction of the value of CV1 cannot be considered sufficient. Extending the set of

regressors resulted in sporadic marginal improvements at the cost of computational effort.

The feedback action provided by a nonlinear model predictive controller can partially

compensate for the large model-plant mismatch; however, this results in a loss of control

performance [2]. In order to reduce the simulation error, a different training objective

was selected. A GP model was optimized for the prediction of the rate of change (RoC)

of CV1. This approach is comparable to the one described in subsection 4.2.1, and its

prediction equation is:

∆ŷ(k) = f (y(k − 1), y(k − 2), ..., y(k − n), u(k − 1), u(k − 2), ..., u(k −m)) + ν (4.8)

The ground truth was obtained from the measurements of CV1 as ∆y(k) = y(k+1)− y(k).

This technique was selected because it should be able to better capture the variations

of the controlled variable. It can be seen as a simplification of the GP-NARX approach

with linear basis function reported in Equation 3.5. Since h is the mean function of the

Gaussian process, it should be able to approximate the overall trend of the data while

the covariance function describes the remaining complexity. By considering ∆y as the

prediction goal, the variations of the measurements can be captured directly while setting

h = 0. This has the added benefit of reducing the number of parameters that must be

optimized during model training.

Three simple GP-NARX models for the one-step-ahead prediction of the rate of change of

CV1 were trained. They used input lag values m = [2, 4, 6] respectively. No additional

regressors were selected. An SE kernel with ARD was chosen, together with an SoD

approximation of active set size mas = 1500. The results of the training and test datasets
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for the case m = 4 are shown in Figure 4.5. The first behavior that can be observed

Figure 4.5: Plot of a detailed view of the one-step-ahead predictions (in red) of the RoC
of CV1 on training (left) and test (right) datasets obtained using the GP-NARX model
with input lag m = 4.

in both plots is a one-step delay between the ground truth and the model predictions.

This indicates that the trained GP-NARX model has the tendency to act as a zero-order

hold. The value of the RoC at the previous time step can be calculated by the model

as ∆y(k − 1) = y(k)− y(k − 1) since it has access to both required values. In this case,

the value of R2 is not necessarily indicative of the prediction capabilities of the model

and can be misleading. The same plots were produced for the GP-NARX model with

m = 4 trained to directly predict the value of CV1, presented in Figure 4.2. The RoC

was obtained by applying its definition to the prediction results ∆ŷ(k) = ŷ(k + 1)− ŷ(k).

The results are shown in Figure 4.6. Although significantly noisier, the predictions for

both training and test datasets display a one-step delay similar to the one observed in

Figure 4.5. This behavior is undesirable, as it produces seemingly good results for the

one-step-ahead prediction which do not translate into satisfying simulation performance.

As in previous subsections, the trained GP-NARX model was used within the NOE

framework to perform simulation. The pR2̄ of the three different models for prediction

horizons of length p = [5, 10, 20, 30, 60] minutes are reported in Table 4.5. As expected, poor

performance can be observed across all tests. This confirms that the models underestimate

the variance of the true data. This error, while overlooked in the one-step-ahead predictions,

is amplified by the iterative process applied during simulation. Large negative values
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Figure 4.6: Plot of a detailed view of the RoC of CV1 obtained from the one-step-
ahead predictions (in red) of the GP-NARX model with input lag m = 4 introduced in
subsection 4.2.1.

Table 4.5: pR2̄ values for three GP-NOE models with input lag m = [2, 4, 6]. The results
were obtained by averaging all simulations of a given horizon over the whole test dataset.

Model input lag
Prediction horizon p [min]

5 10 20 30 60

m = 2 -18.84 -16.66 -19.36 -21.06 -23.12
m = 4 -19.75 -17.40 -26.46 -31.18 -18.59
m = 6 -18.53 -16.64 -21.32 -26.22 -29.29

characterize even the shortest prediction horizon, with generally worse performance as

p increases. Although not acceptable, the performance obtained by estimating the rate

of change of CV1 is superior to that resulting from the direct estimation of CV1’s value,

reported in Table 4.1.

