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1
I N T R O D U C T I O N

Today, our cosmological theory is mainly explained by the Λ− CDM
model plus the theory of Inflation, which predicts an accelerated ex-
pansion of the Universe 10−35s after the Big Bang and the origin of the
rich structure of our Universe. Furthermore, this theory predicts also
the generation of a stochastic background of primordial gravitational
waves.

One of the main success of our cosmological theory is the predic-
tion of a snapshot of the primordial Universe given by the photons of
the Cosmic Microwave Background radiation, one of the best probes
of our Universe and its history. Cosmology has been revolutionized
by the precision measurements of the CMB, since its first detection in
1965.

The first big studies of the CMB were focused on its temperature
anisotropies. Only recently, after 2000’s, physicist managed to de-
tect also the CMB polarizations anisotropies. There are two sources
of polarization anisotropies; one of them is sourced by gravitational
waves from Inflation. A detection of this type of polarization, called
B−mode, would be a strong confirmation of Inflation.

The still undetected B−mode is expected to have an amplitude ∼
100, or more, times smaller than that of the temperature anisotropies.

In addition to this, in the Universe there is a variety of contaminat-
ing signals, the foregrounds, that make the extraction of the primor-
dial B−mode signal harder. Indeed, it is expected that the B−mode
signal is ≤ 1% of the foreground emission. The largest contamination
comes from emissions in our galaxy, while a small fraction comes
from extragalactic sources. Therefore, the development of foreground
substraction methods has become increasingly more important, and
many methods have been proposed so far, based on analysis of data
at different frequencies and on the specific frequency dependence of
the astrophyisical emission laws. Indeed foreground emission is typ-
ically characterized by power law frequency distribution opposed to
the black body emission of the CMB.

Furthermore, the foreground spatial distribution is clearly non-Gaussian,
contrary to the CMB which has been measured to be Gaussian to a
< 0.1% level. While the fequency differences are typically exploited
foreground cleaning algorithms statistical differences are general not
taken into account. The foreground are usually modeled with Gaus-
sian distributions.



2 introduction

In this work our aim will be to use the foregrounds non Gaussian
information to extract the CMB signal from data, using a Bayesian
approach in attempt to improve over current methods.

In Chapter 2 we introduce some statistics necessary to understand
the main results of the CMB. Then there is also some discussion on
Gaussian and Non-Gaussian distributions.

In Chapter 3 we briefly review the physics behind the CMB tem-
perature and polarizations anisotropies as well the foregrounds.

Chapter 4 is devoted to the component analysis in signal processing
problems and then we present the theoretical core of this work, with
all the calculations and results.

Chapter 5 is more practical: we do a simulation with a toy model
to see if our method has some improvement with respect to other
existing ones.

Finally Chapter 6 is dedicated to our conclusions.



2
A S TAT I S T I C A L A P P R O A C H I N C O S M O L O G Y

According to the theory of Inflation, primordial quantum fluctuations
left imprints in the structure of the Cosmic Microwave Background
and in the Distribution of Galaxies. Due to the stochastic nature of
quantum processes, our Universe is just one of all the possible Uni-
verses that could have arisen from Inflation.

Cosmological theories allow us to make statistical predictions about
the cosmological (random) fields of the Universe, but not about the
details of our particular realization[22]. For example we don’t know
that a given galaxy will form at a specific ’point’ in space and time
or that a specific patch of the Cosmic Microwave Background will
have some fixed temperature[26]. But we can predict average statisti-
cal properties of the cosmological fields, observing only a particular
realization of them.

In the next sections we will acquire some tools and language to
treat properly cosmological problems.

2.1 pills of probability

There are two school of thoughts that define probability:

• Frequentists: probability is the limiting value of the number of
successes in a sequence of trials

• Bayesians: probability is a measure of the degree of belief in a
proposition based on our available knowledge

We will take the second as our definition of probability, trying to
quantify our uncertainty about the world.

Let A, B, C, ... denote propositions(e.g. that it will be sunny tomor-
row). Let Ω be a sample space of the possible outcomes of an experi-
ment(e.g. it will be sunny, it will rain, etc...).

Some notation :

• Ā denotes the proposition that A is false

• I is the relevant background information at hand, i.e. any rele-
vant information that is assumed to be true

• prob(A|B, I) is the probability of A happening given that B(and
I) has happened

• prob(A, B|I) = prob(B, A|I) is the (joint) probability that both
A and B are true (given I).
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The two basic rules of probability theory are:
The sum rule:

prob(A|I) + prob(Ā|I) = 1

and the product rule:

prob(A, B|I) = prob(A|B, I)× prob(B|I) (2.1)

From the product rule it is possible to derive Bayes’ theorem

prob(A|B, I) =
prob(B|A, I)× prob(A|I)

prob(B|I) (2.2)

that will be fundamental to the estimation of signals treated in the
next chapters.

Finally we introduce the concept of marginalization. The probabil-
ity that A is true, irrespective of the results of B, is given by1

prob(A|I) =
∫

p(A, B)dB (2.3)

2.2 random fields

2.2.1 Random variables

Let Ω be a sample space of the possible outcomes of an experiment.
A (continuous) random variable X : Ω→ R is a function that assigns
a number for each element of Ω. We will assign a probability density
function (pdf) to X, defined over the space of real numbers:

pX(X = x)dx ≡ p(x)dx (2.4)

with dx the Lebesgue measure on the space R2.
A good probability density has the two following conditions:

• p(x) ≥ 0

•
∫

p(x)dx = 1

The pdf gives the probability p(x)δx to find x < X ≤ x + δx as
δx → 0.

1 There is also a discrete version of it. But because we will deal only with continuous
variables the one with the integration is given.

2 In general, R could be replaced by a measurable set of values A(e.g. Rn).
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2.2.1.1 Some definition

Any expectation value of some function f (X) defined over A = R

can be obtained directly from the pdf

〈 f (X)〉 = E[ f (X)] =
∫

f (x)p(x)dx . (2.5)

Let’s take two random variables X1 and X2 , with set values A1

and A2 respectively. We can think of (X1, X2) as a random variable
taking values in (a subset of ) A1×A2. The distribution of (X1, X2) is
called the joint probability distribution pX1X2(x1, x2), while the distri-
butions of X1 and of X2 are the marginal distributions. For example,
the marginal distribution of X2 is

pX2(x2) =
∫

pX1X2(x1, x2)dx1 . (2.6)

These definitions can be generalized to several random variables.
We also introduce the conditional probability density for X1, which

is computed by considering only the cases where X2 takes the fixed
value x2,

pX1|X2
(x1|x2) =

pX1X2(x1, x2)∫
pX1X2(x1, x2)dx1

. (2.7)

We say that X1and X2 are statistically independent if

pX1|X2
(x1|x2) = pX1(x1) . (2.8)

And their joint pdf is simply pX1X2(x1, x2) = pX1(x1)pX2(x2).

2.2.1.2 Moments and Cumulants

The characteristic function of the random variable X is defined as

χX(u) = 〈eiuX〉 =
∫

pX(x)eiuxdx (2.9)

which is simply the Fourier transform of the pdf. From this, we can
define the n−th moment µn of X, when it exists, by

µn = 〈Xn〉 = 1
in

dnχX(u)
dun |u=0 (2.10)

The n−th cumulants of X are instead

κn =
1
in

dnlnχX(u)
dun |u=0 (2.11)
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If the n−th moments and n−th cumulants are defined for each n
then it is possible to perform a McLaurin expansion of χX and lnχX

χX(u) = 1 +
∞

∑
n=1

(iu)n

n!
µn (2.12)

lnχX(u) =
∞

∑
n=1

(iu)n

n!
κn (2.13)

The first n cumulants can be related to the first n moments (and
viceversa). Here there are the relations up to order 6[18]:

κ1 = µ1 , µ1 = κ1 (2.14)

κ2 = µ2 , µ2 = κ2 (2.15)

κ3 = µ3 , µ3 = κ3 (2.16)

κ4 = µ4 − 3µ2
2 , µ4 = κ4 + 3κ2

2 (2.17)

κ5 = µ5 − 10µ3µ2 , µ5 = κ5 + 10κ3κ2 (2.18)

κ6 = µ6− 15µ4µ2− 10µ2
3 + 30µ3

2 , µ6 = κ6 + 15κ4κ2 + 10κ2
3 + 15κ3

2

(2.19)

µ1 is the mean of X. Usually κ2 is denoted as σ2, the variance. On
the other hand, the skewness is defined as κ3/κ3/2

2 = κ3/σ3 and the
(excess) kurtosis is κ4/σ4.

The probability density function can be obtained from the charac-
teristic function with an inverse Fourier transform. The characteristic
function can be determined completely by its cumulants or moments.
So the same it is true for the pdf. In cosmology, when we try to study
a certain distribution, in practice we measure only a finite number of
moments and truncate the expansion. This is an important fact to be
kept in mind for section 1.5.
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example : the 1-d gaussian distribution This is

N (x|µ, σ2) =
1√
2πσ

exp(− (x− µ)2

2σ2 ) (2.20)

where µ and σ2 are two parameters. Their meaning can be deduced
by calculating the cumulants:

κ1 = µ (2.21)

κ2 = σ2 (2.22)

κn = 0 ∀n ≥ 3 (2.23)

Equation (1.23) is really important. It tells us that if a random vari-
able distribution is Gaussian then all cumulants of higher order than
three are zero. If this doesn’t happen we have a non-Gaussian pdf.

On the other hand, the moments of higher order are non-zero for
both Gaussian and non-Gaussian distributions, but for the former
case they are specified by the first two cumulants ((see (1.14) and
following) ).

2.2.2 Random Fields

A n−dimensional random field q(~x) is a collection of random vari-
ables, indexed by a continuous (real) space M of dimension n, char-
acterised by a probability functional P [q̂(~x)], linked to the probability
for the occurrence of a particular field configuration of the field (real-
ization).

A realization of the field, q̂(~x) is a deterministic function of the po-
sition ~x3, that represents one of the possible outcomes of the random
field[22].

We will take the q’s from the space of square integrable functions
defined at each point ofM, with a scalar product and a norm.

The probability density functional has the following three proper-
ties[Sabino Matarrese-unpublished notes]:

1. it is semi-positive definite

2. it can be normalized to unity4

3. it goes to zero as q→ ±∞

3 And eventually of a time t that we omit for clarity because we will not need it here.
4

∫
D[q(~x)]P [q̂(~x)] = 1 , where the integral is a path integral over field configurations.
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The statistical (ensemble) average5 of some functional F [q] can be
obtained as6 [Sabino Matarrese-unpublished notes]:

〈F [q]〉 ≡
∫
D[q]F [q]P [q] (2.24)

The meaning of the ensemble average is that we consider several,
many realizations (i.e. similarly prepared systems) beloning to a large
set, the ensemble. We measure what it is inside the bracket for each re-
alization(e.g.Universe) and then averge it over many realizations(Universes).

2.2.2.1 The n−point correlation functions

Given the three conditions above, we can introduce a generating func-
tional7 (also known as partition function)

Z [J(~x)] =
∫
D[q]P [q]exp[i

∫
d~xJ(~x)q(~x)] (2.25)

and define the N−point disconnected correlation functions D(N) as
the coefficients of its McLaurin expansion [23]:

Z [J(~x)] = 1+
∞

∑
N=1

iN

N!

∫
d~x1...

∫
d~xN D(N)(~x1, ..,~xN)J(~x1)...J(~xN) .

(2.26)

Or in other words by functional differentiation

D(N)(~x1, ..,~xn) = (−i)N δNZ [J]
δJ(~x1)...δJ(~xN)

|J=0

But this is∫
D[q]P [q]q(~x1)...q(~xn) = (−i)N δNZ [J]

δJ(~x1)...δJ(~xN)
|J=0

In the end

D(N)(~x1, ..,~xn) =
∫

D[q]P [q]q(~x1)...q(~xn) ≡ 〈q(~x1)...q(~xn)〉 (2.27)

5 Denoted by the bracket.
6 Formally inside each argument of the integral it should be present q̂(~x). We omit for

brevity.
7 See analogy with the characteristic function of random variables
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Similarly, we can define the connected correlation functions as the
coefficients of the generating functional of (connected) correlation
functions

lnZ [J(~x)] =
∞

∑
n=1

in

n!

∫
d~x1...

∫
d~xnC(n)(~x1, ..,~xn)J(~x1)...J(~xn) (2.28)

denoted also as8

〈q(~x1), .., q(~xn)〉c = C(n)(~x1, ..,~xn) (2.29)

As a pdf of a random variable is fully specified by its moments or
cumulants, a random field with a probability distribution is specified
by its correlation functions(connected or disconnected).

2.2.3 Statistical Homogeneity and Isotropy in Cosmology

We have developed some theoretical tools to compute quantities av-
eraged over the ensemble of all possible Universes of our ’true’ Uni-
verse. Practically these averages are impossible to do since our ob-
servations can’t probe entirely the single realization in which we live
but only a part of it. But we would like to have information about the
whole Universe and it seems that this is basically impossible. Then,
how can we link data to the underlying theory?

A fundamental assumption in Cosmology is the statistical cosmo-
logical principle: on large scales9 (statistically speaking) the Universe
is homogeneous and isotropic. What does it mean?

A random field q(~x) is statistically homogeneous if ∀n the joint
multipoint probability distribution functions P(q1, q2, ..., qn)10 are in-
variant under translation (by the same vector) of ~x1,~x2, ...,~xn[3]. For
example this implies that ξ = 〈q(~x1)q(~x2)〉 depends only on the rela-
tive positions.

