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Abstract

Searching for New Physics is the primary goal of the CMS experiment at the LHC. Performing such
search without relying on a specific theory extending the Standard Model (SM) is of paramount
importance but at the same time highly non-trivial. Recently, several proposal have been made in
that sense, in particular exploiting the power of modern ML techniques. The goal of this thesis is to
apply such model-independent strategies to concrete physics cases, aiming at detecting signals solely

by comparing the collision data with what predicted by the SM.

Sommario

La ricerca di nuova fisica è l’obiettivo primario dell’esperimento CMS a LHC. Eseguire una ricerca del
genere senza fare affidamento su una teoria specifica che allarga il Modello Standard (SM) è di

primaria importanza, ma allo stesso tempo altamente non banale. Recentemente, sono state avanzate
diverse proposte verso questa direzione, in particolare sfruttando la potenza delle tecniche moderne di
Machine Learning. L’obiettivo di questa tesi è applicare tali strategie “model-independent” a casi

fisici concreti, mirando a rivelare segnali esclusivamente comparando i dati delle collisioni con quelli
predetti dallo SM.
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Chapter 1

Introduction

1.1 High-Energy Particle Physics and Standard Model

Understanding the nature of the particles that constitute matter and radiation is one of the main
concerns of science. Particle Physics, also known as High Energy Physics (briefly, ‘hep’), is the branch
of Physics that conducts this ambitious research and its development can be located near the end of
19th century. Since then, numerous theoretical models have been built in order to predict the outcome
of experiments, which can prove their correctness.

At the present, the model that better describes the observed phenomena in hep is the Standard
Model, which will be identified with the acronym SM. Since it is the best basis for comparison with
experimental results, it will be denoted as ‘reference model’ in the following discussion.
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Figure 1.1: Standard Model of Physics.

However, althought SM has proved to be extremely successful in predicting a wide variety of particle
processes with great accuracy, there are still unexplained phenomena. Among these:

• It doesn’t explain the canonical theory of gravitation, general relativity, in terms of quantum
field theory1.

1It is important to remark that an eventual physical confirmation of a theoretical particle known as a graviton would
account for it to a degree.

1



2 Chapter 1. Introduction

• Although, as it now stands, it can explain why neutrinos have masses, the specifics of neutrino
mass are still unclear.

• It doesn’t explain the existence of dark matter.

Future experiments will be able to explore never observed before phenomena, or they will mesaure
known phenomena with a even better accuracy. These facts suggest that new physics (i.e. physical
laws not yet established) exists and its research is actually one of the most challenging problems in
High Energy Physics.

1.1.1 Researches for new physics

Searching for new physics concretely means searching for discrepancies between observed data and
the reference model. This task can be phrased in a more technical way. What we are able to do is taking
repeated measurements of a multi-dimensional random variable x, experimentally speaking. Then, we
can build a Probability Density Function (PDF) using experimental data and test the reference model
distribution against the actual data. The first difficulty encountered by seeking this approach is that
the true underlying data distribution will be quite similar to the reference one. It means that, if data
contain new physics effects, they will be localized in a low-probability region where only a small fraction
of event is present, or they will be spread in a large region of the x space.

The most widely employed approach to the problem is to search for specific new physics models. It
has the advantage to be physically informative, even if the compatibility of the data with the reference
model is confirmed. But there is a critical disadvantage: a statistical test which is designed to be
sensitive to one specific hypothesis is typically insensitive to data departures of a different nature from
the one expected. So, even if new physics is present in the data, it would not be discovered because
it doesn’t belong to the class of hypothetical models we are searching for. In Figure 1.2 and 1.3 there
are many examples of excluded models in order to show how difficult it is to search for new physics
with this approach.

1.1.2 Benefits of a model-independent approach

After having underlined the difficulties of a model-dependent approach, we can now introduce the
strategy of a model-independent approach. But first, it is necessary to clarify the meaning of the
expression ‘model-independent’ since it is ill-defined in statistic when it is bound to the concept of
hypothesis test. In fact, testing one hypothesis requires an alternative hypothesis to compare with.
What we have is basically a set of alternative hypothetical distributions depending on free parameters,
also called alternative probability model in statistics.

In Physics a model is a set of physical laws that make us able to predict these distributions. So we
define a certain approach ‘model-independent’ when the alternative distributions don’t follow from a
physical model, but are selected with other criteria, such as flexibility. It means that the distributions
can adapt to the true underlying data distribution for an appropriate choice of the free parameters.

The main reason for which we demand a model-independent approach is the advantage of sensitivity
to a large variety of new physics scenarios, including those that are not predicted by any of the models
constructed until now.

1.2 Machine Learning answer to the problem

The application of ML techniques to Particle Physics is not the newest addition to the field. The
algorithms of this branch are currently applied to aid event selection in the analysis of data given by
detectors. In fact, most of the collider events do not produce particles of interest, so making effective
measurements requires a filter, in which events producing particles of interest are separated from events
producing other particles not involved in the processes we want to study.

However, the current techniques used in hep fail to capture all of the available information, as
proved by [1]. The recent developments in Deep Learning theory can overcome these issues. (Deep)
Neural networks provide powerful classifiers and can also solve the curse of high dimensionality of
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4 Chapter 1. Introduction

data. Moreover, circuit complexity theory has proved that deep neural networks have the potential
to compute in an unbiased way arbitrary complex functions in a very efficient way. Employing them
to parametrize alternative distributions for model-independent new physics searches is thus a highly
motivated attempt.

Several approaches with neural networks to the problem of new physics research have been devel-
oped so far, starting from the one given by [1]. The approach employed in this thesis work is introduced
by [2]. Technically speaking, we can exploit neural networks to find an anomalous behavior, relative to
the reference model, of the entire data sample, with which we train the network. The process studied
is the decay of the Z boson into a pair of muon-antimuon, assuming for new physics events different
kind of signals in order to test the efficiency of the approach.

The content of this thesis work is ordered as follows:

• In Chapter 2 a general recap on deep learning theory and on neural networks is given. Common
practices in the training procedure are explained too.

• In Chapter 3 LHC collider is described along with CMS experiment. In particular, in Chapter 4
a summary on the process analyzed can be found.

• In Chapter 5 the algorithm employed for anomaly detection is explained and in Chapter 6 a
necessary tuning procedure is illustrated. Finally, the results are presented in Chapter 7.

• In the final Chapter 8 possible developments of the method and of the algorithm are provided.



Chapter 2

Introduction to Neural Networks

2.1 Artificial Neural Networks

Nature has inspired many inventions, so it seems logical to look at the architecture of brain for
inspiration on how to build an ‘intelligent machine’. This is the key idea which inspired Artificial
Neural Networks (a.k.a. ANNs). In fact, an ANN is a computing system inspired by the biological
neural networks which consitute the animal brain. Therefore, an ANN is based on a set of connected
units or nodes called artificial neurons for the comparison with biological neurons. Each connection,
like the synapses in a biological brain, can transmit a signal from one artificial neuron to another.
An artificial neuron that receives a signal can process it and then signal additional artificial neurons
connected to it.

The simplest model which can be given for an artificial neuron is the so-called ‘perceptron’, de-
veloped in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by earlier work by Warren
McCulloch and Walter Pitts [16]. A perceptron takes several binary inputs, x1, . . . , xn, and produces
a single binary output. Rosenblatt proposed a simple rule to compute the output. He introduced the
weights, w1, . . . , wn, real numbers expressing the importance of the respective inputs to the output.
The output of the neuron, 0 or 1, is determined by whether the weighted sum is less than or greater
than a threshold value.

x1

x2

...

xn−1

xn

w1

w2

...

wn−1

wn

∑ output =

{
0 if

∑
i xiwi ≤ threshold

1 if
∑

i xiwi > threshold

Inputs Weights

Figure 2.1: Mathematical model of a perceptron.

However, this kind of neuron is not suitable to accomplish the complex tasks that Deep Learning
tries to solve nowadays. It is only the starting point of the rapid evolution that this field has been
experiencing. In the following Section, more refined types of artificial neurons, which are exploited
at the present, are discussed. What matters now is how these units can be combined to assemble a
Neural Network.

In order to make the notation easier to understand, from now on out we will denote ANN with
Neural Network, or more simply NN. In common NN implementations, neurons are arranged in con-
secutive layers, with the first and last ones called respectively input and output layers. Each layer

5



6 Chapter 2. Introduction to Neural Networks

can be fully connected with the subsequent layer, i.e. every single neuron of a layer is connected with
all the neurons in the next layer. It is the case of a fully connected NN. In other implementations,
neurons can also be only partially connected in the meaning previously defined. For example, taking
into account a network with 4 input neurons, 2 output neurons and a hidden layer with 8 neurons, the
difference between the two types is highlighted by Figure 2.2 and 2.3.

In[#1]

In[#2]

In[#3]

In[#4]

Out[#1]

Out[#2]

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Fully connected ANN.

In[#1]

In[#2]

In[#3]

In[#4]

Out[#1]

Out[#2]

Hidden
layer

Input
layer

Output
layer

Figure 2.3: Partially connected ANN.

We will consider fully connected NNs to explain in a more technical manner their working principles.
In particular, we will consider a network composed of a number of layers that will be denoted with L.
A NN can be described mathematically by the composition of several functions, called nested units,
associated to a certain layer, for example:

fNN(~x) = f ◦ g ◦ h ◦ · · · ◦ ~x = f(g(h(. . . (~x)))) (2.1)

with ~x the input of the NN and fNN its output. The units in this representation can be of two kinds:

• Linear transformations:

h(~x) = wl~x+~bl (2.2)

where:

. wl is a matrix of free parameters, called weights, whose elements [w]li,j are the connection
values between the jth neuron in the (l − 1)th layer and the ith neuron in the lth layer.

. ~bl is a vector of free parameters, called biases, of the neurons in the lth layer.

