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Abstract

User segmentation based on browsing history is a cornerstone of online adver-
tising: it allows companies to reach a targeted group of subjects that could be
interested into their product. Furthermore, the look-alike modeling is a pow-
erful tool that can enlarge the audience while including meaningful potential
customers.

The upcoming end of third-party cookies and privacy regulations limit the
companies’ power to freely access user data: this makes online targeting more
and more challenging and it calls for the development of a way to understand
user’s interests without the need to access their data.

This work offers a solution in this direction, suggesting a “zero-trust”
process for the segmentation of the users by means of the look-alike modeling:
this process uses well-known data science fields, as recommender systems,
and it applies them in a whole new context, combined with groundbreaking
techniques such as Federated Learning, an innovative privacy-preserving way
of training machine learning models. It allows to build a procedure fully
compliant with user privacy and with the end of third-party cookies.
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1 Introduction

The main focus of this thesis is the creation of a zero-trust process for the
segmentation of the users by means of the look-alikes, in the context of digital
advertising. It is based on a recommender system that aims at suggesting new
categories to users based on their previous browsing activity. This model was
trained with Federated Learning, a privacy preserving technique for training
machine learning models: this allows to build an entire segmentation process
without collecting the user data, in a full accordance with the GDPR (General
Data Protection Regulation) and with the end of third party cookies.

The research of a proper recommender system, trained and refined in a
federated environment, is intended for ID Ward Ltd, a company that works
in the field of digital advertising with a focus on the data privacy issue.
The content of this work will be deployed by the company with the aim of
providing for each user values of appreciation for categories of websites.

The work is structured as follows: in Section 2 we expose the motivations
that led to this project, with a deep insight on the field of digital advertising,
explaining the reasons that require the use of a privacy preserving method
for data-driven models.

In Section 3 we present the main previous works related to this thesis: firstly,
we provide an overview of the different types of recommender systems, with
a brief insight on the state-of-the-art approaches. After that, we go through
some previous application of federated learning for recommendations. In
addition to this, we focus on the Google’s attempt to overcome the end of
third party cookies (FLoC), dwelling on the issues brought by this solution.

In Section 4 we present the main contributions of this work, that consist
firstly in the proposal of a simple but innovative model for this context, that
performs well this task. Furthermore, among the metrics taken into account
we propose a specific metric based on a taxonomy: it turned out to represent
well the overall performance of the model. Besides, we provide a solution
for the continual learning of the model in a federated setting: it allows to
integrate the information about the new data into the model without losing
the knowledge acquired during the previous training sessions.

In Section 5 we focus on the dataset we worked with, presenting how the
data was collected and analyzing its distribution. Then, we present the data
processing pipeline, which analyzed the data prior to feeding it to the recom-
mender system.

Then, in Section 6 we focus on the method used for training and evaluating
the model. We start by presenting the specific training procedure adopted
for the learning of the model. After that, we dive deeper in the explanations
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of the metrics used for the evaluation: we considered ranking metrics (HIT),
threshold metrics (Precision and Recall) and a taxonomy-based custom met-
ric.

In Section 7 we present the architecture of the model adopted for the recom-
mendations: it consists in an autoencoder-based network with the addition
of textual information (the titles of the URLs or the entities). We show the
results obtained by tuning the hyperparameters and changing the starting
features; furthermore, we show how the textual information affects the fi-
nal suggestions. We then propose a simple approach for the refinement of
the model on new data in a centralized setting. Finally, we present how the
processing pipeline can be implemented in a distributed setup.

Section 8 is dedicated to Federated Learning: we start by presenting the
optimization problem we aim to solve and then we compare three different
federated algorithms (FedSGD, FedAdam and FedAVG) noticing a clear ad-
vantage of FedAdam over the others. Then, we propose a solution for the
continual learning of the recommender system in a federated setting, based
on the idea of reconstructing the original training dataset, since the actual
data is not available with federated learning.

Finally, in Section 9 we conclude our work and present future developments.
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2 Motivations

This work was possible thanks to a collaboration between the University of
Padua and ID Ward Ltd, that is a data privacy company that acts in the
context of digital advertising.

This field grew rapidly in the last 20 years due to the massive growth of
the Internet, that required a brand-new way to show advertisements to users.
Indeed, at the beginning of digital advertising ad spaces were bought through
direct deals by advertisers, namely the company who want to promote their
brand, and ads were traded in the same way of magazine ads: the advertiser
and the publisher (the company who sells the inventory) reached an agreement
for a specific time period for a particular website. This means that the ads
were showed indistinctly to all the users that browsed the web-page of a
publisher, without taking into account information about user preferences.

This method was very inefficient for two main reasons: first, the majority
of the targeted people were not interested in the product showed, because
usually the potential customers are only a small slice of the entire audience
that browses a web-page. Second, the number of websites grew faster than
the number of companies willing to advertise on them, and the manual trades
did not keep up with this pace, with the consequence that many ad spaces
remained unsold.

As a solution to these issues was created a procedure that manages the
market of digital advertising automatically, without the need of human ne-
gotiations: it is called Programmatic Advertising. Several different factors
handle this process, with the aim to guarantee an advantage to both the
sides of the trade. With programmatic advertising trades usually take place
in real-time when the user clicks a web-page, through a bid that involves
the companies interested in targeting that particular user (called Real-time
Bidding, RTB). This allows to overcome the problem of unsold inventories
together with the targeting issue.

Here, machine learning and AI algorithms are useful because they allow to
understand the characteristic of the visitor starting from their data, allowing
the proper targeting of a group of users.

Programmatic Advertising

Programmatic Advertising is the process that aims at automating the market
of online advertising. In order to use as minimum human involvement as
possible there are different components that take part to this procedure:

• Ad server: it creates, manages and runs the advertisement campaign.
It is the server that decides the ad to show on the website and records
the metrics regarding the campaign (e.g. impressions and clicks)

• SSP (Supply-Side Platform): it is the platform through which publish-
ers manage and sell their inventories.
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• DSP (Demand-Side Platform): it is the platform through which adver-
tisers can buy multiple inventories from different websites.

• Ad network: it is the intermediary between publishers and advertisers.
It handles the RTB.

• DMP (Data Management Platform): it collects and processes the data
coming from different websites. It is responsible for the segmentation
and for the look-alikes modeling. An example of DSP is ID Ward Ltd,
who creates user segments based on their browsing histories.

There are two main ways in which advertisers can purchase ad spaces
from publishers: through programmatic directs or through the RTB. In the
first case the trade is managed by the Ad network and once the inventory and
the CPM (cost-per-thousand impressions) are set, the procedure is handled
automatically by the Ad network. In the second case the inventory is sold
through a bidding that is done among all the advertisers interested at target-
ing a particular subject, depending on the user data and on the website. This
allows to reach a proper group of users, whose characteristics are hopefully
similar to those of their most profitable existing customers.

The offer to the bid depends on the type of target policy adopted by the
company. With Contextual Targeting the advertisers target users depending
exclusively on the data of the website the ad space belongs to, such as the
keywords. It allows to not use the visitor data, overcoming data privacy issues,
but at the same time it brings several drawbacks. First of all, some websites
are too broad for a precise targeting and, moreover, others could show an
interest that cannot be translated into a real purchase interest without the
help of other websites previously clicked (i.e. news websites).

On the other hand, Behavioral Targeting focuses on the visitor data, tar-
geting a user depending on its profile, which is created based on their browsing
history. For this targeting method typically three different types of informa-
tion can be used: user’s interests, the demographic data and their purchase
intent. As far as this work is concerned, we focused on the first case, and more
in particular at how companies can target a proper group of users (segment)
and how they can enlarge it through the look-alike modeling.

Segmentation and Look-alike modeling

In digital advertising the users are usually clustered into several groups, called
segments (or cohorts), composed of users that share similar characteristics.
Once understood what are the attributes that distinguish its most profitable
customers, a company aims to target only people with similar characteristics,
in order to make the advertising campaign as effective as possible. A mountain
clothing company, for instance, could be interested in targeting only users that
like to hike and with age between 20 and 30.

Even if already effective, this process has some limitations and can be
improved. First of all, the segment created by a company might be too small
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for the company’s needs and a company might want to enlarge the audience
while maintaining a group of users that could be interested into their product.
Then, this procedure takes into account only people who are known to have
those characteristics, while due to a lack of data it could be that some other
people still reflect those attributes even if they were not recorded in a page
view. The Look-alike modeling expands the segmentation process by solving
these issues.

With this method, indeed, advertisers are able to enlarge the segments
also including users that look alike their customers and have characteristics
correlated with those the company is looking for, and as a consequence they
could be interested also in what the company has to offer. In the previous
example, for instance, the mountain clothing company could decide to also
target people interested in athletics, swimming or travels: by doing this the
overall audience still is composed by meaningful users and it contains a larger
number of users.

In this work we implemented a model that provides the look-alike model-
ing starting from the browsing activity of the users, using information such
as the date of the click view and the time spent on the website along with
data regarding the content of the website (the title and the entities). For
this task we built a recommender system, whose purpose is to suggest new
categories to the users depending on the previously browsed categories. As
output, the model provides a value that can be seen as the probability that
the user is interested into a particular category: by doing this the advertisers
can choose a “look-alike threshold”, establishing which users belong to the
segment choosing only those whose probability is above the threshold.

Cookies

Nowadays Behavioral Targeting is possible through information that is stored
in the local storage of the user and that allows to keep track of their activity
across different websites. These pieces of information are called “cookies”,
and they have been a cornerstone in the history of digital advertising. They
correspond to snippets of code that run when the user clicks a web-page and
record information about the click view, such as the time spent on the page,
the location, email, passwords and possibly clicks on ads. Among many other
things, they allow the user to have a customized experience on the site, since
they store data about the items in shopping list and maintain the users in
their account for future sessions. There are essentially two types of cookies:
first-party cookies and third-party cookies.

With first-party cookies we mean that information that is stored in the
user’s device directly by the website the user is browsing. This type of cookies
have the main purpose to provide a personalized service to the user, recording
their activity only for what concerns that particular domain.

On the other hand, third-party cookies are created by other domains,
different from the one visited by the user, hence the name third-party cookies.
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They are mainly used for tracking and online-advertising purposes; they allow
to track the user activity among multiple websites, allowing to obtain an
accurate user profile. Typically this is done by a request sent from the web
page to the third party’s server. The request is usually done by files that are
stored in the page, such as ads, images, buttons or tracking pixels. Usually
these elements do not need to be clicked for firing the request. A social-media
site, for instance, can place a button in an external site, allowing to record the
activity on that particular domain: the consequence is that the next time that
the user will navigate on their social account they will see an ad regarding a
topic previously seen on another domain.

An important turning point in this scenario will be in 2024, when Google,
Apple and Mozilla will turn off the third-party cookies, with the goal of
strengthening online privacy by giving users more control, choice, and trans-
parency when it comes to personalized online advertising. This will clearly
also change the way digital advertising works, forcing advertisers to find a
new way to target people based on their previous behavior.

Here, ID Ward Ltd proposes a solution, that consists in a product totally
compliant with the end of third-party cookies. After having obtained the
user’s consent, it collects the data in a central system, where it creates the
segments based on the whole user activity, without the need of third-party
cookies. After the audience is created, to each user is associated a set of
indices, that are the indices of the segments the user belongs to. From these
numbers it is not possible to obtain the browsing history of the user, since only
the company that created the segment knows the meaning of the segment.
On the other hand, the company can decide to target all the people belonging
to that particular segment, without the possibility to access the users IDs.

Clearly, this solution has an important limitation, namely the fact that
the user needs to trust that the company will not share their data with third
parties. This can be overcome by moving the segment creation on the user
device, without the need for it to leave the device: this is possible with
Federated Learning.

