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Abstract

Model order selection has always represented an important and di�cult prob-
lem, both in system identi�cation and statistics; for these reasons, it has been
widely studied in literature. This thesis faces the problem in a system identi�-
cation perspective, with the aim of providing a quite extensive study of classical
and innovative techniques, which are adopted for model order selection. Among
the classical methods, cross-validation, information criteria, the F-test and the
statistical tests on the residuals are considered. Newly introduced techniques
are also evaluated, such as the so-called PUMS criterion (Parsimonious Unfalsi-
�ed Model Structure Selection), the kernel-based estimation and its connection
with the prediction error method approach (PEM). A theoretical description of
these methods is provided and accompanied by an experimental analysis, which
exploits a versatile data bank, containing both systems and data sets. The or-
der selection methods are not evaluated according to their ability to determine
the true order of a system, but to select a complexity which leads to a good
reproduction of the input-output properties (impulse response) of the true sys-
tem. Two combinations of the considered order selection techniques are also
introduced and the results based on the data bank prove that the simultaneous
adoption of two methods reduces the risk of wrong order choices. Particular
attention is also reserved to the tuning of the signi�cance level to be adopted in
the order selection criteria based on statistical tests.
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Chapter 1

Introduction

Model order selection has always been a challenging issue in statistical studies
based on data mining. This discipline aims at �nding a model able to describe a
speci�c set of data: this model can then be used to extrapolate new information
from the given data but the most interesting use is its application on new sets
of data for prediction of new information.
The complexity of the model used to describe the analyzed data is of crucial
importance for these techniques, since both too simple and too complex models
have their disadvantages. On the one hand, a simple model is easier to estimate
and to handle with, but it could not be able to completely extrapolate the
features of the data. On the other hand, a complex model requires a large
computational e�ort and a large amount of data for its estimation (this issue is
known as curse of dimensionality) but it would probably be able to explicate the
data very well. However, this ability is not always bene�cial, especially when
the model is applied on new data, di�erent from the ones used for estimation.
In this case complex models could be a�ected by over�tting, i.e. they could �nd
di�culties in the explanation of new data, since they are too adherent to their
estimation data (namely to the speci�c noise realization present in the data):
they don't have the so-called generalization ability.

In the control system �eld the issue of model order selection is present in con-
nection to system identi�cation practices, which rely on the estimation of a
mathematical model for a dynamical system, starting from experimental input-
output data. This issue is relevant for parametric system identi�cation methods,
which employ a �nite-dimensional parameter vector in the search for the best
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description of the system. Such techniques require the choice of the model type
(linear or non linear, polynomial or state-space model, etc.), of the model or-
der (i.e. the number of parameters describing the system) and of the model
parametrization (i.e. the formulation of the model as a di�erentiable function
of the parameter vector, with a stable gradient). These choices can be done
according to:

• a priori considerations, which are independent from the particular set of
data used;

• a preliminary data analysis, which can help in the determination of the
model order and also in the choice between the use of a linear or a non
linear model;

• a comparison among various model structures, which relies on the esti-
mation of di�erent types of models and on the comparison based on a
pre-de�ned �t function;

• the validation of the estimated model, which uses the original estimation
data to evaluate how well the model is able to describe their features, i.e.
how much the data obtained from the estimated system agree with the
estimation data.

Model structure determination within the system identi�cation �eld has been
widely treated in literature; more detailed discussions can be found in [8, Ch. 16],
[13, Ch.11], [1], [6].

1.1 Problem statement

System identi�cation

Consider a linear single input-single output system S described as

yptq � G0pqquptq �H0pqqeptq (1.1)

where

G0pqq �
8̧

k�1

gpkqq�k, H0pqq � 1�
8̧

k�1

hpkqq�k

are the transfer functions of the system and eptq is white noise with variance σ2.
q is the shift operator, such that upt� 1q � q�1uptq.
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Given a set of input-output data ZN � tup1q, yp1q, up2q, yp2q, ..., upNq, ypNqu,
system identi�cation aims at estimating G0pqq and H0pqq as well as possible. In
other words, indicating the two estimates with pGpqq and pHpqq, the identi�cation
procedure should maximize the functions FpG0, pGq and FpH0, pHq, de�ned in
(3.1).

When parametric methods are used for model estimation, the transfer functions
to be estimated are de�ned as functions of a parameter vector θ P DM � RdM ,
i.e. Gpq, θq and Hpq, θq. Thus, the identi�cation procedure reduces to the

determination of the value pθN , for which pGpqq � Gpq, pθN q and pHpqq � Hpq, pθN q
are closest to G0pqq and H0pqq.

In the identi�cation �eld a system description in terms of prediction is generally
preferred to the one given in (1.1); keeping the parametric approach, the k-step
ahead predictor is such de�ned:

pypt|t� kq �Wupq, θquptq �Wypq, θqyptq (1.2)

where Wupq, θq and Wypq, θq represent the predictor transfer functions. In par-
ticular, the one-step ahead predictor is mainly exploited:

pypt|t� 1q � H�1pq, θqGpq, θquptq � r1�H�1pq, θqsyptq (1.3)

Indeed, the most common methods adopted to determine pθN are based on the
minimization of the prediction errors and for this reason are known as prediction-
error methods (PEM). According to PEM, pθN is determined as the minimizer
of the function

VN pθ, ZN q � 1

N

Ņ

t�1

lpεF pt, θqq (1.4)

i.e., pθN pZN q � arg min
θPDM

VN pθ, ZN q (1.5)

where lp�q is a norm function and

εF pt, θq � Lpqqεpt, θq, 1 ¤ t ¤ N (1.6)

is a �ltered version of the prediction error at sample t, when the one-step ahead
prediction is adopted:

εpt, θq � yptq � pypt|t� 1q (1.7)

� H�1pq, θq ryptq �Gpq, θquptqs (1.8)
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Model structure de�nition

When no physical information is given about the system to be identi�ed, a set
of so-called "black-box" model structures is de�ned, i.e. �exible descriptions
that can be suitable for a large variety of systems. Formally, a model structure
M is de�ned as a di�erentiable mapping from the open subset DM of RdM to
a model set ΞM,

M : DM Ñ ΞM

θ ÞÑ Mpθq � �
Wupq, θq Wypq, θq

�
(1.9)

with the constraint that the �lter

Ψpq, θq � �
d
dθWupq, θq d

dθWypq, θq
�

(1.10)

exists and is stable for θ P DM. The estimation of θ based on N measurement
data, pθN , gives rise to a speci�c model m �MppθN q.
Typical examples of linear model structures are transfer-function and state-
space models. Transfer-function models fall into the general de�nition given by

Apqqyptq � Bpqq
F pqquptq �

Cpqq
Dpqqeptq (1.11)

where

Apqq � 1� a1q
�1 � ...� anaq

�na (1.12)

Bpqq � bnkq
�nk � ...� bnk�nb�1q

�nk�nb�1 (1.13)

Cpqq � 1� c1q
�1 � ...� cncq

�nc (1.14)

Dpqq � 1� d1q
�1 � ...� dndq

�nd (1.15)

F pqq � 1� f1q
�1 � ...� fnf q

�nf (1.16)

with nk being the delay contained in the dynamics from u to y. The most
common speci�cations of the general formulation (1.11) are:

ARMAX models - where Dpqq � F pqq � 1, such that

Gpq, θq � Bpqq
Apqq , Hpq, θq � Cpqq

Apqq (1.17)

ARX models - where Cpqq � Dpqq � F pqq � 1, such that

Gpq, θq � Bpqq
Apqq , Hpq, θq � 1

Apqq (1.18)
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OE models - where Apqq � Cpqq � Dpqq � 1, such that

Gpq, θq � Bpqq
F pqq , Hpq, θq � 1 (1.19)

FIR models - where Apqq � Cpqq � Dpqq � F pqq � 1, such that

Gpq, θq � Bpqq, Hpq, θq � 1 (1.20)

For both transfer-function and state-space models a direct parametrization ex-
ists, i.e. a formulation in terms of a parameter vector θ can be de�ned. More
precisely, for transfer function model structures θ contains the polynomial co-
e�cients, while for state-space models θ includes the elements of the involved
matrices. Furthermore, some transfer-function model structures, such as ARX
and FIR, allow the formulation of the one-step ahead predictor pypt|θq � pypt|t�1q
as a linear regression [8, Ch. 4], i.e. as a scalar product between a known data
vector ϕptq and the parameter vector θ:

pypt|θq � ϕptqT θ (1.21)

where xT denotes the transpose of the vector x.
State-space models also allow a de�nition in terms of linear regression [8, p. 208].
When Lpqq � 1 in (1.6) and l � 1

2ε
2 in (1.4) and in view of (1.21), the loss

function (1.4) can be rewritten as

VN pθ, ZN q � 1

N

Ņ

t�1

1

2

�
yptq � ϕptqT θ�2 (1.22)

Thus, the minimization problem (1.5) becomes a least-squares problem, which
admits an analytic solution, given by (assuming that the inverse exists)

pθLSN � arg min
θPDM

VN pθ, ZN q �
�

1

N

Ņ

t�1

ϕptqϕptqT
��1

1

N

Ņ

t�1

ϕptqyptq (1.23)

However, the one-step ahead predictor for a general transfer-function model can
only be expressed as a pseudo-linear regression, i.e.

pypt|θq � ϕpt, θqT θ (1.24)

with the regressors depending on the parameter vector itself. In this case (1.5)
is a non-convex problem, for which solutions that are actually local minima can
be found.
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Model structure selection

As previously illustrated, in a system identi�cation problem a set of model
structures is �rst de�ned; among them, the optimal one should then be selected.
This choice includes three steps, which can be done at di�erent stages of the
identi�cation procedure:

1. The choice of the type of model set, i.e. whether a non-linear or a linear
model has to be adopted; in the latter case, a further choice between
input-output, state-space models, etc. should be done.

2. The determination of the model order, i.e. of the length dM of the param-
eter vector θ (dim θ � dM), from which the order of the estimated model
depends.

3. The choice of the model parametrization, i.e. the selection of a model
structure, whose range equals the chosen model set.

The present project is dedicated to the second point, i.e. to model order selec-
tion. The focus is on methods based on the comparison of di�erent model struc-
tures and on the validation of the obtained models. In particular, the classical
methods used for this purpose, such as cross-validation, information criteria and
various statistical tests will be tested and compared on data coming from four
data sets with speci�c characteristics. New techniques will be also evaluated on
those datasets: they range from kernel-based estimation, which circumvents the
order selection problem thanks to regularization, to statistical tests performed
on noiseless simulated data coming from an estimated high-order model.

The aim of the project is to provide an analysis of the classical order selection
techniques used in system identi�cation and to illustrate also newly introduced
methods. A practical perspective is mainly adopted, since a detailed investiga-
tion of experimental results is drawn.

1.2 Report structure

The next chapters of the report are organized as follows:

• Chapter 2 explains how the classical model order selection procedures work
and the concepts on which they are based.
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• Chapter 3 illustrates the data bank used for the simulations described in
the successive chapters; three �t functions are also introduced in order to
assess the quality of the estimated models;

• Chapter 4 is dedicated to the experimental comparison of the methods in-
troduced in Chapter 2, when they have to discriminate among OE models
with di�erent complexities.

• Chapter 5 describes the so-called kernel-based estimation, which is directly
related to the regularized estimation. A combination with the classical
PEM procedures is also illustrated. A theoretical description is �rst given,
followed by the analysis of the experimental results achieved on the data
sets introduced in Chapter 3.

• Chapter 6 illustrates a new order selection method, called PUMS, which
exploits the "parsimony" principle and a statistical test appropriately de-
�ned. After a theoretical description of the method, it is applied on the
data sets introduced in Chapter 3.

• Chapter 7 summarizes the main results observed in Chapters 4, 5 and 6.





Chapter 2

Classical model order

selection techniques:

Theoretical description

This chapter is dedicated to the description of the classical model order selection
methods which will be tested and compared in the following chapters.

The procedures here described can be divided into two categories, namely:

Model validation methods - They evaluate the ability of an estimated model
in the description of the estimation data, usually called estimation data.

Comparison methods - They compare models with di�erent complexities by
means of speci�c criteria, selecting the model giving the best value of the
criterion used.

Among the �rst type of procedures, the project will consider residual analysis
testing the whiteness of residuals and their independence from past input data.
The comparison methods here evaluated are cross-validation, FPE, AIC, BIC
and other information criteria, and the F-test performed on two models with
di�erent order.

A detailed explanation of the techniques listed above will be provided in the
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following sections with reference to the identi�cation of a single input-single
output system.

2.1 Model validation methods

A �rst approach for model order selection involves the examination of the good-
ness of the estimated model: this analysis should be performed exploiting the
available information, that could be the estimation data, some a priori knowl-
edge about the true system and its behaviour, or the purpose of modelling itself.
If a model proves to be suitable with respect to this analysis, it can be considered
a valid candidate for the representation of the true system.

The procedures that assess the quality of a model are generally called model
validation methods. Some of them exploit estimation data in order to evaluate
the agreement between the data and the estimated model, by means of statistical
tests or simple simulations, which compare the measured output and the one
obtained from the model. Previous knowledge about the true system can also
be used: for instance, if this knowledge regards the values of some parameters
involved in the model, a comparison between the expected and the estimated
value can help in the validation of the model.

Among the various model validation procedures, the most powerful one, espe-
cially when estimation is performed using PEM, is the analysis of the residuals,
i.e. of the prediction errors evaluated for the parameter estimate pθN :

εptq � εpt, pθN q � yptq � pypt|pθN q, t � 1, ..., N (2.1)

Notice that the last expression is equivalent to (1.7) when pypt|t�1q is calculated
for pθN . The name "residuals" underlines the fact that these quantities represent
what remains to be explained from the data. Therefore, a �rst con�rm of
the goodness of a certain model comes from a "small" value of its residuals,
computed for a certain data set. In this sense, the maximal value assumed by
them or their average are useful quantities to assess the entity of the residuals
on the chosen set of data. However, one would like to generalize this property
to all the possible data for which they can be computed; in other words, one
would like to prove that the residuals are small, independently from the data for
which they are evaluated. According to this consideration, it seems reasonable
to test their independence from past inputs in order to both validate their values
for all the possible inputs and to prove that all the information coming from
past inputs have been included in the model; if indeed this is not the case,
the residuals would include traces of the past inputs. Furthermore, if no more
information can be gained from the data, tεptqu, t � 1, ..., N , will be a sequence
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of independent random variables with zero mean, i.e. a white noise sequence
with zero mean. This means that no correlation should be found between εptq
and εpt� τq, τ � 0, otherwise yptq could be better predicted from the data.

The residual analysis is particularly useful in practical applications, because it
allows to evaluate the agreement of the model with the estimation data, but
it also gives an insight on the generalization ability of the model, thanks to
the cited independence tests. Therefore, by means of it, it is possible to draw
conclusions on the behaviour of the model on new data, by only exploiting the
estimation ones.

Next sections will describe how these tests on the residuals should be performed.

2.1.1 Residual analysis testing whiteness

The test for the whiteness of the residuals is based on their auto-correlation,
de�ned as pRNε pτq � 1

N

Ņ

t�1

εptqεpt� τq (2.2)

If tεptqu, t � 1, ..., N , is a white noise sequence, then the auto-correlation values
(2.2) are "small" for all τ � 0. However, it is necessary to de�ne what "small"
means in a numerical context. For this purpose, the typical statistical framework
of hypothesis testing should be adopted. Namely, a null hypothesis H0 should
be tested against an alternative hypothesis H1, which is supposed to be less
probable than H0. In this context, the null hypothesis H0 will be

H0: tεptqu, t � 1, ..., N , are white with zero mean and variance σ2

to be tested again the alternative hypothesis H1 of correlation among the resid-
uals.
De�ning

rN,Mε � 1?
N

Ņ

t�1

��� εpt� 1q
...

εpt�Mq

��� εptq � ?
N

���
pRNε p1q
...pRNε pMq

��� (2.3)

it can be proved that, if H0 holds, then [8, p. 512]

rN,Mε
distÝÑ N p0M�1, σ

4IM q as N Ñ8 (2.4)
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i.e. the rows of rN,Mε are asymptotically independent Gaussian random vari-
ables. 0M�1 represents the null vector of size M , while IM denotes the M -
dimensional identity matrix. Therefore, under H0,

N

σ4

M̧

τ�1

� pRNε pτq	2

� N

σ4

�
rN,Mε

�T
rN,Mε

distÝÑ χ2pMq as N Ñ8 (2.5)

Since the true variance is not known, it can be replaced by its estimate pRNε p0q
without a�ecting the asymptotic validity of the expression; to be precise, when
N is small, the χ2-distribution should be replaced by the F -distribution.
The result (2.5) can be directly exploited for the whiteness test. First, let us
de�ne the signi�cance level α as

α � P px ¡ χ2
αpMqq (2.6)

with x being a χ2-distributed random variable with M degrees of freedom.
Figure 2.1 gives a graphical representation of the de�nition of α for a generic
χ2-distribution with M degrees of freedom: α is given by the yellow area in the
plot. In this context, α represents the risk of rejecting the null hypothesis H0

when it holds; its value has a great in�uence on the e�cacy of the test and it
is usually chosen very small, between 0.01 and 0.1, thus limiting the described
risk and also the probability of accepting H1.
Then, the null hypothesis H0 of the whiteness test is accepted at a signi�cance
level α if

xN,Mε � N� pRNε p0q	2

M̧

τ�1

� pRNε pτq	2

¤ χ2
αpMq (2.7)

Since the estimate pRNε p0q of σ2 is larger than the true value σ2 that would be
obtained as N Ñ 8, the risk of rejecting H0 when it holds is smaller than the
expected one, but at the same time is larger the risk of accepting H0 when it is
not true [13, p. 427], [12].

While the test (2.7) holds for the whiteness of the residuals for lags τ that go
from 1 to M , a test for a single value of τ can also be derived, observing that

?
N pRNε pτq distÝÑ N p0, σ2q as N Ñ8 (2.8)

Therefore, the null hypothesis H0 for the independence between εptq and εpt�τq
can be accepted at a signi�cance level α if

?
N

�� pRNε pτq��b pRNε p0q ¤ Nαp0, 1q (2.9)



2.1 Model validation methods 13

χ
α
2(M)

α

Figure 2.1: Graphical illustration of the de�nition of the signi�cance level α for a generic
χ2-distribution with M degrees of freedom.

where Nαp0, 1q is a constant de�ned by

α � P p|y| ¡ Nαp0, 1qq (2.10)

with y being a Gaussian random variable with zero mean and unit variance.

2.1.2 Residual analysis testing independence from past in-
puts

The test for the independence of the residuals from the past inputs can be
derived in a similar way to what was done for the whiteness test. First, it
should be noticed that when the independence holds, the covariance function

pRNεupτq � 1

N

Ņ

t�1

εptqupt� τq (2.11)

assumes small values. Again, by means of a statistical test it is possible to
numerically assess the entity of the correlation between inputs and residuals. In
this case, the null hypothesis is:

H0 : the residuals tεptqu, t � 1, ..., N are independent from past inputs, i.e.
Eεptqupsq � 0, t ¡ s
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In a similar way to what was done for the whiteness test, let us de�ne the vector

rN,Mεu � 1?
N

Ņ

t�1

��� upt�M1q
...

upt�M2q

��� εptq � ?
N

���
pRNεupM1q

...pRNεupM2q

��� (2.12)

When H0 holds, it can be proved that [8, p. 513]

rN,Mεu
distÝÑ N p0M�1, Pεuq as N Ñ8 (2.13)

where M �M2 �M1 � 1, while the covariance matrix Pεu

Pεu � lim
NÑ8

E
�
rN,Mεu

�
rN,Mεu

�T �
(2.14)

depends on the properties of the residuals. If they constitute a white noise
sequence with zero mean and variance σ2, then [13, p. 427]

Pεu � σ2 lim
NÑ8

1

N

Ņ

t�1

E

��� upt�M1q
...

upt�M2q

����
upt�M1q � � � upt�M2q

�
(2.15)

If instead, the residuals are not white, but they can be expressed as

εptq �
8̧

k�0

fkept� kq (2.16)

with f0 � 1 and eptq being white noise with variance σ2, then

Pεu � σ2 lim
NÑ8

1

N

Ņ

t�1

EφptqφptqT , φptq �
8̧

k�0

fk

��� upt� k �M1q
...

upt� k �M2q

���
(2.17)

Therefore, if the null hypothesis H0 holds

xN,Mεu � �
rN,Mεu

�T
P�1
εu r

N,M
εu

distÝÑ χ2pMq as N Ñ8 (2.18)

and H0 is accepted at a signi�cance level α if

xN,Mεu ¤ χ2
αpMq (2.19)

where α is de�ned by (2.6).
Again, the test is still valid when the asymptotic covariance matrix Pεu is re-
placed by its estimate computed for a �nite, but large, value of N . Furthermore,
the value of α, with its signi�cant impact on the e�cacy of the test, should be



2.1 Model validation methods 15

carefully chosen: in light of this, a speci�c analysis on the selection of this value
will be conducted in Chapter 4.

The test can be performed also for a given value of τ , observing that, if H0

holds, then ?
N pRNεupτq distÝÑ N p0, Pτ q as N Ñ8 (2.20)

where Pτ is the τ -th diagonal element of the matrix Pεu [8, p. 513]. Therefore,
the null hypothesis H0 of independence between εptq and upt � τq, t � 1, ..., N
will be accepted at a signi�cance level α if�� pRNεupτq�� ¤c

Pτ
N
Nαp0, 1q (2.21)

where Nαp0, 1q is de�ned in (2.10).

When evaluating the cross-correlation between inputs and residuals using esti-
mation data, a speci�c mention should be given to the choice of τ . In particular,
when τ   0 and uptq is white, then pRNεu � 0 even if the model is inaccurate.
Moreover, if τ   0 and the system operates in closed loop during the measure-
ments, then pRNεu � 0 even for a precise model. On the other hand, when τ ¡ 0

and the model is estimated by least-squares, then pRNεu � 0 for τ � 1, ..., nb, be-
cause of the uncorrelation between the residuals and the regressors that arises
from the least-squares procedure. Indeed, the regressors used in PEM contain
the nb past input values, where nb is the order of the polynomial convolved with
the inputs in transfer function models [8, p. 514], [13, p. 426].
These considerations should be kept in mind also for the choice of the numbers
M1 and M2.

2.1.2.1 Use of validation methods for model order selection

In the previous sections the tests for model validation have been presented
mainly as methods for assessing the goodness of an isolate model. However, a
speci�c procedure for model order selection should evaluate many model struc-
tures with di�erent complexities in order to identify the most suitable one for
the system to be identi�ed. For this purpose, it is possible to extend the model
validation procedures to an order selection criterion, by iteratively perform-
ing one of the described tests on model structures of increasing complexity
(M0 � M1 � ...Mj � ...): such a procedure will stop when a certain model
structure passes the considered test and the corresponding order will be re-
turned.

Another possible application of these validation tests is the combination between
them and one of the comparison methods described in the next section: namely,
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by performing the residual analysis on the model structure selected by a com-
parison method, the quality of that model structure can be further con�rmed
or called into question. Section 2.3.2 will speci�cally describe this application
of the residuals tests.

2.2 Comparison methods

Comparison methods require the de�nition of a quality measure, which evalu-
ates the goodness of an estimated model in terms of description of the estima-
tion data and generalization to new data. In other words, the function should
measure how well the model is able to reproduce both the data used for its
estimation (called estimation or training data) and also new data, denoted as
test or validation data. Since the common identi�cation procedures are based
on prediction models, a suitable quality measure should evaluate the prediction
ability of the estimated model.

Assuming that the true system can be completely described by the model struc-
ture M, i.e. that exists θ0 P DM � RdM such that Mpθ0q coincides with the

true system S (Mpθ0q � S), a proper quality measure Jpmq � JppθN q should be
a smooth function of θ and it should be minimized by θ0:

Jpθq ¥ Jpθ0q, @θ (2.22)

Indicating with pykpt|mq � pypt|t � kq the k-step ahead prediction for the model
m , a �rst quality measure based on the prediction ability of the model is de�ned
as

Jkpmq � 1

N

Ņ

t�1

typtq � pykpt|mqu2
(2.23)

i.e. as the sum of squared prediction errors on a certain set of data [8, p. 500].
When computed for the estimation data, Jkpmq represents the estimation error
(or training error), since it provides information about the ability of the model
to reproduce the data used for its estimation.
The quality measure (2.23) is here de�ned for a generic k-step ahead predictor,
but if k � 1 it coincides with the loss function (1.4) (when a quadratic norm
is used and no �ltering is performed on the residuals), i.e. with the criterion
adopted for the model estimation. Thus, when J1pmq is computed on the es-
timation data, its value will decrease when a more complex model is adopted,
since the minimization (1.5) is performed on a larger set of values; in other
words, a more complex model has more degrees of freedom by means of which
it can better adjust to the estimation data. If on the one hand this property
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could seem positive, on the other hand the risk to reproduce also non-relevant
features, such as the particular noise realization present in the estimation data
is higher with a �exible model. This phenomenon is known as over�tting. It
follows that a small value of J1pmq when evaluated on estimation data is not
always a right indicator of the goodness of a model: in order to exploit the
information coming from J1pmq, one should be able to distinguish when the
decrease of J1pmq in correspondence to a more complex model is due to the
capture of relevant features and when instead it is due to the adaptation to the
noise realization.
The last observation suggests that Jkpmq can be a reliable indicator of the qual-
ity of a model m when it is evaluated on a new set of data, independent from the
estimation ones and usually denoted as validation data or test data. However,
since the de�nition of Jkpmq makes it dependent on the data for which it is
computed, a more general measure of the quality of the model m is given by its
expectation with respect to the data, i.e.

J̄kpmq � EJkpmq (2.24)

This quantity is referred to as generalization error or as test error. Here the
estimation data set is �xed and therefore the model m �MppθN q is considered
as a deterministic quantity. However, it depends from pθN , which actually is a
random variable, since it is estimated from a certain set of data records, in which
a noise component is present. Taking this observation into account, a quality
measure for the model structureM, depending on dM � dim θ parameters, can
be de�ned as

J̄kpMq � Em
�
J̄kpmq

� � Em

�
J̄kpMppθN qq� (2.25)

where Em indicates the expectation with respect to the model m described bypθN . This quantity is also known as expected prediction error (EPE) or expected
test error, since it averages the quality measures J̄kpmiq of the models mi, i �
1, ..., ni, estimated on di�erent estimation data sets [4, p. 220].

Traditionally, the expected prediction error admits a decomposition into a bias
part and a variance one, whose values strictly depend on the model complexity.
We assume here that the observed data are described by

yptq � Gpq, θ0quptq � eptq (2.26)

where Ereptqs � 0 and Ereptqepsqs � σ2δt,s, with δt,s representing the Kronecker
delta. θ0 is the true parameter vector that has to be estimated, while the input
uptq is considered a known deterministic quantity.
Let pupt0q, ypt0qq be a data point coming from the validation data set, which is
assumed to be independent from the estimation data set. The EPE computed
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on the data point pupt0q, ypt0qq, assuming N � 1, is given by:

J̄kpt0;Mq � Em rEJkpt0; mqs
� Em

�
E
�
typt0q � pykpt0; mqu2

��
(2.27)

� Em

�
σ2 � E

�
tErypt0qs � pykpt0; mqu2

��
(2.28)

� σ2 � E
�
Em

�
tErypt0qs � pykpt0; mqu2

��
(2.29)

Notice that expression (2.28) has been derived exploiting the independence be-
tween the estimation and the validation data sets. Furthermore, in (2.29) the
order of the two expectations has been exchanged; this is possible because they
are calculated for a non-negative term. Thus, the inner expectation becomes:

Em

�
tErypt0qs � pykpt0; mqu2

�
� tErypt0qs � Em rpykpt0; mqsu2 �

� Em

�
tEm rpykpt0; mqs � pykpt0; mqu2

�
(2.30)

where the fact that the quantity Erypt0qs � Em rpykpt0; mqs is constant w.r.t. m
has been exploited. The two addends appearing in (2.30) are respectively the
squared bias and the variance. Namely, the bias

Erypt0qs � Em rpykpt0; mqs � Gpq, θ0qupt0q � Em rpykpt0; mqs (2.31)

gives the amount by which the average of the estimates done over many data
sets di�ers from the true system. The variance

Em

�
tEm rpykpt0; mqs � pykpt0; mqu2

�
(2.32)

represents the extent to which the di�erent estimations done over many data
sets vary around their mean.

Therefore, the expected prediction error computed at t0 can be expressed as the
sum of three quantities

sJkpt0;Mq � σ2 � E
�
tGpq, θ0qupt0q � Em rpykpt0; mqsu2

�
�

� E
�
Em

�
tEm rpykpt0; mqs � pykpt0; mqu2

��
(2.33)

where σ2 is a data-dependent quantity and can not be minimized by any an-
alytical procedure, while the other two addends are respectively the expected
squared bias and the expected variance. Their values are strongly in�uenced by
the complexity of the model: low order models usually have high bias and low
variance, while complex models lead to low bias and high variance. On the one
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hand, the few degrees of freedom that are available for simple models can not
be su�cient to properly reproduce the true system but, on the other hand, they
also limit the variability in the obtained estimations. On the contrary, complex
models can exploit more degrees of freedom, which allow to properly catch the
dynamics of the true system, but which also lead to very di�erent estimates
according to the used data.
In light of these considerations, the minimization of the EPE translates into
a trade-o� between bias and variance, which in turn can be controlled by the
model order selection.

The previous observations suggest an ideal procedure for the choice of the best
model complexity, i.e. of the best model structure in the set tMju, j � 1, ..., nj .
This procedure requires the subdivision of the whole set of available data into
three parts: an estimation set, a validation set and a test set. The estimation set
should be further split into equally-sized subsets, each of which should be used
for the estimation of a model mi �Mjppθiq, i � 1, ..., ni. For each of them, the
corresponding generalization error should be computed on the validation set.
This step should be repeated for all the model structures Mj that has to be
compared. For each of them the expected prediction error is then computed by
averaging the generalization errors achieved for the models mi �Mjppθiq, i �
1, ..., ni, and the model structureMj �M� giving the lowest EPE is selected.
The test set is �nally used for assessing the generalization ability of the chosen
model structure M� by evaluating the generalization error on it. Thus, the
test set should be used only during the ultimate step of the procedure in order
to have a reliable measure of the generalization capability of the chosen model
structure [4, Sec. 7.2,7.3].
If this procedure appears theoretically very useful, in practice it is applicable
only when a large amount of data is available. This could not always be the case
and even if the amount of data that can be exploited is quite large, it is usually
preferable to use as many data as possible for model estimation. In order to
overcome this issue, many methods have been developed in order to approximate
the validation step of the procedure: these range from cross-validation to the
various information criteria.

2.2.1 Cross-validation

Cross-validation is probably the most common method for model order selection
and is based on the prediction ability of the tested models. It does not need
any probabilistic setting and it represents a simpli�cation of the procedure pre-
viously described, which leads to a rough estimation of the expected prediction
error (EPE). Cross-validation simply requires the split of the data into two sets
(usually equally-sized), here referred to as the estimation set and the validation
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one. For each of the possible orders, i.e. model structuresMj , a corresponding

model mj � Mjppθjq, j � 1, ..., nj is estimated using the estimation set. For

each of them, the EPE is estimated by computing Jkpmjq � JkpMjppθjqq on the
validation data and the model structureMj �M� which gives the lowest EPE
is chosen.

