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Abstract

This thesis work aims at analyzing the formation, structure and response to noise the
so-called bearing rigidity matrix, a mathematical tool applied in the fields of distributed
control and estimation of multi-agent systems (e.g. UAV swarms or UGV fleets). At
first, a basic theoretical background is established in order to better contextualize the
experiments. Secondly, the aforementioned matrix is built using a soft-coded algorithmic
approach and numerically simulated. Configuration-agnostic performance indices and
descriptors are then established from an algebraic point of view in order to characterize
the validity of the theoretical assumptions and the effect of the noise on the bearing
measurements. Such measurements are simulated in a sequence of diverse fleet scenarios.
The actual application of the bearing rigidity matrix in non-static scenarios concerning
the efforts of control and estimation escapes the scope of this research and therefore will
not be discussed in the following.

Sommario

Questo lavoro di tesi ha come obbiettivo quello di analizzare la costruzione, struttura
e risposta al rumore della cosiddetta matrice di rigidità di bearing, uno strumento mate-
matico utilizzato nei campi del controllo e della stima distribuiti di sistemi multi agenti
(consistenti ad esempio in flotte di quadri rotori o robot terrestri a controllo remoto). Per
prima cosa verrà stabilita una base teorica per meglio contestualizzare gli esperimenti ese-
guiti. Secondariamente la matrice di cui sopra verrà costruita in maniera programmatica
secondo un approccio algoritmico soft-code e simulata numericamente. Una volta stabi-
liti indici di performance di carattere algebrico agnostici alla configurazione considerata,
questi verranno utilizzati per stabilire la validità dei fondamenti teorici e valutare l’effetto
del rumore nelle misurazioni. Tali misurazioni verranno simulate in una vasta sequenza
di configurazioni di flotta. L’applicazione della matrice di rigidità di bearing in contesti
dinamici riguardanti il controllo e la stima non rientra negli obbiettivi di questo testo e
non verranno pertanto considerati in quanto segue.
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Chapter 1

Introduction

1.1 Rigidity theory
Rigidity theory is a consolidated mathematical branch which investigates the structural rigidity
(intuitively, the ability of resisting to an imparted disturbance) of grouping elements connected
by some sort of linkage. In doing so, it crosses the fields of discrete geometry, rigid body me-
chanics and graph theory. Recently, this area of knowledge has found fertile ground in the field
of distributed multi-agent control, assuming a whole new meaning encompassing the charac-
terization of swarms of agents no longer physically coupled to one another but linked by means
of sensing and communication capabilities.
In this newfound application, the various agents are assumed to be able to collect (in their
local frame or by means of a centralized authority) some information regarding the spatial de-
scription of one another. This can be any kind of data, ranging from the most obvious distance
to the more nuanced angles or bearing (which are normal constraints over the spatial direction
linking the origin of each agent frame).
In any case, in order to describe a system of agents through rigidity theory, it is necessary to
define a certain amount of elements which concur to establish the firm theoretical backbone of
this discipline and are essential in understanding the meaning of the bearing rigidity matrix,
which is the essence of this work.

The notion of framework
Once ascertained having a group of elements, each one of them must have a spatial charac-
terization in terms of position. Each agent is assumed either as a particle or as a rigid body
represented by its center of mass (CoM), described by an element of Rd, d ∈ {1..3}. Addition-
ally, one can also describe the agent orientation in the space by means of a coordinate frame
with origin in the CoM. The choice of the space appropriate for such a description depends
entirely on the characteristics of the agents itself.
As an example, in describing a UGV which can only move in a planar fashion and has a
pose which can be described by means of a single angle θ ∈ [0, 2π) (its heading direction),
one can use R2 for its position and the so-called special orthogonal group SO(2) = {R ∈
R2×2 |RRT = I2, det(R) = 1} of appropriate rotation matrices, which is isomorphic to the one
dimensional manifold S1 (unit sphere). The agent will therefore belong to the special Euclidean
group SE(2) = R2 × SO(2).
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Alternatively, a UAV with complete actuation can move along 3 directions and can vary its
pose arbitrarily in space. Such an agent would be described as a point in the special Eu-
clidean group SE(3) = R3 × SO(3), where the special orthonormal group SO(3) = {R ∈
R3×3 |RRT = I3, det(R) = 1} defines a manifold which is not isomorphic to the 2-sphere, since
S2 = SO(3)/SO(2).

In order to describe the informational relations among the elements in the group, it is
necessary to establish a graph in which each node is represented by an agent and each edge
is represented by the relative information exchanged (in this case, the measurement). The
edges can be directed or undirected depending on the nature of such measurement: a measure
referring to each agent local frame is not symmetric (digraph), one referred to the global frame
is symmetric (graph).

The definition of framework stems from the crossing of the two previous concepts.

Definition 1 (Configuration) Consider a formation comprised of n agents. Assume each
agent i ∈ {1...n} is associated to a point in the differential manifold Di ⊆ SE(3).
Through the definition of a common global frame among the agents, the configuration Xi ∈ Di

of the i-th agent describes either the position of the agent (when modeled as a particle) or the
pose (position + attitude) of the agent (when modeled as a rigid body).

Definition 2 (Framework in D̂) A framework embedded in a product differential manifold
D̂ = ∏︁n

i=1, Di ⊆ SE(3)n consists on an ordered pair (G, X ), which is a graph G = (V , E) together
with a configuration X = (X1 . . . Xn) ∈ D̂ which is a map X : V → D̂ associating to the vertex
set a formation configuration, namely vi → X (vi) := Xi ∈ Di.

In the following, all agents formations are considered noncollinear, meaning that all the
agents are in different positions and do no lie along the same line in the global frame reference.
It is worth noting that a formation can be either homogenous or heterogeneous whether all the
agents belong to the same differential manifold.

Building the bearing function
Bearing rigidity only considers as measurements the relative bearing of agents, which represents
the direction linking two agents normalized by the distance in between. This choice is mostly
driven by the fact that this measurement can be carried out with relative ease using cameras and
computer vision techniques. The measure is referred to the local frame and this means that
the underlying graph will be directed and no reciprocity of the measurement is guaranteed.
Moreover, given there are no self-measurements, the underlying graph has no self loops. It
arises from def. 2 that each edge ek = eij = (vi, vj) ∈ E , |E| = m corresponds to a bearing
measurement of agent j sensed by agent i bk = bij. This measure belongs in the differential
manifold Mk ⊆ S2. Since there are m recorded measurements (one per each edge), the bearing
measurement domain appears as M̂ = ∏︁m

k=1 Mk ⊆ S2m. Everything is now in order to define
the core element in the construction of the bearing rigidity matrix.

Definition 3 (Bearing function) Consider an n-agent formation modeled by a framework
(G, X ) in D̂. The map bG : D̂ → M̂, which associates the formation configuration X ∈ D̂ with
the bearing measurements vector bG(X ) = [bT

1 . . . bT
m]T ∈ M̂ is called bearing function.
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Figure 1.1: Bearing rigidity in a planar distance measurement scenario. See that framework a
is equivalent to framework b, but they are not congruent, since their distances in the respective
complete graph do not coincide (frameworks c and d). Frameworks a and b are LBR (since
the jump between the BE formations requires going through a sequence of non-equivalent
frameworks), while frameworks c and d are GBR.

