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Abstract

In this thesis, we apply the basic epidemiological SIR model and some of
its extended versions, SEIR model and SIR model with demography, to the
propagation of scienti�c ideas in the worldwide community of researchers, in
order to investigate the spread of those ideas. To this end, we collected quan-
titative records of articles published in scienti�c conferences for some selected
topics, such as big data, software de�ned networking, LTE advanced, cloud
computing, Internet of things, game theory, Bluetooth, and DVB-T, over a
5-year period with a monthly granularity in order to better verify the ap-
plicability of di�erent epidemic models. The values of the basic reproductive
ratio, which indicates the maximum reproductive potential for an infection,
are discussed to compile a classi�cation based on the contagion level of these
topics, and the types of description that the di�erent models give are investi-
gated to discuss according to their approximation level and their descriptive
potential.

In questa tesi, applichiamo il modello epidemiologico SIR di base e al-
cune delle sue versioni estese, modello SEIR e modello SIR con demogra�a,
alla di�usione delle idee scienti�che nella comunità globale dei ricercatori, in
modo da investigare sulla di�usione di tali idee. A tale scopo abbiamo rac-
colto il numero di articoli relativi ad alcuni argomenti pubblicati in conferenze
scienti�che. Gli argomenti scelti sono big data, software de�ned networking,
LTE advanced, cloud computing, Internet of things, Bluetooth e DVB-T,
e l'intervallo temporale considerato è di 5 anni in modo da poter veri�care
meglio l'appropriatezza dei diversi modelli epidemici. Abbiamo discusso i
valori ottenuti per il basic reproductive ratio, che indica il massimo poten-
ziale riproduttivo di un'infezione, in modo da stilare una classi�ca basata sul
livello di contagio degli argomenti. In�ne, abbiamo analizzato le tipologie di
descrizioni date dai diversi modelli per discutere sul loro livello di approssi-
mazione e sul loro potenziale descrittivo.
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Chapter 1

Introduction

Since the early decades of the twentieth century, the evaluation of scienti�c

developments through some quantitative tools of measurement has caught

interest. Initially, the purpose was to give prestige and importance to a

speci�c scienti�c �eld rather than others [1;2;3]; thus, the �rst statistical in-

vestigations appeared, based on the literature and previous works. Then, in

the second half of the 1900s, many people started to focus on more general

points of view, and in this way a complete evaluation of science in all its

forms was made possible [11;12]. These evaluations were increasingly based

on manual mechanisms, such as counting the papers that a scientist pub-

lishes on a speci�c topic, or the citations that a given article received, and so

on; such methods allowed the de�nition and the development of a statistical

analysis, bibliometrics, which was deeply di�erent from other forms of inves-

tigation applied to the records of human knowledge [13;14;15;17;18]. Indeed,

bibliometrics is a discipline with applications in the history and sociology of

knowledge, in clerical activity of library archives, as well as in technical �elds

such as communication and information science; it revolves around the mea-

surable properties of the systems and technologies that vehicaulate knowl-

edge. Moreover, bibliometrics establishes connections between documents as

scientists expose their �ndings and research to their peer community.

It is reasonable that in the last few years, with the advent of technologies,

such as the Internet, the basic bibliometric methods have been developed also
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in these elaborate systems. Web of Science [26] and Google Scholar [28] are

two well-known examples of online databases based on the last innovative

bibliometric indicators that allow the user to search and compare on a large

scale most of the topics in the scienti�c literature. Through the investigations

that these tools allow, it is possible to design a complete map of science,

in which all the scienti�c documents present are connected through some

references or citations to the others.

The network of citations has been characterized extensively by researchers

investigating complex networks [81;82]. The bibliometric mechanism of count-

ing the number of publications related to speci�c selected topics has been

used to �nd empirical data essential to the evaluation of idea propagation,

but this is not the only tool. In this thesis, the objective is to investigate

an e�cient model to evaluate the spreading of research ideas in the scienti�c

community. We focus not on the structure of the citation system related to

an idea, but on the idea itself.

To this end, we argue that the propagation of a research ideas could be

compared with the spread of an infectious disease. Similar to a pathogen

responsible for an infection, a scienti�c idea could be considered the agent

that caused the spread of a certain topic in the scienti�c community. In epi-

demiology, many models have been developed to understand the dynamics

of infectious diseases [30;31;34;33;38;39;40], the most popular and important

being the SIR model conceived by Kermack and McKendrick and its suc-

cessive variations and improvements [32;44]. Through it, other models much

more complex and disease-speci�c have been developed to study and evaluate

the main causes of human mortality due to infections [41;42;46;47;48].

In such a system, the relationship between the infectious disease spread

and the more general concept of network develops. Instruments for network

analysis and structured characterization have also been used to improve the

realism of the models for infection propagation [53;54;56;57]. On the other

hand, it is possible to �nd in the literature some applications of the epidemi-

ological models to solve relevant network problems in computer science and

telecommunications. For example, the propagation of viruses in Mobile Ad

Hoc Networks (MANETs) has been compared to the spread of an infection
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in a population, thus the basic SIR model has been employed to analyze it

[65]. Some routing protocols have been designed inspired by the process of

contacts between susceptibles and infectives and the related transfer of an

infection [58]. Other examples of applications of epidemic models to general

networks are [59;61;63;64].

People commonly refer to �infectious� slogans, or �viral� marketing cam-

paigns, or ideas that �spread like wild�re.� These everyday phrases indicate

a basic a�nity between the propagation of ideas and the transmission of

infectious diseases; indeed, both are processes in which something is commu-

nicated, that is, transferred from one person to another. In 1964, the �rst

scientist that highlighted the relationship between epidemics spread and the

di�usion of ideas was W. Go�man [70]; after explaining the basic assumptions

of the well-known epidemiological model, he tried to generalize the epidemic

theory in order to apply it to the transmission of ideas. His initial purpose

was to determine the perfect circumstances under which it may be neces-

sary to introduce an information retrieval system to help scientists in their

research. Later, having thoroughly studied the epidemiological models, Go�-

man focused on the spread of knowledge about mast cells [71]; he applied the

SIR model considering the population as the list of authors who had written

on mast cells. This list was based on a bibliography created earlier by Hans

Selye. At the time of Go�man these type of studies were time-consuming; it

was di�cult to �nd experimental data, that is the data that could represent

the population in the epidemiological model, because it involved a totally

manual search. In general, science evaluation methods were not well estab-

lished; in particular, there was talk about scientometrics, that is the study

of measuring and analysing science, technology, and innovation throughout

measurement of their impact. At that time the most likely candidates were

scienti�c citations and the de�nition of representative articles to investigate

the impact of journals and periodicals. Thus, the application of epidemic

models was just a tentative proposal.

Nowadays, the development of online databases that keep track of all the

publications of papers, articles, journals and books, allows a faster research

about speci�c topics. Recently, only two other works, other than that de-
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veloped by Go�man, have been identi�ed [72;73]. In [72] the authors apply

several paradigmatic epidemic models to empirical data on the advent and

propagation of Feynman diagrams through the theoretical physics commu-

nity in the USA, URSS, and Japan in the period immediately after World

War 2; instead, in [73] a new approach, based on epidemic models modi�ed

in individual-based weighted network models, is used to describe the spread

of research topics across di�erent disciplines. In this example, the empirical

data were obtained throughout the use and the consideration of citations

between several articles.

In this thesis, we will apply the basic epidemiological SIR model and some

of its extended versions to the counts of the number of articles published for

several scienti�c topics in order to investigate the spread of those ideas in

the scienti�c community. We will discuss the related values of the basic

reproductive ratio, which indicates the maximum reproductive potential for

an infection, and the types of description that the di�erent models give. In

general, there is a good qualitative agreement at the descriptions. In some

cases the epidemic model is very accurate and also able to predict future

developments; in the remaining cases, the model can be improved to better

approximate the experimental dynamics.

The rest of this thesis is organized as follows: in chapter 2, the main

concepts of bibliometrics and epidemic models are discussed with their ap-

plications. In chapter 3, the models and the assumptions used to evaluate the

research ideas spreading in the scienti�c community are described. Chapter

4 discusses the main results. Finally, some concluding remarks are presented

in chapter 5.



Chapter 2

Related work

2.1 Bibliometrics

2.1.1 History and De�nition

The �rst systematic collection of statistics on science is attributed to the

American psychologist James McKeen Cattell, that, in the 1906 launched

the biographical directory American Men of Science, published periodically,

wherewith he collected information on the scientists active in the United

States, [76]. From these data, Cattell conducted systematic and regular stud-

ies on science and its development until 1930s; therefore, he produced some

measurements and statistics on the number of scientists and their geograph-

ical distribution, and categorized scientists on the basis of the performance

evaluated. For these reasons, Cattell can be credited for having started the

mechanisms of systematic measurements, that has allowed the development

and di�usion of bibliometrics.

Cattell introduced two kinds of parameters in the measurement of sci-

ence: quantity and quality. The former, also called productivity, was simply

counting the number of scientists a nation produce. The latter, also called

performance, and measured by averaging peer rankings of colleagues, was

seen as the contribution to the advancement of science. The �rst use of the

directory in the statistical analysis was concerned with psychologists: in the

1930s Cattell analyzed the �academic origin [institution], course and destina-
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tion� for a selected group of 200 psychologists [1]. The purpose of the study

was to identify the best scientists, display their performance, compare di�er-

ent nations and suggest some future actions in the �eld. Another important

goal of the application of the systematic collection was proving the in�uence

and the prestige of psychology and that it was really a science among the

sciences [2].

B. G. Miner, another psychologist, presented a more systematic analysis

to further support this point. In [3], he said that �in the following pages

the writer collects certain facts which bear upon the recent development of

psychology in American institutions of higher learning, with the hope of giv-

ing a more adeguate means for judging the present status of science.� The

data used by Miner were taken from a list of 150 colleges and given by the

directors of 34 prestigious laboratories. Miner presented statistics on these

laboratories and classi�ed them according to equipment and apparatus. He

also presented numbers of income and quanti�ed the share of e�ort dedi-

cated to psychology in universities; he also considered chairs, departments

and their sub-divisions or specialties, professors and courses and he made

some assessments about the percentage of university enrollment in psychol-

ogy. Furthermore, Miner tried to categorize the universities and the courses

according to their number of doctorates.

Cattell and Miner inspired other psychologists with their use of statistics

to proving the importance of psychology. Some other examples are E. F.

Bucher [4;5], C. A. Ruckmich [6;7], S. W. Fernberger and S. I. Franz [8;9].

They published several periodic reviews, some of these were strictly quali-

tative, but others included quantitative materials according to the numbers

given by several performance metrics evaluated. Bucher, for example, re-

viewed the work of the American Psychology Association, the largest scien-

ti�c and professional organization of psychologists in the United States, and

its in�uence, in terms of laboratories and systematic literature of its mem-

bers, and classi�ed and calculated the number of papers presented over the

decade by psychologists. To Bucher, publication and paper counts provided

�a good measurement of the annual variation of the intensity of interest in

the generic topics with which the psychologists are engaged� [5]. Later, in
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1912, another psychologist, C. A. Ruckmich of Cornell University, published

a review of 25 years of psychology that was all based on statistics [6]: in

this work, he measured laboratories, courses, department, and their condi-

tions. Furthermore, he compared psychology to other disciplines in terms

of number of professors, academic hours, registrations, and appropriations.

Another review was published by Ruckmich in 1916 [7]: he selected six jour-

nals from 1905 to 1915 and counted the number of papers, the number of

pages dedicated to each article, and classi�ed their methodology. The statis-

tics on publications was further developed by S. W. Fernberger; in [8], he

evaluated the evolution of membership to the American Psychological Asso-

ciation, and the increasing emphasis placed on publishing as a criterion for

suitability, and discussed the �nances, journals, organization, and meetings

of the Association for the evaluation of the research interest.

In this same period, Fernberger and Franz introduced the idea that the

only count of the publications or papers was not su�cient to evaluate the

performance and the statistics. It was necessary to consider the entire back-

ground; indeed, even the age di�erence of the authors in�uences the statis-

tics of discipline productivity: Franz looked at the date of the doctorates as

the date when publications might reasonably be expected and compared the

number of actual contributors versus the expected ones; he found that the ac-

tual contributors in relation to the expected ones decreased. This is due the

fact that some of the contributors according to the age may not necessarily

be active over the whole period considered for the statistic evaluation. Fur-

thermore, he measured that the productivity of the older researcher, where

old/young depended on the date in which they were granted their doctor-

ate, was higher than the younger ones, but the ratio of actual to expected

publications was higher among the younger scientistis. Another important

aspect was the author's nationality: to evaluate the development of the sci-

ence through systematic collections and to have global view and compari-

son, it was necessary to consider also the publications of the other nations,

not only the works that came from the American Psychological Association.

Fernberger started a series of papers on the international comparison of sci-

enti�c production on psychology [9]. Because these papers were published
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periodically every ten years and from the analysis of the results collected,

Fernberger could evaluate the so called �political economy� of the research

[10]. He looked at the e�ects of the world wars, politics, and nationalism on

the measurements of the publications; for example, a result that he found

is that war and subsequent economic crisis tend to decrease the number of

publications. On the other hand, the presence of a strong government that

encourages and even supports research with funding considerably increases

the amount of scienti�c publications.