From this assumption follows an important fact. The connected
correlation functions 〈q(~x1), .., q(~xn)〉c vanish if at least two points be-
long to casually disconnected regions of the Universe11[22]. There-
fore, if we take widely separated parts of the Universe, each one has
its own set of connected correlation functions. Assuming statistical
homogeneity these will coincide with those of any other region. This
means that different regions of our Universe has the same statistical
properties (e.g. same averages). This is closely related to the fair sam-
ple hypothesis: well separated regions of the Universe are indepen-

8 Note the commas to indicate that we are not doing averages.
9 For us those are the scales much greater than the size of gravitationally collapsed

structures[http://www.astro.ufl.edu/~vicki/galaxies/cosmologynotes.pdf]
10 Shorthand notation qi = q(~xi)
11 That exist due to the finite speed of light.
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dent realizations of the same physical process (they are realizations
inside the realization) and in the observable part of the Universe there
are enough independent samples to be representative of the statistical
ensemble(of all possible Universes)[26]. Then, taking spatial averages
over many regions is the same as taking expectations over the ensem-
ble.

The random field q(~x) is statistically isotropic if there is invariance
of P(q1, q2, ..., qn) under global spatial rotations(~x → R~x). If we add
this to the previous example this means that ξ will depend only on
the modulus of the relative positions12.

2.2.3.1 A simplification

When we do practical observations, we produce pixelised maps with
a finite number of pixels. So that the index space M gives us a
finite number of indices. From now on, for cosmological applica-
tions we will consider a random field as a (large) random vector
~X = (X1, ..., XD)

T with dimension D.

2.3 random fields on a sphere

Our focus will be on the random field f = T of the Cosmic Microwave
Background temperature. When we take observations of it from the
sky, we only sample a projection on the celestial sphere at the time of
last scattering of the photons. In other words we deal with 2 dimen-
sional maps. In cosmology, it is quite popular a convenient spherical
decomposition to study a 2-D random field that simplifies a lot calcu-
lations and the interpretation of results.

The idea is to build our theory on the spherical analog of the
Fourier transform, the spherical harmonics.

As said, we will consider the space of square integrable functions.
The spherical harmonics form a basis for this space and allow us to
express f through a modal expansion (the index is n̂ = (θ, φ))

f (θ, φ) = f (n̂) =
∞

∑
l=0

m=+l

∑
m=−l

almYlm(θ, φ) . (2.30)

This resembles the 2D Fourier transform

f (x) =
∞

∑
nx=0

∞

∑
ny=0

Anxny einxkxeinyky

12 A random field which is homegenous and isotropic is generally called station-
ary[Cosmological Perturbations].
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The Ylm’s are complete and as the Fourier transform, respect an
orthonormality relation on the sphere

∫ π

−π

∫ π

0
Ylm(θ, φ)Yl′m′(θ, φ)sinθdθdφ =

∫
dΩYlm(n̂)Yl′m′(n̂) = δll′δmm′

(2.31)

From here, and from completeness, the (complex) coefficients of
the expansion (27) are obtained by

alm =
∫

dΩ f (n̂)Y∗l′m′(n̂) =
∫ π

−π

∫ π

0
dθdφsinθ f (θ, φ)Yl′m′(θ, φ) (2.32)

2.3.1 Meaning of l and m

The index l is an integer associated with the number of spatial os-
cillations (nodes) in the θ direction in spherical coordinates, and the
integer m in the φ direction (|m| ≤ l).

2.3.1.1 Example

• l = 0 has zero oscillation in the θ direction, it’s a monopole,
constant over the whole sphere.

• l = 1 has one full oscillation over the sphere in the θ direction,
it’s a dipole.

• Higher l values gives us more spatial oscillations over the sphere
surface and therefore smaller wavelength(or higher frequency).

For more insights see [15].

2.3.2 Angular Correlation Functions

The angular n−point correlation function is

〈 f (n̂1) f (n̂2)... f (n̂n)〉 (2.33)

used to characterize a cluestering pattern of fluctations on the sky,
f (n̂)[16]. One disadvantage of the angular correlation function is that
data points of the correlation function at different angular scales are
generally not independent of each other, but correlated[16]. Thus, it
is difficult to interperate the data and do a statistical analysis. Using
spherical harmonics it is possible to simplify more the problem and
what we have to consider is the angular n−point harmonic spectrum,

〈al1m1 al2m2...alnmn〉 (2.34)
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In cosmology the most used harmonic spectra are the 2−, 3− and
4− point ones, called the power spectrum, the bispectrum, and trispec-
trum, respectively.

For the most important distribution used in Cosmology, the Gaus-
sian one, the angular spectra at different angular scales, or at dif-
ferent l′s, are uncorrelated[PhD Komatsu]. Moreover, orthogonality
of the spherical harmonics for different ls, highlights characteristic
sturctures on the sky at a given l.

As said, in reality, we cannot measure ensamble averages, but only
single realizations. So we measure a single al1m1 al2m2...alnmn , which is
noisy and we want to average it somehow to reduce the noise. By
statistical isotropy we are justified to average (with weights) the spec-
trum over mi, reducing the statistical error of the measured harmonic
spectra. It is possible to find the appropriate weights for any har-
monic spectrum of a given order[16]. In the next lines we will see
only the expression for the power spectrum and bispectrum for rele-
vant cases.

2.3.2.1 Power Spectrum

The angular power spectrum measures how much fluctuations exist
on a given angular scale. For example, the variance of alm for l ≥ 1,
〈|aalm|2〉, measure the amplitude of fluctuations at a given l.

In general, the covariance matrix

Clml′m′ = 〈almal′m′〉 (2.35)

is not necessarily diagonal (fact that simplifies a lot calculations).
But, diagonality is achieved when we assum full sky coverage and ro-
tational invariance of (35). It is possible then to show[PhD Komatsu]
that

Clml′m′ = 〈almal′m′〉 = 〈Cl〉δll′δmm′ (2.36)

2.3.2.2 Bispectrum

The bispectrum

Bl1l2l3
m1m2m3

≡ 〈al1m1 al2m2 al3m3〉 . (2.37)

has the following form when we assum statistical isotropy

Bl1l2l3
m1m2m3

= G l1l2l3
m1m2m3

bl1l2l3 (2.38)

where bl1l2l3 is a real symmetric function of l1, l2, l3 called the re-
duced bispectrum. We used also the Gaunt integral
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G l1l2l3
m1m2m3

≡
∫

dΩYl1m1(~e1)Yl2m2(~e2)Yl3m3(~e3) =

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3

m1 m2 m3

)
(2.39)

where

(
l1 l2 l3

m1 m2 m3

)
is the 3j Wigner symbol. The Gaunt inte-

gral must obey three conditions to be non null:

• m1 + m2 + m3 = 0(triangular closure condition)

• l1 + l2 + l3 = 2n, n ∈N

• |li − lj| ≤ lk ≤ li + lj for every cyclic permutation of

In practice, beacuse we have only one realization of the Universe, the
bispectrum is not observable. An estimator of the bispectrum is

B̂l1l2l3 = ∑
m1,m2,m3

(
l1 l2 l3

m1 m2 m3

)
Bl1l2l3

m1m2m3
=

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
bl1l2l3 (2.40)

where for each mi the sum runs from −li to +li.
In important theoretical works it was possible to obtain analytically

the form of the bispectrum with a parameter model dependence, mak-
ing possible a fit approach for testing them [20].

2.4 gaussian distribution

The Gaussian distribution, also know as Normal distribution, for a
real random vector ~X is

N (~X|~µ, Σ) =
1

(2π)D/2
1
|Σ|1/2 exp[−1

2
(~X−~µ)TΣ−1(~X−~µ)] (2.41)

where Σ is a D × D covariance matrix, |Σ| its determinant, ~µ is a
D−dimensional vector (mean) and T is the operation of transposition.
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Without loss of generality we can take the covariance matrix sym-
metric, because any asymmetric component would disappear from
the exponential13.

Defined in this way, the Normal distribution respects the two re-
quirements for good probability distributions:

• N (~X|~µ, Σ) ≥ 0

•
∫
N (~X|~µ, Σ)d~X = 1

Other properties of the Gaussian distribution:

• E[~X] = ~µ, so ~µ is the mean of the distribution

• E[~X~XT] = ~µ~µT +Σ which groups all the second order moments

• cov[~X] = E[(~X−~µ)(~X−~µ)T] = Σ

• If the covariance matrix is diagonal, the components of ~X are
independent. In other words, in the Gaussian case uncorrela-
tion means independence14. A particular case of this is when
Σ = σID×D, known as isotropic covariance. If the surfaces of
constant density were plotted we would obtain spherical sur-
faces.

There is a very remarkable result that makes Gaussian distributions
very special.

Wick’s/Isserlis’ Theorem : For a Gaussian random field q the fol-
lowing relation holds (qi = q(~xi))

〈qi1 qi2 ....qin〉 = ∑
I
〈qj1 qk1〉....〈qjn/2 qkn/2〉 (2.42)

where the sum is over all possible pairings of i1, ...., ininto pairs
(j1, k1), ...., (jn/2, kn/2) (n is even)15.

So, the odd N−point (disconnected) correlation functions of a Gaus-
sian are zero while the even ones are all derivable from the two-point
one, in the sense that correlation functions are decomposable as prod-
ucts of the 2−point correlation function, thus determining the statis-
tical properties of the random field16.

The Gaussian distribution arises in many physical applications. One
of the most important is when we consider the sum of multiple iden-
tically distributed and independent random fields(each one with its

13 Furthermore, for the Gaussian distribution to be well defined, it is necessary that Σ
is also positive definite[Bishop].

14 Remember that independence means uncorrelation, but the converse is not true for
general non-normal distributions .

15 For a proof see The Cosmic Microwave Background by Ruth Durrer
16 One of the most important examples is the Cosmic Microwave Background two-

point function.
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distribution). In this case the central limit theorem applys: as the num-
ber of fields increases, their sum, which itself is a random field, has a
distribution that becomes increasingly Gaussian[4]. This is connected
for example with cosmology: in linear perturbation theory where we
have a large number of cosmological fluctuations evolving indepen-
dently, we can expect, based on the central limit theorem, that the
Universe will obey a Gaussian distribution[1]. In the next chapter we
will see also the CMB example.

2.5 non-gaussianity

If the fluctuation is Gaussian, then the two-point correlation function
is what we all need to specifiy the Gaussian distribution. On the other
hand, if we need higher-order correlation functions to determine the
statistical properties of our distribution we are dealing with a Non-
Gaussian pdf.

How do we describe a non-Gaussianity? There is only one way for
Gaussianity but an infinite number of ways of being non-Gaussian.

Any deviation from Gaussianity can be quantified using the three-
point and higher order correlation functions. In Cosmology the most
popular approach is to use the harmonic tranform of the three-point
function, the bispectrum. This is because usually we will deal with
distributions that are close to a Normal one.

2.5.1 Nearly Gaussian Distributions

As said, in cosmology it is common to deal with fields that depart
only weakly from a Normal distribution [3]. In many applications, to
extract useful information on the underlying physical processes, it is
more interesting to measure the deviations of a probability density
function (pdf) from the Normal distribution than to prove that it is
close to the Gaussian one. For example, the three-point function, also
known as the bispectrum, is a sensitive test for a non-Gaussian con-
tribution to the fluctuation spectrum since it is precisely zero in the
Gaussian limit. It is possible to find a number of approximations to
express the local nearly gaussian pdf in another ways[5]. Here we
will deal with one approximation of quasi-Gaussian distributions us-
ing the EdgeWorth Expansion.

The EdgeWorth expansion expresses one probability density in terms
of another by the use of higher-order statistics.

the 1-pdf edgeworth expansion Le’ts consider a random vari-
able X with a probability density function f (X = x) = f (x) and Z(x)
a Gaussian density function, both with the same mean and variance.
If the cumulants κ

f
i and κZ

i , of f (x) and Z(x) respectively, become
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’close’ sufficiently quickly as i increases 17then we say that f (x) is
close to Gaussian. It seems natural then to use the expansion

f (x) =
∞

∑
n=0

cn
dnZ(x)

dxn (2.43)

We now investigate a family of orthogonal polynomials which form
a natural basis for the expansion of f (x). We say that two polynomials
Pn(x) and Qn(x) of degress n 6= m are orthogonal on the real axis
with respect to a weight function w(x) if∫ +∞

−∞
Pn(x)Qm(x)w(x)dx = 0, n 6= m

For example a weight function could be w(x) = wCH(x) = exp(−x2/2)
proportional to the Gaussian function Z(x) = exp(−x2/2)√

2π
. In this case

the associated polynomials are given by the Rodrigues’ formula

Hen(x) = (−1)nex2/2 dn

dxn e−x2/2 (2.44)

These are called Chebyshev-Hermite polynomials. Examples are

He0(x) = 1

He1(x) = x

He2(x) = x2 − 1

He3(x) = x3 − 3x

Instead of wCH we could use wH(x) = exp{−x2} proportional to
Z2(x). In this case we obtain the Hermite polynomials18

Hn(x) = (−1)nex2 dn

dxn e−x2
(2.45)

From the definition of Z(x) and Hen(x) we have that

dnZ(x)
dxn = (−1)nHen(x)Z(x) (2.46)

17 http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat05844/abstract
18 Chebyshev-Hermite polynomials are also called the probabilists’ Hermite functions,

while Hermite polynomials the physicists’ Hermite function. The two are linked by
a rescaling. See Wikipedia.
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Plugging this last equation in the expansion of f (x) we obtain that

f (x) = (−1)n
∞

∑
n=0

cnHen(x)Z(x) (2.47)

To obtain the coefficients we simply use the definition of orthogonal
polynomials19, obtaining

cn =
(−1)n

n!

∫ +∞

−∞
f (t)Hen(t)dt (2.48)

With this coefficients we are left with what it is called the Gram-
Charlier expansion of type A [5]. Expressing the polynomial Hen(t)
as ∑n

k=0 aktk stands out the fact that the coefficients cn are a linear
combination of the moments αk of the random variable X. To find the
full formula it is possible to show[5]that

Hen(x) = n!
[n/2]

∑
n=0

(−1)kxn−2k

k!(n− 2k)!2k

The problem of the Gram-Charlier series is that it has poor con-
vergence properties. For realistic cases, very often it diverges. This is
linked to the sensitivity of the Gram-Charlier to the behaviour of f (x)
at infinity: the latter must fall to zero faster than exp(−x2/4) for the
series to converge. See again[5]also for a real example.

