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Abstract

Type 1 diabetes (T1D) is a chronic autoimmune disorder caused by the de-
struction of [-cells in the pancreas, that leads to insulin deficiency. Thus,
people with type 1 diabetes need an everyday exogenous insulin delivery
to maintain the blood glucose concentration as much as possible in the eu-
glycemic range. The tuning of insulin doses depends on many parameters;
among them, one of the most significant is the glucose concentration in blood.

Therefore, frequent and accurate measurements of glucose concentration
are essential in managing diabetes. Minimally-invasive continuous glucose
monitoring (CGM) sensors allow to measure the glucose concentration al-
most continuously for several days and are becoming key instruments in the
management of diabetes therapy. However, as any measurement system,
CGM readings are affected by errors that can deteriorate the performance
of CGM-based applications, such as bolus calculators and artificial pancreas
systems. The development of a model able to describe the CGM sensor error
can be very useful, e.g. to reproduce sensor behaviors in silico when de-
signing and testing CGM-based applications. Several models to describe the
CGM error are available in the literature. However, their domain of validity
is limited to 12-hour windows, i.e. the time interval between two consecutive
calibrations. The recent availability of factory calibrated CGM sensor is call-
ing for CGM error models able to describe CGM inaccuracy and behaviour
in longer time intervals, e.g 7-10 days. The aim of this thesis is to develop a
new model of CGM sensor error for factory-calibrated CGM device.

The methodology that we propose exploits and improves the model cre-
ated by Facchinetti et al. [1, 2]. Differently from that model, whos maximum
domain of validity is the 12-hour window between two consecutive calibra-
tions, the new model is able to describe the CGM behaviour on the entire



lifetime of the sensor (10 days).

The dataset used for model identification consists of 81 adults whose BG
concentration has been measured in parallel by Dexcom G6 sensors (Dexcom
Inc, San Diego, CA) and YSI instrument (used as gold standard). The
identification is performed by using two different methods, one in two steps
and one in a single step, and the results are then compared.

The thesis is organized in six chapters. In Chapter 1, after an overview of
the T1D therapy, the techniques to measure the glucose concentration and
a detailed description of Dexcom G6 sensor are illustrated. Then, the issue
of CGM sensors inaccuracy and the principal sources of error are presented.
At the end of the chapter a review on the literature of sensor error models is
also reported, and the aim of the thesis is defined.

Chapter 2 describes the dataset used for the model identification and
criteria used for the subjects selection, together with data pre-processed.

In Chapter 3, the new methodology for modeling the CGM sensor error
is presented. As previous models, it includes three components: the BG-to-
IG kinetics, the calibration error, and the measurements noise. The main
innovations are two. First, the modification of the calibration error model to
describe such a component in factory-calibrated sensors. In particular, sev-
eral candidate models have been tested and compared. Second, the match of
a single-step identification procedure, that allows overcoming the limitation
of the state-of-art identification which requires two steps.

In Chapter 4, the results obtained by applying the new model with the
state-of-art two-step identification procedure are reported. In the first step,
we determine the optimal calibration error model, its corresponding parame-
ters and the ones of the BG-to-1G model. Then, the parameters precision and
correlations are investigated. In the second step, we determine the optimal
order of the AR process that describes the measurement noise component
and its corresponding parameters on the different days of monitoring.

In Chapter 5, the results obtained by applying the new model with the
single-step identification procedure are reported. Differently from the two-
step method, the single step performs the identification of all the parameters
simultaneously. As in the previous chapter, we report the optimal AR model
and the identified parameters with the corresponding precision. The results
provided by the two identification methods are then compared, showing that
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they are almost equivalent. However, the single-step one provides a more
accurate description of the BG-to-1G kinetics and allows to estimate all the
parameters simultaneously. For these advantages one may be inclined to
select this identification method with respect to the two-step one.

Finally, the main findings of this work and the future developments are
summarized in Chapter 6.
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Chapter 1

Diabetes and Continuous Glucose

Monitoring

1.1 Diabetes and its therapy

Blood glucose concentration is controlled by insulin, a hormone secreted in
the pancreas by a specific type of cells, the -cells. Insulin limits the amount
of glucose in blood when it reaches too high values, keeping its level in the
physiological range of 70-180 mg/dl. Diabetes is a disorder that affects the
body’s ability to regulate blood glucose. Diabetic people lack insulin ef-
fectiveness, so their glucose level becomes too high with respect to healthy
bounds. This condition, called hyperglycemia, has no severe complications
in short-term, but it may induce long-term serious effects like retinopathy,
nephropathy, and neuropathy |[3].

Nowadays, diabetes is considered a global health emergency: people af-
fected by diabetes are more than 425 million worldwide, and they are ex-
pected to rapidly increase to approximately 629 million in 2045 [4]. Given
such gloomy scenario, finding the best treatments is very important to guar-
antee a good quality of life to those affected by this disease.

There are two main types of diabetes, and each of them requires different
treatments. Type 2 diabetes is a disease characterized by the inability of
body tissues and organs to properly use the circulating insulin. It affects
approximately the 90-95% of all diabetics; the main risk factors are genetic
predispositions, obesity, and sedentary lifestyles. Common therapy for type
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MONITORING

Figure 1.1: Insulin infusion using daily injections. (Source: Diabetes Re-
search & Wellness Foundation, UK, https://www.drwf.org.uk)

2 diabetes includes glucose monitoring, healthy diet, physical activity, and
drug administration.

Type 1 diabetes is a chronic autoimmune disorder caused by the destruc-
tion of [-cells in the pancreas. Since very little or no insulin is produced
|5], people with type 1 diabetes need an everyday exogenous insulin delivery
to maintain glucose concentration in the euglycemic range. This is not easy
to achieve as a surplus of insulin can decrease the glucose level below the
safe bound of 70 mg/dl. This condition, called hypoglycemia, can lead to
severe consequences such as the loss of consciousness, seizure, coma, or even
death [6]. Typical insulin doses range from 0.4 to 1.0 units/kg/day, with the
right amount depending on many parameters, like patient’s weight, time of
meals, carbohydrate consumption and, most of all, measurements of glucose
concentration in blood [7].