With respect to the procedure previously illustrated, which needed the split of
the data into three sets and a further subdivision of the estimation set into
smaller subsets, this method simply requires the split of the data into two parts
and the whole estimation set is used for the estimation of a certain model.

The focus of this method is not directly on the model order but mainly on
its generalization ability: the selected model could actually not capture all the
information present in the estimation data, but this could lead to better perfor-
mances when applied on new data.

Even if a proper application of this method requires less data than the ideal
procedure previously described, its major drawback is still the fact that not all
the available data are used for estimation; thus, to avoid a serious loss of infor-
mation a quite large dataset is still required. Some variants of cross-validation,
such as the leave-one-out and the K-fold cross-validation, allow an alleviation
of this issue, by means of an intelligent exploitation of the data.
With K-fold cross-validation the estimation set is split intoK equally sized parts
and for each model structureMj , j � 1, ..., nj , to be evaluated, K models mi,
i � 1, ...,K, are estimated using K � 1 subsets; for each model the predic-
tion error Jkpmiq is computed on the remaining part. The EPE for the model
structure Mj is then estimated as the average of the prediction errors Jkpmiq
and the model structure giving the lowest estimated EPE is �nally selected. In
leave-one-out cross-validation, for each model structureMj a number of models
mi equal to the size N of the estimation data set is estimated, by using N � 1
samples for each of them and exploiting the remaining sample to compute the
prediction error. The EPE for the evaluated model structure Mj is estimated
by averaging the prediction errors of the models mi, i � 1, ...N ; �nally, the
model structureMj �M� giving the lowest EPE is selected.

2.2.2 Information criteria

Information criteria constitute another way of overcoming the drawback de-
scribed for cross-validation: indeed, they are based on an analytic approxima-
tion of the expected prediction error, obtained using only estimation data. In
this way, they allow to use all the available data for estimation, without the
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need to keep aside a portion of them for validation purposes.
The application of an information criterion for model order selection within the
set tMju , j � 1, ..., nj requires �rst to compute the value of the speci�c crite-
rion for each model structureMj ; then, the structureMj �M� leading to the
lowest value of the criterion is selected.

The derivation of the information criteria is based on the assumption that the
comparison function Jkpmq coincides with the loss function VN pθ, ZN q, which is
minimized in order to obtain the estimated model. In most cases this assumption
holds; for instance, referring to the loss function de�ned in (1.4), VN pθ, ZN q
equals Jkpmq when:

• k � 1 in Jkpmq;
• no �ltering is performed on the residuals in VN pθ, ZN q, i.e. Lpqq � 1 in
(1.6);

• a quadratic norm is used in (1.4), i.e.

lpεF pt, θq, t, θq � ε2
F pt, θq � ε2pt, θq (2.34)

As previously observed, in this case the evaluation of the quality measure Jkpmq
on the estimation data provides an under-estimation of the generalization error,
since the same data are used both for estimation and prediction. In particular,
the gap between the true generalization error and the estimation error can be
represented by an expression that holds asymptotically for N Ñ 8, leading
to the following approximation of the expected prediction error for the model
structureM [8, p. 501]:

sJkpMq � Em

�sV ppθN q� � Em

�
lim
NÑ8

E
�
VN ppθN , ZN q��

� Em

�
VN ppθN , ZN q�� 1

N
Tr

�sV 2pθ�qPθ
�
(2.35)

In the equation above VN pθ, ZN q is the loss function de�ned in (1.4) with the
condition set in (2.34), while θ� is the minimizer of sV pθq,sV pθq � lim

NÑ8
E
�
VN pθ, ZN q

�
and Pθ is the limiting value of the covariance of the parameter estimate pθN ,

Pθ � lim
NÑ8

E
�
NppθN � θ�qppθN � θ�qT

�
Here Em

�sV ppθN q� represents the expected prediction error, that is the average

of the loss functions when computed on many validation data sets. Moreover,
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since Em

�
VN ppθN , ZN q� is the average estimation error over many data sets, the

term 1
N Tr

�sV 2pθ�qPθ
�
actually represents the quantity that has to be added to

the estimation error to make it a reliable estimate of the expected prediction
error.

FPE

The general expression (2.35), which holds when the comparison criterion Jkpmq
coincides with the loss function VN pθ, ZN q, can be specialized to di�erent cases,
according to the di�erent formulation of VN and Jkpmq that can be used.

Akaike's �nal prediction error criterion (FPE) holds when the conditions previ-
ously listed for the equality between Jkpmq and the loss function VN pθ, ZN q are
satis�ed. Moreover, FPE is applicable when it is assumed that the validation
data have the same second order properties of the estimation data.
Supposing that the model structure M can fully describe the true system, i.e.
that the true parameter value coincides with the minimizer θ� of the loss func-
tion computed for N Ñ 8 (θ� � θ0q, and that the parameters are identi�able
(i.e. that sV 2pθ0q is invertible), expression (2.35) takes the speci�c form

sJ1pMq � Em

�sV ppθN q� � Em

�
VN ppθN , ZN q�� 2dM

N
σ2 (2.36)

since [8, p. 284]

Pθ � σ2

"
lim
NÑ8

E
�
ψpt, θ0qψT pt, θ0q

�*�1

� σ2

"
lim
NÑ8

E

�
V 2pθ0q

2

�*�1

� 2σ2
�sV 2pθ0q

��1
(2.37)

and

Tr
�sV 2pθ0qPθ

� � 2σ2 Tr
�sV 2pθ0q

�sV 2pθ0q
��1

�
� 2σ2 dim θ � 2σ2dM

where σ2 � E
�
e2ptq� � sV pθ0q and ψpt, θ0q � � d

dθ εpt, θq|θ�θ0 .
A further simpli�cation of (2.36) can be obtained disregarding the average of
the training errors computed on many estimation sets and considering the error
computed on the unique available data set:

sJ1pMq � VN ppθN , ZN q � 2dM
N

σ2 (2.38)
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The last expression shows how the gap between the estimation error and the ex-
pected prediction error depends on the model complexity dM: the reduction of
VN ppθN , ZN q that follows from an increase of the model complexity dM is coun-
terbalanced by an increase of the second term, that acts as a penalty on model
complexity. Moreover, referring to the bias-variance decomposition described in
(2.30), VN ppθN , ZN q represents the bias contribution to the expected prediction
error, while 2dM

N σ2 accounts for the variance term, whose value increases with
dM.

In practice, (2.38) can not be computed because σ2 is not known but it can be
estimated by [8, p. 504]

pσ2
N � VN ppθN , ZN q

1� dM
N

leading to the de�nitive version of the �nal prediction-error criterion (FPE)
introduced by Akaike

J̄1pMq � 1� dM
N

1� dM
N

VN ppθN , ZN q � 1� dM
N

1� dM
N

�
1

N

Ņ

t�1

ε2pt, pθN q
�

(2.39)

It is worth to notice that when dM    N the expression above can be approx-
imated by

J̄1pMq � VN ppθN , ZN q
�

1�
2dM
N

1� dM
N

�
� VN ppθN , ZN q �1� 2dM

N

�
(2.40)

The model order selection reduces to �nd the structureM� for which (2.39) is
minimized:

M� � arg min
MPΞ

1� dM
N

1� dM
N

VN ppθMN , ZN q (2.41)

or, equivalently, when dM    N

M� � arg min
MPΞ

VN ppθMN , ZN q
�
1� 2dM

N

�
(2.42)

where Ξ � tMju, j � 1, ..., nj .
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AIC

The Akaike Information Criterion is applicable when the estimation criterion is
based on the log-likelihood function of the prediction errors εpt, θq, i.e.

VN pθ, ZN q � � 1

N
LN pθ, ZN q

� � 1

N

Ņ

t�1

log fepεpt, θq, t; θq

� � 1

N
log

�
N¹
t�1

fepεpt, θq, t; θq
�

(2.43)

where fepx, t; θq is the PDF of the prediction errors εpt, θq � yptq � pypt|θq.
Again, let us assume that the model structure M can fully describe the true
system (i.e. θ� � θ0), that the parameters are identi�able (so that sV 2pθ0q is
invertible) and that the validation data have the same 2nd order properties as
the estimation data. In this context the Cramer-Rao inequality can be exploited
[8, p. 214]:

E
�
ppθN � θ0qppθN � θ0qT

�
¥ �E

�
d2

dθ
log fypθ; yN q

� ����
θ�θ0

¥ �E
�
d2

dθ
log

�
N¹
t�1

fepεpt, θq, t; θq
�� �����

θ�θ0

¥ �  
E
�
L2N pθ0q

�(�1
(2.44)

where it is assumed that the true joint PDF for the observations yN � �
yp1q � � � ypNq �T

is fypθ0; yN q � ±N
t�1 fepεpt, θ0q, t; θ0q. When N Ñ 8 the inequality holds as

equality and

Pθ � lim
NÑ8

NE
�
ppθN � θ0qppθN � θ0qT

�
� �N

"
lim
NÑ8

E
�
L2N pθ0q

�*�1

� N
 
N sV 2pθ0q

(�1 �  sV 2pθ0q
(�1

(2.45)

Thus,

Tr
�sV 2pθ0qPθ

� � Tr
�sV 2pθ0q

 sV 2pθ0q
(�1

�
� dim θ � dM

and (2.35) assumes the following expression

Em

�sV ppθN q� � VN ppθN , ZN q � dM
N

� � 1

N
LN ppθN , ZN q � dM

N
(2.46)
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Therefore, the model order selection problem translates into the following min-
imization problem

M� � arg min
MPΞ

� 1

N
LN ppθMN , ZN q � dM

N
(2.47)

with Ξ � tMju, j � 1, ..., nj .

A speci�c formulation of (2.46) can be given when the prediction errors εpt, θq
are assumed to be Gaussian with zero mean and unknown variance σ2; in this
case,

LN pθ, ZN q � �1

2

Ņ

t�1

εpt, θ1q
σ2

� N

2
log σ2 � N

2
log 2π (2.48)

with θ � rθ1 σ2s being the unknown parameters. Replacing them with their
estimations,

pθ1N � arg min
θPDM

Ņ

t�1

ε2pt, θq

pσ2
N � 1

N

Ņ

t�1

ε2pt, pθ1N q
(2.46) becomes

Em

�sV ppθN q� � 1

2
� 1

2
log 2π � 1

2
log

�
1

N

Ņ

t�1

ε2pt, pθN q
�
� dM

N
(2.49)

Thus, the optimal model structureM� according to this criterion is chosen as

M� � arg min
MPΞ

log

�
1

N

Ņ

t�1

ε2pt, pθMN q
�
� 2dM

N
(2.50)

or, equivalently when dM    N , as

M� � arg min
MPΞ

log

��
1� 2dM

N



1

N

Ņ

t�1

ε2pt, pθMN q
�

(2.51)

The concept behind the use of this criterion is analogous to the one described for
FPE: the reduction of the normalized sum of squared prediction errors evaluated
on the estimation data, which arises from an increase of dM, is penalized by
the term 2dM{N . Therefore, a larger order is selected only if it gives rise to a
considerable reduction of the �rst term, with respect to the increase detected in
2dM{N : this should allow to recognize when a further increase of dM will only
capture unnecessary features, such as the noise component.
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If the �nal formulations of the FPE and AIC criteria are derived by di�erent
considerations, the two criteria actually are almost analogous, as can be seen
from (2.42) and (2.51), where the AIC criterion can be derived from the FPE
one, by simply taking its logarithm.

BIC and other information criteria

Although FPE and AIC are the most common information criteria, many other
criteria have been de�ned according to the type of penalty in�icted to the model
order increase.

Starting from the formulation (2.42) of the FPE criterion, a general expression
for the information criteria can be derived as:

WN ppθN ,M, ZN q � VN ppθN , ZN q �1� UN pM, ZN q� (2.52)

where VN ppθN , ZN q represents the loss function (1.4) which is minimized to ob-

tain the estimate pθN , while UN pM, ZN q is a function that is properly de�ned
in order to penalize the model complexity. An alternative formulation can be
also derived from the AIC criterion, namely

WN ppθN ,M, ZN q � log
�
VN ppθN , ZN q�� TN pM, ZN q (2.53)

with TN pM, ZN q having the same role as UN pM, ZN q. According to how
UN pM, ZN q and TN pM, ZN q are chosen, the increase of model complexity
can be penalized in a heavier or lighter way. In particular, the choice of
UN pM, ZN q � dM

logN
N leads to the so-called MDL (Minimum description

length) criterion:

WN ppθN ,M, ZN q � VN ppθN , ZN q�1� dM
logN

N



(2.54)

Thanks to the larger penalty on dM, this criterion tends to select very simple
models, namely the smallest model able to su�ciently reproduce the available
data: its name is actually due to this property. In literature, this criterion is also
known as BIC (Bayesian Information Criterion), since it can also be derived
using a Bayesian approach for model order selection [4, Sec. 7.7].

Alternative de�nitions of the function UN pM, ZN q can also be found in litera-
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ture; for instance [7]:

U1N pM, ZN q � dM
d

1
3

M
N

U2N pM, ZN q � dM
2 log dM

N

U3N pM, ZN q � dM
log dM logN

N
(2.55)

2.2.3 F-test

While the information criteria allow the direct comparison of many model struc-
tures tMju, j � 1, ..., nj , statistical tests can be used to compare two model
structuresM0 andM1, again exploiting the information coming from the loss
function (1.4) and from the model complexity dM � dim θ.

Let us assume that M0 � M1, i.e. dM0   dM1 . As previously mentioned,
statistical tests are based on the de�nition of a null hypothesis H0, on which
a higher degree of con�dence is posed and which has to be tested against an
alternative hypothesis H1. SinceM0 �M1, it is preferable to chooseM0, if it
can be proved that it can properly reproduce the available data. Thus, for this
application the two hypothesis will be:

H0 : the data are generated byM0ppθp0qN q

H1 : the data are generated byM1ppθp1qN q

where pθp0qN and pθp1qN are the parameter estimates for the two evaluated model
structures, i.e. the minimizers of the loss functions VN pθp0q, ZN q and VN pθp1q, ZN q,
respectively. For the comparison the following test quantity is usually consid-
ered:

v � N � VN p
pθp0qN , ZN q � VN ppθp1qN , ZN q

VN ppθp1qN , ZN q
(2.56)

A large value of v is an indication of a large gap between the two loss functions,
meaning that the adoption of a more complex model is bene�cial; on the other
hand, when v is small, there is no signi�cant advantage in the choice of a more
complex model and the simpler model is preferable.
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The numerical analysis on the value of v is based on the fact that v is asymp-
totically χ2-distributed if the true system S can be correctly described by
M0 �M1, i.e. if S PM0; more precisely,

v � N
VN ppθp0qN , ZN q � VN ppθp1qN , ZN q

VN ppθp1qN , ZN q
distÝÑ χ2pdM1

� dM0
q, as N Ñ8 (2.57)

where dM0
� dim θp0q and dM1

� dim θp1q, [8, p. 560, Lemma II.4]. Thus, the
previous distinction between a large and a small value of v translates into the
choice of the signi�cance level α at which the null hypothesis is tested: namely,
the smallest model structureM0 is chosen if

v ¤ χ2
αpdM1 � dM0q (2.58)

where χ2
αpdM1 � dM0q is de�ned by

α � P
�
x ¡ χ2

αpdM1
� dM0

q� (2.59)

with x being a χ2pdM1
� dM0

q-distributed random variable.
The signi�cance level α represents the maximal risk of rejecting the null hy-
pothesis H0 when it is true, i.e. of choosing the more complex model structure
M1 whenM0 is su�ciently able to reproduce the given data. This means that
a small value of α will reduce the probability of selecting the model structure
M1.

For small values of N , the statistical test is more appropriate if based on the
F-distribution: in this case a new test quantity has to be used, namely

f � VN ppθp0qN , ZN q � VN ppθp1qN , ZN q
VN ppθp1qN , ZN q

� N � dM1

dM1 � dM0

(2.60)

which is asymptotically F-distributed under the hypothesisH0 [8, p. 560, Lemma
II.4]

f
distÝÑ F pdM1

� dM0
, N � dM1

q as N Ñ8 (2.61)

Moreover, when pθN is estimated by linear regression, f is exactly F-distributed.
Assuming that x is an F-distributed random variable with degrees of freedom
dM1

� dM0
and N � dM1

, i.e. x P F pdM1
� dM0

, N � dM1
q, let us de�ne

α � P px ¡ FαpdM1
� dM0

, N � dM1
, qq (2.62)

Then, similarly to the χ2 test,M0 is selected at a signi�cance level α if

f ¤ FαpdM1 � dM0 , N � dM1q (2.63)
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In order to exploit these tests for model order selection among many structures
of increasing complexity,M0 �M1 � ... �Mnj , the tests should be performed
starting from the simplest structure: the procedure is stopped when (2.58) (or
(2.63)) is veri�ed for the �rst time and the smallest model structure involved in
that test is selected.

2.2.4 Relationship between F-test and information criteria

It can be shown that each information criterion (illustrated in Section 2.2.2) is
asymptotically equivalent to the test (2.58) when a speci�c signi�cance level α
is chosen.

Let us concentrate on the choice between two model structures M0 and M1

with dim θp0q � dM0
  dM1

� dim θp1q. According to the test (2.58), M0 is
chosen if

VN ppθp0qN , ZN q ¤ VN ppθp1qN , ZN q
�
1� 1

N
χ2
αpdM1

� dM0
q
�

(2.64)

On the other hand, using the criterion (2.52),M0 is selected if

VN ppθp0qN , ZN q �1� UN pM0, Z
N q� ¤ VN ppθp1qN , ZN q �1� UN pM1, Z

N q�
VN ppθp0qN , ZN q ¤ VN ppθp1qN , ZN q1� UN pM1, Z

N q
1� UN pM0, ZN q(2.65)

The two criteria are therefore equivalent if

1� 1

N
χ2
αpdM1 � dM0q �

1� UN pM1, Z
N q

1� UN pM0, ZN q (2.66)

i.e. if

χ2
αpdM1

� dM0
q � N � UN pM1, Z

N q � UN pM0, Z
N q

1� UN pM0, ZN q (2.67)

The last expression de�nes the value of the signi�cance level α of the F-test for
which it becomes equivalent to the condition stated by a generic information
criterion.

Equation (2.67) can be specialized for the criteria previously illustrated. Namely,
in the FPE criterion UN pM, ZN q � 2dM{N , and therefore

χ2
αpdM1

� dM0
q � N � 2dM1

{N � 2dM0
{N

1� 2dM0
{N

� 2N � dM1
� dM0

N � 2dM0

� 2pdM1 � dM0q (2.68)
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where the last approximation holds for N Ñ 8. Therefore, FPE is asymptot-
ically equivalent to the F-test with a signi�cance level α de�ned by (2.68) and
(2.59).
For what regards BIC criterion instead, since UN pM, ZN q � dM logN{N we
have

χ2
αpdM1

� dM0
q � N � pdM1

logNq{N � pdM0
logNq{N

1� dM0 logN{N
� N � logNpdM1 � dM0q

N � dM0
logN

� logNpdM1
� dM0

q (2.69)

The analogy can be derived also for the criterion (2.53), which can be charac-
terized into the AIC criterion. According to (2.53), the simplest structureM0

is chosen if

log
�
VN ppθp0qN , ZN q

�
� TN pM0, Z

N q ¤ log
�
VN ppθp1qN , ZN q

�
� TN pM1, Z

N q

VN ppθp0qN , ZN q ¤ VN ppθp1qN , ZN qexp
 
TN pM1, Z

N q(
exp tTN pM0, ZN qu

Thus, the criteria (2.58) and (2.53) are equivalent if

χ2
αpdM1 � dM0q � N

�
exp

 
TN pM1, Z

N q(
exp tTN pM0, ZN qu � 1

�
(2.70)

In the case of AIC criterion, for which TN pM, ZN q � 2dM{N , (2.70) becomes

χ2
αpdM1

� dM0
q � N

�
exp

"
2

N
pdM1

� dM0
q
*
� 1

�
� 2pdM1

� dM0
q (2.71)

where the last approximation is valid for large values of N [13, p. 444,445].

From these considerations, it follows that it is possible to estimate the asymp-
totic probability that a certain information criteria will select a too complex
model structure.

This analogy between the F-test and the information criteria highlights the
advantages of the latter ones w.r.t. the �rst one. In particular, the information
criteria allow to simultaneously compare all the tested model structures and
does not su�er from early stopping, due to the presence of local minima, as
is the case of the F-test. In addition, the tuning of the signi�cance level α is
implicitly done in the formulation of the information criteria: if on the one hand,
this could be an advantage, since no tuning is required to the user, on the other
hand, this could also be a limitation, because better performances could maybe
be possible with a speci�c tuning.
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2.2.5 Consistency analysis

The considerations done in Sections 2.2.3 and 2.2.4 can be exploited to drive a
consistency analysis on the information criteria illustrated in 2.2.2.

For an order selection method to be consistent, the probability that it selects
the correct order should tend to 1 when the amount of available data tends to
in�nity.

Let us consider again the choice between two model structuresM0 andM1, with
M0 �M1. Referring to (2.58) and (2.6), α represents the risk of over�tting, i.e.
of choosing the largest model when the smallest oneM0 can properly describe
the true system S (S PM0). Thus, when N Ñ 8, α should tend to 0 in order
to avoid the over�tting or, equivalently,

χ2
αpdM1

� dM0
q ÝÑ 8 as N Ñ8 (2.72)

On the other hand, the probability of under�tting, i.e. of choosing M0 when
S RM0, S PM1, is equal to

1� α � P

�
VN ppθp0qN , ZN q � VN ppθp1qN , ZN q

VN ppθp1qN , ZN q
¤ 1

N
χ2
αpdM1 � dM0q

�
(2.73)

If S RM0, the di�erence VN ppθp0qN , ZN q � VN ppθp1qN , ZN q is signi�cant, i.e.

VN ppθp0qN , ZN q � VN ppθp1qN , ZN q � Op1q (2.74)

since it does not tend to zero when N tends to in�nity. Therefore, to eliminate
the risk of under�tting,

1

N
χ2
αpdM1

� dM0
q ÝÑ 0 as N Ñ8 (2.75)

For FPE and AIC criteria, it was found in Section 2.2.4 that

χ2
αpdM1

� dM0
q � 2pdM1

� dM0
q

Since of the two conditions (2.72) and (2.75), only (2.75) is veri�ed, FPE and
AIC are not consistent order selection rules but they avoid the risk of under�t-
ting.
BIC criterion is instead consistent, because for it,

χ2
αpdM1

� dM0
q � logNpdM1

� dM0
q

and both the conditions (2.72) and (2.75) are satis�ed [13, p. 449].
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2.3 Combinations of the order selection methods

This section introduces two combinations of the order selection methods previ-
ously illustrated. These techniques will then be applied in the following chapters
to perform order selection of OE models.

2.3.1 Combination of the comparison and the validation meth-
ods

As was clari�ed in Section 2.1, the primary purpose of the validation methods
is the assessment of the quality of a model w.r.t. the description of the available
data. Then, this property can be exploited for the determination of the most
suitable model complexity, as described in Section 2.1.2.1. On the other hand,
comparison methods have been introduced in order to directly estimate an ap-
propriate model complexity. These considerations suggest that a combination
of these two families of model order selection methods could give more reliable
results, decreasing the risk of inappropriate choices. The combination here con-
sidered equips one of the comparison methods with a validation stage in order
to further assess the quality of the model structures that it originally returns. In
particular, early stopping due to local minima is avoided; actually, the models
deriving from local minima can be rejected if the tests on the residuals are not
passed.

All the types of validation procedures will be tested in order to evaluate the
e�cacy of each one when adopted in this context. Therefore, the quantities
xN,Mε in (2.7) or xN,Mεu in (2.18) (or both) are computed on the estimation data
for the model structure M� selected by a certain comparison method. Then,
when the residuals whiteness is evaluated,M� is unfalsi�ed if the condition in
(2.7) holds, i.e. if

xN,Mε ¤ χ2
αpMq (2.76)

If instead the independence between residuals and past inputs is analyzed, the
condition (2.19) has to be veri�ed, i.e.

xN,Mεu ¤ χ2
αpMq (2.77)

If both whiteness and independence tests are considered, the two conditions
have to hold simultaneously for the model structureM� to be unfalsi�ed.
When a model structure selected by a certain criterion does not pass the valida-
tion stage, a new order is selected: in the case of cross-validation or information
criteria, the new order will be the one giving the second lowest value of the
prediction error or of the criterion, respectively; if instead the F-test is applied,



2.3 Combinations of the order selection methods 33

the new order will correspond to the one of the �rst larger model structure
which passes the test. These newly chosen model structures will be de�nitively
selected if they pass a new validation test.

The method here illustrated can be also re-formulated in the following way:
among the model structures which pass the whiteness test (2.76) or the indepen-
dence test (2.77), the one giving the lowest value of the considered information
criterion (or of the prediction error in case of cross-validation) is chosen. For
what regards the combination of the F-test with the validation methods, the
�rst model structure which passes both the F-test and the considered test on
the residuals is selected.

A di�erent approach has also been tested when this technique is applied on OE
and ARMAX models. Since they are estimated solving non-convex optimization
problems, local minima can be returned. According to this approach, whenever
a model structure does not pass a validation test, a re-estimated model is �rst
evaluated, before passing directly to another complexity. The re-estimation is
obtained using the MATLAB routine init, which randomly perturbs the initial
parameter estimate of the old model, in order to obtain the initial estimate for
the new estimation. However, it has been observed that the re-estimation tends
to decrease the impulse response �t w.r.t. to the true system (de�ned in (3.1)).
Thus, the immediate choice of a new complexity appears more bene�cial.

2.3.2 Combination with the F-test

This combination exploits the F-test to perform a sort of "local search" around
the order of the model structure returned by a speci�c order selection technique,
be it a comparison or a validation method. Namely, when more complex model
structures are considered, starting from the selected order, an F-test is applied
to compare the current model structure with the next larger one: if the F-
test is passed, i.e. if the smallest model structure is chosen, the procedure is
stopped and the original order is con�rmed; if instead the F-test is not passed
by the simplest structure, the procedure is iterated evaluating model structures
of increasing orders, until the smallest structure between the two compared in a
certain test is selected. On the other hand, when simpler model structures are
compared, the procedure is iterated if the smallest model is chosen, otherwise it
is stopped and the most complex structure in the current comparison is returned.

When the F-test is applied in this context, an initial suggestion for the model
complexity is already available, thanks to the previous application of another
order selection method. One should then decide whether to test simpler or more
complex model structures; this choice can be done according to the behaviour of
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the previously applied method: namely, if this tends to undermodel, the F-test
should compare model structures of increasing complexity, while lower complex-
ities should be tested if the �rst method presents a tendency to overmodel.
Furthermore, the signi�cance level α adopted in the F-test can be properly tuned
in order to favour or limit the selection of higher or lower orders. Indeed, a large
value of α increases the probability of accepting the most complex model struc-
ture between the two compared by an F-test. Therefore, to favour the selection
of higher orders a large value of α should be chosen, while it should be small to
facilitate the choice of simpler model structures.

Since both the described combinations require the setting of the signi�cance level
α for the statistical tests that they involve, a detailed experimental analysis of
its choice will be carried out in the next chapters.



Chapter 3

Simulation settings

3.1 Data sets used for the simulations

The order selection methods here evaluated are tested on the data bank used
in [2], which includes measurement data and the corresponding systems, from
which the data were generated. The knowledge of the true system allows a
direct comparison between it and the estimated model by means of the functions
described in Section 3.2.

The data bank consists of 5000 SISO systems of 30th order and corresponding
input-output data. The systems are sampled versions of original continuous-
time systems generated with the MATLAB routine rss; sampling time was set
to three times the bandwidth of the system. These systems were split into "fast"
ones (identi�ed as S1), having all their poles within a circle of radius 0.95 and
"slow" ones (called S2), which have at least one pole outside the circle of radius
0.95.

The measurement data include output data generated by the systems when
simulated with Gaussian white noise with unit variance as input. Output data
are corrupted by additive white Gaussian noise with di�erent variances, in order
to distinguish between data with low SNR, where the additive output noise has
the same variance of the noise-free output and data with high SNR, for which
the additive noise variance is a tenth of the one of the noise-free output.
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The di�erent systems properties and output noise characteristics above de-
scribed allow the subdivision of the whole data bank into four data sets:

S1D1 : It includes fast systems with high SNR, i.e. SNR=10; each set of
records consists of 500 input-output measurements;

S1D2 : It contains fast systems with low SNR, i.e. SNR=1; each set of records
consists of 375 input-output measurements;

S2D1 : It includes slow systems with high SNR (SNR=10); each set of records
consists of 500 input-output measurements;

S2D2 : It contains slow systems with low SNR (SNR=1); each set of records
consists of 375 input-output measurements;

While S1D1 presents the most favourable conditions for identi�cation, S2D2
represents the most di�cult data set to exploit for identi�cation, because of the
slow nature of the systems, which require a large amount of data to be properly
identi�ed, but also because of the low SNR and the relative small records set.

The bank of data considered should provide a good sample of the di�erent
systems and conditions that can be found in real-life scenarios: in particular,
it contains complex systems, that can be quite well approximated by low-order
models. This property can highlight the tendency to over�t of the order selection
methods that will be tested.

3.2 Fit functions used to compare the tested cri-

teria

The comparison of the di�erent methods used for model order selection will be
carried out by means of certain measures of goodness of the estimated models,
that are described in this section. For each order selected by a speci�c criterion,
the corresponding model will be estimated and the �t measures here introduced
will be computed: their values will be then compared with the ones achieved by
models having orders selected by other criteria.
Three types of �t measures will be exploited: one describing the closeness of
the estimated model to the true system and other two evaluating the prediction
ability of the estimated models.

Therefore, the model order selection criteria will not be evaluated according
to their ability to identify the true order of the systems, but according to their
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capacity to �nd orders that allow a good reproduction of the input-output prop-
erties of the true systems.

For each kind of �t and for each model type that will be tested on a certain
data set, an "oracle" criterion will indicate the model structure giving the max-
imal �t, thanks to the knowledge of the true system. This maximal �t will be
considered as the upper bound achievable with the speci�c set conditions.

3.2.1 Impulse response �t

The quality of an estimated model is evaluated using a measure which compares
the impulse response of the true model and of the estimated one. Indicating
with g0

k and ĝk the impulse response coe�cients of the true system and of the
estimated one, respectively, such measure function is de�ned as

FpG0, pGq � 100

�
1�

�°n
k�1 |g0

k � ĝk|2°n
k�1 |g0

k � ḡ0|2

 1

2

�
(3.1)

with

ḡ0 � 1

n

ņ

k�1

g0
k

It should be remarked that G0 and pG represents the set of impulse response
coe�cients of the true system and of the estimated one, respectively.
A perfect �t between the �rst n impulse response coe�cients of the true model
ad of the estimated one will lead to FpG0, pGq � 100.
The number n of compared coe�cients should be chosen su�ciently large in
order to take into account all the coe�cients which are signi�cantly di�erent
from zero. In the tests here conducted n is set to 125.

