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ABSTRACT 

Micro-expressions have gained increasing interest in the last few years, both in 

scientific and professional contexts. Theoretically, their emergence suggests ongoing 

concealments, making them arguably one of the most reliable cues for lie detection (e.g., 

Yan, Wang, Liu, Wu & Fu, 2014; Venkatesh, Ramachandra & Bours, 2019). Given their 

fast onset, they result almost imperceptible to the eye of an untrained subject, making it 

necessary to work on automatic detection tools. Machine learning models have shown 

promisingly results within this domain; thus, the aim of the study at hand, was to compare 

the performances human judges and machine learning models obtain on the same dataset 

of stimuli. Regrettably, machine learning performances have ended up being around the 

chance level, positing the question of why previous and a-like studies have collected 

better results. Briefly, insights on how to properly organize an experimental paradigm 

and collect a dataset for lie detection studies are discussed, while concluding that among 

other several necessary cues it is still crucial to consider micro-expressions when dealing 

with lie detection procedures.  
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1. INTRODUCTION 

He who has eyes to see and ears to hear may convince himself that no mortal can 

keep a secret. If his lips are silent, he chatters with his fingertips; betrayal oozes out of 

him at every pore (Freud, 1959, p. 94). 

This quote from the “Collected Papers” of Sigmund Freud (1959) highlights the human 

being’s belief for easily catching others lying. As we will discuss later on, cues are 

actually present in our body resembling our deceptions. Nevertheless, differently from 

what Freud may have suggested, human beings are not good lie detectors. Several studies 

attempted at assessing the proportion of correct guesses when an individual is asked to 

spot someone lying, and on average a human judge does not diverge significantly from 

the chance level indeed (e.g., Jordan et al., 2019). In sum, even if a variety of cues to 

deception are there, surprisingly they can be seen by some but not by most. Why this 

deficiency is so evident? 

The first line of research that tried to fully meet this question was conducted by Ekman 

in 1990. He gave five explanations for understanding why we fail in spotting liars. The 

first one takes an evolutionary point of view. It is assumed that our ancestors would not 

particularly benefit from deceiving their fellows: in a community where survival relied 

upon cooperation being caught lying might be deadly. It is no surprise that in a stable, 

small and close group any attempt at deceptive communication might easily lead to social 

problems, translating into an augmented likelihood of just casual subtle and low-

frequency lies (Cheney & Seyfarth, 1990). In addition, privacy needs were poorly 

expressed in these societies, meaning that for an individual was nearly impossible to not 

share or hide his thoughts and experiences. Briefly, being talented in detecting lies was 

not adaptive in any sense in such circumstances. 

Even if we admit that our ancestors were not good (and interested too) in lying, the 

question of why we do not evolve these skills while growing up remain unsolved. Ekman 

(1990) assumed that our parents choose to teach us to not catch their lies. The reasoning 

behind that might be the privacy that parents require when raising a child: parents may be 

concerned about concealing their behaviours and details about their everyday plans. In 

this regard, the most evident (but not exclusive) aspects asking for concealment are those 

correlated to sexual activities.  

Another explanation for our poor deception detection skills is the costs following the 

unfolding of a lie: being trustful allows us to both protect social status from potential 

harmful consequences and preserve cognitive energy. Nevertheless, being always 
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suspicious might undermine the likelihood of establishing intimacy with other human 

beings (Ekman, 1990). Moving on, Ekman posited another social issue that has to be 

considered to properly answer our leading question. It happens in certain circumstances 

that an individual might indeed prefer to be misled more than knowing the truth (Tooby 

& Cosmides, 1994; Ekman, 1990): this strategy allows to postpone or avoid confronting 

with an unpleasant truth, and it leads to unconsciously overlooking liar’s mistakes. A very 

last consideration belonging to the social domain refers to the need of being polite 

throughout our interactions with peers: we do not want to steal information that is 

concealed by the sender. In fact, it is acceptable to acknowledge that in most cases we are 

just interested in storing the message the sender plan to communicate to us: we do not 

want to look for concealed information because doing so might impact the smoothness of 

the communication itself (Goffman, 1974; Ekman, 1990).  

Having said that, all the discussed assumptions still do not explain why low deception 

detection scores are observed even in trained subjects, and members of the criminal 

justice. These individuals have no reason to accept being misled, they are conversely 

trained and instructed to look for information that is concealed. Nevertheless, they still 

get results that are close to the chance level (Ekman, 1990). However, two possible issues 

inside this reasoning are there: the high rate of liars the professionals are presented with, 

and even the inadequate feedback they receive. Having to deal with a high-base rate of 

liars does not allow trained individuals to become enough receptive to subtle behavioural 

cues. Moreover, it is noteworthy to stress that usually, these professional figures are 

interested in getting a piece of evidence to nail the liar more than understanding how to 

spot the liar per sé. In addition, these individuals usually receive only delayed feedback: 

once they make a mistake and have the chance to understand they have done it wrong, it 

is too late to correct the judgment. 

Taking all these findings as a whole, it is clear how nowadays different professional 

contexts are in demand for strategies meant at ameliorating the detection of liars. For 

instance, as well as job recruiters might be interested in unfolding the truth in attitudinal 

tests to hire the best person for a job position, a police officer might be concerned with 

solving crimes by identifying the actual facts. Even in the psychiatric setting, 

understanding the goodness of a statement concerning a patient’s well-being appears to 

be critical (Ford, 2005). Thankfully, since the traditional polygraph appear in the first half 

of the nineteenth century, a series of lie detection systems have been developed to assist 

us within professional contexts. Recently, some proposed tools meant at improving lie 
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detection performances have incorporated artificial intelligence (AI) techniques (Oravec, 

2022), as the automated analysis of facial micro-expressions that are the central focus of 

this work. 

1.1. Do people look for effective cues to detect deception? 

We already discussed that the typical rates of lie-truth discrimination are just slightly 

above 50% when conducted by human beings (e.g., Bond & DePaulo, 2006). Ekman 

(1990) handled the issue by taking an evolutionary, developmental, and eventually social 

perspective, stating the accountability of our parents and social values.  However, given 

that cues to spot deception are available, it is possible to speculate on two more pragmatic 

explanations. Firstly, it might be the case that people are unable to catch lies because they 

rely on invalid cues. Alternatively, these hints might be too dearth and with a small 

associated effect size leading to poor accuracy (Steringlanz et al., 2019). To deal with this 

question Hartwig and Bond (2011) measured within a meta-analysis the overall 

correlation between deception’s perceived cues and actual cues. After examining 66 cues 

across 153 samples they obtained a correlation of r = .59, namely a moderate to a strong 

association. Taking into account only those studies in which perceived and actual signs 

were measured on the same group of perceivers and senders the correlation raises to r = 

.72 (i.e., strong relationship). Researchers conclude that besides low levels of accuracy 

people usually look for the right cues: that is, incorrect hints are not considered and 

limited detection accuracy can be attributed mostly to the fact that valid cues to deception 

are not always reliable (Hartwig & Bond, 2011). 

One last point to be noted is that cues on which actually people rely when attempting 

at catching lies are different from those they claim to rely on. In the same meta-analysis, 

Hartwig and Bond found that receivers are unaware of hints they pay attention to: when 

people are asked to think about cues they mostly rely on, avoiding eye gaze is frequently 

posited as a first and central hint; interestingly lack of eye contact is only weakly 

correlated (r = .15) to perceivers’ judgment of deceptiveness (Hartwig & Bond, 2011). 

This is consistent with general findings from psychological literature positing that people 

are often misguided when making claims about their internal cognitive processes (Nisbett 

& Wilson, 1977). In sum, it seems that people are not aware of the cues they use to spot 

liars.  

It is now evident that social, developmental, and evolutionary explanations were only 

one part of the entire picture. Alongside our innate sense of avoidance towards admitting 

someone is deceiving us, researchers have highlighted the low external validity showed 
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by deception’s cues: reliable cues indeed exist, although their low generalizability to 

different senders’ mental states and to contextual changes do not allow to always obtain 

sure hints, at least when the detector is a human being. 

1.2. What defines deception and the specific case of lying: why do we lie? 

Lies are ubiquitous in today’s human communication. Ranging from white to more 

malicious lies, people are used to being deceptive when interacting with others. The 

specific biological evolution of our brain has allowed us to become fine liars by 

differentiating our species in the use of deceptive tactics with social manipulation intent 

(Abe, 2009). The size of the human neocortex is certainly and crucially involved in the 

availability of such competencies: in every modern primate’s species, it has been 

observed a positive correlation between the size of the neocortex and the use of deceptive 

communication (Byrne & Corp, 2004; Figure 1.1). 

 

Figure 1.1. Correlation between tactical deception’s frequency (“acts from the normal 

repertoire of the agent, deployed such that another individual is likely to misinterpret what the 

act signifies, to the advantage of the agent”) and volume of the neocortex in different primates’ 

species obtained through stepwise multiple regression analyses. The x-axis shows an index of 

neocortical size, and the y-axis shows an index of deception usage. Independent contrasts were 

used to avoid a taxonomic bias (Byrne & Corp, 2004). 

According to Abe’s definition (2009, 2011), deception can be defined as a 

psychological process by which an individual consciously and deliberately tries to 

convince another person to accept as true what the liar knows to be false. Notably, within 

this definition it is implied that unconscious and mistaken acts of misleading cannot be 

considered a form of deception: for most researchers, a core feature of deception is that it 
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is an intentional and planned act. This statement helps us in stressing the important 

distinction between lying and so-called false beliefs. For instance, a boy that is asked to 

recollect a memory trace concerning a car’s appearance may misremember it, even if he 

is sure that is reporting a true statement. In such a case, the boy’s report is not claimed to 

be a lie (Ceci & Bruck, 1998). 

Another implication of such a definition is that if two people contradict each other, 

this does not directly mean that one of them is lying. How this feature affects criminal 

cases is clear: in a setting in which two people are reporting two contradictory statements 

there is no room to be assured that at least one of them is lying.  It could be the case that 

none of the witnesses is lying but one is misremembering the event (Vrij, 2009).  

The emerging central role of intentionality underlies one more feature of deception 

definition: apart from being an intentional act, deception must be always understood from 

the perspective of the deceiver, and not from the factuality of the report. A lie is 

considered as such when the sender believes that what he or she is saying is false. Thus, 

an actual truth remarkably could be a lie. Moreover, considering the deceiver’s 

perspective entails that a statement that initially was considered a lie might lose its status 

over time (Pickel, 2004). In a study by Pickel (2004), a group of participants were 

instructed to report true or false statements about a movie they had been presented with. 

A week later they were then asked to recall some details of what they had watched. Those 

who a week before were asked to report false statements gave more wrong details than 

the subjects asked to produce a true report. Just the brief report of false statements had 

been enough to change the memory traces that these individuals have ended up perceiving 

as true. 

Lastly, not all researchers are in accordance to include in the deception domain one 

more specific and unusual subcategory: self-deception. It is not uncommon that people 

delude themselves in a way that they become convinced (unconsciously and not 

rationally) about the goodness of a wrong reasoning. People use indeed self-deception 

both as a protective or as an avoiding strategy. Thus, self-deception may have both 

positive and negative consequences (Lewis, 1993). On the one hand, people may ignore 

potentially life-threatening facts (e.g., body symptoms) and convince themselves that an 

intervention is not needed. On the other hand, self-deception may be used to protect self-

esteem. For instance, this strategy would be useful to avoid dealing with the affection 

following being rejected by a potential partner (Vrij, 2009). 

1.3. Cognitive process and brain areas involved in the act of lying 
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After having dealt with deception’s definition, it appears clear how the pure act of 

deceiving has to involve multiple cognitive processes. Different theories are aimed at 

understanding how behavioural and verbal expressions are controlled when telling a lie. 

Even if there are different explanations about how mental processes interact with each 

other when producing a lie, theorists agree on giving a crucial role to executive functions’ 

involvement (Gombos, 2006). Executive functions account for the active management 

and control mechanism of thought, thus they are involved in cognitive activities such as 

directed attention and metacognition, working memory and cognitive inhibition 

(Fernanedz-Duque, Baird & Posner, 2000, Gombos, 2006). In usual situations, liars are 

required to deal with two simultaneous processes: they must build a new trace of 

information (i.e., the lie) while also withholding a factual and accurate trace (i.e., the 

truth). It is assumed that the liar knows which is the actual truth, which leads to a form of 

baseline or predominant response. Crucially, the correct information is expected to be 

communicated not only by an honest subject that is presented with the very same question 

but even by a liar that is distracted or tired. Thus, lying required additional cognitive 

processing that engages the executive and prefrontal system more than a truth-telling does 

(Zeki et al., 2004). As a confirmation of what has been just said, Zuckerman and 

colleagues (1981) argued that lying requires more cognitive effort than truth-telling 

because liars have to maintain simultaneously internal consistency (to be reassured that 

the made-up features of the fabricated story are coherent) and external consistency (to be 

reassured that the fabricated features of the fictional product align with other’s 

understanding). Within the theoretical framework of a cognitive complexity theory, 

Zuckerman assumed that the cognitive workload due to the deception production should 

be usually accompanied by some behavioural and bodily changes, such as pupil dilations, 

longer response latencies and more speech hesitations (Zuckerman et al., 1981).  

Although observing an augmented cognitive load when telling a lie is the norm, some 

exceptions are present: on some occasion, it seems that lying is a no more difficult task 

than telling the truth. For instance, when producing a true statement entails extended 

explanations or detrimental consequences, a lie may be smoother to express than a truth 

(Vrij, 2000). There are confirmations to this assumption coming from the same meta-

analysis by DePaulo and colleagues (2003): they observed specific factors that may 

increase or decrease the effort expected to be put in when producing a lie. The opportunity 

to plan the deceptive statements and the duration of it have been indicated as being 

moderating factors of the cognitive load correlated to deception’s production. In 



8 

 

particular, they reported that having less time to arrange a lie is related to a wider amount 

of cognitive effort and that nevertheless the longer the duration of the deception is the 

more difficult its output will be (DePaulo et al., 2003). 

Developmental psychology studies’ conclusions are yet another evidence of the strong 

involvement of executive functions in deception. Firstly, some theorists have pointed to 

the acquisition of “the theory of mind” (Wellman, 1992) as needed to develop the ability 

to deceive (e.g., Wimmer & Parner, 1983). Theory of mind represents the ability of one 

individual to acknowledge the possibility that one another has different beliefs, desires, 

and intentions from your own one. Studies on deception skills have evidenced that 3-year-

old children lack the ability to deceive compared with 4- or 5-year-old ones (e.g., Peskin, 

1992). This is not surprising due to the perspective concerning the acquisition of theory 

of mind by age of 4. However, the view that the strengthening of deceptive ability is only 

owed to the development of a concept (e.g., theory of mind) rather than other functional 

changes has been questioned. In fact, the positive correlation between high scores on the 

theory of mind task and those requiring executive functions appears to be the actual 

solution: the observed correlation between theory mind “false beliefs tasks” and card 

sorting (that relies heavily on the goodness of executive functions) stresses that executive 

functions may be a prerequisite for the formation of false beliefs (Perner, Lang & Kloo, 

2002). In sum, in children (as in adults), deceptive ability’s maturation is characterized 

by a growth that parallels the development of executive functioning and especially of 

cognitive inhibition, rather than being just associated with the acquisition of a concept 

understanding (Gombos, 2003). 

1.3.1. Cognitive theories of deception 

The first theory that attempted at giving a cohesive understanding of the processes 

underpinning deception was proposed by Zuckerman and colleagues (1981). Within the 

Four-Factor theory, they stressed some characteristics that differentiate liars from truth-

tellers. Firstly, they were assured that generalized arousal is greater when lying, and that 

emotions observed when lying are due to guilt. About cognitive processes, Zukerman’s 

conclusions were yet to be exhaustive: they conclude that cognitive aspects correlated to 

deception are much more complex than those expected during truth-telling and that 

extensive control of verbal and nonverbal behaviours is needed to avoid getting caught 

when telling a lie (Gombos, 2003). 