1.2 Glucose monitoring techniques

Precise and accurate measurements of glucose concentration have a key role
in good diabetes management.

Before 1970s, the glucose in blood was estimated from the one measured
in the urine. Such measurements were manual and limited, for this reason
they were mainly used for diagnosis and critical care management rather
than to achieve specific glycaemic goals [8]. The history of at-home diabetes
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1.3. MINIMALLY-INVASIVE CGM SENSORS

monitoring started in 1971, when Anton Clemens developed, for point-of-care
use, the first blood glucose monitor based on the reflectance of the light from
the surface of a glucose oxidase-based strip. In the 1980s, more convenient
electrochemical techniques were developed, which brought to self-monitoring
blood glucose (SMBG) devices. Since then, SMBG devices are fundamental
instruments in the daily routine of diabetic patients, and they represent today
the most widespread method of self glucose monitoring at home.

SMBG devices are compact and very easy to use [9, 10]: patients prick
their finger with a lancet device to obtain a small blood sample that is put
over a reagent strip. The strip is inserted into a reflectance photometer, and
the glucose concentration value is displayed on a screen. The main drawback
of these devices is the rate of sampled data: because the finger prick is
intrusive and painful, a standard frequency of only 3-4 measurements per day
can be collected. Because of the sparsity of these measurements, dangerous
hypoglycaemic or hyperglicaemic events may be not detected by SMBG [11]
[12].

The need to have frequent glucose data impels to a new generation of de-
vices: the continuous glucose monitoring (CGM) sensors. CGM sensors are
wearable devices able to take glucose measurements at regular intervals, e.g.,
every 1-5 minutes for several consecutive days. Continuous data provides sev-
eral advantages because they can be used to implement proactive actions, like
preventing potential hypoglycaemia with carbohydrates intake or perform-
ing insulin dose modifications to avoid future hyperglycaemia. Furthermore,
acoustic and visual alerts can warn the careless wearer if glucose is moving

out of the safe range [13].

1.3 Minimally-invasive CGM sensors

Minimally-invasive systems measure glucose concentration in the interstitial
fluid between cells and capillaries, without nicking blood vessels. Depending
on how the interstitial fluid is sampled these devices can be based on needle,
microdialysis, or reverse iontophoresis.

Most popular minimally-invasive CGM devices consist of three main el-
ements: a needle-based sensor, which measures an electrical signal propor-
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tional to interstitial glucose concentration; a transmitter, applied over the
sensor to transmit the signal; and a receiver, that displays glucose concen-
tration to the user. More specifically, the electrical signal is generated by
a glucose-oxidase electrochemical reaction, which is induced by an enzyme-
coated wire inserted by the patient in the abdominal or arm subcutis. The
signal is converted to a glucose concentration via a calibration process that
exploits previous SMBG patient’s measurements. The implemented calibra-
tion algorithm often assumes a first-order and time-independent association
between the electrical signal and the glucose level. This simplistic way to
model a complex relation forces the system to require periodic calibrations
(every mnearly 12 hours) by patients with their consequent discomfort. To
solve this problem, novel calibration procedures were investigated in the last
years. These new techniques allow the development of sensors that do not
require in vivo calibrations: the so-called "factory-calibrated" sensors [14].

Nowadays, only few type 1 diabetes patients are using CGM sensors. The
main reasons are high devices cost, perceived sensor inaccuracy, difficulties
in alarms management, and aversion to wearing devices on the body. Never-
theless, the number of users is rapidly increasing thanks to new low-cost and
more accurate sensors. Moreover, some CGM devices received regulatory
approval for nonadjunctive use both in Europe and the United States, e.g.,
Dexcom Gb) received both the CE marking and the FDA approval in 2016.
The official permission allows patients to base their treatment decisions on
CGM measurements, without the need of confirming CGM readings with
SMBG measurements |15].

1.3.1 Dexcom G6 device

The Dexcom G6 System provides continuous glucose level concentration with
sampling time of 5 minutes, for up to 10 consecutive days. Currently available
in 16 countries, it received both the CE marking and the FDA approval for
nonadjunctive use in 2018. It includes a minimally invasive CGM sensor, a
transmitter, and a compatible wireless display device (Figure 1.2):

e The sensor is a sterile device made of an applicator, a transmitter
holder, and a probe. The applicator is a single-use disposable unit that
helps patients to insert the probe under the skin. The probe may be

4
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Figure 1.2: Dexcom G6 components.The system includes the auto- applica-
tor (1), the transmitter (2), and the display devices that can be a touch-screen
receiver, a smartphone or a smartwatch (3).

placed in the abdomen subcutis for adults, and both in the abdomen or
in the buttock subcutis for children aged 2-17 years old. Once inserted,
the probe starts measuring interstitial glucose levels every 5 minutes.

e The transmitter is a Bluetooth Low Energy (BLE) device that com-
municates in real-time the sensor glucose readings to the receiver. It is
attached to the sensor through the transmitter holder and can be used
for up to 3 months.

e The display device receives glucose information from the transmitter
and shows them to the user. It informs the patient about the glucose
trends and gives alarms when glucose is moving out of the physiological

range.

Thanks to wireless communications between the transmitter and the re-
ceiver useful apps are designed for both android and iOS. With the Dexcom
Share™ app, patients can share their glucose readings and trends with up
to 10 people. This is very useful for parents of diabetic children that can re-
motely monitor their children’s glucose measurements. The CLARITY app
identifies clinically relevant patterns out of a huge amount of glucose read-
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ings, performing statistical analysis on them: this gives patients the ability
to prioritize problems and find quick solutions.