3.2.2 Type 1 prediction �t

The prediction ability of an estimated model is evaluated using two types of
measures. For the de�nition of the �rst one, let z0

k indicate the output pro-
duced by the true system when it is simulated with the input data used for
the estimation and without the addition of output noise. Furthermore, let ẑk
represent the output generated by the estimated model in the same simulation
setting.
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The �rst type of prediction �t function is de�ned as

F1pZ0, pZq � 100

��1�
�°N

k�1 |z0
k � ẑk|2°N

k�1 |z0
k � z̄0|2

� 1
2

�� (3.2)

with

z̄0 � 1

N

Ņ

k�1

z0
k

N � 500 when the �t is computed for systems of data sets S1D1 and S2D1,
while N � 375 for the data sets S1D2 ad S2D2.

3.2.3 Type 2 prediction �t

The second type of prediction �t is analogous to the �rst one, but instead of using
the input data coming from the estimation set, new input data are exploited,
but of the same type as the estimation ones.
Indicating with y0

k ad ŷk the outputs produced respectively by the true system
and by the estimated one when they are fed with new input data, the �t function
is de�ned as

F2pY0, pY q � 100

��1�
�°N

k�1 |y0
k � ŷk|2°N

k�1 |y0
k � ȳ0|2

� 1
2

�� (3.3)

with

ȳ0 � 1

N

Ņ

k�1

y0
k

Again, N � 500 for data sets S1D1 and S2D1, while N � 375 for S1D2 and
S2D2.

3.3 Settings used for the statistical tests

This section illustrates some speci�cations which will be adopted in the order
selection criteria involving statistical tests, such as the residual analysis testing
whiteness and independence from past inputs and the F-test comparing two
model structures.
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First of all, it could happen that none of the evaluated model structures is
unfalsi�ed by one of these tests: in this case, the most complex model structure
is chosen, since this should be theoretically unfalsi�ed with higher probability.

These tests also require the de�nition of the signi�cance level α at which the
null hypothesis H0 is accepted or rejected, which has a signi�cant impact on the
e�ectiveness of the test; for this reason, the analysis described in the following
chapters focuses also on the selection of α.

When model structure selection is performed by means of the statistical tests
on the residuals, these are applied using the estimation data. Furthermore,
the use of these tests also requires the setting of the interval of lags for which
the correlation is computed. Namely, for the whiteness test, the value of the
maximal lag M introduced in (2.3) has to be set, while for the test for the
independence between residuals and past inputs, the minimal and maximal lags
M1 and M2 (introduced in (2.12)) have to be speci�ed. In the tests performed
for this project M1 is always set to 1, such that M � M2 � M1 � 1 � M2.
Therefore, in the following the maximal lag M2 will be denoted by M also for
this type of test.
The impact of the value of M on the performances of these tests when they are
used for model order selection will be investigated in Section 4.1.2.

Moreover, two di�erent routines are used to perform the test for the indepen-
dence of residuals from past inputs: the MATLAB routine resid, in which the
whiteness of the residuals is assumed and no model for the residuals (such as
(2.16)) is estimated, and a routine which estimates a noise model (2.16), com-
puting Pεu as described in (2.17). It should be noticed that the correct use of
resid for this kind of test requires �rst the assessment of the residuals whiteness;
however, the following analysis will evaluate also the performances of the inde-
pendence test when implemented through resid but without its combination
with the whiteness test, even if this use is not theoretically correct.





Chapter 4

Classical model order

selection techniques:

Application on OE models

The methods described in Chapter 2 will be here tested and compared on OE
models (see (1.19)). The tests are performed using 200 sets of data coming from
each of the four data sets described in Section 3.1. For all the identi�ed systems,
a one-sample delay is assumed to be present in the dynamics from u to y, i.e.
nk � 1 in Bpqq (1.13).

The order selection criteria have to discriminate among orders that go from 1 to
40. For simplicity, the choice is limited to model structures, whose polynomials
have all the same orders, i.e. nb � nf in (1.13) and (1.16).

An analogous analysis has been performed also on FIR, ARX and ARMAX
models. The results are reported in Appendix A.

The following acronyms are introduced to indicate the di�erent model order
selection methods:

RAW - The whiteness test on the residuals (2.7) is used for model order selec-
tion, as described in Section 2.1.2.1. The test is applied on the estimation
data.
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RAI1 - Model order is selected by means of the test which veri�es the indepen-
dence between residuals and past inputs, as described in Section 2.1.2.1.
The test is applied on the estimation data and it assumes (without a
proper check) that the residuals constitute a white noise sequence, with
the covariance matrix Pεu computed as in (2.15).

RAI2 - This method is analogous to the previous one, but the independence
between residuals and past inputs is evaluated without assuming residuals
whiteness, with the covariance matrix Pεu computed as in (2.17).

RA - The tests for residuals whiteness (RAW) and for the independence between
them and past inputs (RAI1) are combined, using the same value of the
signi�cance level α: model structures of increasing complexities are tested
and the �rst one that passes both the tests is selected.

F - The F-test is applied to compare two model structures of consecutive com-
plexities, starting from the simplest one in the range of the considered
ones; as soon as the condition (2.63) is veri�ed, the procedure is stopped
and the simplest model structure between the two compared is chosen.

CV - Cross-validation is applied according to the way illustrated at the begin-
ning of Section 2.2.1. It should be speci�ed that the available set of data
is split into two equally-sized subsets in order to obtain the estimation and
the validation set.

FPE - The model structure is selected according to (2.42).

AIC - Order selection is performed by means of (2.50).

BIC - The model structure which minimizes (2.54) is chosen.

4.1 Order estimation for OE models

The analysis that follows is based on OE models estimated using the routine
pem, with the option that avoids the estimation of a noise model.

4.1.1 In�uence of the model order in the estimation

In order to understand the importance of a correct choice of the model com-
plexity, Figure 4.1 shows the average �ts obtained in the identi�cation of 200
systems in each data set as function of the model orders.
It can be seen that all the three kinds of �t assume comparable values.
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(b) Type 1 Prediction Fit.
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(c) Type 2 Prediction Fit.

Figure 4.1: OE models - Average �ts achieved in the estimation of 200 systems in each data
set for model orders ranging from 1 to 40.

The plots highlight a signi�cant di�erence between noisy and non-noisy data
sets: while for the latter ones, high orders do not signi�cantly deteriorate the
performances, for the noisy sets, high-order OE models su�er from the so-called
over�tting issue, leading to a signi�cant worsening of the �ts. As expected,
this issue mostly a�ects type 2 prediction �t, which encounters a more relevant
decrease for high complexities.
Moreover, when less noisy data are available, two di�erent trends are observed,
depending on the slow or fast dynamics of the true system. Namely, when slow
systems have to be identi�ed, quite high orders are still adequate for the repro-
duction of the true nature of the systems, while in case of fast systems, too high
orders give rise to over�tting.
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4.1.2 In�uence of the maximal correlation lag M in the tests
on the residuals

The validation methods described in Section 2.1 are based on statistical tests
on the residuals, which in turn depend on two parameters that have to be set
by the user, once the measurement data are given. These parameters are the
signi�cance level α of the test and the maximal lag M for which the auto- or
the cross-correlation are computed. This section focuses on the impact of M
on the performances of the tests, taking into account also the in�uence of the
signi�cance level.

In literature no speci�c indications can be found for the choice of M ; in [13]
values between 5 and N{4 are suggested, being N the number of available data.
The only constraint for M regards its use in the test for the independence
between residuals and past inputs, when the model to be validated is estimated
through least-squares (such as for FIR and ARX models). In this caseM has to
be chosen larger than nb, the order of the polynomial Bpqq (de�ned in (1.13)),
in order to make the test reliable. Indeed, nb past inputs are used as regressors
ϕptq for the estimation of the predicted output pypt|θq in (1.21). Therefore, the
independence between residuals and past inputs until a lag equal to nb is already
guaranteed by the independence between residuals and regressors achieved by
the least-squares procedure.

The analysis that follows is performed only for OE models, but analogous con-
clusions can be drawn for the other model types considered in Appendix A.

Whiteness test

Figure 4.2 shows the average orders selected by the whiteness test on the resid-
uals (RAW) as function of the signi�cance level adopted in the test and for four
di�erent values of M , while Figure 4.4 illustrates the corresponding average
impulse response �ts. Figure 4.2 clearly highlights how too large values of M
generally lead to the selection of smaller orders, as is the case for M � 60 and
M � N{4. It should be observed that the value of χ2

αpMq (de�ned in (2.6))
increases with the degrees of freedom M of the χ2 distribution, when α is �xed.
On the other hand, also the quantity xN,Mε (de�ned in (2.7)) increases with M ,
since it is the normalized sum of the auto-correlations computed for lags from
1 to M . However, since the major correlation components among the residuals
are detected for small lags, increasing M after a certain value �M will not give
rise to a signi�cant growth of xN,Mε ; therefore, the condition (2.7),

xN,Mε ¤ χ2
αpMq
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(a) S1D1.
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(b) S1D2.
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(c) S2D1.
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(d) S2D2.

Figure 4.2: OE models - Average of the orders selected by the whiteness test on the residuals
(RAW) as function of the signi�cance level α and for di�erent values of the maxi-
mal lag M for which the auto-correlation is computed. The average is calculated
from the identi�cation of 200 systems in each data set.

is more easily veri�ed for large M .
The only exception to the behaviour just described can be observed in data set
S2D1, where for small signi�cance levels, setting M � 60 leads to the selection
of larger orders w.r.t. the case with M � 20. This is probably the consequence
of the slow nature of the systems contained in that data set, which gives rise to
relevant correlation components also for large lags, when the estimated model
is not appropriate. When M is set to 20, these components are not considered,
causing the unfalsi�cation of simpler model structures.

Figure 4.2 also illustrates how the increase of the signi�cance level leads to a
considerable growth of the average of the selected orders. This is a consequence
of the default selection of the largest order (i.e. 40), which is done whenever none
of the evaluated model structures is unfalsi�ed by the whiteness test. Indeed,
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Figure 4.3: OE models, Data set S1D2 - Average values of xN,Mε (solid lines) and values
of χ2

αpMq (dashed-dotted lines) for di�erent values of the maximal lag M . The
signi�cance level α is �xed. The average is calculated from the identi�cation of
200 systems.

when a large value of α is adopted, the probability of unfalsi�cation signi�cantly
decrease. The situation is illustrated by Figure 4.3, which refers to data set
S1D2. The two plots show the average trends of xN,Mε and the values of χ2

αpMq
for di�erent values ofM . In the left plot, α is set to 0.2 and for all the considered
values of M the condition (2.7) is veri�ed in correspondence to a certain model

order. In the right plot, α is equal to 0.8 and only the curve x
N,N{4
ε crosses the

line χ2
αpN{4q, meaning that the condition (2.7) is veri�ed only for M � N{4.

According to these considerations, high values ofM favour the unfalsi�cation of
at least one of the evaluated model structures, but they are not always bene�cial
in terms of the achieved impulse response �ts, as Figure 4.4 proves.

Figure 4.4 highlights how the choice of M has a quite considerable impact on
the performances achieved by the whiteness test when it is used as an order
selection method. In all the four data sets here considered M � 20 leads to the
best performances, when the signi�cance level is properly tuned (see Section
4.1.3).

Test for independence between residuals and past inputs

The analysis of the in�uence of the maximal lag M on the test for the inde-
pendence between residuals and past inputs is here based on the second im-
plementation of the test considered in this project, i.e. the one denoted by
RAI2.
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(a) S1D1.
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(b) S1D2.

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

75

80

85

90

α

A
ve

ra
ge

 Im
pu

ls
e 

R
es

po
ns

e 
F

it

 

 

M=20
M=40
M=60
M=N/4

(c) S2D1.
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(d) S2D2.

Figure 4.4: OE models - Average impulse response �ts achieved by the whiteness test on the
residuals (RAW) as function of the signi�cance level α and for di�erent values of
the maximal lag M for which the auto-correlation is computed. The average is
calculated from the identi�cation of 200 systems in each data set.

Figure 4.5 illustrates the average of the orders selected by this criterion as func-
tion of the signi�cance level α and for di�erent values of M . A speci�c trend
can be observed in the plots relative to S1D1, S1D2 and S2D2: for small signif-
icance levels, small values of M lead to the selection of larger orders, while the
situation inverts for large signi�cance levels, since large M favour the selection
of more complex models. Indeed, as previously observed for the whiteness test,
it is more probable that the main correlation components are present for small
lags. Therefore, for small signi�cance levels the situation is analogous to the
one described for the whiteness test. However, di�erently from what observed in
that case, for large lags the cross-correlation between residuals and past inputs
generally exhibits larger components than the auto-correlation of the residuals.
Therefore, when the probability to unfalsify a certain model structure decreases,
i.e. when large signi�cance levels are adopted, more complex model structures
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(a) S1D1.
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(b) S1D2.
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(c) S2D1.
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(d) S2D2.

Figure 4.5: OE models - Average of the orders selected by the test for independence of the
residuals from past inputs (RAI2) as function of the signi�cance level α and for
di�erent values of the maximal lagM for which the cross-correlation is computed.
The average is calculated from the identi�cation of 200 systems in each data set.

are required in order to eliminate those correlation components.
The described situation is illustrated by Figure 4.6, which refers to data set
S2D2. It shows the average trends of xN,Mεu and the values of χ2

αpMq for di�er-
ent values of M . It can be noticed how xN,20

εu encounters a faster decrease than
xN,60
εu for small model orders. Indeed, simple models can give rise to a consider-

able correlation between a residual εptq and a past input upt�τq also for small τ .
These correlation components can be considerably reduced by increasing a bit
the model complexity. On the other hand, when correlation is present also for
large values of τ , the model order should be further increased in order to reduce
it. This explains the slow decrease of xN,60

εu noticeable in Figure 4.6. When α
is set to a high value, as in Figure 4.6.(b), the corresponding χ2

αpMq decreases
and makes xN,60

εu crossing χ2
αp60q in correspondence to larger orders than what

is observed for xN,20
εu .
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0 10 20 30 40
0

20

40

60

80

100

120

Model order

 

 

xε u
N,20

xε u
N,40

xε u
N,60

xε u
N,N/4

χ2
α(20)

χ2
α(40)

χ2
α(60)

χ2
α(N/4)

(b) α � 0.8.

Figure 4.6: OE models, Data set S2D2 - Average values of xN,Mεu (solid lines) and values
of χ2

αpMq (dashed-dotted lines) for di�erent values of the maximal lag M . The
signi�cance level α is �xed. The average is calculated from the identi�cation of
200 systems.

The trends observed in Figure 4.5 for dataset S2D1 are di�erent from the ones
just described, since the average of the orders selected settingM � 40 orM � 60
is always greater than the one observed for M � 20. Because of the slow
dynamics of the systems present in that data set, particularly large correlation
components are exhibited also for large lags. When M is set equal to 20, these
components are not taken into account in the value of xN,Mεu , making more
probable the unfalsi�cation of simple models. This makes the test less reliable,
as it is con�rmed by Figure 4.7, which shows how large values ofM (but smaller
than N{4) lead to better impulse response �ts in the "slow" data sets. However,
Figure 4.7 also illustrates how small values ofM are preferable when fast systems
have to identi�ed, since they give rise to the highest �ts and they also appear
more robust to the tuning of the signi�cance level.

Value of M used in the experimental tests

In the following, all the tests on the residuals adopt a maximal lag M equal to
nb� 20, being nb the order of the polynomial Bpqq in (1.13). This choice allows
to correctly use the independence test when it is applied on a model estimated
by least-squares, such as a FIR or an ARX model. Since the model orders that
are evaluated in the following tests range from 1 to 40, this means that M will
range from 21 to 60. As shown by the previous analysis, this choice could pe-
nalize the performances of RAI1 or RAI2 in data sets S2D1 and S2D2, because
it could lead to the selection of too simple models.
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(a) S1D1.
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(b) S1D2.
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(c) S2D1.
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(d) S2D2.

Figure 4.7: OE models - Average impulse response �ts achieved by the test for independence
of the residuals from past inputs (RAI2) as function of the signi�cance level α
and for di�erent values of the maximal lag M for which the cross-correlation is
computed. The average is calculated from the identi�cation of 200 systems in
each data set.

Moreover, Figures 4.4 and 4.7 have shown how the dependence of the perfor-
mances of the tests from the signi�cance level α is very similar for M ranging
from 20 to 60. Therefore, the analysis that will be conducted in the next sections
for the selection of α holds independently of the value of M .

4.1.3 Selection of the signi�cance level α used in the statis-
tical tests

A new analysis is carried out in order to de�ne the optimal values of the signif-
icance level α in the statistical tests used for model order selection.
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The investigations done in Section 4.1.2 have already shown how α signi�cantly
in�uences the order selection done by the tests on the residuals (namely RAW
and RAI2).
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Figure 4.8: OE models - Average of the orders selected by the statistical tests on the residuals
as function of the adopted signi�cance level α. The average is calculated from the
identi�cation of 200 systems in each data set.

Figures 4.8 and 4.9 contain respectively the average of the selected orders and
the average impulse response �ts achieved for di�erent values of α used in the
statistical tests on the residuals (0 ¤ α ¤ 0.99). Ideally, a small value of α leads
to a minor probability of rejecting the null hypothesis H0, meaning that simple
model structures are more easily selected. The extreme situation in this sense is
obtained when α is equal to 0, meaning that all the model structures will pass
the test and order 1 will be always chosen, as it is the �rst one to be considered;
all the plots in Figure 4.8 clearly show this phenomenon. Figure 4.9 illustrates
that also the �t encounters a drastic drop when α � 0, since model structures
of order 1 in most cases are not suitable for an appropriate description of the
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(c) RAI1.
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(d) RAI2.

Figure 4.9: OE models - Average impulse response �ts achieved by the statistical tests on the
residuals as function of the adopted signi�cance level α. The average is calculated
from the identi�cation of 200 systems in each data set.

underlying true system.

Figure 4.8 shows how the rate of growth of the average orders for increasing α is
larger for the whiteness test (RAW) or for its combination with the independence
test (RA). The trends here observed are actually analogous to the ones noticed
in Figure 4.2. Indeed, as was previously explained, the increase of α makes
more probable the default selection of model structures of order 40, since the
whiteness test is not able to unfalsify any of the evaluated model structures.
S2D1 appears as the data set which is most a�ected by this issue, since the
systems it contains can be properly described by high-order OE models. In
particular, for the identi�cation of some systems, the problem is still present
even if a very small value of α (such as 0.01) is chosen. Though data set S2D2
also contains slow systems, the described issue is less frequent because of the
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more relevant presence of noise in the measurement data, which can favour the
whitening of the residuals. Indeed, the noise component in the residuals (the
so-called data error) can be larger than the approximation component, leading
to the whitening of the residuals.

Further inspecting the plots in Figure 4.8, it can be noticed how the average of
the orders selected by the two independence tests RAI1 and RAI2 is considerably
lower for the noisy datasets S1D2 and S2D2 w.r.t. the one reported for S1D1
and S2D1, thus showing that over�tting is avoided. An explanation of this
behaviour can probably be found by looking at the explicit expression of the
residuals; namely, let B0pqq and F0pqq be the polynomials which give the best

description of the true system and let pBpqq and pF pqq be their estimates, then

εptqupt� τq �
�
B0pqq
F0pqq uptq � eptq �

pBpqqpF pqquptq
�
upt� τq

�
�
B0pqq
F0pqq �

pBpqqpF pqq
�
uptqupt� τq � eptqupt� τq (4.1)

If the estimated model is very close to the true system, the �rst term in the

summation (4.1) is small; in case of over�tting instead,
pBpqq
pF pqq

would depart from

B0pqq
F0pqq

, thus increasing the �rst term in the summation and in turn the correlation

component εptqupt� τq.
It should also be noticed that for small values of α the average of the orders
chosen for the slow systems in data sets S2D1 and S2D2 is lower than the
corresponding one for the "fast" data sets S1D1 and S1D2, respectively. This
is due to the choice of the maximal lag M considered for the cross-correlation
between residuals and past inputs. As was previously noticed in Section 4.1.2,
when slow systems have to be identi�ed, there could be some relevant correlation
between a residual εptq and a past input upt � τq, with τ particularly large. If
the maximal lag M for which the cross-correlation is computed is too small,
these correlation components could not be detected, leading to the premature
unfalsi�cation of too small model structures. Since the maximal lag considered
for these tests depends on the complexity of the estimated model, simple model
structures are more a�ected by this issue. When large values of α are adopted,
the probability to unfalsify a certain model structure decreases, thus reducing
the described risk.

Figure 4.9 provides further insight about the impact of α on the goodness of the
estimated models. Comparing the plots relative to the whiteness test (RAW)
and to its combination with the independence test (RA), di�erent trends can be
observed for the "fast" data sets. While for RA very small values of α lead to the
best average impulse response �t, when the whiteness test is used alone (RAW)
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larger values of α lead to better �ts. Indeed, lacking of the equipment with the
independence tests on the residuals, RAW tends to select a bit smaller orders
than RA, thus needing a larger signi�cance level to compensate this lack. This
di�erence between RAW and RA is more evident for S1D1 and S1D2, because in
the case of slow systems it is alleviated by the default selection of order 40, done
whenever none of the evaluated model structures can be unfalsi�ed. Indeed, the
optimal signi�cance values for the "slow" data sets are very low, in order to
increase the probability to unfalsify at least a model structure.
It should also be observed that a unique signi�cance level is used for both the
whiteness and the independence test in RA. Figure 4.9 shows that this is not
the optimal choice and that two di�erent values of the signi�cance level could
lead to better performances. Namely, small values of α are preferable for RAW,
while larger ones work better for RAI1.

For what regards the independence tests, similar �ts can be achieved by the two
implementations considered. The signi�cance level does not seem so in�uential
for the identi�cation of fast systems, even if too small and too large values
should be avoided, since they respectively lead to the selection of too small
or too complex model complexities. Di�erent considerations hold for data sets
S2D1 and S2D2, for which large signi�cance levels are more indicated in order to
reduce the undermodelling tendency due to a non proper choice of the maximal
lag M (as observed in Section 4.1.2).
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(a) Average of the selected orders.
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(b) Average impulse response �ts.

Figure 4.10: OE models - Average of the selected orders and average impulse response �ts
achieved by the F-test, as function of the adopted signi�cance level α. The
average is calculated from the identi�cation of 200 systems in each data set.

Figure 4.10 shows the average of the orders selected by the F-test and the average
impulse response �ts that are obtained for di�erent values of the signi�cance
level α. For all the data sets α̃ � 0.38 seems to be a critical value, beyond which
only a minor increase of the model complexities can be reached. The average �ts
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achieved are in turn in�uenced by this value, showing a step in correspondence
of α̃. Figure 4.10 shows that too large values of α lead also to over�tting in
case of noisy measurements. Therefore, the adoption of signi�cance levels lower
than 0.5 is suggested for noisy data sets, while larger α are more suitable for
non-noisy data sets.
It should be observed that relative small orders are chosen by the F-test for
the data set S2D1, when also compared to the choices done for the other data
sets. Since the F-test is based on the loss function, a better understanding of
this result can be obtained by looking at the average values assumed by the
loss. After a rapid decrease observed for very small orders, the decrease in
data set S2D1 is much less signi�cant than the one observed for the other data
sets, especially w.r.t. the noisy ones, where the reduction is mainly due to the
adaptation to the noise realization. Since for S2D1 no relevant di�erence is
detected between the loss of two model structures with similar orders, the F-
test will choose the simplest one, thus explaining the trend observed in Figure
4.10.(a).

4.1.4 Analysis of the order selection methods

The analysis of the di�erent order selection methods is presented by means of
the box plots of the impulse response and type 1 prediction �ts (Figures 4.11
and 4.12) and of the histograms of the orders chosen by each criterion (Figures
4.13, 4.15, 4.17 and 4.19). The histograms of the di�erences between the orders
chosen by the oracle for impulse response �t and the ones selected by the criteria
are also reported (Figures 4.14, 4.16, 4.18 and 4.20).

The results relative to the criteria which involve statistical tests are obtained
with the signi�cance level α which guarantees the best average impulse response
�ts. Table 4.1 summarizes the values of α that are used in the tests giving the
results presented in the following. Except for RA, which bene�ts when low
values of α are used, the optimal signi�cance level for the other statistical tests
signi�cantly varies from a data set to the other one. However, in the case of
the independence tests, the value adopted for the signi�cance level is not so
in�uential, as was observed analyzing Figures 4.9.(c) and (d); moreover, the
large values of α appearing in the table for data set S2D1 are chosen in order
to remedy the non-optimal choice of the maximal lag M .

Tables 4.2, 4.3 and 4.4 summarize the average �ts reached by each of the model
order selection criteria in the considered setting. As was previously observed
during the analysis of Figure 4.1, all the three types of �t assume very similar
values, showing consistency between the system description ability and the pre-
diction one. The largest discrepancy among the three types of �ts is observed
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α
Dataset RAW RA RAI1 RAI2 F

S1D1 0.46 0.07 0.58 0.54 0.39
S1D2 0.32 0.09 0.33 0.43 0.05
S2D1 0.25 0.03 0.99 0.99 0.99
S2D2 0.02 0.04 0.62 0.84 0.23

Table 4.1: OE models - Values of the signi�cance level α which guarantee the best average
impulse response �ts when adopted in the statistical tests used for model order
selection.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 93.9 89.4 92.9 92.9 92.4 89.3 92.4 84.6 84.7 93.1
S1D2 79.9 64.6 76.6 76.3 74.3 71.8 73.6 38.4 38.4 71.9
S2D1 89.9 84 77.8 82.5 85.1 76.7 79.5 80.7 80.8 87.6
S2D2 69.9 57.3 57.8 58.6 61.8 54.7 55.5 30.5 30.5 62.9

Table 4.2: OE models - Average impulse response �ts achieved by the evaluated criteria when
200 systems are identi�ed in each data set.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 94.5 90.1 93.7 93.7 93.2 90.4 93.2 84.2 84.6 93.8
S1D2 81.8 67.4 78.9 78.7 76.8 74.6 76.5 39.4 39.7 74.8
S2D1 91.6 87.7 82.5 85.6 88.8 81.5 84.3 83.6 83.9 90.8
S2D2 75.7 66 66.6 67.1 70.4 64.6 64.3 39.5 40.1 70.5

Table 4.3: OE models - Average type 1 prediction �ts achieved by the evaluated criteria when
200 systems are identi�ed in each data set.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 94.3 89 93.4 93.4 92.8 89.5 92.8 80.4 80.8 93.4
S1D2 81.2 64.6 78.2 78 75.4 73.5 75.3 20.2 20.2 71.4
S2D1 90 84.4 80 83 86 78.5 81.2 76.6 77.2 87.7
S2D2 72.8 60.2 62.8 63.2 64.4 60.6 59.6 18.4 18.8 64.9

Table 4.4: OE models - Average type 2 prediction �ts achieved by the evaluated criteria when
200 systems are identi�ed in each data set.

in data set S2D2, where the choice of quite small orders to avoid over�tting
limits the proper description of the true system but favours the generalization
capability.
The performances achieved by the oracle give an indication of the adequateness
of OE models in the description of the true systems present in the data sets
considered. As expected, the �ts decrease in the noisy data sets S1D2 and S2D2
with respect to the corresponding less noisy data sets S1D1 and S2D1. On the
other hand, Table 4.2 also shows a certain di�erence between the average �ts
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Figure 4.11: OE models - Box plots of the impulse response �ts achieved by the analyzed
criteria when 200 systems are identi�ed in each data set.

achieved by oracle in the "fast" and "slow" data sets. Moreover, the plots in
Figure 4.11 and 4.12 relative to the "slow" data sets present a large number of
outliers, which correspond to systems with all zeros and poles placed very close
to the unit circle and to the positive real axis or, generally with overlapping ze-
ros and poles. The identi�cation of these systems appears particularly di�cult:
for them the oracle tends to choose quite complex model structures in data set
S2D1, while it usually selects low orders in S2D2. However, in both cases, the
other criteria choose even lower complexities, which result in lower �ts and in
the longer tails that are visible in the box plots.

Analyzing the performances of the various order selection criteria, the BIC cri-
terion appears the most e�ective one, except in data set S1D2, where the inde-
pendence test on the residuals lead to the highest average �ts. Among the other
criteria also the combination of the whiteness and the independence test on the



58 Classical model order selection techniques: Application on OE models

10

20

30

40

50

60

70

80

90

100

Oracle RAW RAI1 RAI2 RA F CV FPE AIC BIC

T
yp

e 
1 

pr
ed

ic
tio

n 
fit

(a) S1D1.

20

30

40

50

60

70

80

90

Oracle RAW RAI1 RAI2 RA F CV FPE AIC BIC

T
yp

e 
1 

pr
ed

ic
tio

n 
fit

(b) S1D2.

0

10

20

30

40

50

60

70

80

90

100

Oracle RAW RAI1 RAI2 RA F CV FPE AIC BIC

T
yp

e 
1 

pr
ed

ic
tio

n 
fit

(c) S2D1.

−20

0

20

40

60

80

Oracle RAW RAI1 RAI2 RA F CV FPE AIC BIC

T
yp

e 
1 

pr
ed

ic
tio

n 
fit

(d) S2D2.

Figure 4.12: OE models - Box plots of the type 1 prediction �ts achieved by the analyzed
criteria when 200 systems are identi�ed in each data set.

residuals (RA) is e�ective in all the data sets.

Starting from the whiteness test on the residuals a more detailed analysis of the
results obtained by each criterion is now conducted.

In all the data sets RAW gives rise to lower �ts than the ones reached by RA,
with the minor gap observed in S2D1. The reason of this discrepancy lies in
the tendency to undermodel that RAW shows when a too small value of the
signi�cance level α is adopted for the test. However, increasing its value, the
probability to unfalsify at least a model structure decreases, leading to the
default selection of order 40, which is not appropriate in case of noisy data.
On the other hand RA bene�ts from the combination with the independence
test, since it limits the undermodelling tendency, even if a small value for α is
adopted. In particular, also the histograms in Figures 4.14, 4.16, 4.18 and 4.20
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show a signi�cant agreement between the oracle choices and the ones done by
RA.

The two implementations of the independence test on the residuals, RAI1 and
RAI2, lead to very similar performances, especially in the "fast" data sets, while
in the "slow" ones better performances are achieved by RAI2. This behaviour
can be justi�ed by the high number of model structures that are unfalsi�ed by
RAI1, even if the whiteness test is not passed. Therefore, in these cases the
reliability of RAI1 is limited.
Thanks to the general tendency to select quite low orders, the independence
test on the residuals provides very good performances on the "fast" data sets
(being the most e�ective criterion in S1D2), but encounters some di�culties
in the complexity estimation when slow systems have to be identi�ed. This
behaviour could be in part explained by the adoption of a too small value for
the maximal lagM until which the cross-correlation between residuals and past
inputs is computed. Indeed, the tests in Section 4.1.2 have shown that a larger
M improves the performances in data sets S2D1 and S2D2.