Later on, the Interpersonal Deception Theory (IDT; Buller & Burgoon, 1996) 

explained deception as a matter of two-way interactive communication. Under this 



9 

 

theoretical framework, the liar is seen as producing a deceptive statement while 

monitoring the target individual for a sign of suspiciousness. In such an overseeing, the 

liar uses the signs coming from the target as tools to adapt his or her behaviour while the 

lie is passing off. Conversely, the target will attempt to catch verbal and non-verbal cues 

with the scope of spotting potential incoming deceptive messages. Spotting a lie may 

result facilitated when the deceiver experiences a cognitive overload: his or her inhibition 

processes (responsible for the concealment of the truth) may become ineffective leading 

to the outflow of more evident cues suggesting deception. Most targets otherwise would 

not usually spot deception. Briefly, IDT theory suggests that deception is a mentally 

taxing activity in which the involvement of executive cognitive resources is crucial: the 

liar exploits a metacognitive regulation and executive attention (Fernandez-Duque et al., 

2000), alongside behavioural and cognitive inhibition (i.e., suppressing nonverbal and 

verbal cues; Buller & Burgoon, 1996). 

The second theoretical framework of interest was developed by Walczyk and 

colleagues (2003) who tested a cognitive-based theory of deception: the activation-

decision-construction model (ADCM) of lying. Three cognitive events are taken into 

account herein, usually occurring in the following order: an activation component, a 

decision component and a construction component (Figure 1.2). The first trigger within 

Figure 1.2. The progressive processes of the activation-decisions-construction model are 

depicted. Its trigger is an input question that is asked or read. As a final step, after recollecting 

all the needed information and context-related knowledge, the lie output is produced (Walczyk et 

al., 2000). 
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this model is the activation of the working memory component that allows retrieving the 

knowledge of the actual truth. The very next event is the decision-making process 

concerning whether (or not) the subject should lie, and how to possibly produce the deceit 

itself. Notably, within the unfolding of these stages, inhibition is required to suppress the 

outgoing of details regarding the truth. As a final process, deception construction requires 

attention to help retrieve information about the social context and those useful key 

elements stored in memory to form plausible lies (Walczyk, 2000). 

The last model considered was proposed by Mohamed and colleagues (2006). They 

presented a model of deception that aims at integrating the cognitive and neural correlates 

related to lying. The deceptive response is triggered by hearing or reading a question, 

others six stages related to mostly distinct brain areas’ activation (that may occur 

simultaneously) follow. These subsequent steps include the comprehension of the 

question, the recall of the events concerning the same question and the judgment and 

establishment of response (at this stage inhibition of preponderant output is included). 

Throughout the unfolding of these steps, the sender may experience senses of fear, 

anxiety, apprehension, guilt, or joy which are an integral part of the final verbal response 

production. Not surprisingly, as Mohamed and colleagues noted, the only stage that may 

differentiate liars from truth-tellers is the one concerning the response planning and, most 

importantly inhibition: both truth-tellers and liars need to understand and store the 

languages input, retrieve memory traces of an event, and produce a verbal response. Thus, 

albeit the verbal contents of lies tend to differentiate from those of truth statements, 

Mohamed and colleagues assumed that the same brain areas are involved in carrying out 

both the two and opposite types of statements. They indicated Broca’s area and the 

precentral gyrus as activating during the verbal response, both in truth-tellers and liars 

(Mohamed et al., 2006). 

By examining the most important model concerning deception cognition the 

prominence of executive processing has been unfolded. Researchers from the lie detection 

domain and developmental and neurocognitive studies emphasize those core features of 

executive functions that are crucial for deception, such as inhibition, attention, 

metacognition, and guidance by the working memory. The proofs concerning this 

centrality are even consistent with the above: by assuming that the access to executive 

processes (i.e., cognitive resources) is limited, it is reasonable to accept that lying become 

increasingly difficult as time goes by and as the deceiver becomes more and more 

cognitively overloaded (Gombos, 2006).  
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1.3.2. Insights into the neuroscience of deception 

Functional neuroimaging studies cannot but be useful means to study the brain 

correlates of deception. Nonetheless, differently from other types of cognitive processes, 

the experimental settings meant for studying deception might finish having an extremely 

low ecological validity. Simulated deception in laboratory settings cannot be viewed 

indeed as having the same cognitive- and emotional-load as deception has in real life. 

However, experimental tasks that attempt at reproducing as much as possible the actual 

processes involved in deception do exist (Abe, 2011). 

As corroborated by the previously discussed cognitive models, it seems that the 

frontal executive system is associated with deception (e.g., Abe, 2009, Christ et al., 2009). 

Areas that have been assumed to play a key role in deception production are the 

dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the anterior prefrontal 

cortex and the anterior cingulate cortex. These regions have indeed been implicated in 

different cognitive processes covering deception; for instance, the dorsolateral prefrontal 

cortex is implicated in working memory-related monitoring, response selection and 

general cognitive control (Rowe et al., 2000; MacDonald et al., 2000).  

The cognitive processes underlying deception are really broad, making it challenging 

to study the actual functions of interest: although fMRI is an essential tool to measure the 

brain activity of deception, its conclusion may lack specificity. In that respect, a robust 

solution is the loss-of-function studies: the observation of the functionality of brain-

damaged neuropsychological patients is an effective aid to avoid making overly general 

conclusions. Abe and others (2009) resolved to examine the ability to tell a lie in 

Parkinson’s (PD) patients; interestingly, some previous works on PD noticed that this 

kind of patient shows surprisingly low levels of deceptive behaviours (Ishihara & Brayne, 

2006; Menza, 2000). Abe and colleagues attempted at evaluating this deficit under a 

different optic: it could be the case that PD patients end up being unable to deceive due 

to pathological changes in their brain, rather than being reluctant to deceive other people. 

This hypothesis proved to be correct eventually. PD patients have indeed difficulty in 

making deceptive responses within cognitive tasks if compared with the standard scores 

of control subjects. Using resting-state 18F-fluorodeoxyglucose (FDG) PET the deceptive 

behaviours’ avoidance was significantly associated with decreased metabolic rates in the 

left dorsolateral and right anterior prefrontal gyrus, suggesting the plausible strong 

involvement of these areas within deceptive communication (Figure 1.3, Abe, 2011).  
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Figure 1.3. Firstly, brain regions showing a significant correlation between scores in a 

deceitful task and regional cerebral glucose metabolism in PD disease are reported. Beneath, the 

scatterplot shows the association between performance in a deceitful task and regional resting 

brain glucose metabolism in PD patients. They show the negative correlation between deception 

task indices and the fluorodeoxyglucose (FDG) -uptake values in both the right anterior 

prefrontal cortex and left dorsolateral prefrontal cortex. In sum, it was highlighted a significant 

negative correlation between the deception task index and the metabolic rates of the two reported 

brain regions. Finally, it is noteworthy to stress that results are masked by the contrast of control 

subjects against PD patients. Thus, these two areas were found to show hypo-metabolism in 

patients if compared to control subjects (Abe, 2009).  

Taking into consideration the low ecological validity of experimental-based 

deception, Greene and Paxton elaborated a unique experimental paradigm for increasing 

adherence to real life: they proposed an fMRI-based experiment in which subjects could 

gain a monetary income by accurately predicting the outcomes of computerized coin flips 

(2009).  Two were the experimental conditions. In some trials, participants submitted 

their predictions in advance. In others, subjects were instead rewarded based on self-

reported predictions made after the flips. This second group of subjects could get 

monetary earnings by fraudulently reporting the accuracy of their predictions. An 

increased prefrontal activity was observed in the delayed-report condition, both in those 

subjects that resolved to be dishonest and in those that refrain from the temptation of 

adapting their predictions to factual knowledge. In the control condition in which the 

possibility of acting dishonestly was null, the (honest) subject did not exhibit such 
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control-related activity. Greene and Paxton agreed that the absence of prefrontal activity 

in honest behaviours is closely linked to an actual absence of temptation, rather than 

active resistance to it (Greene & Paxton, 2009).  

A resulting issue is understanding which is the exact role of the prefrontal cortex 

(PFC) in deceptive behaviour, given that it is too simplistic to interpret PFC activity only 

in terms of working memory or response inhibition. As proposed by Greene and Paxton 

one credible explanation is that activity may underlie the processes of actively deciding 

whether to lie independently from the choice made. For what concern dishonest subjects, 

PFC activity may instead reflect the attempt to resist temptation (Greene & Paxton, 2009). 

With the scope of integrating the findings by Greene and Paxton, Abe (2011) 

proposed to focus even on subcortical structures, such as the amygdala and the ventral 

striatum. Both these areas were found to be activated in neuroimaging studies of 

deception (Abe et al., 2007; Baumgartner et al., 2009). In these subcortical areas, reward-

seeking and emotional regulation for deceptive behaviour may be processed, as well as 

those personality traits that may be assumed to determine honesty or dishonesty. In sum, 

the PFC might play a key role in top-down processes such as evaluating whether to tell a 

lie or not in complex social scenarios. Then, again, the PFC may feature in the output of 

deceptive behaviours which is more demanding than truth-telling in some circumstances. 

Triggering deceptive conduct may be instead achieved in subcortical areas through the 

onset of motivational and morality-related components (Abe, 2011).  

1.4. Drawing distinctions between different types of lies 

Alongside the definition and models conceptualizing lies, scholars have focused on 

understanding the different ways in which people categorize lies (Bryant, 2008). 

Generally speaking, it is accepted to broadly categorize lies in at least two broad 

categories, given that people agree on the existence of some lies that are less severe than 

others (Seiter et al., 2002; Turner et al., 1975): white lies and exploitive lies.  A restricted 

group of lies is even considered acceptable (white lies) because they are trivial or, to the 

extreme, they spare people from being hurt by unnecessary truths. These benign lies can 

be viewed as a “social lubricant” which allows social interactions to evolve smoothly by 

avoiding disagreements and harming either person’s pride or self-image (Saxe, 1991). 

Exploitive lies, on the contrary, are harmful and unacceptable, they are indeed told with 

the scope of hurting someone and taking an advantage of them (Hopper & Bell, 1984).  

Later on, Di Battista (1994) took another perspective in analysing this dichotomy: he 

stressed that the two categories split into lies told just to advantage your own self-interest 
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(trust-violating) and lies told while bearing in mind other’s feelings (tactful or white lies, 

Di Battista, 1994).  

A slightly different, but yet fundamental, approach was followed by DePaulo and 

colleagues (1996) that resolved to divide lies’ taxonomy into three branches: outright lies 

that are total falsehoods, exaggeration or truth overestimation, and subtle lies, which 

include the purposeful omission of details (DePaulo et al., 1996). 

Outright lies (firstly defined by Ekman as falsification, 1997) are a unique type of 

deception in which the information conveyed is completely different from what the sender 

believes to be the truth. Outright lies can be typically encountered in forensic settings 

when guilty suspects consciously deny any involvement in a crime through the mean of 

misleading statements. Contrary to outright lies, exaggerations are lies in which facts are 

just over-or under-estimated. Thus, senders minimize or exaggerate their statements, 

rather than bending the truth per sé. A prototypical example of exaggeration is liars that 

embellish their well-being while presented with an interview (Vrij, 2008, DePaulo et al., 

1996).  

Remarkable features characterize the unique case of the subtle lies that can be viewed 

as literal truths designed to mislead. The smooth-running of subtle lies relies on different 

aspects, but usually, it entails hidden or narrower definitions concerning the matter of 

discussion or the concealing of information: in doing so, the senders may evade the initial 

question or omit relevant details. Not surprisingly, these characteristics make subtle lies’ 

use the most common among the different types of deception, indeed concealing details 

is relatively easy besides being difficult to be detected. In addition, concealments are often 

viewed as being less negative than other forms of lying (Levine, 2001; Levine, Asada & 

Lindsey, 2003), thus liars should face fewer and softer repercussions from lie targets in 

case they are detected: digressing or reporting partially facts is easier to morally justify 

than reporting a comprehensive untruth (Vrij, 2008). 

1.4.1. How do people categorize lies: a study 

Even if lies’ categorization exists, it is noteworthy to stress that this taxonomical 

debate is heavily dependent on an individual’s perception, given that the evaluation of the 

goodness or viciousness of a lie relies on subjective lines of reasoning. This issue was 

dealt by Bryant while aiming to find coherence in lies’ features (2008). He presented a 

series of college students with interviews and focus groups, with the scope of 

understanding how many categories of lies fell in participants’ views (Bryant, 2008). 

Results indicated three main categories: white lies, real lies, and grey lies. Moreover, it 
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was highlighted that people take into account five factors when analysing lies, namely the 

lie’s intention (or motivations), its consequences, its benefits (i.e., whom a lie is intended 

to bring a benefit), the level of truthfulness and its amount of acceptability (i.e., the degree 

under which a lie was defined as permissible by the respondents; Figure 1.4).  

Among the three categories, real lies were posited as the most serious and 

unacceptable form of lies, as they are fabricated with a conscious intention of deceiving 

others and they can cause receivers serious problems. Participants agreed on saying that 

real lies are told by completely fabricating the truth, leading this form of deception to 

have serious consequences and to be described as self-serving and malicious. White lies 

on the contrary were described as the least serious and nonetheless most acceptable: their 

intents are benign, and either altruistic or trivial at times. Participants agreed in stating 

that white lies are commonly used by most people and in many situations, given that they 

are a not harmful form of deception. Lastly, it was possible to acknowledge the existence 

of the third class of lies, namely grey lies: they were described as capturing the middle 

area between real and white lies while being a key solution for filling the gaps across 

people’s ways of reasoning. Two groups resulted to be included in grey lies: ambiguous 

grey lies and justifiable grey lies. Ambiguous ones are lies that are open to multiple 

explanations, it is usual that people interpret them in different ways. Justifiable grey lies 

instead can be viewed as real lies which however can be considered justifiable in certain 

circumstances (Bryant. 2008). 

 

Figure 1.4. Within the table are reported the results based on participants’ categorization in 

which real lies, white lies and grey lies were distinguished using as factors intention, 

consequences, beneficiary, truthfulness and acceptability. All the features of the three types of 



16 

 

lies are taken singularly and described following the discussion of the same factors (Bryant, 

2008). 

1.4.2. The Cognitive-load associated with deception and its relation to lie’s 

features 

As it will be discussed more in-depth later on, one of the focuses of this work is 

catching potential differences between the detection scores associated with different types 

of lies. Two types of stimuli were used within the experimental paradigm of the current 

study, respectively complex images (i.e., images full of details, such as landscapes or 

urban settings) and simple images (i.e., objects or animals placed on a white background). 

Participants were just asked to describe these pictures while being left free to decide if 

producing a deceptive description or a factual one. So far, it is enough to stress that one 

of the assumptions of the current study was to observe the biggest cognitive load in 

presence of a complex figure’s fictional description, differently from what it is expected 

to observe with a simple one. Lying indeed not always requires the same mental effort, 

and several aspects contribute to increasing and influencing this mental load (McCornack, 

1997).  

First, it has been already mentioned that just formulating the lie itself may result in 

being cognitively demanding, given that senders have to monitor their fabrications and 

inhibit the reality of facts. Thus, handling all the details of a complex figure might require 

a wider effort when producing a false statement concerning its description. Moreover, 

liars have to always save in mind their earlier statements, so that their final deceptive 

message will appear coherent while retelling their story (Vrij, 2008). Another aspect that 

increases the mental load of lying is the fact that liars cannot take their credibility for 

granted as truth-tellers do (e.g., DePaulo, Lindsay, Malone; Muhlenbruck, Charlton & 

Cooper, 2003; Kassin, 2005). The reasons behind it are at least two. Primarily the liar’s 

stakes (namely the negative consequence of being caught or the positive consequences of 

getting away) are sometimes higher compared to truth tellers’ ones. Secondly, having to 

strongly account for their “well-acting” and monitoring their demeanour may be as well 

cognitively demanding for liars at times (DePaulo & Kirkendol, 1989). 

Even lies’ features have a strong impact on the amount of cognitive load experienced 

by the senders. For instance, as anticipated, high-stakes lies required an increased effort 

compared to low-stakes ones; the outcomes of high-stake lies usually really matter to liars 

indeed, leading them to experience a bigger cognitive load. In addition, stakes become 

more demanding in presence of self-oriented lies (i.e., lies directly serving the liar in a 
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way that his/her own interest are maximised when truthful statements fail to do so; 

Cantarero, Van Tilburg & Szarota, 2018), and in turn, the higher negative consequences 

that are associated with self-oriented lies translate into experiencing a wider cognitive 

demand (Vrij, 2008). 

Across the three types of lies described by DePaulo and colleagues (i.e., outright lies, 

exaggerations, and subtle lies; 1996), the outright lies result being the most cognitive 

demanding, especially if compared to the simple act of concealing information observed 

when telling subtle lies. During the occurrence of outright lies, senders need to invent 

fictional events and facts while remembering and updating the information that has been 

told, carrying out executive processes involving a deeper intervention of the working 

memory (Vrij, Mann & Fisher; 2006). Telling an elaborate lie is more cognitively 

demanding than providing simple “yes” or “no” answers, since there is much more 

material to fabricate when telling an elaborate lie.  