GDPR

The General Data Protection Regulation, or GDPR, is a European regulation
that came into force in 2018, and whose goal is to regulate all industries and
companies dealing with personal data, giving to data subjects more control
on their data.

First, it states that the companies must implement measures to protect
personal data (with encryption and pseudonymisation). With “personal data”
the GDPR refers to “any information relating to an identified or identifiable
natural person (data subject); an identifiable natural person is one who can
be identified, directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online identifier or
to one or more factors specific to the physical, physiological, genetic, mental,
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economic, cultural or social identity of that natural person” (GDPR, Art.4).
Furthermore, it regulates the creation of users’ profiles based on personal

information obtained without any consent, the use of that data in automated
decisions and the unsafe storage of it. In particular, it requires that the
company obtains personal data only after a clear, unambiguous and explicit
consent from the data owner for every type of data-processing activity. This
affects digital marketing since usually user profiles are created based on in-
formation obtained by third parties, but this is punished by GDPR with
significant fines (up to 20Me or 4% of the previous year’s turnover for serious
infringement).

Despite this, it is not easy to verify that the requirements of the GDPR are
met, and so that the data is not sold or exchanged to third parties. Indeed,
there are still companies that share and obtain data without the user consent
since the gain they receive is higher than the punishment they would receive
for the violation. This problem can only be overcome by reducing companies’
ability to collect personal data and preventing them from exchanging it, still
providing a tailored experience to the user.

Zero-trust process

In this work we propose a solution for a proper segmentation of the users based
on behavioral targeting in a cookieless environment, in full compliant with
the GDPR and with the end of third-party cookies. For this task we used
Federated Learning, a machine learning technique for training data-driven
models that does not require the direct collection and centralization of data.
Indeed, with a federated approach it is possible to train a model without the
need to access the user data, and so without the possibility for the companies
to share the data with third-parties. For this reason this type of process is
called “zero-trust”, because the users do not have to trust that the company
will not share the data with third parties, and this simply because they do
not have it.

In this process the recommender system for look-alike modeling is trained
in a federated environment on data about the whole browsing history of the
user that is stored completely on the user device. By using information on
the device, we insist, there is no possibility to exchange data with third-party
cookies, in accordance with the future end of third-party cookies.

In addition to this, the inference part takes place in the user device as
well, computing the look-alike values for the users and computing to which
segments they belong to. After this step, the only information that leaves the
device are the indices of these segments: to each segment, indeed, is assigned
a random segment ID that can change over time and only the company that
creates the segment knows what it refers to. This limits the possibility to
fingerprint a user, that means that it is difficult to identify the user starting
from the segments it belongs to.

7
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3 Related Work

3.1 FLoC

FLoC (Federated Learning of Cohorts) is in attempt made by Google that
has the aim to supply a cookieless alternative for the profiling of the users.
FLoC is part of the Privacy Sandbox, a family of technologies developed by
Google that aim at protecting online privacy.

According to Google’s tests, FLoC achieves at least 95% of the conversions
per dollar spent compared to cookie-based advertising, but the way in which
it is built hides several issues and limitations that do not make it a feasible
solution for the future cookieless world.

Starting from the browsing history of the user, FLoC maps them into
a particular cohort, consisting of users that share similar characteristics.
This association is done through an unsupervised learning algorithm called
SimHash, that takes as input a d -dimensional vector x and maps it in a p-bit
vector Hp(x), called “hash vector”, representing the cohort ID. This is done
by taking p random unit-vectors w1, ..., wp and computing the i-th entry of
Hp(x) as

Hp(x)i = 0 if wi · x ≤ 0 Hp(x)i = 1 if wi · x > 0.

SimHash allows similar vectors to be mapped in the same cohort, since
the probability that this happens is Prob(Hp(x1) = Hp(x2)) = (1− θ(x1,x2)

π )p,
where θ(x1, x2) corresponds to the angle between the two vectors. The com-
putation of the hash vector is done independently to the other users, and so
SimHash can be computed locally on each user’s machine, with no need for
a central server to collect behavioral data.

In order to ensure privacy and prevent fingerprinting, FLoC requires that
each cohort verifies a k -anonymity condition, meaning that each cohort needs
to be composed by least k different users: this indeed makes the derivation of
individual behaviors across the web harder and allows to a user to hide in the
crowd. In particular, Google decided to use k equal to a thousand of users.

Unfortunately SimHash does not allow to set a threshold on the minimum
number of users for each cohort so the choice of p becomes important, since
a too large value of p would create cohorts that does not comply with the
k -anonymity, meaning that advertisers learn more about each user’s interests
and have an easier time fingerprinting them. On the other hand, a too small
value of p would not allow to properly catch the peculiarities of each group.

Google’s experiment used 8-bit cohort identifiers, meaning that there were
only 256 possible cohorts, leading to the first drawback of FLoC: it is very
blunt and not specific, reducing very detailed behavior into broader interests
that does not represent well the user.

In addition to this, the cohort IDs are fixed, and this because the vectors
w1, ..., wp do not change over time; otherwise it would be impossible for the
companies to target the right group of people since they would not know to
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which cohort their past customers belong to, given the new vectors. This
allows trackers to easily fingerprint the users, because they can keep track
of the segment they are part of and finding out the behaviors that identify
them. This could not be possible if the cohort ID would change randomly
over time, without the possibility to reconstruct the user’s behavior starting
from it - which is what ID Ward Ltd does.

Another relevant problem of FLoC is that the cohort ID could be used as
identifiers: since the cluster algorithm used does not follow any specific rule
for the creation of the clusters, it could happen that a cohort is composed
by people that browsed a particular website, or it could reveal other general
information such as the interests or demographic information. FLoC, so, may
exacerbate many of the worst non privacy problems of behavioral advertising,
such as discrimination and predatory targeting. Indeed it can happen that
a company identifies a group that consist exclusively of people belonging to
a particular social class or have a specific sexual orientation and decides to
target them only (discrimination). On the other hand it could happen that
a company leverages vulnerabilities or weaknesses of potential customers in
order to turn them into actual ones (predatory targeting).

This issue can be overcome by totally discarding sensitive categories and
making a categorization only based on the remaining categories, building
cohorts exclusively based on them. In particular, starting from the classic
taxonomy used for digital advertising, in this work we dropped categories
about medical issues, gambling, politics and religion.

3.2 Recommender Systems

A Recommender System (RS) is an algorithm that aims at suggesting to
users new items that are probably interesting for them, based on different
aspects such as their previous behaviors, their demographic information or
their needs. This type of model is becoming more and more popular thanks to
a lot of different applications that need to provide to a subject a personalized
recommendation. This could be due to several reasons: firstly, it is useful
for increasing sales since a good recommendation could make the difference
between a normal click-view and an actual purchase. Secondly, it could be
beneficial for the users, since in many contexts it happens that the overall
catalogue of items is so large that for the users it is difficult to find by their
own what they could like. That is, for instance, the case of companies such
as Netflix, Amazon and YouTube, where the number of items is huge and it
increases every day.

Basically the types of data that can be exploited in a recommender system
are divided in two main categories:

• Explicit data, that refers to the information that is directly asked to the
users, such as scores of appreciation for particular items or even textual
feedbacks.
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• Implicit data, that is the data that is collected based on indirect behav-
iors of the users, without the need of addressing them. For example,
data on whether users clicked or not a particular item or the amount of
time they spent on a particular web-page.

Recommender Systems are divided into many categories depending on
the type of information they use, but for the aim of this work we focus on
Collaborative Recommender Systems, Content based Recommender System
and Hybrid Recommender Systems, since the model developed in Section 7
will fall into these.

Collaborative Recommender System

This type of RS is widely implemented since it aims at catching the simi-
larities of the users based on their behaviors and it wants to generate new
recommendations depending on inter-user comparisons. This means that if
a first user is interested in the items A, B and C while a second user is in-
terested in A and B, the algorithm will suggest the item C to the last user.
This aspect is called Collaborative Filtering (CF) and it refers to the fact that
users cooperate with each other to provide proper suggestions. Collaborative
filtering is based on the assumption that people who agreed in the past will
agree also in the future and that they will like objects similar to those they
liked in the past.

Content based Recommender System

With Content based (CB) Recommender Systems we mean those RS whose
suggestions are based on the user’s profile using features extracted from the
content and the attributes of the items that the user liked in the past. Unlike
the CF case, here the recommendations are not influenced by the other users’
profiles. This is because with this type of RS we recommend those items that
are mostly related to the items already seen in the past, without taking into
account the relations between the users.

Hybrid Recommender System

Moreover, there are numerous RS that combine the positive aspects of differ-
ent recommenders in order to improve the quality of the suggestions. These
algorithms are called Hybrid RS and many companies nowadays use these
models: while the huge amount of users could suggest to use a CF approach,
at the same time the users could look for items similar to those seen in the
past, thus suggesting a CB approach. The model developed in Section 7 be-
longs to this category, since we took advantage of the information about the
content of the pages and we used a collaborative approach.

11



3.2.1 Deep Learning Recommender Systems

The importance of Deep Learning increased abruptly in the last years, not
only in fields such as Computer Vision (CV) and Natural Language Processing
(NLP), but also in the context of recommendations. This is due to some
advantages carried by neural networks: first of all in CV and in NLP usually
the tasks have a clear temporal or spatial structure that can be easily handled
by appropriate neural networks such as Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN).

In the same way, also for the recommendation task often the data has
a temporal structure: this is for example the case of Click-Through Rate
Predictions, where the aim is to predict the next click of a user (that could
correspond to a video, advertising, purchase etc...) depending on their previ-
ous clicks. In this context, indeed, it could be more appropriate to face this
task with a model that takes into account the sequential behavior of the data.

Moreover, Deep Learning is becoming increasingly more important in this
context since it allows to exploit the Collaborative Filtering approach for
recommendations, exploiting a sort of people-to-people correlations. This
behavior is present in neural networks because in the training process the
weights are able to catch the correlations between the items, allowing to
suggest to users items that are already interesting for other users that have
similar characteristics.

While CF is able of accurately recommending a wide range of products
without the need of understanding the essence of a particular item, Deep
Learning provides a whole new level of sophistication: DL indeed allows
to further improve the recommendations by combining the CF aspect with
content-based methods. This can be done by also exploiting side information
about the items or the user itself (the textual information, in our case). In [10]
for instance, Karamanolakis et al. use a Hybrid RS combining ratings with
explicit text feedback from the user in a Variational Autoencoder (VAE), one
of the state-of-the-art recommender systems. Usually also additional demo-
graphical features are able to provide better recommendations ([6]): here, for
example, Covington et al. exploit a geographic embedding in order to provide
different recommendations depending on the location of the device.

3.3 Federated Learning for Recommender Systems

In the last decade the increasing interest in user privacy has led to the need
of privacy preserving machine learning models. A solution in this direction
was made by Google in 2016, when proposed Federated Learning, a technique
for training data-driven models where the learning takes place in the users
machines. A central system, then, has the purpose to update the global
model by agglomerating the models obtained from the training on different
devices. This consents to learn an overall model without the need to collect
and inspect the data.
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The interest for this paradigm, in contrast to the traditional way of col-
lecting, storing and processing user data on a server beyond the user’s control,
brought to several researches regarding the federated optimization problem.
The first and most straight-forward attempt was to apply the Stochastic Gra-
dient Descent in a federated environment. Following this way, McMahan et
al. [13] tried to improve this algorithm by proposing a more communication-
efficient approach based on a simple mean aggregation in the server side,
combining models trained locally with several iterations (FedAVG). In ad-
dition to this, Reddi et al. in [18] proposed federated versions of adaptive
optimizers (AdaGrad, Adam and Yogi). This last attempt had the purpose
to solve the drift data problem to which federated learning is subject.