The F-test su�ers of undermodelling when applied for the identi�cation of slow
systems, leading to the unsatisfying �ts detected in S2D2 and especially in S2D1.
However, also the box-plots relative to data sets S1D1 and S1D2 in Figures
4.11 and 4.12 present a signi�cant number of outliers. These arise because
of the selection of too low orders as a consequence of local minima solutions.
Indeed, whenever a local minimum is returned by the estimation procedure, an
increase in the loss function is detected w.r.t. the value assumed with simpler
complexities. When the F-test encounters these situations, the procedure for
order selection is early stopped because the test is passed by the smallest model
structure in the comparison.

Cross-validation seems to be more e�ective when fast systems have to be identi-
�ed; indeed the �ts observed for S2D1 and S2D2 are quite low compared to the
best criteria for those data sets. Figures 4.11 and 4.12 illustrate the presence
of many outliers for cross-validation in data sets S2D1 and S2D2. They proba-
bly correspond to very slow systems, which can be appropriately identi�ed only
when a large amount of measurement data is available. Since cross-validation
estimates a temporary model only on half of the available data, this could be
quite di�erent from the one estimated using all the data, leading to an imprecise
estimation of the prediction errors and in turn of the optimal complexity.

FPE and AIC criteria, giving almost equivalent �ts, appear as the worst methods
in all the data sets, except in S2D1. The reason of the unsatisfying performances
is the marked overmodelling tendency that they present (evident in Figures 4.14,
4.16, 4.18 and 4.20) which is bene�cial only in data set S2D1. This result is in
line with the consistency analysis done in Section 2.2.5, which has shown how
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Figure 4.13: OE models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S1D1.
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Figure 4.14: OE models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S1D1.
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Figure 4.15: OE models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S1D2.
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Figure 4.16: OE models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S1D2.
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Figure 4.17: OE models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S2D1.
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Figure 4.18: OE models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S2D1.
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Figure 4.19: OE models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S2D2.
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Figure 4.20: OE models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S2D2.
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FPE and AIC criteria are not able to avoid overmodelling even when an in�nite
amount of data is available.
These �ndings suggest that the penalty in�icted by the two criteria on model
complexity is not su�ciently large to avoid the selection of too complex models.

As previously observed, the BIC criterion allows to achieve the highest �ts in
all the data sets, except in S1D2, where it shows an over�tting tendency. While
the penalization on high complexities is e�ective on the less noisy data sets
S1D1 and S2D1, it is not su�ciently large when noisy data are used, resulting
in the more frequent selection of too high orders. If this phenomenon is not
so detrimental for S2D2, because of the slow nature of the systems that have
to be identi�ed, it appears problematic in S1D2, as the average �t in Table
4.2 and the box plot in Figure 4.11 prove. This over�tting tendency is present
only when noisy data are exploited, because in these cases the loss function
encounters a signi�cant decrease for large orders, thanks to the adaptation to
the speci�c noise realization present in the data. Therefore, a larger penalty on
high complexities is needed in order to counterbalance the loss reduction.

4.1.5 Combination of the comparison and validation methods

The order estimation of OE models is now performed by combining the com-
parison methods (F-test, cross-validation and the information criteria) with the
validation procedures, according to the way described in Section 2.3.1. The
results are still based on the identi�cation of 200 systems from each of the four
available data sets. The statistical tests on the residuals evaluate the auto- and
cross-correlation until a maximal lag M again equal to nb � 20, being nb the
order of the Bpqq polynomial.

F-test

The analysis done in the previous section highlighted how local minima lead
to a premature stopping of the procedure exploited by the F-test for model
order selection. This issue signi�cantly penalizes the performances of the F-
test. Therefore, its equipment with the validation methods could help to avoid
this issue.
This combination leads to the �nal selection of the �rst model structure which
passes both the F-test and the considered test on the residuals.

Table 4.5 summarizes the average impulse response �ts that are achieved by the
F-test alone and by its combination with one or both the tests on the residuals.
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The results are obtained choosing for each data set and for each statistical test
the signi�cance level leading to the highest average impulse response �t.
In all the data sets the equipment of the F-test with a validation procedure
leads to an improvement of the average �ts: while the combination with the in-
dependence test (RAI1 or RAI2) appears more e�ective on "fast" data sets, the
adoption of both the tests on the residuals (RA) leads to better results in S2D1
and S2D2. These performances are in line with the ones previously observed for
the application of the residuals tests alone.
It should also be observed that, except for data set S2D1, the average �ts ap-
pearing in Table 4.5 are comparable or even better than the best ones present
in Table 4.2.

A clari�cation should be given with regards to the average of the selected orders
for data set S1D1 that are shown in Table 4.5. Theoretically, the combination
of the F-test with a validation method should lead to the choice of higher or-
ders; however, the values in the table show a decrease, which is justi�ed by the
adoption of di�erent signi�cance levels αF for the F-test.

Average impulse response �t Average of the selected orders
Set F F +

RAW
F +
RA

F +
RAI1

F +
RAI2

F F +
RAW

F +
RA

F +
RAI1

F +
RAI2

S1D1 89.3 92.3 93 93 93.1 9.5 5.6 5.4 5.7 5.9
S1D2 71.8 74.2 75.7 76.6 76.5 3.4 4.5 4.4 3.7 3.8
S2D1 76.7 85.2 85.5 81.6 84.5 6.4 10.7 10.5 12.4 10.4
S2D2 54.7 61.6 63 61.1 60.4 4.9 6.4 6.2 4.5 4.4

Table 4.5: OE models - Average impulse response �ts and average of the selected orders when
validation methods are combined with the F-test for model order selection in the
identi�cation of 200 systems in each data set.

Since statistical tests are here involved, a speci�c analysis should be devoted to
the choice of the signi�cance levels to adopt. For this purpose Figure 4.21 shows
the average impulse response �ts that are achievable for di�erent values of the
signi�cance levels αF and αRA respectively adopted in the F-test and in both
the tests on the residuals (RA), when they are combined as described in Section
2.3.1. A signi�cant match can be observed among the four data sets for what
regards the dependence between the �ts and the value of αF and αRA. Namely,
particularly small values should be adopted for both the signi�cance levels. The
optimal choices here suggested for αRA agree with the ones indicated by Figure
4.9.(b), when RA is applied alone as an order selection method. On the other
hand, comparing Figures 4.10.(b) and 4.21, a slight disagreement is detected in
the optimal values of αF suggested in data sets S1D1 and S2D1; indeed, when
the F-test is combined with a validation method, a large value of αF should be
avoided, since it could lead to overmodelling.
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Figure 4.21: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when both the tests on residuals (RA) are combined with the
F-test for model order selection in the identi�cation of 200 systems in each data
set.

Cross-validation

The equipment of cross-validation with the validation methods according to the
way described in Section 2.3.1 is now analyzed. The average impulse response
�ts present in Table 4.6 again prove the e�cacy of the combination and con�rm
what was detected with the F-test: namely, the independence test on the resid-
uals, RAI1 and RAI2, are more e�ective on S1D1 and S1D2, while performing
both the tests on the residuals (RA) is more indicated when slow systems have
to be identi�ed (S2D1 and S2D2). The values in Table 4.6 are still obtained
setting the signi�cance levels of the statistical tests to the values leading to the
highest impulse response �ts.
In this application the performances improvement is guaranteed by an increase
of the complexities chosen for the estimated models. Indeed, whenever the
model structure returned by cross-validation is not unfalsi�ed by the adopted
validation method, the newly chosen model structure is the one leading to the
second lowest value of the normed prediction errors. When the average of this
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function over the 200 measurement sets considered in each data set is plotted vs.
model complexity, one observes a rapid initial decrease, followed by a signi�cant
growing trend for high orders. Therefore, the newly chosen model structures
are generally more complex than the original ones returned by cross-validation.

Average impulse response �t Average of the selected orders
Set CV CV +

RAW
CV
+
RA

CV +
RAI1

CV +
RAI2

CV CV +
RAW

CV
+
RA

CV +
RAI1

CV +
RAI2

S1D1 92.4 92.4 92.5 92.6 92.6 7 7.1 7.2 7.3 7.5
S1D2 73.6 73.4 73.9 74.5 74.5 4.9 5.3 5.3 5.3 5.3
S2D1 79.5 84.8 84.8 82.3 82.7 11.1 14.5 14.9 13.1 12.4
S2D2 55.5 58.6 59.9 56.9 56.8 5.7 9 9.4 8.2 7.3

Table 4.6: OE models - Average impulse response �ts and average of the selected orders when
validation methods are combined with cross-validation for model order selection in
the identi�cation of 200 systems in each data set.
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Figure 4.22: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αRA used in both the tests on residuals (RA) when they are
combined with cross-validation for model order selection in the identi�cation of
200 systems in each data set.

Figure 4.22 illustrates the average impulse response �ts achieved in the four data
sets by the combination of cross-validation with both the tests on the residuals
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(RA). The �ts are plotted as functions of the signi�cance level αRA adopted in
both the statistical tests. The trends visible in Figure 4.22 are in line with the
ones reported in Figure 4.9.(b), since low values of the signi�cance level αRA
lead to the highest �ts. It should be observed that a wrong choice of αRA can
lead to a decrease of the �t originally obtained by cross-validation alone.

FPE

The performances achieved by the FPE criterion on OE models can be improved
only by combining it with the whiteness test (RAW) or by both the tests on the
residuals (RA). The independence tests alone are not e�ective in this context,
since the model structures returned by FPE are all unfalsi�ed by that test,
thanks to the high complexity that they have.
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Figure 4.23: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αRA used in both the tests on the residuals (RA) when they
are combined with FPE for model order selection in the identi�cation of 200
systems in each data set.

Figure 4.23 shows the average impulse response �ts that are achievable by com-
bining the FPE criterion with RA as function of the signi�cance level αRA
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adopted in the two tests. Compared to the values relative to FPE and reported
in Table 4.2, an increase in the average impulse response �t is detected, inde-
pendently from the value chosen for αRA. The only exception in this sense is
observed for data set S2D1, where the combination is not as bene�cial as in
the other data sets, because the performances obtained by the FPE criterion in
these data set were already quite good.
Di�erently from what observed for the F-test and the cross-validation, here the
most suitable values for the signi�cance level seem to range around 0.5. Indeed,
these values allow to select new model structures, whose complexities are lower
than the ones originally returned by the FPE criterion. If too large values of
αRA are adopted, the probability to unfalsify at least one of the evaluated model
structures signi�cantly decrease, leading to the default selection of too complex
models, which are not bene�cial in terms of �t.

It should be remarked that even if the combination here described gives rise to
a considerable improvement of the performances achieved by FPE alone, the
�nal average �ts are still lower than the ones obtained with the other criteria,
especially in the noisy data sets.

AIC

When the AIC criterion is combined with the validation methods, analogous
results to the ones described for FPE are obtained. This conformity is a direct
consequence of the analogies detected between the two criteria in the analysis
in Section 4.1.4.

BIC

The combination of the BIC criterion with a validation method does not lead to
signi�cant improvements but can also give rise to a performance worsening if a
wrong signi�cance level is adopted in the statistical tests on the residuals. The
reasons for this lack of e�cacy are di�erent for the two statistical tests applied
on the residuals. Indeed, the independence tests (RAI1 and RAI2) with a low
signi�cance level generally unfalsify the model structures returned by BIC, thus
con�rming its choice. On the other hand, the whiteness test does not tend to
unfalsify the model structures chosen by BIC. In those cases, the consequent
choice of more complex model structures is not bene�cial. However, when a
very small signi�cance level is adopted, the previous results obtained by BIC are
con�rmed, since the unfalsi�cation probability is quite high. The only exception
to this behaviour is detected in data set S1D2, where BIC tends to overmodel,
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as was observed in Section 4.1.4. In this case, its combination with RAW or
RA with low signi�cance levels leads to an average impulse response �t equal
to 75, thanks to the choice of simpler complexities. Indeed, in the noisy data
set S1D2, it happens that the loss function (on which BIC is based) assumes
very low values in correspondence to complex model structures, because of the
adaptation to the noise realization. However, these models don't give rise to
good reproductions of the true system. In some cases, this issue can be detected
by the whiteness test, because a correlation between the noise and the estimated
model is more easily detectable.

Conclusions

The combination between a comparison method and a validation one has proved
to be useful especially with the F-test and with cross-validation. FPE and AIC
also bene�t from it but the performances achieved with them are still unsatis-
fying.
Among the tests on the residuals to be exploited in this context, the indepen-
dence test has proved more e�ective when fast systems have to be identi�ed,
while the use of both whiteness and independence test (RA) has led to better
results for the identi�cation of slow systems. These �ndings are in line with
the performances obtained by the tests on the residuals when applied alone for
model order selection.
For what regards the signi�cance level to be adopted in the statistical tests on
the residuals, the analysis performed has shown a quite clear analogy between
the values to use in this context and the ones used when the tests are exploited
alone for model order selection.

4.1.6 Combination with the F-test

The combination illustrated in Section 2.3.2 between a model order selection
method and the F-test is now evaluated for the order estimation of OE models.

Whiteness test on the residuals (RAW)

In the analysis conducted in Section 4.1.4 the whiteness test has shown an
undermodelling tendency, whenever it was able to unfalsify at least one of the
evaluated model structures. This trend could be alleviated by increasing the
signi�cance level αRAW of the test, but this in turn would increase the rate of
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model structures that can not be unfalsi�ed. Therefore, the application of the
F-test after the whiteness test could be e�ective to alleviate this undermodelling
property.

Average impulse response �t Average of the selected orders
Set RAW RAW + F (Up) RAW RAW + F (Up)

S1D1 89.4 92 12.5 5.5
S1D2 64.6 74.3 7 4.1
S2D1 84 85.1 13.8 11.2
S2D2 52.3 61.5 5.5 6.1

Table 4.7: OE models - Average impulse response �ts and average of the selected orders when
the F-test is applied after the whiteness test (RAW) to perform model order selec-
tion in the identi�cation of 200 systems in each data set.

Table 4.7 shows the improvement that can be achieved when the F-test is used
to evaluate model structures with increasing complexities, starting from the
one returned by RAW. The results are obtained choosing the signi�cance levels
αRAW and αF which guarantee the best average impulse response �ts.
The table illustrates that the application of the F-test leads to a decrease of the
average of the selected orders: this is due to the use of di�erent signi�cance levels
αRAW when the whiteness test is used alone and when it is combined with the
F-test. More precisely, as suggested by Figure 4.24, small signi�cance levels are
adopted for RAW, thus increasing the probability to unfalsify at least a model
structure. In this way, the default selection of models of order 40 is signi�cantly
reduced, explaining the decrease previously noticed in the average of the chosen
orders (Table 4.7). The consecutive application of the F-test allows to re�ne the
"rough" order selection done by the whiteness test. Figure 4.24 also illustrates
that values of αF lower than 0.5 are more indicated for the F-test, otherwise
too complex models are chosen. The only exception in this sense is detected in
data set S2D1, where large values of αF are also indicated in order to favour
the selection of more complex models.

Whiteness and independence test on the residuals (RA)

The application of both the tests on the residuals for model order selection
has proved to be particularly e�ective on OE models. The addition of the
independence test allows a reduction of the undermodelling trend characterizing
RAW. However, performing the F-test after RA to compare model structures
of increasing complexities can further improve the performances achieved by
RA alone, as Table 4.8 proves. Again, the reduction noticed in the average of
the achieved �ts after the use of the F-test is due to the adoption of di�erent
signi�cance levels for RA.
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Figure 4.24: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the F-test is applied after the whiteness test on the resid-
uals (RAW) in order to evaluate model structures with increasing complexity.
The average is calculated from the identi�cation of 200 systems in each data set.

Average impulse response �t Average of the selected orders
Set RA RA + F (Up) RA RA + F (Up)

S1D1 92.4 93 6 5.4
S1D2 74.3 75.8 4.7 4.2
S2D1 85.1 85.5 10.7 10.7
S2D2 61.8 62.8 6.5 6.2

Table 4.8: OE models - Average impulse response �ts and average of the selected orders when
the F-test is applied after both whiteness and independence tests on the residuals
(RA) to perform model order selection in the identi�cation of 200 systems in each
data set.

The dependence between the average impulse response �ts and the signi�cance
levels adopted in the statistical tests is analogous to the one reported in Fig-
ure 4.24; therefore, the suggestions coming from Figure 4.9.(b) regarding the
signi�cance level to be used for RA are con�rmed by the trends seen in Figure
4.24.
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Independence test on the residuals (RAI1 and RAI2)

The analysis done in Section 4.1.4 has shown that the independence test on
the residuals leads to very good �ts when fast systems have to be identi�ed;
however, some di�culties have been detected when slow systems are estimated.
Therefore, it could be expected that RAI1 or RAI2 bene�t of their combination
with the F-test especially in S2D1 and S2D2. This is actually con�rmed by Table
4.9, which shows how the application of the F-test after the independence one
for the comparison of more complex model structures leads to a more relevant
increase in the performances obtained for the "slow" data sets. Again, the values
in Table 4.9 are achieved setting the signi�cance levels to the values leading to
the highest average impulse response �ts.

Average impulse response �t Average of the selected orders
Set RAI1 RAI2 RAI1 + F

(Up)
RAI2 + F

(Up)
RAI1 RAI2 RAI1 + F

(Up)
RAI2 + F

(Up)

S1D1 92.9 92.9 93 93.1 5.8 5.6 6.1 5.9
S1D2 76.6 76.3 76.6 76.5 3.7 3.9 3.8 3.8
S2D1 77.8 82.5 81.5 84.3 9.4 10.4 11 10.7
S2D2 57.8 58.6 60.8 60.4 4.3 5.3 4.4 4.5

Table 4.9: OE models - Average impulse response �ts and average of the selected orders when
the F-test is applied after the independence test on the residuals (RAI1 or RAI2)
to perform model order selection in the identi�cation of 200 systems in each data
set.

The dependence between the average impulse response �ts and the signi�cance
levels adopted in the tests is shown in Figure 4.25 for the second implementation
of the independence test here used, RAI2, but analogous plots can be observed
for RAI1. The fact that di�erent trends are noticed in the four data sets is a
consequence of the non-uniform trends noticed also in Figures 4.9.(c) and (d) for
the four data sets. It should be observed that the highest �ts in Figures 4.25 are
obtained setting the signi�cance level α of RAI2, αRAI2, to the values suggested
also by Figure 4.9.(d). For what regards the F-test instead, small values are
preferable, since there is no need to test too complex model structures. Again,
the exception is given by data set S2D1, for which complex model structures
are suitable.

Cross-validation

Figures 4.14, 4.16, 4.18 and 4.20 do not highlight a clear overmodelling or un-
dermodelling tendency for cross-validation; however, in the "slow" data sets
under�tting is more evident. This suggests the application of the F-test after
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Figure 4.25: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the F-test is applied after the independence test on the
residuals (RAI2) in order to evaluate model structures with increasing complex-
ity. The average is calculated from the identi�cation of 200 systems in each data
set.

cross-validation to compare model structures with increasing complexities.
Figure 4.26 shows the dependency between the average impulse response �ts
achievable thanks to this combination and the signi�cance level αF adopted
in the F-test. Small values of the signi�cance level are preferable, since when
αF is too high too complex model structures are selected. However, while for
S1D1 and S1D2 too large values of αF lead to a signi�cant decrease of the perfor-
mances previously achieved by cross-validation, S2D1 and S2D2 are less a�ected
by a wrong choice of αF . This is a consequence of the major undermodelling
tendency noticed in the "slow" data sets.

Table 4.10 contains the highest average impulse response �ts that are achiev-
able appropriately setting αF ; the values con�rm that the combination is more
e�ective on data sets S2D1 and S2D2.



4.1 Order estimation for OE models 75

.01 .1 .2 .3 .4 .5 .6 .7 .8 .9 .99
90

90.5

91

91.5

92

92.5

93
A

ve
ra

ge
 Im

pu
ls

e 
R

es
po

ns
e 

F
it

α
F

(a) S1D1.

.01 .1 .2 .3 .4 .5 .6 .7 .8 .9 .99
64

66

68

70

72

74

A
ve

ra
ge

 Im
pu

ls
e 

R
es

po
ns

e 
F

it

α
F

(b) S1D2.

.01 .1 .2 .3 .4 .5 .6 .7 .8 .9 .99
83

83.1

83.2

83.3

83.4

83.5

A
ve

ra
ge

 Im
pu

ls
e 

R
es

po
ns

e 
F

it

α
F

(c) S2D1.

.01 .1 .2 .3 .4 .5 .6 .7 .8 .9 .99
54

55

56

57

58

59

A
ve

ra
ge

 Im
pu

ls
e 

R
es

po
ns

e 
F

it

α
F

(d) S2D2.

Figure 4.26: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αF used in the F-test when it is applied after cross-validation
in order to evaluate model structures with increasing complexity. The average
is calculated from the identi�cation of 200 systems in each data set.

Average impulse response �t Average of the selected orders
Set CV CV + F (Up) CV CV + F (Up)

S1D1 92.4 92.7 7 7.4
S1D2 73.6 73.9 4.9 5.3
S2D1 79.5 83.5 11.1 12
S2D2 55.5 58.6 5.7 6.2

Table 4.10: OE models - Average impulse response �ts and average of the selected orders when
the F-test is applied after cross-validation to perform model order selection in the
identi�cation of 200 systems in each data set.

FPE and AIC

Both FPE and AIC present a marked over�tting tendency, which is bene�cial
only in data set S2D1. Therefore, the F-test could be exploited to evaluate
model structures of lower complexities with respect to the ones returned by the
two information criteria. However, when applied in this context, the F-test is
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not able to guarantee a signi�cant decrease of the selected orders, thus giving
no improvements in terms of �t.

BIC

When BIC criterion is combined with the F-test according to the way described
in Section 2.3.2, no signi�cant improvement can be observed in the average of
the achieved �ts. The only exception is given by data set S1D2, where BIC
encounters di�culties derived from over�tting; in this case, testing for simpler
models leads to a slight performances improvement.
The reason for which BIC does not bene�t from the successive application of
the F-test is probably the good matching that already exists between the orders
chosen by the oracle and by BIC. Therefore, the probability to accept di�erent
model structures is very low when the signi�cance level for the F-test is small.
On the other hand, when a large αF is adopted, the newly chosen models tend
to worsen the achieved �ts, because they deviate more from the oracle choices.

Conclusions

When the combination illustrated in Section 2.3.2 between a model order se-
lection method and the F-test is applied to estimate the complexities of OE
models, it still gives rise to improvements w.r.t. the �ts originally achieved ap-
plying only a model order selection procedure. The only exception has been
found with the information criteria, which do not bene�t from its combination
with the F-test.
When model structures of increasing complexities are evaluated by the F-test,
signi�cance levels lower than 0.5 should be used, since larger values lead to the
selection of too complex models.



Chapter 5

New model order selection

techniques: Kernel-based

model order selection

This chapter presents and tests a model order selection method which com-
bines the kernel-based approach for system identi�cation and the classical PEM
method.

A theoretical description of the kernel-based estimation is �rst given, followed by
the illustration of its combination with PEM. In section 5.2 these two techniques
are evaluated by applying them on the four data sets introduced in Section 3.1.
In addition, Sections 5.2.1 and 5.2.2 report the results achieved when the order
selection method introduced in this chapter is combined with the validation
methods and with the F-test.

5.1 Theoretical description

Preliminaries

Let us consider again the identi�cation of the system described in (1.1), given the
set of input-output data ZN � tup1q, yp1q, up2q, yp2q, ..., upNq, ypNqu. In this
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case we consider the estimation through a FIR model, i.e. no noise modelling
is performed (Hpq, θq � 1), while G0pqq is estimated through the �nite-order
polynomial Bpqq de�ned in (1.13), Gpq, θq � Bpqq. For simplicity, let us assume
that a one-sample delay exists in the dynamics from u to y, i.e. nk � 1 in (1.13).
Therefore, the model here adopted is given by

yptq � Gpq, θquptq � eptq � Bpqquptq � eptq (5.1)

with Ereptqs � 0 and Ereptqepsqs � σ2δt,s.
As observed in Section 1.1, the one-step ahead predictor for a FIR model can
be represented by a linear regression model,pypt|θq � Gpq, θquptq � ϕptqT θ
with the vector of regressors given by

ϕptq � �
upt� 1q upt� 2q � � � upt� nbq

�T
and the parameter vector θ containing the coe�cients of the polynomial Bpqq,
or equivalently, the �rst nb impulse response coe�cients:

θ � �
b1 b2 � � � bnb

�T
(5.2)

Therefore, assuming that the loss function VN pθ, ZN q takes the form (1.22), the
minimization problem (1.5) admits the least-squares solution (1.23).
The estimation (1.23) is applicable when the data ZN are "pre-windowed"
adding nb zeros such that the regressors vectors tϕptq, t � 1, ..., nbu can be
formed. As an alternative, the summation in the loss function (1.22) can be
de�ned starting from t � nb� 1, leading to the following least-squares solution,
that will be here adopted:

pθLSN �
�

1

N

Ņ

t�nb�1

ϕptqϕptqT
��1

1

N

Ņ

t�nb�1

ϕptqyptq (5.3)

For ease of notation, let us pass to the matrix formulation, by de�ning

YN � �
ypnb � 1q ypnb � 2q � � � ypNq �T

ΦN � �
ϕpnb � 1q ϕpnb � 2q � � � ϕpNq �

(5.4)

Thus, we can write pθLSN � pΦNΦTN q�1ΦNYN � R�1
N FN (5.5)

with

RN � ΦNΦTN �
Ņ

t�nb�1

ϕptqϕptqT (5.6)

FN � ΦNYN �
Ņ

t�nb�1

ϕptqyptq (5.7)
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Bayesian linear regression

When estimation is done in a Bayesian setting, the parameter to be estimated is
considered as a random variable, for which a prior distribution is known; given
the available data, its posterior distribution is then estimated.

According to this procedure, let us assume that the vector θ de�ned in (5.2) is
a Gaussian distributed random variable,

θ P N pθap, Pnbq (5.8)

where the mean θap and the covariance matrix Pnb should contain the a-priori
knowledge of the parameter vector. θap is usually set to 0 (θap � 0), while
di�erent choices can be done for Pnb , as will be illustrated in the following.
Moreover, assume that the noise eptq is independently Gaussian distributed, i.e.
eptq P N p0, σ2q. De�ning

ΛN � �
epnb � 1q epnb � 2q � � � epNq �T

(5.9)

we can express the model (5.1) through a matrix formulation:

YN � ΦTNθ � ΛN , ΛN P N p0N�nb�1, σ
2IN�nbq (5.10)

with
YN P N �

0N�nb�1,Φ
T
NPnbΦN � σ2IN�nb

�
(5.11)

in view of (5.8). Therefore, YN and θ are jointly Gaussian random variables,�
θ
YN

�
P N

��
0nb�1

0N�nb�1

�
,

�
Pnb PnbΦN

ΦTNPnb ΦTNPnbΦN � σ2IN�nb

�

(5.12)

The posterior distribution of θ can then be determined by conditioning θ on YN ,

θ|YN P N
�pθapostN , P apostN

	
(5.13)

withpθapostN � 0nb�1 � PnbΦN
�
ΦTNPnbΦN � σ2IN�nb

��1 pYN � 0N�nb�1q(5.14)
� �

PnbΦNΦTN � σ2Inb
��1

PnbΦnYN

� �
RN � σ2P�1

nb

��1
FN (5.15)

P apostN � Pnb � PnbΦN
�
ΦTNPnbΦN � σ2IN�nb

��1
ΦTNPnb (5.16)

where RN and FN are respectively de�ned in (5.6) and (5.7). Expressions (5.14)
and (5.16) are directly derived from the classical result relative to conditioned
jointly Gaussian variables.
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The computation of pθapostN and P apostN requires the de�nition of Pnb . When
the a-priori knowledge does not allow to precisely de�ne Pnb , an estimation is
made possible by the Bayesian setting, exploiting the so-called empirical Bayes
methods. Namely, assume that Pnb depend on an unknown hyper-parameter
vector β; from (5.11) we have

YN P N �
0N�nb�1,Φ

T
NPnbpβqΦN � σ2IN�nb

�
(5.17)

Therefore, β can be estimated by maximum likelihood, i.e. maximizing the
likelihood function of the observations YN given β:pβ � arg min

β
Y TN Σpβq�1YN � log det Σpβq (5.18)

with Σpβq � ΦTNPnbpβqΦN � σ2IN�nb . The noise variance σ
2 can be estimated

by including it in the vector β or as the sample variance of an estimated high-
order FIR model.

Choice of the kernel

As previously illustrated, Pnb can be formulated as function of some hyper-
parameters which are then estimated by maximum-likelihood. The problem
that still remains open is the way in which Pnb is de�ned. In the following, two
connections between the Bayesian regression and other estimation approaches
will be presented, thus providing further insight on the formulation of Pnb .

A �rst result is that the a-posteriori estimate pθapostN coincides with the solution

of a regularized least-squares problem, pθregN , with a speci�c choice of the reg-
ularization matrix. Indeed, when regularization is applied, the parameters are
estimated by minimizing the function

V regN pθ, Lq �
Ņ

t�nb�1

�
yptq � ϕptqT θ�2 � θTLθ (5.19)

where L is the so-called regularization matrix, i.e. a positive semi-de�nite matrix
which acts as a penalty term on the parameter complexity. L determines the
amount of shrinkage (towards zero) that is imposed on the elements of the
parameter vector. In this case, the estimate becomespθregN � pRN � Lq�1

FN (5.20)

� pRN � Lq�1
RN pθLSN (5.21)

where again RN and FN are de�ned in (5.6) and (5.7), while pθLSN is given in
(5.5). Comparing equations (5.15) and (5.20) it is clear that they coincide if

L � σ2P�1
nb

(5.22)
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This connection between the regularized estimation and the Bayesian regression
gives an insight on how to choose both the regularization matrix L and the a-
priori covariance matrix Pnb . Indeed, on the one hand the elements of L should
be chosen according to the degree of shrinkage which is desired for the elements
of the parameter vector θ; for simplicity, L is usually a diagonal matrix. On the
other hand, Pnb should incorporate the a-priori knowledge about the correlation
among the elements of θ, i.e. among the impulse response coe�cients in the
application here considered.

Exploiting the relation between the two cited estimation approaches, three types
of formulations for Pnb are introduced in [2].
In particular, starting from the de�nition of the regularization matrix L, a
possible choice for it can be done in order to minimize the mean square error

MSEppθregN q � E

��pθregN � θ0

	�pθregN � θ0

	T�
(5.23)

assuming that the true system is described by a FIR model of order nb. Let us
keep this assumption and also suppose that for large N there exists a certain
µ ¡ 0, such that

1

N � nb
RN � µInb (5.24)

Adopting a diagonal matrix L, L � diagpl1, l2, ..., lnbq, the pk, kq-th element of

MSEppθregN q becomes

MSEppbregk q � σ2µpN � nbq � l2kpb0kq2
rµpN � nbq � lks2

(5.25)

where b0k indicates the true k-th impulse response coe�cient. The minimizer

of MSEppbregk q w.r.t lk is given by lk � σ2

pb0kq
2 . Furthermore, assuming that the

system is stable and indicating with λ the absolute value of the dominant pole
of the true system, there exists a c ¡ 0 such that |b0k|   cλk. Therefore, the
diagonal of L should face an exponential increase:

lk �
� σ

cλk

	2

, k � 1, ..., nb (5.26)

In [2], these considerations are directly exploited for the formulation of Pnb ,
leading to the following diagonal covariance matrix:

PDI � diagpp1, p2, ..., pnbq, pk � cλk (5.27)

with c ¥ 0 and 0 ¤ λ ¤ 1 being the hyper-parameters estimated by means of
(5.18).