We can normalize our random variable X to unit variance by diving
by its standard deviation σ.Let’s consider as expansion parameter

Sn =
κn

σ2n−2 (2.49)

We denote with km the set of all non-negative integers satisfing
k1 + 2k2 + ... + nkn = n and r = k1 + k2 + ... + kn. The Edgeworth
expansion at arbitrary order of a probability density g(x) with respect
to the normalized unit variance probability Gaussian function φ(x) is
obtained by this

Result: Given a nearly Gaussian pdf f (x) this can be written as a
perturbation of a Gaussian by the asymptotic Edgeworth expansion
for arbitrary order s

g(x) = σ f (σx) = Z(x){1+
∞

∑
s=1

σs× ∑
{km}

Hes+2r(x)
s

∏
m=1

1
km!

(
Sm+2

(m + 2)!
)km}

(2.50)

19 Remeber that for a polynomial of order n, its n−th derivative is proportional to n!
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where by asymptotic we mean that if the first N terms are retained
in the sum over s, then g(x) minus the partial sum is of a lower order
than the N− th term in the sum. See [Nearly] for a derivation and for
how to do the sum. In the standard literature we will find only the
few first terms written. In this thesis for example we will only need
the expansion to S3. For future reference we write here some terms
of the expansion20:

f (y) =
1
σ

Z(
y
σ
)[1 + σ

S3

6
He3(

y
σ
) + σ2 S4

24
He4(

y
σ
) + ...] =

=
1√

2πσ2
e−

y2

2σ2 [1 + σ
S3

6
He3(

y
σ
) + σ2 S4

24
He4(

y
σ
) + ...] (2.51)

For a simple application of this, see [17].

attention : A well-known problem with truncating the moments(or
cumulants) expansion, is that the resulting distribution is not a well-
defined probability distribution function. Hence The Edgeworth se-
ries, although properly normalised, can produce negative values if
we use big values of the expansion parameters(e.g. skewness). This is
a breakdown of the series approximation, and one should take care
not to force the PDF into this regime. As a rule of thumb we will take
Sn << 1.

the multivariate edgeworth expansion We rewrite here
the form for a Gaussian discretized random field Φ(~x) 21with zero
mean and covariance matrix Σ

p(Φ|Σ) = exp[−ΦTΣ−1Φ/2]√
(2π)D|Σ|

(2.52)

where ΦTΣ−1Φ = ∑ij Φ(xi)(Σ)ijΦ(xj).
An example could be the temperature anisotropy for a given direc-

tion in the sky, Φ(~x) = δT(n̂)22. In this case it is more convenient to
use the spherical harmonic transform

Φ(~x) = δT(n̂) = ∑
lm

almYlm(n̂)

20 Note we do the change of variable y = σx
21 Whose components, Φi = Φ(~xi), may represent, for example, an array of pixel values

or the amplitude of a set of harmonic modes
22 In general we should also consider the observer position δT(~x, n̂).
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or23

alm =
∫

dΩδT(n̂)Y∗lm(n̂)

Then we could write the Gaussian pdf as (C = Σ and C−1 its in-
verse)

p(~Φ) = p({alm}) =
1

(2π)D|C|1/2 exp[−1
2 ∑

lm
a∗lm(C

−1)lm,l′m′al′m′ ] (2.53)

with D = Nharm the number of harmonics and Clm,l′m′ = 〈a∗lmal′m′〉.
In general C have a non diagonal form24.

What happens if we want to consider Non-Gaussianities for a mul-
tivariate case (in the space of harmonics)? We could again use, as
with the 1−D case, the fact that measuring higher order (than two)
correlation functions allows us to retrace a pdf. The problem is that
in general practically we are only able to measure three or four points
correlation functions (angular bispectrum 〈al1m1 al2m2 al3m3〉 and trispec-
trum 〈al1m1 al2m2 al3m3 al4m4〉). But what can we do is to suppose to have
a weak non-gaussianity and so we are justified to use a multidimen-
sional Edgeworth expansion.

We can write an expression for the Edgeworth expansion of a mul-
tivariate PDF in the harmonic coefficients[27]

p({alm}) = p(~a) =
1

(2π)D|C|1/2 exp[−1
2 ∑

lm
a∗lm(C

−1)lm,l′m′al′m′ ]×

×{1 + 1
6 ∑

all lm
〈al1m1 al2m2 al3m3〉[(C

−1a)l1m1(C
−1a)l2m2(C

−1a)l3m3 ]+

−1
6 ∑

all lm
〈al1m1 al2m2 al3m3〉[3(C

−1)l1m1,l2m2(C
−1a)l3m3 ] + ...} (2.54)

But if we consider only Cosmic Microwave Background tempera-
ture anisotropy(as later will be the case), then we can apply rotational
invariance to obtain:

Clm,l′m′ = Clδll′δmm′ ≡ Cl (2.55)

23 dΩ is the volume element dn̂.
24 For example if we measure a mixture of emissions of astrophysical components.
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and the Edgeworth expansion is [2]

p(~a) = [1− ∑
all lm
〈al1m1 al2m2 al3m3〉

∂

∂al1m1

∂

∂al2m2

∂

∂al3m3

]∏
lm

e−
a∗lmalm

2Cl
√

2πCl
(2.56)



3
T H E M I C R O WAV E E M I S S I O N S I N T H E S K Y

In Figure 1.1 there is a temperature fluctuations map for the Cos-
mic Microwave Background. This is used for example to obtain the
cosmological parameters necessary to test our standard model of cos-
mology (ΛCDM). Ideally, this map includes only the CMB signal.
But in the reality, between the Last Scattering Surface and us (the
observer) there are other sources of mircowave radiation that contam-
inate the CMB signal with what is called foreground signal. If we
imagine an observer in the outer space, these contaminations will be
mainly from our own Galaxy (over a variety of angular scales) and
other extragalactic sources (on small scales).

There is a long map producing process that includes removal of
foregrounds. It is clear that if our map is not reliable, i.e. it includes
a proper cleaning from the foregrounds, we will obtain wrong esti-
mations of the cosmological parameters, being their calculation our
final goal (to check our cosmological model). Therefore, being inter-
ested in the CMB signal , it is necessary to understand and remove
foreground signals from our maps for a correct interpretation of CMB
data.

In this chapter we will get to know better our signal of interest and
the sources of the foregrounds. In the next one we will dive in the
cleaning techniques world.

3.1 the cosmic microwave background

The Cosmic Microwave Background (CMB) is a signal that provides
a snapshot of our Universe when it was 380000 years old (z ∼ 1100) .
The Universe was a hot plasma of electrons, protons, photons, neutri-
nos in thermal equilibrium. With the expansion the Universe cooled
and eventually protons and electrons formed mainly neutral hydro-
gen atoms(recombination), thus marking the decoulping of photons
from matter(last scattering). From that time, photons have ’free streamed’
across the Universe, eventually reaching the Earth.

There are important facts about the CMB [12]:

• It has a near perfect blackbody spectrum. This tells us that in
the Early Universe the plasma and the photons were in ther-
mal equilibrium, giving a blackbody nature to the CMB. Then
adiabatic cooling from the expansion presereved the thermal
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Figure 3.1: CMB Temperature Anisotropies Map (Source:Planck CMB, ESA and the
Planck Collaboration)

spectrum. Today we see a thermal blackbody spectrum with pa-
rameter T = 2.72548± 0.00057K.1.

• It’s uniform and isotropic one part in 105 . These tiny anisotropies
bear the imprint, filtered through the dynamics and geometry
of the expanding universe, of the seeds of large scale structure
of the Universe. CMB anisotropies can therefore shed light on
not only the mysteries of structure formation but also such fun-
damental quantities as the expansion rate, matter content and
geometry of the universe. These perturbations were the seeds
of large scale structure that gave rise to the galaxies2.

3.1.1 CMB Temperature Anisotropies

3.1.1.1 Description

The Cosmic Microwave Background (CMB) temperature can be repre-
sented as a random field T(θ, φ) on a unit sphere S2, that is, for each
0 ≤ θ ≤ π and 0 ≤ φ < 2π, T(θ, φ) is a real random variable [20].

T(θ, φ) = T̄ + δT(θ, φ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ, φ) (3.1)

The value l = 0 corresponds to the monopole, or the mean value.
Because we are interested in anisotropies we omit it. Then there is
l = 1,the dipole, with an amplitude of order 10−3K. This is thought
to be due to the peculiar motion of the Earth with respect to the CMB

1 To not be interpreted in the thermodynamical sense because we haven’t anymore a
thermal bath of particles.

2 In according to our theory of structure formation by gravitational instability.



3.1 the cosmic microwave background 23

frame. This is the frame in which the dipole is zero(indeed it’s a frame
dependent quantity [24]).

The part of the temperature fluctuations given by higher multipoles
(l ≥ 2) is classified in primary anisotropies, during the epoch of re-
combination, and secondary anisotropies, due to the interaction of
CMB photons with the rest of the Universe during their travel from
the last scattering surface to us.

The primordial, primary, anisotropies were imprinted in CMB pho-
tons with the tiny fluctuations, O(10−5), in the primordial plasma via
gravitational interaction. Because matter and radiation were tightly
coupled, this increased the pressure of the photons, that acted as a
restoring force producing acoustic oscillations in the plasma. When
photons decoupled from matter at recombination, the phases of the
oscillations were frozen in, so the more compressed (diluted) regions
appear as a hotter (colder) deviation from the mean CMB tempera-
ture[28].

Because anisotropies carry so much detail we will focus on δT(θ, φ),
which we will take with zero mean and its covariance will be invari-
ant with respect to the group of rotations(isotropy). Using the spheri-
cal harmonic expansion,

δT(θ, φ) =
∞

∑
l=1

l

∑
m=−l

almYlm(θ, φ) (3.2)

where the alms (l = 1, 2, .., , m = −l, ..., 0, ...,+l) are random coeffi-
cients that can be obtained by

aT
lm ≡ alm =

∫ π

−π

∫ π

0
δT(θ, φ)Y∗lm(θ, φ)sinθdθdφ . (3.3)

The index l runs from 1 to infinity. However, in any realistic experi-
ment there is an upper limit L on the multipoles we may observe, de-
pending on the resolution of the experiment and the presence of noise.
For example L is on the order of 500/800 for WMAP and 1500/2000
for Planck[20]. The multipole l goes roughly as l ∼ π/θ where θ is
the angular scale. From this we see that Planck has a much better
resolution than WMAP.

If the temperature fluctuations are Gaussian and isotropic3, then all
the statistical information of the anisotropies is contained in the CMB
temperature power spectrum4,

CTT
l = 〈aT∗

lm aT
l′m′〉 = CTT

l δmm′δll′ (3.4)

3 Many inflation models suggest a Normal distribution for temperature anisotropies
and this is in accordance with experimental data.

4 And the multipoles are independent from each other.
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where T indicates the temperature. The sequence {CTT
l } denotes

the angular power spectrum for TT.
Obviously, because we cannot perform ensemble averages this is

only a theoretical equation for the power spectrum. Practically, what
we use is the unbiased estimator (i.e. as l → ∞ it goes to the theoreti-
cal value)

ĈTT
l =

1
2l + 1

+l

∑
m=−l
〈aT∗

lm aT
l′m′〉 (3.5)

These Cls are distributed with a χ distribution with 2l + 1 degrees
of freedom, mean values equal to CTT

l (the theoretical value) and a
variance of 2CTT

l /(2l + 1). So the variance of the variance is

∆Cl =

√
2CTT

l
2l + 1

(3.6)

This is a fundamental limit of the determination of CTT
l which can-

not be overcomed by instruments5. This is called cosmic variance and
it is related to the fact that we have only one realization of our true
Universe and only 2l + 1 modes to obtain our estimation at the mul-
tipole l.

3.1.1.2 Description

We understood that we only need the power spectrum for the de-
scription of CMB anisotropies. Anisotropies depend on the observed
angular scale, both because they stem from different mechanisms and
because the details of the same phenomenon can change with scale[6].

In Figure 2.2 we see that CMB power spectrum is characterized by
four distinct regions in l.

The horizon scale at last scattering is given by l ∼ 100. So, anisotropies
at larger scales have not evolved that much (for causality), and hence
they directly reflect the initial perturbations. At these scales anisotropies
are produced by the so called ordinary Sachs-Wolfe effect, due to the
effect of the primordial gravitational potential at the surface of last
scattering, and the integrated Sachs-Wolfe effect, due to the changes
in the gravitational potential that redshift the CMB photons travelling
from the last scattering surface to us.

For a scale invariant primordial power spectrum we have a plateau,
l(l + 1)Cl ∼ const at low ls.

The mechanism generating primordial perturbations could gener-
ate scalar, vector and tensor modes[11]. As now we described the

5 Furthermore, this uncertainty on the power spectrum in a given multipole becomes
worse when we include instrumental noise, finite beam resolution and observation
over a finite fraction of the sky[Arxiv 0803.0834.pdf].
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effect of the scalar ones. On the other hand, vector modes decay with
the expansion of the Universe. Tensor modes have the effect of rising
the plateu at low l ≤ 100. At small scales the tensor spectrum de-
cays by cosmic expansion [6].. When we measure CMB temperature-
temperature spectrum we can’t discriminate between the contribu-
tions of tensor and scalar modes. Nevertheless, the tensor can be de-
tected using polarization information(see Polarization).