Even if it is still a not very explored area, in the last years were made
many attempts to adapt recommender systems into a federated environment,
since this would solve many limitations resulting from the direct access to
the client data. An early milestone was the federated version of the matrix
factorization recommendation model, proposed by Ammad-ud-din et al. in
[2]. The matrix factorization model is a particular recommender system that
aims at reconstructing the ratings of the users to the items by means of proper
embedding representations of users and items. In particular, if xu ∈ Rk is the
vector representation of user u and yi ∈ Rk is the representation of item i the
prediction of the rating of user u to the item i is given by r̂ui = xTu yi. The
learning is done by minimizing a proper loss function between the matrix of
the predicted ratings R̂ and the actual ratings R. The optimization algorithm
used in this context is usually the ALS (Alternating Least Squares), that aims
at finding the optimal values of the users and items matrices X and Y by
updating one matrix at the time alternatively.

The first federated solution proposed for this model in [2] consists in the
simple intuition that the item vectors are placed on a central server and the
user vectors reside locally on each edge device. The user factor vectors are
updated locally on the client machine using the user’s own data and the item
representation from the server. The main drawback of this approach is that it
requires clients to retain the state, specifically their user embeddings, across
rounds. In cross-device FL contexts, indeed, stateful federated algorithms are
less appropriate because the population size is typically much bigger than the
number of clients who engage in each round, and a client normally partici-
pates only once during the training process [22]. In this sense an improving
of the technique described above was proposed, leading to the Federated Re-
construction algorithm [21]: it is basically a stateless version of the previous
algorithm, where the main modification lies in the storing of the user rep-
resentation. In this case, indeed, the user vector is not stored in the local
machine but is reconstructed every time a user is selected for the training.
This is done through steps of the SGD once the item matrix I is sent to the
client.

As far as the recommendation purpose is concerned, several research works
focused on how to improve the privacy preserving aspect of federated learning,
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stating that this technique protects the user data only partially, since private
information can still leak with FL. More precisely, after local computations,
clients should transmit their computed parameters to the coordination server
for aggregation and looking at the update brought by a user it is possible
to understand the behaviors of the client. To overcome this problem several
privacy aggregation methods were proposed, such as the use of homomorphic
encryption, the use of a Secure Multiparty Computation aggregation based on
a variant of FedAVG [19] and through the use of differential privacy, in which
an artificial noise is added to the parameters of the clients [25]. Another
solution was suggested by Perifanis et al. in [16], where they propose an
enhancement by decomposing the aggregation step into matrix factorization
and neural network-based averaging for an item recommendation purpose
based on NCF (Neural Collaborative Filtering).

Another privacy risk related to federated learning regards the fact that
if the recommender system has full access to all the contextual attributes
then it might have a serious consequence if an attacker can get or infer this
information collectively. This issue is then partially overcome in [1], where
Waqar et al. proposed a federated learning-based privacy-preserving model
for context-aware recommender systems that works with a user-defined col-
laboration protocol to ensure users’ privacy. This idea lets the user decide
how much data share with the local model, preventing at least in part privacy
risks.
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4 Main Contributions

The main contribution of this work lies in the creation of a zero-trust process
for the user segmentation through look-alikes values: as far as we know this
is the first attempt to overcome the end of third party cookies with the use
of a federated learning recommender system.

Other than the design of the entire process, this work brings some research
results to the fields of recommender systems and privacy-preserving machine
learning. Here we provide innovative aspects in both these areas, combining
well-known data science techniques in a new context.

In the context of recommender systems, we tested and implemented a partic-
ular model that to our knowledge is unique in this context. This is because
of the specific training procedure we decided to adopt and for the addition of
textual information about the web-pages browsed by the users, rather than
only the information of the category the site is about. Besides, we provide
insights on how this additional information affects the final suggestions.

Moreover, we give an example of how to measure the value of interest
(score of interest) for a specific category, based on the recency, frequency and
time spent by a user on websites of that category.

In addition to this, we provide a suitable way of evaluating the model,
considering a particular metric that takes into account how far in the taxon-
omy our suggestions are from the suggestion we actually want to recommend.
This metric turned out to well represent the overall performance of the model
and we think it can be helpful for other recommendation tasks based on a
taxonomy.

With regard to the privacy-preserving machine learning our contribution is
mainly in the field of federated learning.

We trained the recommender system in a federated environment with algo-
rithms implemented by us. We give a comparison of the different algorithms
and provide an example where FedAdam performs better than FedSGD and
FedAVG, providing a model whose performance is similar to that obtained
with a classic centralized training.

In addition to this, we propose a solution for the continual learning of
the model with federated learning: it allows to repeatedly train the model
without losing the knowledge about the previous training sessions. This is
done without the need of collecting and storing the data about the previous
trainings, in full accordance with federated learning: this solution is based
on the idea of generating the data looking at the output of the recommender
system. With this procedure we obtained comparable performance with that
obtained with all the data available.
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5 Dataset

5.1 Data Collection

The data we worked with consists in browsing histories of users: we will refer
to these also as click histories, since they record the sequence of the pages the
user clicked. This data, however, covers only a limited part of the total URLs
browsed by the users: ID Ward Ltd, indeed, collects data only when a user
visits a website where the company script is active. In addition to this, the
collection of the data starts only if the user agrees the conditions that appear
once they browse the page. These terms, if agreed, activate a tracking pixel
that allows to register the user activity across multiple websites. Once the
pixel is activated it starts to collect information about the browsing activity,
such as the time spent on the page, the type of device used, the IP address
and the content of the page.

Before April 2022, for a period of one year, ID Ward Ltd was active
mainly on websites about video gaming and technology, thus the data col-
lected was quite monothematic. Later on, the company started collecting
data from other domains, including several news websites that have the bene-
fit to contain information about several different categories, leading to a more
heterogeneous dataset. In this work we will refer to these two collections of
data as “first period” and “second period” dataset.

After collecting the data we divided both the datasets into train (0.5),
validation (0.3) and test (0.2) set: we used the train set for the training of
the models, the validation set for monitoring the loss function during the
training while the test set was used for the final evaluation.

5.2 Data Categorization

After the collection of the data, the text of each URL is passed to a Natural
Language Processing (NLP) model that aims at understanding to which cat-
egory the site belongs to: it is a classification algorithm that has the purpose
to label the content of the URL into a category of a taxonomy. This algorithm
has an accuracy of 91%, bringing a considerable amount of noise in the data,
since for the remaining 9% of the websites the predicted category could be
totally different from the actual one.

The taxonomy used for this task is the IAB Taxonomy (see [9]), that
is a well-known categorization for online advertising. The IAB enables the
whole advertising ecosystem (advertisers, publishers, and platforms) to use a
uniform and easy to understand vocabulary to describe content in order to
make choices about ad relevance.

In this taxonomy each category is divided into four different levels of
specificity (or tiers) where the deeper the level, the more detailed the cat-
egory is. For example the category Healthy Living/Wellness/Alternative
Medicine/Herbs and Supplements is a very specific category, since it has in-
formation about all the different levels. Anyway, the URLs can be categorized
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First period Second period

Number of users 497599 190900

Total categories 304 433

Interests per user 2.57 2.95

Table 1: Information about the first and second period data.

even with less tiers (e.g. Pets/Dogs or Food & Drink/Food Movements).
This original IAB taxonomy is composed by 533 distinct categories, di-

vided into 27 main tiers: however, we neglected the sensitive categories in
order to completely avoid discrimination and predatory targeting problems
mentioned in Section 3.1. In particular, we did not considered categories
about health and medical services, alcoholic beverages, smoking, political
elections and gambling.

By doing this we obtain a taxonomy composed by 473 different categories,
even if not all of them are present in the data used for this project: the first
period data covers 304 categories, while the second period data covers 433
categories (see Table 1).

Furthermore, looking more closely at the categories that appear in our
data, we noticed that only a small part of them is really significant for the
users. In fact, there are numerous categories that are not interesting for
the majority of the subjects even if they appear in the data. The restricted
number of popular items can be seen in Figure 1a and 1b where we clearly see
that, both in the first and second period, there is a small number of categories
that is really interesting for the users. Furthermore, we underline that the tail
of this distribution is larger for the second period (Figure 1b): this means that
this dataset contains a larger number of relevant categories, as we expected
considering the type of websites collected in the second period.

In addition to this, we show in Figure 2a and Figure 2b the histogram
of the number of distinct interests per person in the two periods. Here,

(a) (b)

Figure 1: Distribution of the categories in the two datasets.
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Category (First period) Users

Video Gaming / PC Games 400901
Video Gaming / Video Game Genres 252152
Hobbies & Interests / Games and Puzzles 134456
Technology & Computing / Computing 106602
Technology & Computing / Computing / Search 92601
Video Gaming / Video Game Genres / Action Video Games 39928
Hobbies & Interests / Games and Puzzles / Card Games 37957
Technology & Computing / Computing / Cloud Computing 30343
Hobbies & Interests / Games and Puzzles / Roleplaying Games 20683
Video Gaming / Video Game Genres / Simulation Video Games 16775
Hobbies & Interests / Radio Control 13647
Pets / Dogs 11517

Table 2: The most popular categories in the first period.

we considered only those users with minimum 2 different interests because
this will be crucial for our training procedure (see Section 6.1). We noticed
that each user has on average a small number of interests (2.57 for the first
period and 2.95 for the second): this is clearly a limitation that makes the
recommendation task quite hard because we need to suggest items starting
only from a small number of categories. On the other hand this can allow
us to catch more easily the correlations between the main categories, since a
larger number of interests could also lead a large amount of noise.

(a) (b)

Figure 2: Distribution of the number of interests per user.

In Table 2 and 3 we report the most popular categories in the two dataset:
from here we clearly see that the first period mainly includes data about games
and technology. The most popular category of a different topic is Pets/Dogs,
represented by only 11K users (against the 400K users interested in Video
Gaming/PC Games). On the other hand, the second period includes more
heterogeneous data, allowing to learn information about more categories.

Lastly, we point out that in order to have a fair evaluation we neglected
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Category (Second period) Users

News and Politics 36811
Music and Audio 18602
Real Estate / Real Estate Renting and Leasing 18150
Real Estate 17311
Style & Fashion / Street Style 16865
Real Estate / Houses 16172
Business and Finance 14411
Business and Finance / Business 14145
Family and Relationships 14101
Food & Drink / Dining Out 13345
Pop Culture 11118
Home & Garden / Home Improvement 10526

Table 3: The most popular categories in the second period.

the users of the validation and test set that have interests that do not appear
in the train set: this is because a recommender system suggests only items
that were already seen by at least one user.

5.3 Data Processing

After the data collection and categorization our aim is to process the data in
order to create two different pieces of information:

• a score of interest for each category

• a vector - called embedding - for each website. It carries the information
of the textual data (titles of the URLs or their entities).

These two types of data, described in detail in the next sections, will be the
inputs of the recommender system.

5.3.1 Scores of interest

The score of interest is a value that measures the interest of a user into a
particular category. This value is computed starting from the click history of
the user and it depends on three different quantities:

• time, that refers to the total amount of time spent on pages of a par-
ticular category (in seconds)

• recency, that refers to the last time the user browsed a page of that
category (in days)

• frequency, that refers to the number of times that the user has seen a
URL of that category in the last month.
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Among these three quantities, the time spent is the least significant since
it could not reflect the real interest of the person. This is because it can
happen that the device is active even if the user is not really interested in
the page in that particular moment. Time, in fact, has been used only as a
threshold: if the total amount of time spent on pages of a category falls under
a particular value, the score of interest for that category is 0. Specifically, we
took a minimum thresholds of 10 seconds: by doing this we discard all the
categories that a user could have browsed accidentally, without a real interest.