Still, publication counts were limited to one subject, and not to the whole

community of scientists. The �rst to perform this leap was W. Dennis who

looked at the most well-known and celebrated scientists and their scienti�c

production. In his paper [11], he chose 41 scientists whose names appeared

between 1943 and 1953 in the Biographical Memoirs of the US National

Academy of Science and who reached the age of 70, from their biographies

he calculated the number of publications of each and found that these sci-

entists have been globally responsible for 203 papers per year on average.

Later Dennis looked at the 25 most distinguished scientists of the nineteenth

century, this evaluation was based to the space devoted to them in encyclo-

pedias and dictionaries of biography: he said that in �science, quantity and

quality are correlated.� In another publication, [12], Dennis analyzed the

age at which scientists produce most by counting the number of papers of a

selected group of them.

Simultaneously to the several investigations led by these psychologists, in

the �rst half of the twentieth century other sporadic works in other di�erent

disciplines used statistical analysis of publication: in 1917, Francis J. Cole

and Nellie B. Eales applied quantitative analysis to the comparative anatomy

literature from 1543 through 1860 [13]. They represented with a curve the

documentary growth rate over the period considered, they tried to determine

the aspects of this subject that had most attracted scholars e�orts in time and

correlate evolution and recession phases of research activity with economic,

social and human factors. This was credited as the �rst real bibliometric

investigation, together with the previously cited publications of Fernenberg,

mainly related to psychology, and Dennis, more general in scope; indeed,
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they analysed science and scienti�c progress through statistical analysis of

publications, they used the results as a tool for mapping scienti�c research

and locating the most eminent scientists, and they considered the limits

of such a method because numbers alone did not tell the whole story of

science; as a consequence, the quantitative analysis must be associated with

a qualitative analysis of scienti�c literature values.

The study of Cole and Eales was followed by a statistical analysis of the

history of science in the 1923 by E. Windham Hulme, a librarian of the

British Patent O�ce [14]. The key idea of Hulme was that by classifying all

the books in the world according to some universal criteria and ordering them

chronologically within each topic, a map of the human mind could be worked

out. So, scienti�c specialization re�ected the process of human civilization.

His analysis in [14] was based on the journal entries in the seventeen sections

of the International Catalogue of Scienti�c Literature and he presented the

rankings of entries in physiology, bacteriology, serology, and other medical

subdisciplines, the rankings of sciences according to their output of periodical

literature, the number of journals in the annual issues arranged by subject,

and the number of indexed journals arranged by country of publication. In

this scenario, the idea that there was a relationship between the macrocosm

of human knowledge and the microcosm of the library and the collection

of books and journals had to deal with the practical constraints imposed

by restricted budgets and the lack of physical space against an increasing

volume of potential relevant documentation. According to this intuition,

a quantitative insight into bibliographies, library collections, and catalogs

o�ered several advantages. In 1927, P. Gross and E. M. Gross claimed that it

was no longer su�cient to �sit down and compile a list of those journals which

one considers indispensable� because �often the result would be seasoned too

much by the needs, likes and dislikes of the compiler.� In [15], they counted

and analyzed the citations in articles published in a chemistry journal, the

prestigious Journal of the American Chemical Society, and they wrote a list

of journals they considered indispensable in chemical education by ranking

the journal title according to the number of citations received. Furthermore,

they claimed that the citation count was not the only reasonable criterion to
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consider for journal selection, because the age distribution of the references

produced a similarly important index of utility; indeed, according to their

idea, if some journals had the same number of citations, the journals receving

citations to the most recently published articles were classi�ed higher because

the present trend was more signi�cant than the past performance of a journal.

In this way, they established a relationship between quality, citation rates,

and time distribution of citations; as a result, they revolutionized the analysis

of the information for library management and research evaluation purposes.

This was the �rst study based on counting and evaluating citations, an idea

that inspired Eugene Gar�eld later for the creation of the Science Citation

Index. It should be noted that the previous studies were based on entries in

bibliographies, not on received citations.

A further turning point was represented by Paul Otlet, father of European

documentation and cofounder of the International Institute of Bibliography

in the late 1920s. He clearly distinguished what Pritchard called later biblio-

metrics from other forms of statistical investigation applied to the records of

human knowledge. In [16], Otlet celebrated the measure as a superior form of

knowledge and supported the development of a sub�eld of bibliology entirely

dedicated to the collection of measures related to documents and papers of

all kinds.

But it was Alan Pritchard that in the 1969 coined the term bibliometrics

[17]. He de�ned bibliometrics as the application of mathematics and statis-

tical methods to shed light on the processes of communication, the nature

and the development of a discipline, by means of counting and evaluating

the several aspects of written comunication. In later articles, Pritchard ex-

plained bibliometrics as the �metrology of the information transfer process

and its purpose was analysis and control of the process� [18]. Pritchard's

interpretation was upon the fact that measurement is �the common theme

through de�nitions and purposes of bibliometrics and the things that we are

measuring when we carry out a bibliometric study are the process variable

in the information transfer process� [18]. Then other formal de�nitions have

been attributed to bibliometrics; for example, the British Standard Glossary

of Documentation of Terms de�ned bibliometrics similarly to Pritchard. An-
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other example of de�nition is given by William Gray Potter, editor of the

issue of Library Trends dedicated to bibliometrics: �bibliometrics is, simply

put, the study and measurement of the publication patterns of all forms of

written communication and their authors� [19]. In the same issue, Alvin M.

Schrader said �bibliometrics is the scienti�c study of recorded discourse.� All

these, and other, subsequent de�nitions clari�ed and deepened the purposes

and the �eld of study (number of publications per authors, type of publica-

tions, etc.) of bibliometrics, expanding its use to the quantitative analysis of

scienti�c productivity on a large scale.

A new historical phase of bibliometrics began with the end of World War

2, when a new political, social, and economical arrangement, and a new orga-

nization of the human scienti�c knowledge was established in the background.

In this scenario, much more complex in terms of scienti�c productivity, all

the tools and the ideas of measuring the scienti�c documentation of the �rst

statistic collections were recovered. Furthermore, there was certainty that

scienti�c activity could be controlled, planned, and addressed towards im-

portant purposes, mainly because there was a strict relationship between the

economical growth and the development and innovation carried by science.

Later in the politics of the scienti�c research, a signi�cative change came

from the hurl of Sputnik by the Soviet Union in the 1957: a riorganization

of the American research system was necessary to �ll the scienti�c gap to-

wards the Soviets. This new organization, however, was interested more in

the human and �nance resources rather than in the results of the research

itself, while the evaluation of the research still belonged to the internal mech-

anisms of the academic communication. The attention to the measurement

of the scienti�c documentation was addressed not only for the evaluation of

the research; in that same period (1950-1960), indeed, there was a notable

increasing of the scienti�c literature that presented the need to search new

control instruments. The amount of the scienti�c production became a se-

rious problem for those who needed to identify and make use of much more

relevant information for their research, furthermore signi�cant limits were

due to the manual sistems of literature indexing.

At this point of the bibliometrics history the �gure of Eugene Gar�eld
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becomes meaningful. Gar�eld realized the inadequacy of the tools that scien-

tists used to recover useful information according to their activity of research.

He presented in the journal Science (1955) the idea of a project of interdis-

ciplinary index based on citations, but only in 1963 he published the Science

Citation Index ; in [20] he said: �In this paper I propose a bibliographic sys-

tem for science literature that can eliminate the uncritical citation of fraudu-

lent, incomplete, or obsolete data by making it possible for the conscientious

scholar to be aware of criticisms of earlier papers. Even if there were no other

use for a citation index than that of minimizing the citation of poor data, the

index would be well worth the e�ort required to compile it.� His target was

to devise a citation index that could o�er a new approach to subject control

of the literature of science, he talked about the Science Citation Index as

�an association-of-ideas index.� The term impact factor began to be used;

it was similar to the quantitative measure obtained by Gross in evaluating

the importance of scienti�c journals. Furthermore, Gar�eld emphasized that

this factor was much more indicative than an absolute count of the number

of publications of a scientist, as used for example by Dennis.

The SCI designed by Gar�eld further developed the correspondence be-

tween the qualitative value of periodicals and the number of citations re-

ceived, stating the use of citations as evaluative tool and, indirectly, of the

bibliometric indicators in the evaluation of the scienti�c research, that, since

the 1960-70s, asserted themselves �rst in the United States and then in sev-

eral European countries. Several studies based on the data derived from SCI

were published; the �rst example is Science Indicators Reports published

in 1973, edited by National Science Board, the purpose of which was the

measurement of the American scienti�c research. Another important study

focused on Gar�eld's idea was that of Narin, the Evaluative bibliometrics

[20], in which he advanced the concept of citation impact as a qualitative

measure of the scienti�c publications at the international level. That work

was approved by the National Science Foundation, a United States govern-

ment agency that supports fundamental research and education in all the

�elds of science and engineering.

Governments and institutions too were interested in the improvement of
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the bibliometrics tools as a valid support for the decisions which provided

for the distribution of the resources to invest in research. Afterwards, while

in 1970s the American studies were focused mainly on the organizzation of

the scienti�c literature, in Europe in the 1980s the bibliometrics was used

to evaluate the performance of the universities, institutions, and research

groups. It is important to highlight that in the last decade many innovative

aspects were introduced in the �eld of bibliometrics: the creation of new

open access citation indexes that have determinated the end of the de facto

monopoly dictated by SCI, the development of much more sophisticated new

bibliometrics indicators, and the application of bibliometrics in increasingly

wider areas, like, for example, the World Wide Web.

2.1.2 Theoretical Basis and Bibliometrics of our days

A real watershed in this discipline is represented by the studies conducted by

A. Lotka about the distribution of the scienti�c production in relation with

the number of authors, by G. K. Zipf about the distribution of the words in

documents, and by S. C. Bradford about the distribution of the number of

articles in periodicals. These were the results of a quantitative methodolog-

ical approach arised in the �eld of information and scienti�c communication

in the �rst half of the twentieth century. These mathematical foundations

of bibliometrics are not comparable to the way Newton's laws of motion and

gravitation are the foundation of classical mechanics; indeed, the laws of

bibliometrics do not allow to predict the number of articles an author will

write, the number of citations that a paper or a publication will receive over

a certain time span, or the number of journals that will publish papers on a

given topic, but they allow to meaningfully combine the structure of several

existing databases.

In the 1926 Alfred Lotka, mathematician and chemist, president of the

American Statistical Society, published a study of the distribution of the sci-

enti�c production in communities of scientists, chemists, and physicists [22].

He was interested in determining �the part which men of di�erent calibrate

contribute to the progress of science.� From this study, indeed, Lotka ob-
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served that the scientists contributed in a di�erent way to the improvement

of the knowledge: there was a small number of authors with high rate of

productivity against a much more greater number with low output. He sum-

marized these results in an empirical law according to which the number of

authors that produce n publications is approximately equal to 1/n2 of the

number of authors that publish a single article, and the ratio of all authors

that produce a single article is approximately equal to the 60% of the entire

production. Therefore, the value of Lotka's law was strictly related to the

average productivity of a speci�c scienti�c community, that depended on the

discipline evaluated. In general, Lotka's law is close to the observed values

when applied to a discipline in which the level of authors productivity is very

low.

After 8 years since the publication of Lotka's law, another empirical law

was hypothesized by Samuel C. Bradford, librarian at the science museum

in London, who published the results of his study in [23]. Bradford said

that �the aggregate number of articles in a given subject, apart from those

produced by the �rst group of large producers (periodicals), is proportional

to the logarithm of the number of producers concerned, when these are ar-

ranged in order of decreasing productivity.� In other words, this means that

if periodicals contributing to a subject are ranked and then grouped in such

a way that each group contributes the same number of articles, the num-

bers of periodicals in each group increase geometrically. Therefore, it was

possible to identify a core of publications considered essential within each

scienti�c discipline, and organize and manage bibliographic collections in a

better way: not all the publications were necessary, or at least the bene�ts

derived from them would have been useless in relation with the costs that

would have been incurred. Furthermore, by optimizing the selection of mate-

rial around the core of relevant publications, also the bibliographic research

obtained bene�ts with the increase of the precision and the consequent noise

decrease. Bradford's law was used by Gar�eld to choose the main periodicals

that arranged the core of the Science Citation Index.

The third major study was to George K. Zipf, an American linguist and

philologist who formulated a law valid both for bibliometrics and quantitative
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linguistics. Zipf's law was derived from the study of the regularity of words

in a text. In [24], Zipf stated that if words are ranked according to their

frequency of occurrence, the nth ranking word will appear approximately

k/n times, with k a proper constant. In other tems, Zipf's law measured

the meaningfulness of a word as a function of the frequency with which it

appeared in periodicals. Therefore, it was also possible to de�ne a core of

words in a text that were more relevant because more frequent.