The same reasoning is expected to be observed when participants of the current study 

had to deal with complex images: it can be assumed to observe a bigger cognitive load in 

such a task, given that complex images require fabricating a lie while dealing with a lot 

of different details. In addition, it has to be stressed that lying is more demanding when 

the lie itself is not well-prepared or rehearsed in advance. During the deceptive task, 

subjects have a few seconds to view and interpret the image while even starting to produce 

a description of it. This situation claims a wide amount of cognitive energy because 

participants have to come up right away with a fictional scenario while hiding any signs 

suggesting their deceptive behaviour. Again, it is hypothesized that even under this 

perspective, complex figures’ description results being more challenging. Indeed, in a 

short amount of time subjects have to process more information and manage details (e.g., 

inhibition of the truth trace) that are way more developed than those characterizing simple 

pictures.  
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2. MODERN APPROACHES TO LIE DETECTION: A SPECIFIC FOCUS 

ON MICRO-EXPRESSION 

2.1. A historical review of the first attempts meant at catching lies  

Mentioned that deceptive behaviours are a common phenomenon inside human 

communication, different disciplines and scientific contexts have nowadays shown 

interest in working on developing increasingly high-performance lie detection techniques. 

However, as it is reported by Ford (2006), the first lie detection approaches have very 

ancient roots: the first method meant at proving the truthfulness of a statement told by an 

accused subject was documented in China around 1000 BC. The person suspected of lying 

was at first requested to fill his/her mouth with dry rice and, just after a while, he or she 

was asked to spit out the rice itself. At this stage, if the rice was found to be dry, the 

subject was indicated as guilty. The reason behind this methodology relied on the 

physiological assumption that experiencing fear or anxiety is accompanied by decreased 

salivation and dry mouth. Nowadays, the works of contemporary authors (e.g., 

Matsumoto, 2009) have highlighted that fear is reflected in an increased heart rate and in 

the cognitive feeling of hopelessness that is accompanied by the sense of dry mouth. 

Nevertheless, it is noteworthy to stress that this symptomatology is not exclusively 

correlated to fear and anxiety: indeed, even disorders such as depression or panic disorder 

has similar manifestation, meaning that dry mouth cannot be used as a precise hint for 

anxiety and fear (and so neither for deceptive behaviour). The lack of specificity and 

scientific-based evidence led to the execution of the majority of prisoners, regardless of 

whether they were guilty or not (Vicianova, 2015). 

Alongside this first reported methodology, other early techniques failed in showing 

scientific-based procedures. For instance, in various European countries, a technique 

known as “the judgment of God” was commonly applied: an accused person claiming the 

truthfulness of his/her statement was requested to go through a specific act. Based on the 

favourable or unfavourable outcomes of this act, the claim was labelled as true or false 

and the accused person was condemned or not. The rationale behind it relied on the belief 

that God would not let an innocent man suffer unfairly (e.g., Apfel, 2001; Sullivan, 2001). 

It was only in the second half of the 18th century that lying (together with delinquent 

behaviour) became the subject of scientific study, thanks to the pioneering studies of 

Franz Joseph Gall. The central idea was the existence of an association between different 

abilities and skull shape; in particular, he perceived the brain as the central organ 

underlying our mental abilities. Thus, the more active parts of the brain can be easily 
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recognized from the contour of the skull, since Gall believed that these areas were more 

convex or concave. Mapping the human skull rapidly became a novel scientific discipline 

that eventually was named phrenology, and its purpose was to look for hints in the skull 

suggesting the psychological faculties and traits of characters (Rafter, 2005). 

Phrenology’s studies had particular success when applied to legal disputes to expose 

which part was lying and, in the field of criminology, it played a key role in spreading the 

belief that delinquent behaviour and lying had to be matters of scientific study. In 

addition, even if the scientific reasoning was not entirely corroborated, the work by Gall 

strengthened the medical idea that the brain of some offenders may be affected by 

pathological alterations. These concepts intervened in reassessing a multitude of 

sentences preventing mentally ill people from being unfairly sentenced on more than one 

occasion (Trovillo, 1939, Vicianova, 2015). 

In parallel to phrenology, graphology started to be considered a useful and scientific 

method of lie detection. Its achievements were based on the observations of the 

peculiarities of handwriting that were interpreted as indicators of personality traits 

(Schönfeld, 2007). However, early on after its spread, graphology was no more 

acknowledged as an appropriate tool for lie detection. On the contrary, it was deemed an 

appropriate procedure for uncovering the authenticity of documents (Vicianova, 2015).  

2.1.1. The polygraph’s methodology 

Soon after the spread of phrenology studies, in 1881 the first modern-like lie detection 

device called Lombroso’s Glove was developed by Cesare Lombroso, who measured the 

blood pressure of accused persons and record it through a graph or a chart. Originally the 

methodology was far from embracing a rigorous scientific-based approach, but 

improvements followed during the First World War thanks to William M. Marston: it 

reached its final shape in 1921 when this device was exploited to record changes in blood 

pressure and in breathing while a potential offender was giving testimony (Trovillo, 

1939).  

Finally, in the 1930s Larson and Keeler worked on and developed a device called 

“Cardio-Pneumo Psychopgraph” which is now known as the polygraph. In the first place, 

this polygraph recorded blood pressure changes, respiratory rate, and changes in galvanic 

skin response (i.e., bioelectric reactivity of the skin). Conversely, modern polygraph 

analyses rely on recent understandings that pointed out the ratio between thoracic and 

diaphragmatic breathing as a sensitive indicator of distress and emotional changes (Lewis 

& Cuppari, 2009). All these bodily changes are measured by the polygraph through the 
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involvement of skin conductance, blood pressure, heart rate and respiration. Notably, the 

above somatic changes are peculiar to states other than lying, making the polygraph’s 

conclusions prone to be misleading and not being exclusively markers of deceptive 

behaviours (Brewer & Williams, 2005). 

Polygraph’s investigation of lies is usually conducted under the shape of two main 

types of test-question: the Control Questions Test (CQT) and the Guilty Knowledge Test 

(GKT). The standard is resembled by CQT which always asks the suspect two types of 

questions: Control questions are usually accompanied by the so-called Relevant question. 

The control questions concern the subject under examination, but notably are not directly 

related to the crime; they are intended to induce arousal and provoke embarrassment and 

make it difficult, to tell the truth. Relevant questions instead concern aspects 

unmistakably related to the suspect’s crime. Finally, the physiological response to both 

sets of questions is compared (Brewer & Williams, 2005). 

The second relevant and frequently used test in polygraphy is the GKT. The guilty 

knowledge is the focus of the investigation, and it is assumed to be acknowledged only 

by the actual offender. All the suspects are presented with a series of similar questions 

that differ in one but yet key aspect resembling the guilty knowledge (e.g., within a 

murder investigation the GKT questions may all concern the murder weapon while just 

one will be the actual one). Innocent suspects should be unaware of the guilty detail, 

meaning that only the perpetrator has reasons to feel threatened by the question involving 

the key: he or she is expected to react more strongly to the guilty trace than any others 

(Lewis & Cuppari, 2009). 

The centrality of guilty suspects’ emotional experience in polygraph examinations 

emerges. Hints of nervousness, fear and emotional upset are expected to differentiate a 

guilty subject from an innocent one. However, the source of concerns regarding the rigour 

of this methodology comes from the evidence that even an innocent suspect might be just 

as nervous as a guilty suspect. For instance, the innocent subject could fear the test results 

suggesting his or her guilt, to the point to consider them as probable outcomes. In this 

regard, the use of a pre-test stands as an effective countermeasure (Bartol & Bartol, 2004): 

the initial interviews with the polygraph examiner are meant indeed for establishing 

rapport with the examined and discussing all the procedures. The innocent subject may 

feel relieved by the understanding that the procedure is effective in revealing the truth, 

making it less likely that he or she will show bodily changes (Lewis & Cuppari, 2009).  
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Briefly, it would be misleading to consider the polygraph as a comprehensive lie 

detection procedure (Lewis & Cuppari, 2009): the polygraph gives back in fact measures 

of physiological responses that overall are the result of many factors that must be carefully 

examined (e.g., examiner training, population tested, and techniques implemented). None 

of the responses identifiable through the polygraph are unique for deception, and neither 

are they always there when deception occurs (Vicianova, 2015). 

2.1.2. Actual cues to deception 

The traditional polygraph methodology has played a key role in framing lie detection 

procedures throughout the past decades, establishing a benchmark for all subsequent 

efforts. However, it is now clear that the physiological cues signalling increasing anxiety 

or general arousal are not foolproof in bringing all the information needed for accurate 

lie detection (Burgoon, 2019; Denault & Dunbar, 2019). 

Even though we do not know how to properly use them, some and more specific 

(compared to physiological ones) cues to deception are available. Getting to know the 

most reliable deception hints is an intriguing question for researchers, law enforcement 

and even for lying-tellers. In a review by Sterngalnz and colleagues (2019) all the meta-

analyses addressing these issues were collected, with a specific concern about how 

strongly it is possible to effectively find distinguishing features between lies and truths 

(Sternglanz, Morris, Marley Morrow & Braverman, 2019). 

Researchers usually group deception indicators in nonverbal and para-verbal cues, 

and content-related cues (i.e., verbal cues). Paraverbal cues are vocal cues that accompany 

speech behaviour, such as pitch pauses (both filled and unfilled), response latencies or 

speech errors. Beyond paraverbal cues, in the auditory channel are also included verbal 

content cues that entail the use of particular word classes, the immediacy or logical 

consistencies of a statement, and those types of details concerning verbal features. On the 

contrary, nonverbal cues are mostly related to the visual domain and can be observed in 

ongoing interactions. Cues such as eye contact, head or hand movements, and leg and 

foot movements are usually ascribed to nonverbal cues (Sporer & Schwandt, 2006). 

Finally, differently from paraverbal cues that include aspects such the voice tone, verbal 

cues or content-related cues are precise characteristics of the wording the senders use, as 

well as general impressions perceivers of the speaker (Sternglanz, Morris, Morrow & 

Braverman, 2019). 

 As concerns paraverbal cues, in a meta-analysis by DePaulo (2003), vocal displays 

of tensions and nervousness are indicated as the most reliable signs of deception (with an 
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effect size d of at least .20): compared with truth-tellers, liars were observed exhibiting 

more vocal tension, speak in a higher pitch and appeared more tense and nervous 

(DePaulo et al., 2003). Sporer and Schwandt went in greater depth within a subsequent 

meta-analysis (2006) in which they analysed para-verbal behaviours as well. In particular, 

they observed that liars use to speak in a higher pitch and took longer to begin responding 

to questions. Nonetheless, they found it evident that moderators affecting the association 

of deception/cues exist. For instance, liars show higher vocal pitch and response latency 

only when their speech has to deal with feelings and not exclusively with facts. In 

addition, researchers noted that the type of experimental setting (different across multiple 

studies), sender’s preparation to lie and degree of motivation has a negative influence on 

the association of para-verbal cues to deception (Sporer & Schwandt, 2006).  

Sporer and Schwandt (2007) conducted an examination of 11 nonverbal signs. Only 

three of these were found to be significantly associated with deception, showing no 

correlation at all with truth-telling: nodding, hand movements and foot/leg movements. 

Going against common sense (Global Deception Research Team, 2006), there was not a 

statistically significant association between deception and avoiding one’s gaze. 

Moreover, similar to para-verbal cues, the resulting associations are heterogeneous and 

subject to changes due to contextual and uncontrollable features. In this regard, the 

content of the lie, the amount of motivation of liars, whether the senders prepared or not 

their statements, the experimental designs, and the operationalization of the behaviours 

were found to affect the significance of the single cues (Sporer & Schwandt, 2007). 

The specific wording the sender use, as well as the general impression perceivers, has 

on the sender crucially help differentiate between truth and lies. DePaulo and colleagues 

(2003) observed that deceptive people usually show less verbal and vocal “immediacy”, 

that is displaying signs of being clear and direct. In their research, liars were labelled as 

less emotionally involved and seemed more uncertain while reporting their statements 

(statements were less plausible, less logical and internally discrepant or ambivalent). 

Liars are not as compelling speakers as much as truth-tellers are: indeed, they used fewer 

details and showed more complaints leading the experimental receivers to get a negative 

impression of them, compared to truth-tellers (DePaulo et al., 2003). 

2.2. Facial expressions and the leakage of real emotions 

 Benefits for the advancement of lie detection techniques have come up from research 

on human facial expressions. It happened well before Ekman that someone addressed the 

study of facial expressions, driven by their prominent and acknowledged relationship with 
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human behaviour and emotions. In particular, the scientific study of facial expression 

began with Charles Darwin’s “The Expression of Emotions in Man and Animals” (1872). 

Inside this framework, Darwin has been a pioneer in proposing that some expressions 

might occur strictly in presence of particular emotions. He was truly convinced that facial 

movements (of expression) reveal the thoughts and intentions of others more truthfully 

than words do, suggesting that true and concealed feelings may be shown on some 

occasions despite effective efforts to hide them. Among other ideas, he originally 

proposed (then elaborated by other researchers, e.g., Ekman, 1994; Izard, 1994) the theory 

that some facial displays of emotion are biologically encoded, wired, produce 

involuntarily and have similar meanings across different cultures: approximately six to 

nine basic human emotions have emerged throughout the years as universally expressed, 

each with its own related facial expression. These emotional states include anger, 

contempt, disgust, fear, enjoyment, sadness, and surprise; in addition, some systems 

include even interest (Izard, 1977), and embarrassment (Keltner, 1995). Secondly and 

more surprisingly, Darwin even acknowledged the existence of muscles standing out of 

voluntary control that might unleash themselves from the efforts to inhibit or mask 

expressions. These muscles were proposed to reveal true feelings through highly 

expressive actions (Darwin, 1872; p.54). 

As Ekman stressed (2003), these Darwin’s ideas are grounded on the foundation of 

the so-called “inhibition hypothesis” that suggests that if you cannot make an action 

voluntarily, then you will not be able to prevent it when out-of-control processes like 

emotion trigger it (Ekman, 2003). To explain this two-process breakdown, it is enough to 

envisage the neuronal pathways that innervate the face and allows it to contract or relax 

muscles. In particular, the motor cortex is responsible for those impulses resulting from 

voluntary effort and meant to elicit a facial expression: the signal is directed towards the 

facial nucleus (i.e., a cluster of neurons located in the brainstem that belongs to the cranial 

nerve VII, or facial nerve) that in turn is responsible for the onset of the movements. On 

the other side, the facial nucleus received input from other lower areas when emotions 

are aroused involuntarily. Thus, each type of expression may depend upon different 

independent neural pathways, as confirmed by neuropsychological clinical reports: 

lesions in the pyramidal systems impair the ability to perform facial movements on 

request, but leave emotional expression intact as evidenced by the possibility of this type 

of patients to smile if amused by a joke. Involuntary and emotional facial actions originate 
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in the subcortical areas of the brain and are otherwise driven by the extrapyramidal motor 

system (Kahn, 1966; Meihlke, 1973; Myers, 1976; Tschiassny, 1953). 

The second implication of Darwin’s inhibition hypotheses goes beyond the simple 

distinction between voluntary and involuntary facial muscular actions. More crucial for 

our deception detection discussion is the notion that if you cannot voluntarily activate a 

muscle, then you will not be able to consciously inhibit its involuntarily flow whilst a 

spontaneous emotional expression (Ekman, 2003). Ekman and colleagues questioned this 

assumption by identifying which facial movements are difficult to move deliberately 

(Ekman, Roper & Hager, 1980). They succeed in eventually identifying groups of actions 

that fewer than 25% of their experimental subjects could voluntarily produce (Figure 2.1): 

by examining videotapes of people being deceptive or telling the truth they were able to 

spot instances in which the activity of these muscles is not inhibited. Ekman would have 

later referred to these muscles as “reliable muscles” because their activation should 

provide leakages of only true emotions, given that they avoid voluntary control 

(differently from those muscles that most people can easily contract; Ekman, 2003). 

 

Figure 2.1. Examples of facial muscles that for most people are out of voluntarily control are 

reported within the table. Each muscle is associated with a specific expression following the 

framework of the “Facial Action Coding System” (FACS; Ekman & Friesen, 1978). In turn, each 

facial expression is associated with an emotion (Ekman, 2003). 