82
New model order selection techniques: Kernel-based model order

selection

Moreover, assuming a smooth impulse response, a formulation of the non-
diagonal elements of Pnb is also given. Namely, the highest correlations should
be present in the diagonals close to the main one. Thus, a possible choice for
Pnb can be the following:

PDCpk, jq � cρ|k�j|λ
k�j
2 (5.28)

with c ¥ 0, 0 ¤ λ ¤ 1 and |ρ| ¤ 1 being hyper-parameters to be estimated. In
(5.28) the term ρ|k�j| gives rise to larger values for the elements close to the main

diagonal, while the term cλ
k�j
2 allows to include the previous considerations

done for the diagonal of L.
Imposing the relation ρ � λ

1
2 , a third formulation of Pnb is derived:

PTCpk, jq � cminpλk, λjq (5.29)

A second connection can be established between the Bayesian regression pre-
viously illustrated and the Gaussian process regression (GPR). Namely, the
estimates (5.14) and (5.16) coincide with the Gaussian process estimate of any
collection of impulse response coe�cients.
GPR is applied to infer a certain function fpxq from a set of measurements
tyk, k � 1, ..., Nu. The name of the method comes from the fact that the func-
tion fpxq is a-priori modelled as a Gaussian process with a certain mean and
covariance function, which is called kernel in this context. The posterior distri-
bution of fpxq given the measurements tyk, k � 1, ..., Nu can be then computed
using the rules for conditioning jointly Gaussian random variables.
In [10], GPR is exploited to infer the impulse response of a stable linear sys-
tem: the �rst nb coe�cients of the impulse response are modeled as a Gaussian
process, as was done in (5.8) for the Bayesian linear regression. Given the obser-
vations YN , the posterior distribution of the impulse response is then computed
as was done in (5.14) and (5.16).
The application of GPR requires also the choice of the kernel Pnb , from which
the name of the method here described comes. Thanks to the analogy between
the kernel in GPR and the a-priori covariance matrix in the Bayesian regression,
the formulations previously given for Pnb can be adopted also in the GPR set-
ting. However, in GPR other choices are possible. In [10] three possible kernels
are considered, starting from the common "cubic spline" kernel

PCSpk, jq �

$'&'%
ck

2

2

�
j � k

3

�
, k ¥ j

c j
2

2

�
k � j

3

�
, k   j

(5.30)
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which can be modi�ed into the so-called "stable spline" kernel

PSSpk, jq �

$''&''%
c e

�2νk

2

�
e�νj � e�νk

3

	
, k ¥ j

c e
�2νj

2

�
e�νk � e�νj

3

	
, k   j

(5.31)

Finally, a Gaussian kernel is also discussed [11]:

PSEpk, jq � ce�
pk�jq2

2λ2 (5.32)

In the previous equations c ¥ 0, 0 ¤ λ ¤ 1 and ν ¡ 0 act as hyper-parameters
that are estimated using (5.18).

Connection with PEM methods

When the kernel-based method previously described is applied for system iden-
ti�cation, the value of nb is set quite large, since a complexity reduction is then
guaranteed by the regularization imposed by the matrix σ2P�1

nb
. Therefore, this

method does not require to the user a speci�c model order selection, because
it is implicitly done by regularization. The order selection technique which is
introduced in [3] exploits this property in order to determine the optimal com-
plexity of models estimated by PEM.
Assume that a set of possible models md � MppθN pdqq estimated by (1.5) is

given, where d represents the complexity, i.e. d � dim pθN pdq. Furthermore,

let pGd and pGKB indicate the set of the �rst n impulse response coe�cients of
the model md and of the model mKB estimated by kernel-based regularization,
respectively. The optimal complexity d� can then be selected as the one which
maximizes the impulse response �t between md and mKB :

d� � arg max
d
Fp pGKB , pGdq (5.33)

F represents the function de�ned in (3.1), with G0 and pG replaced by pGKB andpGd, respectively.
For easiness of notation, the model order selection criterion de�ned by (5.33)
will be denoted by KB+PEM in the following. This notation refers to the use
of a generic kernel in the Bayesian estimation.

5.2 Experimental results

The order selection method described in the previous section is now applied on
the data sets introduced in Section 3.1. As usual, 200 systems are identi�ed in
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each of the four data sets. The covariance matrices PTC and PDC are consid-
ered in the tests, since they give rise to the best results, according to the tests
performed in [2].

In the following the abbreviations TC and DC will denote the system iden-
ti�cation performed using the kernel-based estimation with Pnb � PTC and
Pnb � PDC , respectively. FIR models are estimated by this procedure. Fur-
thermore, TC+PEM and DC+PEM will indicate the combination of the two
kernel-based estimation methods with PEM, which leads to the complexity se-
lection de�ned in (5.33) and to the estimation of OE models. As previously
done, these are estimated by means of the routine pem without noise modelling.

Figure 5.1 shows the average values of Fp pGKB , pGdq computed using OE models
with orders ranging from 1 to 40, i.e. for d ranging from 2 to 80. The similarity
between the plots in Figures 5.1 and 4.1.(a) proves the consistency of the order
selection method arising from the combination of kernel-based estimation and
PEM. Indeed, this proves that the maximization problem formulated in (5.33)
leads to the selection of model complexities which maximize also the impulse
response �t computed w.r.t. the true system (de�ned in (3.1)).
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Figure 5.1: Average values of Fp pGKB , pGdq for d going from 2 to 80, when 200 systems in each
data set are identi�ed.

Tables 5.1, 5.2 and 5.3 respectively illustrate the average impulse response �ts,
type 1 and type 2 prediction �ts achieved by the evaluated identi�cation meth-
ods. In addition, Figures 5.2 and 5.3 contain the box plots of the impulse
response �ts and of the type 2 prediction ones, respectively.
Table 5.1 shows how the combination with PEM gives rise to an improvement
of the impulse response �t achieved by kernel-based estimation methods in the
less-noisy data sets S1D1 and S2D1. However, in the noisy data set S2D2 the
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Set TC TC + PEM DC DC + PEM

S1D1 91.4 91.9 91.7 92.3
S1D2 76 76.3 76.5 75.8
S2D1 80 83.5 80.2 83.7
S2D2 64.9 62.1 65.3 62

Table 5.1: Average impulse response �ts achieved by the kernel-based estimation methods
using PTC and PDC and by their combination with PEM procedures when 200
systems are identi�ed in each data set.

Set TC TC + PEM DC DC + PEM

S1D1 93.1 92.6 93.4 93
S1D2 80.9 78.2 81.6 77.7
S2D1 84.1 86.9 84.4 87.2
S2D2 76 71.1 76.6 70.8

Table 5.2: Average type 1 prediction �ts achieved by the kernel-based estimation methods
using PTC and PDC and by their combination with PEM procedures when 200
systems are identi�ed in each data set.

Set TC TC + PEM DC DC + PEM

S1D1 92.8 92.3 93.1 92.8
S1D2 80.2 77.6 80.8 77
S2D1 81.6 83.8 81.8 84.3
S2D2 71.4 67 72 66.4

Table 5.3: Average type 2 prediction �ts achieved by the kernel-based estimation methods
using PTC and PDC and by their combination with PEM procedures when 200
systems are identi�ed in each data set.

combination leads to a decrease of the average �t w.r.t. the one achieved using
only kernel-based methods adopting TC and DC kernels. The same result is
detected also in data set S1D2 when a DC kernel is used.

Comparing the performances achieved by kernel-based methods alone with the
two types of kernel, the DC one generally leads to better �ts than the TC one.
The higher number of degrees of freedom that the DC formulation of Pnb allows
is probably helpful in this sense. On the other hand, comparing the average
�ts reported in Table 5.1 in columns TC+PEM and DC+PEM and the �ts
achieved by the classical order selection methods with OE models (Table 4.2),
the combination described in this section beats the classical procedures in noisy
data sets S1D2 and S2D2, while the opposite situation is detected in S1D1 and
S2D1. The regularized estimation performed by kernel-based methods is prob-
ably bene�cial when a relevant measurement noise is present in the data. This
behaviour also partially explains the reduced impulse response �ts achievable
when the kernel-based methods are combined with PEM procedures in data set
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Figure 5.2: Box plots of the impulse response �ts achieved by the kernel-based estimation
methods using PTC and PDC and by their combination with PEM procedures
when 200 systems are identi�ed in each data set.

S2D2. Indeed, the �ts achieved by the oracle for OE models in that set are
lower than the ones obtained by the kernel methods alone for almost half of the
identi�ed systems. The percentage of systems for which this result is found sig-
ni�cantly decreases in the less-noisy data sets, while it is around 25% in S1D2.
In these cases, even if the optimal complexity is chosen for OE models, they do
not allow to reach the performances achievable with kernel-based methods.
The good behaviour observed in the noisy data sets for the technique here tested
is also con�rmed by the histograms in Figure 5.4: the di�erences between the
orders chosen by the oracle for OE models and the corresponding orders se-
lected by TC+PEM and DC+PEM are much more centered around 0 in data
sets S1D2 and S2D2 than in S1D1 and S2D1. Actually, in the latter data sets
an overmodelling tendency is much more noticeable than in the noisy sets. This
overmodelling trend, which is present also in the noisy sets, is the other cause of
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Figure 5.3: Box plots of the type 2 prediction �ts achieved by the kernel-based estimation
methods using PTC and PDC and by their combination with PEM procedures
when 200 systems are identi�ed in each data set.

the performances worsening detected in S2D2 after the combination with PEM.

Inspecting the prediction �ts in Tables 5.2 and 5.3, it is clear how the models
estimated by kernel-based methods are more suitable for prediction than the OE
models estimated using PEM. Again, the regularization performed by means of
a speci�c kernel is probably bene�cial for prediction. An opposite result is de-
tected only in data set S2D1, since the overmodelling tendency characterizing
TC+PEM and DC+PEM is bene�cial. Indeed, complex OE models allow to
better reproduce the slow dymanics of the systems present in that data set, as
it is proved by the substantial improvement reached by the impulse response
�t after the combination of kernel-based methods with PEM. The better re-
production of the system dynamics favours also the good performances of the
estimated model in terms of prediction.
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Figure 5.4: Histograms of the orders selected by the combination of kernel-based estimation
methods (with TC and DC kernels) with PEM (TC+PEM, DC+PEM). The his-
tograms of the di�erences w.r.t. to the oracle choices are also shown.

In addition, it should be pointed out that the outliers appearing in the box
plots of the impulse response �ts in Figures 5.2.(c) and (d) refer to particular
systems, which have all zero and poles concentrated in a very small region
close to the unit circle. Thus, a proper identi�cation of these systems appear
particularly di�cult; however, the box plots in Figures 5.3.(c) and (d) prove that
the corresponding estimated models don't give so bad performances in terms of
prediction, when inputs with the same properties of the estimation ones are
adopted.

The following sections will present the results achieved when the methods TC+PEM
and DC+PEM are combined with the validation methods or with the F-test,
according to the ways described in Section 2.3.
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5.2.1 Combination with the validation methods

In this context the validation methods are applied, using only estimation data,
on the model structure returned by TC+PEM or DC+PEM: if it does not pass
the considered test on the residuals, new complexities are evaluated, starting
from the one leading to the second best value of Fp pGKB , pGdq and then following
the complexities order de�ned by the maximization problem (5.33). The �rst
of these newly chosen model structures which passes the statistical test on the
residuals is then de�nitively selected.
Notice that the combination here analyzed is analogous to the one introduced
in Section 2.3.1, with comparison methods replaced by KB+PEM.
Let us also recall that the value ofM used in the statistical tests on the residuals
(see (2.7) and (2.19)) is again set to nb � 20, with nb being the order of the OE
model estimated by the routine pem without noise modelling.

Average impulse response �t Average of the selected orders
Set TC +

PEM
+

RAW
+
RA

+
RAI1

+
RAI2

TC +
PEM

+
RAW

+
RA

+
RAI1

+
RAI2

S1D1 91.9 91.9 91.9 91.9 91.9 12.5 12.4 12.4 12.5 12.6
S1D2 76.3 76.1 76.2 76.4 76.4 6.9 6.9 6.9 6.9 7
S2D1 83.5 84.5 84.4 83.5 83.5 20 19.2 19.4 20 20
S2D2 62.1 62.5 62.7 62.6 62.5 8.3 9.2 9.3 8.7 8.7

Table 5.4: Average impulse response �ts and average of the selected orders when validation
methods are combined with TC+PEM for model order selection in the identi�ca-
tion of 200 systems in each data set.

Average impulse response �t Average of the selected orders
Set DC +

PEM
+

RAW
+
RA

+
RAI1

+
RAI2

DC +
PEM

+
RAW

+
RA

+
RAI1

+
RAI2

S1D1 92.3 92.3 92.3 92.3 92.3 11.4 11.3 11.3 11.4 11.4
S1D2 75.8 75.6 75.6 75.8 75.8 7 7.1 7.1 7 7.2
S2D1 83.7 84.7 84.7 83.7 83.7 19.2 19.3 19.3 19.2 19.2
S2D2 62 62 62.1 62.2 62.2 9.1 9.8 9.9 9.2 9.2

Table 5.5: Average impulse response �ts and average of the selected orders when validation
methods are combined with DC+PEM for model order selection in the identi�ca-
tion of 200 systems in each data set.

Tables 5.4 and 5.5 respectively show the average impulse response �ts achieved
by TC+PEM and DC+PEM with the combination just described. It is clear
that the combination is not helpful in the "fast" data sets S1D1 and S1D2,
while it leads to improvements in the impulse response �t in the "slow" sets.
The combination is particularly helpful in data set S2D2, in order to alleviate
the performance worsening which is detected with TC+PEM and DC+PEM
w.r.t. the �ts achieved by kernel-based methods alone.
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Among the tests on the residuals, the use of both the whiteness and the indepen-
dence tests (RA) gives rise to the best performances in S2D1 and S2D2, but it
also leads to a slight decrease of the average impulse response �t in S1D2 w.r.t.
the ones originally achieved by TC+PEM and DC+PEM. The application of the
independence test (RAI1 or RAI2) in this context appears more robust, since it
does not worsen the performances of TC+PEM and DC+PEM, even if it does
not improve their �ts in S2D1. The reason of this behaviour is the minor im-
pact brought by this test on the previous choices of DC+PEM and TC+PEM:
indeed, the test for the independence of the residuals from past inputs unfalsi-
�es a very large percentage of the estimated model structures, leading to very
rare selections of di�erent complexities. This property is bene�cial in the noisy
data sets, where the similarity between the plots in Figure 5.1 and in Figure
4.1.(a) proves that substantial modi�cations of the complexity choices done by
TC+PEM and DC+PEM would also deteriorate the impulse response �t. This
observation is in particular true for data set S1D2, since the range of complexi-
ties which give rise to the best impulse response �ts is very narrow, even w.r.t.
the one observed in S2D2.
Di�erent considerations hold when both the tests on the residuals (RA) are
applied after TC+PEM and DC+PEM: the probability that RA unfalsi�es the
model structures that they return is much lower and this in turn increases the
percentage of changes in the complexities originally selected. This explains both
the performances worsening observed in S1D2 and the improvement achieved in
S2D1, where the overmodelling tendency of TC+PEM and DC+PEM is very
signi�cant (see Figure 5.4).

As was previously done in Section 4.1.5, the impact of the signi�cance level
adopted in the tests on the residuals is again investigated. The plots in Fig-
ure 5.5 show the average impulse response �ts achieved by the combination of
TC+PEM with the independence test on the residuals (RAI2), as function of
the signi�cance level αRAI2 adopted in the test. The plots indicate that small
values of αRAI2 are more bene�cial, since they lead to very few changes in the
complexity choices already done by TC+PEM. Moreover, when αRAI2 is lower
than 0.5, this technique appears quite robust w.r.t. the choice of the signi�cance
level. The same result is not detected when TC+PEM is combined with RA:
indeed, in this case, values of αRA larger than 0.05 lead to a more considerable
worsening of the average impulse response �t. This is a consequence of the large
percentage of changes in the complexities returned by TC+PEM. Therefore,
when RA is applied in this context, very small values of the signi�cance level
are suggested.
The considerations here done hold also for DC+PEM.
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Figure 5.5: OE models - Average impulse response �ts achieved for di�erent values of the sig-
ni�cance level αRAI2 when the independence test on residuals (RAI2) is combined
with TC+PEM for model order selection in the identi�cation of 200 systems in
each data set.

5.2.2 Combination with the F-test

The application of the F-test according to the way illustrated in Section 2.3.2
is tested also with the order selection technique here introduced. Figure 5.4
clearly shows how the two methods denoted by TC+PEM and DC+PEM tend
to overmodel, as it is proved by the histograms relative to the di�erences between
the orders chosen by the oracle and by these procedures. Therefore, the F-
test could be helpful for the evaluation of model structures with decreasing
complexity. Tables 5.6 and 5.7 show that the application of the F-test for testing
model structures of lower complexities w.r.t. the ones returned by TC+PEM
and DC+PEM leads to a decrease of the average impulse response �t in the
"fast" data sets S1D1 and S1D2 but to an increase in S2D1 and S2D2.

The substantial decrease detected in S1D2 is again explicable by the narrow
range of orders which are suitable to properly reproduce the true systems in
this data set. In addition, Figure 5.1 proves that the choices done by the meth-



92
New model order selection techniques: Kernel-based model order

selection

Average impulse response �t Average of the selected orders
Set TC + PEM + F (Down) TC + PEM + F (Down)

S1D1 91.9 91.5 12.5 10.3
S1D2 76.3 75.1 6.9 6.7
S2D1 83.5 83.8 20 18.8
S2D2 62.1 63.5 8.3 7.2

Table 5.6: Average impulse response �ts and average of the selected orders when the F-test is
applied after TC+PEM in order to perform model order selection in the identi�-
cation of 200 systems in each data set.

Average impulse response �t Average of the selected orders
Set DC + PEM + F (Down) DC + PEM + F (Down)

S1D1 92.3 92 11.4 9.3
S1D2 75.8 74.6 7 6.8
S2D1 83.7 84.1 19.2 18.1
S2D2 62 62.6 9.1 8

Table 5.7: Average impulse response �ts and average of the selected orders when the F-test is
applied after DC+PEM in order to perform model order selection in the identi�-
cation of 200 systems in each data set.

ods TC+PEM and DC+PEM in S1D2 are already consistent. Therefore, only
small modi�cations of the complexities returned by these two methods could be
bene�cial. This purpose can be achieved by adopting a large signi�cance level
αF for the F-test, which makes less probable the selection of lower orders w.r.t.
the ones originally returned by TC+PEM and DC+PEM. Figure 5.6 con�rms
this consideration, showing that very large values of αF lead to the highest av-
erage impulse response �t in S1D2, when the F-test is applied after TC+PEM.
However, even setting αF � 0.99, the combination with the F-test will choose
simpler model structures w.r.t. the ones returned by TC+PEM, whenever the
latter ones coincide with a local minimum. This explains the performance wors-
ening detected in S1D2 after the combination of the F-test with TC+PEM.
Analogous considerations hold for DC+PEM.

Further investigating the plots in Figure 5.6, it is clear that small values of αF
give rise to the highest average impulse response �ts in data sets S1D1, S2D1
and S2D2. Indeed, with this choice of αF the modi�cations of the complexi-
ties returned by TC+PEM are favoured in order to alleviate the overmodelling
tendency observed in the less noisy data sets S1D1 and S2D1 and to re�ne the
choices done in S2D2 by TC+PEM.
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Figure 5.6: OE models - Average impulse response �ts achieved for di�erent values of the sig-
ni�cance level αF when the F-test is applied after TC+PEM in order to evaluate
model structures with decreasing complexity. The average is calculated from the
identi�cation of 200 systems in each data set.

5.2.3 Conclusions

The results illustrated in this section have shown how the kernel-based esti-
mation is very e�ective when noisy measurement data are available. In some
cases, neither the optimal complexity choice for an OE model can beat a regu-
larized FIR model in the reproduction of the true system. The combination of
the kernel-based estimation with the classical PEM (KB+PEM) appears bene-
�cial when the measurement data are almost noiseless, even if it is a�ected by
overmodelling, when compared with the optimal choices. Moreover, when the
order selection technique introduced in this chapter and denoted by KB+PEM
is equipped with a test on the residuals or with the F-test, a slight performances
improvement is detected in the "slow" data sets, w.r.t. the results achieved by
KB+PEM alone. It is worth to observe that the main enhancement is obtained
in data set S2D2, where PEM has proved to be less e�ective than the kernel-
based estimation.





Chapter 6

New model order selection

techniques: PUMS -

Parsimonious Unfalsi�ed

Model Structure Selection

This chapter illustrates and tests a new model order selection procedure, that
has been introduced in [5].
A theoretical description of the method is given in Section 6.1. The technique is
then applied on the four data sets presented in Section 3.1 and its performances
are analyzed in Section 6.2.3. PUMS is also combined with the validation meth-
ods and the F-test, following procedures analogous to the ones illustrated in
Section 2.3. The performances of these combinations are respectively presented
in Sections 6.2.4 and 6.2.5. An equipment of PUMS with another test is also
considered in Section 6.2.6. Finally, in Section 6.2.7 a di�erent initialization
of the MATLAB routine pem is illustrated and the corresponding results are
presented.
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Unfalsi�ed Model Structure Selection

6.1 Theoretical description

Given the measurement data ZN � tuptq, yptq, t � 1, ..., Nu, let us assume that
the output data typtq, t � 1, ..., Nu can be expressed through a linear regression
model:

yptq � ϕptqT g0 � eptq (6.1)

where ϕptq P Rd is a known regressors vector, g0 P Rd is the unknown parameter
vector and eptq P N p0, σ2q is white additive noise, independent from ϕptq. To
simplify the notation, let us pass to a matrix formulation. Namely, de�ning

YN � ryp1q � � � ypNqsT (6.2)

ΦN � rϕp1q � � � ϕpNqs (6.3)

ΛN � rep1q � � � epNqsT , ΛN P N p0N�1, σ
2IN q (6.4)

where IN denotes the N -dimensional identity matrix, we can write

YN � ΦTNg0 � ΛN (6.5)

Using the maximum likelihood approach (ML), g0 can be estimated as

pgML
N � arg min

g
JMLpgq (6.6)

where
JMLpgq �

�
YN � ΦTNg

�T �
YN � ΦTNg

�
(6.7)

It is well known that pgML
N coincides with the least-squares estimate pgLSN :

pgML
N � pgLSN � �

ΦNΦTN
��1

ΦNYN (6.8)

� g0 �
�
ΦNΦTN

��1
ΦNΛN (6.9)

pgML
N represents the unstructured estimate of g0, since no model structure has
been speci�ed yet. In particular, assuming that the data are "pre-windowed"
or that the input data tup�nk � d� 2q, ..., up1� nkqu are known, then ϕptq can
be de�ned as

ϕptq � �
upt� nkq . . . upt� nk � d� 1q �T

, t � 1, ..., N (6.10)

with nk being the input-output delay of the true system. When the regressors
ϕptq, t � 1, ..., N , are formulated as in (6.10), pgML

N represents a FIR model
estimate. However, pgML

N is here referred to as an unstructured estimate of
g0, since d is assumed to be large enough to describe the non-trivial impulse
response of the true system.
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Let us now consider the structured estimation, in which a model structure �M is
de�ned as a twice continuously di�erentiable mapping of the parameter vector
θ into a model set Ξ

�M:

Ξ
�M �

!
g : g � �Mpθq, θ P D

�M � Rd�M
)

(6.11)

Di�erently from the de�nition given in (1.9), let us consider �M simply a trans-

formation of the parameter vector θ: thus, �Mpθq is a vector containing the
coe�cients of the predictor polynomials Wupq, θq and Wypq, θq. Further as-

suming that �M is an invertible function, this observation allows us to directly
include g in the ML criterion:

JMLpgq �
�
YN � ΦTNg

�T �
YN � ΦTNg

�
(6.12)

The structured ML estimate of g0 is thus given by

pgML
N, �M � arg min

g
JMLpgq

s.t. g P Ξ
�M (6.13)

Notice that pgML
N � pgML

N, �M
if pgML

N P Ξ
�M.

To be clearer, some examples are discussed. For instance, when FIR models of
order nb � d

�M   d have to be speci�ed, the mapping �M becomes

�MFIR : Rd�M Ñ Rd

θ ÞÑ g (6.14)

with

θ � �
b1 � � � bnb

�T
(6.15)

g � �
b1 � � � bnb 0 � � � 0

�T
(6.16)

An analogous formulation of �M can be given also for OE models of order nb �
nf � d

�M
2 . Namely, let θ P Rd�M , d

�M   d, contain the coe�cients of the
frequency response,

θ � �
f1 � � � fnf b1 � � � bnb

�T
(6.17)

then �M can be de�ned as

�MOE : Rd�M Ñ Rd

θ ÞÑ g � �
g1 � � � gd

�T
(6.18)
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with

gk � 1

2π

» π
�π

b1e
�jω � � � � � bnbe

�jnbω

1� f1e�jω � � � � � fnf e
�jnfω

eiωkdω k � 1, ..., d (6.19)

Let us consider again the unstructured ML estimate pgML
N . Since it coincides

with the least-squares estimate pgLSN , it is unbiased, i.e.:

E
�pgML
N

� � E
�pgLSN � � E

�
g0 � pΦNΦTN q�1ΦNΛN

� � g0 (6.20)

Therefore, pgML
N , together with the noise variance estimate

pσ2 � 1

N � d

�
YN � ΦTNpgML

N

�T �
YN � ΦTNpgML

N

�
(6.21)

is a su�cient statistic for
 
g0, σ

2
(
. Hence, the structured ML estimate of g0

based on
 pgML
N , pσ2

(
will have the same statistical properties as pgML

N, �M
. Such ML

estimate is given by

pgMR
N, �M � arg min

g
JMRpgq

s.t. g P Ξ
�M (6.22)

where
JMRpgq �

�pgML
N � g

�T
ΦNΦTN

�pgML
N � g

�
(6.23)

Notice that the problem (6.22) can be viewed as a model reduction problem in
which the unstructured estimate pgML

N is projected onto the set Ξ
�M. Moreover,

de�ning pYN � ΦTNpgML
N , we can rewrite JMRpgq as

JMRpgq � ppYN � ΦTNgqT ppYN � ΦTNgq (6.24)

i.e. as a ML criterion in which the original measurement vector YN is replaced
by the estimated one pYN .
Using (6.9), JMRpgq can be also rewritten in the following way:

JMRpgq � pg0 � gqTΦNΦTN pg0 � gq � 2ΛTNΦTN pg0 � gq �
� ΛTNΦTN

�
ΦNΦTN

��1
ΦNΛN (6.25)

� JMLpgq �WT
NWN (6.26)

with
WN �

�
IN � ΦTN

�
ΦNΦTN

��1
ΦN

	
ΛN (6.27)

Therefore, JMRpgq and JMLpgq have the same optima, meaning that pgML
N, �M

�pgMR
N, �M

. For ease of notation, both the estimates will be denoted as pg �MN in the

following.
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The previous considerations about the structured estimation refer to the case
in which a model structure �M is �xed. However, in a model structure selection
setting, model structures of di�erent complexities are de�ned and a criterion
is adopted to discriminate among them. In this context, the use of the ML
criterion !pd

�M, pg �MN )
� arg min

d
�M,g

JMLpgq

s.t. g P Ξ
�M (6.28)

is generally not bene�cial. Indeed, if for example the least-squares estimatepgLSN � pgML
N P Ξ

�M for some d
�M, then pgLSN will be always selected by the ML

criterion. However, this is usually not a good choice, because of the high variance
which characterizes the least-squares estimate.

In view of the previous consideration, di�erent approaches should be considered
for model order selection. For this reason, notice that the following expression,
obtained inserting (6.8) in (6.23),

JMRpgq � �
YN � ΦTNg

�T
ΦTN

�
ΦNΦTN

��1
ΦN

�
YN � ΦTNg

�
(6.29)

� EpgqTΦTN
�
ΦNΦTN

��1
ΦNEpgq (6.30)

suggests to use JMRppg �MN q as a test statistic. Indeed the vector ΦNEppg �MN q con-
tains the sample correlations between the regressors in ΦN and the residuals in

Eppg �MN q computed for di�erent lags.
In particular, when the regressors ϕptq are de�ned as in (6.10), then

ΦNEppg �MN q �
?
NrN,Mεu , M1 � 1, M2 � d, M � d (6.31)

Moreover, if the residuals are white with unit variance, then ΦNΦTN � NPεu

with the formulation of Pεu given in (2.15) and JMRppg �MN q � xN,Mεu (with xN,Mεu

de�ned in (2.18)). Therefore, JMRppg �MN q can be used as a test statistic for
assessing the independence between the residuals and the input signal, i.e. to
evaluate if traces of the input signal are still present in the residuals. For this

purpose, the statistical properties of JMRppg �MN q have to be established under
the assumption that the true system can be described by the speci�ed model

structure. To check whether JMRppg �MN q is consistent with these properties, a

statistical test is performed. If a model pg �MN passes the test, the corresponding

model structure �M is unfalsi�ed.

Let us derive the statistical properties of JMRppg �MN q for the model structure�MFIR de�ned in (6.14). The same properties can be derived also for rational
models, using parametrization in (6.17) and (6.18).
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Assume that the true system S is given by a FIR model of order d
�M, i.e.

S � g0 P Ξ
�M; then, there exists a θ0 P Rd�M such that �MFIRpθ0q � g0. In the

following we omit the superscript FIR, �MFIR � �M, to simplify the notation.
For the same reason, let AN be the square-root of RN � ΦNΦTN and introduce

∆ � ANR
�1
N ΦNΛN (6.32)

Notice that ∆ P N p0d�1, σ
2Idq.