• Non-linear transformations, which don’t depend on free parameters:

g(~x) = [g(x1), . . . , g(xN )] (2.3)

It is possible to deduce through this formalism that a NN is a powerful way to parametrize a set
of functions, whose elements are spanned by weights and biases. Given the number of layers L of the
NN, this set will be denoted as FL:

FL = {fNN(x;w,~b), ∀ w,~b} (2.4)

The question of interest now is how to find the parameters w and ~b that best suit to our purpose.
It is possible to achieve this accomplishment through a process called ‘training’, which is one of the
key ideas behind the philosophy of Neural Networks and Deep Learning. Hence, we need to implement
an algorithm capable of updating the free parameters of the net to make them suitable to describe
a dataset D given to the input layer. Moreover, a good choice of the architecture of the NN, of the
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algorithm and of the weights and biases could generalize the results of the procedure to a bigger dataset
D̃.

In the following Sections a step by step procedure of the training process will be carefully explained.
Moreover, several techniques will be listed, considering that there isn’t a fixed scheme in the completion
of the algorithm, but a certain combination of them can fit better to a certain problem than another
one.

2.2 Choice of NN architecture and activation functions

The flexibility of NNs is also one of their main drawbacks. In fact, there are many hyperparameters
to tweak. But what do we mean with the word ‘hyperparameter’? It was previously described that a
NN can parametrize a wide set of functions with the right choice of weights and biases, which are the
free parameters of the net. However, there are many other parameters we have to consider and tune if
we want to answer to our demands. They are going to be presented step by step in the implementation
of the learning procedure.

The first thing we have to take into account in the development of a NN is its achitecture, i.e. the
number of layers and the number of neurons for each layer. The architecture of a NN is the first of the
hyperparameters of the net. After this step, the activation functions for every layer are to be selected
among a wide variety of solutions.

2.2.1 Number of hidden layers

For many problems, it is possible to begin with a single hidden layer and get reasonable results. As a
matter of facts, it can be proved that a NN just like the previous one can model even the most complex
functions provided it has enough neurons [12]. This was the reason for which many researchers thought
for a long time that there was no need to investigate any deeper NNs. However, deep networks (i.e.
with more than one hidden layer) are much more powerful than shallow ones. They have a much higher
parameter efficiency because they are capable of modelling complex functions using exponentially fewer
neurons than shallow nets [15]. Through this expedient the training process could be sped up for the
fewer number of free parameters.

Another important reason to prefer deep networks for more complex problems has a heuristic jus-
tification. In fact, this kind of NNs is more adaptable to the hierarchical structure of real-world data.
Lower hidden layers model low-level features, intermediate hidden layers combine these low-level fea-
tures to model intermediate-level features, and the highest hidden layers and the output layer combines
these intermediate features to model high-level features. Moreover, not only does this hierarchical ar-
chitecture help deep NNs converge faster to a good solution, it also improves their ability to generalize
to new datasets, which is one of the primary aims.

In summary, for many problems it is possible to start with just one or two hidden layers and it will
work just fine. For more complex problems, the strategy is to gradually raise the number of hidden
layers until the model starts overfitting the training dataset.

2.2.2 Number of neurons per hidden layer

Obviously the number of neurons in the input and output layers is determined by the type of input
and output required by the problem. For the hidden layers, a common practice is to size them to
form a funnel, with fewer and fewer neurons at each layer. This possible architecture is motivated
by the fact that many low-level features can combine into far fewer high-level features. However, this
practice is not as common now and it is a valid solution to use the same size for all hidden layers.
The advantage of the last practice is that there is only one hyperparameter to tune for the number of
neurons per layer, instead of one hyperparameter per layer. Just like for the number of layers, we can
try to increase the number of neurons gradually until the network starts overfitting the data.

In general, it is more productive to increase the number of layers than the number of neurons per
layer. Finding the perfect amount of neurons is quite difficult. A simpler approach is to pick a model
with more layers and neurons than we actually need and then stop the training process earlier in order
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to prevent it from overfitting. It is worth to employ also some regularization techniques that will be
presented further.

2.2.3 Activation functions

For each training instance, the algorithm employed feeds it to the network and computes the output
of every neuron in each consecutive layer. This output is given by a function called ‘activation’. The
selection of the activation functions for every layer is not only quite important if we want to get excellent
results, but it is also crucial to speed up the computation, in particular if the expected training time is
relatively long. It is possible to assemble a network with a different activation per layer depending on
what we want to do. Several functions that suit to the purpose are presented below along with their
characteristics.
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Step function

a(x) =

{
1 x ≥ 0

−1 x < 0
(2.5)

A neuron with this activation is called linear threshold unit
(LTU). A single LTU can be used for simple linear binary
classification problems. In general a network of LTU could
not be sufficient to get reasonable results.

−4.0 −2.0 0.0 2.0 4.0
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

a
(x

)

Sigmoid function

a(x) =
1

1 + e−x
(2.6)

The sigmoid function has a well-defined nonzero derivative ev-
erywhere, allowing the algorithms presented in next Sections
to work properly and make progresses at every step. It is
probably one of the most employed for its properties.
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Hyperbolic tangent function

a(x) = tanh (x) (2.7)

Just like the sigmoid function, it is S-shaped, continuous
and differentiable, but the difference is that the output value
ranges from -1 to 1 (instead of 0 to 1), which tends to make the
output of each layer more or less normalized at the beginning
of training. This often helps to speed up convergence.
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ReLU function

a(x) = max(0, x) (2.8)

It is continuous but not differentiable at x = 0. However, in
practice it works very well and has the advantage of being
very fast to compute. It does not have a maximum output
value.

2.3 Loss functions

Another key concept of the training algorithm is evaluating if the network is working right. For this
purpose, we have to quantify how much network predictions are wrong and we can do it by choosing a



2.3. Loss functions 9

‘loss function’, or also called ‘cost function’ or ‘objective function’. There is a wide variety also for this
kind of functions, but they are more related to the problem to solve than the activations. Choosing a
wrong loss means getting worse results for our model. Sometimes a loss function is built from scratch
to solve a single problem, so it is built ad hoc for a specific purpose.

In general, most Deep Learning algorithms involve optimization in some sort. Optimization refers
to the task of either minimizing or maximizing a function f(x) by altering x. A more common practice
is to phrase the problem in terms of minimizing f(x). Maximization is equivalent to minimization
processes if we consider the function −f(x).

A selection of possible techniques that can be used for optimization is presented in Section 2.5. In
the space below some of the most common loss functions are given along with the terms of use.

• Mean Squared Error (MSE or L2 Loss):
As the name suggests, Mean Square Error is measured as the average of squared difference
between predictions yi and actual observations ŷi.

LMSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.9)

It is only concerned with the average magnitude of error irrespective of its direction. However, due
to squaring, predictions which are far away from actual values are penalized heavily in comparison
to less deviated predictions. Plus MSE has nice mathematical properties which makes it easier
to calculate gradients.

• Mean Absolute Error (MAE or L1 Loss):
Mean absolute error is measured as the average of sum of absolute differences between predictions
yi and actual observations ŷi.

LMAE =
1

n

n∑
i=1

|yi − ŷi| (2.10)

Like MSE, this as well measures the magnitude of error without considering its direction. Unlike
MSE, MAE needs more complicated tools such as linear programming to compute the gradients.
Plus MAE is more robust to outliers since it does not make use of square.

• Cross Entropy Loss (Negative Log-Likelihood):
This is the most common setting for classification problems. Cross-entropy loss increases as the
predicted probability for a class out of M possibilities diverges from the actual label.

H(yo, po) = −
M∑
i=1

yo,i log po,i (2.11)

Terminology:
M = Number of classes
y = Binary indicator (0 or 1) if class label i is the correct classification for observation o
p = Predicted probability observation o is of class i
So, when the label yo,i is equal to 1, the other terms of the sum disappear. An important aspect
of this is that Cross Entropy Loss penalizes heavily the predictions that are confident but wrong.

• Kullback-Leibler Divergence (KL):
In mathematical statistics, the Kullback–Leibler Divergence (also called ‘relative entropy’) is a
measure of how a probability distribution is different from a second reference probability distri-
bution. Translated in terms of our optimization problem:

DKL(p||q) = −
(

M∑
i=1

po,i log qo,i −
M∑
i=1

po,i log po,i

)
(2.12)
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2.4 Backpropagation algorithm

When we use a feedforward neural network to accept an input x and produce an output ŷ, in-
formation flows forward through the network. The input x provides the initial information that then
propagates up to the hidden units at each layer and finally produces ŷ. This is called ‘forward propa-
gation’.

During training, forward propagation can continue onward until it produces a scalar loss L(w,~b).
The backpropagation algorithm, often simply called ‘backprop’, allows the information from the loss
to then flow backward through the network in order to compute the gradient of the loss respect to the
free parameters w and~b. Numerically evaluating such an expression can be computationally expensive.
The backpropagation algorithm does so using a simple and inexpensive procedure.

The fundamental equations of the algorithm are presented below with σ indicating the activation
function and a its output2. The proof of these equations is based on the chain rule applied to derivatives
calculation and can be found in [16].

δL = ∇aL� σ′(zL) (2.13)

δl = [(wl+1)T δl+1]� σ′(zl) (2.14)
∂C

∂bli
= δli (2.15)

∂C

∂wl
ik

= al−1k δli (2.16)

where:

al = σ(wlal−1 +~bl)

a0 = x

The backpropagation algorithm is reported in form of pseudo-code in Algorithm 2. It has to be
specified that this is adapted for a fully connected network. In the case of a not-fully connected network
the code becomes a bit more complex, but the concept behind is the same.