The logic that facial actions that are difficult to make voluntarily should leak 

concealed emotions is logically correlated to the observation formerly made by Duchenne 

(1862). He proposed how to distinguish a smile of enjoyment from a non-enjoyment one, 

by comparing smiles produced through electrical stimulation of the zygomatic major 

muscle, and smiles generated after a man heard and enjoyed a joke (Figure 2.2): despite 

both expressions can be labelled as smiles, only the latter entails the pure act of enjoyment 
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that classically it is expected to feel when smiling. Again, both smiles include activation 

of the zygomatic major, but in addition, the smile elicited when a joke is told is 

accompanied by the orbicularis oculi muscle’s trigger (Duchenne, 1862).  

 

Figure 2.2. Photographs were taken by Duchenne himself while studying the differences 

between a smile of pure joy and one “artificially” elicited. In photos (A) the smile was produced 

by electrically stimulating the zygomatic major muscles. In photo (B) the smile was generated 

after the subject was told a joke. The crucial aspect to note is the exclusive activation of the 

orbicularis oculi muscles in figure (B). The best hint that this muscle is not activated is the failure 

of the eyebrows to lower slightly (Darwin, 1872). 

In agreement with Duchenne, Ekman and colleagues found that just a few people can 

deliberately contract the orbicularis oculi, stressing the idea that Duchenne’s smile (so it 

is called the pure smile after the French neurologist) might underlie the experience of joy. 

Consistently, they observed that Duchenne’s smiles occurred more often when people 

were watching an amusing film rather than gory films (Ekman, Friesen & Ancoli, 1980).  

As shown by the specific features of Duchenne’s smiles, not all of the muscles that 

produce facial expressions are equally easy to control; there are muscle movements 

belonging to the face that very few people can make deliberately. Thus, some muscles 

have been defined by Ekman (1992) as reliable, meaning that they are not available for 

use in false expression: it is indeed impossible for almost every liar to gain access to them, 

being out of voluntary control. However, although they cannot be deployed while trying 

to produce a deceptive feeling, these same reliable muscles are active when the individual 

feels emotions such as sadness or enjoyment. It is for this same reason that Ekman claims 



26 

 

about the need to look for the activity of reliable muscles when dealing with someone that 

is assumed of concealing his or her emotional state (Ekman, 1992). 

2.2.1. Facial Action Coding System 

Research has massively looked for a comprehensive method enabling one to predict 

the presence of emotions within an individual’s facial appearances, independently by the 

employment of machine learning techniques. Among all these tools, the Facial Action 

Coding System (FACS) by Ekman and Friesen (1978) was found to be the most 

psychometrically rigorous and above all, widely used (Ekman, 2003; Cohn, Ambadar & 

Ekman, 2007). FACS theoretically categorizes and measures all the muscular movements 

that can be observed within the face. 

 Ekman and Friesen trained themselves in order to isolate their facial muscle: by using 

EMG needles they wanted to be assured to have included every possible facial movement 

(and muscles, Figure 2.3) in their system. Only thereafter they resolve to stimulate 

individual muscles to learn to control them voluntarily (Ekman & Rosenberg, 2005). The 

selection of facial units was then completed thanks to external observers that were asked 

to notify up to which point they were capable to spot changes resulting from the various 

muscles: if two facial changes could not be reliably distinguished, they were combined, 

regardless of different muscles being involved (Cohn, Ambadar & Ekman, 2007). 
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Figure 2.3. Muscles that are responsible for facial movements are depicted (Clemente, 1997). 

Notably, even if facial events can be described under emotion and non-emotion 

categories, the FACS (Ekman & Friesen, 1978; Ekman, Friesen & Hager, 2002) does not 

claim of being an emotional-decoder system. Rather, it is an anatomically-based system 

for measuring all visually discernible facial movements, on grounds of 44 unique action 

units (AUs, Figure 2.3), as well as several classes of head and eye positions and 

movements (Ekman & Rosenberg, 2005). However, “emotion dictionaries” such as the 

FACS/EMFACS exist in the shape of a computer program for determining whether each 

facial event includes core movements characterizing specific expressions of emotion 

(Ekman & Rosenberg, 2005).  Unlike systems that employ emotion labels to describe 

expression, FACS openly distinguish between facial actions and the inferences that can 
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be drawn upon them. Solely in light of a variety of related but yet external resources, such 

as the “FACS interpretative database” (Ekman, Rosenberg & Hager, 1998), an emotion-

based conclusion can be done. Thus, although remaining an inferential step extrinsic to 

FACS, it is possible to combine each AU with an emotion-specified expression (Cohn, 

Ambadar & Ekman, 2007). 

Every single AU is labelled by a numeric code, the designation of which is completely 

arbitrary. There is not a 1:1 correspondence between muscle groups and AUs: muscles 

can indeed activate and contract in different ways and directions producing a really broad 

group of actions. An example is the frontalis muscle which contraction of the medial 

portion raises the inner corner of the eyebrows (i.e., AU 1), while contraction of its lateral 

portion raises the outer brow (i.e., AU 2; Ekman & Rosenberg, 2005).  

FACS entails 9 AUs in the upper face (Figure 2.4) and 18 in the lower face, with the 

addition of 14 head positions and movements, 9 eyes positions and movements, 5 

miscellaneous AUs, 9 action descriptors (i.e., movements lacking of anatomical bases), 9 

gross behaviours and 5 visibility codes. Apart from some exceptions, these AUs are 

organized by region of the face and each has both a numeric and a verbal label. AUs from 

the head and eye positions, amongst others, not rarely are omitted in FACS scoring, 

regardless of growing evidence about their relevance to the interpretation of facial 

expression and emotions. It is common that similar facial movements, such as smiling 

(AU 12), vary in meaning coherently with their temporal coordination with head motion. 

By way of example, in embarrassment smile intensity increases as the head moves 

forward, whereas a decrease in intensity when the head moves back toward frontal 

orientation (i.e., negative correlation, Cohn et al., 2004, Keltner & Buswell, 1997).  

Even combinations of AUs are worth considering. They occur as additive or non-

additive, depending on whether the appearance of each AU is independent: in non-

additive combinations, AUs modify each other’s appearance when they are held 

simultaneously. To make it clearer, non-additive combinations are similar to co-

articulation effects happening in speech, in which one phoneme modifies the perceived 

sound of those with whom it is concurrent. This is what takes place when AUs 1 + 4 occur 

in sadness (Darwin, 1872). AU1 alone is equal to inner eyebrows pulling upward, while 

in AU4 alone eyebrows are pulled together and downward. Conversely, when these two 

AUs are concurrently AU4 modifies by presenting itself as eyebrows still pulling together 

but rising: the final combination translates to an oblique shape of the brow that causes 

horizontal wrinkles to emerge in the forehead’s centre (Cohn, Ambadar & Ekman, 2007). 
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Figure 2.4. Action units of the facial action coding system belonging to the upper face are 

reported (Ekman & Friesen, 1978). In addition, it is reported the associated interrater agreement 

for each AU. They are calculated using coefficient kappa (Sayette et al.,2001) which controls for 

chance agreement. (adjusted from Cohn, Ambadar & Ekman, 2007). 

Crucial within FACS’ framework is the scoring of AUs. Different degrees of freedom 

exist concerning the level of detail with which AU coding is performed. Generally, a 

major coding dichotomy is considered between the mutually exclusive coding and the 

combined one. In selective coding, only predetermined AUs are coded, while others are 

completely ignored. Conversely, in comprehensive coding, each AU (found in a specific 

and chosen segment of facial behaviour) is considered. Both approaches have advantages 

and disadvantages, and usually, the decision of which one to choose requires the precise 

examination of the research question. For example, in research that is intended to 

understand whether specific facial patterns standing for embarrassment exist, it might be 

needed to comprehensively code video frames of facial behaviours during which subjects 

report embarrassment (Cohn, Ambadar & Ekman, 2007). Today it is known that 
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embarrassment is associated with a particular AUs’ sequence (i.e., AU 12 followed by 

AU 24 and then AU 51 + AU 54); considering just a subset of AUs would have rendered 

impossible the discovery of this pattern (Keltner, 1995). 

Regardless of employing selective or comprehensive coding, examiners can 

determine the level of detail of each AU. Leaving aside the rudimentary coding answering 

just if an AU is present or absent, coders usually pay attention to the intensity or strength 

values of the actions. The value scale is classically divided into five levels of intensity 

coding (A, B, C, D and E) where A is the least intense movement (a trace) and E is the 

maximum strength one. A drawback of this coding is the subjectivity of the processes, 

that is the guidelines for intensity scores rely on the examiner’s assessment criteria: the 

issue becomes particularly relevant for mid-range intensities because it is required major 

effort to evaluate and establish acceptable levels of reliability (Cohn, Ambadar & Ekman, 

2007).  

Moreover, AU scores cannot be always quantified in singular terms. AUs are often 

pre-coded into defined patterns and in some instances can independently linger and merge 

in the background. This evidence raises the occasional need of considering a set of 

singular AUs as a whole while scoring them. In doing so, a group of AUs overlapping in 

time or appearing to define a perceptually meaningful unit of facial movements can be 

considered with a view of a single display (or as an event, Oster, 2001). This approach is 

adequate from the perspective that facial behaviours do not occur in a continuous fashion 

but rather as events that typically show themselves as discrete episodes. AUs that take 

place together are related to some extent and form an event (Oster, 2001; Oster et al., 

1996).  

Finally, researchers do not always agree on how to define an event. One solution 

usually adopted is to define as events those combinations of AUs that are known to co-

occur:  remarkably co-occurrence rates are lacking and often are population-specific, 

making it difficult to find coherent data. Secondly, events are often involved in those 

studies that look for AU combinations that are commonly associated with an emotion, 

even though this approach is potentially prone to violate the logic underlying FACS, 

which is to keep description separate from inference: works that have used event coding 

in such a way have typically failed in reporting the basis on which they define an event, 

ending up to rely more on judgments than on an evidence-based approach (Cohn, 

Ambadar & Ekman, 2007). 
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2.2.2. What are and why study micro-expressions when dealing with deception 

detection? 

Reliable muscles’ importance for deception detection can be easily ascribed to the 

early discovery of micro facial expressions. Ekman alongside Friesen (1969) found out 

for the first time about their existence while examining a couple of films involving 

statements of their psychiatric patients. The examination of a singular clinical interview 

paved the way for the following understanding: Ekman used a slow-motion projection to 

examine an interview of an old patient that successfully concealed her intention to commit 

suicide. In freeze-frame, the true emotion of anguish came out in the form of a brief-

expression barely perceptible to the untrained observer. Ekman and Friesen assumed that 

this micro-expression, even if subtle, had to be a sign of repressed or deliberately 

suppressed emotions (Ekman & Friesen, 1969). As anticipated, the theory behind micro-

expressions was then developed by positing that when people try to mask their true 

emotional state, expressions coherent with their real state will emerge briefly on their 

faces. Some facial muscles (i.e., the reliable muscles) usually avoid voluntarily control, 

and some automatic and uncontrollable displays of emotion will produce briefly 

detectable “leakage” (or micro-expression; Ekman, 1985; Jordan, Brimbal, Wallace, 

Kassin Hartwig & Street, 2019). These micro-displays may differ in their nature, ranging 

between fragments of a squelched, neutralized, or masked display and full muscular 

movements associated with macroscopic expression of affection (Ekman & Friesen, 

1969). Coherent across all micro-expressions is instead the span: they flash on and off 

within the face’s muscles in less than one-quarter of a second. Additionally, to their short-

lasting span, micros prevent untrained people from being able to detect them (Ekman, 

1985). 

After stating their importance, it is noteworthy to stress that understanding the nature 

and meaning of micro-expressions might be controversial at times: micros can emerge in 

cases of both voluntary concealment and unconscious emotion repression, and no features 

intervene and help us to properly categorize them. Ekman himself stressed that micros do 

look the same in both concealment and repression (Ekman, 2009). Otherwise, the context 

in which the micros occur is the only significant means to catch the meaning behind the 

same micro-expression. Assuming that micro-expressions arise in a subject’s face while 

being examined on his or her statements, 4 contextual aspects have to be considered. First, 

the nature of the conversational exchange (1) during which the subtle expression emerges 

has to be examined, as well as the conversational characteristics (2) (e.g., it is a first 
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meeting, a casual conversation or a formal interview etc.) and the information about what 

has transpired in this conversation up to know (Ekman, 2009). A third issue is the speaker 

turn (3), which is the exact moment in which the micro shows up: it may occur 

respectively when the subject being examined is speaking or when he or she is listening. 

Finally, the last contextual feature is congruence (4): it resembles whether the emotion 

displayed by the micro-expression fits or contradicts the speaker’s simultaneous 

statement topic, voice tone, gestures, and postures. The same reasoning applies when the 

person is listening, but then the focus shall be on the evaluator’s demeanour (Ekman, 

2009). 

All the addressed contextual aspects have also an influence on the potentiality of 

detecting a lie through the mean of micro-expressions, although remarkably it has been 

mentioned that micro-expressions are nothing more than signs of concealed or subtle 

emotional behaviour. Conversely, situations in which the aid of a lie detection system 

would be beneficial are most of the time unrelated to emotional experiences: for instance, 

in criminal settings, a potential lie would hardly entail what emotion is being felt at the 

moment, but rather it might regard an action. Nevertheless, although this theoretical gap 

between contexts in which deception is frequent and micros is big, it is not misguiding to 

admit that emotions can become involved in lying processes regardless of the topic of the 

deceptive statement. 

2.2.3. Evidence and pitfalls in the relationship between micro-expressions and 

deception 

Almost every model of lie detection agrees on recognizing that cues to deceit are 

caused by not only cognitive factors but also by emotional factors, such as guilt or 

distress, fear, or even emerging experiences of enjoyment (Zuckerman et al., 1981). 

Reasons behind the experience of these emotions are proposed to take place when the liar 

feels fear of getting caught, distress or guilt at telling the lie, or even contempt or disgust 

for the target of the lie (Frank & Steven, 2013). Thus, to the extent that the deceptive 

processes generate emotions, it is plausible to predict that signs of the aforementioned 

emotions may betray a lie (Frank & Ekman, 1997). Prototypical situations in which a liar 

might be emotionally-loaded are those in which the stakes are really high for getting away 

with it. Unfortunately, studies that aimed to verify the existence of these emotional-

behavioural cues have commonly overlooked the need of including high-stakes lies. It is 

as such that the most comprehensive meta-analyses concerning behavioural cues 

(DePaulo et al., 2003) have failed to find a significant effect size for some (crucially, not 
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all) facial clues of lying (Frank & Svetieva, 2015). Frank and Svetieva (2012) observed 

that if the high-motivation (a stand-in for stakes) studies were separated from the others, 

a stronger effect for emotion-based cues was evident. 

Several studies that employed systems for the taxonomy of human facial movements, 

such as the Facial Action Coding System (FACS), have succeeded in showing that facial 

expressions of emotion can suggest deception. A significant portion of these facial cues 

have been classified as micro-expressions and that is particularly true for studies featuring 

individuals lying about their feelings. An example comes from Frank and colleagues 

(2014): they asked participants (i.e., members of politically active groups) to choose 

whether to take a $100 check made out to one of their rival parties. Participants were told 

that they were going to be interviewed by trained and expert subjects in the field of lie 

detection: getting caught lying (denying oh having earned anything) while accepting to 

take the money was translated into a monetary loss for their group, and in a mutual 

increase for their rivals. Conversely, in case they lie and get away with it, they were 

rewarded with even more money. Eventually, the results showed that 72% of the 132 

participants could be rightly classified as being deceptive or honest by the presence or 

absence of negative emotional experiences such as fear, distress contempt or disgust. 

Furthermore, among those emotions that betrayed lying statements, 51% lasted 0.5 s or 

less, while 30% of them were even less than 0.25 s.  

A final note that may stand as a source of concern is that an equal rate of micro-

expressions occurred in those truth-tellers that showed these same negative emotions 

(Frank et al., 2014). As such, they were classified under the light of false positives, 

proving right other studies’ conclusions that highlighted that micro-expressions might 

occur even in honest scenarios (Porter et al., 2012).  