This generation of devices include new advantages and features:

e The factory calibration eliminates the need of periodically calibrat-
ing the device using SMBG. However, if sensor glucose readings do
not match the patient feelings, the calibration procedure must be per-
formed in vivo using SMBG references. An advantage of the factory
calibration is the remarkable reduction of SMBG measurements and the
elimination of errors related to the execution of the calibration process,

which can lead to sensor inaccuracies.

e A 10-day sensor wear period, longer than the 7-day lifefime of previous
generation Dexcom sensor, reduces the number of insertion and the

consequent patients’ discomfort.

e The "Urgent Low Soon" alert predicts hypoglycemia events within 20
minutes advance, helping to avoid severe low blood sugar episodes.

e The acetaminophen (APAP) blocking allows accurate glucose readings
with no medication interference. APAP is a medicine commonly used
to treat mild to moderate pain, or to reduce fever. Unfortunately, it af-
fects the glucose readings, generating a spurious signal which interferes
with the sensor signal. To minimize or prevent APAP interference a
permselective membrane coating is designed for Dexcom G6 sensor.

e The transmitter is 30 percent thinner than its predecessor and its size
is reduced to almost 4 centimeters length.

e The one-touch auto-applicator simplifies the sensor insertion, which
becomes less painful and less intimidating.

e The interoperability allows sharing glucose information to interoperable
electronic interfaces, including compatible Automated Insulin Delivery
(AID) systems. The CGM sensor interacts with other devices with 3
modalities: the transmitter communicates to another device through
the same protocol, the app communicates to another app on a single
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mobile platform, or the app communicates through the cloud to another
software device.

In order to assess Dexcom G6 reliability, the sensor performances are
tested in several investigations where the outcomes always prove the device
consistence and precision [16] [17] [18]. Also FDA, before the approval, have
examined data from two clinical studies conducted at 11 centers across the
United States. These studies evaluated the accuracy of the sensor compared
to a laboratory blood glucose measurement method. Results point out a
good accuracy confirmed by a 9% mean absolute relative difference (MARD)
that is the main performance metrics for accuracy evaluation of CGM sensor
[19]. Thanks to these outcomes, the Dexcom G6 is approved to be used
nonajunctively; therefore, the CGM readings can be used by patients to
make treatment decisions without confirmatory SMBG values.

1.4 The CGM sensor error

CGM devices measure glucose concentration levels almost continuously, pro-
viding enormous advantages in the diabetes management. However, as any
measurement system, they are affected by unpredictable errors that cause
inaccuracy in CGM readings provided in output. Dissecting the error in its
different contributions and evaluating them can be the key to improve sensor
performances and to reduce their inaccuracy.

Details regarding the CGM sensor error are presented in the following

sections.

1.4.1 Sources of CGM sensor error

The sources that may impair the sensor accuracy are several, such as delays,
interfering substances, drifts in sensitivity, and calibration error. Under-
standing the nature of these inaccuracies is fundamental to model the sensor
error.

A first source of error is related to the body site in which the CGM devices
measure the glucose level. Minimally-invasive CGM systems measure the
glucose concentration in the interstitial fluid (IG), rather than in the plasma

7
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Figure 1.3: Representative Dexcom G6 sensor signal in a random time
interval that exhibits a delay compared to the BG reference values (YSI
values) due to IG-to-BG kinetics.

(BG) . Therefore, due to the physiological lag between IG and BG, which is
in the order of minutes, the sensors glucose measurements are subjected to
a delay, as reported in Figure 1.3.

A second source of error in CGM sensors is in the transduction of the
electrochemical signal into an electrical signal. Some substances, like the ac-
etaminophen (APAP) described in the previous section, can interfere with the
process by generating spurious currents when they are oxidized at the sensor
electrodes. This undesired effect causes an artificial raise of the measured
glucose values.

A third source of error lays in the variation of the sensor sensitivity. When
the sensor is inserted into the body, the immune system reacts because of the
sensor membrane entering the biological environment, leading to a variation
of the sensor sensitivity in time. This variation causes a non-physiological
drift in time on the CGM profile, which can be observed in Figure 1.4.

Finally, a last source of error is in the sensor calibration process itself.
Ideally, the calibration algorithm should perfectly match the electrical signal
to the glucose concentration level of the patient by compensating the effects
of the previous error sources. However, the calibration laws implemented in
CGM devices are most of the times simple linear functions, which are not
sufficient to completely describe the inter-subject and inter-sensor dynamics.
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Figure 1.4: Representative Dexcom G6 sensor signal (blu continuous line)
that exhibits a nonphysiological drift (red dashed line) due to time-variability
of sensor sensitivity.

1.4.2 Literature models to describe the CGM sensor er-

ror

Developing a quantitative model of the CGM sensor error requires efforts
from both the theoretical and the experimental point of view.

For example, the development of a mathematical model to describe the
BG-to-IG kinetics is challenging because of its involved dynamic. But the
effort is not only theoretic: once the model is settled, its validation requires
to collect blood glucose values in parallel with CGM data, which is possible
only with the hospitalization of patients and the intervention of clinics and
resources. Consequently, there are only few studies on CGM sensor error

modeling in literature.

In 2006, Chase and colleagues proposed a first simple sensor error model
based on a random white noise process with a constant coefficient of vari-
ation [20]. Then, Breton and Kovatchev implemented a finer model based
on two different datasets of the Abbott FreeStyle Navigator sensor (Chicago,
IL, USA) [21]. The model included the distortion effect due to the BG-to-1G
kinetics, and a linear regression model to calibrate CGM data. However,
the results were impaired by some rough assumptions. First, the diffusion
process was described as linear and time invariant for several days, and the
inter-individual variability of the BG-to-IG kinetics was not considered. Sec-
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ondly, the parameters of the calibration model were assumed to not vary in
time; thus, the model was unable to describe completely the errors due to the
calibration. Another study, proposed by Laguna and colleagues on the Dex-
com SEVEN PLUS (San Diego, CA, USA) and the Medtronic Paradigm Veo
Enlite sensors (Northridge, CA, USA), characterized several aspects of the
sensor error, such as lag time, error stationary, error probability distribution,
and time correlation [22].