At angular scales corresponding to 100 ≤ l ≤ 1000 the physical
processes that gives temperature anisotropies are causally connected
and affect the primordial plasma before recombination. As previously
said, in the primordial Universe, we had matter and radiation tightly
coupled, behaving as a single fluid. The richness in the anisotropy
spectrum is given by the gravity-driven acoustic oscillations occur-
ring before the atoms in the Universe became neutral. At the time of
recombination, the modes of acoustic oscillations are frozen at differ-
ent phases of oscillations, and consequently at different wavelengths,
giving peaks in the power spectrum fluctuations. The peaks represent
the scales of maximum compression and rarefaction of the plasma.
The valleys in between the peaks are non-zero due to Doppler shifting
of the emission, as they correspond to the maximum in the velocity
of the plasma[28].

The peaks depend on the cosmological parameters used for our
model of the Universe, which gives CMB anisotropies their great con-
straining power[11]. Indeed it is possible to extract the parameters
describing comsological models of our Universe. See [8] for an exam-
ple with Planck experiment.

At l ≥ 1000 the acoustic oscillations decrease exponentially. We
should keep in mind that the coupling between photons and baryons
is not perfect. Photons have a non zero mean free path. Furthermore,
the recombination process is not instantaneous, which gives a thick-
ness to the last scattering surface. Because of this, we have diffusion
of photons which washes out the anisotropies on scales smaller than
their mean free path. This decreasing effect, is called Silk damping.

CMB have also secondary anisotropies, anisotropies generated dur-
ing the photons propagation from the last scattering surface to us (the
observer). The physical processes which induce them are also respon-
sible of the structure formation and the evolution of our Universe.
These processes include reoinization, graviational lensing, Sunyaev-
Zel’dovich effect and others. What we have to bear in mind is that
those secondary anisotropies have an effect on the CMB temperature
power spectrum and thus if we are interested only on the primary
fluctuations these should be removed by some cleaning technique.
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Figure 3.2: Scalar and tensor temperature-temperature power spectra
for a standard Λ − CDM model[https://arxiv.org/pdf/astro-
ph/0406567.pdf].

3.1.2 CMB Polarization

We have another probe of the early Universe. CMB carries additional
information about the Universe that is encoded in its polarization. A
light wave traveling in some k̂ direction corresponds to electric and
magnetic fields oscillating in the plane perpendicular to the direction
of propagation, given by two directions x̂1 and x̂2. If the intensity of
the two transverse directions is equal, then the light is unpolarized.
Otherwise, the light radiation is polarized[11].

CMB photons are polarized at ≤ 10% level by the Thomson scatter-
ing at recombination and reionization epochs[Ichiki:aa].

3.1.2.1 Origin

Thomson scattering between an electron and unpolarized light with a
quadrupolar component (l = 2) in its intensity produces a linear po-
larization in the scattered field. In the primodial epoch this could had
happened only a little before recombination6. Indeed, at earlier times
electrons and photons are tightly coupled to each other, implying a
very weak quadrupole. We expect primordial polarization signal to
be much smaller than the temperature one.

6 Because we need scattering between light and electrons. After recombination scatter-
ings are very rare(until reionization epoch that enhances the polarization signal at
large scales)[Challinor, CMB review].
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The CMB temperature anisotropies have three geometrical distinct
sources, namely scalar(compressional), vector and tensor modes.

Scalar fluctuations generate velocity gradients in the plasma, as
the matter falls and bounces back from the potential wells at the
last scattering surface. The velocities of the plasma are out of phase
with the density distribution. As we saw the scalar fluctuations are
also the origin of most of the temperature anisotropy. Vector fluctua-
tions correspond to vorticities in the plasma at the last scattering sur-
face. But they get damped by expansion(so we won’t consider them).
Tensor fluctuations compress and stretch the space in perpendicu-
lar directions, compressing and relaxing the plasma and generating
a quadrupole pattern in the temperature. They are expected to be
fluctuations from the primordial gravitational waves predicted by In-
flation[28].

3.1.2.2 Patterns of polarization

We saw how to describe CMB temperature anisotropies. Now it’s time
for the CMB polarization anisotropies.

Lets take a general electromagnetic field ~e , orthogonal to its direc-
tion of propagation~k. We take two basis vectors x̂ and ŷ orthogonal to
~k. All the statistical information is encoded in the ’coherence matrix’
C[21]:

C =

(
〈|~ex|2〉 〈~ex~e∗y〉
〈~ey~e∗x〉 〈~ey|2〉

)
=

1
2

(
I + Q U − iV

U + iV I −Q

)
(3.7)

where the quantities I, Q, U, V are averages over time and they are
called Stokes parameters. I corresponds to the total intensity of the
field, that for a blackbody emission is equivalent to the temperature
of the radiation. Q and U represent the linear polarization. V is the
circular polarization. Thomson scattering doesn’t lead to circular po-
larization, so in CMB studies V = 0. Any V 6= 0 could be used to
detect foreground(see later) contamination or some error in the sys-
tematics. These four parameters span the space of unpolarized, par-
tially polarized and fully polarized light. For example, unpolarized
radiation is Q = U = V = 0. While, for linear polarization, Q and U
allow to measure the polarisation amplitude P and the polarisation
angle χ(with x̂)

~P =
√

Q2 + U2χ̂ χ̂ ‖ ~e χ =
1
2

arctan(
U
Q
)

The parameters I and V are physical observables independent of
the coordinate system, while Q and U depend on the orientation of
x̂ and ŷ. Indeed the latter transform like a spin−2 object, i.e. if the
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coordinate system is rotated by an angle α around an axis n̂, then Q
and U rotate to Q′ and U′ by an angle 2α[21]

(Q± iU)′(n̂) = e∓2iα(Q± iU)(n̂) (3.8)

We can combine Q and U in one single complex spin−2 object
representing the polarization in the direction n̂ = (θ, φ) on the sky

P(n̂) = (Q± iU)(n̂) (3.9)

The problem with this view is that Q and U depend on the, arbi-
trary, coordinate system that we take. Instead of continuing on this
path, from now on we will rely on an easier geometrical view of
the polarization of an electromagnetic wave which describes polariza-
tion with respect to the wave itself. Lets introduce a curl-free ’elec-
tric’ E−mode and a divergence-free ’magnetic’ B−mode. These two
quantities are connected to (9), see for example[28], and as with the
temperature anisotropies they can be decomposed using spherical
harmonics:

E(θ, φ) = ∑
lm

aE
lmYlm(θφ) B(θ, φ) = ∑

lm
aB

lmYlm(θφ)

Different sources of temperature anisotropies give different pat-
terns in polarization. E−modes can be generated by scalar and tensor
fluctuations. On the other hand, B−modes only by tensor perturba-
tions. Thus, only primordial gravitational waves could leave an im-
print on the B−mode spectrum7[28].

3.1.2.3 Description

Temperature and polarization anisotropies are both generated by the
same primordial fluctuations which we think to be Gaussian8. Lin-
ear theory gives an appropriate description of the evolution of these
perturbations, at least until last scattering. Therefore, also primordial
temperature and polarization anisotropies in the CMB are expected
to follow a Gaussian statistics. The expansion coefficients aX

lm, X =

T, B, E are expected to follow a Gaussian distribution and are inde-
pendent of each other. To describe fully a Gaussian statistics we need
the mean and the two point correlation function. The means are

〈Tlm〉 = 0 〈Elm〉 = 0 〈Blm〉 = 0

7 This is true at linear perturbation order. Graviational lensing can generate non-
primordial B−modes from E-modes at second order.

8 Or very near to a normal distribution
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Figure 3.3: Typical E or B type polarization patterns. Image from [Ruth Dur-
rer The Cosmic Microwave Background]

Adding isotropy, we are left with the power spectra of the pertur-
bations.The mixed power spectra are:

〈aX∗
lm aY

l′m′〉 = CXY
l δll′δmm′ , (3.10)

where X, Y could be T, E, B. If we require parity invariance in the
physics responsible for anisotropies and polarization then it is pos-
sible to show that [(Graduate Texts in Physics) Gianluca Calcagni
(auth.)-Classical and Quantum Cosmology-Springer International Pub-
lishing (2017).pdf]:

CTB
l = 0 = CEB

l (3.11)

3.1.3 CMB Histroy

• 1965, Penzias and Wilson found a ’noisy’ uniform signal in the
microwave band. First official discovery of CMB. Its spectrum
fitted that of a blackbody at temperature around 3K. Modern
Cosmology was born.

• 1989, COBE (Cosmic Background Explorer) satellite mission by
NASA. COBE came with three instruments: DMR (Differential
Microwave Radiometer) that would map anisotropies in the CMB(with
angular resolution of 7◦), FIRAS (Far Infrared Absolute Spec-
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trophotometer) that would measure the spectrum of CMB and
DIRBE (Diffuse Infrared Background Experiment) that would
map dust emission[19]. Confirmation that CMB has a perfect
blackbody temperature (parameter) T = (2.735± 0.060)K and
most importantly with statistical spatial temperature anisotropies
at a level of a part in one hundred thousands. These tiny varia-
tions in the intensity of the CMB over the sky show how matter
and energy was distributed when the Universe was still very
young9. We believe that they are the seeds for early structure
formation that gave birth to galaxies and clusters of galaxies.

• 2001-2010, WMAP (Wilkinson Microwave Anisotropy Probe) satel-
lite mission by NASA. WMAP had a sensitivity (i.e. how faint
a signal each pixel can detect) 45 times that of COBE and an
angular resolution of 22′. In addition, it was also able to detect
CMB polarization. Observing in five frequency bands between
23 and 94GHz, it was able to measure the acoustic peaks up to
l ∼ 800. WMAP CMB maps being highly accurate, precise and
reliable placed tighter constraints on the cosmological parame-
ters. Confirmation of the Standard Model of Cosmology.We had
also the first detection of polarization. Cosmology has become
a precision science.

• 2009-2013, Planck satellite mission by ESA. Angular resolution
three times that of WMAP and sensitivity more than five times
that of WMAP. Planck contained two instruments: LFI, Low
Frequency Instrument, and HFI, High Frequency Instrument.
In intensity Planck had nine bands between 30 and 857GHz,
while in polarization seven bands between 30 and 353GHz. It
improved the precision of the parameters of the standard model
of comsmology . Still not detected the primordial gravitational
waves via B−mode.

• March 2014: BICEP2 (Background Imaging of Cosmic Extra-
galactic Polarization) claimed the detection of large scale B−modes.
In September of the same year they claim was withdrawn be-
cause it was found that the signal was largerly due to thermal
dust emission, a type of foreground emission. This is a problem,
because there is signal that is contaminating our signal of inter-
est and we cannot extract it reliably. For this, in the next section
we will give a look at those contaminating signals.

9 https://lambda.gsfc.nasa.gov/product/cobe/dmr_overview.cfm
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Figure 3.4: CMB temperature anisotropies map from COBE, using the DMR.
Credits: NASA

Figure 3.5: CMB perfect fit between the theoretical blackbody curve pre-
dicted by big bang theory and that observed in the microwave
background by COBE with FIRAS. Credits: NASA
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Figure 3.6: A five year foreground cleaned WMAP map. Colors represent
the tiny temperature fluctuations, as in a weather map. Red re-
gions are warmer and blue regions are colder by about 0.0002

degree. Credits: NASA

Figure 3.7: Planck Polarization Map. Credits: ESA and the Planck Collabo-
ration
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Figure 3.8: The Universe Comes into Sharper Focus. Image credit:
NASA/JPL-Caltech/ESA

3.2 foregrounds

When we see the sky at the microwave band, our signal will be gener-
ally composed by: CMB signal + Foreground Signals. If we imagine
to perform experiments in the outer space, the latter will be due to as-
trophysical components. Foregrounds will be characterized by their
physical properties, which include their spatial morphology, their lo-
calisation, and their frequency scaling based on the physical under-
standing of their emission mechanisms[9].

Today we arrived at a level in which instruments has such sen-
sitibity and angular resolution, that the main source of uncertainty
when performing CMB experiments is the contamination by fore-
grounds and not instrumental noise.

There are three classes of foregrounds that can be found: solar sys-
tem emission which comes from the planets and bodies in our solar
system. Extragalactic emissions arising from a large background of re-
solved and unresolved radio and infrared galaxies, as well as clusters
of galaxies. And finally diffuse galactic emissions which will be our
focus in this section being the most annyoing source of contamination
(as now)10.

Diffuse galactic emissions are created by the local interstellar medium
(ISM) that fills the space between the stars of our own galaxy, the
Milky Way. The ISM is composed by three different media, all con-
centrated in the galactic plane11:

• a hot ionized medium (with low density n ∼ 103m−3 and high
temperature T ∼ 106K), presumably formed by Supernovae ex-
plosions

10 WHY??
11 http://www.star.ucl.ac.uk/~msw/teaching/PHAS2521/notes_1.pdf
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Figure 3.9: Synchrotron all sky map at 408MHz by [Haslam et al.] . This
should be only used as a visual impression and not for analysis .

• A cold neutral medium (density n ∼ 107 − 109m−3 and T ∼
30− 100K) of molecular or atomic gas

• an interface region partly ionised, composed by:

– a warm ionized medium (n ∼ 1.5× 105m−3 and T ∼ 8000K)

– a warm neutral medium (n ∼ 1.5× 105m−3 and T ∼ 8000K)

The intensity of corresponding emissions decreases with galactic lati-
tude, following a cosecant law(of the latitude)[9].

There are four main types of galactic emission. We will takle each
one singularly.

3.2.1 Synchrotron

Synchrotron emission arises from relativistic electrons, produced by
supernovae explosions, accelerated by the magnetic fields of the Milky
Way. The magnetic fields extend outside the galactic plane, making
possible for the energetic electrons to depart from it, generating emis-
sion at higher latitudes. Thus, with respect to other types of fore-
ground emissions, synchrotron emission is less concentrated in the
galactic plane.

The intensity of this radiation is Iν ∝ ν−α where α is called the
spectral index. The number density distribution is a function of the
electron energy E following also a power law N(E) ∝ E−γ , with
(γ− 1)/2 = α. Finally, the Rayleigh-Jeans temperature is ∆T ∝ ν−β12

with β taking values from 2.5 to 3.1, depending on the place in the
sky.