From the historical development of bibliometrics, it can be seen how from

a simple count of publications related to speci�c disciplines or more generic

areas, the quantitative and qualitative analysis of scienti�c literature has

increased the use of more so�sticated tools based on the importance of ci-

tations. The use of citations as an index for the identi�cation of prestige

in the scienti�c community began to spread. Not all the representatives of

the scienti�c community were in agreement, some argued that the count of

citations did not re�ect the e�ect of the scienti�c activity: the choice of the

citations for a publication was not so much based on the content of the quoted

text, but mainly on some characteristics as the importance of the author, the

editorial position of the text or the importance that the scienti�c community

gave to that text. For example, Van Raan in [67] observed that the number

of citations also depended on a multiplicity of factors, such as time, indeed

the probability of beeing quoted was higher as the date of publications of

the quoted article was closer, or the fact that citation procedures varied in

the di�erent scienti�c community, or factors connected to some characteris-

tics of the periodical in which the article was published, as the frequency of

publication of such periodical or the order in which the article was inserted

in a periodical and so on. Another example is Collins who in the study

of the citations of a group of papers about physics found that the number

of citations, but in particular the acceptance of new innovative ideas in the

physical community, depended on several variables di�erent from the content

of the quoted articles, such as, for example, the institutional context, [69].

On the other hand, there were someone else that was inclined to the �rst

idea; for example, Baldi, studying the citations in the �eld of astrophysics,

concluded that the characteristics di�erent from the content of the articles
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did not in�uence signi�cantly the probability of beeing inserted in the list of

references [68].

Today there is a shared consensus the idea that citations are not an ideal

measurement of the scienti�c performance, but they are a good indicator of

the notoriety of a group of research rather than of a single contribution [25].

A procedure of evaluation that takes care only of the number of citations

that an article receives, without considering the meaning of these citations

or the quotation behavior, could induce some erroneous considerations on the

�nal result. For that reason, normally we do not speak only of counting the

number of citations of an article, but we talk about co-citation analysis and

bibliographic coupling analysis. The former means that when two document

are quoted by the same third document, this represents an association be-

tween them; moreover, if two documents are quoted simultaneously over and

over again the greater will be their association; while, the latter represents

the ratio of two or more documents that cite a third.

With the advancements of the technology, bibliometrics could also develop

and originate tools in the Web. A respectable successor of Gar�eld's Science

Citation Index is Web of Science, WoS [26], a bibliographic database of ci-

tations and multidisciplinary online from 2002, accessible with fee through

Thomson-Reuters' platform Web of Knowledge. The database WoS allows to

search through about 12 000 periodicals, 148 000 conference proceedings, and

28 000 books; WoS includes 7 indices of citations: Conference Proceedings

Citation Index, Science Citation Index Expanded, Social Sciences Citation

Index, Arts & Humanities Citation Index, Index Chemicus, Current Chemi-

cal Reactions, Book Citation Index.

Selection in WoS is based on impact evaluations and comprise open-access

journals, spanning multiple academic disciplines. The coverage includes:

hard sciences, social sciences, humanities, and arts, and goes across disci-

plines. The seven citation indices listed above contain references, which have

been quoted by other articles. One may use them to launch quoted reference

search, that is, identifying articles that cite an earlier or current publication.

Citation databases can be searched by author, topic, source title, or location.

Another tool integrated in theWeb of Knowledge platform, but di�erent from
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WoS, is the Journal Citation Report (JCR) that is split into two editions:

the �rst contains data of more than 5 900 journals in 171 disciplines, the

second contains data of more than 1 700 journals in 55 disciplines [26].

However, Web of Science does not index all journals, and its coverage in

some �elds is less complete than others. Furthermore, in 2009 the total �le

count of the WoS was 46.1 million records, which included 727 549 189 cited

references. This citation service on average indexes around 65 million items

per year, and it is described as the largest accessible citation database.

Another example of online citation index is Scopus [27], a citation database

with fee launched in 2004 in the scienti�c, technological, biomedical �eld and

in the area of social sciences. It is accessible from Elsevier's platform Sci-

Verse. Scopus indexes 18 500 peer-reviewed periodicals, 1 800 open-access

periodicals, around 4 million of conference papers, 425 business publications,

350 books, 375 million of web pages through Scirus, 24.8 million of patent

registrations. Totally, Scopus contains 46 million registrations, whereof 25

million with references after 1996 and 21 million from 1823 to 1996. Scopus

allows to set up a research by author, topic, source title, or location; it allows

to visualize directly the abstract or the full text of the article sought, and it

allows to set up some alert to inform about a speci�c topic or the publications

of a speci�c author.

A database that is certainly well-known is Google Scholar [28]; it is a

freely accessible web search engine that indexes the full text of academic

and scienti�c literature across an array of publishing formats and disciplines.

Google Scholar was beta released in November 2004, its index includes most

peer-reviewed online journals of Europe and America's largest scholarly pub-

lishers, and in addition scholarly books and other non-peer reviewed jour-

nals; it also indexes technical reports and freely published documents on the

WWW. It is similar to the subscription-based tools, Elsevier's Scopus and

Thomson's Web of Science; it puts together traditional method of research

based on metadata, citation linking, many features of bibliometrics and the

new possibility to identify and recover the digital full text of a large number

of di�erent documentations with free access and the references of articles

and digital or paper books. Google Scholar supplies informations about the
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type of material that becomes part of his archive, but it does not outline the

method of selection of materials, the criteria of inclusion, the update times

and the procedure of indexing. As a consequence, it is not possible to control

and to evaluate the reliability and the coverage of the research. Compared

withWeb of Science and Scopus, Google Scholar achieves its indexing results

much more quickly but also with lower accuracy, especially for searches that

require deep investigations.

These tools are all based on the use of bibliometrics indicators. The

simplest are the count of the number of publications and the count of the

number of citations, but other much more complex bibliometric indicators,

such as impact factor or the recent H-index [66], are also available. The latter

has became a widely used bibliometric indicator; according to its de�nition a

scientist has index h if h of his/her Np papers have at least h citations each,

and the other (Np− h) papers have no more than h citations each [66]. Its

aim is to express in a single numerical value both the productivity, that is

the number of publications, and the e�ect on the scienti�c community, that

is the number of citations, referred to the individual researcher.

2.2 SIR model

2.2.1 Epidemic models

Although chronic diseases such as cancer and heart conditions receive more

attention in developed regions, infectious diseases are the most important

cause of mortality in developing countries. Also, even in developed regions

the human immunode�ciency virus (HIV), which is the etiological agent

for acquired AIDS, nowadays is an important sexually-trasmitted disease

throughout the world. Other diseases such as tuberculosis are becoming a

problem because drug-resistant strains have evolved. In the past some mas-

sive epidemics destroyed entire populations. The Black Death in the 14th

century is just the most famous epidemic historically. Moving across the

Atlantic Ocean, the �rst major epidemic in the USA was the Yellow Fever

epidemic in Philadelphia (1793) in which about 5 000 people died out of a
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population of around 50 000 [83;84]. Another well known epidemic was The

Plauge of Athens (430-428 BC), described by Thucydides; importantly, there

was no mention of person-to-person contagion, a remark that led to a better

comprehension on how epidemics can propagate (not only directly, but also

through a proxy) [85].

Understanding the transmission characteristics of infectious diseases in

populations, regions, and countries can lead to better approaches to contain

the transmission of these diseases. Mathematical models are useful in build-

ing and testing several theories and comparing, implementing, and evaluat-

ing detection, prevention, and theraphy: the progress of an epidemic across

a population is highly amenable to mathematical modelling.

Pioneered by Daniel Bernoulli in 1760 [29], mathematical modeling has

a well-known history in predicting and rationalizing the spread or control

of infectious diseases in a population. Bernoulli, a French matematician

and physicist, made the �rst study on the problem concerning the spread

of human diseases. His studies focused on the spread of smallpox; notably,

in the early years of the eighteenth century the descendents of Louis XIV

of France were killed o� by this diseases, so the problem was topical at the

time. His work, presented to the French parliament whereof Bernoulli was

a member, impressed the assembly but did not achieved the hoped results.

Only in the 1798, Edward Jenner published his well known discoveries on the

smallpox vaccine, whose validation he also based on Bernoulli's studies.

The current literature is rich with epidemic models, which have enhanced

our understanding of outbreaks, epidemics, and pandemics of various pathogens.

Particularly, the principles enunciated by Hamer in 1906 [30] and later ex-

tended by Ronald Ross in 1911 [31] and Kermack and McKendrick in 1927

[32], establish the true foundations of mathematical epidemiology today.

Hamer in [30] formulated and analysed a discrete time model in his attempt

to understand the recurrence of measles epidemics; his model may have been

the �rst to assume that the incidence of the disease depends on the product

of the densities of the susceptibles to the disease and the infectives. Ross

[31] has developed a system of di�erential equations to represent, in certain

circumstances, the course of events in a community that has become infected
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with malaria. He did not give the general solution of the equations, but

he resctricted his discussion to the �nal state of equilibrium to which they

lead. On the other hand, in [32] Kermack and McKendrick formulated the

�rst generic model to study the spread of infectious diseases and obtained

the epidemic threshold result according to which the density of susceptibles

must exceed a critical value in order for an epidemic outbreak to occur. The

model envisaged a population partitioned in 3 classes: the class of suscepti-

bles to infection, where no pathogen is present, just a low-level nonspeci�c

immunity within the host; the class of infectious, consisting of individuals

with high pathogen level and the potential to transmit the infection to other

susceptible individuals; the class of recovered, which includes individuals nat-

urally resistant to the pathogen or those who cleared the infection and are

no longer contagious, nor they can be infected again. The model of Kermack

and McKendrick provided that, given a population of individuals in which

contagion is instantaneous and happens with rate C, if M is the death rate

for the epidemic and k is the percentage of meeting between healthy and sick

individuals, then the disease spreads or not depending on whether the initial

number of susceptibles is larger than or smaller than kM/C, respectively.

This is the �rst idea of SIR model that inspired many other epidemiological

models.

Although it was well known that animal/human hosts and their parasites

varied in resistence and infectivity respectively, and that many other factors

played their part in how an epidemic disease spreads there were some epi-

demiologists, such as Greenwood [45], that expressed criticism on the produc-

tivity of the model. Greenwood based his studies on the spread of infectious

diseases in herds of mice, he retained that �the many questions regarding

epidemics can only be answered by �nding out actually what happens in an

infected herd, not by deducing what might happen from knowledge of what

occurs in individual hosts.� He made some experiments using herds of 100

000-200 000 mice and he found, for example, that it was possible to mantain

for months or years herds infected with bacterial parasites such as Salmonella

typhi-murrium and Pasteurella muriseptica without any cross-infection; he

also made some additional experiments to observe the e�ect of several meth-
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ods of interference on the spread of the infectious diseases that he considered.

From statistical examination of results, Greenwood concluded various main

aspects of the disease spread: the disease never died out in heards of mice

living in close and continuous contact and considering that the herds were

subject to continuous and intermittent immigration of susceptibles; the aver-

age resistance of surviving mice increased with survival in the herd but never

became absolute; the selection, by death of the more susceptible or by natu-

ral immunization, had an important role in the increased resistance displayed

by surviving mice; and so on. Furthermore, with his studies Greenwood tried

to �nd some mechanisms to eradicate the disease and to immunize the herds

changing the conditions of contacts and the characteristics of the spread of

the infection.

Another relevant epidemic models developed in the 1920s is the Reed-

Frost model, a mathematical model of epidemics by Lowell Reed and Wade

Hampton Frost, of Johns Hopkins University [33]. This is an example of

simpli�ed, iterative model of how an epidemic will behave over time; it is

based on the following assumptions: the infection is spread directly from in-

fected individuals to others only through a certain type of contact (adequate

contact); any non-immune individual in the group, after such a contact with

an infective individual will develop the infection within a given period and

will be infectious to others only within the following time period, while in

subsequent time periods, he/she is permanently immune; each individual has

a �xed probability of coming into adequate contact with any other speci�ed

individual in the group within one time period, and this probability is the

same for every member of the group; the population is closed; �nally, all

these conditions remain constant during the epidemic. Knowing the size of

the population, the number of individuals already immune, the number of

infectives and the probability of inadequate contact, this model allowed to

evaluate how many individuals will be infected and how many immune in

the next time interval. Furthermore, repeating this model several time by

changing the initial conditions it is possible to observe and evaluate how

these e�ect the progression of the epidemic.

As well as for all innovative scienti�c ideas and their formulations, a crit-
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ical analysis of these �rst epidemics models followed their exposition. In [46],

M. S. Bartlett asserted that any complete quantitative theory was based on

hypothetical systems or models depending on some parameters whose val-

ues could be determinated by observing; for example, in the case of infection

from person to person, some of these parameters speci�ed the nature of incu-

bation and infectivity periods and the probability of transmission, but other

variables could be considered, as the size and the structure of the susceptible

population and changes in immunity to the infection. Therefore, it was of

the utmost importance to accurately determine these parametric values from

appropriate statistical data. Furthermore, Bartlett believed that a relevant

problem was that such information by itself did not automatically lead to

an understanding of the behaviour of population as a whole, and the justi�-

cation of theoretical discussion was that the mathematical models of typical

epidemiological situations suggested complex conseguences even on the sim-

plest assumptions. According to his idea, the introduction of simple division

of the human population in susceptible, infected, and recovered was not the

only aspect on which to focus, indeed Bartlett emphasized the importance of

understanding the characteristics of the invading pathogen. For example, in

his critical analysis of the work developed by Ross on the formulation of the

epidemiology of malaria he stated that it was necessary to include in that for-

mulation also the characteristics of the population of mosquitoes that trans-

mit the infection. For this reason, the classical deterministic models were not

su�cient to describe the evolution of an epidemiological situation, so Bartlett

suggested the use of statistical or stochastic models: in the complete study of

an epidemic, neglecting random or change factor could be quite misleading.