Algorithm 1 Forward propagation through a typical deep neural network and the computation of the
cost function [11]. The loss L(ŷ, y) depends on the output ŷ and on the target y. The symbol θ will
be used to indicate both weights and biases. σ indicates the activation function.
Require: Network depth, L
Require: w(i), i ∈ {1, . . . , L}, the weight matrices of the model
Require: b(i), i ∈ {1, . . . , L}, the bias parameters of the model
Require: x, the input to the process
Require: y, the target output
1: procedure Forward Propagation(x)
2: a(0) = x
3: for k = 1, . . . , L do
4: z(k) = b(k) + w(k)a(k−1)

5: a(k) = σ(z(k))
6: end for
7: ŷ = a(L)

8: return ŷ, L(ŷ, y)
9: end procedure

2In the backprop equations, the symbol � is the Hadamard product. Given two matrices A and B of the same
dimension m× n, A�B is a matrix of the same shape with elements given by:

[A�B]ij = [A]ij [B]ij
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Algorithm 2 Backward computation for the deep neural network of Algorithm 1, which uses, in
addition to the input x, a target y [11]. This computation yields the gradients on the activations a(k)

for each layer k, starting from the output layer and going backwards to the first hidden layer. From
these gradients, which can be interpreted as an indication of how each layer’s output should change to
reduce error, one can obtain the gradient on the parameters of each layer. Just like in Algorithm 1,
the activation function is indicated by σ.
1: procedure Backward Computation(x) . After the forward computation
2: g ← ∇ŷL = ∇ŷL(ŷ, y) . Compute the gradient on the output layer
3: for k = L,L− 1, . . . , 1 do
4: g ← ∇z(k)L = g � σ′(z(k))
5: ∇b(k)L = g
6: ∇w(k)L = ga(k−1) T

7: g ← ∇a(k−1)L = w(k) T g
8: end for
9: return ∇b(k)L, ∇w(k)L, k ∈ {1, . . . , L}

10: end procedure

2.5 Updating free parameters: Optimizers

Now that we have a solid method to compute the derivatives respect to free parameters of the loss
function L, we can update weights and biases according to the derivatives. In fact, those quantities
can be seen as a measure of how much the parameters are to be changed in order to get results that
resemble the output. The basic idea is to change w and ~b of a quantity equals to the corrisponding
derivative multiplied by −η, where η is another hyperparameter called ‘learning rate’. It is in general
a small number that represents the speed of the learning process. It is fixed at the beginning of the
procedure for some algorithms, for others it is variable during the training process, starting from a
predefined value.

We focus now on the algorithms that execute the updating phase of the parameters. They are
called optimizers, just like the title of the Section suggests, and also for them there is a wide variety
of choices. Some of them are still under study because their generalization power has not be proven
completely. We’ll start to explain one of the simplest, the Stochastic Gradient Descent (SGD), and
then we will introduce the so called fast optimizers. Training a very large deep neural network can be
painfully slow, but this kind of optimizers, along with some other techniques, give a huge boost to the
computation.

2.5.1 An example of algorithm with fixed learning rate

Algorithm 3 Stochastic Gradient Descent (SGD) update at training iteration k [11].
Require: Learning rate ηk = η
Require: Initial parameters θ
Require: Minibatch dimension m
1: procedure SGD({x(i)}i=1,...,n) . Take as input a dataset of n elements
2: while stopping criterion not met do
3: Sample a minibatch {x(1), . . . , x(m)} from the training set with corresponding targets y(i).
4: ĝ ← + 1

m∇θ
∑

i L(f(x(i);θ), y(i)) . Compute gradient estimate
5: θ ← θ − ηĝ
6: end while
7: return θ
8: end procedure
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Figure 2.4: Example of application of the Gradient Descent optimization with a linear fit: y = θ0 + θ1x.

2.5.2 An example of algorithm with adaptive learning rates

Algorithm 4 AdaM algorithm [11].

Require: Step size ε (suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1,ρ2 ∈ [0, 1) (suggested defaults: 0.9 and

0.999 respectively)
Require: Small constant δ, usually 10−8, used to stabilize division by small numbers
Require: Initial parameters θ
Require: Minibatch dimension m
1: procedure AdaM({x(i)}i=1,...,n) . Take as input a dataset of n elements
2: Initialize 1st and 2nd moment variables, s = 0, r = 0
3: Initialize time step t = 0
4: while stopping criterion not met do
5: Sample a minibatch {x(1), . . . , x(m)} from the training set with corresponding targets y(i).
6: g ← + 1

m∇θ
∑

i L(f(x(i);θ), y(i)) . Compute gradient estimate
7: t← t+ 1
8: s← ρ1s+ (1− ρ1)g . Update biased 1st moment estimate
9: s← ρ2r + (1− ρ2)g � g . Update biased 2nd moment estimate

10: ŝ← s
1−ρt1

. Correct bias in 1st moment

11: r̂ ← r
1−ρt2

. Correct bias in 2nd moment

12: ∆θ = −ε ŝ√
r̂+δ

. Compute parameter update
13: θ ← θ + ∆θ
14: end while
15: return θ
16: end procedure

2.6 Other techniques

It is possible to improve the performances of a NN through some other techniques. In particular,
those techniques become necessary when the model that the net has to learn is quite complex and so
the architecture of the net too.
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2.6.1 Regularizers

Regularization is one of the central concerns of the field of Machine Learning, rivaled in its impor-
tance only by optimization. Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error3. In practice, the most common
way to regularize a model that learns a function f(x;θ) is adding a penalty called ‘regularizer’ to the
cost function. An example employed when weight decay is applied to the parameters is the following
one:

Ω(w) = wTw (2.17)

So the new regularized loss function becomes:

J(w,~b) = L(w,~b) + Ω(w) (2.18)

2.6.2 Dropout

The most popular regularization technique for deep neural networks is arguably dropout. It was
proposed by [13] in 2012 and further detailed in [14]. It has proven to be successful.

It is a very simple algorithm: at every training step, every neuron (including the input neurons
but excluding the output neurons) has a probability p of being temporarily ‘dropped out’, meaning
it will be entirely ignored during this training step, but it may be active during the next step. The
hyperparameter p is called ‘dropout rate’ and it is typically set to 0.5. After training, neurons don’t
get dropped anymore.

dropout ×
×

×

×

×

×

×

Figure 2.5: Example of dropout in NNs.

A possible explanation of the effectiveness of dropout could be given. Neurons trained with dropout
can’t co-adapt with their neighbouring neurons. They have to be useful as possible on their own. They
can’t rely excessively on just a few input neurons and so they must pay attention to each of their input
neurons. They end up being less sensitive to slight changes in the inputs. In the end, we get a more
robust network that generalizes better.

2.6.3 Parameter initialization strategies

If we want to get better results from training procedure and to decrease training time, it is crucial
to adopt a good initialization strategy of the free parameters. If we start with a set of parameters
quite near to the set that minimizes the loss function, the training algorithm will rapidly find the path
towards the local/global minimum of the loss function.

Several initialization strategies have been developed in the research field of Deep Learning. In the
space below some of them are presented:

3These two types of error are defined as:
Generalization error: it is a measure of how accurately an algorithm is able to predict outcome values for previously
unseen data.
Training error: it is the error that we get when we run the trained model back on the training data.
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• Random initialization.
Every parameter is initialized randomly in a certain interval.

• Xavier and He initialization.
The connection weights must be initialized randomly as described in Table 2.1, where n = ninputs
and m = noutputs are respectively the number of input and output connections for the layer
whose weights are being initialized (also called ‘fan-in’ and ‘fan-out’). The distribution used
for the initialization has to be chosen between a normal distribution with mean 0 and standard
deviation σ and a uniform distribution between −r and r. He initialization is the name given to
this kind of initialization with ReLU activations.

Activation function Uniform distribution [−r, r] Normal distribution (0, σ)

Logistic r =

√
6

n+m
σ =

√
2

n+m

Hyperbolic tangent r = 4

√
6

n+m
σ = 4

√
2

n+m

ReLU r =
√

2

√
6

n+m
σ =
√

2

√
2

n+m

Table 2.1: Xavier and He initializations.



Chapter 3

CERN research for exotic particles
through LHC collider

Searching for exotic particles never observed before implies a need for an enormous amount of
energy in the processes involved in their creation. In fact, if we want to study something never
observed before at the scales of energy normally reached, it is highly unlikely we will find something
new and interesting. This is the reason for which the Large Hadron Collider, briefly LHC, was designed
and built.

LHC is actually the world’s largest and most powerful particle accelerator. Its project was conceived
in 1976 when the European particle physics community began to discuss building a Large Electron
Positron (LEP) collider at CERN, and it was realized between 1998 and 2008. It required a collab-
oration of over 10000 scientists and hundreds of universities and laboratories, as well as more than
100 countries. It first started up on 10 September 2008, and remains the latest addition to CERN’s
accelerator complex.

3.1 An insight into LHC structure

The LHC consists of a ring 27-kilometers long of superconducting magnets with a number of
accelerating structures to boost the energy of the particles along the way. Inside the accelerator, two
high-energy particle beams travel at relativistic speed, close to the speed of light c. Before they are made
to collide, they both are accelerated to a energy of the order of TeV. The two beams travel in opposite
directions in separate beam pipes, which are fundamentally two tubes kept at ultrahigh vacuum. They
are guided around the accelerator ring by a strong magnetic field mainteined by superconducting
electromagnets, built from coils of special electric cable that operates in a superconductive state. It
is of primary importance to conduct electricity with the lowest resistence, therefore loss of energy,
possibile. Such technique requires cooling the magnets to a temperature close to 0 K, which is even
colder than the outer space. In order to get those temperatures, much of the accelerator is connected
to a distribution system of liquid helium and the cooling phase takes a long time.

Thousands of magnets of different varieties and sizes are exploited to direct the beams around the
accelerator. In total, there are4:

• 1232 dipole magnets whose length is 15 metres and their purpose is bending the beams.

• 392 quadrupole magnets, each 5-7 metres long, which focus the beams, thanks to their properties
of magnetic lens.

Just prior to collision, another type of magnet is used to ‘squeeze’ the particles closer together to
increase the chances of collisions. In fact, the particles can be imagined as very tiny objects, so it is
clear that the task of making them collide must be thought with such precision.

The beams inside LHC are made to collide at four locations around the accelerator ring, corrispond-
ing to the positions of four particle detectors: CMS, ATLAS, ALICE and LHCb. Their placement

4These technical details are taken from the official website of CERN [17].