Recently, Facchinetti and colleagues proposed a novel model |1, 2|, where
the error was dissected into its three main contributions: the delay due to the
BG-to-IG kinetics, the calibration error, and the measurement noise. The
error model was validated on CGM sensors of different generations produced
by Dexcom Inc. (San Diego, CA, USA). All the literature studies in CGM
sensor error have been performed using the data of past-generation CGM
sensors that required periodic in vivo calibrations; thus, to the best of our
knowledge, no models of the error of factory-calibrated CGM sensors are
available in the literature.

1.5 Aim of the thesis

This thesis aims to develop the error model for factory-calibrated CGM sen-
sors used in type 1 diabetes therapy. To achieve this goal, the model proposed
by Facchinetti et al. in [1, 2| is modified and extended. First, several new
functions for the calibration error model are tested and compared to investi-
gate the time variability of CGM sensor sensitivity in longer time intervals,
e.g. 7-10 days. Secondly, a novel single-step procedure where all the parame-
ters are estimated simultaneously is proposed and validated to overcome the
limitation of the state-of-art identification which requires two steps.

The dataset adopted to model the sensor error comes from a pivotal study
on 81 patients wearing Dexcom G6 CGM sensors. A complete description of
the available data and of the data pre-processing is provided in Chapter 2.
In Chapter 3, first the model of Facchinetti et al. is explained in details, and
then the two steps and the single step identification methods are proposed.
In Chapter 4 and 5, the parameters are identified by using respectively the
two-step and the single-step method. The obtained results are analyzed, each

10
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in its corresponding chapter, and then compared in Chapter 5. Finally, the
conclusions and the future works are described in Chapter 6.
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Chapter 2

Dataset and Data pre-processing

In this chapter first we describe the dataset used to identify the error model
of the factory-calibrated CGM sensors, and then we pre-process the data to
remove saturated and spurious CGM values. Finally, we report the Bayesian
smoothing procedure used in the pre-processing.

2.1 Dexcom G6 pivotal study dataset

The available data come from multi-center pivotal studies, performed in 2016-
2017, on both adults (over 17 years old) and pediatric patients wearing Dex-
com G6 sensors. The dataset includes 140 patients: 103 of them wearing a
single sensor, and the remaining 37 wearing two sensors in parallel, placed on
right and left sides of the abdominal region, respectively. Because only few
patients wear two sensors, we decided to consider each of them belonging to
different subjects. Consequently, the starting dataset consisted of 177 CGM
profiles.

During the ten days of monitoring with the G6 sensor, patients were
hospitalized on day 1 or 2, 4, 7 or 10, for a 12-hour period where blood
glucose (BG) samples were collected as reference data. In particular, the
BG samples were measured approximately every 15 £ 5 minutes by using a
YSI (Yellow Spring, OH) glucose analyzer. For several possible reasons, this
protocol was not strictly followed by all the subjects. Therefore, some of
them were discarded from the dataset to avoid introducing erroneous data
in the analysis. Specifically, subjects are discarded if

13
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Table 2.1: Summary on the subject selection, according to the rules defined
in Sec. 2.1.

Subjects Number
total 177
discarded because without recorded YSI )
discarded because without YSI data on day 10 -86
discarded because with missing CGM data )
selected 81

e their YSI measurements are completely missing. In this case, we have

no reference data to perform the analysis.

e their YSI measurements are missing on day 10. In this case, the avail-
able reference data would be not sufficient to describe the sensor error
in the entire lifetime of 10 days.

e their CGM profile is not collected for the entire 10-days period and
ends after few days of monitoring.

Figure 2.1 reports some examples of subjects whose YSI measurements or
CGM profile were not correctly collected. After screening out the dataset,
81 subjects remain for the analysis; a summary of the selection is reported
in Table 2.1.

2.2 Data pre-processing

After selecting the subjects, both their CGM and their YSI data are processed
to remove not reliable values. Indeed, the accuracy of the data is fundamental
to successfully identify the model of the CGM error.

The CGM sensor trace is affected by saturation to maximum and mini-
mum displayable levels and by disconnections, i.e. missing samples. In the
former, the reported level of glucose is above 400 mg/dl or below 40 mg/dl
while, in the latter, the reported level assume a peculiar value below 40 mg/dl

14
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Figure 2.1: Examples of sensors profile obtained when the protocol instruc-
tions are not followed. The YSI measurements are not available in day 10
(left); the CGM signal is not collected for the entire 10-days period (right).
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Figure 2.2: Data pre-processing on both the CGM data and YSI data.
Examples reporting the elimination of the saturated CGM data (yellow lines)
on the left, and of YSI considered as outliers (yellow circle) on the right.

(e.g., 5 mg/dl). In both cases, we discard the values from the analysis, as
shown in Figure 2.2. Similarly, the YSI measurements can be affected by
errors in their acquisition or recording. To remove the spurious data, we
perform a visual inspection following two main rules. First, we eliminate the
YSI values that are in contrast with the main trend of their neighbors. Sec-
ond, we remove those that we consider outliers, which are the ones located

too far from the others and the CGM profiles. An example of outlier value
is presented in Figure 2.2.
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2.2.1 Smoothing of YSI data

As explained in Sec 2.1, the reference data are collected for a 12-hour period,
in different days, with a frequency of 15 4+ 5 minutes. This frequency is
lower than the one of the CGM samples, i.e. 5 minutes; thus, YSI profiles
which will be used as a deterministic input in our identification process (see
Sec. 2.1), need to be interpolated on a more dense sampling grid in order to
be matched with CGM values.