On the other hand, recency and frequency are more relevant for our task.
In order to create the scores, the values of these two quantities have been
divided into 5 different levels of magnitude, using the thresholds showed in
Table 4, obtaining a value between 0 and 5 for each of them.

Then, we considered as overall score the sum of the recency score and the
frequency score, in such a way to obtain a value in the range [0, 10]. The
formula for the computation of the score is shown in equation 1, where su(c)
is the score of user u for category c while r, f and t correspond to recency,
frequency and time. 1 is the indicator function.

su(c) = (ru(c) + fu(c)) · 1{tu(c)>10} (1)

This way of computing the scores fits for our purpose because it includes
a sort of decay for the interests: indeed, if the user stops to browse pages
of a category, the interests falls to 0 (since the recency and frequency values
gradually decrease).

5.3.2 Embeddings

Titles

With the aim to improve the starting information about the click history, we
took advantage of the textual information of the title of each URL by cre-
ating vectors that carry that information. These vectors (called embeddings)
are obtained through an NLP model that takes into account the semantical
information contained in the text. This means that titles that share a simi-
lar meaning will be mapped in vectors closer than titles that are completely
different.

This was done by exploiting two different architectures: at first we used
the multilingual version of the Universal Sentence Encoder [8], a Convolu-
tional Neural Network developed by Google in 2019 trained on sentences of

Score 0 1 2 3 4 5

Recency > 30 [10, 30) [6, 10) [3, 6) [2, 3) < 2
Frequency < 1 [1, 5) [5, 10) [10, 15) [15, 20) > 20

Table 4: The thresholds used for computing recency and frequency scores.
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different length in 16 different languages, among which Italian. In addition to
this, we tried another model, more specific for Italian, called GilBERTo [7],
that is a pretrained language model based on BERT and trained on Italian
text.

After having obtained the embeddings we created for each user a matrix
of shape (m, 512), where m is a parameter that corresponds to the maximum
number of URLs to consider, while 512 is the embedding size. We did this
with the aim to obtain an embedding history of fixed length to give as input
to the RS. For all the users whose click history is shorter than m we padded
the embedding matrix with zeros. We set parameter m = 5.

Entities

In addition to the titles we also leveraged another type of textual information,
starting from the websites browsed by the users. In particular, we considered
also the entities contained into the websites. This model was not developed
in this project: we just focused on the creation of the word vectors, given the
set of entities for each URL.

After the entity extraction we created the embeddings by means of a deep
learning language model called Word2Vec [15]. It consists in a neural network
that aims at learning a continuous representation of a word starting from its
context. In our case the context of the word is represented by the set of words
that appear with it in the same document (website).

A Word2Vec model can learn the word representation in two different
ways, with a Continuous Bag-of-Words model (CBOW) or with the Contin-
uous Skip-gram model, whose architectures are shown in Figure 3 and that
work as follows:

• the CBOW aims at predicting a word starting from the surrounding
context words: the one-hot encoding of the words in the same document
are summed together and the resulting vector is taken as input of a
linear layer, whose weights are the learning parameters of the model.
We underline that this network does not take into account the order of
the words in input, since the sum is permutation invariant.

• the Skip-gram, on the other hand, aims at reconstructing the context
from a single word. Unlike the previous case, this model considers the
order of the words in the document and gives more importance to the
close words, since they are usually more related to the current word.

In particular, we decided to focus on the CBOW model, because the set of
words for each URL is unordered.

For the training of the model we kept only the words that appear in at
least 50 different websites, with the aim to remove the unpopular words that
have only the side effect to add noise to the learning. As far as the size of the
vector is concerned we fixed it to 100: decreasing the embedding size from 512
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Coronavirus Barcellona Polizia

Omicron (0.94) Bayern Monaco (0.99) Il giudice (0.95)
Tribunale (0.92) Bayern (0.98) Tribunale di Taranto (0.95)
Comitato (0.91) Real Madrid (0.98) Polizia di Stato (0.95)
Arma (0.91) Fenerbahce (0.97) Vigili del Fuoco (0.95)

Francesco Acquaroli (0.91) Real (0.97) Mazzini (0.94)
Covid (0.91) Manchester City (0.96) Scienze (0.94)
Centro (0.90) Villarreal (0.96) In particolare (0.94)

Federica Nardi (0.90) Reds (0.96) spaccio (0.94)
Pfizer (0.90) Liverpool (0.95) Protezione civile (0.94)

Green Pass (0.89) Ancelotti (0.95) Giulio Silenzi (0.94)

Table 5: Examples of entities and their most similar words. The similarity
measure is the cosine similarity.

(for the titles) to 100 allows to reduce the size of the recommender, providing
a lighter model.

The representation of a URL is then obtained by averaging the vectors of
all the entities contained in it, obtaining for each URL a single vector of size
100. Finally, we create for each user a matrix of size (m, 100) that contains
the embeddings of the last m websites browsed by the user, as we did with
the titles.

After the training of the Word2Vec we took a look at the resulting model,
checking if it was able to catch the similarities between the entities. For this
task we used the cosine-similarity between two entities, defined as the dot
product between the two vector representations. In Table 5 we reported some
examples of words and their most similar entities.

Figure 3: The Word2Vec model.
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6 Method

In this Section we present the methodology used for training and validation
of our recommender system. We start with the explanation of our specific
training procedure and then we focus on the choice of the metrics for the
evaluation.

6.1 Training Procedure

In our particular case the recommender system aims at suggesting new cat-
egories starting from the click history. So, in order to properly train and
validate our model we put the recommender in an appropriate setting, build-
ing a training procedure that fits for this task.

We decided to recreate a realistic scenario, training the model in a situa-
tion similar to the application where the recommender will act. Specifically,
we did this by hiding for each user a category at random among the ones
they are interested in. Then, we try to reconstruct the full set of categories
starting from the remaining ones.

At first, we identify which are the categories that are actually relevant
for the users. These are not necessarily all the browsed categories, because it
could be the case that a category was interesting only in the past or that the
page was clicked accidentally. In order to do this we transformed the initial
scores of interests into binary values, taking a threshold that is considered as
the minimum level for considering a category interesting for the user. We set
the threshold equal to 3.

After the binarization of the interests, at first we hide one category (we
call this procedure masking) and then the resulting vector is given as input
to the RS. The masking process occurs at random sampling from a uniform
distribution among all the possible categories with score different from 0. The
complete process is represented in Figure 4.

Figure 4: The adopted training procedure.

Moreover, the masking occurs at each new epoch in such a way that the
hidden category possibly change at each iteration. This allows to exploit as
much information as possible from the initial scores, creating from each user
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as many train samples as the number of categories that could possibly be
masked.

In order to recreate the same situation that will occur in the real applica-
tion, after the sampling of the hidden category we hide also all the URLs that
belong to the masked category. These URLs will not be taken into account
in the embedding matrix: this is because we assume that those URLs will be
seen in the future (as the masked category will).

6.2 Metrics

For the evaluation of the recommender system we used several metrics, con-
sidering both ranking metrics and threshold metrics. For the particular ap-
plication of this RS it is more appropriate to look at how the model performs
given a threshold and comparing the results by looking at the items that stay
above this value (that will be the recommendations): this is because, de-
pending on the quantity of possible clients that the publishers want to reach,
they can adjust the threshold and obtain different values of confidence for the
audience they send the advertise to.

In addition to this, we compared the performance also in terms of a rank-
ing metric, HIT, with the aim of checking if the model behaves as we desire.

Moreover, we evaluated our models also considering how far are the top
recommendations to the real one (the masked category) in the taxonomy:
we did this because in a recommender system it could be the case that the
suggestion is meaningful even if it is different from the item we want to
suggest.

We underline here that all the metrics are computed considering only
the set of items that have score equal to zero in the starting vector, since
we expect that to high scores in the input are associated high scores in the
output (interesting categories in the input will remain interesting also in the
output).

6.2.1 Ranking metrics

Given the way in which we structured the training, it is worth considering
where the masked category is positioned in the ranking of the predicted items.
Ideally, we would like the masked category to be always the category with
the highest score in output, among the ones that are not observed in input.
At the same time, however, we are not interested in the ranking of all those
categories that are not relevant for the user, so for this reason we decided not
to focus on metrics that consider the whole ranking, such as the NDCG [24].

In particular, the ranking metric that we chose is the HIT@k: for each
sample it corresponds to 1 if the hidden category is positioned within the top
k categories, while it is 0 otherwise, as follows:

HIT@k =

{
1 if c ∈ TOP-k

0 otherwise,
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where c is the hidden category. By formulating the HIT in this way, its mean
over all the users corresponds to the average number of times in which the
masked category is within the top k items.

6.2.2 Threshold metrics

As far as the threshold metrics is concerned, we focused on the Precision and
Recall. Once a threshold is fixed, the Precision corresponds to the fraction
of suggested items that are actually relevant (i.e. interesting) for the user,
where an item is suggested if its output score is higher than the threshold. On
the other hand, the Recall is the fraction of relevant items that are suggested.

Reasoning in terms of positive and negative predictions (where the positive
class is the class of items that we want to suggest), Precision and Recall are
defined as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP are the true positives, FP are the false positives and FN are
the false negatives.

6.2.3 Taxonomy-based metric

Finally, we wanted to consider not only if a suggestion is right or wrong,
but also how far the prediction is from the true suggestion (the masked cat-
egory). In order to achieve this, we decided to focus also on a “taxonomy
aware” metric, namely a metric that considers the different levels (tiers) of
the taxonomy. Indeed, in the context of recommender systems, it could be
meaningful to check if a suggestion lies in a field that is conceptually similar
to the one we want to predict, even if the prediction itself is wrong.

So, assuming that the parent-child relation in the taxonomy tree is the
closest possible, we formulated a distance between two categories as the num-
ber of steps in the path that connects the two categories in the taxonomy tree.
We underline that the taxonomy graph is actually a tree, since all the cate-
gories have distinct sub-categories; so, it exists only one path that connects
two nodes.

Figure 5, for instance, represents the taxonomy tree for the main tier
Technology and Computing : in this case the distance will be equal to 2
for categories that are similar or very related, such as Artificial Intelligence
and Robotics. The path [Artificial Intelligence, Technology and Computing,
Robotics], indeed, is the path that connects the two categories and it has
length equal to 2. For categories that are not so similar, instead, the same
distance will be higher: for example its value for the categories Artificial
Intelligence and Web Design and HTML will be equal to 3 since the path
[Artificial Intelligence, Technology and Computing, Computing, Web Design
and HTML] is the path that connects the two.
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Figure 5: The taxonomy tree for the field of Technology and Computing.

We remind that since the taxonomy tree is 4 levels deep, the maximum
distance between two categories is equal to 8.

Finally, as metric we considered the average distance between the right
suggestion (the hidden category) and all the categories that were placed higher
than it in the predictions, in terms of score. This means that the lower this
metric is, the better the recommender works. If the right suggestion is exactly
the top-1 suggestion, then the metric will be equal to 0.

For instance, if the category we want to suggest is Artificial intelligence,
but the recommender places it in third position after Web Design and HTML
and Robotics, then the taxonomy metric will be equal to 2.5.
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7 The model

In this Section we focus on the architecture used for the recommender system:
we explain the experiments done with the type of architecture and with its hy-
perparameters, with the purpose to find the model that performs the best for
our task. We start by presenting a model that consists in a non-personalized
RS: we consider this recommender as a baseline for the following models.
Then, we present our deep learning recommender system, comparing the re-
sults obtained with different choices of the starting features. Furthermore, we
propose an approach for the refinement of the model on new data. Finally,
we show our implementation of the pipeline, from the data processing to the
creation of the look-alikes.