Bartlett focused on the mechanisms for recurrent epidemics, that is, when

the susceptible population is in one way or another replenished, and in par-

ticular on the mathematical model for the measles, but he claimed that the

theoretical equations and techniques developed were applicable to epidemics

models in general.

In general the 1920s, de�ned the Golden Age of Theoretical Biology, con-

stituted a particularly productive period for the development of those the-

ories. The work of Kermack and McKendrick inserts in the general debate
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that, after a period of great brightness, stops or proceeds slowly until the

1970s, when a new period for the mathematical modeling of epidemics opens

again. Indeed, mathematical modeling of infectious diseases has progressed

dramatically over the past 4 decades and continues to prospers at the nexus

of epidemiology, infectous diseases research, and mathematics. Mathematical

models are being integrated into the public health decision-making process

more than ever before, because they are recognized as a valuable tool. An

example is carried by Roy Anderson and Robert May that in 1990s consol-

idated concepts in mathematical epidemics and provided new insights into

spread of HIV infection, [34;35;36;37]. They focused considerable attention,

using the di�erential equations of Ross model, on the role of infectious dis-

eases in the considered dynamics of host populations including invertebrate

host. They studied the role of parasites, de�ned to include viruses, bacteria,

and protozoans, in biological control and they determined measures neces-

sary for the eradication especially of viral diseases such as rabies, measles,

and whooping cough. In most cases, their models predict the existence of a

threshold that is a consequence of the assumption that the rate of disease

transmission is proportional to the number of random encounters between

susceptibles and infectives in a population.

Most of the models developed have involved aspects such as passive immu-

nity, gradual evanescence of vaccine, and disease acquired immunity, stages of

infection, age structure, spatial spread, vaccination, quarantine etc. Special

models have been formulated for diseases such as measles, rubella, chicken-

pox, smallpox, malaria, whooping cough, HIV/AIDS, etc. In [38], Becker

et al. believed that only a part of the transmission process of a disease is

observable; indeed, sometimes only the eventual number of cases is observed

and so only certain parameters of the transmission model are estimable; e.g.,

neither the times of infection nor the times when the infectious periods start

are observed. As a consequence, simplifying assumptions are needed. Thus,

Markov chain Monte Carlo (MCMC) methods are used for the analysis of

infectious disease data [86]. Two important data set were considered, con-

taining temporal and non-temporal informations respectively, from outbreaks

of measles and in�uenza. Their purpose was to provide some examples of the
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use of the MCMC methods and to illustrate how various realistic modelling

assumptions could be readily incorporated. Some preliminary work on the

application of MCMC methods for simple epidemic models can be found in

O'Neil and Roberts [39] and in Gibson and Renshaw [40]. Also in [39;40]

the analysis of infectious disease data was usually complicated by the fact

that real life epidemics were only partially observed and, in particular, data

concerning the process of infection were often unavailable.

A model for a speci�c infectious disease is [41], in which Castillo-Chavez,

based on the idea that mathematical epidemiology has resulted from the

need to understand and control the global epidemic such as AIDS, focused

on the implications of variable infectivity, the immune system and social/-

sexual mixing dynamics for our understanding of the epidemic process: he

measured the infectivity of the diseases, evaluated the stages of the infec-

tion, and the associated transmission probabilities. He also tried to model

heterogeneity in susceptibility and infectivity by introducing heterogeneity

parameters multiple. Addressing the immune system, he developed models

to describe the complex interaction of the immune system and HIV, consid-

ering some features such as the long latency period, or the almost complete

absence of free virus particles etc. As well as Castillo-Chavez, also Heth-

cote and Van Ark made some study and applied mathematical models to the

spread of AIDS, [42]; in [43], Hethcote studied also a mathematical model for

the spread of gonorrhea, he considered several background, for example the

type of population for the evaluations, and compared the results. Indeed, in

the 1970s gonorrhea led the list of infectious diseases in the number of cases

reported by the U.S. Public Health Service, with more cases than the com-

bined total for several other diseases, as syphilis, measles, infection hepatitis,

etc., so many other models for the evaluation of the spread of this disease

developed as well as [43]. The distinctive epidemiological characteristics of

gonorrhea caused the models to di�er from those of other infectious diseases.

In [47;48] Yorke et al. designed a model with time-independent coe�cients;

this model based on some relevant characteristics of gonorrhea, such as the

average incubation period that is short (3 to 7 days) compared to the often

quite long period of active infectiousness, or the fact that often this disease



2.2. SIR MODEL 25

is asymptomatic and that an infected individual seems to remain infectious

until he/she receives antibiotic treatment. The asymptomatic cases of gonor-

rhea do not seek prompt medical treatment and so these cases are infectious

for periods much more longer than the latent period. Another aspect that

Yorke et al. took care of was that no signi�cant physiological immunity is

derived from having previously been infected; indeed, there were individuals

who have been infected and cured over and over, so they assumed that as

soon as the curing antibiotics had left the body, the individual was again

susceptible. Therefore, the model considered only infectives and suscepti-

bles, without immunes; moreover, they concluded that unlike many diseases,

the duration of the infection and the contact rates were extremely variable.

A more or less recent work that describe instead models for tuberculosis

epidemics is [74]; this is another example of a speci�c formulation for an

infectious disease; recently tuberculosis, although preventable and curable,

causes more adult deaths than any another infectious disease. The theoret-

ical framework of [74] designes and develops e�ective control strategies to

determine treatment levels for eradication and quantify the e�ects of non-

eradicating control. The theoretical formulations were extended to assess

how suboptimal control programs contribute to the evolution of drug resis-

tance and the authors developed a new evaluation criterion to suggest how

control strategies can be improved.

A detailed analysis of the basic model for the general evaluations of the

diseases spread, the SIR model, is made by M. J. Keeling and P. Rohani

(2008), [44]; their book is designed as an introduction to the modeling of

infectious deseases: they start with the simplest of mathematical models and

show how the consideration of appropriate elements of biological complexity

leads to understand the disease dynamics and their control. The SIR model

is based upon calculating the proportion of the population in each of the

three classes, susceptible, infected, and recovered, and determining the rates

of transition between these classes. Several variations of the SIR model are

explained; although the basic model provides a simple and generic frame-

work for understanding and predicting epidemiological dynamics, a number

of modi�cations are possible, which increase the model realism but also the
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number of parameters that have to be estimated to better analyze the infec-

tious diseases. Moreover, in [44] both deterministic and stochastic models

are described; the persistence of infections, particularly childhood infections,

whithin a population inspired also the study of stochastic models, in which

the number of individuals in all the classes was always an integer and events

happened at random but with a given underlying probability that was based

on the associated deterministic model.

The purpose of some of the models developed during the years is to use

them as either a predictive tool or as a means to understand fundamental

epidemiological processes. Indeed, one of the primary reasons for studying

infectious diseases is to improve control and obtain some methods of eradica-

tion of the infection from the population: the studies of these methods and

models allow to formulate several forms of control measure, all operated by

reducing the average amount of transmission between infectious and individ-

uals that are susceptibles. The control strategy to use depends on the disease,

the hosts, and the scale of the epidemic. The �rst studies of Bernoulli [29]

that led to the eventual smallpox vaccine, developed by Jenner. The purpose

of vaccination is to reduce the number of suscetible individuals applied to a

large proportion of the population. Other mechanisms are used to control

the infection; for example, the isolation of known or suspected infectious

individuals, called quarantine, is one of the oldest known form of disease

control and still in use, indeed it was used to combact SARS in 2003, and it

is a rapid �rst response against invading pathogens. The main idea is that

it essentially operates by preventing infectious individuals from mixing with

susceptible ones, hence stopping trasmission. However, quarantine can be

applied only once an infectious individual is identi�ed, by which time the

individual may have been transmitting the infection for several days. These

and other measures of diseases control are not 100% e�ectives in most cases.

Furthermore, with the recent development of several means of transportation

that become faster and faster allowing milion of people of all nationality ev-

ery day to travel around the world, the spread of infectious diseases is easier.

Therefore, for all these reasons, it is necessary to formulate accurate models

and advanced mechanisms of control of the diseases spread.
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2.2.2 Networks and SIR models

Networks and the epidemiology of directly transmitted infectious diseases are

fundamentally linked. The foundations of epidemiology and early epidemic

models were based on population wide random-mixing, that is populations

within which interactions take place between randomly selected individu-

als. In practice, however, each individual in a population has a �nite set of

contacts to whom they can pass infection: the whole structure of all such

contacts forms a mixing network. The knowledge of the structure of that

network allows models to compute the epidemic dynamics at the population

scale from the individual-level behavior of infections.

The historical study of networks begin in two di�erent �elds: social sci-

ences and graph theory [87]. Whereas the epidemiologists talk about �hosts�

and �contacts,� graph theory uses the terms �nodes� and �edges,� while the

social literature, on which social sciences are based, talks about �actors� and

�relations.� In each case, it is the presence of a relationship between elements

in a set of these that is the issue of concern. Research in the social sciences

provides quantitative and qualitative informations about social network con-

nections, which are related to the mixing networks for infectious diseases,

because it focuses on the network connections rather than on the properties

of the network itself. For example, Leinhardt, in the 1977 [49], used net-

work analysis to describe the evolution and spread of ideas and innovations

in societies and observed that social dynamics can be understood through

analysis of the social networks on which they are based. Attention has been

given to the nature of connections: properties such as symmetry and transi-

tivity, which together allow to measure the social cohesion.1 Also measures

of the importance of individuals heve been derived, based on various consid-

erations, such as the number of connections, or other structured properties

[50]. Such ideas immediately inspired epidemiologist because the concept of

the social importance of an individual is directly related to its role in disease

spread. Also research in graph theory has provided quantitative tools and

1A relation is symmetric if a relationship between X and Y implies the relationship be-

tween Y and X, a relation is transitive if a relationship between X and Y and a relationship

between X and Z imply a relationship between Y and Z.
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mechanisms to describe networks, many of which have epidemiological appli-

cations. For example, within this research the notion of adjacency matrix, or

sociomatrix, is developed to describe the connections in a population; in gen-

eral, this matrix summarizes all the connections within the networks [51;52],

and in epidemiology it is used to represent the transfer of the infection from

an individual to another in a population.

Because epidemiology is focused on the spread of a disease, the network

forms a constraining background to the studies on the transmission dynamics,

in contrast, the research in graph theory and social sciences considers the

understanding of the network itself as the ultimate goal. For this reason,

the same tools are often used for di�erent purposes; however, the problems

that arise in the analysis of an epidemiological network are the same that

complicate the study in other �elds. Determining a complete mixing network

requires knowledge of every host in a population and its relationship with

every other host, so the amount of data required represents the �rst relevant

problem because the collection of all these data is a time consuming task.

Even when an entire population can be sampled, there are other factors that

complicate network evaluation; for example, the fact that the evaluation

of contacts requires personal informations may not always be volunteered,

especially for sexual mixing networks. Moreover, because di�erent infectious

diseases are passed through di�erent paths, a mixing network is necessarily

disease speci�c; thus, a network used to describe HIV transmission would be

di�erent from one used to examine in�uenza.

The development of the concepts of small-world networks [77;78] and

scale-free networks [79] from the initial graph theory and the idea of random

networks introduces new innovative tools in the evaluation of an infectious

disease spread. Considering the properties of small-world networks, the high

level of clustering means that most infections occur locally, while short path

lengths mean that the disease spread through the network is rapid and in-

fection is unlikely to be contained within small regions of the population

[53]; moreover, percolation theory is often applied to small-world networks

to evaluate threshold parameter values at which epidemic can take place

[54]. Because highly connected individuals are likely to be very important
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in infectious disease transmission, considering these elements into network

is necessary if network must capture all complexities of disease spread, and

scale-free networks provide the appropriate tools for achieving such extreme

levels of heterogeneity. Scale-free networks can be constructed by adding

dinamically new elements to a network, one at a time the connection mech-

anism follows the rationale of preferential attachment [55;56], that is each

new individual added to the population connects preferentially to individu-

als that already have a large number of contacts. This refers to the power-law

distribution, initially observed for World-Wide Web connections, and then

power-grid networks, graphs of actor collaborations and networks of human

sexual contacts. For epidemics, the power-law distribution play a pivotal

role in the spread and maintenance of infection. Indeed, having many con-

tacts has two relevant e�ects: the individual that has several contacts is at a

greater risk of infection and can transmit the infection to many others once

infected. Furthermore, in the preferential attachment model the existence of

individuals of arbitrarIly large connections means that there is no level of

random vaccination that is su�cient to prevent an epidemic [56]. It becomes

possible to control infectious diseases through vaccination when there is some

upper limit in the number of contacts that an individual can have [57]. In

[56], Pastor-Satorras et al. highlighted the dominant role of such individuals,

because, for example, the vaccination of only a few of these can be su�cient

to prevent an epidemic reinforcing the standard public-health guidelines.