However, Frank and colleagues were able to further demonstrate how these subtle 

expressions act of pure involuntary nature. By the mean of the last questionnaire, 

participants were asked about which strategies they used to fool the interviewer: those 

liars that stated to have paid attention to their face’s appearance by using the strategy for 

managing their facial expression showed exactly the same rate of negative-betraying 

emotions as those who did not report having tried to deliberately manage their 

expressions. Conversely, truth-tellers that stated they employed a face-monitoring 

strategy showed a significantly less amount of these emotional expressions (18%) than 

those who did not report using such a strategy (35%). These results were interpreted in 

the light of a hard time that liars may experience when concealing micro-expressions: this 
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aspect was further questioned by specifically instructing lying subjects to hide their 

expressions of fear and happiness while being interrogated. Although participants 

succeed in decreasing the duration and intensity of their facial expressions, yet almost all 

of them showed signs of these emotions (Frank et al., 2014, Hurley & Frank, 2011). 

The idea discussed earlier concerning the occurrence of micro-expressions even 

within honest statements highlights how easily might be to mistakenly draw a conclusion 

upon the onset of these short-lasting expressions. Ekman himself addressed the issue by 

mentioning the so-called Othello’s error, who accidentally assumed that Desdemona’s 

expression of fear suggests betrayal: Othello, as everybody who falls in the error named 

after him, failed to understand that emotions do not tell you their cause. The fear of being 

disbelieved looks the same as the one experienced when lying, and it is commonly 

experienced even by truth-tellers when presented with a high-stake interview (Ekman, 

2003). Only through further questioning, it is possible to realize whether the concealed 

fear is the result of feeling extremely under examination or concerns the anguish of being 

caught. As a result, behavioural cues such as micro-expressions can be viewed in terms 

of “hot spot”, rather than signs of lying: they mark where it is needed to investigate 

through the mean of questioning and background checks. Alternative explanations have 

to be taken into account regarding why the behaviour occurred so that they might be 

excluded before highlighting the presence of a lie (Ekman, 2009).  

Another and last source of concern comes from the evidence that not everyone who 

suppresses or represses an emotion shows a micro-expression: in all the research studies 

conducted by Ekman (e.g., 2009) micros have been observed in about half of the people 

who voluntarily lied within the experimental settings. If proven right, this conclusion 

would undermine the existence of differences between genuine and deceptive displays, 

even if some clarifications have to be posited before evaluating those results. 

To seek a solution, it has to be acknowledged that up to now one of the biggest issues 

related to the use of facial expressions to detect deception might have been the exclusive 

engagement of an encoder-decoder perspective (Zloteanu, 2020). First of all, under this 

view poor detection accuracy is only explained in terms of a scarcity of cues available or 

the inability of an examiner to detect them. Unfortunately, both explanations do not take 

into account the validated conclusion that some of those muscles defined as “reliable” 

can actually be activated in the absence of genuine affect too: all the different arguments 

for liars being unable to produce genuine-looking expression of emotions relies on the 

Duchenne smile that, in some occasions, has been proved wrong (Zloteanu, 2020). For 
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instance, Krumhuber and Manstead (2009) worked on facial action units’ activation in 

situations where individuals were feeling respectively genuine or faked happiness. Going 

against their expectations, not all instances of genuine happiness resulted in the facial 

activation of those assumed reliable muscles. In addition, recently Gunnery and Hall 

(2014) showed that a small - yet remarkable - amount of individuals can deliberately 

generate genuine-looking smiles while being no less perceived as more persuasive 

(Zloteanu, 2020). 

In brief, accounting for only an encoder-decoder (i.e., emotion-based) perspective is 

not enough. It has been highlighted that across all the available facial cues (that are 

assumed to be there in most but not all, lying contexts) it is necessary to discriminate 

those that are authentic and may suggest veracity: encoders have been found imprecise 

while confronting with these tasks (Jordan et al., 2019), suggesting the need of employing 

new and more rigorous methodologies. Liars are, on many occasions, good and strategic 

communicators that at times can be capable of supporting their behaviour with deceptive 

and manufactured emotional cues, rendering ineffective human-based analyses of 

emotional expressions (Zloteanu, 2020).  Therefore, standing as the focus of the current 

work, machine learning techniques are presented in the next paragraphs as a useful tool, 

given that they have displayed promising scores performances in detecting whether a 

subject is lying, both by employing just facial cues or multi-modal approaches. 

2.3. Human beings’ performance and the need for an artificial detector of micro-

expressions 

Given that FACS was developed as a tool for measuring the activity of facial muscles, 

it appears reasonable to employ it in an attempt to extract micro-expressions, and in turn 

to detect deceits. FACS can effectively be used as a low-level feature extraction tool, 

standing as a starting point for a human-based detection of micro-expressions (Takalkar, 

Xu, Wu & Chaczko, 2016). Furthermore, studies supported the notion that people can be 

trained to detect micro-expressions, and that training usually persists over time (Hurley, 

2012). Frank and colleagues (2014) observed that training procedures can intervene and 

lead to greater than chance-level improvements. Usually, pieces of training cycles are 

based on the “Micro Expression Training Tool” (METT) that was developed by Ekman 

(2002) with the purpose of training people to improve accuracy in recognizing micro-

expressions. The effectiveness of METT has been corroborated by different studies (e.g., 

Frank et al., 2014; Matsumoto et al., 2012), showing that training in micro-expressions 

translates into statistically significant improvements in the abilities of people to detect 
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concealed emotions when presented alongside real-time displays of subtle expressions. 

Better performances in the ability to detect deception have been claimed too (Frank & 

Svetieva, 2015). 

If on one hand, much literature has proved that the METT is able to increase the 

recognition of covert facial expressions, on the other it seems too early to view it in terms 

of aid in detecting deception. Within an experimental paradigm, Jordan and colleagues 

(2019) made their participants undergo the advanced module of METT: their scope was 

to evaluate if undergoing this procedure would lead to better outcomes in detecting 

deception. Experimental participants’ scores were then compared with those of a control 

group and with those of a fictional training-procedure group (i.e., “Interpersonal 

Perception Task”). The deception detection task was conducted by asking the participants 

to evaluate videos containing respectively truth and lies statements: the stimuli were 

collected from different and preceding deception detection studies (Jordan et al., 2019). 

Overall, the results showed that belonging to the METT group does not affect the scores 

of detection: the overall accuracy was slightly below the chance level of 50% and no 

statistically significant differences were found across the scores of the three groups 

(Figure 2.5), thus not supporting the claim that a training procedure might ameliorate the 

human being’s capacity to detect deception, besides an improvement in the detection of 

micro-expressions was observed (72% of the participants in the METT condition reached 

the 80 % threshold of accuracy in detecting micro-expressions) (Jordan et al., 2019). 

 

Figure 2.5.  The participants’ percentage scores concerning their lie detection accuracy are 

displayed by the type of training underwent (METT: micro-expression training toll, IPT: 

interpersonal perception task; No Training: control group) and different video sets (collected 

from previous studies). The differences between the scores obtained in different sets of videos 

were explained in terms of content (i.e., relevant to security screening, missing person, and past 

transgression); speakers; and stakes (Jordan et al., 2019). 



37 

 

This study by Jordan and colleagues failed to find any correlation between the ability 

in spotting micro-expressions and deception detection. Other studies that have been 

already mentioned (e.g., Porter, Brinke & Wallace, 2012; Porter & Ten Brinke, 2008) 

have come to the same results, claiming that even if micro-expressions may occur, they 

are rare and emerge both in presence of truth-telling and lying. People (both trained and 

not trained) have a hard time detecting them because the time duration of micro-

expressions is 0.5 s at low intensity (Yan, Wu, Liang, Chen & Fu, 2013). Moreover, 

highlighting and distinguishing authentic facial cues from non-authentic is another key 

overlooked aspect of lie detection: micro-expressions do not always present themselves 

under the same shape, and not rarely people may express them in different ways. Some 

individuals are capable of contracting muscles that other individuals cannot, suggesting 

the need to look for subtle details that even trained subjects may not take into account.  

It is in this light that in the current work machine learning system have been 

considered as the most logical solution: artificial systems can analyse facial-expression 

dynamics at a much higher temporal solution and with a more complex description than 

it was feasible through a human-based and manual coding procedure (Bartlett, Littlewort, 

Frank & Lee, 2014). And to that end, studies in the literature have already shown how 

promising scores machine learning systems may make available for the deception 

detection field. 

2.3.1. How artificial intelligence can be beneficial for lie detection’s 

advancement 

The majority of the most up-to-date strategies meant for improving lie detection focus 

on techniques that involve artificial intelligence (AI) approaches. Within an AI system, 

the human examiner is often able to play a less visible role, making the evaluation 

processes autonomous and less likely to reach biased conclusions. AI allows indeed to 

extract higher-level features, by exploiting non-visible structures in complex input 

distributions that otherwise would remain undetectable, such as light changes in the pitch 

of the voice or subtle muscle movements within the face (Oravec, 2022; Bhamare, 

Katharguppe & Nancy, 2020). 

Another major concern of many lie detection procedures that can be addressed 

through AI is the possibility of liars escaping from being identified thanks to faking and 

coaching (Alliger & Dwight, 2000): with some of the AI data collection systems, these 

faking efforts are made more difficult due to the uncertainty of how, when and what data 

are being investigated. The modalities for acquiring data have tremendously increased far 
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beyond our senses’ abilities and now also involve tools that recollect and gain evidence 

even without the subject’s proximity or consent. For instance, this is what happened with 

instruments like eye scanning (i.e., used to collect eye blinking patterns) or webcams. 

Other approaches such as fMRI, even though they are invasive, are currently providing 

complex dataset that requires machine learning to be interpreted, potentially diminishing 

the transparency of the system involved (La Tona et al., 2020). 

Recently, AI researchers have invested resources even in developing “corpora” of 

training examples to be used in machine learning. It is the case of Takabatake and 

colleagues (2018):  they worked on the creation of a “liar” corpus that collects inside (and 

set for analysis) various human expressions typical of situations that reportedly involve 

prevarications. Forms of biases can be included as selected stimuli and skewed in 

different dimensions, such as detailed racial or gender orientations (Tambe et al., 2019). 

Unfortunately, issues might still occur; training samples are often created through social 

media scraping, crowdsourcing, and other processes that undoubtedly can introduce bias 

in such a way that the developers might not even take into account (Oravec, 2022). 

That being stated, maybe the greatest advantage brought by the exploitation of AI 

systems is developing new lie detection-related constructs that otherwise would be 

difficult to utilize or even challenge. AI enables the craft of complex constructs such as 

those related to micro-expressions and deceits biomarkers in general.  For what concerns 

micro-expressions, machine learning capabilities for analysing a large amount of data 

concerning facial expressions have been constructed with the scope of determining which 

subtle facial changes and combinations of physical hints are correlated with deception 

(Oravec, 2022). An early and prototypical effort that tried to involve AI in lie detection 

by the mean of micro-expressions is the Silent Talker (Kennedy, 2014): it consists of a 

digital video camera hooked up to a computer that records a subject while he or she is 

being presented with an interview. The AI involved in the system identifies the non-verbal 

micro gestures of the interviewee: these are unconscious responses that the Silent Talker 

picks up to determine whether the subject is lying or not. Thus, AI can intervene in 

fragments of lie detection analyses by rendering conceivable the collection and 

observation of cues that otherwise would remain undetectable, making it even more 

challenging to look for innovative deception-suggesting evidence.  

Various directions have been followed within the AI-deception dichotomy. Features 

coming from videos, audio and text material have all been considered when attempting 

to work on automatic deception detection. By stating that up to now none of these 
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frameworks has yet revealed itself as entirely satisfying, it is still wise to urge that some 

research paths are more promising than others. 

2.4. Micro-expressions, machine learning and lie detection: a review of the 

literature 

In the following, an exhaustive review of the studies that exploited machine learning 

to detect deception through the analyses of facial micro-expressions is reported. 

Owayjan and colleagues (2012) were among the first to propose a lie detection system 

that automatically extracts facial micro-expressions. They employed a high-speed camera 

(acquiring 25 frames per second) to capture participants’ faces. The procedure was carried 

out thanks to a multi-core processor (Embedded Vision System, “EVS”), meant to run 

the detection algorithm programmed with the NI LabVIEW Operating system. As soon 

as participant interviews were conducted, the EVS started to convert the videos in the 

sequence of frames to facilitate the analysis. Secondly, geometric-based dynamic 

templates were applied to specific parts of the face to mark key features of the 

expressions. The program started by reading one frame at a time and simultaneously 

extracting frames by the flow of two parallel loops. In particular, the second loop was 

meant to process the saved image according to predefined templates (Figure 2.6 a). All 

the templates were predefined using a Vision Assistant and represented specific areas of 

the faces; every time one of them was detected the program measured nine different 

distances (Figure 2.6 b) between crucial points found within the template itself (e.g., the 

horizontal length of the mouth). The distances were then separately saved in unique 

arrays. Eventually, the total arrays correlated to all groups of points were compared in 

accordance with preprogrammed rules derived from facial appearances of emotion 

(organized through the FACS system). 

  

Figure 2.6. (A, image on the left) reports the template detection on the face of an experimental 

subject, whereas (B, image on the right) reports the distances shown on the same face. In general, 

Templates represent the following areas: the left and right edges of both eyebrows, the left and 
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right edges of the eyes, the left and right edges of the mouth, and the cheeks (Owajyan, Kashour, 

Haddad, Fadel & Souki, 2012). 

The combinations stored in the arrays and obtained by comparing distances between 

different frames lead to the generation of a basic pattern of expression (i.e., anger, 

contempt, disgust, fear, happiness, joy, sadness, and surprise): crucially, each basic 

expression had specific points measurements and distances combination. Finally, the 

program iterated over the expressions coded in all the arrays and noted the duration of 

each expression per se: if expressions were repeated less than 5 times consecutively it 

was marked as micro-expression. Owayjan and colleagues assumed that the system was 

capable of detecting deception based on whether a micro occurred: when the system was 

tested on four subjects presented with a questionnaire containing both control and relevant 

questions the recognition accuracy for lying statements was 85% (Owajyan, Kashour, 

Haddad, Fadel & Souki, 2012). 

Later on, Su and Levine (2014) paved the way for the analysis of real case scenarios: 

they collected a database (standing as the first-ever made) consisting of high-stake 

deception video clips from real-world situations (i.e., 324 video clips of people asking for 

help to find missing relatives or potential murders that killed them). As Owayjan and 

colleagues, they assumed the existence of emotional leakages of deceits and found a series 

of AUs that in their opinion were indicators for distinguishing truth-tellers from liars in 

high-stake situations. The method they proposed consisted in looking for the AUs 

depicted in (Figure 2.7) to discern deceptive and honest subjects. 

 

Figure 2.7. AUs and their combinations are reported that can distinguish between truth-

tellers and liars when experiencing sadness and happiness (Su & Levine, 2014). 

Through the Pittsburgh pattern recognition software (PittPatt), three primary facial 

land markers were noted in every and single video frame: left eye, right eye and nose 

base. Faces were then spatially normalized, and nine facial areas were located according 

to an anthropometric face model. All the subsequent analyses were conducted in each 

region of interest (ROI) for each frame of a unique video. Different methodologies were 

then applied to collect eye blink processes, eyebrow motion, wrinkles, and mouth motion. 
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After these procedures, each video was decomposed into nine temporal sequences of 

specific face regions and for each region, one or two feature vectors (events) were 

calculated. Finally, each feature corresponded to a facial AU. Noting that some AUs are 

likely to occur simultaneously, secondary features (i.e., congruence of events) were 

computed too.  

To create a coherent representation of every video, Feature Temporal Volumes 

(FTVs) were considered and viewed as basilar descriptors of a video clip: taking into 

account the temporal context surrounding the frames was a key aspect in achieving a 

compact representation of facial movements. 

Having a look at the results, liars were considered as the positive sample and the 

accuracy of spotting them was accounted as a true positive rate, on the contrary, spotting 

truth-tellers was accounted as a true negative rate. On average, the accuracy percentages 

reached 74.52%, posing the first step for an automated attempt in the literature at proving 

the veracity of facial cues of deception (Su & Levine, 2014). 

Bartlett and colleagues (2014) tested both human observers’ and computer vision 

systems' abilities to categorize real and fake emotional expressions of pain. Videos of 

people experiencing pain were collected inside the experimental paradigm by asking 

single subjects to submerge their hands in cold water and recording their experiences. 

Human detectors’ scores of real against fake pain did not diverge significantly from 

chance level: making people follow a training programme just increases slightly the 

performance by around 60%. 