The synchrotron emission can be highly polarized, up to 50− 70%[Diffuse
source separation].

12 Valid for low frequencies, hν << kBT
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3.2.2 Free-free

Interaction of free electrons with ions in ionised media makes the
electrons lose energy by emitting photons. It’s possible to calculate
the brightness temperature at frequency ν for free-free emission,

Tf f h 0.08235T−0.35
e ν−β

∫
l.o.s.

NeNidl (3.12)

with spectral index β from 2.1 to 2.15 with errors ±0.03[9].
Free-free radiation is not polarized because it is an incoherent emis-

sion from individual electrons scattered by nuclei13 in a partially
ionised medium.

3.2.3 Thermal dust

Dust is composed by small particles of several materials of various
sizes and shapes, in amorphous or crystalline form, sometimes in
aggregates or composites. Dust grains have sizes that span from few
nanometers to micrometers[9].

In the microwave sky at frequencies ≥ 70GHz, thermal dust emis-
sion dominates the foregrounds. There are several mechanisms of
radiation emission from interstellar dust. The most important one,
concerning CMB observations, is the grey body emission in the far
infrared(wavelengths range: few µm to mm), due to the absorption
of UV and optical photons coming from the interestallar radiation
field[Bottino_Maria]. The intensity of the radiation depends on the
composition, size and shape of the dust grain. If Tdust is the single
component dust temperature, β the emissivity index , with values in
the range 1− 2[10], and ν the fequency of observation, dust emissivity
can be approximated by a modified black body law:

Iν ∝ νβBν(Tdust) (3.13)

where Bν(T) is the usual black body radiation

Bν(T) =
2hν3

c2
1

exp(hν/kT)− 1
, (3.14)

T is the temperature of the body, c velocity of light, h Planck con-
stant and k Boltzmann constant.

Dust is mainly concentrated along the Galactic plane and near the
stellar formation inner regions, although being diffusely present in all
the Galaxy. Its temperature will depend on the local radiation field,
as well as on the efficience of emitting far-infrared light, ranging from
about 5K to more than 30K(due to the strong radiation produced by
nearby stars). It is important to note that while seeing the sky in

13 In an isotropic and random way.
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some direction, there will be dust clouds along the line of sight with
different materials and compositions(in size, shapes and materials)
as well different spectral indices β’s, leading to different emissions.
Therefore the formula of the greybody should be taken only as an
approximation for a single component type of dust.

Typical thermal dust emission polarization levels are of the order
of few per cent, up to 15− 20% in certain regions[9].

3.2.4 Spinning dust

It is possible to have non-thermal emissions from galactic dust at fre-
quencies below 30GHz. One mechanism of such non-thermal radia-
tion is spinning dust, emitted by the smallest (orders of nm) interstel-
lar dust grains and molecules, which can rotate at GHz frequencies.

The polarization amplitde of spinning dust emission is expected to
be small, especially at frequencies above a few GHz[10].

3.2.5 Foreground Removal

Obviously if we would want to remove foregrounds from CMB data
one idea is to use prior information we have about them. Informa-
tion that includes what we’ve just described in the previous sections.
For example we could select the region of observation so that we re-
duce contamination by foregrounds to the minimum(e.g. the galactic
plane). The problem with this approach is that we couldn’t estimate
very well the level of contamination.

Another strategy consists in masking those regions in which we
believe there is a significant foreground emission, deriving the CMB
properties in the clean regions. The drawback of this strategy is that
sky maps are incomplete.

Each foreground has a spectral law different from the others and
from the CMB itself. Therefore, contaminations will be not the same
in each frequency. The selection of the frequency of observation to
minimize the overall foreground contamination is another option.
From Figures 10 and 11 we see that there are intervals in which
contamination is minimal. For example, for the CMB temperature
anisotropies a good frequency window to observe the sky is around
70− 100GHz where CMB dominates. On the other hand, from Figure
11 in polarization CMB signal is fainter than the foregrounds. This is
a problem, because it is a wall against our knowledge of the CMB.

Finally, there are techniques for foreground removal from CMB
data. Examples will be shown in Chapter 4.
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Figure 3.10: Temperature Foreground Spectra, from Planck 2015 Results X. Credits:
ESA/Planck Collaboration

Figure 3.11: Polarized Foreground Spectra, from Planck 2015 Results X. Polariza-
tion anisotropy for free-free emission and dust emission is negligible.
Credits: ESA/Planck Collaboration
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3.3 measuring b-modes

The CMB is linearly polarized at the 10% level. Also if we didn’t talk
about it, a key motivation for polarization measurements is the the-
ory of inflation. One prediction of inflation is that it would produce
a background of gravitational waves14 accompanying the primordial
density fluctuation. The amplitude of primordial gravitational waves
is parameterized by the tensor-to-scalar ratio r, which could be deter-
mined by the unknown energy scale of inflationEin f by

r = 8× 10−3(Ein f /1016GeV)4 (3.15)

Gravitational waves bump away due to the expansion of the uni-
verse when their wavelength is smaller than Hubble radius[7]. But we
have the possibility to detect them via the imprint that they left on the
CMB anisotropies. As said, temperature ones don’t allow us to detect
them. But, polarization yes. From the amplitude of the B−modes it
is possible to measure r. So, a major current goal is to constrain, and
if possible detect, large-scale B−modes. The detection of primordial
B−modes on scales l < 100(> 2 deg) would be then a smoking-gun
signature of inflation, determining the energy scale of inflation.

The problem is that as we saw foregrounds are expected to emit
polarised light, with a polarisation fraction typically comparable, or
larger, than that of the CMB. In particular, for B−modes of CMB
polarisation, will be, if measurable, sub-dominant at every scale and
every frequency15. This is an obstacle for component separation while
we try to disentangle the CMB signal from the foregrounds.

Furethermore, foregrounds are a source to Non-Gaussianity to CMB
maps, introducing a non zero bispectrum that adds information to
our maps. So an idea would be to use this information to remove the
foregrounds and extract the CMB. We will see in the next chapter a
way to include this information, with the idea of estimating the CMB
signal.

14 https://www.cfa.harvard.edu/~cbischoff/cmb/
15 https://arxiv.org/pdf/0901.1056.pdf



4
C O M P O N E N T S S TAT I S T I C A L A N A LY S I S

4.1 general setting of the problem

We imagine a room full of people. Among them one is saying some-
thing important that we want to listen to. But when we try to listen,
what we obtain is something that is far from a clean conversation.
We can suppose that the signal we are receiving from some point of
the room is a linear combination of the various conversations around
the room. This will obviously depend also on where we are receiv-
ing. So, the nearer we are to the people of interest the better is the
conversation we want to listen to.

We could have been more general: imagining that our observations
are some function of the sources. But we will consider linear functions
only: these are more simpler to compute and to interprete. What do
we mean with ’interprete’? In general we will have o observations
that belong to some o−dimensional space. We want to transform our
variables in some representation space of dimension r that can give
us some information hidden in the data set of observations[13]. The
transformed variables should be the underlying physical components
that generated the data by some process.

Let’s formalize the problem: consider a case where we have a num-
ber Nc of observable field signals s1, s2, ...., sNc emitted by some phys-
ical source at some point ~x. In cosmology, we could have the Galac-
tic synchrotron radiation, Galactic thermal dust radiation, the atmo-
sphere or the CMB itself, all of those emitting electromagnetic signals.
A receiver hasn’t the possibility to know the source of the hitting pho-
ton(e.g. is the photon a CMB one or a dust one or etc...?): it can only
capture them (intensity or polarization) and convert in some electric
signal.

Suppose we have a number N f of detectors, each one looking for
a certain point, with the ability to scan one and only one frequence,
giving each one an observation value di at some point ~x. i is the
frequency of each detector(1 ≤ i ≤ N f ). Observations are often dis-
cretized/pixelized, so we have only a countable number of points to
check(on some map).

In the previous chapter we tried to grasp some understanding
about the CMB signal and the foregrounds. The latter are not a big
issue for the observations of CMB temperature anisotropies because
they don’t dominate at high Galactic latitudes and we can choose
a frequency window to minimize their contamination. Similarly, for
E−mode observations we haven’t great problems. On the other hand,
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primordial B−mode signal is expected to be too faint with respect
to foregrounds, making its extraction a challenge. Its detection would
constitute strong evidence of the existence of primordial gravitational
waves.

From here there is the importance of finding methods of good
component separation/foreground removal that could perform bet-
ter than the existing ones.

4.2 foreground cleaning methods

The forground emissions strongly contaminate CMB observations,
making a challenge to use the latter for cosmological studies. There
are several methods that were used to obtain CMB maps. Some of
them attempt to estimate the CMB signal as clean as possible from
any contamination, without any concern about the foreground emis-
sion physical laws. Others, tackle the problem by cleaning CMB data
using (the little and inaccurate) information about the foregrounds.
But all of them make use of multi-frequency input data to be sepa-
rated into several physical (independent) components, among which
there is the CMB. And all are based on the idea that the observed
signal is the result of the superposition of independent sources: this
means that in regions where foregrounds are strongly correlated and
mixed those methods deteriorate.

Here we will see three examples only to have an idea on how some
of the methods work. Good overviews are [9] and [14].

4.2.1 Template Fitting

The method is based on the idea that the observed signal in some
direction in the sky at a microwave frequency ν is

T(n̂, ν) = ∑
i

Ti(n̂, ν) + n(n̂, ν) = ∑
i

ai(ν)Xi(n̂) + n(n̂, ν) . (4.1)

We separated each signal Ti(n̂, ν) as Ti(n̂, ν) = ai(ν)Xi(n̂), where
Xi(n̂) is the template and ai(ν) are the template coefficients. We have
the data over a number of pixels and templates for the signals in
which we are uninterested(constructed from observations where the
non important component is dominant). Then we do a fit and find
the template of the signal of interest(i.e. the CMB).

This method was applied by WMAP [14] using template maps for
synchrotron, free-free and dust emissions.

A problem of the method is that the template coefficients are sup-
posed to be independent of the position, fact that is not satisfied in the
reality. On the other hand, the statistical properties of the noise are
unaffected by the procedure[14]. The error in the cleaned map should
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increase as we include a larger number of parameters. However, usu-
ally we use a much larger number of pixels O(105) that can be used
for the fit than the number of parameters O(10), and therefore the
impact of the noise amplitude after cleaning is negligible.

4.2.2 ICA and FastICA

This is a Blind Source Separation component method, i.e. it doesn’t
need any prior assumption about the distribution of the foreground
components and their frequency dependence. Only statistical inde-
pendence of the components is assumed.

To show the main idea lets take the simplest case of zero noise
and the number of components equal to that of frequencies. Thus the
model is

~d(n̂) = A~s(n̂) (4.2)

where A is the unkown mixing matrix. We are looking for a sepa-
rating matrix W such that W~d(n̂) has independent entries. We know
that if W = A−1 then we have independent entries. Otherwise, we
have to look for W that makes independence possible. Thus the blind
source separation principle is: to separate components, make them
independent. Then, we will obtain the components and the mixing
matrix.

This blind method solution is not unique: indeed we can rescale or
permute the components without touching independence. So, if we
would like to fix this indeterminacies, we have to add constrains.

Note that in general the various components will be not Gaussian
(especially if we consider foregrounds). On the other hand, the com-
bination of independent foregrounds will tend toward a Gaussian
distribution(Central Limit Theorem). So, we have ’more’ Gaussianity
in the data than in the single components.

In the FastICA method we assume that the signals are indepe-
dent random processes on the map domain and that all the signals,
but at most one, have non-Gaussian distributions. Then, indepen-
dent components are extracted by maximizing some measure of non-
Gaussianity1.

4.2.3 ILC

The ILC (foreground substraction) method was applied succesfully
by the WMAP team to obtain CMB anisotropies maps, so we will
depict at least the idea behind it.

1 https://arxiv.org/pdf/astro-ph/0507267.pdf
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The aim is to obtain a CMB cleaned map with poor information
about foregrounds. To apply it we use the observed maps (at differ-
ent frequencies), the fact that the foregrounds and the CMB compo-
nent of interest are uncorrelated, and that the latter has a blackbody
spectrum.

We model the data as

dj
lm = ajslm + f j

lm + nj
lm

where dj(n̂i) is the datum taken at frequency j and point n̂i, f j(n̂i)

and nj(n̂i)the foreground and noise contributions at frequency chan-
nel j, respectively, s the CMB spectrum (because of its blackbody na-
ture is independent from the frequency) and aj coefficients that take
into account the possibility that observations would not be calibrated
with respect to the CMB.

The idea is to obtain an estimate ŝ of the true CMB~s by performing
a weighted average of the observed data over the frequency bands:

ŝlm = ~wl · ~dlm (4.3)

where the entries of the weight vector are chosen to maximize some
criterion about the reconstructed estimate ŝ of s, while keeping the
component of interest untouched. This requires that the sum of the
entries of ~w is 1.

As criterion we could choose the minimization of the variance σ2

of the map ŝlm with weight independent of ~wl .
First of all (3) is

ŝlm = ∑
i

wi
ld

i
lm = slm + ∑

i
wi

l f i
lm + ∑

i
wi

ln
i
lm (4.4)

So, if we assume decorrelation between slm and all foregrounds,
and slm and all noises, the variance of the error is minimum when the
variance of the ILC map itself is minimum.

The variance is 〈|ŝlm|2〉. Under the constraint ∑i wi
l = 1, minimizing

we obtain

~wl =
~aTC−1

l

~aTC−1
l ~a

(4.5)

where Cl is the covariance matrix of observations Cl =
1

2l+1 ∑m
~dlm~dT

lm.
The ILC method is based on the fact that the CMB signal and fore-

grounds are independent. Consequently, we cannot use it to estimate
foregrounds components separately because they are correlated with
each other.
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4.3 estimation by a bayesian approach

All the precedent methods have in common the facts that they choose
some basis in which to express the data(e.g. spherical harmonic space)
and a parametrisation of the data[[25].