For this purpose, we exploit a data approximation technique called Bayesian
smoothing. In performing the Bayesian smoothing, first the uniform time grid
for the smooth signal is set, then, the original signal is smoothed by following
these two principles:

e Since the YSI data are affected by the measurement noise, the smooth-
ing procedure should only approximate the data, without interpolate
them exactly.

e Since the YSI profile is a biological signal, it must have some regular-
ittes. In particular, the regularity of the profile can be defined as the
energy of its second derivative.

The trade-off between approximation and regularity is achieved by minimiz-
ing a target function (details available in the Appendix A). An example of
Bayesian smoothing of YSI samples is reported in Figure 2.3, where the uni-
form grid of the smoothed profile is set to 1 minute sampling time.

The YSI data are not collected continuously but only when the patients
are hospitalized. Moreover, while colleting YSI samples some measurements
can miss, so the smoothed profile obtained between two adjacent samples
could be unreliable. To prevent this situation, we segment the smoothed YSI
profiles such that, if two adjacent YSI samples are collected more than 20
minutes away from each other, we discard the smoothed profile between the
two samples. As an additional constraint, if the duration of a segment is
less than one hour, we discard it. An example of the set of YSI segments
obtained for a representative subject is reported in Figure 2.4.
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Figure 2.3: YSI values in a restricted time window before (red circles) and

after (green circles) their reconstruction through the Bayesian smoothing.
The reconstructed profile is an approximation of the original one.
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Figure 2.4: YSI profile in day 2 of a representative subject before and after
its segmentation. The original signal (center) is split in three segments. Two
(green square and blue square) are conserved while the remaining (yellow
square) is discarded because its time period is smaller than an hour.
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Chapter 3

Methodology for modeling the

CGM sensor error

3.1 The model proposed by Facchinetti et al.

for past generation sensors

Facchinetti et al. proposed a innovative model of sensor error based on
the separation of the CGM inaccuracy components [1, 2|, which allows to
investigate the error of any commercial CGM sensor. A model of the different
sensor error components is useful to test in simulation several applications,
such as algorithms for signal processing, real-time glucose prediction, insulin
dosing, and artificial pancreas (AP) (e.g., incorporating a model of the CGM
error in the T1D simulator of Padua and Virginia University [23]).

According to the model, the error of the sensor has three main contri-
butions: the BG-to-IG kinetics, the sensor calibration error, and the mea-
surement error. While the first is related to a physiological process, the last
two are specific of the sensor itself. To characterize each error component
this technique exploits n simultaneous CGM sensors, as reported in Figure
3.1, and assumes the interstitial glucose (IG) concentrations underlying the
CGM trace of each sensor to be the same. This hypotesis is equivalent to
have no physiological variability from a sensor insertion site to another.
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Figure 3.1: Schematic description of how simultaneus CGM data streams
are modeled. From left to right: the BG(¢) signal is transformed into 1G(t)
signal through the BG-to-1G kinetics; the IG signal is measured by each of
the n CGM sensors, generating for the i-th sensor thelGg;(t) profile; finally,
the measured CGM;(t) is affected by additive measurement noise v;(t).

The CGM trace of the sensor i is given by

where, at time t, v; is the measurement error and IGg; is the value of the
IG read by the sensor. If the sensors were perfectly calibrated, the I1Gg;(t)
signals would be equal to IG(¢). In reality, however, the IGg;(¢) of each sensor
deviates from the true value because of errors in the calibration process or
because of drifts in time due to changes of sensor sensitivity. Such deviation,
which we refer to as calibration error, results in different 1Gg; signals for each
Sensor.

Details regarding the model components are presented in the following

sections.

3.1.1 Model of BG-IG kinetics

Minimally-invasive systems are based on measurement of IG rather than BG
in order to reduce invasiveness of CGM devices. Since plasma and interstitial
fluid are separated by a capillary barrier, the interstitial profile is a distorted
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Figure 3.2: Compartmental model describing the BG-to-IG kinetics. BG is
the plasma glucose concentration, IG is the interstitial glucose concentration,
Ra is the rate of appearance of glucose in the blood, k;; (i =0, 1,2 and j =
1, 2) are the diffusion constants. PG (plasma glucose) and CGM (interstitial
profile) are the accessible measures of the two compartments.

and delayed version of the blood one. This physiological process is the first
source of error to model in CGM sensors. A relative simple but effective
model was proposed by Rebrin et al. |24, which described the BG-to-1G
kinetics process as the two-compartment model represented in Figure 3.2.
In such a model, BG and IG are respectively the plasma and the interstitial
glucose concentration, R, is the rate of appearance of the glucose in the blood,
and kqo, ko1, ko1, and kgp are the diffusion constants. The two differential
equations that describe the system are

BG(t) = R, + k12IG(t) — (ko1 + k21)BG(2), (3.2)

IG(t) = k)ngG(t) — (kog + k’m)IG(t). (3.3)
The a priori non-identifiability leads to the following parametrization:
IG(t) = —=1G(t) + =BG(2), (3.4)
T T
where 7 is the diffusion time constant and g is the gain of the system.

To find the transfer function of the system we use the Laplace transforms,
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obtaining

1G(s) = H(s)BG(s) and H(s)=2—. (3.5)

Therefore, in the time domain, the glucose concentration in the interstitial
fluid is given by
IG(t) = h(t) @ BG(t) (3.6)

where ® is the convolution operator and h(t) is the impulse response of the
BG-to-1G system,
hit) = Ze . (3.7)
T
In steady state, IG = 0 and IG = BG [25], therefore the gain g is equal to 1.

Indeed, from Eq. (3.4) one gets

L6 = Ipa, (3.8)
T T

IG = ¢ - BG, (3.9)

g=1, (3.10)

and the IG concentration is then given by [25]
IG(t) = h(t) ® BG(t)
1
= (ze77) @BGO).

T

(3.11)

According with the model, 7 is the same for every of the n sensors in a
subject, and its identification is performed by nonlinear least squares.