Substantially, the bearing function defines the overall shape of the formation. It allows defining
numerous properties for a framework:

Definition 4 (Bearing equivalence) Two frameworks (G, X ) and (G ′, X ′) are said to be
bearing equivalent (BE) if their bearing functions coincide, namely if bG(X ) = bG(X ′)

Definition 5 (Bearing congruence) Two frameworks (G, X ) and (G, X ′) are said to be bear-
ing equivalent (BC) if their bearing functions coincide under their complete graph KG, namely
if bK(X ) = bK(X ′)

The complete graph KG is a graph in which an edge is present between each note. This
means that a complete graph necessarily possesses n(n − 1)/2 edges (n(n − 1) for a digraph)
and corresponds to the optimal situation where each agent is able to sense one another. Note
that requiring two bearing function to be equal for two different frameworks actually means
that the swarm maintains the same overall shape, despite the fact it has moved in its manifold
or some perturbation is present on its graph (bad connection or measurement). If one considers
the preimage under the bearing function on G as the set Q(X ) representing all the formations
which are BE to X , then the same can be said under the bearing function on GK which includes
the formations which are BC to X as C(X ). It is clear that BC is a stronger requirement than
BE, so one has C(X ) ⊆ Q(X ). This allows to finally give a proper definition of (local) bearing
rigidity.

Definition 6 (Local bearing rigidity) A framework (G, X ) is said to be locally bearing rigid
(LBR) in D̂ if there exists a neighborhood U(X ) ⊆ D̂ in which the formations which are BE
are also BC. This means that C(X ) ∩ U(X ) = Q(X ) ∩ U(X )

This definition can be intuitively interpreted as the fact that a locally rigid framework main-
tains the same overall shape even if only for minor perturbations to the framework, manifested
through a different configuration X .

Definition 7 (Global bearing rigidity) A framework (G, X ) is said to be globally bearing
rigid (GBR) if it has C(X ) = Q(X ) ∀X ∈ D̂, not limited to a neighborhood.
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This means that a GBR framework is guaranteed to maintain the same overall shape in the
manifold irrespectively of the perturbations of the underlying configuration, and this is somehow
justifiable if one considers that a complete graph implies complete reciprocal measurements
between all the agents.

Dynamic frameworks
It is obvious that agents generally are able to move and change their configuration in time.
This requires an extension of the concept of (static) rigidity to one of dynamic rigidity. A
dynamic framework is nothing more than a sequence of static frameworks parametrized by a
variable t representing time. From this point forward only dynamics framework are considered
with X = X (t) = {X1(t) . . . Xn(t)} and the time notation will be dropped freely to improve
readability.
The actuation on agent i causing the change in its configuration is named variation δi ∈ Ii

(called agent variation domain), which defines the motion constraints for the agent in Di.
The evolution of the configuration depends both on the configuration at an instant t and the
actuation applied. This naturally gives rise to a function fi : Di × Ii → Di, which is supposed
to be continuous and describes the evolution of the configuration over time:

fi(X (t), δi) = dXi(t)
dt

As it has been done for the bearing measurements, it’s possible to stack the variations charac-
terizing each agent in a vector δ ∈ Î = ∏︁n

i=1 Ii.
The impending question is the following: which are the condition under which a dynamic
frameworks can deform (driven by variations) while maintaining its overall shape given by the
relative bearings? In order to answer this question, one shall analyze the evolution of the bear-
ing function by effect of the variations imparted on the formation. An very helpful tool comes
in the form of the bearing rigidity matrix, which acts as a sort of geometric Jacobian for the
bearing measurements:

Definition 8 (Bearing rigidity matrix(BRM)) Given a dynamic framework (G, X (t)), the
matrix BG(X (t)) satisfying

bĠ(X (t)) = d

dt
bG(X (t)) = BG(X (t))δ

is called bearing rigidity matrix.

This matrix directly links the variations to their effect on the bearing measurements. In par-
ticular BG(X (t)) is a function I → M and one can notice that its null space defines all the
first order (referencing the Taylor expansion of the bearing function) variations which do not
influence the bearing measurements, or in another way, all the actuation which can be applied
to the swarm without modifying the cohesion of the formation, allowing to establish a sequence
of BE frameworks. Such variations are called infinitesimal:

Definition 9 (Infinitesimal variation) Given a dynamic framework (G, X ), a variation δ ∈
Î is infinitesimal if and only if δ ∈ ker(BG(X )).
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A particular subset (it can be proven that ker(BG(X )) ⊆ ker(BK(X ))) of infinitesimal
variations is given by trivial variations, which are basically infinitesimal variations applied to
the complete graph of the original framework.

Defining the set of infinitesimal variations Si := ker(BG(X )) and the one of trivial variations
St := ker(BK(X )), it is possible to establish the notion of infinitesimal bearing rigidity.

Definition 10 (Infinitesimal bearing rigidity) A dynamic framework (G, X (t)) is said to
be infinitesimally bearing rigid (IBR) in D̂ if ker(BG(X )) = ker(BK(X )) or equivalently, Si =
St. If this condition is not true, then it is infinitesimally bearing flexible (IBF).

This means that even for a non-complete framework, if the dimension of the kernel of its
bearing matrix is the same as the kernel of bearing matrix coming from the corresponding
complete framework, it is guaranteed that there exist some shape-preserving actuation able to
move the formation between different configurations.

Unified rigidity theory
Thanks to the work of [3], it is possible to expand the characterization of the bearing rigidity
matrix irrespectively of the manifold in which the agents are supposed to belong, as long it is
inside SE(3)n. This approach not only gives a more rigorous and general description of rigidity
theory, but also allows considering configurations which are not heterogeneous, in which each
agent has different constraints pertaining to its translational and rotational degrees of freedom
(DoF). Assume each agent i can vary in Di with ct

i translations DoFs and cr
i rotational DoFs

for a total of ci = ct
i + cr

i DoFs. Even though the movement of the agent could be limited, it
can be described as a rigid body with attached local reference frame Fi originated in the CoM
at Oi. At any time instant t the position of Oi in the world frame FW is given by pi(t) while
the orientation of Fi w.r.t. FW is given by the rotation matrix Ri(t). It is clear that if ci < 6
the agent can change its pose only partially. In this setup, a local bearing measure of agent j
by agent i along the edge k can be described as:

bk(t) = bij(t) = RT
i (t)sij(t)pij(t) = RT

i (t)piĵ(t) = RT
i

pj(t) − pi(t)
||pj(t) − pi(t)||

Since the framework presents m measurements (edges) and each one belongs to S2, the bearing
domain can be embedded into S2m. By stacking all agent positions in p(t) = [pT

1 (t) . . . pT
n (t)]T ∈

R3n bearing measurements can be easily recovered by exploiting the sensing graph G, in partic-
ular its incidence matrix E ∈ Rn×m can be expanded to the appropriate dimension by means
of a Kronecker product giving Ê = E ⊗ Id ∈ Rdn×dm:

b+
G (X ) = diag(sij RT

i ) Ê p ∈ R3m

Finally, the variation domains can be lifted into δ+ ∈ R6n by padding with zeros the allowed
actuation, partitioned in δp ∈ R3n positional variations and δa ∈ R3n attitudinal variations:

δ+ = [δ+T
p δ+T

a ]T

The extended bearing rigidity matrix
These newfound elements allow the definition of an extended bearing rigidity matrix. Notice
that the padding with zeros of the variations introduces null columns in the matrix, and that
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Figure 1.2: Dependence of the bearing measurement. Agent A has the same reading for both
situation a and b, in which agent B frame has rotated. In situation c the reading is different
since agent A’s local frame has rotated.

such matrix can be partitioned in two column blocks, one referring to the effect on bearing
variations of positional actuation and one of attitudinal actuation.