Until now, the in�uence of several properties associated to di�erent type

of networks have been investigated, but nowadays, with the development of

increasingly accurate epidemic models, it is possible to �nd in the literature

some applications of those models to solve relevant network problems for

computer science and telecommunications. An example is [58], in which

an immunized SIR model is used to design a routing protocol for sparse

MANETs. The topology of a MANET is constantly changing because of the

movements of the mobile devices. Thus, the basic challenge is to equip each

device in the network with an e�cient routing protocol which allows them to

maintain the information necessary to appropriately route or forward data

in the network. In a MANET two nodes in coverage range of each other
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are directly connected and the data can be directly delivered between them

without the help of any intermediate nodes; conversely, if two nodes are not

in coverage of each other, some intermediate nodes are necessary to deliver

data. To solve this problem, routing protocol based on epidemic theory were

shown to improve the performance, achieving better transmission rates and

lower delays. Epidemic routing based on SIR model depends on forwarders

of messages coming into contact with other nodes through the movements

of that nodes. Therefore, the purpose in [58] is to e�cently deliver the data

packets in such scenario without any considerable delay and to reduce the

amount of resources used in delivering the data.

Another important problem that particularly a�ects computer networks

is the spread of viruses; for example, today the propagation of active worms

is one of the most important issues. In general, a computer worm is a self-

propating malicious code, and an active worm is a computer worm which �nd

its victims in the network, especially in peer-to-peer networks, by using the

vulnerability, found through scanning procedure, of that victims. Thus, the

study of the propagation of that virus is an important challenge for network

security. Reference [59] discussed this scenario by using a continuous time

Markov chain, the SIR model has been developed as the basic model; indeed

in [59] a mechanism based on the epidemiological model considering hosts

joining and leaving the network is used to study the propagation of topology-

aware active worms that scan the network by using the information given by

the network topology, and the authors found that the hosts dynamics have a

relevant impact on the size of epidemic and in�uence the propagation perfor-

mance. Also in [60], the impact of joining and leaving hosts on the spread of

topology-aware active worms is studied in peer-to-peer networks, based on SI

epidemiological model. In [65], instead, the threat of virus spread in wireless

sensor networks is studied. Also, the mechanism introduced by this paper is

based on the SIR model, modi�ed into the Susceptible-Infective-Recovered

with Maintenance to characterize the dynamics of the propagation of the

virus from an initial single node to the whole network. The name of that

modi�ed epidemiological model is due to the introduction of a maintenance

in the sleep mode of a wireless sensor network and it can improve the anti-
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virus capability of the network and allow the adjustment of the network to

various type of virus without additional compuational or signaling overhead.

A further application of SIR model in peer-to-peer systems is described in

[61]. Here the analogy of peer-to-peer networks to biological epidemic model

is highlighted for �le sharing: the susceptibles are the idle peers that generate

�le requests with a certain rate; once a peer starts to download the �le, it

becomes a downloading peer, that is infectious, and once the downloading is

�nished the peer joins the sharing peers group, that is the group of recovered.

From the above, the network version of the SIR model is based on local

rules of transmission which take care of the network topology. Moreover,

understanding the propagation of information on complex networks is a key

issue from a theoretical and applied point of view. Indeed, in [62] it is

explained how traces of peer-to-peer �le sharing based on SIR model can

be used to evaluate the propagation of large-scale real-world data which

nowadays remains an important challenge due to the scarcity of open and

extensive data.

The epidemiological SIR model and its variations have also been used to

study the problem of detecting the information source in any type of network

in which the propagation of information follows the popular epidemic model.

This is the reverse of the di�usion problem: given a characterization of the

di�usion process in a certain time t, can we tell which is the source node

of the propagation? To this question an answer can be found in [63;64].

These studies carry also to answer to other more general questions, such as

which computer is the �rst one infected by a computer virus? or who is

the source of a rumor in online social networks? or, in epidemiology, where

is the source of an epidemic? In [63], given a description of the network,

from which all infected nodes are known but it is impossible to distinguish

between susceptible nodes and recovered nodes, is developed a sample path

based approach, where the estimator of the information source is chosen to

be the root associated with the sample path that most likely leads to the

observed characterization, to solve the problem of �nding the information

source based on the description and the topology of the network considered.

The authors assumed that recovered nodes cannot be infected again and
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that initially all nodes are susceptibles except one infected node, that is the

information source that at the beginning infects its neighbors, and thus the

information starts its propagation in the network. The result of this work,

through the evaluation of the performance of the reverse infection algorithm,

is that with high probability the distance between the actual source and

the estimator is constant, independent of the number of infected nodes and

the time used to observe the network. In [64] a similar study focus on the

problem of detecting multiple information sources under the SIR model.

2.3 Epidemic models and Bibliometrics

The �rst who talked about the relationship between epidemics models and

di�usion of ideas was William Go�man, who served as a researcher, Profes-

sor, Dean and Emeritus at Case Western Reserve University. In 1964, he

published the �rst seminal paper in Nature [70] in which he stated that the

dissemination of scienti�c ideas could usefully be described as a process sim-

ilar to the transmission of disease. Indeed, he suggested that existing math-

ematical models that describe epidemic processes could be valuable tools for

information scientists as well as for medical researchers. Go�man identi�ed

the main elements of epidemics. The �rst one is the infectious material itself,

and how it is communicated: in medical epidemics it is a virus, bacterium,

parasite, fungus etc.; instead, in intellectual epidemics, ideas are the infec-

tious material. The second element is the population through which they

spread: in medical �eld the members of the population belong to one of

three categories (susceptibles, infectives, removals); in intellectual epidemics

authors or researchers are infectives who have ideas to communicate, su-

ceptibles are those who come in contact with the infectious material, and

removeds are those who resist ideas or are no longer active researchers be-

cause of retirement or death, or also, those who abandoned this branch of

study.

Later, Go�man has applied the epidemic model to the literature of mast

cells to see how well it accounts for the nature of scienti�c growth and the

spread of information [71]. He de�ned the basic population as the total num-
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ber of authors listed in a bibliography compiled by Selye, that included all

the contributions to this topic, from the discovery of mast cells in 1897 until

1963. The bibliography listed 2195 authors and 2282 publications. Go�man

considered the di�usion of this literature as an epidemic process involving

the direct transmission of ideas between authors, which were classi�ed as

infectives or removeds. He assumed also that authors became infectives in

the �rst year of publication of their articles and, then, became removeds one

year after the date of publication of their last paper in the Selye bibliogra-

phy. Then, Go�man plotted the rates of change over time of the number of

publication and the number of authors and found some interesting results.

First of all, the curves indicated that changes in the number of publications

mirrored those for authors, thus, the epidemic explosion of mast cell research

is simultaneous to the population explosion of authors. He also studied the

stability of that spread and determined which of the several separate lines of

investigation in mast cells was the most virulent in terms of size and intensity.

With the development of the technological �eld and the institution of

online databases, two recent works [72;73] have been found on the application

of epidemiological models to ideas spread. Indeed, the kind of analysis such

as those conducted by Go�man were more di�cult and time consuming at his

time. In [72] the authors applyed several epidemiological models to empirical

data on the spread of Feynman diagrams through the theoretical physics

communities of the USA, the URSS, and Japan after World War 2. They

collected the number of authors adopting Feynman diagrams and identi�ed

the adopters of the idea, or members of the infected class, based on published

discussion or uses of Feynman diagrams in the main physics research journals

of each country considered. Then, they estimated the e�ectiveness adopting

the idea in the three communities and found values for parameters re�ecting

both intentional social organization and lifespans of the idea. The �nal result

was that the spread of Feynman diagrams appeared analogous to a very

slowly spreading disease, with characteristic progression times of the order

of years instead of days or weeks.

Unlike the work made in [72], which was based on di�erential equations,

in [73] an individual-based weighted network model is used to describe the
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spread of research on kinesin, a protein belonging to a class of motor proteins

found in eukaryotic cells. The authors did not consider the simple count of

number of published papers or publishing authors, but they inquired into

how a research topic spreads over an existing network of disciplines. Thus,

their purpose was to capture the di�usion of topics over network of connec-

tions between several disciplines, as assigned by the ISI Web of Science's

classi�cation in terms of Subject Categories (SCs). The underlying network

of citations among SCs represents the knowledge �ows over the map of sci-

ence and the weight of a link is chosen in order to be a good indicator of

the likelihood of a SC becoming research-active in a certain area given that

some other related SCs are already research-active in this speci�c area. To

analyze the spread of kinesin-related research over this network, they used

the approximations given by models used in the context of the transmission

of infectious diseases.



Chapter 3

Model

3.1 Epidemiological model

The epidemiological SIR model is based on the initial concept by Kermack

and McKendrick [32] and it is used to analyze the spread of an infectious

disease. According to this model, the individuals within a population are

categorized as

• Susceptible (S) if previous unexposed to the pathogen and never in-

fected;

• Infected (I) if currently colonized by the pathogen and infectious;

• Recovered (R) if the hosts have successfully cleared the infectious dis-

ease and are no longer infectious.

Furthermore, the model is based on three critical assumptions:

• the population considered is closed, that is demography (e.g. births,

deaths and migration) is ignored;

• the small-world property, according to which everyone in the popu-

lation can infect and/or can be infected by anyone else; indeed, the

homogeneous mixing in the population is considered, which means that

every individual interacts with everyone else with the same probability,
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and, thus, possible heterogeneities according to age, space or behavioral

aspects are discarded;

• the memoryless property, which implies that we can make predictions

for the future of the system considered based solely on its present state

just as well as we could know the system's full history.

The challenge now is to describe the way in which individuals move from

one class to another. Only two transitions are to be considered

• the transition from S to I involves disease transmission, which is de-

termined by three factors: the prevalence of infecteds, the population

contact structure and the probability of transmission given contact; the

contact between susceptible and infected individuals is necessary for a

directly transmitted pathogen and we consider that anyone can contact

anyone else in the population. Moreover, the likelihood that a contact

between an infected and a susceptible results in transmission must be

considered;

• the transition from I to R, is simpler and involves the transition of

infecteds in the recovery class once they have fought o� the infection;

the time period that an individual spends in the I class is called �infec-

tious period�. The recovery rate γ, that is the inverse of the infectious

period, is acquired as a constant and this leads to exponentially dis-

tributed infectious period.

Figure 3.1 shows the �ow diagram that provides a useful graphical method

of illustrating the assumptions just stated according to the SIR model. The

diagram uses black arrows to represent the transition between the S and I

classes and the I and R classes, the gray arrow instead is used to show that

the level of the infectious disease in�uences the rate at which susceptible

individuals move into the infected class.

An important parameter of this model is the force of infection λ, which

is de�ned as the per capita rate at which susceptibles contract the infection.

Thus, if X represents the number of susceptible individuals in class S, then
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Figure 3.1: Flow diagram of SIR model

the rate at which new infecteds are produced is λX, where λ is intuitively pro-

portional to the number of infectious individuals. According to the frequency

dependent transmission, which refers to situations in which the number of

contacts is independent of the population size, λ = βY
N
, where Y is the num-

ber of infectious individuals, N the total size of the population considered,

and β is the product of the contact rate and the transmission probability,

that is the transmission rate. Thus, it is convenient to de�ne S = X
N

as the

proportion of individuals in the population that are susceptible and I = Y
N
as

the proportion of individuals in the population that are infectious. Alterna-

tively, there is the density dependent transmission formulation, according to

which as the density of individuals in a population increases, also the contact

rate increases, and in which there is no normalization of N.

Now, we discuss the derivation of the transmission term βSI, which rep-

resents the rate at which new infectious individuals, as a proportion of the

whole population, are infected, from the frequency dependent assumption.

Considering an individual in the S class with an average k contacts per time

unit, of these a fraction I = Y
N

are contacts with infected individuals. So,

during a small time interval [t, t + ∆t], the number of contacts with in-

fected individuals is (k Y
N
·∆t). If c is the probability of successful infection

transmission following a contact, then 1− c is the probability that the trans-

mission does not occur. Thus, considering the independence of contacts, the
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probability that a susceptible escapes infectious disease following (k Y
N
· ∆t)

contacts, denoted by 1−∆q, is

1−∆q = (1− c)k
Y
N
·∆t. (3.1)

From this, it follows that the probability that the susceptible is infected

following any of these contacts is ∆q.