We can rewrite equation (6.25) as

JMRpgq � pg0 � gqTRN pg0 � gq � 2∆TAN pg0 � gq �∆T∆ (6.33)

or, equivalently, as

JMRpθq �
�
g0 � �Mpθq

	T
RN

�
g0 � �Mpθq

	
� 2∆TAN

�
g0 � �Mpθq

	
�∆T∆

(6.34)
We have

J 1MRpθq � �2
�
g0 � �Mpθq

	T
RN �M1pθq � 2∆TAN �M1pθq (6.35)

J2MRpθq � �2gT0 RN
�M2pθq � 2

� �M1pθq
�T
RN �M1pθq

� 2
� �Mpθq

�T
RN �M2pθq � 2∆TAN �M2pθq (6.36)

Hence,

JMRpθ0q � ∆T∆ (6.37)

J 1MRpθ0q � �2∆TAN �M1pθ0q (6.38)

J2MRpθ0q � 2
� �M1pθ0q

�T
RN �M1pθ0q (6.39)

Let indicate with pθN the estimate obtained solving (6.22), that is �MppθN q �pgMR
N, �M

� pg �MN . Exploiting the Taylor expansion, we have

JMRpθ0q � JMRppθN q � 1

2
pθ0 � pθN qTJ2MRpηqpθ0 � pθN q (6.40)

J 1MRpθ0q � J 1MRppθN q � pθ0 � pθN qTJ2MRpξq � pθ0 � pθN qTJ2MRpξq(6.41)

for some ξ and η in-between θ0 and pθN . Notice that from (6.41), we have

θ0 � pθN � �
J2MRpξq

��1
J 1MRpθ0qT (6.42)
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Hence,

JMRppθN q � JMRpθ0q � 1

2
J 1MRpθ0q

�
J2MRpξq

��1
J2MRpηq

�
J 1MRpξq

��1
J 1MRpθ0qT

� JMRpθ0q � 1

2
J 1MRpθ0q

�
J2MRpθ0q

��1
J 1MRpθ0qT (6.43)

� ∆T

#
Id �AN �M1pθ0q

�� �M1pθq
�T
RN �M1pθq

��1 � �M1pθ0q
�T
AN

+
∆

Notice that the term between brackets is idempotent and its trace is equal to
d� d

�M; in addition, recalling that ∆ P N p0d�1, σ
2Idq, it can be shown that

JMRppθN q
σ2

� χ2pd� d
�Mq, d � dim pgML

N , d
�M � dim pθN (6.44)

when S � g0 P Ξ
�M. The proof is analogous to the one given for Lemma II.3 in

[8, p.556].

Observe that because of the approximation pθN � η � ξ � θ0 considered in
(6.43), expression (6.44) may hold only for N Ñ 8, when (6.5) represents a
non-linear regression problem.

From the properties of the least-squares estimate, we also know that [8, p.556]

JMLppgML
N q

σ2
P χ2pN � dq (6.45)

Now notice from (6.25) that the terms of JMRpgq in which g appears depend on

the noise ΛN only through ΦNΛN ; this holds also for pg �MN . Moreover, since ΛN is

Gaussian and ErWN pΦNΛN qT s � 0, we conclude hat JMRppg �MN q � JMRppθN q is
independent from WN . From (6.23) and (6.23) we also have that JMLppgML

N q �
WT
NWN , hence JMRppg �MN q � JMRppθN q is also independent from JMLppgML

N q.
Therefore, using the rule for the division of two independent χ2-distributed
variables, we have

JMRppθN q
σ2pd�d

�Mq

JMLppgMLN q

σ2pN�dq

� JMRppθN q
JMLppgML

N q �
N � d

d� d
�M
P F pd� d

�M, N � dq (6.46)

Moreover, exploiting equation (6.26) and recalling that JMLppgML
N q � WT

NWN ,
we can rewrite

JMRppθN q � JMRppg �MN q � JMLppg �MN q � JMLppgML
N q (6.47)

from which

JMLppg �MN q � JMLppgML
N q

JMLppgML
N q � N � d

d� d
�M
P F pd� d

�M, N � dq (6.48)
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This is the classical F-test used to discriminate between two model structures
with complexities d and d

�M (d ¡ d
�M).

6.1.1 Model order selection procedure

The previous considerations can be directly exploited in a model selection set-

ting. Namely, suppose to have a set of model structures
!�Mk, k � 1, 2, ...

)
and

let χ2
αpd� d

�Mk
q be de�ned by

α � P
�
x ¡ χ2

αpd� d
�Mk
q
	

(6.49)

with x being a χ2-distributed random variable. Then, the hypothesis test de-
rived from (6.44) allows to reject the model structures �Mk for which the in-
equality

JMRppg �Mk

N qpσ2
¤ χ2

αpd� d
�Mk
q (6.50)

does not hold, i.e. the ones that are not able to properly "explain" the data.
However, what still has to be de�ned is the way in which to discriminate among
the unfalsi�ed model structures, that is the ones for which the inequality (6.50)

holds. Assume that
!�Mk, k � 1, 2, ...

)
is a set of nested model structures, which

can be ordered according to their complexities: �M1 � �M2 � ..., since D
�M1

�
D
�M2

  ... . In this case, the so-called "parsimony" principle is exploited: hence,
among the unfalsi�ed model structures, the simplest one is chosen. This makes
also clear the meaning of the name "PUMS" (Parsimony Unfalsi�ed Model
Structure Selection), given to this order selection criterion.

The hypothesis test (6.50) based on the χ2-distribution can be performed also
exploiting the F-distribution, but using the value in (6.46).

6.2 Experimental results

6.2.1 Implementation of the method

The method previously described is here applied to discriminate among OE
models of di�erent complexities. As previously done, 200 systems in each of the
four data sets illustrated in Section 3.1 are identi�ed; furthermore, OE models
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with orders ranging from 1 to 40 are evaluated.
Furthermore, as was done for the other criteria involving statistical tests, when
none of the evaluated model structures satis�es the condition (6.50) for a �xed
signi�cance level α, the most complex model structure is chosen by default.

The order selection technique denoted by PUMS has been implemented through
the following steps:

1. The unstructured least-squares estimate pgML
N � pgLSN is determined by

estimating a high-order FIR model (the order is set to N{3);

2. The model described by pgML
N is simulated, obtaining the output datapYN � ΦTNpgML

N .

3. Starting from the smallest complexity among the considered ones, an OE

model pg �Mk

N is estimated by solving

pg �Mk

N � arg min
g
ppYN � ΦTNgqT ppYN � ΦTNgq

s.t. g P Ξ
�Mk

(6.51)

In practice the OE model pg �Mk

N is estimated from pYN using the routine pem
with no noise modelling.

4. If the inequality (6.50) holds, the procedure is stopped and the model

structure �Mk is chosen, otherwise the procedure is iterated on more com-
plex model structures.

5. A state-space model with no noise description and of the chosen complexity
is �nally estimated from the original data using the routine pem.

6.2.2 Selection of the signi�cance level

In Chapter 4 a speci�c analysis has been conducted for the choice of the signif-
icance level, when an order selection criterion involved a statistical test. Since
PUMS is based on the test (6.50), an analogous investigation is here performed.
The previous investigations have shown that a large signi�cance level could de-
crease too signi�cantly the rate of unfalsi�ed model structures among the tested
ones, thus making the test ine�ective. On the other hand, a too small signi�-
cance level, combined with the "parsimony" property of PUMS could give rise
to an undermodelling tendency.
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(a) Average of the selected orders.
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(b) Average impulse response �ts.

Figure 6.1: OE models - Average of the selected orders and average impulse response �ts
achieved by PUMS, as function of the signi�cance level α adopted in the statistical
test (6.50). The average is calculated from the identi�cation of 200 systems in
each data set.

Figure 6.1.(b) shows the average impulse response �ts achieved in the four data
sets, as functions of the signi�cance level α adopted in the test (6.50). The
trends are similar to the ones reported in Figure 4.9.(b) for the combination of
the whiteness and the independence tests on the residuals: while the selection
of the signi�cance level is not so in�uential in the less-noisy data sets S1D1 and
S2D1, the adoption of too large values for α leads to a signi�cant decrease of
the impulse response �t. Indeed, as was previously observed for the whiteness
test and for the combination denoted by RA, when α is too large, the risk that
no model structure can be unfalsi�ed by the test increases, causing the default
selection of the most complex model structure. This is further con�rmed by
the plot showing the averages of the selected orders as functions of α (Figure
6.1.(a)): the fast increase which is observed for growing values of α is the direct
consequence of the default selection of the largest order. While this choice is
not so detrimental for the "slow" and non-noisy data set S2D1, it gives rise to
over�t in S1D2 and S2D2.

The previous considerations, combined with the results observed in Figure 6.1.(b)
suggest that the test in (6.50) is more e�ective when small signi�cance levels α
are adopted. A further con�rm of this result comes also from Table 6.1 which
contains the values of α leading to the highest average impulse response �t in
each data set. The unique exception is detected in S2D1, where the selection
of large complexities is bene�cial and it is made possible by the use of a large
signi�cance level.



6.2 Experimental results 105

Set α

S1D1 0.13
S1D2 0.09
S2D1 0.53
S2D2 0.06

Table 6.1: OE models - Values of the signi�cance level α which guarantee the best average
impulse response �ts when adopted in the statistical test (6.50).

6.2.3 Analysis of PUMS performances

Impulse Response Fit Type 1 Pred. Fit Type 2 Pred. Fit
Oracle PUMS Oracle PUMS Oracle PUMS

S1D1 93.9 91.8 94.5 92.5 94.3 92.3
S1D2 79.9 73.1 81.8 75.9 81.2 74.5
S2D1 89.9 82.2 91.6 85.6 90 82.5
S2D2 69.9 57.8 75.7 66.1 72.8 61.5

Table 6.2: OE models - Average �ts achieved by PUMS when 200 systems are identi�ed in
each data set.

Table 6.2 contains the average �ts achieved by PUMS in the identi�cation of
200 systems in each of the four data sets; the values of α reported in Table
6.1 are adopted in the test (6.50). Compared to the average �ts achieved by
the classical order selection criteria and reported in Table 4.2, PUMS behaves
worse than BIC and RA, while it leads to performances almost equivalent to
the ones reached by cross-validation in the "fast" data sets, outperforming it in
the "slow" ones.
A further comparison also shows that PUMS and the independence tests on the
residuals (RAI1 and RAI2) achieve very similar results, even if RAI2 (but also
RAI1, apart in data set S2D1) outperforms PUMS. Indeed, an analogy between
these two tests was previously pointed out: namely, below equation (6.30) it

has been highlighted how the quantities JMRppg �MN q (exploited by PUMS) and
xN,Mεu (used by the independence test in (2.19)) are comparable, under certain
assumptions. However, thanks to the interpretation of the estimation problem
(6.22) as a model reduction problem, a di�erent test is exploited in PUMS.

The box plots of the impulse response �ts in Figure 6.2 prove a certain robust-
ness of PUMS in the "fast" data sets S1D1 and S1D2, since very few outliers are
visible. This property is further con�rmed by Figure 6.3, where the histograms
of the di�erences between the orders chosen by the oracle and the ones selected
by PUMS are well centered around 0, even if a slight overmodelling is observed.
The situation is di�erent for the "slow" sets S2D1 and S2D2, whose box plots
present more outliers. However, this kind of performances deterioration in S2D1
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(d) S2D2.

Figure 6.2: Box plots of the impulse response �ts achieved by PUMS when 200 systems are
identi�ed in each data set.

and S2D2 was detected also in Chapter 4 for the classical order selection meth-
ods.
The increased number of outliers detected in Figures 6.2.(c) and (d) is mainly
due to the adoption of the "parsimony" principle: the choice of the simplest
model structure which satis�es the condition in (6.50) gives rise to undermod-
elling, when slow systems have to be reproduced. The adoption of a large signif-
icance level α in S2D1 reduces this problem, thanks also to the default selection
of the largest order, when no model structure among the tested ones is unfalsi-
�ed by the test. However, the outliers visible in the box plot of the �ts achieved
by PUMS in S2D1 (Figure 6.2.(c)) are due to the selection of lower complexities
w.r.t. the oracle choices. This justi�cation is valid also for the outliers present
for PUMS in Figure 6.2.(d). Again, Figure 6.3 con�rms these considerations:
the histograms of the di�erences between the orders choices done by the oracle
and by PUMS show an undermodelling tendency in data sets S2D1 and S2D2,
which is not present in S1D1 and S1D2.
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Figure 6.3: Histograms of the orders selected by PUMS in the identi�cation of 200 systems
in each data set. The histograms of the di�erences w.r.t. to the oracle choices are
also shown.

In spite of the undermodelling observed in the "slow" data sets, PUMS typically
does not su�er of early stopping due to local minima, which was instead detected
for the F-test. Therefore, the PUMS criterion appears robust also w.r.t. to the
so-called local minima issue.

6.2.4 Combination with the validation methods

The analysis of PUMS performances done in Section 6.2.3 has highlighted how
the parsimony property adopted by PUMS can limit its performances, especially
when slow systems have to be reproduced. Therefore, the equipment of PUMS
with some other tests or its combination with other order selection criteria
could reveal itself more e�ective. The combination of PUMS with the validation
methods (i.e. with the tests on the residuals) could be helpful in this sense; hence
it is analyzed in the following.

In this setting the tests on the residuals exploit the estimation data in order to
evaluate the model estimated at point 5 of the procedure in Section 6.2.1. The
�nal model structure selected by the joint use of PUMS and a validation method
is the simplest one for which both the PUMS test in (6.50) and the considered
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test on the residuals are passed.
Again, the latter one, that could be the whiteness test in (2.7) or the indepen-
dence test in (2.19) (or both) is applied setting M � nb � 20; recall that nb is
the order of the polynomial Bpqq in (1.13) and M is the maximal number of
lags for which the auto- or the cross-correlation of the residuals is computed.

Table 6.3 illustrates the average impulse response �ts achieved by the equipment
of PUMS with the di�erent tests on the residuals. The results refer to the use of
the optimal signi�cance levels in both the statistical tests involved, that is in the
test (6.50) and in the residuals test. It is clear that the combination is bene�cial
in all the four data sets and with all the types of tests on the residuals, since
the average �ts are always higher than the ones which refer to PUMS criterion
alone. The best �ts are reached using the independence test on the residuals in
the "fast" data sets S1D1 and S1D2, while RA leads to the best performances
in the "slow" sets. This kind of result was already observed in Chapter 4, when
the validation tests were combined with the classical order selection techniques.
Indeed, the tendency of RA to select quite complex model structures is more
bene�cial when slow systems have to be identi�ed. On the other hand, the
independence test on the residuals generally unfalsi�es quite high-order models,
thus leading to few changes when this type of models are already selected by the
previously applied criterion. In the "slow" data sets, the adoption of a larger
value for M could probably lead to better performances when RAI1 or RAI2
are applied after PUMS.

Average impulse response �t Average of the selected orders
Set PUMS +RAW +RA +RAI1 +RAI2 PUMS +RAW +RA +RAI1 +RAI2

S1D1 91.8 91.9 92.3 92.9 92.8 6.7 7 5.3 6 5.9
S1D2 73.1 73.1 74.7 76.5 76.4 4.1 4.9 3.9 3.9 4.1
S2D1 82.2 85 85.3 82.3 83.5 15.6 12.3 11.2 9.3 8.3
S2D2 57.8 59.8 60.7 60.4 59.8 4.8 7.2 6.4 5.9 5.8

Table 6.3: OE models - Average impulse response �ts and average of the selected orders when
validation methods are combined with PUMS for model order selection in the
identi�cation of 200 systems in each data set.

Table 6.3 also shows the average of the orders selected in the four data sets
by PUMS and by its combination with one of the four validation methods here
considered. In some data sets an unexpected decrease of the average is observed
after the equipment with the tests on the residuals: this is due to the adoption
of a di�erent signi�cance level in the statistical test exploited by PUMS. As
the achieved �ts proved, this decrease is bene�cial in data sets S1D1 and S1D2,
where an overmodelling tendency of PUMS was highlighted by the histograms
in Figure 6.3. In addition, the selection of simpler structures w.r.t. the ones
originally chosen by PUMS is bene�cial also in data set S2D1: indeed, the joint
use of two statistical tests allows to adopt a smaller signi�cance level in the
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(d) S2D2.

Figure 6.4: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when both the tests on residuals (RA) are combined with PUMS
for model order selection in the identi�cation of 200 systems in each data set.

test for PUMS, thus increasing the unfalsi�cation rate of the test. Previously,
when no model structure was unfalsi�ed by the test used by PUMS, the most
complex model structure was by default selected. In this case, instead, thanks
to the exploitation of another test, these "default" choices are replaced by more
precise ones, leading to improvements in the impulse response �t.

The previous considerations �nd a further con�rm in Figure 6.4. It shows the
average impulse response �ts achieved by the combination of PUMS with RA
for di�erent values of the signi�cance levels used in the two tests. In all the data
sets very small values are preferable for both the tests, otherwise too complex
model structures are selected.
Di�erent trends are observed in Figure 6.5, which refers to the equipment of
PUMS with the second implementation of the test for the independence of the
residuals from past inputs (RAI2). While small signi�cance levels are still prefer-
able for PUMS, values of αRAI2 around 0.5 or even larger are more bene�cial
for the e�ectiveness of the test on the residuals. Indeed, in this way the rate
of model structures that are unfalsi�ed by that test decreases, thus leading to
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Figure 6.5: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the independence test on the residuals (RAI2) is combined
with PUMS for model order selection in the identi�cation of 200 systems in each
data set.

some modi�cations in the previous order choices done by PUMS.

6.2.5 Combination with the F-test

The considerations done at the beginning of Section 6.2.4 suggested the equip-
ment of PUMS with some other tests or criteria, in order to alleviate the limita-
tions derived from the use of the "parsimony" principle. Therefore, this section
evaluates the combination of PUMS with the F-test, according to the modality
described in Section 2.3.2. By means of the F-test, model structures of increas-
ing complexities are evaluated, starting from the ones returned by PUMS, i.e.
the ones estimated at point 5 of the procedure in Section 6.2.1. As soon as the
most complex model structures between the two compared ones does not pass
the F-test, the procedure is stopped and the simplest one is �nally chosen.

Table 6.4 contains the average impulse response �ts achieved by PUMS and by
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Average impulse response �t Average of the selected orders
Set PUMS PUMS + F (Up) PUMS PUMS + F (Up)

S1D1 91.8 92.6 6.7 6.9
S1D2 73.1 75.7 4.1 4.1
S2D1 82.2 84.6 15.6 9.9
S2D2 57.8 61.3 4.8 5.7

Table 6.4: OE models - Average impulse response �ts and average of the selected orders when
the F-test is applied after PUMS to perform model order selection in the identi�-
cation of 200 systems in each data set.
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Figure 6.6: OE models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the F-test is applied after PUMS in order to evaluate
model structures with increasing complexity. The average is calculated from the
identi�cation of 200 systems in each data set.

its equipment with the F-test, when the optimal values of the signi�cance levels
are adopted in both the tests. In all the data sets the combination leads to
improvements in terms of impulse response �ts.
Again, the decrease observed in the average of the selected orders in data set
S2D1, after the application of the F-test, is due to the use of a di�erent signi�-
cance level in the test for PUMS. As observed for the combination of PUMS with
the validation methods, the exploitation of two tests allows to adopt a smaller
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signi�cance level in the test used by PUMS, since undermodelling is avoided by
the successive application of the F-test.

The analysis of the combination here considered is completed by Figure 6.6,
which shows the impact of the signi�cance levels used in the test for PUMS
and in the F-test on the achievable performances. Except in data set S2D1,
the analysis done in Section 6.2.2 is here con�rmed, since PUMS is still more
e�ective when small values of the signi�cance level are adopted. Also the F-test
should be applied with a small value of αF , in order to avoid the selection of
too complex model structures. Di�erent considerations hold for data set S2D1,
where αF can be chosen quite large, in order to favour the selection of higher
model orders. This result is in line with the �ndings observed in Chapter 4,
when the F-test was applied after the classical order selection methods.

6.2.6 Modi�cation of PUMS criterion

The previous analysis of PUMS performances has highlighted the need to com-
bine it with some other methods, in order to enforce the check of the model
quality and to alleviate the undermodelling tendency detected when slow sys-
tems have to be identi�ed. Therefore, in addition to the two combinations
described in Sections 6.2.4 and 6.2.5, the joint use of PUMS with other methods
has been also tested. Particular attention has been devoted to the application of

tests on the model pg �Mk

N estimated at point 3 of the procedure in Section 6.2.1.
The idea is to evaluate whether those tests are more e�ective when applied on
models estimated from simulated data, which theoretically are free of the mea-
surement noise.
Among the evaluated combinations, the simultaneous use of the test in (6.50)

and of the F-test applied on the model pg �Mk

N has proved the most e�ective one.
According to this order selection method, the complexity of the �rst model
structure which passes both the tests is selected; then, a state-space model of
that complexity (with no noise modelling) is estimated from the original input-
output data.
In the following this order selection method will be denoted as PUMS+F(Sim).

As usual, a �rst analysis is conducted on the choice of the signi�cance level to
adopt in the two statistical tests involved in this criterion. Speci�c experiments
were done, in which the two tests were applied with di�erent signi�cance levels.
However, the achieved performances were equivalent to the ones obtained setting
the same signi�cance level for both the tests. Therefore, the analysis is here
conducted with this simpli�cation.
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(b) Average impulse response �ts.

Figure 6.7: OE models - Average of the selected orders and average impulse response �ts
achieved by PUMS+F(Sim) for di�erent values of the signi�cance level α adopted
in both tests (6.50) and (2.63). The average is calculated from the identi�cation
of 200 systems in each data set.

Figure 6.7 shows results which agree with the ones in Figure 6.1: small values
of the signi�cance level used in both the tests are preferable in data sets S1D1,
S1D2 and S2D2, while the performances reached in data set S2D1 appear less
a�ected by the choice of this value.

Impulse Response Fit Type 1 Pred. Fit Type 2 Pred. Fit
Set Or. PUMS PUMS +

F (Sim)
Or. PUMS PUMS +

F (Sim)
Or. PUMS PUMS +

F (Sim)

S1D1 93.9 91.8 92.5 94.5 92.5 93.2 94.3 92.3 92.9
S1D2 79.9 73.1 74.8 81.8 75.9 77.5 81.2 74.5 76.5
S2D1 89.9 82.2 82.6 91.6 85.6 86.1 90 82.5 83
S2D2 69.9 57.8 58.5 75.7 66.1 67.5 72.8 61.5 62.6

Table 6.5: OE models - Average �ts achieved by PUMS and PUMS+F(Sim) when 200 systems
are identi�ed in each data set.

The average �ts achieved by the procedure PUMS+F(Sim) are reported in Table
6.5, together with the ones reached by the oracle and by PUMS. A performances
improvement is observed in all the data sets w.r.t. the results obtained by
PUMS. Indeed, the box plots of the impulse response �t reported in Figure 6.8
appear more compact, when compared to the ones related to PUMS (Figure
6.2). This property is mainly observed for the "fast" data sets S1D1 and S1D2,
while some outliers are still present in the box plots referring to data sets S2D1
and S2D2. Figure 6.9 helps to understand these �ndings. The histograms of
the di�erences between the orders chosen by the oracle and the ones selected
by PUMS+F(Sim) prove a signi�cant agreement between the two criteria in
data sets S1D1 and S1D2, while PUMS+F(Sim) su�ers of undermodelling in
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Figure 6.8: Box plots of the impulse response �ts achieved by PUMS+F(Sim) when 200 sys-
tems are identi�ed in each data set.

S2D2. Di�erent results are observed in data set S2D1, where both over- and
undermodelling is detected; indeed, further investigations have proved that the
outliers present in Figure 6.8.(c) are due to both these tendencies.

6.2.7 Di�erent initialization for PEM

The so-called PUMS criterion has been tested also using a di�erent initialization
of the MATLAB routine pem. The previous results have been obtained exploiting
the default initialization of pem (refer to [9] for details).
The results presented in this section are obtained by initializing the routine pem
with a state-space model returned by a model reduction problem.

From (6.9) notice that

pgML
N � g0 � pgLSN � g0 � pΦNΦTN q�1ΦNΛN � R�1

N ΦNΛN (6.52)



6.2 Experimental results 115

10 20 30 40

10

20

30

40

O
ra

cl
e

S1D1

10 20 30 40

10

20

30

40

S1D2

10 20 30 40

10

20

30

40

S2D1

10 20 30 40

10

20

30

40

S2D2

10 20 30 40

10

20

30

40

n P
U

M
S

+
F

(S
im

)

10 20 30 40

10

20

30

40

10 20 30 40

2
4
6
8

10
12
14

10 20 30 40

5

10

15

20

25

−5 0 5 10

10

20
30

40
50
60

n O
r−

n P
U

M
S

+
F

(S
im

)

−5 0 5

10

20

30

40

50

−20 0 20

5

10

15

20

25

−10 0 10 20

10

20

30

40

50

Figure 6.9: Histograms of the orders selected by PUMS+F(Sim) in the identi�cation of 200
systems in each data set. The histograms of the di�erences w.r.t. to the oracle
choices are also shown.

with RN � ΦNΦTN . Hence, recalling that ΛN P N p0N�1, σ
2IN q, we have

E
�ppgML

N � g0qppgML
N � g0qT

� � E
�pR�1

N ΦNΛN qpR�1
N ΦNΛN qT

�
� σ2R�1

N ΦNΦTNR
�1
N

� σ2pΦNΦTN q�1 (6.53)

From (6.52) and (6.53), we derive thatpgML
N � g0 P N p0d�1, σ

2R�1
N q (6.54)

from which

JMRpg0q
σ2

� 1

σ2
ppgML
N � g0qTRN ppgML

N � g0q

� 1

σ2
ppgML
N � g0qTΦNΦTN ppgML

N � g0q P χ2pdq (6.55)

with d � dim pgML
N � dim g0.

An initial state estimate for the routine pem is thus derived by solving the
following minimization problem

arg min
g
}Hpgq}�

s.t.
1pσ2
ppgML
N � gqTΦNΦTN ppgML

N � gq ¤ χ2
αpdq (6.56)



116
New model order selection techniques: PUMS - Parsimonious

Unfalsi�ed Model Structure Selection

where Hpgq denotes the Hankel matrix of the model represented by g, } �
}� denotes the nuclear norm operator and χ2

αpdq is the α-level of the χ2pdq-
distribution.
The optimization problem (6.56) tries to �nd the simplest model g which is
considered able to "explain" the data, i.e. which falls into the ellipsoids in Rd
de�ned by

1pσ2
ppgML
N � gqTΦNΦTN ppgML

N � gq ¤ χ2
αpdq (6.57)

In order to exploit this new initialization, points 3 and 5 of the implementation
procedure illustrated in Section 6.2.1 are modi�ed. Namely, before applying
the routine pem, the optimization problem (6.56) is solved and the returned FIR
model is realized as a state-space model. By means of the routine balred, this is
then truncated to the desired complexity d

�Mk
and the obtained model is passed

as initial estimate to the routine pem exploited at points 3 and 5.

The results that will be reported in the following refer to the use of both the
initializations, i.e. the pem default one and the one here illustrated. Namely,
at points 3 and 5 of the procedure in Section 6.2.1 both the initializations are
tried and the estimated model giving the lowest loss is then kept. It has to be
clari�ed that, at point 4 of the procedure, the inequality (6.50) is evaluated only
on the model which gives the lowest loss.

Impulse Response Fit
Set PUMS - Default Init PUMS - Both Init

S1D1 91.6 91.8
S1D2 72.6 73.1
S2D1 80.7 87.4
S2D2 57.2 65.3

Table 6.6: OE models - Average impulse response �ts achieved by PUMS in the identi�cation
of 200 systems in each data set, when di�erent initializations are used for the
MATLAB routine pem.

Impulse Response Fit
Set PUMS+RAI2 - Default Init PUMS+RAI2 - Both Init

S1D1 92.4 92.7
S1D2 75.5 76
S2D1 82.2 88.4
S2D2 58.9 67.1

Table 6.7: OE models - Average impulse response �ts achieved by the combination of PUMS
with RAI2 in the identi�cation of 200 systems in each data set, when di�erent
initializations are used for the MATLAB routine pem.

Table 6.6 contains the average impulse response �ts achieved by PUMS when
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only the internal initialization of pem is used and when both the initializations
are exploited. The test (6.50) is applied with α � 0.05. A signi�cant im-
provement is detected in the "slow" data sets when the two initializations are
combined. When slow systems have to be reproduced, the initialization intro-
duced in this section is probably more indicated, since it exploits a high-order
FIR model which better catches the slow dynamics of the true system.

The performances reported in Table 6.6 can be further improved when PUMS is
combined with the validation methods, according to the way described in Sec-
tion 6.2.4. Table 6.7 illustrates the average �ts achieved when PUMS is com-
bined with the second implementation of the independence test on the residuals
(RAI2): the two columns respectively refer to the cases in which only the own
initialization of the routine pem is used and when also the one here introduced
is exploited. The average �ts reported in the table are obtained with the sig-
ni�cance levels αPUMS � 0.05 and αRAI2 � 0.2. Again, the use of both the
initializations is much more bene�cial in the "slow" data sets S2D1 and S2D2,
where the average �ts achieved are the best ones so far observed.

6.2.8 Conclusions

The experimental analysis here conducted on PUMS has shown how it is more
e�ective when a small signi�cance level is adopted in the statistical test (6.50).
Moreover, PUMS appears robust when applied for the identi�cation of fast
systems, while it is a bit penalized by its parsimony when slow systems have
to be reproduced. It overall does not su�er from early stopping due to local
minima.
When PUMS is combined with other methods, such as the validation ones or
the F-test, as illustrated in Sections 6.2.4 and 6.2.5, a signi�cant improvement
is detected in all the four data sets, especially in the "slow" ones. Again, in this
setting, small signi�cance levels are preferable for the test used by PUMS and
also for the tests with which it is combined (with the only exception given by
RAI2).
The exploitation of a new type of initialization for the routine pem has proved
to be bene�cial, since better impulse response �ts have been reached, especially
in the "slow" data sets. In addition, when PUMS is combined with a validation
method and when also this new initialization is exploited, a further performances
improvement can be obtained.





Chapter 7

Conclusions

The thesis has focused on the techniques which are adopted for model order
selection in system identi�cation. Both classical and innovative methods have
been presented: among the �rst ones cross-validation, the information criteria
(FPE, AIC and BIC), the F-test and the residual analysis have been considered
(Chapters 2 and 4), while new techniques, such as kernel-based estimation and
PUMS have been illustrated and evaluated (Chapters 5 and 6, respectively).

A theoretical description of these techniques has been provided and accompanied
by an experimental analysis. For this purpose, four di�erent data sets have
been exploited (see Section 3.1): they contain a wide range of systems, which
are commonly faced and identi�ed in practical situations; however, the available
data are generally less than the ones used in real-life scenarios.
Those systems have been mainly identi�ed through OE models, thus testing
the order selection methods on this speci�c model type. However, Appendix A
illustrates also the performances of the classical order selection techniques, when
they are applied to choose an appropriate order for FIR, ARX and ARMAX
models.

Three �t measures have been introduced in order to quantify the adherence
between the true system and the estimated one: one of them compares their
impulse responses, while the other two measures evaluate the prediction ability
of the estimated models. Major importance has been given to the impulse
response �t, since it directly compares the intrinsic properties of the true system
and of the estimated one: indeed, a high degree of correspondence between the
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impulse responses leads also to a high agreement in terms of prediction.

It should be speci�ed that the conclusions that follow are drawn from the ex-
periments on the speci�c data sets illustrated in Section 3.1. They reproduce
a special situation, since they contain relatively few data for the identi�cation
of quite complex systems. The model order selection criteria have not been
evaluated according to their ability to identify the true order of the systems,
but to �nd orders that allow a good reproduction of the input-output properties
(impulse responses) of the true systems. Therefore, the criteria may behave
di�erently with other kinds of data sets, such as longer ones.