One step forward is to choose a generic statistical model of the
components based on generic assumptions to allow a full Bayesian
exploration of the posterior density[25], with the aim of creating a
CMB map.

4.3.0.1 Bayesian Approach

We collect some data and we want to interpret them via a model.
This model contains signals that we think determine our data. Our
main goal is to provide an estimation of this signals(or at least one
of them). More specifically we would like to obtain a full probability
distribution of the signals of interest given the data d, or p(s|d)(called
also the posterior probability). Then we could take the mean or the
maximum of this pdf to obtain our desired estimation.

Practically what we do is tackling the problem from another route:
we first obtain the distribution of data given the signal and relate it
to the posterior. We do it by means of Bayes theorem,

p(s|d) = p(d, s)
p(d)

=
p(d|s)
p(d)

p(s)

where p(d) is called the evidence p(d) =
∫

dsp(d|s)p(s). The func-
tion p(s) is the prior distribution, expressing our knowledge about
the parameters. In general we will not have exact knowledge about
them. So, it is reasonable to expect that our estimations will be biased.

Once done that we marginalize over any signal we are not inter-
ested in. If s = (sin, sother), where sin is the signal of interest, then
what we do is p f inal(sin) =

∫
dsother p(s|d). Then p f inal(sin) is all what

we need for studying our signal of interest.

4.3.1 Modeling the data

Our goal is to produce a CMB map, given the data and some other
information(covariance matrices, statistical hypothesis on the compo-
nents signal, etc...). The data model is a signal plus noise. The signal
is assumed to be a linear mixture of several emissions(e.g. CMB, free-
free, dust, etc...). Data at fixed spherical harmonic coefficient (l, m)
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of the observation map at some frequency νi(that it will be indicated
simply as i) will be modeled as:

dilm =
Nc

∑
k=1

Aiksklm + nilm (4.6)

where i runs over 1 to N f (the total number of frequencies), k from
1 to Nc (total number of signal components at fixed (l, m)) . Aik is the
amount of component k at frequency i sk = {sklm; l = lmin, ..., lmax, m =

−l, ..., l} is the spherical harmonic transform of the k−th component
map and nilm is how much of the instrumental noise is present in dilm.
The formula can be recast in a matrix form

~dlm = A~slm +~nlm (4.7)

The matrix A, whose components are Aik, is called mixing ma-
trix. We will now assume Gaussian noise with zero mean, isotropy
and diagonal covariance matrix Nlm, for a fixed (l, m), whose com-
ponents are 〈nilmni′ l′m′〉 = ν2

ilδii′δmm′ . Because of this, Nlm ≡ Nl will
be our N f × N f diagonal covariance matrix, with components ν2

il for
a fixed l. This means that we assume uncorrelation(and for gaussian
case means independence) between different frequencies and differ-
ent multipoles (l, m).

The power spectra of the components are encapsulated in Cklm.
If we assume statistical isotropy we will have Cklm = Ckl , where
Cklδkk′δll′δmm′ =klm sk′ l′m′〉.

Finally, we are also assuming statistical independence between the
components(also the noise is independent).

4.3.2 Notation

We can now impose the problem notation:

• Nl diagonal (channels are independent from each other)

Nl = diag(ν2
1,l , ..., ν2

N f ,l)

• The Nc component vector is splitted in 1+ (Nc− 1) components

~slm =

(
scmb,lm

~s f ,lm

)
=

(
scmb,lm

~0

)
+

(
0

~s f ,lm

)
≡~sc,lm +~s f ,lm

where scmb,lm is the CMB signal, while s f ,lm is the foregrounds sig-
nal.

• The diagonal matrix Cl is written with a 1× 1 and a Nc − 1×
Nc − 1 matrices

Cl =

(
Ccmb,l 0

0 C f ,l

)
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with

C−1
l =

 C−1
cmb,l 0

0 C−1
f ,l


because Cl is diagonal.
And we can write Cl = Cc,l + C f ,l , where

Cc,l =

(
Ccmb,l ~0T

~0 O

)
C f ,l =

(
0 ~0T

~0 C f ,l

)

• Finally2

A =



1

.

. A f

.

1


=



1

.

. ON f×(Nc−1)

.

1


+



0

.

. A f

.

0


≡ Ac + A f

(don’t confuse the two A f ’s)
With this notation

A~slm = Ac~sc,lm + A f~s f ,lm

And

Cl~s f ,lm = C f ,l~s f ,lm Cl~sc,lm = Cc,l~sc,lm

4.4 gaussian case

Our starting point is

P(A,~s, C|~d) ∝ L(~d|A,~s)P(A,~s, C) = L(~d|A,~s)P(A|~s, C)P(~s, C) =Independence

= L(~d|A,~s)P(A)P(~s, C) = L(~d|A,~s)P(A)P(~s|C)P(C)

We also assume:

2 We also define ~e =



1

.

.

.

1


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• Gaussian Prior for the components~s (with zero mean)

• Flat Prior for A and C, P(A) ∝ cA and P(C) ∝ cC, where cA and
cC are costants.

Then for our patch of the sky (rember prior probability on data as a
known costant)

P(A,~s, C|~d) ∝ L(~d|A,~s)P(~s) = ∏
lm
N (~dlm; A~slm, Nl)N (~slm;~0, Cl) =

∏
lm
N (~dlm; A~slm, Nl)N (~slm;~0, Cl) = ∏

lm
(2π)−N f /2|Nl |−1/2×

×exp[−1
2
(~dlm−A~slm)

T N−1
l (~dlm−A~slm)]× (2π)−Nc/2|Cl |−1/2exp[−1

2
~sT

lmC−1
l ~slm]

(4.8)

Our aim is to obtain a distribution that depends only on ~sc,lm. Be-
cause for every lm the distribution is the same in form (in the product
(1), and as we said A is the same) we fix lm. From the exp in (1)

exp{−1
2
[ ~dlm

T
N−1

l
~dlm − ~dT

lmN−1
l A~slm}×

×exp{−(A~slm)
T N−1

l
~dlm + (A~slm)

T N−1
l A~slm +~sT

lmC−1
l ~slm]}

Using (N−1
l )T = N−1

l because Nl is diagonal and the fact that exp(aT) =

exp(a) if a = ~AT~B is a number.

= exp{−1
2
~dT

lmN−1
l

~dlm +(A~slm)
T N−1

l
~dlm−

1
2
(A~slm)

T N−1
l A~slm−

1
2
~sT

lmC−1
l ~slm} =

We want to marginalize with respect to~s f ,lm so that we can obtain
a distribution for ~sc,lm. So firstly we write the above expression so
that it will be simple to make the integral of the marginalization. It is
useful to write the last expression more explicitly with the developed
notation:

= exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{(A f~s f ,lm)
T N−1

l
~dlm−

1
2
(A f~s f ,lm)

T N−1
l A f~s f ,lm− (Ac~sc,lm)

T N−1
l A f~s f ,lm}×
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×exp{−1
2
~sT

f ,lmC−1
l ~s f ,lm −~sT

c,lmC−1
l ~s f ,lm}×

×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}

We will now focus on the second and third row3.

exp{−1
2
~s f ,lm

T(AT
f N−1

l A f + C−1
l )~s f ,lm + (A f~s f ,lm)

T N−1
l

~dlm}×

×exp{−(Ac~sc,lm)
T N−1

l A f~s f ,lm −~sT
c,lmC−1

l ~s f ,lm}

We note that~sT
c,lmC−1

l ~s f ,lm = 0 so that in the end

exp{−1
2
~s f ,lm

T(AT
f N−1

l A f +C−1
l )~s f ,lm +(A f~s f ,lm)

T N−1
l

~dlm− (Ac~sc,lm)
T N−1

l A f~s f ,lm} =

= exp{−1
2
~s f ,lm

T(AT
f N−1

l A f +C−1
l )~s f ,lm +~s f ,lm

T(AT
f N−1

l
~dlm−AT

f N−1
l Ac~sc,lm)} ≡

≡ exp{−1
2
~s f ,lm

TΛl~s f ,lm +~s f ,lm
T~alm}

The argument of the exp function can be rewritten

−1
2
~s f ,lm

TΛl~s f ,lm +~s f ,lm
T~alm = −1

2
(~s f ,lm−Λ−1

l ~alm)
TΛl(~s f ,lm−Λ−1

l ~alm)−
1
2
~alm

TΛ−1
l ~alm

Now making the marginalization with respect to ~s f ,lm means that
we have to make this integral

∫
d~s f ,lmexp{−1

2
(~s f ,lm −Λ−1

l ~alm)
TΛl(~s f ,lm −Λ−1

l ~alm)} (4.9)

By calling where Γl the matrix Λl without the first row and the first
column and~alm = (0,~rlm)

T , (now the integral is Nc − 1-dimensional)

∫
d~s f ,lmexp{−1

2
(~s f ,lm − Γ−1

l ~rlm)
TΛl(~s f ,lm − Γ−1

l ~rlm)} (4.10)

3 We don’t need the first because there is no dependence on the components(once data
are given).
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This is the integral of an unnormalized multivariate gaussian with
a mean and a covariance matrix. We recall that in general a normal-
ized gaussian ( of dimension N) is

N (~x;~µ, Σ) = (2π)−N/2|Σ|−1/2exp{−1
2
(~x−~µ)TΣ−1(~x−~µ)}

with the two conditions

• N (~x;~µ, Σ) ≥ 0

•
∫

domain d~xN (~x;~µ, Σ) = 1

Then (2) depends only on the determinant of the covariance matrix
Γl . This gives a number that we ’put’ in the proportionality simbol.

In the end we have

exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×exp{−1
2
~alm

TΛ−1
l ~alm} =

= exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm+

+
1
2
[AT

f N−1
l (~dlm − Ac~sc,lm)]

TΛ−1
l [AT

f N−1
l (~dlm − Ac~sc,lm)]} =

= exp{−1
2
~sT

c,lm(AT
c N−1

l Ac + C−1
l − AT

c N−1
l A f Λ−1

l AT
f N−1

l Ac)~sc,lm+

+~sT
c,lm(AT

c N−1
l − AT

c N−1
l A f Λ−1

l AT
f N−1

l )~dlm} × no~sc,lm

where no~sc,lm indicates the part with no dependence on ~sc,lm. Ne-
glecting this, we focus on

exp{−1
2
~sT

c,lm(AT
c N−1

l Ac + C−1
l − AT

c N−1
l A f Λ−1

l AT
f N−1

l Ac)~sc,lm+

+~sT
c,lm(AT

c N−1
l − AT

c N−1
l A f Λ−1

l AT
f N−1

l )~dlm} (4.11)

Rewritten as

exp{−1
2
(~sc,lm−K−1

l
~blm)

TKl(~sc,lm−K−1
l
~blm)}× exp{−1

2
~bT

lmK−1
l
~blm}
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(4.12)

with ~blm independent from ~sc,lm. As before with ~s f ,lm, we can see
that we have an unnormalized multivariate Gaussian function of~sc,lm.

We will take as estimator of the true CMB signal the maximum of
the posterior (gaussian) distribution4.

We see that maximizing (4) is the same as maximizing (3). So we
will maximize (3) and will find the value of scmb,lm.

Now we explicate the terms in (3):

(Ac~sc,lm)
T N−1

l (Ac~sc,lm) = s2
cmb,lm~e

T N−1
l ~e

~sc,lm
TC−1

l ~sc,lm = s2
cmbC−1

cmb,l

Note now that if Bl = (Nl + A f Cl AT
f ) then

N−1
l A f Λ−1

l AT
f N−1

l = N−1
l A f Λ−1

l AT
f N−1

l Bl B−1
l = (N−1

l A f Λ−1
l )(AT

f N−1
l Bl)B−1

l =

= (N−1
l A f Λ−1

l )(ΛlCl AT
f )B−1

l = N−1
l A f Cl AT

f B−1
l = N−1

l (Bl−Nl)B−1
l

The remaining terms are

1. (Ac~sc,lm)
T N−1

l A f Λ−1
l AT

f N−1
l (Ac~sc,lm) = s2

cmb,lm~e
T N−1

l A f Λ−1
l AT

f N−1
l ~e =

= s2
cmb,lm~e

T N−1
l (Bl − Nl)B−1

l ~e

1. ~sT
c,lm(AT

c N−1
l − AT

c N−1
l A f Λ−1

l AT
f N−1

l )~dlm =

= scmb,lm~eT(N−1
l − N−1

l (Bl − Nl)B−1
l )~dlm = scmb,lm~eTB−1

l
~dlm

Adding all terms we obtain in the exponential

exp{−1
2

s2
cmb,lm~e

T N−1
l ~e− 1

2
s2

cmbC−1
cmb,l +

1
2

s2
cmb,lm~e

T N−1
l (Bl−Nl)B−1

l ~e+ scmb,lm~eTB−1
l

~dlm}

The first derivative is

exp{−1
2

s2
cmb,lm~e

T N−1
l ~e− 1

2
s2

cmbC−1
cmb,l +

1
2

s2
cmb,lm~e

T N−1
l (Bl−Nl)B−1

l ~e+ scmb,lm~eTB−1
l

~dlm}×

(−scmb,lm~eT N−1
l ~e− scmbC−1

cmb,l + scmb,lm~eT N−1
l (Bl−Nl)B−1

l ~e+~eTB−1
l

~dlm)

4 We also note that for a gaussian distribution the mean maximizes it. So, in principle
we could calculate it to obtain the maximum.
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Focusing on the second factor

(−scmb,lmC−1
cmb,l − scmb,lm~eTB−1

l ~e +~eTB−1
l

~dlm) = 0

In the end

ŝcmb,lm =
~eTB−1

l
~dlm

C−1
cmb,l +~eTB−1

l ~e
=

~eT(Nl + A f C f ,l AT
f )
−1~dlm

C−1
cmb,l +~eT(Nl + A f C f ,l AT

f )
−1~e

(4.13)

where here A f is N f × (Nc− 1) and C f ,l is (Nc− 1)× (Nc− 1). This
is the result of equation (14) of [25]. As pointed out in this paper, if
CMB fluctuations are neglected in then standard ILC formula and if
we the prior variance of CMB is infinite in the last formula, then we
obtain the standard ILC result of the previous section.