Definition 11 (Extended bearing rigidity matrix) Given a dynamic framework (G, X (t)),
the matrix B+

G (X ) satisfying

b+
Ġ (X ) = d

dt
b+

G (X ) = B+
G (X )δ+

is called extended bearing rigidity matrix

The dissertation in [3] also proves that is possible to find a particular partitioning of the
bearing rigidity matrix, which also allows for a systematic approach in its composition:

B+
G (X (t)) = [Dp(t)UÊ

T
Da(t)V Eô

T ] ∈ R3m×6n (1.1)

Notice that the matrices Ê and Eô are time invariant if the framework is supposed to have
constant sensing graph, and so are matrices U and V given the constraints on the agents don’t
vary during movement. In particular, Eô is the incidence matrix of the graph where only the
outgoing edges are considered, meaning all the values which are not -1 are substituted by 0;
this is due to the fact the local bearing measurements of agent j by agent i are not depending
on variation the orientation of agent j, but only on the reciprocal position of agent i and j and
orientation of agent i. See fig. 1.2 for clarification.

U = diag(Uij) ∈ R3m×3m is composed of m Uij ∈ R3×3 blocks which describe the transla-
tional direction allowed for the bearing measurement bij while V = diag(Vij) ∈ R3m×3m has
m blocks describing the allowed rotational direction of Fi. The definition of these blocks rests
entirely on the mutual characteristic of the two agents and their (eventual) constraints in the
manifold and this is the main source of sparsity in the final matrix, given that they may add
null columns and rows if some relative actuation is forbidden.

The only time-varying components of the matrices are the ones depending on the instan-
taneous condition of the formation, namely Dp ∈ R3m×3m and Da ∈ R3m×3m which stem from
the orthogonal projection of relative position and attitude:

Dp(t) = diag(sij RT
i P (piĵ)) Da(t) = −diag(RT

i [piĵ]×) (1.2)

Where P (x) = I3 − x
||x||

xT

||x|| is the orthogonal projection operator such that ker(P (x)) = ⟨x⟩
and P (x)y = y if y ⊥ x, while [z]× is the skew-symmetric matrix generated from vector z which
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allows depicting external products in R3 using matrix multiplication: z × v = [z]× v

The sets of infinitesimal and trivial variations considered beforehand can be lifted into R6n

as well yet maintaining the same cardinality (|S+
i | = |Si| = qi and |S+

t | = |St| = qt). This
implies that necessarily the kernel must expand in order to accommodate for the greater number
of zero columns of the bearing rigidity matrix. The elements of this portion of the kernel are
named virtual variations, symbolized as Sv with |Sv| = qv, and describe substantially the
movements which are constrained for each agent in the manifold. Therefore, for an extended
bearing rigidity matrix it holds:

ker(B+
G (X )) = S+

i ⊕ S+
v ker(B+

K(X )) = S+
t ⊕ S+

v

This fact is vital since it allows establishing a sufficient and necessary condition for infinites-
imally bearing rigidity:

Theorem 1 (Rank condition for IBR) Given a noncollinear dynamic framework (G, X (t))
in a generic differential manifold D̂, it is IBR if and only if rank(B+

G (X )) = rank(B+
K(X ))

Proof 1 Given that n ≤ m, the lesser dimension of the bearing matrix is the 6n columns.
This means rank(B+

G (X )) = 6n − |ker(B+
G (X ))| = 6n − (|S+

i | + |S+
v |) = 6n − (qv + qi) and

similarly rank(B+
K(X )) = 6n − (qv + qt). So for qi = qt the two ranks coincide. Since as seen

previously ker(BG(X )) ⊆ ker(BK(X )), this implies that qi ≤ qt and consequently qi = qt ⇐⇒
ker(B+

G (X )) = ker(B+
K(X )) ⇐⇒ the framework is IBR.

This result is paramount. Through a simple check on the rank of the bearing rigidity matrix,
one can immediately characterize if the framework is IBR. This is particularly important given
the following theorem:

Theorem 2 (IBR, GBR and BR relation) Given a noncollinear dynamic framework J =
(G, X (t)) in a generic differential manifold D̂, it holds for any t:

• J is IBR if and only if it is BR

• J is IBR if it is GBR

This means that an GBR framework implies an IBR framework, and that IBR and BR are
equivalent conditions, meaning that the rank condition for IBR translated into a rank condition
for GR, which guarantees that for limited motions the formation shape will be maintained.

1.2 The experimental setup
All the work presented is carried out via numerical simulations on Matlab.
The main case studies are given by homogenous and non-homogenous frameworks in the man-
ifold D̂ = SE(3). The agents considered are of two possible types:

• UGV (unmanned ground vehicle) which is constrained to move on the x-y plane and can
only rotate around its z axis. This means ct

i = 2 and cr
i = 1, with ci = 3.
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Figure 1.3: Note that the two frameworks are IBR (the bearing measurements from and to
node B are unchanged in both a and b despite its movement in the manifold) but not GBR,
since under the complete graph the bearings would be no longer the same.

• UAV (unmanned aerial vehicle) modeled as an under-actuated quad rotor having only
control on its yaw orientation (assumed parallel to the z-axis and its position. For this it
holds ct

i = 3 and cr
i = 1, with ci = 4.

Sensing is considered as coming from bearing measurements estimated from omnidirectional
cameras, removing the need to consider connected only agents which remain within the FOV of
one another, and consisting on a local measurement in the agent frame Fi: the underlying graph
is therefore directed. The bearing measurements are simulated from positions and orientations
of the swarm in the absolute frame FW and uncertainty of measure is modeled by the addition
of Gaussian noise with zero mean and variance Σ = σ · 13. From now on, all monospaced text
is referring to variables present in the source code.
The source code is accessible at [https://gitlab.com/xomcar/unipd-rigidity-thesis].

https://gitlab.com/xomcar/unipd-rigidity-thesis
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Figure 1.4: This is the simulation space considered in Matlab. Each agent has its own position
and frame. UGV are constrained to move in the z = 0 plane, while UAVs can move freely in the
3D space. Rotations of frames is allowed only around the frame axis parallel to the absolute
z-axis





Chapter 2

Trials

2.1 Building the bearing rigidity matrix
In order to build the bearing rigidity matrix following the structure showed in eq.1.1, it is
necessary to define a proper framework which will be characterized by it.
The matrix SWARM ∈ R5×n represents the formation parameters, in which each column is refer-
ring to a single agent (for a total of n).