4.2.5 CV-informed GP-NARX Model of RoC

The RoC implementation presented in the previous subsection yielded a measurable

improvement over all models that directly predict the value of CV1. For this reason,

a CV-informed GP-NARX model, comparable to the one described in subsection 4.2.3,

was designed for the one-step-ahead prediction of the rate of change of CV1. Several

adjustments to the architecture introduced previously were made in order to achieve

better simulation performance. First, extended input delays were applied; however, a finer
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subsampling interval of 4 steps (240 seconds) was selected. The time window md was also

increased to account for the additional delay introduced by the first-order filter during

the preprocessing of the data and for possible inaccuracies in the delay estimation. The

resulting inputs are the following:

uMV1(k) = [MV 1(k − 23),MV 1(k − 19), ...,MV 1(k − 3)]

uMV2(k) = [MV 2(k − 18),MV 2(k − 14), ...,MV 2(k − 2)]

uMV3(k) = [MV 3(k − 18),MV 3(k − 14), ...,MV 3(k − 2)]

uDV1(k) = [DV 1(k − 68), DV 1(k − 64), ..., DV 1(k)]

uMVs(k) = [uMV1(k), uMV2(k), uMV3(k), uDV1(k)]

(4.9)

A second adjustment was applied during the selection of past CV1 values fed as regressors

to the GP-NARX. In order to prevent the model from having direct access to the RoC

of CV1 at the previous time step ∆y(k − 1), a subsampling of 4 steps was applied in

combination with an output delay of n = 16. This resulted in the following values being

used as regressors:

uCV1(k) = [CV 1(k − 16), CV 1(k − 12), CV 1(k − 8), CV 1(k − 4), CV 1(k)] (4.10)

The same criterion was applied to all other CVs used to augment the knowledge of the

GP-NARX model. The variables selected as regressors were the same as those listed in

subsection 4.2.3.

A CV-informed GP-NARX model for the one-step-ahead prediction of the rate of change

of CV1 was trained. The characteristics of the model were consistent with those detailed

in previous subsections; a squared exponential kernel with ARD was selected, the basis

function was set to zero, and a subset of data approximation of active set size mas = 1500

was applied. The prediction results on the training and test datasets are shown in Figure 4.7.

It can be clearly observed how the delay, first encountered in Figure 4.5, is still present in

both plots. The choice of subsampling the past CV1 values did not reduce this behavior;

instead, it increased the delay from one to three steps. This could explain the lower R2

values, as the true data and the predictions are less similar.

The trained GP-NARX model was used within the NOE framework to perform simulation.

Algorithm 1 describes this procedure, combined with the calculation of pR̄
2
, using pseu-

docode. In particular, lines 2 to 10 detail the steps required for the simulation of a desired

horizon of length p using the CV-informed GP-NOE model developed to predict the rate

of change of CV1. At first, an empty vector of predictions ŷ and one containing the n

past measurements of CV1 are initialized. The first value of ŷ is set to the current value

of CV1 and then the algorithm starts iterating through all p steps of the horizon. As seen

in subsection 4.2.3, two approaches can be used to perform simulation: updating-CVs

and fixed-CVs. The former is implemented in line 6, while the latter is implemented
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Figure 4.7: Plot of a detailed view of the one-step-ahead predictions (in red) of the RoC of
CV1 on training (left) and test (right) datasets obtained using the CV-informed GP-NARX
model with extended input delays.

in line 7. After the rate of change ∆ŷ is estimated, it is used to calculate the value of

CV1 at the next step of the horizon. Lastly, the vector of past measurements is updated

by removing the first (and oldest) entry and adding the new estimate ŷ(j + 1) and the

loop is repeated. This procedure was applied to the first l − p steps of the test dataset,

in order to simulate multiple horizons and calculate their individual R2 values. The

average coefficient of determination for the horizon lengths p = [5, 10, 20, 30, 60] minutes is

reported in Table 4.6, both updating-CVs and fixed-CVs approaches have been evaluated.

It can be observed that the CV-informed GP-NOE Model of RoC methodology yielded

Table 4.6: pR2̄ values for the updating-CVs and fixed-CVs GP-NOE models of RoC. The
results were obtained by applying Algorithm 1.

Model
Prediction horizon p [min]

5 10 20 30 60

Updating-CVs -15.46 -7.37 -4.42 -3.57 -2.46
Fixed-CVs -18.34 -10.62 -7.12 -6.69 -5.91

the best results when compared to all previous techniques presented. Long prediction

horizons show better performance when compared to shorter ones. This could be due

to a transitory behavior of the estimation, which initially is not able to match the true

data but over time reaches a value closer to it. Another explanation could be that short

horizons are characterized by little variance, which is overestimated by the GP-NOE
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Algorithm 1 Computation of the average coefficient of determination over multiple
horizons. Lines 2 to 10 implement the simulation of a desired horizon using a CV-informed
GP-NOE model of RoC.