3.1.2 Calibration error model

The IG signal is measured independently by the multiple sensors, generating
the IGg; profiles (S stands for the sensor, while ¢ refers to the sensor num-
ber (i =1,...,n)). To define the relationship between 1Gg; and IG(¢) some
critical aspects have to be taken into account: the calibration process of the
sensor can be suboptimal, as described in section 1.4.1; and the variability
of its sensitivity may produce a significant drift in time not suitably com-
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pensated by the calibration process. The resulting calibration error affecting
the CGM trace between two consecutive calibrations, i.e. in a time-window
of 12-hour duration, is described by the following equation:

(3.12)
= a;(t) | h(t) @ BG(t)| + b;(t),
where a;(t) and b;(t) are the time-varying gain and offset for the i-th sensor.
Ideally, sensors free of calibration error would have a(t) = 1 and b(t) = 0.
Several options can be taken into account to model a;(t) and b;(¢). In
absence of a priori information on their evolution in time, polynomial models

are used because of their flexibility. The two functions are then given by

a;(t) = at", (3.13)
k=0

l
k=0

where m and [ are the degrees of the polynomials, and a;; and b;; are the
corresponding coefficients.

The selection of optimal values for m and [ is performed by minimizing
the Bayesian information criterion (BIC) index, while the identification of
the coefficients a;; and b;, are estimated via nonlinear least squares.

3.1.3 Model of the measurement noise

In addition to the calibration error, CGM signals are affected by an additive
noise v;(t) (see Eq. (3.1)). Thanks to the availability of multiple sensor per
subject, v;(t) can be dissected into two components, one common to all the
sensors and one sensor-specific. The common component, cc(t), is assumed
to be equal in all CGM sensors of a single subject and accounts for the
possible suboptimal modeling of the previous steps, while the sensor-specific
component, scc;(t) is specific to the i-th device and uncorrelated with the
other devices.

Since both the models of the BG-IG kinetics and the calibration error
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cannot explain the sensor error completely, v;(t) contains some dynamics not
considered by these models and cannot be in general considered as a zero-
mean random measurement only. According to [26], the two components of
v;(t) are modeled as autoregressive (AR) processes:

ce(t) =)~ Buce(t — k) + wy(t) (3.15)
sce;(t) = Z asce; (t — k) + wia(t) (3.16)

where «;, and ;. are respectively the parameters of the AR model of orders
q and 7, while wy(t) ~ N(0,02,) and w;(t) ~ N (0,02 ,) are white noise
random processes.

The identification of the orders g and r of the two AR models is performed

by minimizing the BIC criterion.

3.2 The proposed error model for factory -
calibrated CGM sensors

As reported in section 1.3.1, factory-calibrated CGM devices eliminate the
need of sensor calibration in vivo and associated SMBG measurements. There-
fore, in factory-calibrated devices, the calibration procedure is performed by
the manufacturers instead of the patients, based on the sensor sensitivity
determined during the manufacturing process [27|. The only action required
by the patients is to transcript the calibration code provided with the sensor
during the setup phase. After that, no further calibration is needed.

The proposed model of the error of factory-calibrated CGM sensors is
reported in Figure 3.3. Differently from the previous analysis, where the error
was characterized in the time windows between two consecutive calibrations
(12-hour time window), here we consider a time span that is the entire lifetime
of the sensor (10 days). Moreover, the analysis considers one sensor, i.e., one
CGM trace, for each subject instead of having multiple simultaneous sensors.
The choice of having one rather than multiple CGM sensors per patient is
due to the fact that CGM datasets, including the one used in this work, are
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v(t)
BG(t) BG-to-IG IG(t) Sensor IGs(t) . CGM(t)
kinetics (calibration error) ()

Figure 3.3: Schematic description of how a factory-calibrated CGM data
stream is modeled. From left to right: the BG(¢) signal is transformed into
IG(t) signal through the BG-to-IG kinetics; the IG signal is measured by the
CGM sensor, generating thelGg(t) profile; finally, the measured CGM(¢) is
affected by additive measurement noise v(t) .

mostly collected using a single sensor per subject.
Similarly to the previous analysis, the scheme can be decomposed in three

sub-models:

1. The BG-to-IG kinetics model, which is exactly the same described in
Sec 3.1.1, according to which the BG-IG relation is given by Eq. (3.11).

2. The calibration error model, which is characterized as in Eq. (3.12)
where a;(t) and b;(t) are proper functions to be determined and i is the

index of the subject.

3. The model of the measurement noise, which consists of a single com-
ponent v;(t), modeled as the following AR process:

t) = i aipvi(t — k) + w;(t) (3.17)

where i refers to the subject and w;(t) is a zero-mean white noise process

with variance o?2.

In conclusion, the resultant CGM; sensor output is defined by:

COM;(t) = ®;(t) + wi(t) ,  D;(t) = IGgi(t) —i—ZOzzkvl (t—Fk) (3.18)
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where ®(t) models the CGM sensor measurements without the zero-mean

white noise component.

3.2.1 Candidate calibration error models

In order to correctly model the calibration error, we investigate several types
of polynomial and exponential functions for the parameters a;(t) and b;(t).