Videos were then presented to a computer vision system called the Computer 

Expression Recognition Toolbox (CERT). CERT automatically detects frontal faces in 

the video and computes every frame with respect to a set of continuous dimensions, such 

as facial muscular actions through the employment of FACS. Unlike manual coding, 

CERT gives an instantaneous output of facial-movements information, adding even 

facial-expression intensity and dynamics at temporal resolutions. 

Bartlett and colleagues used a pattern-recognition approach (Figure 2.8) to evaluate 

the detection performance of CERT: all the 60s videos were used as input for the system 

one at a time. A set of dynamic descriptors was extracted from the output for each of the 

20 AUs recognizable by CERT: one set of the descriptors described facial movements 

event whereas the second one described the intervals between events. Next, a classifier ( 

support vector machine, SVM) was trained to discriminate between real and fake pain 

using the described descriptors. The SVM combined information from multiple AUs 
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through a sequential feature selection procedure that started from the AU that gave the 

best individual classification accuracy. Afterwards, AUs that gave the best performance, 

when combined with the previously selected AUs, were given to the model.  

Finally, the computer system was tested on one video at a time: it achieved a detection 

accuracy of 85%. Conducting a more in-depth analysis it was possible to extract the most 

informative AUs for differentiating real pain from faked one: mouth opening (AU 26) 

was the most informative, followed by lip raise (AU 10), lip press (AU 24), and brow 

lower (AU 4). 

  

Figure 2.8. Videos concerning facial movements were processed by the CERT alongside the 

magnitude of 20 facial actions over time. The CERT’s output on top resembles pain, whereas the 

bottom one is the representation of the same three actions but related to fake pain. The dynamics 

differ. As a next step, the expression dynamics were measured with a bank of eight temporal 

Gabor filters and reported in terms of bags of temporal features. These data were given to a non-

linear SVM classifier that was planned to categorize real and fake pain. Classification parameters 

were learned from twenty-four video samples of real/fake pain experiences (Bartlett et al., 2014). 

A subsequent and cutting-edge study was developed by Pérez-Rosas, Abouelenien 

and Mihalcea (2015). The study was presented by the authors themselves as the first 

attempt at building a multimodal system for detecting deception: differently from the 

previous studies, Pérez-Rosas and colleagues resolve to analyse more than one potential 

cue for deception, underling the importance of considering more than just one evidence 

when dealing with deception detection. Moreover, the study was conducted on a new 

database (121 video clips) concerning real-life trial data using text and gesture modalities. 

The veracity judgments were interpreted in light of the court verdicts. 
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Both verbal and non-verbal behaviours were analysed and annotated to understand 

their relationship with deception. Non-verbal features concerned those gestures (facial 

expressions and hand gestures were the focus) observed during the interactions in the 

video clips. The gesture annotation was conducted with the MUMIN coding system 

which is a standard multimodal annotation scheme for interpersonal interactions. Within 

the MUMIN system, facial displays consist of several facial expressions associated with 

overall facial expressions, eyebrows, eyes and mouth movements, gaze direction, and 

head movements too. Furthermore, the multimodal annotation was performed by two 

annotators using the Elan Software: annotators were asked to identify the facial displays 

and hand gestures that were most frequently observed during the clip duration. At the end 

of the annotation, it was possible to derive the non-verbal features that were created when 

a gesture was observed during the majority of the interaction. On the other hand, verbal 

features consisted of unigrams and bigrams derived from the bag-of-words representation 

of the video clips transcripts: features were encoded as words or word pairs frequencies 

and excluded if their frequencies were lower than 10. 

After checking all the observable differences between the deceptive and truthful 

groups, further examinations were conducted to check the performance of the extracted 

features with a machine learning approach. Two classification algorithms were used: 

Decision Tree (DT, combined classifier using all features at once) and Random Forest 

(RF, individual classifier relying only on facial display features).  

Facial displays seemed to contribute the most to the classifier performance, but it was 

clear too how merging features might be beneficial for increasing detection performances. 

The final and overall achieved accuracy was in the range of 60 to 75 %, outperforming 

humans scores that, within this work and through different modalities, reached a 

maximum accuracy of 51% (Pérez-Rosas, Aboulenien, Mihalcea & Burzo, 2015). 

Following the model of Pérez-Rosas et al., Wu and colleagues (2018) developed a 

model for automated deception detection including features from several modalities. 

Micro-expressions were included as well, but here it is stressed the importance of 

analysing them from videos rather than static images: they proposed to use a motion 

dynamic for recognizing micros, which is making it much easier for a human detector to 

spot them. 

To accomplish this task, the authors designed a two-steps feature representation for 

capturing dynamic motion signatures: for low-level features representation dense 

trajectories representing motion were used, whereas for high-level representation a facial 
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micro-expression detector using low-level features was trained. The general framework 

consisted of three steps: multi-modal feature extractions, feature encoding and 

classification (Figure 2.9). 

The Improved Dense Trajectory (IDT, Wang et al., 2016) was employed for its 

effective performance in action recognition: IDT analyses local feature-correspondences 

in subsequent frames and estimates the camera motion employing RANSAC. As a next 

step, the histogram of oriented gradients, the histogram of optical flow, the motion 

boundary histogram and trajectory descriptors are computed within the space-time 

volume. Eventually, the motion boundary histogram seemed to be the best among the 

other descriptors, given that it captures derivatives of motion rather than first-order 

motion information: Wu and colleagues realized that since they wanted to detect micro-

expressions in the first place, this descriptor capturing changes in motion was perfect. 

 Regarding other features, audio features were collected as well through the Mel-

frequency Cepstral coefficients which is a tool widely used for automatic speech 

recognition.  Instead, transcript features were collected through the Global Vector For 

Word Representation (Pennington, Socher & Manning, 2014): it encoded the entire set of 

words featured in the video scripts to a single fixed-length vector. The last step consisted 

in aggregating a variable number of features inside another fixed-length vector: the 

number of features was different for each video, so a Fisher Vector was used to 

accomplish the aggregation task. 

 

Figure 2.9. the automated deception detection framework is depicted (Wu, Singh, Davis & 

Subrahmanian, 2018). 

Low-level visual features were used to train the micro-expressions detectors, and then 

the predicted scores of this performance were translated into high-level features for 



45 

 

predicting deception: all the video clips of the database were divided into short fixed-

duration video clips that were manually annotated with micro-expressions labels. 

Across all the modalities, the highest “Area Under the Curve” (AUC, 0.8773) was 

reached after late fusion, which employed all the modality features and a linear classifier 

SVM. If micro-expressions were taken as a singular type of feature the AUC remained 

satisfactory but fell to 0.7502. Not confirming previous results, human performance on 

this recognition task showed an AUC of 0.8102, and so above the chance level. 

Researchers justified this late evidence by looking at the dataset: they defined it as 

relatively easier than previous studies where the prediction of human beings was almost 

chance (Wu, Singh, Davis & Subrahmanian, 2018). 

The work from Wu and colleagues is not the only one to have employed the ground-

breaking dataset of Pérez-Rosas et al. In this regard, studies that recently have disrupted 

this database are discussed in the next section.  

Jaiswal and colleagues (2016) used the same 121 videos and analysed them through 

OpenFace software: it allows the extraction of facial features by even considering those 

transitions between them that are observable in video segments. From all the transcripts, 

linguistic and acoustic features were extracted too, and eventually they were combined 

with visual ones by using the early feature approach (or feature-level fusion approach). 

An SVM classifier was used, reaching an accuracy of around 78% over full videos; on 

the contrary, human judgment accuracy never went above 60%. 

On the same data set, Krishnamurthy and colleagues (2018) used a multi-modal 

feature extraction approach in which visual features were notably extracted through a 3D 

convolutional neural network (3D-CNN). To date, a 3D-CNN system achieves state-of-

the-art results in the classification field of tridimensional data, thanks to the combination 

of both image features and spatiotemporal features. Furthermore, a multi-layer perceptron 

(MLP) with hidden layers followed by a linear output layer was used. The combination 

of video, audio, text, and prominently micro-expression features lead the MLP to obtain 

an accuracy of 96.14% (ROC/AUC: 0.9799). The AUC when micro-expressions were 

used as a singular feature reached the 0.7512 value (Krishanamurthy, Majumder, Poris & 

Cambria, 2018). 

Avola and colleagues (2019) used the OpenFace framework to extract AUs from the 

same dataset (2015) while an SVM was trained with a radial basis function kernel to 

extract and categorize AU (truthful or deceptive statements). They reached an accuracy 

of 76.84% outperforming (by a few units) those obtained by previous works using 
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different algorithms (i.e., Wu et al. reached an accuracy of 75% using a linear SVM, 

whereas Pérez-Rosas et al. reached a 76% accuracy with the Random Forest algorithm; 

Avola, Foresti, Cinque & Pannone, 2019). 

Rill-Garcia, Jair Escalante, Villasenor-Pineda e Reyes-Meza (2019) fed videos from 

the same database to OpenFace 2.1.0. and collected features from acoustical and textual 

modalities too. In addition, a new and smaller database was created from Mexican people 

speaking in Spanish about sensitive topics and personal topics. Among the court dataset, 

fusion methods (i.e., exploiting a different set of extracted features) reached their peak at 

around 0.645 AUC, whereas on the Spanish dataset it was around 0.631. Surprisingly, in 

this latter dataset, the best-performing feature was the gaze direction (0.769). However, 

the authors explained this outcome by mentioning the small number of training instances.  

Within the same work, the authors conducted another experiment by exploiting a Long 

Short-Term Memory (LSTM) whit 200 hidden units. LSTM was used as a way to include 

the temporal sequence natures of videos and computing features at the frame level. This 

architecture was tested with visual and acoustical features only achieving respectively an 

AUC of 0.560 and 0.730 on the court database. For what concerns the Spanish video clips, 

disappointing results were obtained, sticking to 0.38 and 0.294 values (Rill-Garcia, Jair 

Escalante, Villasenor-Pineda e Reyes-Meza, 2019). 

Ding, Zhao, Lu, Xiang & Wen (2019) focused their work on a novel face-focused 

cross-stream network, the FFCSN. They analysed both facial expressions and body 

movements and trained an R-CNN for classifying the areas from each frame into objects 

(i.e., regions of interest) and refining the boundaries of these regions. Through this deep 

learning procedure, Ding and colleagues got an accuracy of 93.16% just considering the 

visual modality. When looking at the model using visual, acoustic, and verbal modalities 

the accuracy raises to 97% (Ding, Zhao, Lu, Xiang & Wen, 2019). 

Finally, Monaro, Maldera, Scarpazza, Sartori and Navarin (2021) proposed a work 

(resembling a precursor of the current research) in which different extraction methods 

(i.e., improved dense trajectories and OpenFace) and machine learning techniques 

(support vector machine and deep neural networks) were applied to the analysis of facial 

micro-expressions for the identification of liars. Results from human naïve judges were 

collected too and compared with those of AI procedures. Notably, the database employed 

(previously collected by Monaro et al., 2020) was based on interviews in which a 

technique to increase liars’ cognitive load was implemented: (Hartwig and Bond, 2007; 

Monaro et al., 2020a). Two conditions were formed: in the “truth-teller” condition 
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participants were asked to recollect memories from a holiday taken place in the last 12-

18 months, whereas in the “liar” condition they were asked to report an imagery holiday. 

Moreover, in each interview and condition, unexpected questions were asked (alongside 

free speech) to increase the cognitive load of the participants. The final data set of videos 

contained free speech and responses to unexpected questions. Although the stakes were 

low, creating a fictional holiday memory was assumed to involve the same cognitive 

processes as those observed in the setting of a criminal investigation when a false alibi is 

fabricated. For what concern the employed machine learning methods, three different 

approaches were followed: a linear SVM classifier was fed through both common 

algorithmic features extraction techniques and higher-level features (extracted through 

OpenFace software). The third approach used OpenFace as well, but there the SVM was 

replaced with a more complex LSTM network classifier. A fully neural approach was 

considered too through the mean of a 3D convolutional neural network (C3D): this 

network is directly fed with raw and unlabelled data (videos of interviews) and learns 

automatically during training the features of the input.  

Checking the results, the SVM classifier obtained better outcomes when features were 

extracted with OpenFace (AUC of 0.78 per the “unexpected question” data set and of 

0.72 for the free speech condition). Instead, the LSTM network paired with OpenFace 

features obtained a maximum AUC of 0.72 when paired with unexpected questions. 

Finally, testing the data sets of free speech and settled questions with the C3D network 

achieved respectively the AUCs of 0.64 and 0.75. Accordingly, the performance of the 

classifiers was better when dealing with unexpected questions: when presented with 

unexpected questions liars experienced an increased cognitive load, leading them to show 

more deception cues. As explained by previous studies, human judges didn’t diverge from 

the chance level when attempting at catching lies, performing worse than how machine 

learning methods do (Monaro, Maldera, Scarpazza, Sartori & Navarin, 2021). 
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3. AIM OF THE STUDY AND METHODS 

3.1. Aims of the study 

The current study is developed following the model and evidence collected by 

Monaro and colleagues (2021), with the scope of highlighting if micro-expressions 

analysis can be beneficial for detecting lies. In particular, the interest is focused on 

observing and evaluating both human judges and machine learning methods’ 

performances when attempting to differentiate between honest subjects and liars. Their 

performances are compared in terms of accuracy (or the fraction between the number of 

correct detection guesses and the total number of guesses). We expect that machine 

learning (i.e., deep artificial neural networks) outperforms human judges’ lie detection 

scores, in accordance with previous studies (e.g., Bartlett et al., 2014; Pérez-Rosas, 

Aboulenien, Mihalcea & Burzo, 2015; Wu et al., 2018; Monaro, Maldera, Scarpazza, 

Sartori & Navarin, 2021). It is expected that human beings’ lie detection performances 

do not statistically and significantly diverge from chance level (i.e., almost 50% of 

guesses, DePaulo et al., 2003; Bond & DePaulo, 2006; Porter & Ten Brinke, 2008; 

Bartlett et al., 2014; Pérez-Rosas et al., 2015; Curci et al., 2019).  

Besides comparing the lie detection performances of humans and artificial neural 

networks, the experimental procedure is even constructed for understanding if the type of 

lie (i.e., resembling the association respectively to a bigger or a smaller cognitive load) 

can influence its detection. Indeed, participants are presented with images having 

different levels of complexity: it is hypothesized that the complexity of each image 

influences the ease with which a false statement is constructed and in turn, the ease with 

which it is detected (or, correctly labelled as a truth or a lie). The hypothesis is that 

describing a complex figure should be more cognitive demanding compared to simple 

figures, increasing the cognitive load experienced by the liar while deteriorating his/her 

ability to hide what is concealed. Both humans and neural networks are assumed to take 

advantage of more complex figures while playing the role of judges; facial leaks and 

especially micro-expressions may be more evident and more likely to come out, 

simplifying the lie detection procedure. To the best of our knowledge, this study is the 

first one to consider the influence of the type of lie on its detection through facial micro-

expressions. To date, no studies have considered how the complexity of the target of the 

lie may influence the cognitive load experienced and may facilitate deception detection 

in both human judges and machine learning methods. 
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Briefly, regarding the two presented objectives, it is expected to achieve results along 

the lines of those of previous lie detection research, both for what concerns human judges 

and automatic learning techniques. Furthermore, new evidence regarding the importance 

of strictly considering the characteristic of deceptive statements (complex vs. simple) is 

expected to be highlighted. Broader implications of the study are identifiable in the 

plausible effects for the forensic fields, that is the development of an artificial tool meant 

to ameliorate lie detection in legal contexts.  

3.2. Method and dataset 

The research is promoted by the “Human Inspired Technology Center” (HIT) of 

Padua University and run by professional figures from both the departments of general 

psychology and Mathematics “Tullio Levi-Civita”. 

The full process concerning data acquisition was carried out through the employment 

of an ad hoc developed smartphone application (i.e., “Lie detector” app); 110 completed 

matches and 330 total videos were collected, having an average length of 8.82 seconds 

(DS=4.1) and all resembling the recording of the experimental participant’s face intent 

on verbally describing a given image. Images were presented via the screen of a 

smartphone provided by the research team, therefore participants just had to look at it and 

freely produce a description on it. Crucially, participants were left free to decide if 

producing a truth or a deceptive statement, that is respectively to produce an authentic 

and consistent description or a fictional one. Enough to a description for being categorized 

as “false” was the alteration of a single small visual detail. A database of images was 

upstream uploaded on the backend of the application, containing a total of 150 images. 