Initialize: Gaussian Processes model f(x); test dataset D of length l containing process
inputs uMVs, process outputs uCVs, and ground truth yD; horizon length p; vector of
l − p coefficients of determination pR̄

2

1: for k ← 0 to (l − p) horizons do
2: Initialize: vector of p predictions ŷ = 0; vector of n past measured values xp

3: xp ← [yD(k − n), ..., yD(k − 1)]
4: ŷ(0)← yD(k)
5: for j ← 0 to p time steps do
6: ∆ŷ ← f(uCVs(k + j), uMVs(k + j), xp, ŷ(j)) ▷ Approach: updating-CVs
7: ∆ŷ ← f(uCVs(k), uMVs(k + j), xp, ŷ(j)) ▷ Approach: fixed-CVs
8: ŷ(j + 1)← ŷ(j) + ∆ŷ
9: xp ← [xp(1), ..., xp(n), ŷ(j + 1)]
10: end for
11: pR̄

2
(k)← R2 of horizon k ▷ As defined in Equation 4.3

12: end for
13: output: pR̄

2 ← mean(pR̄
2
) ▷ As defined in Equation 4.4

model. As expected, the fixed-CVs approach performs worse than the updating-CVs one.

However, it outperforms all previous model in horizons with p ≥ 10. Overall, the inclusion

of additional information about the plant greatly improved the estimation capabilities,

compared to the simpler implementation of subsection 4.2.4.

In order to better understand the large differences in pR2̄ values between short and long

horizons, three 60 minute simulations are plotted in Figure 4.8. Line (a) shows the behavior

that could explain the large negative values corresponding to shorter horizons. For the

Figure 4.8: Comparison of three simulated 60 minute horizons obtained with the CV-
informed GP-NOE model of RoC and the updating-Cvs approach.
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first half of the simulation there is a significant error between estimation and true data;

however, towards the tail end the two plots match. On the other hand, line (b) shows

the opposite, with particularly good estimations at the beginning of the horizon, which

accumulate error as time goes on. Lastly, line (c) is an example of the inability of the

GP-NOE model to simulate the correct trajectory of the measured data. This plot has

mostly illustrative value and cannot be used to quantitatively describe the performance of

the trained model. Compared to Figure 4.3, the CV-informed approach for the estimation

of the RoC appears to better capture the complexity of the system.

To gain more insight into the CV-informed GP-NOE model for the simulation of the

RoC of CV1, two tests were carried out. The first one was aimed at investigating the

importance of the past values of CV1 on the estimation accuracy. The four past regressors

CV1(k-4), CV1(k-8), CV1(k-12), CV1(k-16) were randomized in pairs and used to retrain

the GP-NARX model. This approach is based on the assumption that if a regressor

contributes to the determination of the estimate randomizing it would result in a loss

of performance. Vice versa, regressors that do not significantly impact the estimation

process can be randomized without occurring in larger errors. Furthermore, it can be

expected that performance degradation is directly proportional to the importance of the

randomized regressor. The results of the simulations performed with three randomized

GP-NOE models are reported in Table 4.7. Comparing them with those obtained by the

Table 4.7: pR2̄ values for different updating-CVs GP-NOE models of RoC. The best model
is compared with models trained on randomized regressors (RR) and a model trained on
the unfiltered dataset.

Model
Prediction horizon p [min]

5 10 20 30 60

Best CV-informed GP-NOE of RoC -15.46 -7.37 -4.42 -3.57 -2.46
RR: CV1(k-4), CV1(k-8) -70.04 -46.52 -47.67 -48.43 -34.38
RR: CV1(k-8), CV1(k-12) -18.33 -9.42 -6.15 -5.35 -3.18
RR: CV1(k-12), CV1(k-16) -22.45 -14.13 -12.14 -12.51 -12.42
Unfiltered dataset -78.41 -115.01 -92.90 -63.01 -36.67

best (non randomized) model it can be observed how CV(k-4) contributes the most to the

estimation. Randomizing it and CV(k-8) causes a significant deterioration of pR2̄ values

across all horizons. CV(k-8) and CV(k-12) contribute the least, showing only a slight loss of

performance. Lastly CV(k-16) appears to play a more important role, but not as significant

as CV(k-4). These results confirm the hypothesis that the trained GP model bases its

estimations heavily on recent values of CV1. The second test was performed to evaluate

the impact that data preprocessing could have on the learning process. The GP-NARX

model was retrained on the original unfiltered dataset. It was then implemented within

the NOE scheme and used for simulation. The results are also reported in Table 4.7. A

significant loss of performance can be observed. This is probably due to the large amount
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of noise, amplified by the use of the rate of change as the prediction goal. In this condition

the GP struggles to distinguish real information from noise, thus achieving unsatisfactory

estimation capabilities.