15



16 Chapter 3. CERN research for exotic particles through LHC collider

x

y

z

P

N

LHC

CMS

ATLAS
ALICE

LHCb

φθ

Figure 3.1: Schematization of LHC collider.

along the collider is showed in Figure 3.1. All the controls for the accelerator, its services and technical
infrastructure are housed at the CERN Control Centre.

3.2 CMS experiment

The acronym CMS means Compact Muon Solenoid and it is a general-purpose detector amongst one
of the four mentioned before. It has a broad physics programme ranging from studying the Standard
Model to searching for extra dimensions and particles that could make up dark matter, whose existence
belongs to physics beyond the SM. CMS also stands for one of the largest international scientific
collaborations in history, involving over 4000 particle physicists, engineers, technicians, students and
support staff from around 200 institutes and universities from more than 40 countries.

It is built around a huge solenoid magnet. This takes the form of a cylindrical coil of supercon-
ducting cable that generates a field of 4 Tesla. The importance of this value can be better understood
thinking that it is 100000 times the magnetic field of Earth. The field is confined by a steel ‘yoke’ that
forms the bulk of the detector, whose weight is about 14000 tons. It was built in 15 sections, which
were reassembled in situ. The detector gets its name from the fact that:

• It is 15 metres high and 21 metres long, so it is quite compact for all the detector material it
contains.

• It is designed to detect particles known as muons (and indicated with µ) very accurately.

• It has the most powerful solenoid magnet ever made.

The detector is shaped like a cylindrical onion, with several concentric layers of components. These
components help prepare ‘photographs’ of each collision event by determining the properties of the
particles produced in that particular collision. This is done by:

• Bending particles:
A powerful magnet is needed to bend charged particles as they fly outwards from the collision
point. This process is done in order to identify the charge and to measure the momentum
of the particle. In fact, positive and negative charged particles bend in opposite directions in
the same magnetic field and, in particular, high momentum particles bend less compared with
low-momentum ones.
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Figure 3.2: CMS detector section [18].

The solenoid magnet is formed by a cylindrical coil of superconductiong fibres. A current up to
18500 A flows within these coils and it encounters no resistence for the phenomenon of super-
conductivity. The magnetic field of 4 T must be confined to the volume of the detector and is
done by the steel ‘yoke’ that forms the bulk of the detector’s mass.

• Identifying tracks:
It is fundamental to identify the paths taken by the bent charged particles and it must be done
with extreme precision. This is done by a silicon tracker made of around 75 million individual
electronic sensors arranged in concentric layers. A charged particle that passes through these
layers interacts electromagnetically with the silicon and produces a signal. The information
carried by individual signals can be joined together in order to identify the track of the traversing
particle.

• Measuring energy:
The energy of the various particles produced in each collision is a crucial information in the under-
standing of what happened in the collision process. This information is collected by calorimeters,
which are particle detectors made to measure the energy. Inside CMS there are two types of these.
The Electromagnetic Calorimeter (ECAL) is the inner layer of the two and measures the energy
of electrons and photons by stopping them completely. The other particles, i.e. hadrons, fly
through the ECAL and are stopped in the outer layer by the Hadron Calorimeter (HCAL).

• Detecting muons:
The final particles that CMS observe directly are the muons. They are not stopped by any
calorimeter, so there are other special detectors interleaved with the return yoke of the solenoid.
It is possible to measure each muon’s momentum both inside the superconducting coil (by the
tracking devices) and outside of it (by the muon chambers).
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Figure 3.3: CMS detector transverse section.

Thanks to the ensemble of all these components, it is possible to detect the energies of the products
of the collision, except the energies carried by neutrinos ν. In fact, these are elementary particles that
can’t be detected by this kind of detectors. Each layer of the composition gives an information about the
processes happened after the collision. By putting together all of these informations, the intermediate
states of the processes could be studied as well as the laws that regulate the whole process.

As stated before, every layer can give informations about an intermediate state. So the particles
observed are not the initial products of the process, but they are the traces of pre-existing unstable
particles that decay in other products before the detector could observe them. The intermediate
unstable states are called resonances and to better understand them it is appropriate to describe the
classical definition.

3.3 From data to discoveries: resonance formation study

Resonant phenomena are ubiquitous in Physics at both the macroscopic and microscopic levels.
Resonances have an extremely important role in hadron spectroscopy.

In Classical Physics, a resonance is a phenomenon that occurs when the frequency at which a
periodical force is applied is equal or nearly equal to one of the natural frequencies of the system on
which it acts. The visible effect of the resonance is that the system oscillates to a larger amplitude
respect to the one when a force is applied with a different frequency.

The first thing to do is to analyze this phenomenon in the case of an oscillating system with an
external force that drives the oscillation. The second order differential equation that describes the
system is the following one:

d2x

dθ2
+ 2γω0

dx

dθ
+ ω2

0x =
F0

m
sin Ωt = Γ sin Ωt (3.1)

where F0 is the amplitude of the driving force, Ω is its angular frequency, ω0 is the undamped angular
frequency and γ is the damping ratio. The general solution of this ODE is a combination of sinusoidal
function exponentially damped and another sinusoidal function that describes a stationary state:

x(t) = Ae−γω0 sin (2γω0 + φ) +B sin (Ωt− δ) (3.2)
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where:

B =
Γ√

(ω2
0 − Ω2)2 + 4γ2ω2

0Ω2
(3.3)

δ = arctan

(
2γω0Ω

ω2
0 − Ω2

)
(3.4)

The relation for the amplitude of the solution in the stationary state shows there is a maximum
value for B, which is reached for a particular value of the angular frequency of the drive. It means
that the system becomes resonant for a certain value of Ω and the transfert of energy from the drive
to the system is maximized.

Coming back to the field of subnuclear physics, a resonance appears with a shape similar to the
one described by Equation 3.3. The function describing the resonance in this case is a Breit-Wigner,
reported in Equation 3.5. In Figure 3.4 some examples are given.

f(E) ∝ 1

(E2 −M2
R)2 +M2

RΓ2
(3.5)
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Figure 3.4: Resonance plot: Breit-Wigner with MR = 1 for different choices of Γ.

The extremely unstable hadrons can be observed as ‘resonances’ in two different ways [19]. The
first approach is searching for very unstable particles by measuring as a function of energy the cross
section σ of processes of the following type:

a+ b −→ c+ d+ · · ·+ f (3.6)

In a quantum scattering process the relevant functions of energy are the scattering amplitude and the
cross section, which is the measured observable. Near a resonance, the distribution of σ will remark
the shape of the resonant peak in Figure 3.4.
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Figure 3.5: Schematic of a resonance formation study in the cross section.
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The second approach, corresponding to a specific class of experiments, is based on resonance pro-
duction. To better explain the method, let’s suppose we are studying the following process:

a+ b −→ c+ d+ e (3.7)

where we are searching for a particle decaying into the stable or metastable particles c, d. In this
example, this particle will called r, which obviously stands for resonance. If r exists, the decay process
could develop into a second channel:

a+ b −→ r + e −→ c+ d+ e (3.8)

In these cases, the mass of c+d, called Mcd, is expected to be equal to the mass of r, called Mr, and it
follows a Breit-Wigner distribution peaked at Mr and with width Γ. If the decay goes directly in the
final state (this is the non-resonant process), Mcd can have any value in the range imposed by physical
constraints of energy and momentum conservation, as it is a three-body decay process, and there is
no peak in the distribution. Now, we have to measure the energies and the momenta for each event in
order to compute:

Mcd =
√

(Ec + Ed)2 − (~pc + ~pd)2 (3.9)

The resonance appears as a peak on a smooth background in the Mcd distribution.
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Figure 3.6: Schematic of a resonance formation study in the mass distribution.



Chapter 4

Z → µ+µ− decaying process

The process studied in this thesis work is the decay of Z boson, generated by pp collisions, into a
pair of muon and antimuon. The scheme of the decay is showed in Figure 4.1. This is the prevision in
the hypothesis of SM, where the Z boson is commonly represented with the symbol Z0. The presence
of a new physics scenario is modeled by the existence of a new boson, which is commonly indicated
in literature with Z ′. In this case, the scheme of the decay is practically similiar and it is showed in
Figure 4.2.

p

p

µ−

µ+

Z0/γ∗

Figure 4.1: Z decay in the hypotesis of SM.

p

p

µ−

µ+

Z ′/γ∗

Figure 4.2: Z ′ decay in the new physics scenario.

The new physics process can by studied by searching for resonant phenomena, for example bumps
in the distributions of a set of observables in a zone where only background is expected to be present.
However, this is not the only case possible in the wide variety of new physics scenarios. In fact, the
existence of new phenomena could not lead to a resonant peak in the distribution of the high level
features, but in general to a different shape in the same distributions. For example, there could be a
different slope in the exponential falling distribution of background events in the SM hypothesis.

Neural Networks can be employed in both cases, in general with different performances. The
purpose of this thesis work will focus mainly on the new physics scenario of resonant phenomena.

In the following discussion, the Z0 boson will be generally described along with its properties and
the features employed for the purpose of this work are presented with plots of their distribution.

4.1 The Z0 boson

The Z boson is an elementary particle which is the carrier of the weak force, along with the W
boson. The difference with the ladder is that while the W boson is charged, the Z boson is neutral. It
was discovered in 1983 at CERN at the Super Proton Synchrotron.

Since Z is neutral, the sum of the charges of its decay products must be 0 for the conservation
of charge. So it goes without saying that Z must decay into a pair of a particle and its antiparticle.
There are several possibilities for the decay process5:

• In 10% of Z decays charged lepton-antilepton pairs are produced. Therefore there are three
sub-cases for the pairs:

. electron-positron;

21
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. muon-antimuon;

. tau-antitau;

• In 20% of cases it decays into a neutrino-antineutrino pair. However, they are invisible to the
detector since they don’t interact with anything, in fact they have no charge. A way to indirectly
detect their presence is to check if there is some energy or transverse momentum missing after
the collision. There are three possibilities for neutrino decay as well as for the pair of leptons.

• In 70% of cases the decay gives a quark-antiquark pair. These appear as particle showers called
‘jets’ in the detector. Concerning the possibilities for this mode of decay, quarks appear in six
different types (up, down, charm, strange, top, bottom) and three different ‘colours’. Therefore
there are 18 possibilities for the quark-antiquark pair decay.