Asreported in Sec. 3.1.2, the polynomial functions in Eqgs. (3.13) and (3.14)
allow a wide range of behaviors by selecting the degrees m and [ properly.
In the model, we restrict our choice to m and [ ranging from zero up to a
maximum of three, corresponding to behaviors spanning from time invariant
to cubic. For instance, by selecting m = [ = 2 a quadratic time evolution is
considered both for a;(t) and b;(t), and 1Gg;(t) is given by

IGSZ(t) = [ao -+ Cllt -+ ath} IG(t) -+ |:b0 -+ blt -+ thQ . (319)

Instead, by selecting m = 2 and [ = 0 the gain obeys to a quadratic law
while the offset is time invariant, IGg;(¢) is then given by

IGg;(t) = [ao +ayt + agtz] IG(t) + bo. (3.20)

According to [28|, and two patent applications deposited by Dexcom [29,
30|, the time variability of CGM sensor sensitivity over the entire sensor
lifetime can be well describe by exponential functions. Therefore, in this
thesis, we considered two additional models for a(t) and b(t), i.e. the mono-
exponential model:

s1(t) = mg - [1 + mfm;omo . (1 — e’”tﬂ, (3.21)

and the bi-exponential model:

sa(t) = mo - {1 M~ Mo, [1,~ (1 - e*7f> + (1 - L) : (1 - e*&)]} (3.22)

mo

where v, 0, and ¢ are the exponential decay constants that model the sensor
calibration error, mg defines the initial sensitivity condition when the sensor

is initially inserted into the tissue (¢t = 0), and my defines the final condition
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(t = inf). In the following of this thesis, we will refer to s;(¢) and sq(t) as
exp; and exp,, respectively.

An example of calibration error model is obtained by modeling a;(t) as a
mono-exponential and b;(¢) as a constant, thus IGg; is defined as:

Mg — Mg

IGi(t) = 1o - [1 + : (1 - e-%t)] IG() + by (3.23)

Moq

3.3 Calibration error model selection and pa-

rameter identification

After pre-processing the data, the parameters of the model can be identified
using CGM data as samples of CGM;(¢) and pre-processed YSI references as
samples of BG(¢). The identification is performed either in two steps or in a
single one, depending on the desired approach, by using least squares. Since
the model is nonlinear with respect to the parameters, a closed-form solution
does not exist and we must resort to numerical iterative algorithms to find
the minimum of the cost function. In this work we use MATLAB built-in
functions (e.g. lsqnonlin and fmincon) that require the initial values of the
parameters.

The model parameters are identified for each subject and for all the candi-
date calibration error models. To select the optimal calibration error model,
the Bayesian Information Criterion (BIC) index of the same subject but ob-
tained with different models are compared, and the model allowing for the
lowest BIC values is chosen. The details regarding the calibration error model
selection and parameter identification are presented in the following sections.

3.3.1 Least-squares parameters estimation in two steps

The model parameters can be estimated in two consecutive steps, as in |1, 2|.
The first step estimates the time constant 7 of Eq. (3.7) and the calibration
error model parameters by using nonlinear least squares; while the second
step estimates the AR model of the measurement error v;(t) from the resid-
uals of the first step.
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Initial parameters’ values

As explained previously, the identification of the model parameters of each
subject is performed via nonlinear least squares. To find a solution to the
least square problem, iterative minimization algorithms are used. Such al-
gorithms require to set some initial values for the parameters as starting
point. Sometimes, in order to avoid local minima, the initial values have to
be "sufficiently near" to the global minimum.

To make an educated guess, we draw the initial values of the parameters
from probability density functions (pdf), taken from literature. If the pdfs
are accurate, the least square solution provided by the iterative algorithm
will converge independently from the realization of the initial values; other-
wise, the algorithm falls in different local minima. When the latter situation
occurs, we test 10 combinations of initial values and select the one yielding
the lowest residual sum of squares (RSS).

The probability density functions of 7 and the polynomials coefficients
ag, a1, by, by are chosen in a way to reflect the distributions of such pa-
rameters obtained in a work with previous generation Dexcom sensor [1].

Consequently, as showed in Figure 3.4, they are given by

7 ~T(k,0) (k=3, 6 =25) (3.24)
ag ~ LogN (11, 0?) (u=13, 0 =0.5) (3.25)
ay ~ N(p,0?) (n=0, o =0.0015) (3.26)
bo ~ N (p, 0?) (n=—9, o =55) (3.27)
by ~ N(p,0?) (1 =0.003, ¢ =0.17) (3.28)

where I', LogN and A are the gamma, the log-normal and the normal density
functions respectively, k£ and 6 are the shape and the scale parameters, while
(1 and o are the mean and the standard deviation.

With respect to the polynomial coefficients as, as, by and bs, we have no
available data from the literature to model their initial distributions. How-
ever, this is not an issue since we tested different pdf models and we verified
a posteriori that they are not required to obtain the convergence of the
estimates.

Regarding the exponential parameters, we do not have any data to ex-
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Figure 3.4: Comparison of the probability density functions of parameters
T, Qg, a, bo, and b, obtained in a work with previous generation Dexcom
sensor [1] (top) and modeled as initial distributions in this thesis (bottom).

tract their pdfs since the use of the exponential functions in calibration error
models is a novelty of this thesis. Therefore, whenever possible, we model
the pdfs similarly to those of the polynomial case, where the correspondences
between the parameters are given by qualitatively reasoning on the asymp-
totic behaviors of the exponential functions. Otherwise, we base our choice
on the role of the parameters in the functions. For instance, we model the
pdf of v and 0 to guarantee a reasonable evolution in time of the exponential,

avoiding the quasi-constant or the linear behavior.

The initial pdfs of the parameters are

mo ~ LogN (u, o?) (n=1.3, 0 =0.5) (3.29)
my ~ N (u,0%) (n=—9, o =55) (3.30)
v ~U(a,b) (a=0.4, b=0.6) (3.31)
§ ~U(a,b) (a =04, b=0.6) (3.32)
U(a,b) (a=0.4, b=10.6) (3.33)
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where U is the uniform density function and (a,b) is the support of the
uniform distribution.

Unfortunately, the nonlinear least square algorithm provides different lo-
cal minima by using these pdfs, and the solution diverge. Therefore, we
operate as described above.

Identification of the BG-to-1G and calibration error model param-
eters

The model parameters p of the i-th subject are identified by minimizing the
sum of the squared residuals (RSS) between the vector of the CGM sensor
measurements Y; and the IGg;(p) one, which is computed from the selected
model. Specifically, according to Eq. (3.1), we can write

Therefore, the estimated parameters are computed as
p = argmin||Y; — IGg;(BG;, p)|%, (3.35)

and the residuals are
i = Y; — 1Ggi(BGy, p). (3.36)

The minimization is computed by using the MATLAB built-in function
lsgnonlin.