SWARM =

⎡⎢⎢⎢⎢⎣
. . .

type pW
x pW

y pW
z θW

z

. . .

⎤⎥⎥⎥⎥⎦
T

(2.1)

The label type defines whether the column is describing a UAV (value 2) or UGV (value 1).
[pW

x pW
y pW

z ]T = posW ∈ R3 is the agent position (in meters) in referred to its CoM in FW .
Since both UAVs and UGVs have only one DoF in rotation around z (vertical axis of FW ) only
the rotation amount around z, θW

z ∈ [0, 2π), is specified.
In order to represent the graph edge (measurements direction), two vectors in Rm are es-

tablished representing the source (sourceNodes) and target (targetNodes) of each measure
as an index ∈ {1...n} referring to the column in matrix 2.1. Since there is also the need to
discriminate the nature of the measurement when populating the matrices Uij and Vij, the
weights of the edges (edgeWeights) are used as an indication of this characteristic, by placing
them in a Rm vector with value 1, 2, 3, 4 for UGV → UGV, UGV → UAV, UAV → UGV, UAV
→ UAV respectively. Reference to fig. 2.1 for a graphical description of the graphs variables.

Now that the swarm is properly defined in all its characteristics, iterating through each
edge of the graph simulates the measurement. For each edge k (going from agent i to agent j)
are computed:

• worldLink = posW
j − posW

i = pij ∈ R3, which is the vector (in FW ) linking the two
agents

• dist = ||pij|| = s−1
ij ∈ R, which is the distance between the agents

• worldBearing = piĵ = pijsij ∈ S2, which is the bearing measurement in FW
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Figure 2.1: Example for clarification of graph definition. Corresponding vectors of nodes are
sourceNodes = [1 1 2 3]T , targetNodes = [2 3 1 2]T , weightEdges = [3 3 2 1]T . The labels of
the nodes are [UAV, UGV1, UGV2]T .

• localBearing = RT
i piĵ ∈ S2, which is the local bearing measurement in Fi. Ri = RW

i ∈
SO(3) is the orientation of Fi w.r.t. FW

It’s now possible to populate the elements that will compose the bearing rigidity matrix using
the equation 1.1. In particular, for the formation of the matrices U ∈ R3m×3m and V ∈ R3m×3m,
a block diagonal matrix is formed in which each block Uij ∈ R3×3 and Vij ∈ R3×3 are picked
accordingly to the nature of the agents i and j from the pool described in table 2.1.
The incidence matrices E ∈ Rn×m and Eo ∈ Rn×m are computed from the graph and expanded

Node i Node j Uij Vij Bearing type Bearing number

UGV UGV
1 0 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 1

UGV → UGV 1

UGV UAV
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 1

UGV → UAV 2

UAV UGV
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 1

UAV → UGV 3

UAV UAV
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 1

UAV → UAV 4

Table 2.1: The blocks Uij and Vij are chosen from this table.

into Ê ∈ R3n×3m and Êo ∈ R3n×3m using the Kronecker product.
Matrices Dp ∈ R3×3 and Da ∈ R3×3 are computed accordingly to equation 1.2. Note that
despite only admitting local measurements, the equations use global information pertaining to
Ri. This is an admissible supposition, since there are numerous algorithms which allow the
estimation of such value in the literature [10].
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In order to check whether the resulting BRM B ∈ R3m×6n is valid, one has to check the rank of
the matrix itself and the basis of the kernel in order to verify that all the infinitesimal variations
are accounted for. The procedure will be further exemplified in chapter 3.

2.2 Analyzing the bearing rigidity matrix
The BRM is a big and sparse matrix, therefore trying to recognize pattern or variations in it
is no easy feat.
First, since BRM is not (for the most cases) a square matrix, in order to characterize it one can
use its singular values, corresponding to the square roots of the eigenvalues of the symmetric
bearing rigidity matrix (SBRM) SG = BT

G BG ∈ R6n×6n. For the sake of simplicity, eigenvalues
will be considered in the following.
As an example, consider two SBRMs, Ba ∈ R18 ×18 and Bb ∈ R18 ×18 and their eigenvalues in
ascending order, Λa = [λ1

a . . . λ18
a ] and Λb = [λ1

b . . . λ18
b ]. If rank(ker(Ba)) = rank(ker(Bb)) = 8,

then the first non-null eigenvalues will be λ9
a and λ9

b . Whichever of the two is closer to zero
indicates which one of the BRM is closer to become IBF.
Remembering that

ḃG = BG δ

and assuming δ to be the actual control motions imparted to the swarm agents in terms of
linear and angular velocities which causes a bearing measurement change of ḃG, if one considers
the squared norm of the latter as a quantifier of how much the measurement changes it obtains:

||ḃG||2 = δT BT
G BG δ = SG ||δ||2

through which the SBRM can be seen as acting as a sort of gain of the control effort into
the bearing changes. It is therefore desirable to describe the "magnitude" of the SBRM, for
example using the squared Frobenious norm ||BG||2F , representing the trace of the SBRM or
equivalently the sum of all its eigenvalues.

In addition, by noticing the partitioning of the BRM into two column blocks given by eq. 1.1,
one can think of rearranging the columns of the matrix in order to compress the information
pertaining the same agent instead of the one pertaining the same actuation. In particular,
considering the motion of each agent i is described as two triplets vi = [ṗx ṗy ṗz]T and ωi =
[θ̇x θ̇y θ̇z]T , one can permutate the columns as seen in fig. 2.4 in order to highlight what effect the
motion of a single agent has on the various bearing measurements. In particular, the diagonal
blocks describe the effect the motion of the agent has in the bearing measurements stemming
from itself. Analyzing the eigenvalues of these blocks could help in better understanding the
dynamics of the matrix when a single agent is in motion. The permutated BRM will be referred
as PBRM.

Observe fig. 2.2: each block Bij encodes how the actuation of agent j modifies the bearing
measurement coming from agent j. In particular, in the case of the diagonal blocks, it contains
the effect that moving an agent has on its very bearing measurements. By examining the non-
null singular values of the diagonal block Bii while moving agent i in the manifold, one can
observe the configurations in which the bearing is more dependent on the motion of agent i.
This may reveal some information regarding eventual symmetries.
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Figure 2.2: Schematic description of the newfound partition of the PBRM. δ̂ is the shuffled
version of the input vector, no longer partitioned by linear and rotational inputs, but by
agent. In a nutshell, block Bij encodes how the movement of agent j conditions the reading
of agent i. Therefore, the diagonal blocks encode how each agent movement conditions its
readings. In particular, given the sparsity of the non-diagonal elements, this can be considered
a good approximation of the BRM, given that also the minimum between the eigenvalues of
the diagonal blocks more or less coincides with that of the original BRM.