The set of possible cases counts 24 possibilities, 21 of which are visible. In this work only one will
be considered, i.e. the muon-antimuon decay.

4.2 High-Level Features for µ+µ− decay analysis

The raw data taken by the detector after the collision is a set of low-level features, briefly LLFs,
such as the muon and antimuon momenta. Since we are trying to understand the process in three
dimensions with one of the axes aligned with the y component of the first muon, the LLFs of interest
are p1,x, p1,z, p2,x, p2,y, p2,z To better study the decaying process, it is preferred to combine the low
level features into the high-level ones, briefly HLFs.

Symbol HLF name

pT,1 Transverse momentum 1
pT,2 Transverse momentum 2
η1 Pseudorapidity 1
η2 Pseudorapidity 2
∆φ Difference of azimuthal angles
MZ Invariant mass

Table 4.1: High Level Features legend.

The relations employed to obtain the values for the HLFs are reported in the Equations 4.1-4.6.
The intermediate steps to get the results are reported as well for completeness6.

pT,1 = p1,x (4.1)

pT,2 =
√
p22,x + p22,y (4.2)

η1 = arctanh

(
p1,z
p1

)
(4.3)

η2 = arctanh

(
p2,z
p2

)
(4.4)

∆φ = φ2 − φ1 (4.5)

M2
Z = 2pT,1pT,2[cosh (η1 − η2)− cos ∆φ] (4.6)

where:
5The information on the fractions of decay can be found in [20]
6Note that although the polar angle θ is a HLF too, the pseudorapidiy is a more common variable and so its usage

is preferred in High-Energy Physics.



4.3. The datasets analyzed 23

p1 =
√
p21,x + p21,z (4.7)

p2 =
√
p22,x + p22,y + p22,z (4.8)

φ1 = arccos

(
p1,x
pT,1

)
(4.9)

φ2 = sign (p2,y) arccos

(
p2,x
pT,2

)
+ π[1− sign (p2,y)] (4.10)

4.3 The datasets analyzed

In order to build an analysis strategy and perform a test of its performances, two benchmark
datasets were simulated and for each of them another dataset containing signal events beyond SM was
generated. This phase was accomplished through the aid of the framework MadGraph5, assuming pp
collisions at

√
s = 13 TeV. The detector response was also taken into account by Delphes, showering

and hadronization by Pythia. More informations on these softwares and on their usage can be found
in [10].

A brief description of the two models studied is given:

• The first dataset, denoted with Zmumu-Zprime, is characterized by:

. A ‘reference’ subset following a model with a Breit-Wigner invariant mass distribution, so
with a resonant peak at MZ ≈ 91 GeV, due to the Z boson.

. A ‘signal’ subset whose invariant mass distribution exhibits a resonant peak at MZ ≈
300 GeV.

• The second dataset, denoted with EFT_YW06, is characterized by:

. a ‘reference’ subset following a model with a power-law descending invariant mass distribu-
tion with a resonant peak at MZ ≈ 91 GeV, due to the Z boson.

. a ‘signal’ subset whose invariant mass distribution is equal to the reference one, except for
a different slope in the power-law descent.

The tag given to this dataset indicates an Effective Field Theory where the Yukawa coefficient
is set to 0 for both signal and reference subsets and Wilson coefficient is set to 0 for reference
and to 10−6 for signal subset. The electomagnetic coupling term α is set to ≈ 1/127.9 for both
subsets.

For every case presented, the HLFs were extrapolated by the five independent momenta components.
The distributions of the features are showed in following plots, in Figure 4.3 for Zmumu-Zprime and
in Figure 4.4 for EFT_YW06.
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Figure 4.3: Distributions of the features for Zmumu-Zprime.
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Figure 4.4: Distributions of the features for EFT_YW06.
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Chapter 5

Development of the algorithm for NP
research

In this Chapter the foundations of the algorithm employed for data analysis will be carefully
explained step by step. A good practice is to begin from the statistical foundations of the algorithm
itself as it is set on non-trivial concepts. In the next step, a network shall be built for the purpose
beginning from its architecture and then choosing proper activation functions, optimizer and weight
initialization. Moreover, several crucial aspects that may cause difficulties in the work progression will
be highlighted and faced in order to find the best solution or at least a compromise, if there isn’t.
Some of the problems that shall be faced are:

• The search for the number of degrees of freedom of the network employed.

• The look-elsewhere effect.

• The limitation of the phase-space of the NN free parameters, which means clipping the weights.

5.1 Statistical foundations

The entire construction of the statistical foundations of the procedure is accurately described in [2]
for a monodimensional case. Here we recap the main steps to the construction of a hypotesis test and
so of a variable with discriminating power, but for a multidimensional case. However, the logical steps
remain unchanged.

5.1.1 Construction of a test statistic

The starting point is a dataset of repeated measurements of a d-dimensional random variable x,
distributed as the reference distribution n(x|R). To compare the reference distribution with observed
data an alternative hypostesis is needed, which means another distribution n(x|w). It is convenient to
parametrize n(x|w) in terms of n(x|R). Moreover, we know that n(x|w) is strictly positive and since
the log-likelihood ratio will be used later, we will express it as:

n(x|w) = n(x|R) ef(x;w) (5.1)

where f(x) is a function from a set F = {f(x;w),∀w}.
Now that the set of alternative hypoteses is built in a parametrized form, the optimal statistical

test for the reference model is defined by the Neyman-Pearson construction, which is based on the
maximum likelihood principle7. The idea is to compare n(x|R) with the best fit distribution n(x|ŵ),
where ŵ is the one that maximizes the likelihood. Hence, the test statistic is:

t(D) = 2 log

[
Lŵ

LR

]
= 2 log

[
e−N(ŵ)

e−N(R)

∏
x∈D

n(x|ŵ)

n(x|R)

]
= −2 min

{w}

[
N(w)−N(R)−

∑
x∈D

f(x;w)

]
(5.2)
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where N(R) is the expected number of events in the reference model and N(w) is the expected number
of events in the alternative hypotesis. N(w) can be computed by:

N(w) =

∫
n(x|w)dx =

∫
n(x|R) ef(x;w) dx (5.3)

The test statistic needs a consistent definition of a p-value. In order to compute it, we have to associate
a probability to the value of t, denominated as tobs, obtained using the observed dataset. For this reason
we also have to find the PDF of t in the reference hypotesis and we can do it by evaluating t a sufficient
number of times on a large sample of toy datasets. By this way, we can obtain the observed p-value:

pobs =

∫ ∞
tobs

P (t|R)dt (5.4)

The key idea of [2], employed for the present work, is to parametrize the alternative hypotesis with
neural networks for their properties of universal unbiased approximants.

5.1.2 Ideal test statistic

The results of the method that exploits the power of neural networks must be discussed in com-
parison with something we already know. It means that assuming we have complete knowledge of the
distribution describing the observed data, an ideal test statistic could be defined and it will be the
previous cited benchmark.

The alternative hypotesis with the assumption of complete knowledge will be denoted by ‘NP’ and
it has no free parameters. In this case the test statistic becomes:

tid(D) = 2 log

[
LNP

LR

]
= 2 log

[
e−N(NP)

e−N(R)

∏
x∈D

n(x|NP)

n(x|R)

]
(5.6)

According to the Neyman-Pearson lemma, tid is the optimal discriminant between the reference and
the new physics hypotheses. It produces the smallest median p-value if NP is the true distribution of
the data sample. From this value, the ideal significance can be computed as stated in [3]:

σid =
√
tid =

√
2 log

[
LNP

LR

]
(5.7)

This test statistic is denoted as ‘ideal’ because it is the most suited to discover data departures from
the reference model. However, it is not useful but as a benchmark because we can use it only when
the true data distribution is known a priori. In our case we are testing the efficiency of a ML-approach
and therefore the true distribution is known.

5.1.3 Adaptation of t(D) as a loss function

The minimization in Equation 5.2 must be done numerically through the tools for neural network
training discussed in Chapter 2. Before doing this, we have to express Equation 5.2 as a loss function.

The first thing to do is to estimate N(w). This task can be done through Monte Carlo methods:

N(w) =
N(R)

NR

∑
x∈R

ef(x;w) (5.8)

7Let’s suppose we are performing a hypotesis test between two simple hypotesis H0 = {θ = θ0} and H1 = {θ = θ1}
using the likelihood-ratio test:

Λ(x) :=
L(θ0|x)

L(θ1|x)
(5.5)

with a threshold η, for which H0 is rejected in favour of H1 at a significance level of α = P (Λ(x) ≤ η|H0). Then, the
Neyman-Pearson lemma states that Λ(x) is the most powerful test at significance level α.
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where NR is the size of the reference dataset. Thus, Equation 5.2 becomes:

t(D) = −2 min
{w}

[
N(R)

NR

∑
x∈R

(ef(x;w)−1)−
∑
x∈D

f(x;w)

]
≡ −2 min

{w}
L [f(·,w)] (5.9)

L has the form of a loss function. It is convenient to write it as a single sum over events by introducing
a target variable y such that:

• x ∈ R =⇒ y = 0;

• x ∈ D =⇒ y = 1.

Thus the explicit expression of L is:

L[f ] =
∑
(x,y)

[
(1− y)

N(R)

NR

(ef(x)−1)− yf(x)

]
(5.10)

The trained neural network, denoted with its output f(x; ŵ), is simply the maximum likelihood
fit to the data and reference distributions log-ratio. It is the best approximant of the true underlying
data distribution n(x|T):

f(x; ŵ) ≈ log

[
n(x|T)

n(x|R)

]
(5.11)

5.2 The algorithm

The network architecture chosen for the task has the following characteristics:

• 3 fully-connected layers, with the first and the second ones with five neurons each and the last
one with only one output neuron. Therefore the input is multidimensional since it is the set of
HLFs (except for the invariant mass MZ) for every event.

• The activation functions chosen are sigmoids for the first and second layer, while a linear activa-
tion is employed for the last layer.