4.5 nearly gaussian forgrounds components case

In the vector ~slm the first component, for our convention, is the com-
ponent of interest, while the other components are the ones to be
marginalized. In the previous section we saw how to estimate the
component of interest, scmb, supposing ~slm, and the noise, to follow
a multivariate gaussian distribution. Now we want to relax a bit this
condition, by imposing a gaussian distribution for the component
of interest(the CMB), and a non-gaussian one (in particular a nearly
gaussian) for the other components (we saw in the previous chapter
why we could do this choice). The noise will still follow a multivariate
gaussian.

Now, the initial probability density is

K(2π)−N f /2|Nl |−1/2exp[−1
2
(~dlm − A~slm)

T N−1
l (~dlm − A~slm)]×

×(2π)−Nc/2|Cl |−1/2exp[−1
2
~sT

lmC−1
l ~slm]×

×
Nc−1

∏
i=1

[1 +
∞

∑
k=1

aik Hk(
si,lm

σi
)] (4.14)

Where the coefficients ail are calculated by means of the formula
(43) of [Expansions for nearly Gaussian distribution]. For reference
we report the coefficients in the Appendix. (nota però che la gaussiana
Z(x) lì usata è a varianza unitaria).
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We should note that the series in this formula is not supposed to
converge going to infinity. Practically we will always truncate this se-
ries, so that all higher coefficients will be set to zero. Valid edgeworth
expansion. So we suppose the series to converge.

We proceed as in the previous section. In the end we will obtain
something like this

K(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2 × exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×[exp{−1
2
~alm

TΛ−1
l ~alm}(2π)Nc/2|Λl |−1/2+

+
∫

d~s f ,lmexp{−1
2
~s f ,lm

TΛl~s f ,lm +~s f ,lm
T~alm}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si)]− 1)

(4.15)

where we recall that~s f ,lm = (0,~s)T with~s = (s1, ..., sNc−1)
T.

exp{−1
2
~s f ,lm

TΛl~s f ,lm +~s f ,lm
T~alm}

is

exp{−1
2
~sTRl~s +~sT~blm}

where Rl is the matrix Λl without the first row and the first col-
umn5 and~alm = (0,~blm)

T.
exp{− 1

2~s
TRl~s +~sT~blm} can be rewritten as

exp{−1
2
(~slm − R−1

l
~blm)

TRl(~slm − R−1
l
~blm)−

1
2
~blm

TR−1
l
~blm}

We obtain

K(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2 × exp{−1
2
~dT

lmN−1
l

~dlm}×

5 It was Γl in the previous chapter
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×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×[exp{−1
2
~alm

TΛ−1
l ~alm} × (2π)Nc/2|Λl |−1/2+

+exp{−1
2
~blm

TR−1
l
~blm}×

×
∫

d~slmexp{−1
2
(~slm−R−1

l
~blm)

TRl(~slm−R−1
l
~blm)}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si,lm)]− 1)

(4.16)

Now we have ’only’ to perform the integral

∫
d~slmexp{−1

2
(~slm−R−1

l
~blm)

TRl(~slm−R−1
l
~blm)}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si)]− 1)

We define f (~slm) = ∏Nc−1
i=1 [1 + ∑∞

l=k aik Hk(si)]. Let’s change the in-
tegration variable:

~tlm =~slm − R−1
l
~blm

e g(~tlm) := f (~tlm + R−1
l
~blm).

So that

∫
d~tlmexp{−1

2
~tlm

TRl~tlm}g(~tlm)

Let’s note that g(~tlm) is analytic (is a product of polynomials, so a
sum of polynomials and we supposed that it is convergent).

Now, let’s use the ’master’ formula6

∫
f (~x)e(−

1
2 ∑n

i,j=1 Aijxixj)dnx =

√
(2π)n

detA
e
( 1

2 ∑n
i,j=1(A−1)ij

∂
∂xi

∂
∂xj

)
f (~x)|~x=0

(4.17)

.

6 https://en.wikipedia.org/wiki/Gaussian_integral#n-dimensional_and_functional_generalization
. But there are other ways to compute the integral
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So that∫
d~tlmexp{−1

2
~tlm

TRl~tlm}g(~tlm) =

=

√
(2π)Nc−1

detRl
exp{1

2

Nc−1

∑
i,j=1

(R−1
l )ij

∂

∂tlm,i

∂

∂tlm,j
}g(~tlm)|~tlm=0 =

=

√
(2π)Nc−1

detRl
exp{1

2

Nc−1

∑
i,j=1

(R−1
l )ij

∂

∂slm,i

∂

∂slm.j
} f (~slm)|~slm=R−1

l
~blm

=

√
(2π)Nc−1

detRl
exp{1

2

Nc−1

∑
i,j=1

(R−1
l )ij

∂

∂slm,i

∂

∂slm.j
}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si)]− 1)|~slm=R−1
l
~blm

(4.18)

To apply the derivatives in the exponential we see it through its series
expansion.

The final formula is:

K(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2 × exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×[exp{−1
2
~alm

TΛ−1
l ~alm} × (2π)(Nc−1)/2|Rl |−1/2+

+exp{−1
2
~blm

TR−1
l
~blm}

√
(2π)Nc−1

detRl
×

×exp{1
2

Nc−1

∑
i,j=1

(R−1
l )ij

∂

∂slm,i

∂

∂slm.j
}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si)]− 1)|~slm=R−1
l
~blm

]

(4.19)

If we define Bl = Nl + A f Cl AT
f , then the second and third line of

exponentials of this last formula can be written as



54 components statistical analysis

exp{−1
2

s2
c,lmal + sc,lmblm}

where

al = C−1
cmb,l +~eTB−1

l ~e blm = ~eTB−1
l

~dlm

The fraction blm/al is nothing else but the bayesian ILC estimation.
So that we simply have (note the normalization constant changed)

K′(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2 × exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{−1
2

s2
c,lm(C

−1
cmb,l +~eTB−1

l ~e) + sc,lm~eTB−1
l

~dlm}×

×[(2π)(Nc−1)/2|Rl |−1/2+

+

√
(2π)Nc−1

detRl
×

×exp{1
2

Nc−1

∑
i,j=1

(R−1
l )ij

∂

∂slm,i

∂

∂slm.j
}(

Nc−1

∏
i=1

[1+
∞

∑
k=1

aik Hk(si)]− 1)|~slm=R−1
l
~blm

]

(4.20)

4.6 multidimensional nearly gaussian

We relax the hypothesis of isotropy for the components. There’s still
independence bewteen frequencies and between the various compo-
nents. We should point out the fact that this type of problems of
component separation also depends on how we represent and manip-
ulate our variables. So, when trying to face them it’s a good idea to
find a suitable representation of multivariate data.

4.6.1 Representation of variables

We will suppose to have an experiment with lmin ≤ l ≤ lmax(based on
the resolution of the experiment).
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The ’noise’ covariance matrix is

N =



.

Nl

.

.

.


(4.21)

Each Nl is repeated 2l + 1 times. The total number of matrices in
N is ∑lmax

l=lmin
(2l + 1) = ktot.

Because Nl are diagonal also this is diagonal, so that

N−1 =



.

N−1
l

.

.

.


(4.22)

Representation of the components of the signal

~s =~sc +~s f (4.23)

This is

~s =



.

~slm

.

.

.


=



.

~scmb,lm +~s f ,lm

.

.

.


For each ~slm we will have a mixing matrix A. We will suppose A

to be uniform on the entire celestial sphere7. So that, based on the
previous sections we obtain the following vector of dimension N f

~dlm = A~slm +~nlm

Or (IN f is the N f × N f matrix identity)

~nlm = IN f
~dlm − A~slm (4.24)

Now if we want to create a maxi vector that contains all the data

7 (and constant in time)
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

IN f

.

IN f

.

IN f





.
~dlm

.

.

.


−



A

.

A

.

A





.

~slm

.

.

.


=

= ~n = ~d−A~s (4.25)

We are simply creating a mapping between a sphere with a grid
and a linear vector space. Note that the order of the components in
the vectors is not important. But this one has a simple representation
of the matrices.
A is (kN f )× (kNc).~s is a kNc vector.
Now let’s see what are our priors.
Prior distribution for ~n, g(~n) which gives us g(~d−A~s) is

1

(2π)(kN f )/2

1
|N | exp{−1

2
(~d−A~s)TN−1(~d−A~s)} (4.26)

We would want to do the same for the components. In the previous
sections we focused on an (l, m) so that we had a covariance matrix
at fixed l, say Cl . Now relaxing the hypothesis of statistical isotropy,
we have a non diagonal covariance matrix Clm,l′m′ .

Taking a single component and suppose we have a Gaussian Distri-
bution for it:

1
(2π)k/2

1
|Ci|

exp{−1
2
~si

TC−1
i ~si} =

=
1

(2π)k/2
1
|Ci|

exp{−1
2 ∑
{lm}

si,lmCi,lm,l′m′si,l′m′}

where~si is a vector of dimension k which contains all the lms for a
single component.

If we want to create a Gaussian of statistically independent compo-
nents each one with its Gaussian(for Nc components)

∏
i

1
(2π)k/2

1
|Ci|

exp{−1
2
~si

TC−1
i ~si} =
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= ∏
i

1
(2π)k/2

1
|Ci|

exp{−1
2 ∑
{lm}

si,lmCi,lm,l′m′si,l′m′}

Or

exp{−∑
i

1
2
~si

TC−1
i ~si}∏

i

1
(2π)k/2

1
|Ci|

We now define~s′ as the vector whose components are

~s′ =



.

~si,k

.

.

.


=



~scmb,k

.

~sj,k

.

.


=~s′cmb +~s′f

where ~si,k is the vector of dimension k which contains all the lms
for the single component i (now with a pedix k for clarity)8.

The block ’covariance matrix’ for the vector~s′ is

C =



Ccmb

.

Cj

.

.


(4.27)

And for the properties of block diagonal matrices (each one of di-
mension k)

C−1 =



C−1
cmb

.

C−1
j

.

.


=

8 While before we had~slm containing all components at the single lm.
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=



C−1
cmb

Ok

.

Ok

.


+



Ok

.

C−1
j

.

.


≡ Dc +D f

(4.28)

So that we obtain as Gaussian distribution

1
(2π)(Nck)/2

1
|C| exp{−1

2
~s′TC−1~s′} (4.29)

If we wanted a nearly Gaussian distribution this would be

q(~s′) =
1

(2π)(kNc)/2

1
|C| exp{−1

2
~s′TC−1~s′} × f (~s′f ) (4.30)

where the first factor is a multivariate guassian while the second
belongs to some non gaussian correction. This could be for example
from the EdgeWorth Expansion.

Now we create a link between~s and ~s′ by a linear transformation

Q : ~s′ →~s (4.31)

or ~s = Q~s′, so that we can mix the various components using the
mixing matrix.

Then (30) is the same, while (26) is now

1

(2π)(kN f )/2

1
|N | exp{−1

2
(~d−AQ~s′)TN−1(~d−AQ~s′)} (4.32)

We rename ~s′ as~sand AQ = A′:

4.6.2 Calculation

The full pdf is very similar to the single (l, m) case:

1

(2π)(kN f )/2

1
|N | exp{−1

2
(~d−A′~s)TN−1(~d−A′~s)} 1

(2π)(kNc)/2

1
|C| exp{−1

2
~sTC−1~s}× f (~s f )

(4.33)

Or



4.6 multidimensional nearly gaussian 59

1

(2π)(kN f )/2

1
|N | exp{−1

2
~dTN−1~d+~sTA′TN−1~d− 1

2
~sTA′TN−1A′~s}×

× 1
(2π)(kNc)/2

1
|C| exp{−1

2
~sT

c Dc~sc}× exp{−1
2
~s fD f~s f }× f (~s f ) (4.34)

Now let’s expand the argument of the exponential on the first line
of (34).

~sT
cA′TN−1~d+~sT

fA′TN−1~d− 1
2
~sT

cA′TN−1A′~sc−
1
2
~sT

fA′TN−1A′~s f −~sT
cA′TN−1A′~s f

So that we now have

1

(2π)(kN f )/2

1
|N | ×

1
(2π)(kNc)/2

1
|C| × exp{−1

2
~dTN−1~d}×

×exp{−1
2
~sT

c Dc~sc}× exp{~sT
cA′TN−1~d}× exp{−1

2
~sT

cA′TN−1A′~sc}×

×exp{−1
2
~sT

f D f~s f + ~dTN−1A′~s f −
1
2
~sT

fA′TN−1A′~s f −~sT
cA′TN−1A′~s f }× f (~s f )

(4.35)

Now we want to marginalize on the variables on which we are not
interested. In other words we will focus on the last line of the last
formula and marginalize over the foregrounds

exp{−1
2
~sT

f D f~s f + ~dTN−1A′~s f −
1
2
~sT

fA′TN−1A′~s f −~sT
cA′TN−1A′~s f }× f (~s f )

First let’s remember that ~s f contains the foreground components
without the CMB. So, the first k columns are all zero. Then this vector
can be connected to a vector of dimension (Nc − 1)× k that contains
all the foregrounds signals. Let’s call this vector ~f f . Now in the last
formula line we can recast all the addends in this form

exp{−1
2
~sT

f V~s f +~vT~s f }

Where

V = (D f +A′TN−1A′)
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and

~v = A′TN−1~dT −A′TN−1A′~sc

But for what we’ve just said ~sT
f V~s f = ~f T

f M~f f for some submatrix
M of V .