7.1 Popularity-based model

As a first straight forward approach we tried to tackle the recommendation
problem by suggesting items only based on the overall popularity of the cat-
egories. It basically uses the items that are in trend right now and suggests
the ones that are most popular among those that have not already been seen
by the user. For popularity we mean the number of times that a particular
category appears in the train set.

Clearly this model is rough because neither it provides personalized rec-
ommendations nor it is able to catch the correlations between the categories.
Moreover, this algorithm favors those items that are already relevant, because
the unpopular items will never be suggested. However, there are situations
where this type of recommender outperforms several state-of-the-art models,
such as for those problems where there are common traits between all the
subjects, regardless of the features of the users and the items.

This is the case of our data regarding the first period: this data con-
tains mainly information about video-games and technology and therefore an
approach based on popularity leads to good results. Indeed, the popularity
model in this case gave a value of HIT@1 of 52%. This means that 52% of
the times we are able to suggest the right category to the user: we are able
to reach this remarkable value because all the user have common interests.

Looking at how the popularity model performs considering all the avail-
able data (from both the first and second period) we see that the value of the
HIT@1 decreases until 37% as expected, since there is a broader set of rele-
vant categories. Despite this, the obtained value is still very large, denoting
that there is a large disproportion in the data.

Now we restrict our analysis on the second part of data, with the purpose
of checking how this model performs on data collected from heterogeneous
websites: this guarantees that a large number of categories is well represented
and that there is no a predominant category. In this case the value of HIT@1
returned by the popularity model is only 7%: from this we conclude that the
popularity model performs well only for monothematic datasets.
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Dataset HIT@1

1st period 52%

1st and 2nd 37%

2nd period 7%

Table 6: HIT@1 values for the popularity model.

Besides, this model has the limitation that the number of suggestions has
to be fixed a priori since there is not a value of confidence for the predictions,
and so it does not make any sense to talk about Precision and Recall: for
this reason it does not fit for our segment creation task, where the companies
need an appreciation value for each category.

7.2 Autoencoder-based model

After the first trial with a popularity-based model, we decided to tackle the
recommendation problem with an autoencoder-based architecture. In order to
do this we started from the idea of the Variational Autoencoder (VAE), that
is one of the state-of-the-art approaches for recommendations. In particular
we kept its core autoencoder architecture because it fits well with our task
and our data structure.

The main difference between an autoencoder and a variational autoen-
coder is that a VAE has the objective to learn the distribution from which
the input vector is sampled from, while a simple AE only aims at learning
a compact and deterministic representation (the encoding) of the input. In
terms of architecture, the difference is in the layer before the encoding, where
the VAE aims at learning the mean and the variance of the input distribution
(it is not a goal of this work to focus on the VAE architecture: for more
details see [12]).

First of all, considering a simple AE instead of a VAE allows to slightly
reduce the size of the model: our recommender system, in fact, needs to
be particularly light because it will be used in the user’s device to provide
suggestions without accessing their data. In addition to this, it has to be light
because the training with federated learning will take place in the device, for
privacy-preserving reasons (see Section 8). A light model, indeed, allows to
save battery and memory in the user’s device, along with egress costs which
relate to sending the model back and forth from client to server. Moreover, it
also allows to speed up the training process on the user’s device and to save
money due to the storing cost of the model in the server. For these reasons
we decided to focus exclusively on models whose memory requirements did
not surpass 1.5MB.

Furthermore, the choice of a simple autoencoder over a VAE can be ex-
plained due to the fact that a classic AE allows us to easily add other input
information about the users’ browsing histories. In our particular case we
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decided to consider the information about the titles and the entities of the
pages browsed by the users. We did this by vectorizing those information into
embeddings, obtained through deep learning models. We called this model
PseudoAE (PAE) because it has the structure of an autoencoder, but with
added information in input. Other than that, we trained also a normal AE
without any additional information, with the aim of understanding the actual
contribution of the titles and the entities for the final recommendation.

7.2.1 The architecture

The architecture of the PseudoAE is composed by three main networks:

• the Encoder

• the Embedder

• the Decoder.

The Encoder is the network that, given the vector of the interests, aims
at providing a compact vector representation of the user. It takes as input
a binary vector of size 473, that corresponds to the number of interests in
the taxonomy. It is composed by 2 fully connected layers followed by a batch
normalization layer, as shown in Figure 7a.

The Embedder is the network that aims at processing the textual infor-
mation of the titles: it takes as input a matrix of size (m, emb size), where
m is the maximum length of the browsing history, and emb size is the em-
bedding size (512 for the titles and 100 for the entities). By doing this the
matrix contains the information of the last m pages browsed by the user. It
is composed by a RNN and returns its final state, in such a way that this
vector is representative for the whole click history of the user.

Figure 6: The overall structure of the PAE.

The Decoder, finally, is the part of the architecture that aims at provid-
ing the reconstruction of the scores (and so the recommendations) given the
outputs of the Encoder and of the Embedder, as shown in Figure 6. It is com-
posed by 2 fully connected layers, 2 batch normalization layers and a dropout
layer. It returns a vector of size 473, whose entries are in the range [0, 1]
since they are the output of a sigmoid function, defined as σ(x) = ex

ex+1 : in
this way the i-th output of the model can be seen as the probability that the
user is interested in the i-th category. The overall architecture of the three
components of the PAE is represented in Figure 7.

Furthermore, we noticed that the network returns high values for those
interests that appear in input, as expected, but it gives low values for the
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(a) Encoder (b) Embedder (c) Decoder

Figure 7: The architecture of the PseudoAE.

interests we want to suggest, even when they are among the top-rated. This
creates a significant gap between the items already present in the click history
and the new ones, even when the suggestions are meaningful: this is a problem
because in the creation of the segments the companies need to set a threshold
that is a sort of probability, and we want this value to be reasonable. This
is not what happens in our case because, for instance, a value relatively low,
as 0.3, is actually very high for our model. This creates a relevant mismatch
between the need of the company and the probabilities provided by our model.

In order to solve this problem, we applied in the inference process a con-
cave monotone function after the application of the sigmoid. More specifi-
cally, we decided to adopt the equation of a circumference passing through
the origin and the point (1, 1), since we want that a score of 0 or 1 remain
unchanged, and whose center lies in the straight line of equation y = −x+1.
The equation is the following:

fa(x) =
a+ 2

2
+

1

2

√
(a+ 2)2 − 4(x2 + ax)

Adjusting the value of a it is possible to control the slope of the curve, as
show in Figure 8: for our purpose we decided to adopt a = −2.5.

7.2.2 Training

As loss function we used the Binary Cross-Entropy, defined as follows:

L(y, ŷ) = − 1

N

N∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)), (2)
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Figure 8: The plot of the function fa(x) applied in the inference part.

where y is the actual vector of interests of a user, while ŷ is the output of the
model. It corresponds to the vector of the predicted probabilities obtained
from the partial vector of interests (with one hidden category, as explained
in Section 6.1). N , instead, corresponds to the total number of categories.

As optimizer we used Adam and the Stochastic Gradient Descent (SGD):
the results we obtained are comparable, so in what follows we report only the
results found with Adam.

As far as the number of training epochs is concerned, looking at the value
of the loss function on the validation data we noticed that a number of epochs
equal to 2 was enough in order for the network to converge.

7.3 Results

In this Section we report the experiments we have done for the tuning of
the architecture and of the features: for the type of architecture, we focused
on the simple autoencoder and on the PseudoAE described in Section 7.2.1.
Regarding the choice of the features, we compared the results obtained by
taking into account the scores of interests, the titles of the URLs and the
representation obtained from the entities.

Moreover, we compared the results obtained from two different datasets
with the purpose to see how the recommender system performs when the
distribution of the interests changes. All the results of this Section refer to
the test set.

First period data

For these experiments we worked on the data related to the first period of
time, containing mainly information about video-games and technology (see
Section 5). All the experiments with this data are reported in Table 7. The
values of Precision and Recall refer to a threshold of 0.6.
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AutoEncoder

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

52K 0.0069 - - 20 0.50 0.52 0.52 0.82 2.16

73K 0.0065 - - 30 0.51 0.53 0.52 0.82 2.13

83K 0.0062 - - 40 0.51 0.53 0.52 0.83 2.14

105K 0.0061 - - 50 0.50 0.52 0.52 0.82 2.16

PAE with Titles

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

63K 0.0063 SimpleRNN 20 30 0.54 0.52 0.53 0.84 2.07

73K 0.0068 LSTM 20 10 0.58 0.55 0.58 0.85 1.85

95K 0.0059 LSTM 20 30 0.59 0.58 0.58 0.86 1.83

107K 0.0057 LSTM 20 40 0.59 0.59 0.59 0.86 1.80

PAE with Entities

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

51K 0.0065 LSTM 10 30 0.56 0.53 0.55 0.84 2.01

54K 0.0063 GRU 20 25 0.53 0.55 0.54 0.84 2.02

74K 0.0061 LSTM 20 40 0.55 0.55 0.55 0.84 1.99

110K 0.0057 LSTM 20 70 0.56 0.55 0.55 0.85 1.98

Table 7: The results obtained with the first period data.

We start analyzing the results obtained with the simple autoencoder: from
Table 7 we see that the values of Precision and Recall are about 0.52 for both
the metrics. The value of the HIT@1 is 0.52 as well and the values of the
HIT@4 lie around 0.82. The taxonomy metric, instead, measures on average
2.15.

Looking at the results obtained also from the information of the titles of
the URLs, we noticed that all the metrics improve. The best model found in
this setting has values of Recall, Precision and HIT@1 of 0.59, consisting of
an improvement of 7% compared to the simple autoencoder. Furthermore,
looking at the value of the taxonomy metric we see that it is 1.80: this means,
first, that the model is able to better predict the right recommendation. Sec-
ondly, when the recommendation differs from the actual interest of the user
it gives recommendations that are closer to the actual one, in terms of the
taxonomy. Given these values, we state that the textual information of the
titles positively affects the model, leading to better recommendations.

In addition to this, we have done experiments considering also other in-
formation from the websites: in this case we created the URLs embeddings
starting from the entities present in the website. In particular we computed
the vector representation of a URLs by considering the mean between all the
vectors of the entities contained in the website. We noticed that even this
attempt improves the quality of the recommendations: from the Table 7 we
see that the values of the metrics slightly improves, even if they seem to be
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worse than the results found by using the titles.
We remind here that the vocabulary used consists of 2000 words, obtained

using all the entities appearing in at least 50 different websites: we think
that the recommender system could further improve by collecting information
about more websites thus enriching the vocabulary of the Word2Vec.

We point out that the taxonomy metrics we adopted represents well the
overall performance of the models: looking at the Table 7 we noticed that
the models whose value of the taxonomy metric lie below 2.00 have evident
better values of Recall, Precision an HIT. Furthermore, we highlight that all
the models that use an additional textual information have a lower taxonomy
metric value than the values returned by the simple autoencoder.

As last remark about these experiments, we recall that the value of HIT@1
for the popularity model trained on this data was 52%: this means that the
only models that are able to exceed this quantity are those that leverage the
entities or the titles. In any case, also the simple autoencoder provides an
improvement over the popularity model since it returns values of confidence
for the interests and not only a binary value (suggest or not suggest).