Classical order selection techniques

The analysis done in Chapter 4 in relation to OE models and in Appendix A
for FIR, ARX and ARMAX models has shown how none of the classical or-
der selection techniques generally outperforms the others, independently from
the speci�c model type. However, the method here denoted as RA, which ex-
ploits both the whiteness and the independence tests on the residuals appears
among the best methods, when applied on OE, ARX and ARMAX models,
but it shows some di�culties when it has to discriminate among FIR models.
Analogous performances have been detected for RAI2, i.e. the method which
tests the independence of the residuals from past inputs, when the residuals are
not assumed white: it gives good performances when it is applied on OE, ARX
and ARMAX models but it is outperformed by RAI1 on FIR models, i.e. by
the other implementation of the independence test which assumes the residuals
whiteness.

If the order selection criteria based on the residual analysis have proved to be
among the most e�ective ones, their performances are strongly in�uenced by
the tuning of two parameters: the maximal lag M for which the residuals auto-
or cross-correlation is computed and the signi�cance level α adopted in the sta-
tistical tests. Speci�c analysis have been conducted in order to understand their
impact on the performances of the criteria.
Section 4.1.2 has shown how small values of M are preferable when residuals
whiteness has to be assessed: namely, the highest average impulse response �ts
were reached when M � 20. On the other hand, when the independence be-
tween residuals and past inputs is evaluated, small values ofM are more suitable
(20 ¤ M ¤ 40) when fast systems have to be identi�ed, while larger values of
M (M ¥ 40) are preferable for slow systems. These considerations have been
drawn with reference to OE models, but they hold also for the other model types
.
For what regards the signi�cance level α instead, its tuning should take into
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account the estimated model type. Indeed, small values of α increase the unfal-
si�cation probability of the whiteness test on FIR and OE models, resulting in
more reliable order estimations. On the other hand, the residuals obtained for
ARX and ARMAX models bene�t of the whitening e�ect performed by the poly-
nomials Apqq and Cpqq: thus, to avoid the so-called undermodelling tendency,
large signi�cance levels are preferable in this case. Passing to the independence
test (RAI1 or RAI2), its performances appear quite robust w.r.t. the value of
the signi�cance level when it is applied on OE and ARMAX models, even if
too large and too small values should be avoided. The only exception has been
detected when slow systems have to be identi�ed and the measurement noise
in the data is limited: in this case, large values of α are preferable, in order to
alleviate the undermodelling tendency. For the same reason large signi�cance
levels are always suggested when the order has to be selected for FIR and ARX
models. When both the whiteness and the independence tests are exploited, the
tuning of the signi�cance level has to be done according to the test which leads
to the selection of larger orders, when applied alone: namely, according to the
whiteness test for FIR and OE models and to the independence test for ARX
and ARMAX models.

A summary of the performances reached by the classical order selection methods
is now provided. The acronyms here used refer to the ones introduced at the
beginning of Chapter 4.

RAW - When applied alone on all the considered model types, it does not lead
to high impulse response �ts. Its equipment with RAI1 allows a signi�cant
performances improvement. Moreover, when the criterion is applied on
FIR and OE models, the test sometimes is not able to unfalsify at least
one of the evaluated model structures, even when small signi�cant levels
are adopted. This issue is more frequent when slow systems have to be
identi�ed.

RAI1, RAI2 - The two implementations of the test for the independence of
the residuals from past inputs lead to very similar performances with all
the model types here tested. The major discrepancy has been observed
with FIR models, for which RAI1 outperforms RAI2. This order selection
method appears among the best criteria with ARX and ARMAX models,
but it gives satisfying performances also with FIR and OE models. It
is a bit penalized when slow systems are identi�ed, since the tests here
performed exploit a too small value of M .

RA - It is among the best criteria for OE, ARX and ARMAX models, while
it is penalized by the unfalsi�cation problem brought by the whiteness
test, when it is applied on FIR models. Indeed, this issue is more frequent
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with this model type than with the other ones. Furthermore, it generally
outperforms RAI1 and RAI2 when slow systems have to be identi�ed.

F - When applied alone, it does not lead to good performances. With OE and
ARMAX models it also su�ers from early stopping due to the presence
of local minima. For what regards the tuning of the signi�cance level, it
is not so straightforward for OE models, while large values are preferable
when the F-test is applied on ARX, ARMAX and FIR models.

CV - It behaves quite well with all the model types, when fast systems are iden-
ti�ed, while its performances signi�cantly deteriorate when slow systems
are reproduced. When OE or ARMAX models are estimated, it can be
penalized by the presence of local minima.

FPE - It is one of the worst criteria, because of its strong overmodelling ten-
dency. It gives satisfying performances only when ARX and ARMAX
models are exploited to identify slow systems, using almost noise-free data.

AIC - It behaves quite well with FIR and ARX models, while it is heavily
penalized by its overmodelling tendency when it is applied on OE and
ARMAX models.

BIC - It is the best criterion when applied on OE models, even if it has shown
some di�culties when fast systems have to be identi�ed exploiting noisy
data. It gives good performances also with ARMAX models, while it
su�ers from undermodelling when applied on FIR and ARX models.

New order selection techniques

In addition to the classical order selection methods, the thesis has also presented
and tested two new techniques. Both of them have been applied only for the
choice of OE model orders.

The kernel-based estimation methods, illustrated in Chapter 5, have proved
to be the most e�ective techniques when noisy data are exploited, even when
compared to the classical methods. Their combination with PEM procedures
(described at the end of Section 5.1) is not bene�cial in these conditions. On the
other hand, when the noise present in the data is not so relevant, BIC, RAI1,
RAI2 and RA outperform the kernel-based methods, which in this setting bene�t
from their combination with PEM.

The tests performed adopting PUMS method in Chapter 6 have shown how this
criterion leads to quite good performances in all the considered data sets, even if
it is generally outperformed by RAI2, RA and BIC. The combination of the test
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exploited by PUMS with the F-test according to the way illustrated in Section
6.2.6 has led to an improvement of the performances achieved by PUMS alone.
Since PUMS is based on a statistical test, a brief analysis of its impact on
the e�ectiveness of the criterion has shown how small values are in this case
preferable.
In Chapter 6 PUMS has been tested also exploiting a new initialization for the
MATLAB routine pem (see Section 6.2.7): the simultaneous use of this new
initialization and of the default one has proved to be very e�ective, leading to
the best impulse response �ts observed in the data sets containing slow systems.

Techniques combinations

In Section 2.3 two combinations of the classical model order selection techniques
have been presented: the �rst one equips them with the tests on the residuals
(Section 2.3.1), while the second-one adopts the F-test after the application
of a classical order selection technique, in order to evaluate simpler or more
complex model structures (2.3.2). These combinations have been considered
also in Chapters 5 and 6, where they have been applied replacing the classical
model order selection methods with the techniques denoted as KB+PEM and
PUMS, respectively (see Sections 5.2.1 and 6.2.4).

These techniques combinations have been introduced with the purpose of reduc-
ing the risk of wrong order choices w.r.t. the application of a single method.

Combination with the validation methods

The combination involving the tests on the residuals has proved to be e�ec-
tive when the performances achieved by a certain order selection method are
not satisfying. For instance, this is the case of the F-test, whose order choices
are generally far away from the optimal ones with all the tested model types.
Therefore, it signi�cantly bene�ts from its equipment with the validation meth-
ods. Another example in this sense is given by cross-validation which encounters
di�culties in the selection of OE model orders for the identi�cation of slow sys-
tems: its performances encounter a certain improvement, when it is combined
with the tests on the residuals. An analogous situation is detected with ARX
and ARMAX models, while the improvement achieved after the combination
is less signi�cant with FIR models, since cross-validation already gives rise to
good impulse response �ts. This situation is encountered also in relation to BIC,
whose performances on FIR, ARX and ARMAX models can be improved by its
combination with the validation methods. On the other hand, no improvement
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is observed on OE models, since the performances reached by BIC with this
model type are already good; the only exception in this sense has been detected
when fast systems have to be identi�ed exploiting noisy data: since BIC en-
counters some di�culties in the order estimation in this setting, its equipment
with the validation methods appears bene�cial.
Passing to the combination of the tests on the residuals with the new order selec-
tion techniques, it gives rise to an improvement of the performances reached by
PUMS in all the four data sets here considered. On the other hand, KB+PEM
slightly bene�ts from this combination only in presence of noisy data, even if the
application of kernel-based methods alone is still preferable in these conditions.
Therefore, the exploitation of this technique combination is suggested in order
to achieve satisfying performances, whenever the model order selection meth-
ods initially adopted is not the most suitable one for the speci�c identi�cation
setting.

Among the two tests on the residuals that can be applied in this combination,
the adoption of the test for independence of the residuals from past inputs has
generally proved more e�ective when fast systems are identi�ed; on the other
hand, for slow systems, the use of both the tests on the residuals is preferable.
However, the independence test alone could be e�ective also with slow systems,
if a larger value of M is adopted.

Since the combination here cited is based on statistical tests, an important role
for its e�cacy is played also by the adopted signi�cance levels. The performed
tests have shown how their optimal values in this setting agree with the ones
observed when the tests have been applied alone.

Combination with the F-test

As already cited in its illustration in Section 2.3.2, the application of this tech-
nique requires to choose whether to evaluate simpler or more complex model
structures, starting from the one returned by the �rstly applied order selection
method. The tests performed in Chapters 4, 5 and 6 have proved how this
choice has to be taken according to the properties of that method: namely, if
it tends to undermodel, more complex structures should be evaluated, while
simpler ones should be considered, if an overmodelling tendency is observed.
The application of the F-test in this setting has proved to be particularly ef-
fective with the whiteness test (RAW) or with its combination with the inde-
pendence test (RA) on FIR and OE models. In particular, the exploitation of
another test allows to increase the unfalsi�cation rate of the whiteness test, by
adopting a smaller signi�cance level.
Furthermore, also PUMS bene�ts from the successive application of the F-test
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for evaluating more complex model structures, since the eventual limitations
derived by the use of the parsimony principle can be alleviated in this way.

The e�cacy of this combination still depends on the signi�cance level adopted
for the F-test: namely, its tuning should be done according to the degree of
change which is desired w.r.t. to the order choices done by the �rstly applied
method. Generally, when more complex model structures have to be evaluated,
small values of the signi�cance level avoid the risk of over�tting, especially when
noisy data are exploited. The only exceptions to this trend have been observed
with FIR models and when slow systems have to be identi�ed starting from
almost noise-free data: in these cases, large signi�cance levels for the F-test
reduce the undermodelling risk.





Appendix A

Classical model order

selection techniques:

Application on FIR, ARX

and ARMAX models

A.1 Order estimation for FIR models

The model order selection criteria are here evaluated on FIR models. The or-
ders among which each criterion has to discriminate range from 1 to 120, with
an exception when cross-validation is applied. More precisely, when it is used
on the short data sets S1D2 and S2D2, the range of orders goes from 1 to 90
because the data length is too small to obtain a precise estimation of larger
parameter vectors.
As for OE models, the average values that will be reported refer to the identi-
�cation of 200 systems in each of the four data sets introduced in Section 3.1.
Furthermore, in the statistical tests performed on the residuals (RAW, RAI1,
RAI2 and RA) the maximal lag M for which auto- or cross-correlation is com-
puted is again set to nb� 20, with nb being the order of the polynomial Bpqq in
(1.13).
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and ARMAX models

A.1.1 In�uence of the model order in the estimation

As was previously done during the analysis based on OE models, an investigation
about the in�uence of the model order on the achievable �ts is �rst conducted.
Figure A.1 shows the average of the impulse response �t introduced in Section
3.2.1 as function of the FIR model orders.
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Figure A.1: FIR models - Average impulse response �t achieved in the estimation of 200
systems in each data set for model orders ranging from 1 to 120.

With respect to the plots in Figure 4.1, referring to OE models, the graphs in
Figure A.1 are smooth, because the minimization problems that are solved for
the estimation of FIR models are convex and therefore no local minima can
be found. OE models are instead estimated solving pseudo-linear regression
problems, that are non-convex and can lead to local minima.

For what regards the dependence of the �t on the model complexities, analogous
considerations to the ones done w.r.t. OE models can be done: namely, the order
selection is much more critical when noisy measurements are exploited, for which
low complexities are suitable to avoid over�tting. In relation to the less noisy
data sets, the trend for data set S2D1 in Figure A.1.(a) actually suggests that
larger orders than the ones here evaluated could lead to even better impulse
response �ts.

A.1.2 Selection of the signi�cance level α used in the statis-
tical tests

Again, the analysis for the choice of the signi�cance level α to be used in the
statistical tests is carried out by observing the mean values of the selected orders
and of the impulse response �ts achieved for α ranging from 0 to 0.99 with steps
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(a) RAW.
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(b) RA.
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(c) RAI1.
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(d) RAI2.

Figure A.2: FIR models - Average of the orders selected by the statistical tests on the residuals
as function of the adopted signi�cance level α. The average is calculated from
the identi�cation of 200 systems in each data set.

of 0.01.

Figure A.2, which refers to the tests on the residuals, presents trends similar to
the ones observed in Figure 4.8 for OE models. For what regards the whiteness
test (RAW) or its combination with the independence test (RA), the signi�cant
di�erence present between the average of the orders chosen for the data set
S2D1 and the one observed for the other data sets is due to the issue previously
described with OE models that still a�ects the whiteness test: in many cases it is
not able to unfalsify at least one of the evaluated model structures, causing the
default selection of the highest order. However, with FIR models, this behaviour
is partially justi�ed by the trend in Figure A.1.(a), which suggests the adoption
of very high-order FIR models for the reproduction of the true systems in data
set S2D1. Again, data set S2D2 is less a�ected by these issues, because of the
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(a) RAW.
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(b) RA.
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(c) RAI1.
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(d) RAI2.

Figure A.3: FIR models - Average impulse response �ts achieved by the statistical tests on the
residuals as function of the adopted signi�cance level α. The average is calculated
from the identi�cation of 200 systems in each data set.

larger noise component present in the measurement data.

For what regards the orders selection done by the independence test on the
residuals, a clear distinction between noisy and non-noisy data sets can be ob-
served and explained by the same arguments presented for OE models (refer
to (4.1)). Furthermore, as expected, when slow systems are estimated, model
structures of higher orders are chosen w.r.t. the ones selected for fast systems.
A similar behaviour in the orders selection is seen for the whiteness test and for
RA even if the averages of the orders chosen for S1D1 and S2D2 are very similar,
because S2D2 is more a�ected by the problem that none of the evaluated model
structures can be unfalsi�ed by the whiteness test, even for small values of α.

Passing to the analysis of the average impulse response �ts, which will provide
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the most useful indication for the choice of α, clear trends can be identi�ed.
While for the whiteness test a small value of α seems to give the best average �ts
in all the data sets, for the independence test the value of α does not signi�cantly
impact the average �t, but large values are preferable. When the whiteness test
or its combination with the independence test is applied, low values of α allow
to reduce the rate of models that are not unfalsi�ed, thus limiting the default
selection of models with order 120. When α is very high, order 120 is assigned
by default to most of the estimated models: if this choice is bene�cial for the
non-noisy data sets, the same does not hold for the noisy ones, since it gives
rise to over�tting.
Further tests, analogous to the ones illustrated in Section 4.1.2 for OE models,
have shown that the use of a larger value for the maximal lag M makes possible
the unfalsi�cation of at least one of the evaluated model structures. With this
choice of M �ts comparable to the best ones observed in Figure A.3 can be
achieved, but adopting a large signi�cance level.

In relation to the independence tests (RAI1 and RAI2), the fact that the best
average �ts can be obtained when α � 0.99 suggests a tendency to undermodel
of this selection method; in this case, values between 0.99 and 1 could probably
give even better �ts. This tendency also explains the fact that the achieved �ts
are larger for the "fast" data sets than for the "slow" ones.
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(a) Average of the selected orders.
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(b) Average impulse response �ts.

Figure A.4: FIR models - Average of the selected orders and average impulse response �ts
achieved by the F-test, as function of the adopted signi�cance level α. The
average is calculated from the identi�cation of 200 systems in each data set.

Figure A.4 contains the average of the orders selected and the average �ts
achieved by means of the F-test for di�erent values of the signi�cance level
α. The orders selection is very well distinguished in two trends, one for the
non-noisy and long data sets and one for the noisy and short data sets. For
the latter ones, lower orders are chosen w.r.t. the ones selected for S1D1 and
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S2D1, proving that no over�tting issue is encountered. If, on the one hand,
the F-test seems able to correctly discern between noisy and non-noisy data,
on the other hand, no distinction between fast and slow systems is detected in
the orders choices. Since the F-test directly compares the loss functions of two
model structures, an explanation for the described behaviour can be found by
investigating the average trend of the loss function in each data set: after the
fast decrease that it encounters for very small complexities in all the data sets,
in the noisy ones the loss settles down in correspondence to smaller orders than
what observed for non-noisy sets. Therefore, the procedure for order selection
is stopped earlier in noisy data sets, since no signi�cant di�erence in the loss of
the compared model structures is detected.
The F-test also shows a general tendency to undermodel, as it is further proved
by the fact the the highest average impulse response �ts are achieved for very
large values of α.

A.1.3 Analysis of the order selection methods

The analysis is carried out by means of Table A.2, which summarizes the average
impulse response �ts achieved by the di�erent criteria in the identi�cation of
200 systems in each of the four data sets considered. Further information about
the achieved �ts are provided by the box-plots of the impulse response �ts in
Figure A.5. The orders selected by the evaluated methods are investigated by
the histograms in Figures A.6, A.8, A.10 and A.12; in the end, Figures A.7,
A.9, A.11 and A.13 report the histograms of the di�erences between the orders
selected by the oracle for impulse response �t and the ones chosen by the other
order selection criteria.

Table A.1 contains the values of the signi�cance level α adopted in the statis-
tical tests presented in this section: the chosen values correspond to the ones
leading to the highest average impulse response �t in each data set. The sig-
ni�cance level α adopted for the two independence tests on the residuals (RAI1
or RAI2) and for the F-test (α � 0.99) is very high when compared with the
values commonly used in statistical tests. However, in this case a high value of α
guarantees the selection of model structures of higher complexity, thus limiting
the undermodelling issue that characterizes these two order selection methods;
this issue is particularly problematic for FIR models, which need to be enough
complex in order to properly describe the systems in the data sets. The adop-
tion of a larger value of the maximal lag M for which the cross-correlation is
computed alleviates this undermodelling tendency in the slow data sets: in this
way correlation components corresponding to large lags are detected. However,
speci�c tests have proved that large signi�cance levels are still more appropriate.
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On the other hand, the whiteness test (RAW) and its combination with the
independence test (RA) lead to better performances when low signi�cance lev-
els are adopted, thus limiting the problem previously cited, i.e. favouring the
unfalsi�cation of at least one of the evaluated model structures.

α
Dataset RAW RA RAI1 RAI2 F

S1D1 0.12 0.10 0.99 0.99 0.99
S1D2 0.07 0.07 0.92 0.99 0.99
S2D1 0.06 0.06 0.99 0.99 0.99
S2D2 0.13 0.02 0.99 0.99 0.99

Table A.1: FIR models - Values of the signi�cance level α which guarantee the best average
impulse response �ts when adopted in the statistical tests used for model order
selection.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 87.7 84.3 86.3 85.5 85.3 57.7 85.9 83.1 86.1 86
S1D2 66 50.7 62.5 62 57.9 37.4 57.8 19.4 57.4 56.8
S2D1 71.2 68.6 61 58.6 68.6 24.5 65.4 64 65.6 62.3
S2D2 39.7 23.2 30.6 28.4 25.7 3.9 27.8 -2.12 30 23.6

Table A.2: FIR models - Average impulse response �ts achieved by the evaluated criteria when
200 systems are identi�ed in each data set.

The inspection of the performances reported for the oracle in Table A.2 allows
to detect the di�culties encountered by FIR models in the description of slow
systems, especially the ones contained in data set S2D1. Figure A.10 shows
that the highest order in the interval of the evaluated ones, i.e. 120, is most
often selected by the oracle; this suggests that probably higher orders would
have been more appropriate for the description of the true systems in that data
set, as also Figure A.1.(a) indicates.

Figure A.5 highlights a considerable di�erence between the �ts achieved on the
"fast" data sets and the ones reached on the "slow" ones. Namely, in the case of
S2D1 and S2D2, the box plots of the impulse response �ts contain many outliers
for all the order selection criteria. These outliers correspond to models for which
the oracle chooses very high orders and for which FIR models of orders larger
than 120 could be even more suitable for the reproduction of the true systems.
Therefore, the choice of lower orders, which is done by the criteria here analyzed,
leads to very small values of the impulse response �t.

Passing to the analysis of the order selection methods, the criteria which lead
to the best impulse response �ts seem to be cross-validation and AIC for S1D1
and S2D1, while the two independence tests on the residuals are more e�ective
on the noisy data sets S1D2 and S2D2. Indeed, while the tendency of cross-
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Figure A.5: FIR models - Box plots of the impulse response �ts achieved by the evaluated
criteria when 200 systems are identi�ed in each data set.

validation and AIC to choose quite high orders is bene�cial for the data sets
characterized by output measurement data with high SNR (especially for the
slow systems in S2D1), the low-complexity models selected by the independence
tests on the residuals avoid the adaptation to the speci�c noise realization, thus
leading to a better description of the system properties.

On the other hand, the worst criteria are FPE for the noisy sets S1D2 and S2D2
and the F-test for S1D1 and S2D1. The reasons of the unsatisfying �ts achieved
are opposite for the two criteria: on the one hand, FPE has a marked tendency
to select complex model structures, which give rise to over�tting in the noisy
datasets, but it is bene�cial especially for the slow systems of S2D1; on the
other hand, the F-test usually selects very simple model structures, which avoid
over�tting when noisy data are used but at the same time are less suitable for a
proper description of the true systems. It should be noticed how the over�tting
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Figure A.6: FIR models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S1D1.
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Figure A.7: FIR models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S1D1.
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Figure A.8: FIR models - Histograms of the orders selected by the analyzed criteria when 200
systems are identi�ed in data set S1D2.
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Figure A.9: FIR models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S1D2.
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Figure A.10: FIR models - Histograms of the orders selected by the analyzed criteria when
200 systems are identi�ed in data set S2D1.
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Figure A.11: FIR models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S2D1.
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Figure A.12: FIR models - Histograms of the orders selected by the analyzed criteria when
200 systems are identi�ed in data set S2D2.

−100 −50 0

2

4

6

8

10

n O
r −

 n
R

A
W

−20 0 20 40 60 80

2

4

6

8

10

n O
r −

 n
R

A
I1

−20 0 20 40 60 80

2

4

6

8

10

n O
r −

 n
R

A
I2

−100 −50 0

2

4

6
8

10
12

n O
r −

 n
R

A

0 50 100

2

4

6

8

n O
r −

 n
F

−50 0 50

2

4

6

8

n O
r −

 n
C

V

−100 −50 0

2

4

6

8

10

n O
r −

 n
F

P
E

−50 0 50

2

4

6

8

10

n O
r −

 n
A

IC

0 50 100

2

4

6

n O
r −

 n
B

IC

Figure A.13: FIR models - Histograms of the di�erences between the orders selected by the
oracle for impulse response �t and the ones chosen by the analyzed criteria when
200 systems are identi�ed in data set S2D2.



A.1 Order estimation for FIR models 139

trend detected for FPE is even more relevant in S1D2 and S2D2. Indeed, for
the noisy data sets the loss function VN ppθN , ZN q shows a more marked decrease
for models of increasing complexity because also the speci�c noise realization is
modelled; since the penalty in�icted by the FPE criterion on model complexity
is not su�ciently large to counterbalance this over�tting e�ect, model structures
of high order still give rise to the lowest values of the FPE criterion.
The overmodelling tendency that AIC criterion has shown when applied on OE
models is less marked with FIR models. In the latter case, the number dM of
parameters involved in the largest FIR model here tested is usually larger than
the ones appearing in the most complex OE model tested in Section 4.1. There-
fore, AIC seems able to appropriately penalize only very large complexities, as
the ones considered with FIR models.

RAW and RA give almost comparable performances in terms of impulse re-
sponse �ts, with RA leading to better results thanks to the inclusion of the
independence test of the residuals from past inputs, which allows to further
validate the choice done by the whiteness test. In data set S2D1 they give rise
to the best performances, because they are favoured by the default selection of
order 120 which is done whenever they are not able to select a model structure
among the tested ones. This behaviour is justi�ed for data set S2D1, since the
oracle chooses in many cases the highest order, 120, but the same argument does
not hold for the systems in S2D2, which can be properly described by simpler
model structures, as proved by the oracle choices (Figure A.12). Moreover, for
data set S2D2 the default choice of order 120 is not so bene�cial as the average
�ts in Table A.2 and in Figure A.1 prove.

Another observation that should be done regards the results achieved by the two
independence tests on the residuals (RAI1 and RAI2): RAI1 leads to slightly
better �ts than the ones obtained by RAI2, even if the application of RAI1 with-
out its combination with the whiteness test appears wrong from a theoretical
point of view. A �rst explanation of the practical results lies in the fact that
the model orders chosen by RAI1 are usually a bit higher than the ones selected
by RAI2 (except in data set S1D2), thus being more in line with the selections
done by the oracle.

A.1.4 Combination of comparison and validation methods

The combination presented in Section 2.3.1 is now evaluated on FIR models.
The average values reported still refer to the identi�cation of 200 systems in each
of the four data sets. Furthermore, for the tests on the residuals the correlation
is computed until the lag M � nb � 20.
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F-test

When the F-test is combined with the validation methods, the best average im-
pulse response �ts in all the four data sets are achieved by the combination with
the two independence tests, RAI1 and RAI2. The only exception is detected
in data set S2D1, where RAW and RA guarantee the best �ts thanks to the
default selection of order 120, done in most cases.

Figure A.14 illustrates the average �ts achieved for di�erent values of αF and
αRAI2, the signi�cance levels used respectively in the F-test and the indepen-
dence test on the residuals which is applied in a second stage. The trend is
similar for all the four data sets: namely, αF is not so in�uential when a large
αRAI2 is adopted for the independence test later applied. It also should be
noticed that, independently from the set signi�cance level for both the two sta-
tistical tests, the average �ts achieved are always larger than the ones achieved
by the F-test alone, reported in Table A.2. Furthermore, the trend observed
w.r.t. the value of αRAI2 is analogous to the one previously observed in Figure
A.3, when RAI2 was applied alone as an order selection method.

Table A.3 summarizes the average �ts achieved when the F-test is used alone
for model order selection and when it is equipped with a validation stage based
on residuals analysis. The average of the selected orders is also reported. These
results are obtained choosing for the two statistical tests the signi�cance levels
which lead to the best average impulse response �t for each data set.

Average impulse response �t Average of the selected orders
Set F F +

RAW
F +
RA

F +
RAI1

F +
RAI2

F F +
RAW

F +
RA

F +
RAI1

F +
RAI2

S1D1 57.7 85.3 85.8 86.7 86.2 17.4 38.5 39 43.1 40.3
S1D2 37.2 56.6 59.3 62.8 62.2 6.3 20.9 18.8 24.3 23.9
S2D1 24.5 68.9 68.9 62.46 60.9 17.3 80.4 80.4 57.9 52.7
S2D2 3.9 26.4 27.1 31.6 29.4 6.3 45.5 45.9 34.7 30.6

Table A.3: FIR models - Average impulse response �ts and average of the selected orders when
validation methods is combined with the F-test for model order selection in the
identi�cation of 200 systems in each data set.

The combination of the two model order selection methods is very bene�cial
in terms of the average impulse response �ts achieved in all the four data sets;
these �ts are in line with the ones obtained by the tests on residuals alone and
reported in Table A.2. However, thanks to the slight improvement w.r.t. the
�ts in Table A.2, this combination gives rise to the best performances detected
with the until now analyzed criteria, when applied on FIR models.
The improvement is reached thanks to the selection of more complex model
structures with respect to the ones chosen by the F-test alone. Between the two
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Figure A.14: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when RAI2 is combined with the F-test for model order se-
lection in the identi�cation of 200 systems in each data set.

implementations of the independence test, RAI1 generally selects higher model
orders than RAI2, thus being more e�ective in terms of impulse response �t.
However, the selection of too high orders is not everywhere bene�cial, as the
results in data set S2D2 prove: the combination of the F-test with the whiteness
test on the residuals leads to the selection of the highest orders in that data set
but the achieved �ts are lower because of the over�tting which arises.

Cross-validation

The impulse response �ts achieved when cross-validation is used for model or-
der selection can be improved when it is combined with a validation stage, as
Table A.4 proves. However, the improvements are less signi�cant than the ones
detected in the same setting with the F-test. In this case, all the tests on the
residuals are e�ective when applied in a second stage for model validation. The
main di�erences in terms of performances regard the whiteness test and its com-
bination with the independence test (RA), which lead to the best �ts in S2D1



142
Classical model order selection techniques: Application on FIR, ARX

and ARMAX models

but to the worst ones in S2D2; this behaviour is analogous to the one previously
described for the combination with the F-test and can be motivated by the same
arguments.
Table A.4 shows that the improvement in the �t obtained after the validation
stage is again accompanied by the increase of the average of the selected orders.

Average impulse response �t Average of the selected orders
Set CV CV +

RAW
CV
+
RA

CV +
RAI1

CV +
RAI2

CV CV +
RAW

CV
+
RA

CV +
RAI1

CV +
RAI2

S1D1 85.9 86.1 86.1 86.1 86 53.8 53.8 53.8 55.1 54.6
S1D2 57.8 58 58 58.5 58.3 34.5 35.9 35.9 36.2 35.8
S2D1 65.4 69.1 69.1 66.7 66.2 70.7 85.6 85.6 73.2 72
S2D2 27.8 26.2 26.3 28.9 28.9 43.1 58.8 58.8 44.7 44.4

Table A.4: FIR models - Average impulse response �ts and average of the selected orders when
validation methods are combined with cross-validation for model order selection
in the identi�cation of 200 systems in each data set.
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Figure A.15: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αRAI1 used in the independence test RAI1 when it is com-
bined with cross-validation for model order selection in the identi�cation of 200
systems in each data set.

Since the di�erent tests on the residuals, when combined with cross-validation,
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lead to almost equivalent impulse response �ts (as Table A.4 shows), the analy-
sis of the impact of the signi�cance level on these tests is carried out considering
the �rst implementation of the independence test on the residuals (RAI1). Fig-
ure A.15 illustrates the average �ts achieved for di�erent values of α when RAI1
is applied after cross-validation. While small values of αRAI1 favour the valida-
tion of the model structures selected by cross-validation, large values of αRAI1
increase the rate of new model structures that have to be chosen, since the ones
originally returned by cross-validation are validated with less probability.
Large values of αRAI1 seem to be more appropriate, except in data set S1D2,
where a too large value of the signi�cance level leads to the selection of too high
orders for the noisy measurements and fast systems of that data set. However,
independently from the value of αRAI1, the average �ts achieved by the com-
bination of cross-validation with the validation stage are larger than the ones
obtained by cross-validation alone in all the data sets. Similar trends can be
observed when the validation stage is performed by means of RAI2.

It should be pointed out that the results reported in Table A.4 are obtained
setting the signi�cance level to the value giving the highest average impulse
response �t in each data set.