2.3 Simulation procedure
First, a series of simulations are carried out in different configurations in order to confirm the
theoretical premises and correct implementation of the code:

1. A noiseless BRM is computed for the current configuration on a complete and incomplete
graph (removed edges are picked randomly)

2. Rank condition (based on considerations on the formation) is checked on BRM to establish
IBR

3. The kernel of the BRM is studied in order to verify the presence of the trivial variations
accounted in (2)

4. The same framework is then perturbed in a SCALED (distances) version and in one with
randomly MORPHED positions

5. Eigenvalues of SBRM are computed for each framework (NORMAL, SCALED and MORPHED)
and compared

6. Frobenious norms of each SBRM is computed for each framework (NORMAL, SCALED and
MORPHED) and compared
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Figure 2.3: Example of column permutation effect on sparsity on a BRM ∈ R18×18. Each block
is in R6×6. Left: original BRM matrix. Right: permutated one. Gray elements represent
non-null blocks, white elements are fully zero blocks. Notice how the non-null gray blocks on
diagonal encode most of the information.

Figure 2.4: Example of column permutation on a BRM ∈ R15×18.
Upper: original BRM matrix. Lower: permutated one. Notice how the blocks on the diagonal
characterize the effect the motion of each node has in its own bearing measurements
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Then the effect of noisy measurements is considered for different configurations:

1. A noisy BRM is computed for the current configuration on a complete and incomplete
graph (removed edges are picked randomly) with noise on 1, 2, 4 or all measurements.

2. Rank condition (based on considerations on the formation) is checked on BRM to establish
IBR

3. Eigenvalues of SBRM are computed and compared

4. Frobenious norms of each SBRM is computed and compared



Chapter 3

Results

3.1 Verification of assumptions

Effectiveness of algorithm: heterogeneous 5 agents fleet
The first formation considered consists of 4 UGVs and 1 UAV disposed symmetrically around
[3, 3, 0]T with radius 0.5 m. Fig 3.1 gives a pictorial representation of the formation. The virtual
variations are n·2+1 = 11 (each agent has 2 rotations blocked plus the z movement is forbidden
for the UGVs) and the trivial variations are 4: scaling, global movement along x, along y and
coordinated rotation. This means that the expected dimension of the kernel is 11 + 4 = 15.
Since n · 6 = 30, the expected rank(B) = 30 − 15 = 15. To further confirm the correctness, for
each of these movements the linear dependency with the kernel of the BRM: all the 4 trivial
variations must be linearly dependent. In tab. 3.1 one can observe the gathered data which
confirms that the incomplete frameworks can be nonetheless IBR. For this configuration, the
number of edges for the complete case is n · (n − 1) = 20. In fig 3.2 the eigenvalues of the
matrix can be seen.

rank(B) λ16(BT B) ||BT B||2F Trivial set lin. dep.
Complete 15 0.0707 29.3183 Yes
-4 edges 15 0.0397 26.8871 Yes
-7 edges 15 0.0229 22.3331 Yes
-10 edges 13 ≈ 0 20.1171 Yes

Table 3.1: Simulation data for heterogeneous fleet of 5 agents. By removing 10 edges out of 20
the formation is no longer IBR. Notice how the more the formations becomes flexible, the more
the smallest eigenvalue approaches zero and the norm of the matrix diminishes. The trivial
variations remain included in the kernel even after the framework has become IBF, but this is
expected since two more infinitesimal variations have entered the kernel due to the fact that
the rank of B has dropped.
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Figure 3.1: Spatial framework reference for the formation.
Upper: complete graph. Lower: incomplete graph (-7 edges). Even though the graph is not
complete (UGV1 and UGV5 do not sense each other!) the IBR condition remains satisfied.
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Figure 3.2: Heterogeneous 5 agents swarm, eigenvalues of the complete graph formation. The
dotted line represents the first expected non-zero eigenvalue according to the rank requirements
for IBR for the considered configuration.
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Scalability of algorithm: homogeneous 20 UAVs fleet
For the sake of testing the robustness of the code, a formation comprises 20 UAVs is considered.
Disposed symmetrically around [3, 3, 0]T with radius 0.5 m. The virtual variations are n ·2 = 40
(each agent has 2 rotations blocked) and the trivial variations are 5: scaling, global movement
along x, along y, along z and coordinated rotation. This means that the expected dimension
of the kernel is 40 + 5 = 45. Since n · 6 = 120, the expected rank(B) = 120 − 45 = 75. The
number of edges is n · (n − 1) = 380. Table 3.2 illustrates the results for this fleet.

rank(B) λ46(BT B) ||BT B||2F Trivial set lin. dep.
Complete 75 5.4240 833.7111 Yes
-20 edges 75 5.3870 804.4807 Yes
-50 edges 75 4.8490 737.6025 Yes
-100 edges 75 4.0340 685.3442 Yes
-200 edges 75 2.0933 464.5554 Yes
-300 edges 75 0.2641 155.5196 Yes
-350 edges 60 ≈ 0 64.4952 Yes

Table 3.2: Simulation data for the 20 UAVs swarm. Notice how the percentage of the edges
lost reflects pretty accurately the percentage loss in the norm of the matrix. For example,
360/380 = 0.9474 and 804.48/833.71 = 0.9649, while 30/380 = 0.0789 and 64.49/833.71 =
0.0774.

Robustness to perturbation of the configuration: homogeneous 4
UGVs fleet
This formation is composed of 6 UGVs disposed symmetrically around [3, 3, 0]T with ra-
dius 0.5 m. This time analysis is carried out to compare the modifications applied to the
configuration. Expected kernel has dimension 3 · n + 4 = 16 and therefore the required
rank(B) = 24 − 16 = 8. This time the formation is first scaled and then morphed around
the plane (see fig. 3.3 for a pictorial reference). In fig. 3.4 one can observe the eigenvalues
comparison for the considered cases.
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rank(B) λ17(BT B) ||BT B||2F
Original 8 1.4384 7.21

Original -2 edges 8 0.5780 6.48
Original -4 edges 8 0.1565 5.83
Original -6 edges 6 ≈ 0 5.29

Scaled 8 0.9222 5.46
Scaled -2 edges 8 0.4433 4.92
Scaled -4 edges 8 0.0807 4.42
Scaled -6 edges 6 ≈ 0 3.97

Morphed 8 0.0051 3.55
Morphed -2 edges 8 0.0036 3.24
Morphed -4 edges 8 0.0006 2.89
Morphed -6 edges 6 ≈ 0 2.51