Second period data

Running the same experiments on the data about the second period we no-
ticed that our deep learning RS clearly outperforms the popularity model: in
this case, indeed, it provides a value of HIT@1 of 7%, while our recommender
system gave values of HIT@1 of over 30%. This denotes a clear advantage of
our model over the recommender base on popularity. Moreover, this shows
that in our case the popularity model performs well only with monothematic
data, and this will not be the situation our recommender will operate in.

The results obtained with this data are reported in Table 8: from there
we see that even in this case the models that exploit additional information
perform better than the simple autoencoder, and, again, we noticed that the
PAE with the titles with a LSTM recurrent neural network is the best model,
having a value of the taxonomy metric of 2.86.

We underline that also in this case the taxonomy metric represents well
the overall performance of the model.

7.4 Refinement of the model

As already pointed out, the data related to the first period regards mainly
websites concerning gaming and technology, leading to highly monothematic
data. In this way the model catches only the peculiarities and correlations
between a restricted number of categories, while there is a large number of
categories that is not represented by the model. The category News and
Politics, for instance, is not well represented in the first data (it appears
in only 8 different browsing histories) and the model is not able to provide
meaningful recommendations, as shown in Figure 9. Here are reported the
highest output probabilities for a user that is only interested in News and
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AutoEncoder

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

20K 0.0155 - - 10 0.28 0.33 0.31 0.53 3.17

40K 0.0117 - - 20 0.24 0.41 0.31 0.55 3.13

62K 0.0105 - - 30 0.23 0.43 0.32 0.55 3.13

83K 0.0098 - - 40 0.22 0.46 0.32 0.55 3.10

PAE with Titles

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

68K 0.0105 LSTM 10 30 0.30 0.39 0.36 0.60 2.92

75K 0.0100 SimpleRNN 20 40 0.21 0.42 0.31 0.54 3.15

95K 0.0100 LSTM 20 30 0.31 0.41 0.37 0.61 2.89

107K 0.0096 LSTM 20 40 0.29 0.46 0.37 0.61 2.86

PAE with Entities

Param Loss RNN Units Enc Size Rec Prec HIT@1 HIT@4 Tax

51K 0.0109 LSTM 10 30 0.27 0.40 0.33 0.57 3.05

62K 0.0104 LSTM 20 30 0.26 0.41 0.33 0.57 3.05

63K 0.0103 LSTM 10 40 0.26 0.42 0.34 0.57 3.01

74K 0.0099 LSTM 20 40 0.26 0.46 0.34 0.58 3.03

Table 8: The experiments done with the data of the second period.

Politics: we noticed that they correspond to the categories most represented
in the first period data.

In order to solve this problem we try to integrate the new categories
into the recommender system. With this purpose, for each architecture we
consider the best model found in the previous Section and we retrain it on
the data of the new period, starting from the weights obtained after the first
training. The best models were chosen by selecting a balance between model
size and performance. While retraining the recommenders we noticed that
the metrics decrease, as expected, since now the train set contains a larger
number of relevant categories.

In Table 10 we reported the results obtained in this case: here, again, we
denote an advantage of the models that leverage the titles and the entities.
Even in this case, the taxonomy metric chosen turned out to be representative
for the overall performance of the model.

Looking now at the recommendations for a person interested in News and
Politics we see (Figure 11) that the model was able to learn the correlation
between the new categories. From here we can also observe that the input
categories have high scores in the output: this is essential for the creation of
the segments with the look-alikes modeling because we want the segment to
contain both users that are likely to be interested into a category and users
that we already know are interested into it.

On the other hand, comparing the results obtained in Table 10 with those
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News and Politics

Video Gaming / PC Games 0.99
Video Gaming / Video Game Genres 0.81
Technology & Computing / Computing / Search 0.65
Hobbies & Interests / Games and Puzzles 0.53
Technology & Computing / Computing 0.42
Technology & Computing / Computing / Cloud Computing 0.29
Technology & Computing / Computing / Internet 0.08
Video Gaming / Video Game Genres / Simulation Video Games 0.08
Hobbies & Interests / Games and Puzzles / Card Games 0.07
Video Gaming / Video Game Genres / Role-Playing Video Games 0.06

Table 9: The recommendation provided to a user interested in News and
Politics before the new training of the model.

Type Param Loss Units Enc Size Rec Prec HIT@1 HIT@4 Tax

AE 73K 0.0120 - 30 0.22 0.43 0.32 0.55 3.12

PAE-T 73K 0.0150 20 10 0.32 0.32 0.34 0.57 3.03

PAE-E 74K 0.0126 20 40 0.26 0.41 0.33 0.57 3.04

Table 10: The model obtained by re-training a pre-trained model on a new
set of data.

obtained using only the second part of data (Table 8) we noticed that they
are quite similar: this is because with the new training the network tends to
forget the knowledge about the other categories. Looking at the suggestions
given to a PC Games person for example, in Figure 12, we see that now they
are completely meaningless.

In order to solve this problem we simply propose to merge the new train
set with a part of the old train set, in such a way that information about
the old data is kept. We used a proportion 1:4 between the old and the new
distribution, in such a way that the greatest contribution for the learning is
given by the new data, while the old data is only necessary for preserving the
old knowledge.

Looking at the recommendations provided after the new re-training of the
model we noticed that the model is now able to provide proper suggestions for
both the users, and this denotes that the new training correctly integrated the
knowledge of the new categories into the model. The recommendations given
to a user interested in News and Politics are comparable to those obtained
in the previous case (Table 11) and those suggested to a PC Games person
are now reasonable (see Table 13).

Other examples of recommendation are reported in the Appendix A: these
suggestions are obtained with the model that exploits the titles, but we con-
sidered no titles here for sake of simplicity.

37



News and Politics

News and Politics 0.99
Business and Finance / Industries / Power and Energy Industry 0.33
Style & Fashion / Street Style 0.30
Business and Finance / Industries 0.28
News and Politics / Politics 0.27
News and Politics / Politics / War and Conflicts 0.25
Business and Finance / Business 0.24
News and Politics / Crime 0.23
Business and Finance / Business / Business Banking & Finance 0.22
Style & Fashion / Designer Clothing 0.21

Table 11: The recommendation provided to a user interested in News and
Politics after the new training of the model.

Video Gaming / PC Games

Business and Finance 0.33
News and Politics 0.31
Business and Finance / Business 0.15
Business and Finance / Business / Business Banking & Finance 0.11
Family and Relationships 0.10
Healthy Living 0.08
Food & Drink / Desserts and Baking 0.08
Style & Fashion / Street Style 0.07
Real Estate 0.05
Real Estate / Retail Property 0.05

Table 12: The recommendation provided to a user interested in PC Games
after the new training of the model.
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Video Gaming / PC Games

Video Gaming / PC Games 0.83
Video Gaming / Video Game Genres 0.69
Hobbies & Interests / Games and Puzzles 0.55
Technology & Computing / Computing / Search 0.51
Technology & Computing / Computing 0.49
Technology & Computing / Computing / Cloud Computing 0.31
Pets 0.23
Music and Audio 0.21
Hobbies & Interests / Collecting 0.20

Table 13: The recommendation provided to a user interested in Video Gaming
after the refinement of the model using a merged train set.

Even if this training procedure is the best we found for the refinement
of the model, it brings some drawbacks. First of all, every training session
requires to store the old data and this could make the training quite expensive,
after several updates. Secondly, the more data is used in the refinement
process, the less is the ability of the model to generalize, since the proportion
of new data compared to the entire data will be lower and lower as the time
goes by. A solution to both these issues could be to restrict the training
only to a fixed temporal window: indeed, it becomes unnecessary to keep
the information about how categories related in the distant past, since the
correlation between the categories can possibly change over time and we are
interested only at how they related in the recent past.

In a federated environment, however, we do not have the possibility to
access and store the data. Therefore, we will need to find a way of integrating
new categories without their direct collection: this led to our proposal for the
continual learning of the model with federated learning, in Section 8.6.

7.5 Model Pipeline

The entire process for the look-alikes modeling, from the query of the data
to the final creation of the look-alikes, has been implemented using Apache
Beam. It is an open source unified programming model that allows to define
both batch and streaming data-parallel processing pipelines. It allows to
execute pipelines on distributed processing backends, including Apache Flink,
Apache Spark and Google Cloud Dataflow.

We used precisely Google Cloud Dataflow for this purpose, because it is a
fully managed service that works within the Google Cloud Platform (GCP)
ecosystem, and this is helpful since the data we work with is stored in GCP
buckets. The data is then accessed through BigQuery, a data warehouse that
allows to easily manage data in GCP with SQL queries.

The overall pipeline is composed by two processes, namely the pipeline in-
volved with the processing of the data (scores and titles) and the pipeline that
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is responsible for creating and saving the look-alikes. The entire pipeline is
based on the model of Section 7.3 that use the titles as additional information,
but an analogue process is done also for the entities.

An Apache Beam pipeline is designed as a Directed Acyclic Graph (DAG)
of components and each of them has a specific task within the pipeline. Its
execution is conditioned with the successful finish of its predecessor compo-
nents, as shown in Figures 9 and 10, that represent the DAGs of the two
pipelines.

7.5.1 Process Pipeline

This pipeline runs daily and it aims at processing the raw data, creating the
scores and title embeddings described in Section 5.

When the pipeline is triggered three parallel processes start, corresponding
to the initial components Clickstream, Old scores and New Titles in Figure
9.

The first branch aims at computing the interests of the users that have
browsed at least one page in the last day: indeed, it is not necessary to
compute every time the scores of all the users, since we assume that if they
do not browse any new website their interests do not change.

In the meantime, the pipeline loads the interests of the remaining users
through a BigQuery query and these two branches are merged together with
the aim to create a unique table with the updated scores. The table is then
saved in BigQuery for the computation of the look-alikes (second pipeline).

The third branch of this process computes the embeddings of the titles
that have never been computed before and saves them in a separate table:
this part of the pipeline is quite time consuming since it uses a large external
NLP model.

The entire process has been optimized and the distributed computation
has been possible through the use of the Beam ParDo functions, that allow
the components to run on multiple machines.

The main bottleneck of the process was the computation of the embed-
dings: storing them gradually day by day and running the pipeline daily
allowed us to minimize the waiting time of this component.

The process of computing the embeddings of all the titles from scratch
(300K websites, collected in over one year) took around 3 hours; this time
corresponds to a distributed time of 20 minutes on 10 different machines.

On the other hand, in Figure 9 we show that by computing only the new
embeddings (about the last day) the process becomes much faster; the New
Titles component took only 21 seconds.
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Figure 9: The process pipeline.

7.5.2 Look-alikes Pipeline

The pipeline for the creation of the look-alikes runs as soon as the first pipeline
ends. Once it is triggered, two different processes start: they correspond to
the components Load data and Old Look Alikes, in Figure 10.

The Load data branch takes as input the data processed in the previous
pipeline: first, the proper matrices are created, then, they are given as input
to the recommender system. By doing this we create the look-alikes of only
those users that have browsed websites in the last day. The obtained output
is then merged with the old look-alikes creating the updated look-alikes table.

This pipeline is more expensive than the previous one, and the main time
consuming activity is the loading of the data: the query done in this passage

41



merges data from different tables, leading to a huge query. Anyway, we point
out that the execution times of Figure 10 are relative to the computation of
the look-alikes of all the users, while it is enough to run this pipeline only on
those users that browsed a new site in the last day (this allows to lighten the
computation).

Figure 10: The look-alikes creation pipeline.
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8 Federated Learning

The direct collection of data in a central database and the training of data-
driven models in a standard centralized way is nowadays getting more and
more complicated due to several reasons.

Firstly, it suffers from storage problems because the data collected needs
to be stored outside the user’s device in a central system. This becomes a
problem if the number of users is very large. For preventing this issue we
would like the data to not leave the user’s device and to train the models
without collecting it.