De�ning β = −k log(1−c) and substituting into the expression for 1−∆q,

it is possible to rewrite the probability of transmission in a time interval ∆t

as

∆q = 1− e−β
Y ∆t
N . (3.2)

The next step is to translate ∆q into the rate at which a transmission

occurs, recalling that ex = 1 +x+ x2

2!
+ x3

3!
+ ..., �rst it is necessary to expand

the exponential term, then divide both sides by ∆t, and thus take the limit

of ∆q
∆t

as ∆t→ 0. The result is

λ =
dq

dt
= lim

∆t→0

∆q

∆t
= β

Y

N
(3.3)

which represents the transmission rate per susceptible individual. Parameter

λ de�ned above measures the per capita probability of acquiring the infec-

tious disease. Thus, the overall rate of transmission to the whole susceptible

population is
dX

dt
= −λX = −βXY

N
(3.4)

and if the variables are rescaled by substituting S = X
N

and I = Y
N

in order

to deal with fractions, (3.4) becomes

dS

dt
= −βSI. (3.5)

After outlining the basic parameters of the model used, the determinis-

tic model equations are now introduced. In the background, a large naive

population without demography is considered, into which a low level of in-



3.1. EPIDEMIOLOGICAL MODEL 39

fectious agents is introduced.1 Considering the epidemiological probabilities

as a constant, the SIR equations are

dS

dt
= −βSI, (3.6)

dI

dt
= βSI − γI, (3.7)

dR

dt
= γI. (3.8)

The purpose of these equations is to describe the development over time

of the transitions between the three classes. The third di�erential equation

(3.8) can be neglected because S + I + R = 1, hence knowing S and I it is

possible to calculate R. Moreover, as well as all di�erential equations, also

these ones have the initial conditions S(0), I(0) and R(0), with S(0) ' 1,

0 < I(0) � 1 and R(0) = 0. An example of the epidemic development

generated from these equations is presented in Figure 3.2.

Despite the semplicity of this model, its di�erential equations cannot

be solved explicitly, which means that it is not possible to obtain an exact

analytical expression that represent the dynamics of S and I over the time,

thus, this model has to be solved numerically. Furthermore, the analysis

explained so far can also be formulated in statistical terms, according to

which S, I, and R are random variables [44].

Another relevant parameter is R0, the basic reproductive ratio, which

speci�es the average number of secondary cases arising from an average pri-

mary case in an entirely susceptible population. Its de�nition comes from the

threshold phenomenon: given a population of S(0) initial susceptibles, after

introducing I(0) infectives into the population what factors will determine

whether an epidemic will occur or if the infectious disease will not spread.

Considering
dI

dt
= I(βS − γ), (3.9)

1Because demography is not considered here, the resulting epidemic expands su�ciently

quickly. Demography may change this evolution, as we will see in next section and in the

�nal results in next chapter.
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Figure 3.2: The time evolution of model variables, with an initially entirely
susceptible population and a single infectious individual. It has been assumed
β = 1.428 per day and γ = 0.1834 per day, giving R0 = 10.
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if dI
dt
< 0, that is the initial fraction of susceptibles S(0) is less than γ

β
, the

infectious disease dies out and it does not spread in the population. Thus, for

an infection to invade, the initial proportion of susceptibles in the population

must exceed this critical threshold. Because the inverse of γ
β
is R0, the

threshold phenomenon can be formulated in a di�erent manner: assuming

everyone in the population initially susceptible, an infectious disease can

spread only if R0 > 1 [44]. Intuitively, any infection that cannot successfully

transmit on average to more than one new individual is not going to spread.

Mathematically, R0 can be evaluated as the rate β at which new infected

individuals are produced by an infectious, when the whole population is

susceptible, multiplied by the average infectious period 1
γ
.

Until now, we focused on the initial stage of the infection spread, but an

important aspect can be acquired considering the long-term, or asymptotic,

behavior. Dividing (3.6) by (3.8) and then integrating with respect to R

with R(0) = 0, it can be found that the epidemic development involves an

exponential trend due to the memoryless evolution of the disease, which leads

to the decrease of the number of susceptibles and the increase of the number

of recovereds, with a delay due to the infectious period. Moreover, there

always will be some individuals in the population that remain in the S class

without contracting the infection. This means that the chain of transmission

eventually breaks due to the decline of infectives and not due to the lack of

susceptibles [44]. Considering this result, and the fact that S + I + R = 1

and the epidemic ends when I = 0, it can be derived that if R0 < 1 no

epidemic occurs, and that whenever an infectious disease has a large basic

reproductive ratio (R0 > 5), more than 99% of the population is likely to

contract it.

3.2 Application of SIR model to ideas spread

The infectious disease in the evaluation of a research idea is the idea itself,

and according to the basic assumptions of the SIR model, it is necessary to

explain them in the scenario considered. In the epidemiological background

a population of individuals that are susceptible to an infection is considered;
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a certain number of individuals goes from being susceptible to being infected

once contracted the pathogens, and �nally immune. Thus, as time passes,

the number of infected individuals increases until a peak is reached, and then

decreases as a consequence of the increase of the number of recovered indi-

viduals. Thus, in the time evolution of an infectious disease, if in a speci�c

time an individual is infected, in the next time value the same individual can

be infected or recovered. In the propagation of a research idea in a scienti�c

community, the time development is quite di�erent. The susceptibles are rep-

resented by the set of all possible articles on a speci�c topic that researchers

can write and, then, presented at a conference, instead, the number of pub-

lications counted for a speci�c topic chosen represents the infecteds. Thus,

the papers counted for a given month in a certain year are not included in

the number of papers counted for the next month in the same year.

Moreover, although recovery is a natural concept in epidemiology be-

cause the organisms naturally may become immune after an infectious dis-

ease, when discussing the spread of an idea in term of infection spread the

parallelism concerning this concept is more complex. Indeed, thinking of in-

dividuals or written articles, there is no systematic cognitive process, as well

as the immune system, that clears out ideas from them.

Also interdisciplinary research activities play a role. Consider that a

researcher nowadays may be extremely specialized or able to span across dif-

ferent �elds. As a consequence, researchers can choose which topics to write

articles about based on the interest that periodically each topic causes in the

scienti�c community and which topics to neglect. Thus, recovereds could be

considered as the set of all the possible works that researchers could conduct

on a certain scienti�c topic, but they did not do. Furthermore, we can assume

that in the today's scienti�c community, there are small distances between

scientists or researchers, because their �ndings are published as papers in

online databases.

However, all the considerations stated about the SIR model also apply

to this scenario, the same parameters can be evaluated to observe and un-

derstand the dynamics with which scienti�c ideas develop and spread in the

scienti�c community. In this context, β can be seen as the per capita idea
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adoption rate and is responsible for the increase of the number of publica-

tions, γ is the inverse of the lifetime of the infection of a given idea regulates

the decrease of the number of publications after reaching a peak, and λ is

the rate at which infectious produce new infecteds. Also in this case, the

basic reproductive ratio R0 has an important role in the evaluations and in

the discussion of the results, and it has the same de�nition given above. The

same equations (3.6)-(3.8) have been used; according a frequency dependent

transmission model, the values have been normalized over the number of

total articles counted for a certain topic. Indeed, it is hard to evaluate the

population size N , that could be considered as the potential of susceptible

individuals that can be infected with a given scienti�c idea. To this end,

empirical evaluations have been performed. Moreover, it is reasonable to

consider the equation concerning the time evolution of the I class as a sim-

ple measure of the speed of propagation of an idea, that is simply the number

of new articles published which talk about that idea.

3.3 Extended models

One important drawback of the basic SIR model is that it considers the im-

mediate transition from the S class to the I class, and in the study of ideas

di�usion this assumption is quite unrealistic. Indeed, some ideas require long

periods of study and analysis before being put forward in written articles,

and the same articles require some time to be written and then published

and presented at a conference. Also scienti�c ideas require validations and

often experiments to con�rm or disprove them. Incidentally, this is similar

to what happens with some diseases. Indeed, in epidemiology the process of

transmission often occurs due to an initial inoculation with a small number

of pathogen units; a period of time follows, in which the pathogen repro-

duces rapidly within the host, quite unchallenged by the immune system.

During this latent period, pathogen abundance is too low for active trans-

mission to other susceptibles: the individual, thus, cannot be categorized as

susceptible, infected or recovered, he/she belongs to the exposed class. For

these epidemics, the SIR model is extended to the so called SEIR model, in
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Figure 3.3: Flow diagram of SEIR model

which an additional exposed class (E class) is introduced. This model is a

re�nement to the SIR model that takes into account the latent period. Figure

3.3 shows the diagram of the SEIR model similar to Figure 3.1 for the SIR

model.

Assuming that the average duration of the latent period is 1
σ
, which is

memoryless as well as the infectious period, and, that is σ is the rate at

which individuals move from the exposed class to the infectious class, the

SEIR equations are:
dS

dt
= −βSI, (3.10)

dE

dt
= βSI − σI, (3.11)

dI

dt
= σE − γI, (3.12)

dR

dt
= γI. (3.13)

As well as the SIR model, also for this variation it is typically assumed

S + E + I + R = 1 and thus the last di�erential equation is redundant,

and the initial conditions are S(0) > 0, I(0) ≥ 0, E(0) ≥ 0 and R(0) = 0

(E(0)+I(0) must be greater than zero for the infection to spread). The result

expected from this modi�cation of the model is that considering the latent

period essentially could slow the dynamics of the system without actually
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diminishing the extension of contagion. Indeed, the dynamic properties of

the SEIR model are qualitatively similar to those of the SIR model, with

the di�erence that the SEIR model has a slower growth rate after pathogen

invasion due to the additional step through the E class before transmitting

the infecion in the population. In next chapter, the improvement carried

by this model will be shown considering some topics for which the simple

basic SIR model is not su�cient to approximate at best the experimental

developments.

Previously the basic SIR model has been described given that the time

scale of the spread is su�ciently fast so as not to be a�ected by population

demography. If there is interest in exploring the longer-term persistence and

dynamics of an infectious disease, as well as the propagation of a scienti�c

idea, then demographic processes will be relevant [44]. The most important

factor necessary to evaluate the propagation in this scenario is the in�ux of

new susceptibles in the population, e.g. through births of individuals that

have no prior contact with the disease.

In epidemiological terms, the most common way of introducing demogra-

phy in the SIR model is to assume that there is a natural host �lifespan�, 1
µ

years. Thus, µ is the rate at which individuals su�er natural mortality; it is

important to underline that this parameter is independent of the disease and

is not intended to represent the pathogenicity of the infectious agent. More-

over, it has been usually assumed that µ also represents the population's

birth rate, ensuring that total population size does not change through time,

that is dS
dt

+ dI
dt

+ dR
dt

= 0, and thus allowing stability. According to all these

aspects, the generalized SIR model is described by the following di�erential

equations:
dS

dt
= µ− βSI − µS, (3.14)

dI

dt
= βSI − γI − µI, (3.15)

dR

dt
= γI − µR. (3.16)

The parameters have the same de�nition as (3.6)-(3.8), but it is useful
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to discuss the new expression for R0. Looking at equation (3.15), β is the

transmission rate per infective and the negative terms suggests that each in-

fectious individual spends an average 1
γ+µ

time units in the I class. Thus, the

infectious period is reduced due to some individuals dying while infectious.

Then, if the entire population is assumed susceptible, the average number of

new infections per infectious individual is

R0 =
β

γ + µ
. (3.17)

In general, this value is similar to, but always smaller than, R0 for the case in

which demographic processes are not considered, because the natural mor-

tality rate reduces the average time an individual is contagious [44].

The development and di�usion of research ideas in the scienti�c commu-

nity depend on the interest that this idea caused; thus, it is reasonable to

focus on the number of articles that periodically are written about that topic.

As a consequence, we consider µ as the parameter that represents the rate at

which the number of articles per month written on this topic increases, which

can be seen as a kind of �demographic birth rate.� Incidentally, consider that

our model already enlists a way out of the system, the transition toward

state R, after which the articles are no longer tracked. For this reason, we do

not need to explicitly set a death rate as well. Later, it will be shown that

the simple consideration of the birth rate of the publications increase the

similarity between the theoretical development and the experimental one.



Chapter 4

Results and comments

4.1 SIR model results

To evaluate and discuss the spread of research ideas in the scienti�c com-

munity, some scienti�c topics have been chosen mostly related to recent sci-

enti�c trends in ICT and networking research. We collected several data

about papers published in this �eld using the database of the Institute of

Electrical and Electronic Engineers (IEEE ), an international association of

scientists with the purpose of promoting technological sciences [75]. The

number of publications for each topic has been counted for a total of around

10 000 articles counted. In some cases, it has been considered also the

analysis based on the number of publications counted using Association

for Computing Machinery (ACM ) [80], another database similar to IEEE,

to verify the results found. For the sake of evaluation, we considered 8

speci�c subjects: BigData, CloudComputing, SoftwareDefinedNetworking,

InternetOfThings, Bluetooth, GameTheory, LTE-advanced, and DVB-T.1

We choose BigData, SoftwareDefinedNetworking, and InternetOfThings

1In particular, DVB-T is the acronym for Digital Video Broadcasting-Terrestrial, while

LTE is the Long Term Evolution of UMTS and they are both telecommunications standards

for cellular networks and video broadcasting, respectively; Bluetooth is also a standard

for personal communication. InternetOfThings, BigData, and CloudComputing are new

networking and data analysis paradigms that have recently gained popularity in the com-

munity. Finally, GameTheory is a subject of applied mathematics, which has found recent

application in telecommunications networks and distributed systems.
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because they are academic subjects and they are not related to particu-

lar technologies. On the other hand, the choice of CloudComputing and

LTE-advanced is due to the fact that they are in particular based on technolo-

gies, which are more general and adaptable than those on which Bluetooth

and DVB-T are based on. Finally, the analysis of the spread of GameTheory is

interesting given its interdisciplinarity. In this regard, it must be considered

that in the IEEE database there are only publications for the engineering

�eld. A �ve years time period from the beginning of 2008 to the end 2012

has been considered; only articles that have been presented in conferences

have been counted and those publications have been organized and distin-

guished according to the month of publication for each year. Two di�erent

mechanisms of counting have been used:

• counting the number of publications that contain the name of the topic

in the title (denoted as �document title�);

• counting the number of publications that contain the name of the topic

in the keywords chosen by authors of the articles (denoted as �author

keywords�).