To conclude the evaluation of the CV-informed GP-NOE model, its performance was

compared with that of the MIMO first-order transfer function with time delay designed by

Alperia Green Future and described in section 2.4. The pR2̄ value of both implementations

was calculated for the horizons with p = [5, 10, 20, 30, 60] minutes, simulated throughout

the test dataset. The results are reported in Table 4.8. It can be observed that the

Table 4.8: pR2̄ values for the best updating-CVs GP-NOE models of RoC and for the
MIMO transfer function with time delays developed by Alperia Green Future.

Model
Prediction horizon p [min]

5 10 20 30 60

Best CV-informed GP-NOE of RoC -15.46 -7.37 -4.42 -3.57 -2.46
MIMO transfer function -5.82 -4.02 -3.23 -3.17 -4.10

performance of the two methodologies is similar. The MIMO transfer function achieves

better results in shorter horizons; however, the GP-NOE model outperforms it slightly

in the longest horizon p = 60 minutes. This is the length of the prediction horizon used

in the linear MPC implementation designed by Alperia Green Future, thus the most

significant one. In lieu of the tests and comparisons performed, the quality of the best

CV-informed GP-NOE model obtained can be considered sufficient. Although the pR2̄

values obtained via simulation are negative, its capabilities should be adequate for a

LbNMPC implementation.
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5 Conclusion

The application of Gaussian Processes regression for the estimation of key process variables

of a cement plant was investigated successfully. Real historical data was used to train a

variety of GP models with the goal of finding the best architecture capable of simulating the

behavior of a variable over a desired prediction horizon. The GP-NOE technique, introduced

in [15], was extended through an iterative investigation approach. The methodology devised

combines information provided by manipulated, disturbance, and controlled variables to

produce multi-step ahead predictions of the selected output with sufficient accuracy. The

results obtained were validated against those achieved with the current identified model

of the plant. Although short prediction horizons were simulated with less accuracy, the

developed technique was able to outperform the previous implementation over longer ones.

This result is particularly significant considering that the work was carried out within

the learning dynamics framework of learning-based nonlinear model predictive control

described in [10]. This application combines machine learning techniques, used for system

identification, with NMPC. Therefore, accurate simulation of long horizons is fundamental

to achieve good control performance.

The results obtained are promising; however, they present important limitations. The use

of real data collected in situ compounded the difficulty in identifying a complex system

such as the clinker production phase of a cement factory. The time-varying, nonlinear,

large time-delay nature of the plant, combined with noisy measurements, resulted in a

trained black-box model capable of less than optimal predictions. In order to improve the

control performance of a future LbNMPC implementation, it is paramount to reduce the

estimation error of the GP model; therefore, more work is needed. The study presents a

second limitation: only one of the many process variables was investigated. The design of a

complete LbNMPC requires a model for each controlled variable used in the cost function of

the NMPC. This procedure should require minimal tuning once the GP model architecture

is defined. The last issue that was not considered was the timing requirements of the

simulation step. Since the control action is updated every 60 seconds, the controller must

be able to simulate the horizon and solve the optimal control problem within that time

frame. In a complete implementation, where the behavior of multiple controlled variables

must be predicted, care must be taken to satisfy this generous but strict requirement.

The GP model presented in this work was designed to be easily incorporated into the

LbMATMPC architecture presented in [20]. In the future, a GP model could be trained

for each of the remaining controlled variables to obtain a complete simulation of the clinker

production plant. Further refinement of the architecture could be required in order to carry

out this process. The black-box models could then be imported into the LbMATMPC
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toolbox, where a nonlinear model predictive controller could be designed. Ultimately,

the new architecture could be thoroughly tested and compared to the current control

implementation. The results obtained in this work show promising potential that could

possibly lead to improved plant performance if an LbNMPC is implemented.
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