Now we name the last Q = (Nc − 1)× k entries of ~v with~a.
Before this we rewrite it in a another form(assumeM invertible)

exp{−1
2
~f T

f M~f f +~aT~f f } = exp{−1
2
~aTM−1~a}× exp{−1

2
(~s f −M−1~a)TM(~s f −M−1~a)}

We have to marginalize9

∫
d~f f exp{−1

2
(~s f −M−1~a)TM(~s f −M−1~a)} f (~f f ) (4.36)

With a shift~t f = ~f f −M−1~a this transforms as

∫
d~t f exp{−1

2
~tT

fM~t f } × g(~t f ) (4.37)

where g(~t f ) = f (~t f +M−1~a). Then we use again the ’master’ for-
mula to obtain

√
(2π)Q

detM exp{1
2

Nc−1

∑
i,j=1

(M−1)ij
∂

∂t f ,i

∂

∂t f ,j
}g(~t f )|~tlm=0 (4.38)

The final posterior distribution function the CMB signal component
is

1

(2π)(kN f )/2

1
|N | ×

1
(2π)(kNc)/2

1
|C| × exp{−1

2
~dTN−1~d}×

√
(2π)Q

detM×

×exp{1
2

Nc−1

∑
i,j=1

(M−1)ij
∂

∂t f ,i

∂

∂t f ,j
}g(~t f )|~tlm=0×

×exp{−1
2
~sT

c Dc~sc}× exp{~sT
cA′TN−1~d}× exp{−1

2
~sT

cA′TN−1A′~sc} ,

(4.39)

what all we need for a Bayesian treatment.

9 f (~f f ) = f (~s f )
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L I N E S F O R T H E S I M U L AT I O N

Our main aim is to create a complete CMB cleaned from the fore-
grounds contamination. In our way we have to calculate the final pdf
for the CMB signal, seen in the last part of the previous chapter, and
do a full Bayesian analysis. Also trying to include only the three point
function, we would require long calculations. This requires perform-
ing long calculations. So what we can do as a prestep is to reduce
the problem to a 1 dimensional one and see if our method works. So
we will imagine to have only one dimensional signal of interest and
one contaminating signal. Then we try to see if our method performs
better than bayesian ILC.

5.1 1 cmb(component of interest)+1 foreground given

N f frequencies

Let’s suppose for a moment to have Nc − 1 foregrounds, where Nc

is the total number of components. Because in cosmology usually we
deal with the skewness for non Gaussian distributions we will start
from the following expression in which the edgeworth expansion in-
cludes only the skewness

K(2π )−N f /2 |Nl |−1/2 ex p [− 1
2
(~d l m − A~s l m )T N−1

l (~d l m − A~s l m )]×

×(2π )−Nc /2 |C l |−1/2 ex p [− 1
2
~sT

l m C−1
l ~s l m ]×

×
Nc−1

∏
i=1

(1 + γ i H3 (
s i , l m

σi
)) (5.1)

γ i =
σi S i ,3

6 with S i ,3 =
κ i ,3

σ4
i

, so that γ i =
κ i ,3
6σ3

i
. We suppose S i ,3 <<

1, then γ i << 1. Then we can replace the product in (1) with a sum

K(2π )−N f /2 |Nl |−1/2 ex p [− 1
2
(~d l m − A~s l m )T N−1

l (~d l m − A~s l m )]×

×(2π )−Nc /2 |C l |−1/2 ex p [− 1
2
~sT

l m C−1
l ~s l m ]×
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(1 +
Nc−1

∑
i=1

γ i H3 (
s i , l m

σi
)) (5.2)

K(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2 × exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×[exp{−1
2
~blm

TR−1
l
~blm}(2π)(Nc−1)/2|Rl |1/2+

+
Nc−1

∑
j=1

∫
d~s f ,lm

Nc−1

∏
i=1

exp{−1
2

s2
i,lm(Rl)i,i + si,lmci}γjH3(sj,lm)] (5.3)

For Nc = 2, (3) is

[−1
2

s2
1,lm(Λl)2,2 + s1,lm(~alm)2]

with

Λl =

(
C−1

cmb,l 0

0 ∑
N f
k=1 a2

k1ν−2
k,l + C−2

1,l

)
=

(
C−1

cmb,l 0

0 λ1

)

The marginalization is

∫
d(

0

s1,lm
)exp{−1

2
s2

1,lm(Λl)2,2 + s1,lm(~alm)2}γ1H3(
s1,lm

σ1
)

Written in another way is (we use the expression for the hermite
polynomial of order 3)

∫
ds exp{−1

2
s2a + sb}γ( s3

σ3
1
− 3

s
σ1
) =

=
∫

ds exp{−1
2

s2a + sb}γH3(s/σ) =

=
∫

σds′ exp{−1
2

σ2s′2a + s′σb}γH3(s′)
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=
γ′
√

2πb′eb′2/(2a′)

a′7/2 (3a′ + b′2 − 3a′2) =

=
γ
√

2πbeb2/(2a)

σ3a7/2 (3a + b2 − 3σ2a2)

where

γ′ = γσ a′ = aσ2 b′ = bσ

With a = (Λl)2,2 = ∑
N f
k=1 a2

k1ν−2
k,l +C−2

1,l , b = (~alm)2 = ∑
N f
k=1 ak1ν−2

k,l ylm,k,

where ylm,k = (~dlm)k − scmb,l and γ = γ1. This is because

~alm = AT
f N−1

l (~dlm − Ac~sc,lm) = AT
f N−1

l (~dlm −~escmb,lm)

And

A f =



0 a11

. .

. .

. .

0 aN f 1


=



0

.

. ~a

.

0


So that

~alm =

(
0

∑
N f
k=1 ak1ν−2

k,l ylm,k

)
=

(
0

~aT N−1
l ~ylm

)
=

(
0

~aT N−1
l

~dlm −~aT N−1
l ~escmb,lm

)
=

(
0

a1,lm

)

a = λ1 , b = a1,lm = a1 = d− escmb

p(sc) = K(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2× exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{(Ac~sc,lm)
T N−1

l
~dlm−

1
2
(Ac~sc,lm)

T N−1
l Ac~sc,lm−

1
2
~sT

c,lmC−1
l ~sc,lm}×

×exp{−1
2

a2
1,lmλ−1

1 }[(2π)1/2|λl |−1/2+

+
γ
√

2πa1

σ3λ7/2
1

(3λ1 + a1
2 − 3σ2λ1

2)] (5.4)
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p(sc) = K′(2π)−N f /2|Nl |−1/2(2π)−Nc/2|Cl |−1/2× exp{−1
2
~dT

lmN−1
l

~dlm}×

×exp{−1
2

s2
c,lm(C

−1
cmb,l +~eTB−1

l ~e) + sc,lm~eTB−1
l

~dlm}×

×(2π)1/2|λl |−1/2[1+

+
γa1

σ3λ3
1
(3λ1 + a1

2 − 3σ2λ1
2)] , (5.5)

where Bl = Nl +~aCl~aT.
This is our final probability distribution that we will use for esti-

mating our signal. As criterion of estimation we will maximize p(sc).
This is the same criterion used for Bayesian ILC.

5.1.1 The Simulation

We want to test our method of using EdgeWorth expansion. The idea
is that we have some foreground signal generated by a nearly Gaus-
sian pdf, with known skewness. Then we have our Gaussian pdf and
a Gaussian noise.

So, the idea is to generate a realization of the signal, say composed
by N samples, imagining to take measure at ’time’ ti with i = 1, .., N.
For each one of this N samples we make an estimation of the true
signal, once with Bayesian ILC and the other one with Non Gaussian
Bayesian ILC (ILCNG).

5.1.1.1 Evaluating Performance

Now, we would want to check if with NILC we could improve ILC. To
do so we will run a test based on the sum of the squared differences of
the estimations minus the true signal. In other words, for a realization
we will calculate the sum S = ∑i(ŝi − si)

2 where si is the true value
for the i−th sample and ŝi its estimation, i = 1, .., N. Then we will say
that the method that performs better is that with the smaller S.

5.1.1.2 In Practice

To perform the simulation we wrote a program in Python, using
mainly the numpy library that allows to handle quickly array of data.
Here the main steps are listed:
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Creation of a ’realization’(suppose a signal in which we take sam-
ples at times t1, t2, ..., tN):

1. Generate a ’CMB’ signal s(t1), ..., s(tn) from aN (0, σc), one ’fore-
ground’ signal f (t1), ..., f (tN) from NG(0, σf , skew f ).

2. Random noise n(t1), ..., n(tn) from N (0, N)(where N is the co-
variance for the noise) for N f channels.

3. Calculatedata d = A(s, f ) + n

4. Use d for:

a) Bayesian ILC

b) Numerical Maximum for ILCNG

5. Repeat 2-4 for several times, taking 1 fixed1.

6. Check how many times ILCNG performs better with the test
∑i(ŝi,x − si,t)

2, where ILC, ILCNG

7. Do steps 1-5 several times with different parameters and see
how the results change.

5.1.2 The Proper Simulation

As our non Gaussian function we took a Chi-Squared distribution
with k degrees of freedom

χ(x) =
1

2
k
2 Γ( k

2 )
x

k
2−1e−

x
2 (5.6)

where Γ(n) is the Euler gamma function. This pdf has the following
values for mean, variance, and skewness respectively

k, 2k,

√
8
k

.

The good thing about it is the fact that it is possible to use only one
parameter that describes this 3 cumulants. Furethermore, it has the
property that for k >> 1 it tends to a Gaussian.

The Edgeworth function with only the Hermite polynomial of or-
der three is

f (x) =
1√

2πσ2
exp(−1

2
x2

σ2 )(1 + γH3(
x
σ
)) (5.7)

1 For this it would be better to use another term intead of realization, because usually
this is fixed by s and f .
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Figure 5.1: k = 3. Red is the Chi distribution, blue the Edgeworth one.

Figure 5.2: k = 8

where γ = Skewness/6. Figures 1-4 have some examples of Chi-
Squared distribution and the EdgeWorth that tries to approximate
it.

Once we had all the parameter at hand we did the simulation. In
Figures 5 and 6 there are the posterior marginalized probability dis-
tributions for the case k = 8.

We performed 1000 realizations, for a fixed value of k, each one
with 1000 samples with 4 channels. We found systematically that for
smaller ks, approximately smaller than 10, ILCNG performes better
than Bayesian ILC. For example for k = 8 Figure 7 shows great im-
provement.

Figure 5.3: k = 50
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Figure 5.4: k = 230. Now there is in yellow a Gaussian with zero mean and
same variance of the Chi.

Figure 5.5: Example of the (unnormalized) posterior p(sc) with parameters
taken from a simulation with a Chi-Square distribution with 8
degrees of freedom.
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Figure 5.6: Unnormalized posterior p(sc) in red and unnormalized posterior
of Bayesian ILC (Gaussian) in blue for the same Chi-Square of
Figure 1.

Figure 5.7: Number of times ILC leads to an S greater than ILCNG in func-
tion of k. ILCNG performes better for k < 10. The two methods
are very similar for the other cases.
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C O N C L U S I O N

In this work we presented a new calculation for foreground cleaning,
expanding what was did in [25], where a Bayesian Approach was
followed to do the estimation of the CMB signal. What we did was
to modify the Bayesian ILC assumptions where all the prior signals
are supposed to be Gaussian. But in reality, apart from the CMB and
in good approximation the noise, foreground signals have more com-
plex distributions.

In CMB maps we measure a little residual non Gaussian compo-
nent, which as now we believe is mainly to sources different than the
CMB. Foregrounds could be linked to this non Gaussianity that we
measure in terms of a non zero bispectrum. Substracting this com-
ponents from CMB maps would improve our knowledge about the
physics governing our Universe. Indeed, we saw that foregrounds are
a problem not only in CMB temperature maps but also in the polar-
ization ones. We saw that in particular foregrounds are a big problem
when we try to have access to the CMB B−mode polarization signal,
signal that could shed light on our theories about the primordial Uni-
verse. From this, the importance of removing contaminations in the
best way based on our assumptions.

Based on the prior knowledge of foregrounds having nearly Gaus-
sian distributions we took a Bayesian approach to estimate the CMB.
We said that we measure the bispectrum as extra information to put
in our prior. There are infinite distributions that can have the same
power spectrum and bispectrum. So how do we choose our nearly
Gaussian distribution? We took an Edgeworth expansion, that is a
very good approximation for several nearly Gaussian distributions.
With an Edgeworth expansion we can do a truncation and use only
the two and three point harmonic correlation function to define a
unique distribution. With the Bayesian approach we used this as our
prior for foregrounds and we found a posterior probability that de-
fine completely the CMB signal1.

We then applied our results to a 1 point-pdf case (toy model), imag-
ining a general signal processing problem, with the example to a Chi-
Squared distributed ’foreground’. We saw that using the Chi-Squared
skewnees in the Edgeworth expansion led to a better result with re-
spect to the Bayesian ILC. This is also natural: we used extra infor-
mation, with respect to a completely Gaussian case, and this led to a
better result.

1 Furthermore, in the way we did it we could also include higher order correlation
functions.
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The fact that the 1-pdf case worked doesn’t mean that the multi-
variate one will do the same. Indeed, in the problem will enter cross
correlations and we will also have to take in case that if we want
to mantain isotropy with a Non Gaussian pdf the alms will become
dependent. Furethermore, one drawback of any Bayesian approach
is that our estimations are biased, because in general our priors are
never accurate(and this is more true for foregrounds, the physics of
which we still don’t know very well).

We also made the assumption that the foreground signals have val-
ues that belongs to all R. This is not true

So, we showed that the NGILC methods do better than ILC in the 1

point pdf case when the underlying foreground distribution is nearly
Gaussian. The future step will be to apply our results to a general
N−dimensional case. We have the full posterior pdf. So, the next
step is to do simulations and then use real CMB data to, hopefully,
improve the existing maps.
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