Table 3.3: Simulation data for the 3 different UGVs configurations. It is possible to observe
that both symmetry and distance play an important role on the rigidity of the framework: the
minimal eigenvalue for the scaled formation is lower than the original one, so it’s clear the
bearings encode distance information. This is intuitive since for the same motion at different
distances, the angle spanned between the two bearings is proportional to the distance itself (i.e.
distant moving agents have less effects on bearing than closer ones). As for symmetry, we can
observe that the morphed framework is very close to the IBF condition even in the scenario
with the complete graph. A symmetric configuration is guaranteed to be noncollinear, so it
is only natural that a randomly morphed configuration would have a lower performance w.r.t.
rigidity, given it can happen that the disposition of the agents gets closer to an aligned one.
This aspect will be further investigated in the following subsection 3.1.
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Figure 3.3: Framework reference for the perturbed UGV formations under complete graph.
Note that the morphed configuration gives a condition which is less rigidity, given that the
bearing readings of agent 3 are very close to one another.
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Figure 3.4: Comparison of the eigenvalues for the 3 UGVs configurations. λ17 for the morphed
case is not zero but seems so due to scale. Evidently, the morphed framework is very close
to become IBF, having lost symmetry and possibly approaching a collinear scenario. From
this graph it is possible to observe that distance plays an important role in the rigidity of the
formation.
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Rigidity and collinearity: homogenous 3 UAVs fleet
In order to highlight the effect of collinearity on the BRM, a UAV formation is assembled
such that the agents are placed almost in line with one another. The formation considered
can be seen in fig. 3.5. The expected rank(B) = 5 = 6 ∗ 3 − 13 and the requirement is
satisfied, but looking at the eigenvalues one can see that the framework is still rigid by a
miracle: λ14 = 0.0008, while λ15 = 1.345, almost 4 magnitudes of difference. In fact, by moving
agent 1 from x = 0.98 to x = 1 the rank drops and λ14 = 4 · 10−14! The effect of the analysis of
the eigenvalues is clear, even more so than the rank itself which can be misleading in correctly
evaluating the rigidity of the formation.

Figure 3.5: It is pretty noticeable that the configuration is close to collinearity. This means
that for example UAV1 has two basically identical bearing for UAV2 and UAV3, which leads
to an informative deficit that subtracts rigidity to the framework.

3.2 Effect of noise
The effect of noisy readings is simulated during the computation of the BRM matrix by addition
of a vector n ∈ R3 picked randomly from a normal multivariate distribution with mean 0 and
variable variance. The effect of such addition to the bearing measurement is quantified by
calculating the angle displacement between the original bearing (v1) and the noisy one (v2),
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namely θerr = atan2d(||v1 × v2|| , v1 · v2), where atan2d is the four-quadrant inverse tangent.
Noise is added in the local bearing measurements as follows:

berr = N (µ, Σ)
localBearing = localBearing + berr

localBearingMeasurement = localBearing
||localBearing||

globalBearingMeasurement = Ri localBearingMeasurement

Homogenous 4 agents fleet UAV, planar disposition
The first formation consists of 6 UAVs with complete graph disposed symmetrically around
[3, 3, 1]T . As a first, all UAVs are placed at the same height z = 1. Having 5 trivial motions
and 2 ∗ n = 8 virtual motions, the framework should account for dim(ker(BRM)) = 13, which
is in fact confirmed from the BRM (B0) of the non-noisy formation. Trivial motions are also
checked and all of them (coordinated rotation, translation and scaling) belong to the kernel.
Now, a single measurement is tainted with error, in particular b1 = b1→2, with a bearing error
of 8.13 [deg]. Considering that the formation is placed along a square, the bearings fluctuate
between 90 and 45 degrees, meaning this error can be as high as 18% of the true value.
Analysis of the BRM coming from this configuration (B1) signals that the matrix has raised
in rank! In particular, dim(ker(B1)) = 11 < dim(ker(B0)). This is quite inexplicable since
at most one should expect the rank of the matrix to drop with the loss of rigidity induced
by the error. By lowering the variance to σ = 0.00001 the bearing error is now at 0.0014
[deg], around 0.003%, which one should expect to be non-impactful at all. However, the noisy
matrix still gives the same rank at dim(ker(BRM)) = 11. By analyzing the eigenvalues, it
shows that λ13 = 2.8910−10, which can be safely considered as a zero eigenvalue given that
λ14 = 0.7996 is 9 magnitudes higher: this seem to be a numeric problem given by the Matlab
routine which computes the rank of matrix. Therefore, for the next considerations instead
of checking the rank value given by the Matlab routine, we will consider the dimensional
discrepancy between the two eigenvalues around the required rank condition. Table 3.4 gives
an outlook on the outcome of the simulations. Error ratio is computed considering the average
error of all the measurements and the maximum magnitude of the bearing (which for a planar
4 agents configuration is 45 [deg]).

In order to further highlight the influence of the error on the BRM, a morphed, non-
symmetric configuration has been considered. Starting from a less rigid BRM, table 3.5 shows
the evolution of the error, which confirms that the initial configuration of the swarm plays an
important role on the effect of the error.

Finally, it is interesting to observe how the noise evolves for a swarm disposition scaled by
a factor of 1.5. The result sits in an in-between the two previous conditions (table 3.6.
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Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 - 1.298 10−16 ≈ 0 0% 26.936

0.001

1 0.13% 1.297 1.95 · 10−6 0.0002% 26.936
2 0.19% 1.298 1.28 · 10−6 0.0001% 26.937
4 0.19% 1.297 6.25 · 10−6 0.0005% 26.931
12 0.14% 1.298 7.64 · 10−6 0.0006% 26.931

0.03

1 9.90% 1.270 0.0017 0.13% 26.919
2 5.83% 1.305 0.0014 0.08% 26.967
4 5.77% 1.256 0.0056 0.44% 26.792
12 4.23% 1.312 0.0065 0.50% 26.878

0.06

1 19.55% 1.238 0.0069 0.55% 26.884
2 11.69% 1.310 0.0047 0.34% 26.990
4 11.44% 1.208 0.0022 1.84% 26.636
12 8.40% 1.321 0.0025 1.92% 27.045

0.1

1 31.87% 1.195 0.0183 1.5% 26.815
2 19.51% 1.311 0.0121 0.9% 27.006
4 18.81% 1.139 0.0598 5.2% 26.386
12 13.93% 1.309 0.0679 5.33% 27.704

Table 3.4: Simulation result for 4 coplanar symmetric UAVs. Notice that the overall norm of
the matrix and the value of λ14 remain pretty much untouched by the noise. The value that
is most influenced is that of λ13 which in itself determines the rigidity of the matrix: it is the
threshold value for the rank condition for IBR on the configuration. In this table the ratio
between the two eigenvalue is considered as an indication of rigidity, since the rank calculated
by Matlab seem not to be robust. The fact that for minimal variance the eigenvalues ratio
remains small reinforces the reliability of this performance index. Also note how the norm of
the overall matrix is basically untouched by the noise, revealing that is not a so good descriptor
of the overall rigidity of the BRM.
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Figure 3.6: Morphed bearing measurement graph of the swarm. Error with variance of 0.06 on
all edges. The noise is more or less equally distributed among all edges.
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Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0 0.0343 1.6·10−16 ≈ 0 0% 6.847

0.001

1 0.006% 0.0343 3.65·10−10 1.06·10−6 % 6.847
2 0.032% 0.0343 5.78·10−9 1.68·10−5% 6.847
4 0.039% 0.0343 1.21·10−8 3.54·10−5 % 6.847
12 0.033% 0.0343 1.97·10−7 5.76·10−5 % 6.846