FPE

The FPE criterion only bene�ts from its combination with the whiteness test
(RAW) or with both the tests on the residuals (RA), while the independence
test alone does not give rise to signi�cant improvements in the achieved im-
pulse response �ts. Figure A.16 shows that low values of the signi�cance level
αRAW adopted in the whiteness test lead to higher values of the average im-
pulse response �t. Indeed, when αRAW is very high, the issue characterizing
the whiteness test becomes more frequent and order 120 is in most cases chosen
by default. This causes the decrease in the average �t, which is illustrated by
the plots. This drop is of course more evident for the noisy data sets, whose
plots also present a di�erent trend w.r.t. the one observed for S1D1 and S2D1.
Indeed, the FPE criterion tends to choose very high orders for the noisy data
sets and its combination with the whiteness test with low values of αRAW allows
to invert this tendency, favouring the selection of lower orders.
Di�erently from what was previously observed with the F-test and cross-validation,
in case of the FPE criterion a wrong choice of the signi�cance level could lead
to a decrease of the impulse response �t originally achieved by FPE alone.
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Figure A.16: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αRAW used in the whiteness test (RAW) when it is combined
with FPE for model order selection in the identi�cation of 200 systems in each
data set.

AIC

When AIC is combined with a validation stage no improvements are obtained
in data sets S1D1, S1D2 and S2D2, while an average impulse response �t equal
to 68.2 is achieved in S2D1 thanks to the combination of AIC with RAI2, with
αRAI2 � 0.99. It should be underlined that in this case a wrong choice of the
signi�cance level could lead to a slight worsening of the impulse response �ts
previously achieved by AIC; however, the optimal value of αRAI2 here cited
agrees with what observed in Figure A.3.
For what regards the whiteness test RAW or the application of both the tests
on the residuals (RA), their combination with the AIC criterion is bene�cial
only in data set S2D1, where an average impulse response �t equal to 69.1 is
reached with αRAW � 0.01. Again, this good performance is favoured by the
default selection of order 120, done in many cases.
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BIC

When also BIC is equipped with validation methods, the impulse response �ts
encounter a general improvement. Among the validation tests, the two inde-
pendence tests RAI1 and RAI2 are again the most e�ective, as shown in Table
A.5, whose results are the best ones achievable in each data set by appropriately
setting the signi�cance level. Again, the improvement is reached thanks to the
selection of more complex model structures.

Average impulse response �t Average of the selected orders
Set BIC BIC

+
RAW

BIC
+
RA

BIC
+

RAI1

BIC
+

RAI2

BIC BIC
+

RAW

BIC
+
RA

BIC
+

RAI1

BIC
+

RAI2

S1D1 86 86.3 86.3 86.7 86.5 41.9 44.3 44.4 46.3 45
S1D2 56.8 59.2 60 62.3 62.1 17.6 22.8 23.5 26 26.1
S2D1 62.3 69.3 69.3 66.7 68 64.3 80.9 80.9 69.7 70.1
S2D2 23.6 26.2 26.6 31.8 31.2 23.1 48.7 49 39.9 40.5

Table A.5: FIR models - Average impulse response �ts and average of the selected orders
when validation methods are combined with BIC for model order selection in the
identi�cation of 200 systems in each data set.

Table A.5 shows that the average �ts achieved by the combination of BIC and a
validation method are analogous or even better (as in data sets S2D1 and S2D2)
than the best ones observed in Table A.2.
According to the values in Table A.5, the performances of the two implemen-
tations of the independence test on the residuals are almost equivalent, except
in data set S2D1, where RAI2 gives better results. However, the combination
of BIC criterion with RAI2 is more indicated since the in�uence of the signi�-
cance level αRAI2 on the e�ectiveness of the technique is clearer, as Figure A.17
illustrates. Indeed, it can be immediately noticed how large values of αRAI2 are
more bene�cial, even if the average impulse response �ts achieved are always
better than the ones reached by BIC alone, independently from the value of
αRAI2.

Conclusions

The analysis about the combination described in Section 2.3.1 has shown that it
gives rise to improvements of the impulse response �t with respect to the single
application of a certain comparison technique. In this context, the test for the
independence of the residuals from past inputs has proved to be the most e�ec-
tive validation technique, except for the FPE criterion, whose performances can
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(d) S2D2.

Figure A.17: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αRAI2 used in the independence test RAI2 when it is combined
with BIC for model order selection in the identi�cation of 200 systems in each
data set.

be improved by equipping it with the whiteness test on the residuals. A singu-
larity has been detected in data set S2D1, where the whiteness test has always
led to the best performances, because it is favoured by the default selection of
order 120.

Furthermore, the way in which the signi�cance level α used in the statistical
tests on the residuals in�uences the e�ectiveness of the technique appears clear
and is analogous to the one observed when the tests are applied alone for model
order selection.

A.1.5 Combination with the F-test

The combination presented in Section 2.3.2 is now analyzed on FIR models.
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Whiteness test on the residuals (RAW)

Figures A.7, A.9, A.11 and A.13, showing the di�erences between the orders
selected by the oracle and the whiteness test on the residuals, underline how this
method tends to under�t, whenever a certain model structure can be unfalsi�ed.
This tendency could be alleviated by increasing the signi�cance level α used in
the statistical test, but this would also worsen the issue present in the slow
data sets and lead to a decrease in the average �t, as Figure A.3.(a) has shown.
Therefore, in this context, the application of the F-test can be exploited to
increase in a second stage the complexities of the model structures returned by
the whiteness test.

Figure A.18 illustrates the average values of the impulse response �ts achieved
for di�erent values of the signi�cance levels αRAW and αF respectively adopted
in the whiteness and in the F-test. A similar trend can be observed for all
the data sets: namely, small values of αRAW are suggested to increase the
probability of unfalsi�cation of at least one of the tested model structures, while
values of αF larger than 0.5 favour the �nal selection of larger model structures.

Average impulse response �t Average of the selected orders
Set RAW RAW + F (Up) RAW RAW + F (Up)

S1D1 84.3 85.1 43 43.8
S1D2 50.7 56.8 19.3 19.9
S2D1 68.6 68.7 78.8 79.8
S2D2 23.2 26.2 49.1 50.6

Table A.6: FIR models - Average impulse response �ts and average of the selected orders
when the F-test is applied after the whiteness test (RAW) to perform model order
selection in the identi�cation of 200 systems in each data set.

Table A.6 summarizes the average impulse response �ts and the average of the
selected orders when the whiteness test is applied alone and when it is combined
with the F-test. The results are achieved with the signi�cance levels of both
tests set to the value which leads to the best mean of the impulse response �t.
The growth detected in the �ts con�rms the e�cacy of this combination, even if
the newly obtained �ts are still lower than the best ones reported in Table A.2.

Whiteness and independence test on the residuals (RA)

When the F-test is applied on the model structures selected by both the sta-
tistical tests on the residuals, analogous results to the ones described for the
whiteness test are observed. Indeed, as previously observed, the two methods
behave in a very similar way and the dependence between the average impulse
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Figure A.18: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the F-test is applied after the whiteness test on the
residuals (RAW) in order to evaluate model structures with increasing complex-
ity. The average is calculated from the identi�cation of 200 systems in each data
set.

response �ts and the signi�cance levels adopted in the two statistical tests is
analogous to the one shown in Figure A.18. Also the values in Table A.7 are in
line with the ones previously analyzed in Table A.6.

Average impulse response �t Average of the selected orders
Set RA RA + F (Up) RA RA + F (Up)

S1D1 85.3 85.6 43.8 44.3
S1D2 57.9 59.3 20.2 21.3
S2D1 68.6 68.7 78.9 78.9
S2D2 25.7 27.1 45.1 45.1

Table A.7: FIR models - Average impulse response �ts and average of the selected orders when
the F-test is applied after both tests on the residuals (RA) to perform model order
selection in the identi�cation of 200 systems in each data set.
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Independence tests on the residuals (RAI1 and RAI2)

Previously, it was observed that the two implementations of the independence
test tend to undermodel even if a large signi�cance level is adopted. However,
this property has proved to be bene�cial for the noisy data sets, where these
tests gave rise to the best impulse response �ts when applied for model order
selection.
These observations suggest that the application of the F-test on model struc-
tures with higher complexities should lead to an improvement of the previously
obtained �ts. Table A.8 con�rms this expectation, even if the observed improve-
ments are not signi�cant. When the best values of the signi�cance levels are
adopted, the increase in the complexity of the newly chosen model structures is
less relevant for the noisy data sets.

Average impulse response �t Average of the selected orders
Set RAI1 RAI2 RAI1 + F

(Up)
RAI2 + F

(Up)
RAI1 RAI2 RAI1 + F

(Up)
RAI2 + F

(Up)

S1D1 86.3 85.5 86.4 85.7 40.6 37.4 40.9 37.9
S1D2 62.5 62 62.8 62.2 23.4 25.4 24.1 23.6
S2D1 61 58.6 61.1 58.7 53.6 48.2 53.8 48.4
S2D2 30.6 28.4 30.7 28.7 32.3 28.5 32.8 29.4

Table A.8: FIR models - Average impulse response �ts and average of the selected orders when
the F-test is applied after the independence test on residuals (RAI1 or RAI2) to
perform model order selection in the identi�cation of 200 systems in each data set.

From Figure A.19 the tuning of the signi�cance levels appears quite clear:
namely, the one for the independence test, αRAI2, should be high (as was previ-
ously observed also from Figure A.3.(d)), as well as the one for the F-test, αF ,
thus favouring the choice of more complex model structures.

Cross-validation

Cross-validation does not generally bene�t from its combination with the F-
test. In particular, it is not clear whether an improvement of the performances
achieved by cross-validation alone can be obtained by testing simpler or more
complex model structures. In this sense, Figures A.7, A.9, A.11 and A.13 are
explanatory, since they highlight how cross-validation does not present a clear
tendency to under- or overmodel. In particular, in data set S2D1, the evaluation
of more complex model structures is clearly helpful.
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Figure A.19: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance levels when the F-test is applied after the independence test on the
residuals (RAI2) in order to evaluate model structures with increasing complex-
ity. The average is calculated from the identi�cation of 200 systems in each data
set.

FPE

The previous analysis of the model order selection methods has clearly shown
how the FPE criterion tends to over�t. Therefore, its combination with the F-
test could be exploited to re�ne its order selection by testing model structures
of decreasing complexity. As could be expected, Figure A.20 suggests that very
small values of the signi�cance level for the F-test, αF , are preferable in order
to favour the selection of simpler model structures. The only exception detected
in the �gure regards the data set S2D1, where the over�tting tendency of the
FPE criterion has proved to be bene�cial; therefore, the choice of smaller orders
for the estimated models leads to a very slight decrease of the impulse response
�ts achieved, as Figure A.20.(c) illustrates.

The values in Table A.9 prove the improvement that can be reached thanks to
the combination here described. However, the newly achieved �ts are still sig-
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Figure A.20: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αF used in the F-test when it is applied after FPE in order to
evaluate model structures with decreasing complexity. The average is calculated
from the identi�cation of 200 systems in each data set.

ni�cantly lower than the best ones obtained with other order selection methods.

Average impulse response �t Average of the selected orders
Set FPE FPE + F (Down) FPE FPE + F (Down)

S1D1 83.1 83.9 76.1 69.4
S1D2 19.4 31.1 94.7 78.4
S2D1 64 64 95.8 94.3
S2D2 -2.1 9.3 102.4 86.1

Table A.9: FIR models - Average impulse response �ts and average of the selected orders
when the F-test is applied after FPE to perform model order selection in the
identi�cation of 200 systems in each data set.
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AIC

AIC was one of the criteria giving the best results when applied alone for order
selection analysis, especially in the non-noisy data sets. For them, the selection
of model structures with lower complexity by means of the application of the
F-test in a second stage is not bene�cial, while it is helpful in data sets S1D2
and S2D2, where AIC shows a more marked over�tting tendency.

BIC

BIC criterion has been designed in order to identify the lowest complexity for
which the corresponding model can properly reproduce the features of the origi-
nal system. However, the large penalty which it in�icts to high complexities can
also lead to the choice of too simple models, especially when slow systems has to
be reproduced (as Figures A.11 and A.13 illustrate). These considerations sug-
gest that the BIC criterion should bene�t from its combination with the F-test
for the evaluation of model structures of increasing complexity. Indeed, Figure
A.21 con�rms this analysis, showing also how a large value of the signi�cance
level αF is more indicated for this application. This trend is particularly rele-
vant in data set S2D1, whose systems are better described by complex model
structures. Table A.10 also shows that the largest relative improvement w.r.t.
the original �t achieved by BIC is detected in data set S2D1. Again, the re-
sults in Table A.10 are obtained with αF set to the value leading to the largest
average of the impulse response �t in each data set.

Average impulse response �t Average of the selected orders
Set BIC BIC + F (Up) BIC BIC + F (Up)

S1D1 86 86.4 41.9 44
S1D2 56.8 57.9 17.6 19
S2D1 62.3 63.7 64.3 67.3
S2D2 23.6 25.5 23.1 24.7

Table A.10: FIR models - Average impulse response �ts and average of the selected orders
when the F-test is applied after BIC in order to perform model order selection in
the identi�cation of 200 systems in each data set.

Conclusions

The tests performed on FIR models for the combination between a model order
selection method and the F-test (illustrated in Section 2.3.2) have proved its
e�cacy. Improvements have been detected in the impulse response �ts obtained
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Figure A.21: FIR models - Average impulse response �ts achieved for di�erent values of the
signi�cance level αF used in the F-test when it is applied after BIC in order to
evaluate model structures with increasing complexity. The average is calculated
from the identi�cation of 200 systems in each data set.

thanks to this combination w.r.t. the ones achieved using only an order selection
method.
Particular attention should be given to the choice of the signi�cance level αF
for the F-test, since a wrong value could lead to a worsening of the �ts pre-
viously achieved using only an order selection method. However, the analysis
has suggested to adopt quite high signi�cance levels when more complex model
structures have to be tested, while low values of αF are more suitable to test
simpler models.

A.2 Order estimation for ARX models

A brief analysis of the order estimation for ARX models is done in this section.
The analysis still exploits 200 sets of data in each of the four data sets introduced
in Section 3.1. An order ranging from 1 to 40 has to be chosen for the estimated
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models. Again, the tests on the residuals evaluate the auto- and the cross-
correlation until a lag M � nb � 20, with nb being the order of the polynomial
Bpqq in (1.13).

A.2.1 In�uence of the model order in the estimation

Figure A.22 shows the average �ts achieved by ARX models with orders rang-
ing from 1 to 40. In this case, larger complexities than OE models are more
suitable. Indeed, with an ARX model the system dynamics and the noise are
partially described by the same polynomial Apqq, thus limiting the degrees of
freedom devoted to the description of the system dynamics. Because of this,
larger complexities are required in order to achieve a good adherence with the
true system. In particular, when slow systems have to be modelled and the
measurement noise is not so signi�cant (as for S2D1), higher complexities could
have led to even better results.
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Figure A.22: ARX models - Average impulse response �ts achieved in the estimation of 200
systems in each data set for model orders ranging from 1 to 40.

A.2.2 Selection of the signi�cance level α used in the statis-
tical tests

Figures A.23 and A.24 respectively show the average of the orders selected for
the ARX models and the corresponding average �ts achieved when the tests
on the residuals with di�erent signi�cance levels are exploited for model order
selection.

The main di�erence detected with ARX models with respect to the model struc-
tures analyzed in the previous sections regards the whiteness test. While with
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(c) RAI1.

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

α

A
ve

ra
ge

 o
f s

el
ec

te
d 

or
de

rs

 

 

S1D1
S1D2
S2D1
S2D2

(d) RAI2.

Figure A.23: ARX models - Average of the orders selected by the statistical tests on the resid-
uals as function of the adopted signi�cance level α. The average is calculated
from the identi�cation of 200 systems in each data set.

FIR and OE models, that test sometimes was not able to unfalsify at least one
of the evaluated model structures, with ARX models this issue is not present,
thanks to the whitening e�ect provided by the polynomial Apqq in the residuals,

εptq � Apqq
�
yptq � Bpqq

Apqquptq



(A.1)

Because of this e�ect, RAW generally presents an undermodelling tendency that
can be reduced using a quite high signi�cance level α for the test.

The two implementations of the independence test on the residuals still choose
lower complexities than the ones selected by the whiteness test. The choice
of the maximal lag M for which the correlation is computed has proved to be
quite in�uential: small values (such as 20) are more indicated when fast systems
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(c) RAI1.
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Figure A.24: ARX models - Average impulse response �ts achieved by the statistical tests
on the residuals as function of the adopted signi�cance level α. The average is
calculated from the identi�cation of 200 systems in each data set.

have to be identi�ed, while larger ones are more suitable for slow systems.
Figures A.24.(c) and (d) illustrate how a large signi�cance level α leads to
a more relevant improvement in the "slow" data sets than in the "fast" ones.
Indeed, the adoption of a large α for data sets S2D1 and S2D2 can alleviate
the performance reduction due to a too small value of M . However, when fast
systems have to be identi�ed, small values of M are more appropriate because
the possible correlation between a residual and a past input acquires more weight
in the total correlation. In this case, large signi�cance levels are still preferable
in order to reduce the undermodelling tendency that generally characterizes this
order selection criterion.

Large signi�cance levels have proved to be more e�ective also for the F-test, as
Figure A.25.(b) illustrates: in particular, when slow systems have to be iden-
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ti�ed, very large signi�cance levels are preferable. Figure A.25.(a) also shows
how the order selection done for the noisy data sets S1D2 and S2D2 is again
well distinguished from the one done for S1D1 and S2D1 when small signi�cance
levels are adopted. The reason of this behaviour is analogous to the one given
for FIR models, since the loss function for data sets S1D1 and S2D1 undergoes
a more signi�cant decrease when low complexities models are evaluated.
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Figure A.25: ARX models - Average of the selected orders and average impulse response �ts
achieved by the F-test, as function of the adopted signi�cance level α. The
average is calculated from the identi�cation of 200 systems in each data set.

A.2.3 Analysis of the order selection criteria used in the sta-
tistical tests

Figure A.26 and Table A.11 respectively illustrate the box plots and the averages
of the impulse response �ts achieved by the di�erent order selection techniques.
Criteria which are based on statistical tests adopt the signi�cance levels which
lead to the highest average impulse response �t for each data set.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 92.3 90.7 91.1 91.2 91.2 89.6 90.5 89.2 89.9 90
S1D2 74.2 68.8 69.7 70.3 70.5 66.8 67.7 57.9 63 61.3
S2D1 81.2 73.8 71.3 71.6 76 77.7 73 77.3 77.7 66.6
S2D2 56.7 46.3 46 46.7 48.1 44.4 38.7 44.8 47.5 28.5

Table A.11: ARX models - Average impulse response �ts achieved by the evaluated criteria
when 200 systems are identi�ed in each data set.

The criterion which gives the most satisfying performances is the combination of
the whiteness and independence test on the residuals (RA). The independence
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Figure A.26: ARX models - Box plots of the impulse response �ts achieved by the evaluated
criteria when 200 systems are identi�ed in each data set.

test alone (RAI1 or RAI2) leads to �ts analogous to the ones reached by RA in
the "fast" data sets, while its performances in the "slow" ones are less satisfying.
This behaviour is due to the use of a too small value of the maximal lag M
for which the cross-correlation between residuals and past inputs is computed.
Further tests have proved that increasing the value of M gives rise to average
�ts that are comparable with RA even in S2D1 and S2D2.

FPE and AIC criteria still present the tendency to over�t, which penalizes the
performances when fast systems have to be identi�ed. However, this behaviour
is particularly bene�cial in data set S2D1, where the two criteria reach the
best average impulse response �t. Though the over�tting tendency is again
more evident for FPE than for AIC, AIC criterion does not appear able to
appropriately penalize too high complexities.
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On the other hand, BIC criterion is heavily penalized by its under�tting ten-
dency, which makes BIC the worst criterion in the "slow" data sets S2D1 and
S2D2.

Cross-validation behaves quite well when applied for the identi�cation of fast
systems, while it leads to undermodelling when slow systems have to be iden-
ti�ed. This undermodelling could be justi�ed by the fact that cross-validation
is based on the prediction ability. Indeed, when models which contain a noise
description are used (such as ARX models), low complexities are more bene�cial
in terms of prediction.

A.2.4 Combination of comparison and validation methods

The combination illustrated in Section 2.3.1 turns out to be e�ective also for
the order estimation of ARX models. Indeed, the F-test, cross-validation and
BIC criterion bene�t from their combination with both the statistical tests on
the residuals (RA) or with the independence test alone (RAI2). As partially
observed also with the other model types, no positive e�ect is detected when a
validation method is applied after FPE and AIC criterion: the over�tting ten-
dency of these criteria lead to the choice of model structures that are unfalsi�ed
by the statistical tests on the residuals and therefore no order re-estimation is
performed.

The use of both the statistical tests on the residuals (RA) leads to the best
performances, especially in the "slow" data sets S2D1 and S2D2; also the in-
dependence test alone (RAI2) is e�ective in the "fast" data sets, while its per-
formances deteriorate on the "slow" data sets, as was observed in the previous
section for the use of this test alone.

For what regards the choice of the signi�cance levels to be adopted in the tests,
quite high values are suggested in order to favour the falsi�cation of the originally
chosen model structures and the consequent order re-estimation. However, too
high values are not suitable when the measurement noise in the data is relevant.

A.2.5 Combination with the F-test

When the F-test is applied in order to "re�ne" the order selection done by the
other criteria evaluated in this chapter, some improvements are detected, but a
careful choice of the signi�cance level used in the test is required. This choice is
particularly awkward when the F-test is combined with the statistical tests on
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the residuals (RAW, RA, RAI1 and RAI2), because both the signi�cance levels
used in the two tests impact the performances. In this context, it is prefer-
able to apply the F-test for the evaluation of more complex model structures
than the ones originally selected by the tests on the residuals, since they have
shown a light undermodelling tendency. While the combination of the tests on
the residuals with the F-test does not lead to signi�cant improvements in the
achieved impulse response �ts in data sets S1D1 and S1D2, the combination
appears e�ective in data sets S2D1 and S2D2. In particular, the application of
the F-test after RAI1 or RAI2 can remedy a non-optimal choice of the maxi-
mal lag M used for the correlation. For what regards the signi�cance levels to
be adopted here in the F-test, αF should not be too large for data sets S1D1
and S1D2, in order to limit the selection of too complex models. On the other
hand, signi�cance levels larger than 0.5 are indicated for the identi�cation of
the systems in S2D1 and S2D2.

Also cross-validation and BIC criterion bene�t when the F-test is applied after
them to test more complex model structures. For what regards the choice of
the signi�cance level for the F-test, analogous considerations to the ones done
for the tests on the residuals hold.

The F-test can be also exploited to re�ne the selection of the FPE and AIC
criteria in S1D1 and S1D2, testing model structures of smaller complexities
w.r.t. the ones returned by the two information criteria, which are known for
their overmodelling tendency. In this case small signi�cance levels are suggested
for the F-test, in order to favour the selection of simpler models.

A.3 Order estimation for ARMAX models

The model order selection is now analyzed when ARMAX models are used to
estimate the systems of the four data sets described in Section 3.1. In each of
them 200 sets of measurement data are considered and an order between 1 and
40 has to be chosen by the order selection criteria here tested. The maximal lag
M considered in the tests on the residuals is again M � nb � 20.

A.3.1 In�uence of the model order in the estimation

Figure A.27 contains the average of the impulse response �ts obtained for dif-
ferent model orders. The clear non-smoothness of the plots proves how the
estimation of ARMAX models is very sensible to the local minima issues, aris-
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ing in the resolution of the non-convex optimization problems exploited for the
estimation. In particular, the problem appears more relevant for complex mod-
els.
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Figure A.27: ARMAX models - Average impulse response �ts achieved in the estimation of
200 systems in each data set for model orders ranging from 1 to 40.

A.3.2 Selection of the signi�cance level α used in the statis-
tical tests

An analogy between ARX and ARMAX models is detected in relation to the
whiteness test. Namely, at least a model structure among the evaluated ones is
unfalsi�ed. Actually, quite small orders are chosen by this criterion because the
two polynomials used to model the noise component in the data, Cpqq and Apqq,
act as a whitening �lter on the residuals. Therefore, the whiteness test RAW
shows an undermodelling tendency when it is used for model order selection;
this tendency can be alleviated by the use of a large signi�cance level, since it
reduces the probability to unfalsify too simple model structures.

Di�erently from what observed with ARX models, the signi�cance level adopted
for the independence test on the residuals does not signi�cantly a�ect the per-
formances, but too small and too large values (lower than 0.2 and larger than
0.8) are not suggested. The only exception is detected in data set S2D1, where
large values of α favour the selection of more complex model structures, that
are more suitable for the description of the slow systems in S2D1.
The di�erence observed w.r.t. ARX models is due to the general tendency
of this criterion to select quite low orders. Since with ARX models complex
model structures were more suitable for the description of the true systems in
the data sets, the slight undermodelling tendency penalized the performances of
this criterion; therefore, a large signi�cance level was suggested to alleviate the
problem. On the other hand, low order ARMAX models can properly reproduce
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the true systems of the data sets here considered, thus explaining the reduced
in�uence of the signi�cance level.

For what regards the use of both the statistical tests on the residuals, RA,
analogous considerations to the ones done for RAI1 and RAI2 can be done.

The F-test still presents an undermodelling tendency, even if less marked than
the one observed with ARX models; however, large signi�cance levels are prefer-
able also when applied on ARMAX models.

A.3.3 Analysis of the order selection criteria

Table A.12 contains the average impulse response �ts achieved by the evaluated
order selection criteria, while Figure A.28 shows the corresponding box plots of
the obtained �ts. Again, the methods which are based on statistical tests are
applied setting the signi�cance level to its optimal value.

Set Or RAW RAI1 RAI2 RA F CV FPE AIC BIC

S1D1 93.7 90.9 92.7 92.7 92.7 88.7 91.3 85.2 86.4 91.6
S1D2 79.6 70.6 75.6 75.3 75.2 71 69.9 39.4 43.4 71.1
S2D1 87.3 73.9 76.1 76.1 77.4 62.4 70.3 78.3 79 72
S2D2 67.6 52.7 54.7 54.9 55.4 53 42.3 27.6 33 52.4

Table A.12: ARMAXmodels - Average impulse response �ts achieved by the evaluated criteria
when 200 systems are identi�ed in each data set.

As observed for ARXmodels, the best performances in terms of impulse response
�t are achieved by the independence test (RAI1 and RAI2) and by both the tests
on the residuals (RA). In particular, the latter criterion performs better than
the �rst one on the "slow" data sets, thanks to the selection of more complex
model structures. On the other hand, in these data sets, the independence test
tends to undermodel.
A further improvement of the performances given by RA, RAI1 and RAI2 on the
"slow" data sets can be achieved by choosing a larger value of the maximal lag
M for which the correlation is computed. However, larger values of M are less
appropriate for the identi�cation of the fast systems in S1D1 and S1D2, since
they lead to the selection of simpler model structures. These considerations are
in line with the �ndings described in Section 4.1.2, where the in�uence of the
value of M was analyzed for OE models.

For what regards the information criteria, FPE and AIC show the classical
over�tting tendency, which is bene�cial only in data set S2D1. BIC criterion
con�rms its undermodelling property, which is here less detrimental than for
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(d) S2D2.

Figure A.28: ARMAX models - Box plots of the impulse response �ts achieved by the evalu-
ated criteria when 200 systems are identi�ed in each data set.

ARX models, because low order ARMAX models allow a good reproduction of
the true systems in the data sets. As expected, the data set in which BIC gives
rise to the worst performances is S2D1.

As observed with ARX models, cross-validation leads to good impulse response
�ts on the "fast" data sets, while it is ine�ective on the "slow" data sets. Par-
tially, this behaviour can be justi�ed by the same consideration done for ARX
models. However, ARMAX models can be negatively a�ected by the local min-
ima issue previously cited. Since cross-validation exploits a preliminary model
estimate based on half of the available data, this model can be signi�cantly
di�erent from the one estimated using all the data, especially when a local min-
imum is found in one of the two estimations. This consideration explains the
presence of some outliers also in the box plots of the impulse response �ts for
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data sets S1D1 and S1D2.

A.3.4 Combination of comparison and validation methods

As observed for ARX models the combination illustrated in Section 2.3.1 is
e�ective for the F-test, cross-validation and BIC criterion, while FPE and AIC
criteria do not bene�t from the successive application of a validation method.
In this setting, the use of both the tests on the residuals (RA) leads to the best
impulse response �ts, but satisfying performances are achieved also by the test
for the independence of the residuals from past inputs.
Since too complex ARMAX models are not indicated for a good reproduction
of the systems in data sets S1D1, S1D2 and S2D2, signi�cance levels around
0.5 or lower should be used in the statistical tests performed on the residuals.
A di�erent consideration holds for data set S2D1, for which larger signi�cance
levels are more suitable in order to favour the choice of more complex models.

A.3.5 Combination with the F-test

When the F-test is applied on the model structure returned by a certain model
order selection criterion according to the way described in Section 2.3.2, some
improvements are observed, w.r.t. the �ts illustrated in Table A.12 and in Figure
A.28.

The analysis of this procedure on the previously considered model types has
underlined the critical importance of the signi�cance level adopted in the F-
test. The tests performed with ARMAXmodels con�rm this property, especially
when the F-test is applied after another criterion which involves a statistical test
and whose performances in turn depend on the value chosen for the signi�cance
level, such as RAW, RAI1, RAI2 and RA.

The independence test on the residuals (RAI1 or RAI2) generally shows an
undermodelling tendency, that is emphasized when the value of the maximal lag
M for which the correlation is computed is not appropriately set. Therefore,
the evaluation of model structures with increasing complexity by means of the
F-test turns out to be e�ective after the application of RAI1 or RAI2. In this
case signi�cance levels larger than 0.5 are suggested for the F-test when it is
applied on data set S2D1, while values smaller than 0.5 are more appropriate
in the other data sets, since there is not a relevant necessity to choose more
complex model structures. For what regards the signi�cance level to be used
for RAI1 and RAI2 instead, the analysis done in Section A.3.2 remains valid.



A.3 Order estimation for ARMAX models 165

The observations done in Section A.3.3 in relation to cross-validation have high-
lighted the negative impact brought by the local minima issue. Thus, the F-test
could be e�ective to re�ne the order selection originally done by cross-validation,
since it could allow to depart from models that correspond to local minima.
When the F-test is applied for this purpose, it is not clear whether simpler or
more complex model structures should be evaluated. Indeed, both the choices
lead to improvements in the impulse response �ts achieved thanks to the suc-
cessive application of the F-test. Also the choice of the signi�cance level to
be adopted in the F-test does not appear clear, but the performed tests have
shown that improvements w.r.t. the �ts reported in Table A.12 are achieved
independently from the speci�c value of α.

Since FPE and AIC criteria show an overmodelling tendency also with ARMAX
models, the F-test could be applied in a second stage to reduce the complexity
of the selected model structures. However, this combination has not proved to
be e�ective in the performed tests. On the contrary, when the F-test is exploited
to alleviate the undermodelling property which characterizes BIC criterion, it
is e�ective, especially when a large signi�cance level is adopted for the F-test.
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