Images were divided into two classes of 75 stimuli each: simple and complex. Simple 

images always feature a unique subject (everyday objects, animals, or food indistinctly) 

placed on an empty white background; on the contrary, complex images feature detailed 

landscapes and multiple subjects. An example of a simple and complex image is reported 

in figure 3.1. 

The categorization led to a final dataset characterized by 172 false descriptions and 

167 true descriptions. Each video was then submitted to the “judgment” of another 

participant who was asked to categorize the veracity of the description (i.e., true or false) 

accordingly to his/her own perception. Additionally, the same videos have been used as 

training- and test-dataset for the learning process of artificial neural networks. 
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Figure 3.1. Examples from the database of images used as experimental stimuli are reported, 

respectively a complex one on the left side and a simple one on the right side. Even though they 

share the central theme, the compounding features are widely different. Within the “complex 

figures” categorization images characterized by multiple subjects and details on the structured 

background are allowed. On the contrary, as depicted by the image on the right, “simple images” 

are characterized by a unique subject (both objects and animals) on a strictly white background 

(University of Padua, department of computer sciences/general psychology, 2022). 

3.2.1. Participants 

103 individuals took part in the experimental procedure, although 8 of them had to be 

discarded due to their non-compliance with the experimental instructions. In total, 95 

participants were ascribed to the final experimental participants’ group, 38 of them were 

females while 57 were males, aged between 19 and 32 (M = 22.9; SD = 2.74). Their years 

of education vary between 13 and 18 (M=14.98; SD=1.7): 38.94% have a high-school 

diploma, 52.63% have a bachelor's degree and the remaining 8.42% have a master's 

degree. The discrepancy between participants’ total number and videos is explained by 

the possibility for a player to take part in more than a single game. 

3.2.2. The “lie detector” application 

The “lie detector” application was built on the work of two students (Dametto Alex 

& Poloni Mattia) from the “Computer Science” master's degree in Padua. Professors 

Navarin, Gaggi, Palazzi and Monaro took part as supervisors. The development of the 

first version of the application started in February 2020 and after several changes, a final 

version was completed in March 2022. Finally, the “lie detector” application was 

programmed in the form of a 1vs1 game (Figure 3.1) where two competing players 

attempt to overcome each other through lie detection guesses. The final version features 

an admin dashboard that makes it possible to check game statistics (e.g., the total number 

of players or games played) and to remotely manage the data collection: modifying and 
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cancelling specific data was made possible, as well as checking users’ info and reports or 

alerts concerning the flow of their matches. 

  

Figure 3.1. Three dashboards from the “lie detector” application (A, B, C) are reported. The 

game flow is set around a match between two participants who alternate roles as “judge” (A) 

and “speaker” (C). The speaker can either produce a false or a true statement while the judge-

role player has to guess whether his/her opponent is lying. Each match of the game consists of 

three rounds, meaning that each player will act as judge and speaker three times. A dashboard 

depicting the resume of the current match (B) is always available while playing (University of 

Padua, department of computer sciences/general psychology, 2022). 

The application is meant to run on Android devices, and it was developed in Java by 

using the developer tools “Android Studio”; otherwise, data were saved and stored 

through the database programme “MongoDB” that collects all the information related to 

users, matches, reports and videos. The back-end portion of the software that acts as an 

interface between the android application and the database was developed in “JavaScript” 

through the framework “NodeJS”. Finally, the admin dashboard was developed as a final 

step procedure in “React” (i.e., a front-end library from JavaScript that is commonly used 

for building user interfaces, Figure 3.2).  
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Figure 3.2 The technology stack that was used to run and built the “lie detector” application 

(University of Padua, department of computer sciences, 2022). 

The latest works on the application were responsible for preventing it from exclusive 

use, beside developers the “lie detector” app was indeed intended for all external users. 

Thus, a server from the University of Padua was chosen for the back-end, allowing to 

gather a wider amount of data. Eventually, an APK was developed in an effort to make it 

possible to install the application on potentially every user’s phone. As a final note, all 

the versions of the application were programmed following the guidelines regarding 

usability, the graphical interface, and the data processing methods as well.  

3.2.3. The data acquisition and the experimental procedure  

The study in question was revised and approved by the ethics committee of the HIT 

centre on the 11th of march 2022. Participants were collected between the 29th of April 

2022 and the 20th of June. They were all volunteers who were directly asked whether they 

want to participate on-site. As a very first step, each participant read and hand-signed an 

informed consent in which he/she authorizes the processing of his/her data and agrees to 

the confidentiality treat of the same. Two smartphones provided by the University and 

the research team (with the lie detector app pre-installed) were used for the data 

acquisition, thereby throughout the gameplay, both participants were able of playing by 

interacting with just one single device each. After picking up the smartphone, the 

participant received the experimental instructions as follows. 
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Firstly, each subject was asked to create an in-game account within the application 

(Figure 3.3A) that consists in uploading an e-mail, a username and a password, and 

personal information as well (i.e., age, sex and scholarship). The accounts are unique and 

were intended for the correct uploading and collection of the basilar information needed 

for statistical purposes. As soon as the two subjects sign in with their account it was 

possible to “create” a match by an online paring of their accounts. At this point, 

participants were told that the game consists in describing an image shown on the screen 

of their smartphone; moreover, they were informed as well about the possibility of 

choosing if describe it truthfully or by lying. 

After a countdown of 5 seconds, a recording of the participant’s face describing the 

image starts: 15 seconds is the maximum length of the recordings that as soon as it is 

interrupted can be sent and saved to the database furnished by the University. However, 

once the video is recorded the participant has the will to whether send, re-shoot the video 

or leave the gameplay and avoid any data storage. As a very final step, the participants 

are asked to genuinely categorize their description by specifying through a “Truth”/” Lie” 

button-alternative whether the statement is true. 

Subsequently, the second player received and reviewed the recorded video of his/her 

opponent on the device: he/she is instructed to guess whether the description is a lie and 

to confirm the decision through a “Truth”/” Lie” button (Figure 3.3B). No instructions 

are given concerning which strategies the player should use to make the guess more 

accurate. Then, the gameplay continued for three total rounds during which the two 

players alternate themselves in the role of “detective” and “speaker”. As anticipated, all 

videos were saved on the university server and later on were used for training and 

augmenting the performance of a similar AI stack as the one previously developed for the 

work of Monaro and colleagues (2021). Participants’ lie detection guesses were stored as 

well and employed to gather statistical information concerning human judges’ 

performance. 
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Figure 3.3. (A), on the left, reports the in-game dashboard for the creation of the account: it 

was used as a unique identifier for the subject/player during data processing. (B), on the right, 

reports the frontend two-button-fashion for the detective’s categorization. Usually, within the 

depicted black space, the video description of the other player is reported allowing the detective 

to start the in-game lie detection procedure (University of Padua, department of computer 

sciences/general psychology, 2022). 

3.3. Machine learning methods 

The entire database of videos collected on participants’ verbal descriptions has been 

used to train three different automatic learning algorithms (machine learning). Generally 

speaking, machine learning can be defined as the field of study that enables computers to 

learn without being explicitly programmed, while relying on different algorithms to solve 

data problems. Within a complex task such as the analysis of micro-expressions, a tool 

capable of handling the data more efficiently is in demand (Mahesh, 2020). Thus, the idea 

behind it is to use machine learning models for determining and analysing the facial 

movements (and micro-expression) of a person while he/she is potentially induced to lie: 

by comparing the newly obtained information with previously stored and collected data 

concerning individual subjects’ visual morphology, the computer is eventually expected 

to conclude whether a person is lying (Azhan, Zaman & Bhuiyan, 2018).  

The workflow that leads to automatic learning can be expressed under two opposite 

tasks of learning, respectively supervised learning and unsupervised learning. Here, 

supervised learning was employed, since the current automatic learning was based on 



55 

 

constructing a function that maps an input to output following the presentation of input-

output pairs (Figure 3.4). These types of learning algorithms required external assistance 

and labelled training data resembling a set of training examples. As regards the input-

body of information, in supervised learning the labelled dataset is divided into training 

and test dataset. The training-set and correlated steps of learning are designed to let the 

algorithms learn some kind of patterns, meanwhile, the test-set is rather intended for 

checking the prediction or classification performances that the model is expected to show 

at the end of the learning process (Mahesh, 2018). 

 

Figure 3.4. The supervised learning stack is reported. The learning process is designed to 

achieve a tune between the data given in input (“data source) and the final answer produced by 

the model (“production). Training data and test data are both fundamental for the correct flow 

of the learning process, respectively they let the model “understand” the desired patterns and 

evaluate whether it succeeds in carrying out the desired task (Mahesh, 2018).  

Worth a mention is the way the training dataset and the test dataset were guaranteed 

to differ: each participant’s face appeared at least three times (as the number of rounds of 

a single match) in the whole dataset while there was no maximum, considering that there 

was no official limit in the number of playable games (even though a maximum of three 

matches was suggested and observed on most occasions). Participants playing more than 

one game were instructed to log in always with the same account, the uploaded e-mail 

served as an identifier of the participants, making it possible to have a training set and a 

test set made up of videos of diverse faces. 

Crucially, features other than micro-expressions could have been considered and used 

as sources of information for the machine learning analysis, given that the act of lying is 

a multimodal process per se that embraces different physiological responses. However, 

in this study, we decided to focalize the analysis just on facial micro-expressions, with 
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the purpose of considering further features in future works. Nevertheless, the already 

discussed studies (e.g., Pérez-Rosas, Aboulenien, Mihalcea & Burzo, 2015; Monaro, 

Maldera, Scarpazza, Sartori & Navarin, 2021) have highlighted how fundamental features 

of micro-expressions can be for machine learning analysis, even when considered 

individually successful results are indeed obtained. Therefore, during the pre-processing 

steps (meant for adapting the dataset to the selected algorithms) facial behaviour was 

exclusively considered and analysed. Video processing has been carried out using 

“OpenFace” software (Baltrusaitis, Mahmoud & Robinson, 2015; Baltrusaitis, Zadeh, 

Lim & Morency, 2018). Through it, the speaker’s face was highlighted (“cropped”) from 

the surroundings and 17 AUs were extracted: the derived AUs from every video-frames 

were then measured on a scale from 0 to 5, each resembling one of the anatomical units 

that underlie facial movements.  

3.3.1. An overview of the employed automated models 

As a baseline and starting model, an SVM classifier was employed. The SVM 

classifier, first proposed by Cortes and Vapnik (1995, Figure 3.5), was originally 

understood as a learning machine for two-group classification problems; it was a 

supervised learning model in which learning algorithms analyse those data used for 

classification and regression analysis. However, besides that, nowadays an SVM model 

can efficiently carry out even non-linear analyses by disrupting the so-called kernel trick 

(i.e., implicitly mapping the inputs into high-dimensional feature spaces). The logic 

behind it is “to draw” margins between the classes of stimuli in a way that the distance 

between classes and margin is maximum so that the classification error is minimized 

(Mahesh, 2018).  

 

Figure 3.5. A graphical representation of a support vector machine classifier (Mahesh, 

2018). 
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A subsequent step within the machine learning procedures stack was the 

implementation of a “Transformer” model (Vaswani et al., 2017). Originally, the 

transformer was developed as a simplification of earlier up-to-date neural network 

approaches for sequence modelling and transduction problems (e.g., recurrent neural 

networks, long short-term memory and gated recurrent neural networks), and was 

designed to solely rely on the attention mechanism. In particular, it was proposed as a 

solution to the sequential nature of the cited recurrent models: thus far, the “time” variable 

was computed starting from sequences of hidden states (ht) and by computing a function 

of the previous hidden state (ht-1) alongside the input for position t. Vaswani and 

colleagues (2017) assumed that this sequential nature precluded a complete and necessary 

parallelization of the training examples, which is a critical issue in presence of stimuli 

with a long sequence length. Through the Transformer, a global dependency between 

input and output is drawn by relying entirely on attention and dispensing with a recurrent 

architecture. This simplification is achieved by three main components: an encoding 

component, a decoding component and a connection between them (Figure 3.6; Vaswani 

et al., 2017). 

 

Figure 3.6. A simplified representation of the three main components of the Transformer is 

depicted.  Each encoder component is divided into two sub-layers: at first, the input of the encoder 

flow through the self-attention layer that is responsible for evaluating and considering all the 

sub-part of the input (other than the precise stimuli per se). The output of this sub-layer is then 

fed to a feed-forward layer that communicates with other encoders. The decoder component does 

have the same layer as the encoder, but in addition, it involves an attention layer. Thanks to this 

item, the decoder focuses on a relevant part coming from the output of the encoder stack (Vaswani 

et al., 2017; Adapted from Alammar, 2018). 

The third and final effort was the implementation of a “Siamese Network” 

architecture with a triplet loss function. Siamese Networks, differently from most cutting-

edge neural networks, perform well even in presence of a few amounts of data; put 
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differently, by exploiting a Siamese network architecture it is virtually possible to 

leverage a limited amount of labelled stimuli (here, videos) to effectively detect lies 

(Jiabo, 2021). This type of architecture contains two (or more) equal sub-networks that 

show an identical configuration of parameters and weights. The updating of the 

parameters occurs in parallel and in a specular way in both sub-networks, making it 

possible to look for similarities across two different stimuli (fed as input to one of the two 

sub-network respectively).  

In this specific case, the Siamese network was trained under the “triplet loss” function. 

Firstly, to construct a triplet, a training example is randomly set as the anchor, while the 

other two examples are selected as the “positive” and the “negative”: the positive shares 

the same label as the anchor, whereas the negative, does not. The loss function optimizes 

the embedding model weight such that vectors (i.e., videos) of the same truth-lie category 

(the anchor and the positive) are represented closer while vectors that are different are 

further away in the embedding space. When the learning process is completed, an average 

of all the representations of truth-lie video is computed separately; to categorize a new 

video it will be chosen the closest spatial representation category (Jiabo, 2021). 
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4. DATA ANALYSIS AND RESULTS 

4.1. Lying behaviour 

Out of 330 recorded videos, the frequencies of true statements and false statements 

resulted balanced: participants lied on 167 occasions while preferring to tell the truth in 

163 of them (respectively, 50.6% and 49.4%). Thus, on average, referring to the single 

games, participants resolved to lie on 1.52 rounds out of 3 while telling the truth on 1.48 

rounds (sd= ± 0.82). 

Moving forward, another point of interest was understanding the type of “lie 

behaviour” the participants adopted, whether they were presented with a complex or a 

simple image (Table 1). A discrepancy in the disposition to tell lies accordingly to the 

type of image was observed since participants lied 55% of the time when presented with 

simple images and 46% of the time when presented with complex images. However, the 

percentage difference resulted to be statistically non-significant: a chi-squared test was 

computed to evaluate the relationship between the type of image and lie behaviour, X2 
(1, 

N=330) = 2.0206, p = .1552.  

 

 Videos categorization   

Image Complexity       False        True   Total  

Complex   72  84  156  

Simple   95  79  174  

Total   167  163  330  

 

 Table 1. The contingency table concerning the complexity of the image (complex/simple) 

and the type of statement (true/false) is reported. 

To deepen the influence of image complexity, video’s lengths (in seconds) were 

collected and compared too. Briefly, an ANOVA was calculated and the effect of the type 

of statements (truth/lie) and image (complex/simple) on videos’ duration was 

acknowledged (Table 2). There was a significant main effect for image complexity (F(1, 

326) = 8.854, p = .003) suggesting that the description correlated to complex images lasted 

more than those correlated to a simple image.  
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Cases 
Sum of 

Squares  
df  

Mean 

Square 
F p η² 

Image Complexity   144.707   1   144.707   8.854   0.003   0.026   

Videos: Truth/Lie  19.848   1   19.848   1.214   0.271   0.004   

Image Complexity * videos 
Truth/Lie   0.183   1   0.183   0.011   0.916   

3.324e -
5   

Residuals   5328.214   326   16.344         

 

       Table 2.  The ANOVA regarding the effect of the image complexity (complex/simple), the 

video categorization (truth/lie) and their interaction on the duration of videos is reported. 

No statistical significance was observed for both the effect of the video categorization 

taken singularly and the interaction between it and image complexity (respectively, (F (1, 

326) = 1.214, p = .271); (F (1, 326) = 0.011, p = .916). The post hoc analysis is reported 

in Table 3. 