In this way, comparing the results obtained from the two analysis it is possible

to verify the statistical consistency of these results. Indeed, as we will see,

the values of the parameters slightly change because the slopes of the curves

change due to the di�erent number of publications counted, even though this

number is of the same order of magnitude for each topic in the two di�erent

counting mechanisms.

The collected data present several noise e�ects. For example, a seasonal

noise and a granular noise can be identi�ed. The former involves the peri-

odicity of certain conferences, more suitable for the dissemination on a given

topic. It may be reasonable to assume that researchers concentrate their

e�orts to publish at these conferences, instead of spreading their activity

evenly throughout the year. Also, for academic researchers, periodic activity

of semester teaching may play a role. Granular noise is also present since

the number of papers is an integer value, while the normalized model obtains

a continuous trend. The discretization may become relevant especially for
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the initial periods of spreading, when the number of articles is relatively low.

To obtain tractable data, we therefore applied standard digital processing

techniques to the traces. Speci�cally, we windowed (most of the times by

using a simple rectangular window, but at times we applied an Hamming

window) the Discrete Fourier Transform of the time series, so as to keep the

samples at the lowest frequencies, which ultimately give the general trend,

and �lter out all noises, and then we anti-transformed back the result to

obtain again a time trace. An example is given in Figure 4.1 for the trace

about CloudComputing. The blue line represents the modulus of the Discrete

Fourier Transform and the peaks that we can see at 9, 18 etc., are harmonics

of the seasonal noise; instead, the red line identi�es the window used.

Figure 4.1: Modulus of the Discrete Fourier Transform for CloudComputing
(author keywords).

We stress that this processing does not alter the total number of papers, it

just spreads them more evenly, so that the peaks due to big conferences and

the gaps due to the absence of conferences in a given month are smoothened

out.

Table 4.1 shows the total number of articles counted for each topic; it can

be observed that some topics have a signi�cant di�erent order of magnitude,

for example, CloudComputing and SoftwareDefinedNetworking.

In general, Figures 4.2-4.5 compare the exact number of papers counted

month by month for some of the topics considered, as the results found for

the count based on document title, with the data obtained after �ltering. The
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former is indicated with the blue line, while the latter is represented with the

magenta one.

Scienti�c topic Number of papers
�document title�

Number of papers
�author keywords�

LTE-advanced 389 184

CloudComputing 1816 3145

GameTheory 577 1119

SoftwareDefinedNetworking 63 104

InternetOfThings 534 660

Bluetooth 474 490

BigData 165 123

DVB-T 175 131

Table 4.1: Number of papers counted.

Figure 4.2: Number of publications for LTE-advanced (document title).
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Figure 4.3: Number of articles for CloudComputing (document title).

Figure 4.4: Number of articles for GameTheory (document title).

Figure 4.5: Number of articles for InternetOfThings (document title).

Moreover, scienti�c topics with di�erent time dynamics and which begin

their development in various periods of the given time interval have been
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considered in order to capture the several aspects in the application of the

epidemiological model.

Table 4.2 shows the values found for the basic reproductive ratio R0,

de�ned as the product between the transmission rate and the infectious pe-

riod, for each scienti�c topic evaluated. Firstly, it can be observed that

all the values found are greater than 1; thus, according to the parallelism

with the infectious disease spread, it means that all the considered top-

ics spread epidemically in the scienti�c community with an �infective� be-

havior. Not all the values are the same, because some topics cause more

interest in the community than others. Considering Table 4.2 column R0

R0 for scienti�c topic �document title� �author keywords�

LTE-advanced 1.87 1.43

CloudComputing 1.83 1.50

GameTheory 1.23 1.25

SoftwareDefinedNetworking 1.82 2.15

InternetOfThings 1.42 1.43

Bluetooth 1.36 1.28

BigData 2.32 2.54

DVB-T 1.29 1.37

Table 4.2: Values of R0.

�document title�, it can be noted that the most contagious ideas are about

BigData, SoftwareDefinedNetworking, CloudComputing, LTE-advanced,

and InternetOfThings with highest values of R0. Moreover, GameTheory,

DVB-T, and Bluetooth have a similar (low) level of contagion; it means that,

according to the results, these topics are less contagious.

In general, the comparison with R0 �author keywords� shows that, even

though we consider a di�erent �population� for the counting of publications

for the same scienti�c topic, the behavior essentially do not change signi�-

cantly and the classi�cation based on the level of contagion is more or less the

same. Furthermore, this is a �rst way to show that some scienti�c topics are
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popular, and very well known in and mentioned by the scienti�c community.

For these topics, R0 is signi�cantly above 1. Other topics may appear as less

contagious because they require a deeper and more articulate background.

Thus, the simple contact with the idea itself is not su�cient to establish a

solid scienti�c production. Also, note that for all the considered topics the

values of R0 are above 1 but not extremely high (always below 2.5). This

probably re�ects that the contagion of a scienti�c idea is a more gradual

process, which cannot have the strength of a disrupting epidemic. Indeed,

also validation and approval by scienti�c peers is required to disseminate an

idea.

A special discussion must be made considering the value of R0 of a sci-

enti�c topic and the related value of the total number of articles counted for

it. In particular, as we can see from Table 4.1, most topics have the same

order of magnitude and the same can be said for the same topic consider-

ing �document title� and �author keywords.� But, for example, in the case of

CloudComputing compared with BigData and SoftwareDefinedNetworking,

it can be observed that the total number of articles counted is quite di�erent.

This could mean that some topics (BigData and SoftwareDefinedNetworking)

are more niche than the other (CloudComputing), that is they have an higher

level of contagion, but they develop only in a narrower circle of scientists.

Now we discuss the meaning of the values found for the other main param-

eters and show the application of the SIR model through several comparison

between the theoretical dynamics, obtained with the models implementation

throught Matlab [44], and the experimental development. Table 4.3 and

Table 4.4 summarize the results.

Table 4.3 2 shows the numerical values of the transmission rate, β, the

recovery rate, γ, and the values for the initial conditions in the count for

document title, instead Figures 4.6-4.13 give a graphical comparison between

the experimental results and the theoretical trends, represented by the dotted

red line and the solid blue line, respectively. First of all, it can be noted that

2Due to the noise in the original data, we can consider these value to be up to the second

decimal digit. The same consideration can be made for the other parameters values shown

in following tables.
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the theoretical results approximate well enough the experimental data, expe-

cially for some scienti�c subjects such as LTE-advanced, InternetOfThings,

CloudComputing, BigData, and SoftwareDefinedNetworking.

Scienti�c topic β γ I(0)

LTE-advanced 0.61 0.33 0.22 · 10−3

CloudComputing 0.59 0.32 0.13 · 10−3

GameTheory 0.42 0.34 0.55 · 10−2

SoftwareDefinedNetworking 1.12 0.61 < 10−10

InternetOfThings 0.57 0.40 0.12 · 10−3

Bluetooth 0.38 0.28 0.95 · 10−2

BigData 1.46 0.63 < 10−10

DVB-T 0.31 0.24 1.03 · 10−2

Table 4.3: Values of SIR model parameters for the anlysis based on document
title.

Looking at Table 4.3, it can be observed that some of the topics that previ-

ously have been found to be the most contagious, SoftwareDefinedNetworking

and BigData, have the highest values of β. Moreover, considering the inverse

of γ as the infectious period, they have also the lowest values for 1
γ
. This

means that these topics are very contagious and for a limited time inter-

val cause a relevant interest. Instead, other topics, such as LTE-advanced,

CloudComputing, and InternetOfThings, which are among the most conta-

gious, have a small value of the transmission rate, but a greater value for the

infectious period, i.e. they have an e�ect for a longer time period. Further-

more, as can be seen from Figures 4.6-4.8, there is a remarkable match be-

tween the epidemiological trend and the collected measurements for BigData,

SoftwareDefinedNetworking and InternetOfThings.
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Figure 4.6: Comparison with the theoretical model for BigData.

Figure 4.7: Comparison with the theoretical model for
SoftwareDefinedNetworking.

Figure 4.8: Comparison with the theoretical model for InternetOfThings.
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It can be speculated that these subjects spread across the scienti�c com-

munity very much like a standard epidemics. Thus, the simple SIR model

is su�cient to capture their dynamics. Instead, in the other cases, such as

CloudComputing and LTE-advanced, we see a good match that, however,

could be improved further. The reason may be that the former are more

speculative topics, thus they can be considered infectious without memory;

instead the others are not only academic topics, but they develop also in the

techonological �eld, so it is necessary to consider a time interval in which the

basic techonology is studied, analyzed and acquired. Indeed, we will see that

the SEIR model gives quite an improvement.

Figure 4.9: Comparison with the theoretical model for LTE-advanced.

Figure 4.10: Comparison with the theoretical model for CloudComputing.

For the less contagious topics, GameTheory, Bluetooth, and DVB-T, it

can be stated that in general the transmission rate is less than the other
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topics and the infectious period has similar values to those of LTE-advanced

and CloudComputing. This results in a lower R0. Moreover, as shown by

the �gures, these topics develop before the time interval chosen and the

epidemiological curves do not have a very pronounced slope. In general,

these are three cases in which the simple SIR model alone does not work

very well, in particular for Bluetooth and DVB-T for which there are maybe

other non-epidemic trends superimposed. Instead, for GameTheory

Figure 4.11: Comparison with the theoretical model for Bluetooth.

Figure 4.12: Comparison with the theoretical model for DVB-T.

the motivation might be found in its interdisciplinarity. It develops in several

disciplines, such as mathematics and economics, thus the di�usion of that

idea could be better approximate with more complex models rather than SIR

or SEIR models. It may be necessary to consider a model with memory and

with several vectors to approximate well the experimental dynamics.
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Figure 4.13: Comparison with the theoretical model for GameTheory.

Looking at Table 4.1, it can be observed that the number of articles

counted changes considering document title or author keywords : in most

cases, the total number of publications is greater for author keywords than

for document title, but the dynamics of the �ltered results are almost the

same, as shown in Figure 4.14, where the solid magenta line represents the

experimental dynamics based on document title, instead, the cyan one on

author keywords, and the dotted red line identi�es the �ltered development

based on document title, while, the blue one on author keywords. All trends

shown in Figure 4.14 are related to InternetOfThings.

Figure 4.14: InternetOfThings.

Figure 4.14 shows that the �lter used is similar, and also the general trend

is. These remarks are also similar for other results related to the other topics

considered but not shown here for the sake of brevity. Figures 4.15-4.22 give
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the graphical comparison between the experimental results and the theoret-

ical dynamics for the count based on author keywords, again, represented by

the dotted red line and the solid blue line, respectively. Furthermore, Table

4.4 shows the numerical values of the parameters. The comparison between

Scienti�c topic β γ I(0)

LTE-advanced 0.54 0.37 0.19 · 10−3

CloudComputing 0.56 0.37 0.18 · 10−3

GameTheory 0.36 0.29 0.61 · 10−2

SoftwareDefinedNetworking 1.39 0.64 < 10−10

InternetOfThings 0.57 0.39 10−4

Bluetooth 0.33 0.26 0.73 · 10−2

BigData 1.61 0.63 < 10−10

DVB-T 0.29 0.21 0.93 · 10−2

Table 4.4: Values of SIR model parameters for the analysis based on author

keywords.

Table 4.3 and Table 4.4 does not give signi�cant di�erences; for some topics

there is a slight increase for the value of β, for some others instead there is a

decrease due to the changes in the curve slope. The same it can be noted for

the values of γ. We can say that in the most extreme cases, the values are

almost equal with an average variation of around 10%, but these changes are

limited due to the presence of some noise and considering the change in the

number of articles counted. As a consequence, we can see slight modi�cations

in the value of R0, but the classi�cation based on the level of contagion for

each topics is still the same, the dynamics are almost equal, and the same

conclusions previously discussed can be drawn. Moreover, it is important to

highlight that data given by the two kinds of count are di�erent, even if the

database used is the same and, thus, some articles are counted in both cases.

The two criteria provide a list of paper partially overlapping; the overlap

in certain cases is over 50% but still below 75%; in some cases the overlap

percentage is even lower.
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Considering the overall results found by applying the basic SIR model,

we can state that for some scienti�c topics the model can be used to pre-

dict the future development and spread of the idea. This is the case of

InternetOfThings, indeed, for this one the quantitative description given

by the model matches the experimental dynamics very well. In some other

cases the SIR model gives only a qualitative description that could be ac-

ceptable or not fully satisfactory.