The second reason, and one of the main aspect tackled in this work, is
that the direct collection of data could lead to serious privacy risks. The
unsolicited transmission of personal data for profits from the company that
directly collects it to third parties is one of these issues. By accepting the
conditions showed once a page is browsed, the users have to trust that the
company will not share their data with other companies. This problem can
be overcome by “zero-trust” companies, namely companies that provide a
personalized product to the user without the need to know their data: by
doing this the users do not need to trust that the company will sell their
data, simply because the company does not have it.

Even if the GDPR regulates sharing and selling of data to third parties, a
lot of companies violate it. Indeed, it is hard to verify that the requirements
of the GDPR are met, and usually the amount of the fine they have to pay
for this violation is still less than the profit they gain from the sell.

These reasons have brought the birth of data privacy preserving techniques
that allow to train a ML model without the need to access the data of the
user: the resulting systems are known as privacy-preserving machine learning
systems (PPML). Federated Learning (FL) is one of these solutions.

Federated learning is an emerging technology for training machine learning
models that aims to solve the privacy problems caused by transmission of
personal data. FL provides an alternative way of learning from data, different
from the standard centralized way. In a federated environment the learning
takes place on multiple local datasets stored at isolated data sources, such as
smartphones, tablets and PCs, that correspond to the clients’ devices.

A FL setting is composed by different roles, that are mainly:

• the clients, namely all the possible users that could take part the learn-
ing

• the server, namely the central system that coordinates the learning of
the overall model: it repeatedly receives the new models trained on local
datasets and creates a new overall model.

A FL algorithm is usually composed by different rounds: at each round
the central model (stored in the central system) is broadcast to a set of
selected clients, chosen randomly. Then, the training occurs in every client’s
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device and, after that, each client shares with the central system the new
parameters of the model. All the models are then combined to obtain a new
model. This process is repeated a multiple number of times, until the overall
model converges. The overall process is shown is Figure 11.

The main advantage of this type of algorithm is that the model is trained
without the need for collecting and processing the personal data, because the
only information that is shared with the central system is the one regarding
the new weights of the model trained on the user’s device.

Figure 11: The federated process: the server model is broadcast to each
selected client. Then, after the training on their local devices, they share
with the central system only the updated model.

8.1 Application for Recommender Systems

While there are some ML algorithms that need to be trained only once to
perform a certain task (such as general classification tasks where the distribu-
tion of the data does not change over time) there are data-driven algorithms
that need to be trained repeatedly. This is because the distribution of the
data can possibly change: they need to adapt to it and perform well even on
data totally different from those available at the moment of the first training.

This is the case of NLP algorithms such as “Next Word Prediction” al-
gorithms, where the task is to predict the next word a user will type in a
keyboard and to suggest to them the most probable. This type of models
need to be personalized since the set of common words can radically change
even within the same country, depending on factors such as age, habits and
personality. Besides, their behaviors - as well as their language - can slightly
change over time due to new interests or other changes caused by the growth
of the subject.

Even Recommender Systems deal with data that is not static, it changes
over time, and this happens very frequently: in the case of product recomme-
dation, for instance, the necessity of purchase of a particular item usually
rises suddenly from external reasons that cannot be predicted by the RS.
Moreover, a RS needs to suggest also new items that have just been released
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and it has to adapt its recommendation based on the new trend: this could
not be done based exclusively on the first data used for training the model.

In the best possible scenario we would like to frequently collect new data
of the users and repeatedly use it for training the model with a standard
centralized learning. Unfortunately, this is not possible due to storage and
privacy reasons pointed out at the beginning of this Section.

Here comes into play the FL: starting from the data collected in a central
dataset we want to run simulations in a federated setting with the aim to train
the model on local datasets. We want to compare some federated algorithms
checking which returns the best model and, furthermore, we want to see if
the model obtained with FL gives a performance comparable to that obtained
with a centralized training.

Moreover, as far as the application for ID Ward is concerned, we aim to
find a way to train periodically the model with FL keeping the knowledge
acquired in the previous training sessions: with this purpose we propose a
solution for the Continual Learning of the model with federated learning
(Section 8.6).

8.2 Problem Formulation

In terms of the mathematical formulation, the optimization problem we want
to solve with Federated Learning is a minimization problem over a loss func-
tion f(w), where w ∈ Rd are the weights of the model that we want to learn.
Typically f(w) is defined as

f(w) =
1

n

n∑
i=1

fi(w), (3)

where n is the number of training samples and fi(w) is the value of the loss
function for the i-th sample. It is usually defined as fi(w) = l(xi, yi;w), that
is the loss on the example (xi, yi) made with model parameters w, where xi is
the input, yi is the target of the i-th sample and l a loss function (in our case
the Binary Cross Entropy). We suppose that there are C different clients over
which the data is partitioned, and for each client there are nc = |Pc| different
samples, where Pc is the set of the indices of the samples belonging to the
c-th client.

By treating the problem in this way we can rewrite the loss function as

f(w) =
C∑
c=1

nc

n
Fc(w), where Fc(x) =

1

nc

∑
i∈Pc

fi(w). (4)

In this setting we assume that the loss function f(w) cannot be directly
computed because we have access only to a small portion of clients. This
happens because of complex circumstances beyond the control of the orches-
trating server that limit the possibility of including some clients into this
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process. For example, there could be some limitations due to internet con-
nections problems or low-battery issues. For these reasons we assume that
only a limited number of clients can be reached. In our experiments we sim-
ulated this problem by selecting only a random subset of clients.

As a result, we want to optimize the loss function with methods that aim
to approximate f(w) or∇f(w) given only a partial participation of the clients.
Usually the optimization problem (3) is solved through gradient descent (GD)
techniques, namely optimization iterations of the form w(t+1) = w(t) − η ·
∇f(w), where η is a proper learning rate and t is the number of the iteration
(or round, in this case).

This idea is usually implemented in a FL setting through algorithms that
aim at approximating the optimization step of GD in a decentralized way
given only a limited number of reachable clients. In particular in our work
we focused on FedSGD, FedAdam and FedAVG.

8.3 Federated Optimization

In this section we present the federated optimization methods used in this
work, namely FedSGD, FedAdam and FedAVG.

8.3.1 FedSGD

The Federated Stochastic Gradient Descent (FedSGD) is a FL optimization
algorithm based on SGD. The optimization works in the following way.

At first we initialize the server model at random and we fix the learning
rate η, the total number of rounds T and the percentage of clients that take
part at each round. At each round we sample a set of clients (uniformly with-
out replacement) among all the possible clients and we broadcast the server
model to all the sampled clients. Then, for each client, we compute their
gradient ∇fc(w) given their training samples and we send back to the server
only the information concerning the gradient. After that, we approximate
the total gradient by averaging all the gradients weighted by the number of
sampled nc for client c. Then we compute the new weights with the opti-
mization step of GD using the approximation of the gradient just computed,
in the following way,

w(t+1) = w(t) − η ·
C∑
i=1

nc

n
∇fi(w). (5)

In our particular case we have a single sample for each client and so the
approximation of the gradient in equation (5) becomes the simple mean.

8.3.2 FedAdam

We also tried a different version of FedSGD by changing the optimizer in the
server side, maintaining the same overall structure. In particular we chose to
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use Adam as optimizer, that is an optimization method more complex than
SGD: if SGD keeps the same learning rate for each parameter, Adam, instead,
uses per-parameters learning rates that change during time, because they are
adapted to the first and second moments of the gradients, as described in
[11].

8.3.3 FedAVG

FedAVG is a Federated optimization algorithm that was first introduced by
McMahan et al. ([13]), who developed this method with the aim to reduce
the communication costs between the server and the clients.

The FedSGD, in fact, suffers from an highly communication cost prob-
lem: FedAVG seeks to solve this problem by performing multiple epochs of
training on the user’s device before sending back to the server only the last
updated weights. This should allow for a faster convergence with respect to
the exchanges between the server and the clients.

The updated step in the server side is then computed as the average of
the new weights of the clients, as follows:

wt+1 =
1

|C|
∑
i∈C

wi
t = wt −

1

|C|
∑
i∈C

(wt − wi
t), (6)

where wt are the weights of the server network at round t, wi
t are the weights

of the i-th client at round t and C is the set of clients that take part at the
round.

Unlike what happens for the FedSGD case, with FedSGD we were not
able to use the Adam optimizer since the training is done on several different
networks, thus not allowing us to use the overall information about the first
and second moment of the gradient. In the previous case this was possible
since there was only a single trained network, namely the server network.

Moreover, we prove here the equivalence between the FedSGD with η = 1
and the FedAVG in the particular case of a single epoch training for each
client and the optimization in the client side with a gradient descent with
learning rate ηc = 1:

Proof. : Defining ∆t :=
1
|C|

∑
i∈C

∆i
t, where ∆i

t := wt − wi
t we obtain that

∆i
t = wt − wi

t = wt − (wt − ηc · ∇fi(wi
t)) = ηc · ∇fi(wi

t) = ∇fi(wi
t), (7)

where the second equivalence is due to the gradient descent update rule,
because the learning in the client side consists of only one epoch, and the last
equivalence is due to the fact that ηc = 1.

From equations (6) and (7) it follows that

wt+1 = wt −∆t = wt −
1

|C|
∑
i∈C

∆i
t = wt −

1

|C|
∑
i∈C
∇fi(wi

t), (8)
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that corresponds to the server update rule of FedSGD when η = 1 and each
client contribute with a single observation.

8.4 Implementation

For the simulations with Federated Learning we implemented the algorithms
using TensorFlow as deep learning framework. In order to prevent memory
problems due to the large number of clients, we did not use a model for each
client, but we took advantage of only 3 networks: a server network, a client
network and a temporary network.

The server network is the central model that is updated after every round
and that is broadcast to every client at the beginning of each new round.
The second network, called client network, is the model that at each round is
initialized with the weights of the server network, for each client: the gradient
of this network (in the case of FedSGD and FedAdam) or its new weights (in
the case of FedAVG) are gradually added together and assigned to a third
network, the temporary network. The weights of this network are initially
set to zero and after every round its weights are divided by the number of
sampled clients. The resulting parameters are then assigned to the server
network. Finally, the new weights of the temporary network are set to zero.

To further improve the computation, we calculated the mean of the gra-
dients (or of the weights for the FedAVG) in an incremental way in order to
avoid the problem of exploding of the gradient that could happen by con-
stantly adding new terms. Indeed, after initializing g to 0, for each round we
computed the overall approximation of the gradient as follows:

g ← g +
∇fic(w)− g

c+ 1
, for c ∈ {1, ..., C}, (9)

where C is the number of clients sampled at each round and ic is the index of
the c-th client sample at each round. The formula in equation (9) corresponds
to the formula of the incremental mean.

8.5 Experiments

In this Section we report the results obtained with our experiments in a
federated environment. The algorithms exposed in Section 8.3 were used to
train the models from scratch with the aim to compare the resulting models
with the recommender obtained with a centralized training. All the results
of this Section refers to the architecture of the best model found in Section
7.3, that consists in a PAE with the titles of the URLs.

In Table 14 are reported the numerical results obtained by changing the
learning rates and the number of clients per round. All the models were
trained for a number of rounds such that on average every client has been
seen by the network in one round.