0.03

1 0.18% 0.0342 3.26·10−6 9.53·10−4 % 6.846
2 0.98% 0.0341 5.19·10−5 0.01 % 6.846
4 1.18% 0.0339 1.09·10−5 0.03 % 6.846
12 1.01% 0.0344 1.79·10−5 0.05 % 6.835

0.06

1 0.37% 0.0341 1.29·10−5 0.03 % 6.846
2 1.95% 0.0339 2.07·10−6 0.06 % 6.846
4 2.35% 0.0336 4.342·10−5 0.1 % 6.846
12 2.02% 0.0346 7.23·10−5 0.2 % 6.824

0.1

1 0.61% 0.0340 3.564·10−6 0.01 % 6.846
2 3.25% 0.0338 5.733·10−5 0.14 % 6.845
4 3.91% 0.0333 0.0001 0.32 % 6.845
12 3.37% 0.0350 0.0002 0.57 % 6.810

Table 3.5: In the case of non-symmetric disposition for the swarm, the matrix starts for an
already precarious rigidity without noise. One can easily see that for the same variance as
before, the impact on the average error is lower, and this translated into a better ratio between
the two eigenvalues when compared with error ratios as the one of the previous table. This
means that when the matrix does not offer much rigidity, the impact of the noise is lower.
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Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0 0.9221 1.84·10−15 ≈ 0 0% 16.210

0.001

1 0.084% 0.9227 8.695·10−8 9.42·10−6 16.211
2 0.069% 0.9221 2.45·10−7 2.66·10−5 16.207
4 0.069% 0.922 4.29·10−7 4.65·10−5 16.208
12 0.099% 0.9210 1.45·10−6 0.0001% 16.219

0.03

1 2.60% 0.9271 8.12·10−5 0.0087% 16.261
2 2.05% 0.9203 0.0002 0.02% 16.140
4 2.06% 0.9301 0.0003 0.04% 16.166
12 3.01% 0.90715 0.0014 0.15% 16.534

0.06

1 5.31% 0.9336 0.0003 0.03% 16.315
2 4.02% 0.9194 0.0007 0.08% 16.076
4 4.10% 0.9376 0.0014 0.15% 16.144
12 6.05% 0.8904 0.0061 0.68% 16.928

0.1

1 9.11% 0.9416 0.0009 0.10% 16.390
2 6.52% 0.9177 0.0019 0.21% 15.998
4 6.79% 0.9468 0.0038 0.41% 16.149
12 10.19% 0.8651 0.0191 2.21% 17.606

Table 3.6: The scaled disposition exhibits a middle ground between the symmetric disposition
and the morphed one.
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Homogenous 4 agents fleet UAV, non-coplanar disposition
Same procedure as above is repeated considering a fleet of 4 UGV but his time without forcing
a coplanar disposition (fig. 3.7). The maximum bearing angle used in order to compute the
average error ratio is the same as before (45 [deg]).

Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0 1.3192 1.5387e-15 0 23.971

0.001

1 0.121% 1.3332 3.5686e-07 2.7048e-05% 23.972
2 0.123% 1.3294 1.311e-06 9.9367e-05% 23.971
4 0.127% 1.3326 2.3631e-06 0.0001% 23.965
12 0.132% 1.3281 4.1856e-06 0.0003% 24.008

0.03

1 3.67% 1.323 0.0003 0.024% 23.98
2 3.66% 1.323 0.0011 0.086% 23.93
4 3.76% 1.322 0.0020 0.15% 23.80
12 4.02% 1.324 0.0041 0.31% 25.16

0.06

1 7.42% 1.3332 0.0013 0.10% 23.997
2 7.24% 1.3294 0.0044 0.33% 23.902
4 7.48% 1.3326 0.0076 0.57% 23.668
12 8.21% 1.3281 0.0186 1.40% 26.585

0.1

1 12.507% 1.343 0.004 0.284% 24.011
2 11.905% 1.336 0.012 0.876% 23.844
4 12.391% 1.339 0.020 1.501% 23.539
12 14.111% 1.281 0.064 5.004% 28.966

Table 3.7: Once again, when the bearing error becomes very impactful (10%+ of measurement)
the ratio between the eigenvalue reaches an amount over the 1% which at this point can be
assimilated to the loss of IBR. It is also of notice that the norm enlarges when all the edges
are contaminated by noise.
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Figure 3.7: Disposition for the second noise experiment. Upper: symmetric configuration.
Lower: morphed configuration.



32 CHAPTER 3. RESULTS

Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0 0.010 8.4298e-16 0% 6.489

0.001

1 0.003% 0.011 7.6828e-11 7.2378e-07 % 6.490
2 0.049% 0.011 1.3648e-09 1.2857e-05 % 6.489
4 0.024% 0.011 1.6167e-09 1.5231e-05 % 6.489
12 0.030% 0.011 4.2106e-09 3.968e-05 % 6.490

0.03

1 0.097% 0.011 6.9629e-08 0.001% 6.490
2 1.453% 0.011 1.1432e-06 0.011% 6.479
4 0.722% 0.011 1.3721e-06 0.013% 6.473
12 0.915% 0.011 3.5685e-06 0.034% 6.495

0.06

1 0.194% 0.011 2.8054e-07 0.003% 6.490
2 2.876% 0.011 4.2119e-06 0.040% 6.467
4 1.422% 0.011 5.1558e-06 0.049% 6.457
12 1.843% 0.010 1.3044e-05 0.125% 6.498

0.1

1 0.325% 0.011 7.8685e-07 0.007% 6.490
2 4.728% 0.011 1.0404e-05 0.098% 6.452
4 2.323% 0.011 1.3166e-05 0.124% 6.438
12 3.098% 0.010 3.1227e-05 0.303% 6.498

Table 3.8: Given the morphed disposition presents collinearity, it is possible to observe that
λ14 has a particularly low value. Once again, the impact of the noise is lessened with respect to
the previous simulation, which translates into an higher ratio between eigenvalues in the worst
scenario (0.1 variance, all edges), which however does not cross the 1% threshold In this case,
the norm enlargement observed previously does not present itself.

Heterogeneous 4 agents fleet
The simulation is now run on a fleet composed of 3 UGVs and 1 UAV. Symmetric and morphed
disposition are shown in fig. 3.8. Once again the average bearing error is computed on 45 [deg].