Figure 4.15: Comparison with the theoretical model for LTE-advanced.

Figure 4.16: Comparison with the theoretical model for CloudComputing.
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Figure 4.17: Comparison with the theoretical model for BigData.

Figure 4.18: Comparison with the theoretical model for
SoftwareDefinedNetworking.

Figure 4.19: Comparison with the theoretical model for GameTheory.
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Figure 4.20: Comparison with the theoretical model for InternetOfThings.

Figure 4.21: Comparison with the theoretical model for Bluetooth.

Figure 4.22: Comparison with the theoretical model for DVB-T.



4.2. COMPARISON WITH OTHER DATABASES 63

4.2 Comparison with other databases

Comparing the di�erent values of the number of publications counted per

month, we have noted that the values found for SoftwareDefinedNetworking

and BigData are signi�cantly lower than the others. For this reason, and to

verify the results found in these two cases, a similar analysis has been made

based on the number of articles published by ACM for these scienti�c topics.

The numbers of the overall articles counted are almost the same and also

the dynamics are similar. Table 4.5 shows the values of R0 that are similar

Scienti�c topic R0 ACM R0 IEEE

SoftwareDefinedNetworking

(document title)
2.04 1.82

SoftwareDefinedNetworking

(author keywords)
1.96 2.15

BigData (document title) 2.22 2.32

BigData (author keywords) 2.37 2.54

Table 4.5: Comparison between ACM results and IEEE results for BigData
and SoftwareDefinedNetworking.

enough to verify the conclusions discussed previously. Indeed, the compar-

ison between the results found with the two databases guarantees that the

results obtained are signi�cant. More in general, it can be conjectured that

also for some other scienti�c topics could have similar trend across di�erent

databases. Moreover, in these cases, the databases are completely disjoint.

Figures 4.23-4.26 compare both the experimental data and the theoretical

development found with ACM.
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Figure 4.23: Comparison with the theoretical model for BigData (document
title).

Figure 4.24: Comparison with the theoretical model for BigData (author
keywords).

Figure 4.25: Comparison with the theoretical model for
SoftwareDefinedNetworking (document title).
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Figure 4.26: Comparison with the theoretical model for
SoftwareDefinedNetworking (author keywords).

4.3 SEIR model results

We now consider a further re�nement achieved by appling the SEIR model

(see Section 3.3) instead of the SIR model. This implies that further exposed

rate is added, which mimics the latent phase of an idea development. Figure

4.27-4.31, show the results for document title. It can be observed that, with

the application of the SEIR model, the theoretical dynamics is much more

similar to the experimental development compared to the plain SIR model.

With this improvement, we may evaluate another parameter, apart from the

transmission rate and the recovery rate, the incubation rate σ. Tables 4.6-4.7

show the numerical results.

Figure 4.27: Comparison with the theoretical model for LTE-advanced.
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Figure 4.28: Comparison with the theoretical model for CloudComputing.

As can be noted, the application of the SEIR model might be su�cient

to give a quantitative description of the experimental data in the case of

LTE-advanced and CloudComputing. Instead, for the remaining three cases,

GameTheory, Bluetooth and DVB-T, the descriptions are better than those

given by SIR model, but there is still some margin for improvement. As a

consequence, a more articulate model is necessary to describe their dynamics,

in particular for Bluetooth and DVB-T.

Figure 4.29: Comparison with the theoretical model for GameTheory.
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Figure 4.30: Comparison with the theoretical model for Bluetooth.

Figure 4.31: Comparison with the theoretical model for DVB-T.

Compared with the SIR model parameters, higher values for β and γ have

been found for most of the topics considered, in particular the more relevant

increases are for LTE-advanced and CloudComputing.

Regarding the values of σ, which represent the rate at which individuals

move from the E class to R class, and thus for the latent period 1
σ
, it has

been found that CloudComputing and LTE-advanced have the highest values

for 1
σ
(around 9/10 months). This may relate to the criterion based on

which we have chosen the 8 scienti�c topics; indeed, we have already said

that CloudComputing and LTE-advanced are based on technologies that are

adaptables and related to more general concepts. For example, in the case of

LTE-advanced the scienti�c community �rstly had to discuss in what manner

mobile wireless technologies could be extended to a new generation of cellular
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Scienti�c topic β σ γ

LTE-advanced 1.89 0.10 0.53

CloudComputing 1.81 0.11 0.51

GameTheory 0.60 0.42 0.43

Bluetooth 0.45 0.50 0.26

DVB-T 0.31 0.42 0.24

Table 4.6: Values of SEIR model parameters for the analysis based on docu-

ment title.

Scienti�c topic I(0) E(0)

LTE-advanced 1.00 · 10−5 2.97 · 10−3

CloudComputing 6.20 · 10−4 0.17 · 10−3

GameTheory 0.51 · 10−2 0.96 · 10−2

Bluetooth 0.19 · 10−2 1.77 · 10−2

DVB-T 0.88 · 10−2 1.00 · 10−2

Table 4.7: Values of SEIR model parameters for the analysis based on docu-

ment title (initial conditions).
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systems. As a consequence, this idea has spread even before the devices using

LTE have been commercialized. Instead, looking at the value of σ for DVB-T

and Bluetooth, it can be stated that the latent period has a lower value

(around 2 months); this might be due to the fact that the technologies on

which they are based on are very speci�c and in the community these ideas

began to spread only after being commercialized. Finally, also GameTheory

shows a small value for the latent period, and this again could be due to

its interdisciplinarity that allows to already have a developed literature in

scienti�c �elds di�erent from the engineering one.

Tables 4.8 and 4.9 and Figures 4.32-4.36 show the results obtained count-

ing papers by author keywords. As well as the SIR model, also in this case,

compared with the previously discussed document title, the dynamics are

similar for the two di�erent counts and the values of the parameters are

almost the same, despite the little changes that could be observed. Thus,

the discussion just made is still valid, and the results are con�rmed to be

meaningful. Moreover, regarding the comparison with the related results

found by the SIR model, this analysis con�rms the improvements given by

the consideration of the E class. Once again, the SEIR model could be suf-

�cient to describe in a quantitative way the development for LTE-advanced

and CloudComputing, and, at the same time, these results underline that for

GameTheory, Bluetooth and in particular DVB-T a more complex analysis is

needed.

Figure 4.32: Comparison with the theoretical model for LTE-advanced.
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Figure 4.33: Comparison with the theoretical model for CloudComputing.

Figure 4.34: Comparison with the theoretical model for GameTheory.

Figure 4.35: Comparison with the theoretical model for Bluetooth.
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Figure 4.36: Comparison with the theoretical model for DVB-T.

Scienti�c topic β σ γ

LTE-advanced 1.97 0.11 0.55

CloudComputing 1.97 0.11 0.56

GameTheory 0.57 0.31 0.39

Bluetooth 0.33 0.44 0.25

DVB-T 0.20 0.37 0.15

Table 4.8: Values of SEIR model parameters for the analysis based on author
keywords.

Scienti�c topic I(0) E(0)

LTE-advanced 6.20 · 10−4 1.70 · 10−4

CloudComputing 6.20 · 10−4 5.30 · 10−4

GameTheory 3.20 · 10−3 1.37 · 10−2

Bluetooth 6.00 · 10−3 9.60 · 10−3

DVB-T 6.60 · 10−3 1.00 · 10−2

Table 4.9: Values of SEIR model parameters for the analysis based on author
keywords (initial conditions).
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4.4 SIR model results considering demography

This last point of the discussion concerns the comparison between the results

obtained with the basic SIR model without and with demography. The main

results are summarized in Table 4.10 and Figures 4.37-4.38 for the count

considering document title, and in Table 4.11 and Figures 4.39-4.40 for the

count with author keywords. The scienti�c topics for which the basic SIR

model gives a good qualitative description of the data have been chosen in

order to both better observe the improvements that the consideration of the

demography carries and also, if possible, use such a result to infer quantitative

insights about the number of articles published per month.

Scienti�c topic β γ µ I(0)

LTE-advanced 0.65 0.46 0.04 0.30 · 10−3

CloudComputing 0.73 0.50 0.06 0.30 · 10−3

Table 4.10: Values of SIR model parameters for the analysis based on docu-

ment title.

First of all, observing Table 4.10 and comparing with Table 4.3, it can

be stated that when demography is included the transmission rate increases

slightly for LTE-advanced and in a more relevant way for CloudComputing,

and at the same time the infectious period decreases in both case more or

less in equal measure. Instead, observing the following �gures, in which

the dotted red line represent the experimental �ltered data, the blue line

identi�es the development obtained with the model with demography and,

�nally, the remaining line represents the results given by the model without

demography, it can be noted that considering the demography gives a better

description of the data trend. Moreover, the values of µ allow to state that,

considering the total number of publications counted based on document title

for each topic, CloudComputing has a monthly rate of published articles that

is around six times the monthly rate obtained for LTE-advanced.
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Figure 4.37: Comparison with the theoretical model for LTE-advanced.

Figure 4.38: Comparison with the theoretical model for CloudComputing.

The same considerations can be made for the results obtained considering

the author keywords, in particular the only di�erences are that β and γ both

increase in equal measure.

Scienti�c topic β γ µ I(0)

LTE-advanced 0.66 0.46 0.04 0.23 · 10−3

CloudComputing 0.67 0.47 0.04 0.24 · 10−3

Table 4.11: Values of SIR model parameters for the analysis based on author
keywords.
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Figure 4.39: Comparison with the theoretical model for LTE-advanced.

Figure 4.40: Comparison with the theoretical model for CloudComputing.



Chapter 5

Conclusions and future works

In this thesis, we considered the application of the epidemiological SIR model

and some of its extended versions on the di�usion of several scienti�c research

ideas in the worldwide research community. The purpose is to describe the

development of an idea in the societal context of the scienti�c community,

thus giving some structured meaning to the simple count of conference arti-

cles over time. To this end, we advocated the application of epidemic models

for a theoretical comparison that may suggest very useful practical implica-

tions.

First, we investigated all the development of the concepts on which epi-

demics models and bibliometric mechanisms are based on. Then, after high-

lighting the main aspects of the models used and describing the experi-

mental data, the results have been discussed and analyzed. We focused

on 8 di�erent scienti�c subjects: BigData, SoftwareDefinedNetworking,

InternetOfThings, LTE-advanced, CloudComputing, GameTheory, DVB-T,

and Bluetooth. We have found that some of the topics considered are very

epidemic; indeed, the application of the basic SIR model is su�cient to have

a quantitative description of their spread dynamics and, thus, it allows the

prediction of the future developments. In particular, among them, BigData

and SoftwareDefinedNetworking are also very contagious, but they are

niche topics and are related to a high transmission rate in a small infectious

period ; their values of R0, the basic reproductive ratio, are among the largest.
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On the other hand, for CloudComputing and LTE-advanced, which have

also raised considerable interest and therefore have a high contagion rate,

the simple SIR model without demography is not providing a fully accu-

rate description of the phenomenon. Indeed, the comparison between the

experimental data and the theoretical curves may exhibit some mismatch.

This is due to the fact that these scienti�c topics are based on some general

technologies that must be �rst studied, analyzed and understood. To take

into account of this, we suggested to consider a latent period, to evaluate the

exposed period of those technologies. In particular, observing the dynamics

obtained with the SEIR model, it can be stated that this model gives a more

precise quantitative description.

Furthermore, we have found that demography can be added to the SIR

model to improve the results. In this way, it is possible to use the results

obtained to infer quantitative insights about the number of articles pub-

lished. We have found that for CloudComputing are approximately pub-

lished a number of monthly articles that are six times the number related to

LTE-advanced.

Other topics are found to be less contagious (notably, GameTheory, DVB-T,

and Bluetooth). Generally speaking, these topics have either a strong tech-

nological footprint or an interdisciplinary character that may slow down their

epidemic spreading. Moreover, for these topics we found out that neither the

SIR model nor its extensions, e.g., the SEIR model, are able to achieve a com-

pletely acceptable characterization. While the basic SIR model is not fully

adequate to describe them for the reasons mentioned before, the extended

models (in particular, introducing an exposed class) improve the results but

do not achieve a fully satisfactory match. For this reason, more complex

models may be thought of, e.g., including multiple intermediate states, which

leads to a higher-order memory in the dynamics.

As a future development, we may consider transmissions of diseases through

multiple vectors or with di�erent populations of carriers, as is the case for

many human epidemics. This may be reasonably apply to multidisciplinary

topics where the �contagion� spans across di�erent scienti�c communities.

More in general, the application of epidemic models to the di�usion of
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ideas is a promising research �eld, and can lead to interesting results. A sys-

tematic methodology can be applied, for example leading to the development

of speci�c models. At the same time, it must be considered that idea spread-

ing is not just a matter of presentation. The di�usion of science is also based

on the concrete value and solidity of the theory behind it. For this reason,

a better understanding of this phenomenon can also be reached through the

superimposition of di�erent processes, combined from evaluative and critical

observations from philosophy of science. In this sense, an advancement of

our study can also lead to a cross-fertilization between apparently distant

disciplines, and possibly new proposals, for both social sciences and scienti�c

sociology.
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