The loss function employed is reported in the previous Section in Equation 5.10 and it is adapted
for the task. Its minization is done by AdaM optimizer. The initialization of the free parameters is the
normal random initialization. A clip to the weights is applied in the case they go out of a prearranged
interval. The discussion on the weight clipping is studied in deeper in the subsequent Sections. Lastly,
the set of the HLFs is standardized before giving it to the input neurons. Suppose {x} is a set of a
single HLF, ξ its mean and σ its standard deviation, then the rule employed for the standardization is
the following: 

if min ({x}) < 0 =⇒ {x} −→ {x}−ξ
σ

else if max ({x}) > 1 =⇒ {x} −→ {x}
ξ

else =⇒ {x} −→ {x}
(5.12)

The scheme of the algorithm is the following:

• A sufficiently large reference sample is randomly selected from the whole dataset following the
reference distribution. Then a data sample with background events is randomly selected from
the entire dataset and no signal is added. The network is trained for 300k epochs with these
data and the output of the process is the minimized loss function. From this value, the final t is
computed as minus two times the minimized loss function.

• The previous step is repeated a certain number of times in order to sample the distribution of
t in the reference hypotesis (as no signal event is added in the data sample yet). The desidered
number of t necessary to the following steps must be considered carefully because the procedure
is computationally expensive and its complexity grows linearly with the number of events in the
reference sample.
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• When the distribution of t in the reference hypotesis is sampled, the first step is repeated but
adding a certain number of signal events in the data sample. The output of the process, i.e. the
minimized loss, is translated into the value of tobs.

• The distribution of t and tobs are used to compute a p-value pobs, which is the area under the
tail.

• If the value of pobs is sufficiently small, it signals a tension with the reference hypotesis. Hence,
anomalies are detected and they can be analyzed through the log-ratio f(x; ŵ).

5.3 Computing resources

Suppose one wants to sample 200 values of t in the reference hypotesis. Moreover, suppose that the
execution of a single process to obtain a single value of t takes about 1 day. It is clear that doing this task
on a single machine is computationally very expensive. Assuming this machine could run 10 processes
at the same time without swapping, it would take 20 days to get the desired results. Considering that
the entire procedure has to be repeated for different conditions and for several numbers of events in
the reference sample, it is totally inconceivable to do everything on a single machine.

Another aspect has to been taken into account. Writing the code that executes the algorithms
described above could be quite tricky and unavoidable mistakes in the phase of implementation don’t
agree with the long execution time if we want to check the results for every change.

In this Section a solution for each of these difficulties encountered is presented.

5.3.1 TensorFlow back-end and Keras API

The programming language chosen for the work is Python 3. Its simplicity and power were crucial
in the selection. Moreover, there exists very powerful tools that address Machine Learning problems
and which can make the code easier to write and understand.

The API employed for the task is Keras, which is an open source library specialized for automatic
learning tasks. It was used with TensorFlow as back-end. The ladder is the most common Machine
Learning library up to now and it provides tools not only for Deep Learning problems, but for every
Machine Learning problem conceivable. For more information, see [5], [6] and [7].

A bunch of code to build the network and to train it is reported below to give an idea of its clarity.
In the following example the architecture of the net is (5,5,1) and the code is reported in a simplificated
version.

import keras

inputs= keras.layers.Input(shape =(5,))
dense = keras.layers.Dense(5, activation=’sigmoid ’)( inputs)
dense = keras.layers.Dense(5, activation=’sigmoid ’)(dense)
output= keras.layers.Dense(1, activation=’linear ’)(dense)

model = Model(inputs =[ inputs], outputs =[ output ])

model.compile(loss=Loss ,
optimizer=’adam’)

model.fit(x_train ,
y_train ,
epochs =300000 ,
batch_size=batch_size ,
verbose=0,
shuffle=False)
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5.3.2 LSF and clustering

In order to speed up the sampling of t distribution, the algorithm was parallelized on a cluster of
machines. This should be intended that different processes were executed simultaneously on different
machines and not that a single process was executed on more machines.

The machines used for the task are sited in Legnaro and Padua. The processes sent to them are
called bjobs and the sending procedure is done by LSF, which stands for Load Sharing Facilities. Every
bjob must be sent by a script, launched through bsub command. Before doing this, a configuration
procedure of the machine, through which the jobs are dispatched, has to be done. To make this
procedure easier, the access to this machine was done through CloudVeneto. A virtual machine
instance was created and connected to the LSF sender. It was then personalized to run a python script
with these functionalities:

• It configures the environment variables of the machines in order to let the necessary packages
accessible by the system. This phase was accomplished by the execution of another script accessi-
ble on cvmfs (CERN Virtual Machine File System). More informations on this tool are provided
in [8].

• It creates the script that sends the job via LSF to the machines. This phase is executed a number
of times equal to the number of toy samples, therefore equal to the number of t values we want.

The jobs sent to the machines are placed with their IDs in a queue. For this work, cms-local-queues
were used, listed in Table 5.1.

Queue name Max job number Max job runtime

local-cms-short 500 1440 min
local-cms-long 300 10080 min

Table 5.1: Available queues.

Since the complexity scales up linearly with the number of events in the reference sample, runtime for
jobs with wide reference sample overtake the limit of 1440 minutes of the short queue. Therefore the
long queue was a better choice for the task. A list of the machines accessible by this queue and their
characteristics are displayed in Table 5.2.

Machine id Number of CPUs Max Memory Max Swap

wp-05-01 2 64554M 8191M
wl-07-01 2 64537M 8191M
wl-07-02 2 64537M 8191M
wl-07-03 2 64537M 8191M
wl-07-04 2 64537M 8191M
wl-07-05 2 64537M 8191M
wl-07-06 2 64537M 8191M
wl-07-07 2 64537M 8191M
wl-07-08 2 64537M 8191M
wl-07-09 2 64537M 8191M
wl-07-10 2 64537M 8191M

Table 5.2: Machines and resources.

5.4 Degrees of freedom of the network

Trying to understand the exact number of the degrees of freedom (briefly ‘dofs’) of a neural network
is not a trivial task. This number must reflect the wideness of the space of functions the network can
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span. A more complex network will obviously be characterized by a larger number of dofs.
A possible approach to determine a convention for the number of dofs starts from the free parameters

of the network. If there are n weight parameters and m biases, the number of dofs ν can be estimated
by:

ν = n+m (5.13)

Therefore, given the network architecture, the number of layers, neurons and the activations, we
can give a definition adapted to the case we are studying. A scheme of the network employed is given
in Figure 5.1, which makes easier to understand how the connections between different layers work and
the way data flow through the net.
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Figure 5.1: Neural Network scheme to evaluate the number of degrees of freedom.

Every neuron in the middle layers is connected to five neurons of the following layer, including also
sigmoid layers. The neurons in the last sigmoid layer are connected with only one neuron, which is the
unique one of the output layer. Considering that for every neuron except the ones in the input layer
there is a bias parameter, the quantities of n, m and ν previously defined are:

n = 80
m = 16

=⇒ ν = 96 (5.14)

Thus, the expected dofs of the networks employed is 96.

5.5 The ‘look-elsewhere’ effect

To explain this peculiar effect, let’s take the example in [21]. Imagine a common case such as looking
for a heavy particle decaying into a pair of hadronic jets. We assume we have complete knowledge
of the background model and that we know what kind of bump a new physics signal would produce
in the shape of background distribution. Because we don’t know exactly where it might appear, we
search everywhere in the data.

When data analysis is completed, suppose we find a significant bump at some particular mass value.
To claim it is a new signal, the effect must reach or exceed the well known 5σ significance threshold.
If this bump is below the 5σ level, but with a consistent significance, let’s take 3.5σ, we can’t claim a
discovery although data seem to prove it. The look-elsewhere effect could have led us to a trap. We
looked in many places for a possible signal and found a significant effect somewhere. The likelihood
of finding something in the entire region we analyzed is greater than it would be if we had stated
beforehand where the signal would be. In fact, we have to take into account the probability boost
determined by looking in many places.

The 5σ rule was conceived with exactly this particular effect in mind. This threshold means
extremely rare occurrence (just to have an idea, three out of ten million), so even including the look-
elsewhere effect, it is still something to take quite seriously.
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Employing a neural network in the procedure exposed in this work introduces this effect because
new physics signals are searched ranging in the entire dataset. This is the main limiting factor of the
technique. However, this problem can’t be avoided in any attempt to search for new physics model-
independently. Thus it is not a limitation of the method itself. Moreover, it is important to remark
that the entire construction done in this work aims to test the performance of a method and so how it
can be enhanced.

5.6 Weight clipping

The algorithm necessarily requires some sort of regularization because the loss function is un-
bounded from below. It means that it approaches negative infinity if the output of the network f
diverges at some value of x ∈ D. The highly negative values of the minimized loss function become
high positive values of t.

These dangerous configurations are avoided by enforcing an upper bound, namely a ‘weight clipping’
parameter W , on the absolute value of each weight. However, the choice of this parameter is of critical
importance and it must be tuned correctly if we want to get reasonable results. In fact, it is known
from theoretical arguments that the distribution of t in the reference hypotesis will asympthotically
follow a χ2 distribution with a number of dofs equal to the number of free parameters. If we set a too
low weight clipping, the sampled distribution will be shifted to the left of the expected distribution.
On the contrary, if we set a too high weight clipping, there will be a right shift. An example of the
two cases is showed in Figure 5.28.
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Figure 5.2: Wrong choices ofW with Zmumu-Zprime dataset. Left side: results forNref = 200k, Nbkg = 20k,
Nsig = 0, W = 2.2. Right side: results for Nref = 1000k, Nbkg = 20k, Nsig = 0, W = 3.0.