Firstly, we point out that the FedAVG was the most difficult algorithm to
tune: we were not able to find a proper configuration of the parameters that
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Method η Clients Rounds Rec@0.3 Prec@0.3 Hit@1 Hit@4 Tax

Standard - - - 0.31 0.41 0.37 0.61 2.89

FedAVG 0.01 1 150K 0.25 0.06 0.02 0.10 4.45

FedAVG 0.1 5 30K 0.29 0.05 0.02 0.11 4.42

FedSGD 1 5 30K 0.12 0.19 0.14 0.34 3.94

FedSGD 1 1 150K 0.22 0.23 0.22 0.42 3.55

FedSGD 0.1 50 3K 0.7 0.17 0.12 0.33 4.07

FedAdam 0.1 5 30K 0.28 0.34 0.33 0.56 3.06

FedAdam 1 1 150K 0.30 0.27 0.30 0.33 3.21

FedAdam 0.1 50 3K 0.29 0.30 0.32 0.53 3.09

Table 14: Comparison of the federated algorithms. The number of round
for each algorithm is such that every client has been seen by the model on
average one time.

gave good results, except for the configuration shown in the Proof in Section
8.3.3. The results in the Table refer to the choice of two local training epochs
for each client.

Furthermore, we noticed a considerable supremacy of FedAdam in terms
of tuning of the parameters: it converged for all our trials, while for FedSGD
it was harder to find a good learning rate and a number of clients that lead
to convergence. In particular, as already said, we noticed that FedAVG with
more than a single local training epoch is much more sensitive than the other
methods. As observed also in [18], this could be due to the presence of
heterogeneous data, that could lead to the client drift issue, i.e. situations
where local client models move away from globally optimal models. From our
experiments we noticed that this problem can be solved by incorporating in
the optimization also knowledge about previous iterations (second moment
of the gradient).

In addition to this, from Table 14 it is clear that for this particular task
FedAdam is the best method, because it was the only algorithm able to
reach a model whose performance is similar to that obtained with a standard
learning.

Moreover, the training of the model took an amount of time comparable to
the centralized model: we remark that this is a simulation time, and not the
actual time that it would take with multiple devices, that would be definitely
higher due to transmission time. On the other hand, however, we underline
that in our simulations we were not able to compute the gradients of the
clients in parallel. In the real-world application, instead, this can be possible
because the computation of the gradients takes place in different devices.

In what follows we used FedAdam with learning rate equal to 0.1 and 5
clients per round, since it turned out to be the best algorithm.
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8.6 Continual Learning for Federated Learning

In a centralized setting it is easily possible to solve the problem of knowledge
forgetting (at least in our case) by merging data from the old and the new
distribution, as shown in Section 7.4. In a federated environment, instead,
we are not able to recover the old data, because we cannot collect it: the
simulations done previously, indeed, have been possible because the old data
is available to us.

In this Section we propose a solution for the Continual Learning of the
model with Federated Learning, with the purpose to integrate the information
about the new categories into the recommender system without losing the
knowledge about the previous training. With the term Continual Learning
(also known as Incremental Learning or Life-long Learning) we mean the
ability to learn a model for a large number of tasks sequentially without
forgetting knowledge obtained from the preceding tasks.

Since the data already used to train the model is not available, the al-
gorithm we propose is based on the idea of generating a replica of it. In
particular, we want that the data generated is as similar as possible to the
dataset that was used for the previous learning of the model and that this
contains the old information about the correlation between the categories.

Data Generation

We noticed that for those users that do not have any interest the model is
inclined to suggest the most frequent categories, namely the categories that
the model saw the most during the learning (see Table 9). Exploiting this
behavior, we basically aim to infer the categories that were seen by the model
during the training, together with their correlation.

Firstly, we compute the probability of generating a certain category by
passing the zero vector to the model and normalizing the output in such a way
that it sums to 1. Once the probabilities are computed, for each new user we
sample a category according to these. Then, assuming that the model gives
proper recommendations to the most frequent categories, we compute the
output of the model considering as input the sampled category and we keep
only the top 5 categories with highest correlation with the sampled one. At
this point we normalize the output and we sample another (distinct) category
according to these probabilities.

By doing this, we create users with only two interests each, but we sup-
pose that this is enough for maintaining the knowledge about the previously
learned categories (we remind that the original dataset was composed by
mainly users with a couple of interests).

After the generation of the new dataset, we train the model with Federated
Learning in a similar way to the idea we proposed in Section 7.4: at each round
we sample a portion of clients from the actual clients (from the new data) and
a smaller portion from the data we generated, in such a way that the model
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learns the latest behavior of the clients while keeping what learned until that
moment.

We then compared the original dataset with the generated one, with the
aim to check if the data generated truly reflects the behavior of the actual
input. We do this by checking how many times the interests of each generated
user appear together in the interests’ list of the users in the true dataset. In
Figure 12 we reported the relative histogram obtained by generating 10k users:
from there we noticed that the majority of the couples appeared together in
the original dataset (composed by 400k users) more than 20k times. On the
other hand we see that there are also couples that were never seen together
in the actual dataset: we underline that all these couples are distinct, acting
only as a little amount of noise in the re-training of the model. Furthermore,
we remark that the couples created by our algorithm appear in the original
dataset in mean 75k times.

Figure 12: The histogram obtained by generating 10k users: it represents
how many times the sampled couples appear together in the original dataset
(composed by 400k users). From here we see that the majority of the couples
created appears in more than 20k true users.

Experiments

In this section we report the results obtained with this algorithm, with the
purpose to check if this approach is a good solution for the continual learn-
ing of the model with federated learning. We compare the model obtained
through our solution with the model trained on all the data available. In
particular, we want to compare their performance and check if the model
trained with continual learning has actually kept the information about the
first training.

Starting from a model pre-trained on the first portion of data with FL, we
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generate a new dataset and we merge it with the data of the second period.
The proportion of the two distributions is 1:4, in such a way that the main
learning of the model is due to the new data, while the portion of old data is
used just for keeping the old knowledge. Once obtained this new train set we
use it to train the model with FL (using FedAdam with 5 clients per round
and learning rate of 0.1). We then evaluate it using the true test data with
the same proportion between the old and the new data.

By doing this (as shown in Table 15) we obtained a model with value of
the taxonomy metric of 2.97, while the model trained on a centralized setting
using the true data has a value of 2.84 for the same metric. As far the other
metrics are concerned, the values of the centralized model are not so distant
from the values obtained with federated learning, even if the values obtained
with the FL are a little bit lower, as expected.

In addition to this we computed the performance of the model trained only
on the second period of data with the standard learning and we evaluated it on
the same validation set (with proportion 1:4 between the two distributions):
we did this with the purpose to check if the model trained with continual
learning was actually able to keep the information about the old data. By
doing this we noticed that the performance is worse than the previous cases
(last row of Table 15): this means that our solution really allowed the model
to maintain the knowledge of the old data.

Type Rec Prec Hit@1 Hit@4 Tax

Centralized (proportion 1:4) 0.33 0.40 0.37 0.62 2.84

FL with Continual Learning 0.29 0.37 0.35 0.57 2.97

Centralized on 2nd period of data 0.26 0.29 0.26 0.45 3.35

Table 15: Comparison of the result obtained with our Continual Learning
solution and with the centralized training: the evaluation is done on data
from both the first and the second period (with proportion 1:4).
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9 Conclusions and Future Work

In this work we paved the way for a zero-trust process for the segmentation
of the users by means of look-alikes values, based on Federated Learning.
This process is totally privacy-preserving and compliant with the GDPR.
Moreover, the final result is almost as good as the one we can reach with a
centralized approach, in terms of quality of the segmentation.

This process starts with the data collection and processing, presented in
Section 5, where we proposed a specific way to identify the interests of each
user. In addition to this we studied techniques for a proper vectorization of
textual information.

In Section 7 we proposed and designed a customized architecture for the
recommender system: we studied the impact of several features finding an
advantage on the use of the titles of the URLs. The entire process, from data
processing to the creation of the look-alikes, was optimized and implemented
in Apache Beam for a distributed computation.

The models were compared in terms of different metrics, introduced in
Section 6. Among these, we proposed a tailored metric based on the taxon-
omy, that turned out to well represent the overall performance of the model:
we think that this metric can be extended to other recommender systems
whose items are taxonomy-based.

Furthermore, we proposed a solution for a proper refinement of the model
on new items, in such a way that the model updates without losing the
knowledge about the previously learned categories: in Section 8 we extended
this idea to a federated environment proposing a process for continual learning
for federated learning.

In addition to this, we compared several federated learning algorithms,
finding a clear advantage of FedAdam over the other methods: among the
algorithms we studied it is the only one that allows to train a model whose
performance is similar to that we obtained in a centralized setting.

For future developments of this work we aim to improve the performance
of the recommender system by training it on users whose click history is
composed of a larger number of interests. In this project we dealt with users
whose number of interests was limited (on average about two categories per
person): this made our task quite difficult to tackle, and we think that a
better characterization of the subject could significantly improve the quality
of the suggestions.

Further research can be carried out by taking into account a new loss
function that is “taxonomy aware”, namely that considers how far the sug-
gestions are from the ones we would like to suggest. In particular we want
to properly weight the terms of the binary cross-entropy according to the
taxonomy distance we formulated in this work (Section 6.2.3). By doing this
we want to punish more the categories that are far from the masked category
in the taxonomy.
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Moreover, we want to proceed our experiments on our continual learning
proposal for federated learning, verifying if this approach can also work with
multiple training sessions and, eventually, if the quality of the data generated
by the recommender gets worse over the time.
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A Appendix

The refinement of the model on new data, in Section 7.4, allows us to obtain
a recommender system whose suggestions are meaningful for a large number
of categories. Here we reported some examples of suggestions, obtained using
the scores and the zero matrix as titles. Further examples can be found in
Section 7.4.

Automotive Home and Garden

Automotive 0.91 Home & Garden 0.77
Sports 0.438 Style & Fashion / Designer Clothing 0.46
News and Politics / Politics / War and Conflicts 0.29 Family and Relationships 0.27
Home & Garden 0.26 Real Estate 0.26
Home & Garden / Remodeling & Construction 0.25 Automotive 0.24
News and Politics 0.23 Style & Fashion 0.20
Business and Finance 0.20 Pop Culture 0.18
Family and Relationships 0.20 News and Politics 0.17
Healthy Living 0.19 Real Estate / Industrial Property 0.17

Table 16: Suggestions for the interests of Automotive and Home and Garden.

News and Politics and Sports / Soccer Pets / Dogs

News and Politics 0.99 Pets 0.99
Sports / Soccer 0.96 Pets / Dogs 0.99
Academic Interests / Life Sciences 0.74 Pets / Pet Adoptions 0.41
Sports / College Sports 0.67 Pets / Large Animals 0.40
Hobbies & Interests / Model Toys 0.66 Pets / Cats 0.19
Style & Fashion / Street Style 0.59 Real Estate 0.10
Automotive / Scooters 0.51 Music and Audio 0.07
Hobbies & Interests 0.39 Real Estate / Office Property 0.07
News and Politics / Weather 0.38 Family and Relationships 0.07

Table 17: Suggestions to a person interested in News and Politics and Soccer
and interested in Dogs.
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Music and Audio Sports / Soccer

Music and Audio 0.99 Sports / Soccer 0.85
Music and Audio / Talk Radio 0.98 Sports / College Sports 0.33
Television / Special Interest TV 0.42 Hobbies & Interests / Games and Puzzles 0.32
Academic Interests 0.36 Style & Fashion / Street Style 0.29
Sports 0.27 Real Estate / Land and Farms 0.27
Television 0.18 News and Politics 0.24
News and Politics 0.16 Food & Drink / Desserts and Baking 0.24
Academic Interests / Life Sciences 0.14 Pop Culture 0.22
Pop Culture 0.14 Sports / Auto Racing 0.21
Music and Audio / Adult Contemporary Music 0.12 Technology & Computing / Computing 0.21

Table 18: Suggestions for the interests of Music and Audio and Soccer.
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