  Mean Difference SE t p Tukey 

Complex, False  Simple, False  1.378  0.632  2.182  0.130  

  Compex, True  -0.446  0.649  -0.686  0.902  

  Simple, True  0.838  0.659  1.272  0.581  

Simple, False  Complex, True  -1.824  0.605  -3.013  0.015  

  Simple, True  -0.540  0.616  -0.878  0.816  

Complex, True  Simple, True  1.284  0.634  2.026  0.180  

 

Table 3. A multi-comparison was conducted throughout Tukey’s range test concerning the 

interaction effect between Image Complexity and videos’ categorization. 

4.2. Humans’ lie detection performance 

The analysis of human judges’ performances was then centred on the accuracy of their 

guesses. Overall, participants succeed in categorising correctly the video descriptions on 

57.3% of the occasion, showing no difference between the number of guesses made on 

truth statements and those made on lies: the percentage of true negatives (i.e., a true 

statement categorize as such) was 57.1%, while the percentage of true positives (i.e., false 

statements categorize as such) was 57.49%. In other words, participants’ detecting 

performances resulted in not being influenced by the type of statement (truth/lie) they 



61 

 

were asked to evaluate. Finally, by considering each round cumulatively, a little 

amelioration of the detection performance was appreciated (Round 1:54.9%, Round 2: 

56.2%, Round 3: 58.4%; Figure 4.1). Briefly, in all circumstances, participants’ scores 

did not diverge significantly from chance level.    

 

Figure 4.1. The graph reports the detection scores in percentage and across all the three 

rounds taken cumulatively. Crucially, these results were calculated by excluding all those 

matches following the first one played by each participant; exclusively by doing so it was possible 

to appreciate the trend of the performance within single games. Eventually, an amelioration of 

the performance is observed, suggesting the possibility that getting used to the task and the in-

game opponents have beneficial effects on the performance (making the task easier to complete). 

An analysis of the influence of image complexity on human judges’ accuracy was 

conducted as well. A chi-square test of independence was calculated to examine the 

relation between the variable- image complexity and the categorical variable resembling 

humans’ accuracy. The outcomes did not suggest a statistically significant relationship, 

X2 
(1, N=330) = 0.006, p = .939. 

 Humans’ accuracy  

Image Complexity  Right  Wrong  Total  

Complex   89   67   156   

Simple   100   74   174   

Total   189   141   330   

 



62 

 

Table 4. Human judges’ accuracy scores are reported concerning the type of image they are 

presented with. 

4.3. Machine learning results 

The dataset fed to the three machine learning methods followed the addition of 9 extra 

videos that previously were discarded from the statistical analyses concerning human 

judges’ performances. In total 339 videos were employed and divided across both training 

set and test set: within AI analyses it was preferred to use even those videos (excluded by 

humans’ analyses in order to examine lying behaviours under a complete picture) that did 

not belong to completed game-matches, that is videos belonging to matches in which at 

least 1 out 3 round were discarded for a non-compliance to experimental rules. 

Videos from the dataset were divided into 10 sub-groups to allow 10-fold cross-

validation: 5 groups consisted of 10 participants while the remaining five of 9 (Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. A balanced breakdown of the participants has been sought to achieve. The table 

reports in the second and third column respectively the number of truth and lie videos belonging 

to each fold and the overall in the last one. 

As anticipated, the first employed model was an SVM classifier where first and 

second-grade statistics of the AUs were implemented as features of the model. Each video 

was accounted for as a 34-sized vector, the first 17 dimensions were provided by the mean 

on all the frames of the single AUs, while the other 17 by their variance. Hence, the cross-

  Groups Truths Lies Total 

    0  21  17  38  

    1  16  14  30  

    2  18  18  36  

    3  20  15  35  

    4  13  20  33  

    5  19  14  33  

    6  13  16  29  

    7  23  23  46  

    8  13  19  32  

    9  11  16  27  
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validation was performed by using 9 groups as the training set and the remaining ones to 

test the performances of the model; the whole procedure was repeated for evaluating each 

group. Mean accuracy of 0.5750 was achieved (SD = 0.0502). 

For the Transformer model, the procedure was similar: cyclically the i-th group was 

used as the test set, the i+1-th as the validation set and the remaining 8 as the training set. 

The hyper-parameters were fixed as equal in every single fold to shorten the computing 

time. A 0.5640 mean accuracy was achieved (SD= 0.0872). 

Finally, the triplet loss function through which the Siamese network was trained 

consisted in feeding the last model with three examples at a time: videos in the same 

category were represented in the loss function space close to each other and distant from 

the latter belonging to the other category. Mean accuracy of 0.5572 was achieved (SD = 

0.0600). In Table 6 a summary of the results is reported. 

  Test Fold SVM Transformer Siamese 

    0  0.5263  0.5263  0.5789  

    1  0.6000  0.6000  0.6000  

    2  0.5000  0.5833  0.4722  

    3  0.6000  0.6000  0.6857  

    4  0.6364  0.3636  0.5758  

    5  0.5758  0.6970  0.5152  

    6  0.5517  0.6207  0.5517  

    7  0.6304  0.6304  0.5000  

    8  0.5000  0.5000  0.5000  

    9  0.6296  0.5185  0.5926  

    Mean  0.5750  0.5640  0.5572  

 

Table 6. The accuracy (0-1) of the performance of the three machine learning models 

employed is reported on a scale between 0 and 1. The Data are reported following the folds, with 

a latter row dedicated to the average value of the accuracy.  
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5. DISCUSSION AND CONCLUSIONS 

5.1. Evaluating human judges’ performances 

The task carried out by the participants while acting as “in-game detective” was 

nothing more than a lie detection procedure and as such, their performances did not 

diverge significantly from those observed in previous studies. Here, human judges 

showed an accuracy (57.27%) that coherently is close to the chance level. These results 

are like the ones published by Monaro and colleagues (57%; 2021) while proving to be 

just slightly higher than Pérez-Rosas et al. (51%; 2015) and Bartlett et al.’s findings 

(51.9%; 2014). Notably, it is appropriate to consider that in the current experimental 

procedure, participants that took part jointly in the 1vs1 game/task occasionally knew 

each other: potentially, performances might be influenced by this aspect, assuming that 

people knowing each other should be facilitated in understanding both the verbal and non-

verbal behaviour of their opponents. 

Beyond validating that human scores do not diverge from chance level when 

attempting to spot lies, another source of interest was figuring out which might be the 

influence of the type of lie on its detectability. Here, the type of lie was assessed in terms 

of the associated cognitive load; put differently it was assumed that lies correlated to 

complex images were more cognitively demanding and in turn more prone to be detected. 

Ekman and his colleagues coined the term “leakage” to refer to a liar’s unintentional 

betrayal of truth that emerges as a result of high cognitive load (and emotional load too; 

Clancy, 2009). Up to now and to our knowledge, this was the first attempt to establish 

whether different types of lies were associated with different detectability levels.  

However, comparing the detection accuracy correlated to complex and simple images’ 

descriptions no statistically relevant difference was highlighted, since the accuracy 

associated with simple images was 57.1% and the accuracy associated with the complex 

image was 57.5%.  

Despite being out of our expectations, these findings might be explained because of 

the few constraints participants were asked to adhere to while producing their 

descriptions. Subjects had indeed no restrictions concerning their verbal description, 

meaning that when presented with a complex image rather than a simple one, the sought 

cognitive load might be easily averted.  Lies on complex images were most of the time 

built with apparent ease by focusing on few details or creating new yet simple ones: to 

simplify the task, fictional descriptions were most of the time complete fabrications 

(having nothing in common with the stimulus they are presented with) or partial truths 
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(that is, altering just one tiny detail out of several to obtain what researchers might address 

as a “stretched truth”; Bryant, 2008). Handling all the several details of a complex image 

finishes to be unnecessary in such cases (describing an image truthfully does not require 

any manipulation process), and causes the subject to not experience an excessive 

cognitive load. 

Finally, the difference in length between videos associated with complex images and 

simple image descriptions is worth a mention. A statistically significant difference was 

appreciated, meaning that the description of complex images lasted more. Different 

explanations can be drawn to explain this result, starting from the obvious presence of 

much more information to be described compared to simple images. Moreover, 

considering plausible the onset of an actual cognitive load, a greater latency to begin 

describing complex images should be acknowledged. If this is the case and a pragmatic 

difference between complex and simple description exists, it would be reasonable to 

address an explanation that goes towards the already discussed inability of human judges 

to identify and disrupt the few and available cues to deception (Hartwig & Bond, 2011). 

5.2. Machine learning methods results and human judges: an explanation of the 

collected evidence 

The consistency with previous studies observed in humans scores did not apply to the 

results collected through machine learning procedures (Owajyan, Kashour, Haddad, 

Fadel & Souki, 2012; Su & Levine, 2014; Bartlett et al., 2014; Pérez-Rosas, Aboulenien, 

Mihalcea & Burzo, 2015): machine learning techniques were indeed expected to 

outperform human judges’ scores, with a special interest in reproducing the results 

obtained in the precursor study by Monaro et al. (2021). Disappointingly, here the 

performances of machine learning models stand around the chance level (Table 7), posing 

the issue of why a similar AI stack as in Monaro et al. (SVM classifier, LSTM and C3D) 

obtained better results (showing overall accuracy around 0.70). 

Models Accuracy 

SVM 0.5750  

Transformer 0.5640 

Siamese network 0.5572 

Human Judges 0.5727 
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Table 7. A comparison between human judge’s performance and machine learning methods 

accuracies (in a range from 0 to 1) is reported. 

The motives behind the disparity in these performances can be addressed in light of 

the unconventional experimental paradigm and setting here employed. Firstly, data were 

collected within uncontrolled environments; namely, participants took part in the 

experiment directly on sight and had to deal with external variables while being presented 

with the task. A certain amount of background noise was given for guaranteed since the 

development of the experimental design, although it was preferred to dispense with the 

laboratory to prevent as much as possible low levels of ecological validity. In addition, 

the idea of employing a game-like paradigm for collecting data was intended to reproduce 

the cognitive processes involved in the real act of lying and augment the level of 

experienced pressure. Nevertheless, the background noise might have ended up overly 

influencing the signal needed for the AI networks to perform: for instance, some of the 

collected facial expressions (and specifically micro-expressions) might have been elicited 

in response to an external stimulation rather than the effort to deceit. 

A no minor source of concern comes from the design of the videos. Differently from 

previous research, in the current database videos were composed of few frames (with an 

average duration of 8.8s compared to the average duration of 267s of the stimuli from the 

study by Monaro et al., 2021). Thus, beyond a wider amount of videos collected, the 

amount of information fed to the AIs was arguably insufficient, given that the maximum 

allowed length of each was 15s: next to all the advantages they brought, deep learning 

architectures like the ones here disrupted, require a large amount of data, posing one of 

the most urgent issues within the domain of automatic deception detection, in other words, 

the availability of ad-hoc databases (Pérez-Rosas, Aboulenien, Mihalcea & Burzo, 2015; 

Hasan et al., 2019).  

Lastly, it is worth mentioning that the experimental paradigm per se has allowed 

achieving some important evidence for future research lines, albeit it has not paid off in 

terms of results. In all the already mentioned studies concerning lie detection and machine 

learning methods, the deceits were shaped like lies concerning memory traces to be 

recalled. In Pérez-Rosas et al.’s study (2015) the database relied on court hearings where 

each involved subject knows exactly the event on which is expected to report. In Monaro 

and colleagues’ study (2021), participants had to recall an actual memory trace and make 

a cognitive effort to insert fictional details. Thus, when asked to report their statements, 
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they had to both recall the memory trace and modify it, in such a way that their cognitive 

load (and deceit leaks) might augment. 

In the study at hand, there was no such effort related to memory recall. The 

participants lied directly at the time they saw the image, easing widely their cognitive 

effort and pressure, meaning that the likelihood for detection cues to emerge was reduced. 

Similarly, it might be the case that the pressure of performing as “good liars” and the 

associated arousal was lacking: here lying was a choice of free will (as in real case 

scenario, but crucially with no need of protecting own interests) made at the very last 

moment. Given the imposed short duration of the video, all the cognitive processes 

correlated to the act of lying might not emerge fast enough, rendering the signal including 

micro-expressions too narrow even for machine learning models. As a confirmation of 

this, occasionally during data collection it happened that participants resolved to lie only 

in the very last seconds of their recorded description by altering just a single detail of the 

image characteristics, rendering the on-set of lying-associated cognitive processes very 

subtle and the detectable signal for machine learning techniques too narrow to disrupt. 

5.3. Significance of the current study and conclusion 

The aim of this work was to compare the performances human judges and machine 

learning models (an SVM classifier, a Transformer and a Siamese Network) obtain when 

dealing with the same dataset. Regrettably, machine learning techniques showed poor 

performances when compared to those of previous studies, while not succeeding in 

outperforming human performances as expected.  Moreover, this work represents the first 

attempt in the literature to ever try to deal with unstructured and spontaneous lies. The 

great body of work concerning automated lie detection processes has usually and 

appropriately focused its efforts on processing recordings of court hearings since the very 

last aim of lie detection research is providing a device capable of automatically detecting 

deception in professional settings. Among the exceptions, Monaro and colleagues (2021) 

worked on a new database based on pre-formed and structured reports concerning the 

description of a past holiday. Coherently to recreate a context close as much as possible 

to a court trial, these reports were assumed to involve the same cognitive processes as 

those observed when telling an alibi. 

Having said this, involving datasets of non-planned lies might happen to be beneficial 

for lie detection advancements, especially as part of the generalizability of the results: 

within forensic contexts, lies are not always planned; deceptive behaviours may happen 

to emerge as a response to unexpected situations positing the demand for better 
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performing AI models. Nevertheless, it has been highlighted how the experimental 

paradigm of the current study resulted in being overwhelming complicated for an AI to 

work correctly. To put this in perspective again, some serious limitations were presented. 

Conducting the experimental procedure outside of the laboratory surely influenced the 

control over external and undesired variables: participants’ facial responses might be 

influenced by stimuli other than the presented image, questioning how strong might have 

been the influence of lying processes on their facial expressions. Alongside this, the 

employed machine learning models classically require a large amount of data to be 

effectively trained (e., Zhou, 2016); here, due to the short duration of the collected videos, 

this condition was not met, leading the available frames to be fed to the AIs to be arguably 

insufficient. Therefore, the evidence that should be considered while assessing the results 

presented is the following.  

To date, machine learning models relying on micro-expressions analyses require to 

be fed with videos associated with “structured lies”: to obtain acceptable levels of 

detectability, lies characterized by a wider temporal duration (i.e., more frames available 

as AI signal) and complete fabricated details (thus excluding partial or half-truth where 

an ambiguous level of truth may be found) are probably needed.  

These findings are coherent even within Ekman’s framework (e.g., Ekman, 2009): it 

has been already highlighted that micro-expressions if taken singularly, are not 

unambiguous indicators of deception. Then again, micro-expressions show neither a high 

temporal specificity nor stand as unequivocal deception cues, meaning that the onset of a 

micro-expression does not directly imply that deceptive behaviour is taking place. For 

this reason, too short videos or half-truths (i.e., white lies that are just partial truth) might 

even occur with no micro-expressions, leading the stimuli to be undetected by the 

employed neural network due to the lack of an actual signal to work on. In addition, 

complex and structured lies are usually more emotionally- and cognitively loaded 

(including memory recall processes), translating into a wider flow of leaks whose 

presence seems to be crucial for a straightforward performance of machine learning 

models. In this regard, in the experimental paradigm at hand, participants might have 

never felt under pressure: although the lie detection task was covert within a competitive 

1vs1 game, the uncontrolled settings and the occasional familiarity between participants 

might have prevented task-related stress.  

On the other hand, a source of interest for future lines of research might result be the 

experimental paradigm proposed in the form of a 1vs1 game. Creating such a competition 
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between two participants might be an aid for emulating the kind of pressure or arousal 

experienced when telling a lie in a real case scenario (while keeping in mind the 

importance of avoiding recruiting subjects having familiarity with each other). 

Then again, even if lie detection studies that exclusively consider the analyses of 

micro-expressions show promisingly results, it must be stressed that facial cues are just a 

portion of all the hints to deception we may elicit when lying: several “lie patterns” exist 

within our body and face under different shapes, suggesting the importance of striving to 

consider them all. We still do not know which pattern machine learning relies on when 

dealing with a lie detection task, but we do know that lying requires several and differing 

cognitive and emotional processes. However, among all the other cues, micro-expressions 

results are a pure predictor of a context (hot-spots) within which the subject is likely to 

be deceptive, and as such, it is still in demand to work on it. 
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