8The value of the χ2 reported in these plots and in the ones in the following Chapter is the result of a χ2 test applied
to the N bins of the histogram in order to verify the compatibility of t distribution with the expected one. Denoting
with Oi and Ei respectively the observed and the expected values for the ith bin, it is computed through:

χ2 =

N∑
i=1

(Oi − Ei)
2

Ei
(5.15)
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Chapter 6

Tuning of weight clipping parameter

In the final part of the previous Chapter the procedure of weight clipping was introduced and
explained. In this one a systematic approch for weight clipping parameter tuning is developed. The
procedure is then tested with several cases, where the difference is in the size of the reference sample.
It is important to highlight that in this procedure no signal event is given to the network because we
are trying to search the optimal W for which the distribution of t converges after training to a χ2

distribution with 96 dofs.
Beside searching the optimal weight clipping for each case, another aim is to find a trend for W in

order to avoid the tuning when data samples of new sizes are given to the net. The cases studied for
the test are listed below in Table 6.1.

n° of test Reference size Data size [Zmumu-Zprime] Data size [EFT_YW06]

1 100k 20k Bkg | 0 Sig 20k
2 200k 20k Bkg | 0 Sig 20k
3 300k 20k Bkg | 0 Sig 20k
4 500k 20k Bkg | 0 Sig 20k
5 1000k 20k Bkg | 0 Sig 20k

Table 6.1: Size of the datasets for different tests.

6.1 A criterion for optimal weight clipping

As suggested in the previous discussion, the optimal weight clipping is reached when the sampled
distribution of tobs resembles the expected distribution of a χ2 with 96 dofs. Therefore, after setting
a value for W and sampling a certain number of t values, a compatibility test has to be applied with
the expected ditribution. A good choice for this purpose is putting the sampled ts in a histogram and
applying a χ2 test between the latter and the expected distribution, put in a histogram as well. Now
the possible cases are the following:

• If the observed χ2 of the test statistic is beyond an equivalent threshold of 3σ, the observed
distribution has approximately converged to the reference one.

• If the threshold is not met, the weight clipping has to be lowered or increased depending on the
trend of the observed χ2 of test statistic during training.

. If there is a valley and after reaching a minimum the observed χ2 begins to grow, the weight
clipping has to be lowered.

. If there isn’t a minimum but the observed χ2 is still decreasing at the end of training, the
weight clipping has to be increased.
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It is obvious that this method could be computationally very expensive. Finding an optimal value
for W requires more trials and every trial requires a certain time as the number of t values needed to
sample a distribution is & 102. However, a good strategy to save a lot of time can be easily developed.

The starting point of the search should be the case with the smallest size of reference sample. In
fact, training the network in this case requires a relative short time (for instance, ∼ 8 h), so more trials
can be done without an excessive loss of time. Found the optimal W for this case, the next reference
sample in increasing order of size should be used for training. The value of optimal W is expected to
be greater than the one in the previous case. The explanation is that giving more reference data to the
network is equivalent to have more statistic and so the danger of finding divergences in the training is
lower. Hence, W can be set to a greater value as it is a regularization parameter. Moreover, if the size
of reference is slightly increased, it is reasonable to think that the optimal weight clipping should be
slightly greater as well than in the previous case.

6.2 Results for optimal weight clipping search

Only the best results for each case are reported in the Figures below. Four plots are given:

• The final sampled distribution of t along with the expected distribution at 96 dofs.

• Several quantiles of the observed t distribution. The quantiles chosen are 2.5%, 25%, 50%, 75%,
97.5%. The most important thing to note in this plot is the plateaux reached during training.

• χ2 over training related to the test statistic to assert the compatibility of t distribution and the
expected one.

• p-value over training related to the corresponding value of observed χ2 in the previous plot. It
is calculated considering a χ2 distribution at N − 1 dofs, where N is the number of bins.
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Figure 6.1: Optimal W search with Zmumu-Zprime dataset for Nref = 100k, Nbkg = 20k, W = 2.15.
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Figure 6.2: Optimal W search with Zmumu-Zprime dataset for Nref = 200k, Nbkg = 20k, W = 2.4.
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Figure 6.3: Optimal W search with Zmumu-Zprime dataset for Nref = 300k, Nbkg = 20k, W = 2.45.



38 Chapter 6. Tuning of weight clipping parameter

40 60 80 100 120 140 160

t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

D
en

si
ty

Number of toys:
200
Median Bkg only:
98.07
χ2:
6.01
χ2 test p-value:
0.539

Distribution of t

χ2 96 dof

Observed t distribution

0 50 100 150 200 250 300 350

Epoch [k]

0

20

40

60

80

100

120

140

t

Percentile plot

2.5 % quantile

25.0 % quantile

50.0 % quantile

75.0 % quantile

97.5 % quantile

0 50 100 150 200 250 300 350

Epoch [k]

0

10

20

30

40

50

χ
2

ob
se

rv
ed

χ2 observed during training

χ2 observed

dof = 7

dof + σ

dof + 2σ

dof + 3σ

0 50 100 150 200 250 300 350

Epoch [k]

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

ob
se

rv
ed

p-value observed during training

p-value observed

Figure 6.4: Optimal W search with Zmumu-Zprime dataset for Nref = 500k, Nbkg = 20k, W = 2.55.
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Figure 6.5: Optimal W search with Zmumu-Zprime dataset for Nref = 1000k, Nbkg = 20k, W = 2.7.
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EFT_YW06 dataset
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Figure 6.6: Optimal W search with EFT_YW06 dataset for Nref = 100k, Nbkg = 20k, W = 2.25.
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Figure 6.7: Optimal W search with EFT_YW06 dataset for Nref = 200k, Nbkg = 20k, W = 2.4.
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Figure 6.8: Optimal W search with EFT_YW06 dataset for Nref = 300k, Nbkg = 20k, W = 2.45.
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Figure 6.9: Optimal W search with EFT_YW06 dataset for Nref = 500k, Nbkg = 20k, W = 2.55.
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Figure 6.10: Optimal W search with EFT_YW06 dataset for Nref = 1000k, Nbkg = 20k, W = 2.7.
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Figure 6.11: Optimal weight clipping curves.

As it is possible to see in Figure 6.11, the parameter W as a tendency to saturation when Nref is
much greater than Nbkg. This trend is visible for both type of datasets. Moreover, it is interesting to
observe that, fixed the ratio between Nref and Nbkg, the optimal weight clipping is approximately the
same for the two cases analyzed. Exceptions occur only when the reference is not so populated. This
result suggests that for a small reference the anomalies that can be found in the data distributions
are different in the two cases. However, these exceptions become irrelevant with a sufficiently large
reference, therefore when the statistical fluctuations in the distributions are suppressed by the high
statistic.

Finally, these curves showing the optimal weight clipping trend can be used to find an approximation
of the optimal W when we want to train the network with new values of Nref and Nbkg. What we have
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to do is just evaluating the ratio Nref/Nbkg = ξ, solving the system:{
y = W

(
x = Nref

Nbkg

)
x = ξ

=⇒ (x∗, y∗)

and taking as optimal W estimate the value of y∗.



Chapter 7

Training with signal events and results

After the optimization of the weight clipping parameter, it is possible to train the network with
signal events in the observed dataset. Obviously, the operation has to be done with W set to the value
found for the corresponding reference dataset size. In this case the output of the algorithm will be the
distribution of t observed when there are new physics signals in the data. This result can be translated
into a median significance, which must be compared with the ideal significance. The computation of
this ideal test value is done in the next Section. Then, the results of this new phase of network training
are presented.

7.1 Ideal significance computation

In the following discussion, the variable x will be identified with the invariant mass. In fact, we
are able to evaluate the ideal log-likelihood ratio with a monodimensional distribution after fitting it.

What we have is a histogram of MZ and its bins can be used as points to fit. However, it is
not convenient to fit the whole spectrum because it is expected that the distribution of MZ in the
reference and in the alternative hypoteses are the same except for an interval where they differ. So
the log-likelihood ratio is different from 0 only in this interval, that must be defined for both Zprime-
Zmumu and EFT_YW06 datasets as well as the functions used to fit. The procedure adopted is
the following:

• For the Zmumu-Zprime dataset, the reference distribution differs from the one with new physics
signals only in the interval [250, 350] GeV/c2. In this region the background distribution is
approximated by a power law:

nbkg(x) = a ebx+c +d (7.1)

while the signal distribution is described by the sum of two gaussians:

nsig(x) = a exp

[
−(x− b)2

c2

]
+ d exp

[
−(x− e)2

f2

]
(7.2)

When fitting the signal+background distribution, nbkg and nsig should be summed and then
normalized.

• For the EFT_YW06 dataset, the distribution with new physics events is similar to the reference
one, but with a different slope in the exponential descent. An interval sufficiently populated where
they differ is [200, 800] GeV/c2. In this region both distributions are approximated by a power
law with a linear growth:

nbkg(x) = a1x eb1x+c1 +d1 (7.3)

nsig+bkg(x) = a2x eb2x+c2 +d2 (7.4)

Now that good approximants of the distributions are known, we can compute the log-likelihood
ratio of nbkg+sig and nbkg by integration of the log-ratio function of the two distributions. The ideal sig-
nificance is then calculated through the Equation 5.7. In Figure 7.1 a schematization of this procedure
is given as an example.
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Figure 7.1: Ideal significance computing. Top row: background and signal distributions with their fit in the
interval [250, 350] GeV/c2. Bottom row: signal+background distribution and log-ratio of nbkg+sig and nbkg.