3.2. EFFECT OF NOISE 33

Figure 3.8: Disposition for the third noise experiment. Plot for variance 0.0001 on all edges.
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Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0% 0.14264 1.6673e-15 0% 17.486

0.001

1 0.12746% 0.14264 2.0212e-07 0.0001417% 17.491
2 0.094108% 0.14261 6.7007e-07 0.00046986% 17.479
4 0.088622% 0.14277 6.0121e-07 0.00042111% 17.485
12 0.14897% 0.14218 4.5893e-06 0.0032279% 17.487

0.03

1 3.9432% 0.14265 0.00019266 0.13506% 17.633
2 2.7225% 0.14172 0.00051295 0.36196% 17.274
4 2.6634% 0.14646 0.00053938 0.36829% 17.503
12 4.4891% 0.12872 0.0047174 3.6648% 17.528

0.06

1 8.1438% 0.14265 0.0008169 0.57266% 17.79
2 5.2511% 0.14085 0.0017418 1.2366% 17.089
4 5.3534% 0.15058 0.0022252 1.4777% 17.61
12 9.0136% 0.11541 0.020674 17.913% 17.569

0.1

1 14.173% 0.14266 0.0024459 1.7145% 18.015
2 8.356% 0.13979 0.0039218 2.8056% 16.877
4 9.0242% 0.15665 0.0067213 4.2907% 17.883
12 15.081% 0.10054 0.056878 56.575% 17.602

Table 3.9: The behavior of the heterogeneous fleet is completely different from the ones observed
up to this point. The low variance simulation behaves as usual, but as soon as the variance rises
a bit, even for average error ratios comparable to the previous ones, the effect of an all-noisy
graph is very apparent, shifting λ14 by a great amount in addition to λ13 and thus affecting the
ratio between the two. This phenomenon presents itself only when all the edges are affected
by noise, as can be observed in the discontinuity 4 → 12 in the eigenvalue ratio, which is out
of scale when considering the previous simulations.
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Variance # Noisy edges Average error ratio λ14 λ13 λ13/λ14 ||B||2F
- 0 0% 0.0017821 1.1211e-17 0% 5.9192

0.001

1 0.0030418% 0.001782 5.738e-12 3.2199e-07% 5.9192
2 0.017738% 0.0017821 1.6076e-10 9.0211e-06% 5.9192
4 0.016314% 0.0017822 1.3417e-10 7.5284e-06% 5.9193
12 0.015235% 0.0017826 7.4705e-10 4.1908e-05% 5.9192

0.03

1 0.091103% 0.0017811 5.1503e-09 0.00028917% 5.9192
2 0.53241% 0.0017822 1.4632e-07 0.0082102% 5.9191
4 0.48862% 0.0017845 1.2166e-07 0.0068173% 5.9199
12 0.45706% 0.0017979 6.7197e-07 0.037375% 5.9196

0.06

1 0.1819% 0.0017801 2.0544e-08 0.0011541% 5.9192
2 1.0653% 0.0017824 5.9196e-07 0.033211% 5.9189
4 0.97557% 0.0017871 4.9033e-07 0.027437% 5.9205
12 0.91415% 0.0018153 2.6844e-06 0.14788% 5.9198

0.1

1 0.30247% 0.0017787 5.6857e-08 0.0031965% 5.9192
2 1.7766% 0.001783 1.6686e-06 0.093583% 5.9187
4 1.6222% 0.0017908 1.3755e-06 0.076812% 5.9214
12 1.5237% 0.0018409 7.4349e-06 0.40388% 5.92

Table 3.10: Considering what happened for the symmetric configuration, it is worth noticing
that the non-symmetric one consistently exhibits more resilience to the effect of the noisy
measurements. The discontinuity which can be observed in the eigenvalues ratio 4 → 12 is still
present, however with a lesser degree than before, given in the worst case scenario the ratio
goes 0.07 → 0.40 (5×) while before it went 4.2 → 56.5 (14×).



36 CHAPTER 3. RESULTS

Homogenous 14 agents fleet UAV, planar disposition
Finally, to illustrate how the cardinality of the agents relates to noise, a symmetric planar
swam of 14 UAVs is tested as seen in fig. 3.9. Since the graph has n · (n − 1) = 182 edges,
the noisy will characterize a different amount of measurements: 1, 10, 30 and 100 edges. The
maximum bearing considered will be 180/14 = 12.8[deg] and also the variances will be different,
accounting for the new maximum bearing.

Variance # Noisy edges Average error ratio λ34 λ33 λ33/λ34 ||B||2F
- 0 0% 5.1709 4.9897e-14 9.6495e-13% 711.95

0.001

1 1.3797% 5.1705 3.9399e-05 0.000762% 711.48
10 1.2092% 5.1702 7.5433e-05 0.001459% 711.63
30 0.93256% 5.1721 0.00014703 0.0028427% 712.58
100 1.1136% 5.1638 0.00042042 0.0081417% 711.58

0.009

1 12.242% 5.166 0.0029404 0.056919% 707.86
10 10.839% 5.0456 0.0059914 0.11874% 708.96
30 8.448% 5.1257 0.012249 0.23897% 718.64
100 10.027% 4.9664 0.034345 0.69154% 709.38

0.018

1 24.059% 5.1599 0.010446 0.20245% 704.03
10 21.57% 4.9115 0.023339 0.47519% 705.81
30 17.032% 5.0234 0.05071 1.0095% 727.69
100 20.061% 4.7707 0.1374 2.8801% 708.09

0.03

1 39.086% 5.1504 0.024276 0.47134% 699.27
10 35.685% 4.8745 0.061879 1.2695% 701.36
30 28.723% 4.9394 0.14778 2.9919% 743.83
100 33.437% 4.6111 0.37338 8.0973% 707.89

Table 3.11: Of course, being that the swarm now has more components, the inter-agent bearing
angles will be smaller and denser. This means that maintaining the previous variance would
cause an unrealistic and unsustainable amount of error, which can still be observed here on the
last case with variance 0.018 - 0.03. Apart from this issue, the behavior seems to retrace the
one of the 4 agent configuration.
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Figure 3.9: Formation of 14 UAVs considered.





Chapter 4

Conclusions

This effort allowed ascertaining that the procedure to build the unified bearing rigidity matrix
works as intended. Such procedure can be readily implemented in a programmatic fashion
and generalized for any manner of agent in SE(3) and for any cardinality. In addition, the
theoretical rank requirements of the matrix have been confirmed in all considered noiseless
configuration. In particular, the fact that trivial variations are spanned by the kernel of the
BRM has been confirmed. That said, it is also apparent that rigidity is not a binary fea-
ture, but instead has direct dependence on the value of the smallest non-null eigenvalues of
the SBRM. Symmetric disposition of agents has been shown to exhibit greater rigidity than
the non-symmetric counterpart, in particular it has been confirmed that distances, and not
only pure orientations, play an important part in the rigidity characteristics. Near-collinear
configuration correspond to critical amount of rigidity, if any. The norm of the BRM seem to
have direct correlation with the amount of edges w.r.t. a complete graph condition. As for the
experimentation concerning bearing measurement error, it has been confirmed that it has a far
greater effect on a symmetric configuration starting for a stronger rigidity condition than on a
less rigid formation. The norm of the BRM remains relatively untouched by the error effect, as
does the second to last non-null eigenvalue, which is effected only in the case the error amount
is comparable with measurement itself. Noise seem to have a greater effect on inherently more
rigid configurations (in particular symmetric one), while starting from a lesser degree of rigidity
give more resilience to bearing error. Heterogeneous configurations appear to be particularly
exposed to the effect of noise whenever the entirety of the graph is affected, or at least more so
than homogenous ones. Finally, the more agents there are in a formation, the more the relative
bearing angles will be small. Therefore, if the same bearing error amount would be applied to
two different fleets, the one with a lesser number of agents will be affected the least regarding
its rigidity characteristic: the more numerous the fleet, the more prone to errors.
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