Finally, the results for ideal significance calculation are listed below9:

Zmumu-Zprime σid ≈ 11.8σ

EFT_YW06 σid ≈ 25σ

7.2 Training results: tobs distribution and observed significance

The results of training processes for both Zmumu-Zprime and EFT_YW06 datasets and for
the several sizes of the reference are presented in this Section. The relevant informations showed are
the tobs distribution and the quantile plot, which tells us if the process of training gives a stable tobs
distribution after a certain number of epochs. The value of the observed significance, reported in the
plots, is obtained through:

σobs =
√

2 ∗ erf -1(1− pobs) (7.5)

where pobs is the median p-value computed through the median t of the observed distribution, denoted
as tobs:

pobs =

∫ tmed

−∞
χ2(t; ν = 96)dt (7.6)

9The high value of the ideal significance for EFT_YW06 dataset is due to the large width of the interval where the
two distributions differ. Moreover, the systematic error on the height of bins is not taken into account in the procedure.
An improvement of this calculation is left to future work.
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Zmumu-Zprime dataset

50 100 150 200 250 300 350

t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

D
en

si
ty

Number of toys:
200
Median Bkg only:
155.92
Median significance:
3.873σ

Distribution of t

χ2 96 dof

t distribution with signal events

0 50 100 150 200 250 300 350

Epoch [k]

0

50

100

150

200

250

300

t

Percentile plot

2.5 % quantile

25.0 % quantile

50.0 % quantile

75.0 % quantile

97.5 % quantile

Figure 7.2: Results with Zmumu-Zprime dataset for Nref = 100k, Nbkg = 20k, Nsig = 40, W = 2.15.
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Figure 7.3: Results with Zmumu-Zprime dataset for Nref = 200k, Nbkg = 20k, Nsig = 40, W = 2.4.
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Figure 7.4: Results with Zmumu-Zprime dataset for Nref = 300k, Nbkg = 20k, Nsig = 40, W = 2.45.
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Figure 7.5: Results with Zmumu-Zprime dataset for Nref = 500k, Nbkg = 20k, Nsig = 40, W = 2.55.
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Figure 7.6: Results with Zmumu-Zprime dataset for Nref = 1000k, Nbkg = 20k, Nsig = 40, W = 2.7.

EFT_YW06 dataset
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Figure 7.7: Results with EFT_YW06 dataset for Nref = 100k, Neft = 20k, W = 2.25.
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Figure 7.8: Results EFT_YW06 dataset for Nref = 200k, Neft = 20k, W = 2.4.
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Figure 7.9: Results EFT_YW06 dataset for Nref = 300k, Neft = 20k, W = 2.45.
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Figure 7.10: Results EFT_YW06 dataset for Nref = 500k, Neft = 20k, W = 2.55.
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Figure 7.11: Results EFT_YW06 dataset for Nref = 1000k, Neft = 20k, W = 2.7.

Observed significances

Zmumu-Zprime EFT_YW06
Nref Nbkg Nsig σmed Nref Neft σmed

100k 20k 40 3.873 100k 20k 1.556
200k 20k 40 4.025 200k 20k 1.216
300k 20k 40 3.766 300k 20k 1.052
500k 20k 40 3.721 500k 20k 1.100
1000k 20k 40 4.059 1000k 20k 2.241

Table 7.1: Median significances observed at the end of training.
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Figure 7.12: Median σobs to varying of the ratio between Nref and Ndata.
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The trend of the median σobs gives us informations on what the network learns from the data fed
to it. Higher values of σobs are obtained when the reference size is wide enough or small. A possible
explanation can be given by highlighting two remarks:

• When the reference size is small, the fluctuations in the data could be seen by the network as
new physics signals. Therefore the significance increases on average.

• When the reference size is higher, the influence of the statistical fluctuations on the results is less
relevant, but the differences between signal and background events are more pronunced. So the
network has more classification power after training and the significance becomes greater.

For a middle size of the reference none of these effects is relevant, so we find a minimum in σobs plot.
In general, the performances of the algorithm are much better in the case of the Zmumu-Zprime

dataset respect to the corresponding value of the ideal significance. However, more operations can be
done in order to enhance the power of the test statistic performed by the trained network and in the
final Chapter some of the possible improvements are presented along with the future development of
this work.

7.3 Training results: NN output analysis
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Figure 7.13: NN output f(x) for different toys for Zmumu-Zprime with Nref = 1000k, Nbkg = 20k,
Nsig = 40, W = 2.7.

The final part of the analysis consists in studying the output f(x) of the network. In the statistical
foundations of the algorithm it was explained that f(x), when training is completed, approximates the



7.3. Training results: NN output analysis 49

log-likelihood ratio between the data distribution and the reference one. An interesting result arise
when we plot f(x) versus the invariant mass corresponding to every event x.

Concerning the results obtained with Zmumu-Zprime dataset, what we can see from the plots
in Figure 7.13 is the presence of two peaks. The first one is approximately near the mass of the Z
boson, MZ ≈ 91 GeV, and it is due to the statistical fluctuations in the mass distribution. The second
peak can be found at MZ ≈ 300 GeV, which is the central value of the mass of the resonant peak in
the spectrum. This feature shows that the network has learnt the discrepancies of the observed data
with the reference hypothesis in these portions of the spectrum. However, what makes this evidence
interesting is the fact that the invariant mass was not given to the network when running the algorithm.
In fact, the features given to the network are pT,1, pT,2, η1, η2 and ∆φ, while MZ is a highly non-linear
combination of the previous variables and this highlights the power of Neural Networks in classification
tasks.

In the analysis of EFT_YW06 dataset, there is not a strong evidence of this result, as we can
see in Figure 7.14. A soft rise in the output f(x) is visible with the growth of MZ , but it is not so
pronunced in every toy sample. A possible explanation of this phenomenon can be the small size of
the data sample for this type of dataset, in fact the signal events are such that their invariant mass
is distributed along the tail of the distribution. Therefore the sparsity of the data in the tail region
causes a loss in performance of the algorithm, as it is possible to deduce by comparing the trend of the
median σobs of the two different datasets, and so a minor discriminating power of the network.
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Figure 7.14: NN output f(x) for different toys for EFT_YW06 with Nref = 300k, Neft = 20k, W = 2.45.
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Chapter 8

Conclusion and future developments

In conclusion, the development of the algorithm has given successful results overall and they will be
summarized in the following Section. Moreover, several ideas to improve the algorithm are proposed
in Section 8.2.

8.1 Overview of the results

Weight clipping optimization The search for the optimal W has showed that for a certain value
of the parameter the tobs distribution converges after training at a χ2 distribution with a number of
dofs equal to the number of free parameters of the neural network. By the repetition of this procedure
with different reference sizes, a trend for the optimal W was found and from this curve it is possible
to predict an approximate value for the optimal W in a different condition. Last but not least, it was
found that the value of W tends to saturate when the reference size is much populated respect to the
size of the dataset of the observed data. Therefore, this phase of training can be avoided when the
reference size is wide enough, in fact a good choice of the weight clipping could be the asymptotic
value of W .

Training with signal events The analysis of the results has showed that the network is capable of
distinguishing new physics signal events from the backgound ones, with a performance depending on
the dataset employed. The proof of this result is given by the median significance obtained from the
training with signal events. In the case of Zmumu-Zprime dataset, the performance of the algorithm
is higher and it is greater than 3σ, which means that the network can discern clearly between signal
and background events. The ideal significance is still far, as its value is ∼ 11σ, however it is calculated
with a complete knowledge on the true data distribution, while in the training process the network has
no knowledge on these informations.

A more delicate discussion has to be done with the results coming from the EFT_YW06 dataset.
In this case, the median significance obtained after training is lower and it doesn’t exceed the threshold
of 3σ and more improvements should be done on the algorithm. However, the shape of the tobs
distribution with signal events is different from the shape of the distribution with only background,
obtained in the optimization phase of the parameter W . Therefore, the network is still capable of
distinguishing signal from background, but with a worse performance.

Lastly, the plot of the output of the network f(x), when plotted versus the invariant mass MZ

corresponding to the event x, confirms that the trained network has learnt to discern the resonant
peaks in the mass distribution, although MZ is a highly non-linear combination of the features pT,1,
pT,2, η1, η2 and ∆φ. This is a successful result as the invariant mass was not given to the input neurons
of the network.

8.2 Future developments of the algorithm

New input features In order to achieve a higher significance through the trained network, a possible
solution can be adding other dimentions to the input space, which means to add new features in addition
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to the HLFs previously listed. There are several choices in this sense, but one of the most suited seems
to be the invariant mass MZ . This feature contains a very high level information and it can boost
significantly the classification power of the network. However, more specific tests are needed in order
to give quantitative answers and by adding another feature the time needed for the algorithm routine
becomes larger. In fact, the number of parameters to optimize becomes larger if the nuber of layers of
the network stays the same.

Distributed computing and parallelization Another important development can be made in this
sense. First of all, a way to reduce the time needed for sampling the tobs distribution is exploiting
a bigger cluster of machines and with more resources for every single worker. An alternative to this
possible solution could be a cluster of GPUs. In fact, these units have an architecture which make
them suitable to this kind of tasks. Moreover, Keras API employed for this work is optimized for GPU
distributed computing, so it spreads the various computations done during the training phase to the
graphic unit, if there is one.

Last but not least, the most remarkable improvement that can be done to the procedure is the
parallelization of a single process. In order to explain the key idea that makes this technique theo-
retically possible, we have to split the ensemble of reference and data into n subsets (x(k), y(k)), with
k = 1, . . . , n, and then we have to rewrite the loss function into n pieces, computed over the n subsets:

L[f ] =
∑
(x,y)

[
(1− y)

N(R)

NR

(ef(x) − 1)− yf(x)

]

=
n∑
k=1

∑
(x(k),y(k))

[
(1− y(k))N(R)

NR

(ef(x
(k)) − 1)− y(k)f(x(k))

]
(8.1)

=
n∑
k=1

L(k)[f ] (8.2)

Equations 8.1 and 8.2 show that the algorithm is scalable on n different workers. In fact, the kth-worker
can compute L(k)[f ] in parallel with the other workers, with k = 1, . . . , n, and then every worker
communicates in order to compute L[f ] by summing every L(k)[f ]. By this way, the computation is n
times faster respect to the standard procedure, since the time of computation grows linearly with the
size of the reference and the data. The same idea is applicable to the computation of the gradient,
needed for parameters update. Concerning the fulfillment of this idea, there are several tools which
can manage parallel computing. One of the most known is the framework Apache Spark, made for
parallel computing and automatic learning tasks.

Putting all the previous ideas together is the actual prospective of this work. A boost in the
performance and in the computation time is needed before applying this analysis to real datasets taken
by the LHC detectors, in particular CMS, Their size is bigger than the sizes analyzed in this work.
However, the results obtained are encouraging and there is extensive room for improvement.
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