Precision of parameters’ estimates

Once we have the estimated parameters, their precision can be assessed by
evaluating the coefficient of variation (CV). The CV measures the disper-
sion of the estimates around the mean value, and it is usually expressed in

percentage as
sd(p)

~

p

where sd(p) is the standard deviation of the estimated parameters. As a

CV(p) = 100 - (3.37)

consequence, a low CV corresponds to a low dispersion and a good precision
of the estimated parameters.
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Selection of calibration error model by Bayesian Information Cri-
terion

When the parameters are identified for each subject and for all the candidate
calibration error models, we have to choose the optimal model.

The number of parameters of the calibration error model depends on the
selected function a;(t) and b;(t). In the simplest case, when a;(t) and b;(t)
are both constants, the number of parameters to identify is three (7, ag, bo);
while in the most complex one, when «;(t) and b;(t) are both bi-exponential,
the number of parameters is eleven. As we consider calibration error models
with different number of parameters, to select the best model we need an
indicator able to take into account both the model fit and the complexity of
the model. Indeed, the increase of the number of parameters improves the
model fit goodness but it also increases the chances of overfitting.

To tackle the trade-off between goodness of fit and complexity we resort
to the Bayesian Information Criterion (BIC) index. The BIC is given by

BIC (noa,iy = di In(RSS;) + ppod In(d;), (3.38)

where d; is the number of CGM data available for the i-th subject, pyoq 1S
the number of parameters of the model mod, and RSS; is the residual sum

of squares computed as

d;
RSS; = Y 07, (3.39)
j=1
with 7;; being the uncorrelated version of v, j € (1,...,d;), samples of the

measurement noise v;(t). As defined in Eq. (3.38), the BIC index considers
both the goodness of the fit (first term) and the parsimony of the model
(second term).

When facing the choice between two models, the one with the lower BIC
should be preferred. Specifically, to compare two models for the i-th subject
we define the ABIC as

ABIC;y = BIC (104, i) — BIC(mods,i) (3.40)
where mod, has more parameters than mod;. If ABIC; is positive, then
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BIC (mmods,iy < BIC(mod, 5y and we prefer mods, otherwise we prefer mod, .

For choosing the best performing calibration error model we compare
them pairwise. The main selection criterion between two models is to choose
the model that allows a lower BIC value in the majority of subjects. When
the rate of positive and negative ABIC values is close to 50%, we work out
the dilemma by examining the outliers in the boxplot of the ABIC: we may
prefer one model if it performs particularly better than the other for a set of
subjects. In case neither the outliers are relevant to identify the best model,
we follow the parsimony principle and we choose the simplest calibration

error model.

Noise model parameters identification

In the second step, we use the optimal error calibration model to identify the
AR model of the residuals 0. We expect the residuals not to be generated by
a zero-mean white noise process; thus, we call them colored residuals. To
determine the optimal order of the AR model, we explore for each residuals
segment (where the segments are those described in Sec. 2.2.1), different
possible orders, ranging from 1 to 10, and we compute their associated BIC.
We choose the best order in each segment as the one with the lowest BIC
and we aggregate the results in a histogram. The final optimal order is
determined by selecting the most frequent one in the histogram.

Once we select the optimal AR model, we identify its parameters and we
whiten the residuals as

W(t) =0(t) = > ayd(t — k), (3.41)

where the & and g are the AR model coefficients and order respectively.

3.3.2 Least-squares parameter estimation in a single step

In addition to the two-step method, in this thesis we implement a single step
identification method, in which the parameters p of the BG-to-IG model,
the error calibration model, and the measurement noise model are estimated

simultaneously.
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While in the two-step identification the MATLAB function ar always
provided a stable AR model, in the single-step we follow three different pro-
cedures to deal with the issue of the stability. The first does not consider
any stability constraint during the identification process, which is performed
with [sgnonlin, but verifies a posteriori whether the AR model is stable. The
second procedure, instead, implements the constraints by using the fmincon
function to guarantee the stability. The last procedure, includes in the identi-
fication process a priori information on the parameters by using the Bayesian
approach. The priors are obtained resorting to the information on the error
model of the Dexcom G4AP sensor [2|. Specifically, we use the mean and
standard deviation of 7, ag and by in the fourth day of the study, when we
expect the results to be more accurate. Accordingly, the a priori information

are given by

py =T7.7, o, =3, (3.42)
ftay = 1.05, gy = 0.15, (3.43)
Moy = —2.6, Opy = 149, (344)

where p and o are the mean and the standard deviation of the corresponding
parameters.

To simplify the analysis, we consider only the optimal calibration error
model obtained in the two-step identification and, for the first two proce-
dures, we fix the order of the AR model to ¢ = 2. Then, in the third
procedure we verify the choice of the AR order exploring different possibili-
ties (¢ € {1,2,3}) and selecting the optimal using the Bayesian Information
Criterion (BIC) similarly to Sec. 3.3.1.

Initial parameters’ values

As in the two-step identification, we draw the initial values of the parameters
from their pdfs. While the probability density functions for the BG-to-1G
model and the calibration error model are the same of the previous analysis,
we need to provide those for the AR parameters aq, as and asz. Since we
have no available data from literature, we exploit the residuals obtained from
the two-step identification. In particular, we identify the AR parameters for
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Figure 3.5: Histograms of oy, as and as identified for each subject by ag-
gregating all the segments of the residuals which refer to that subject, and
relative initial probability density functions from which draw the correspond-
ing initial values.

each subject by aggregating all the segments of the residuals which refer to
that subject. As reported in Figure 3.5, the initial pdfs of a4, as and a3 are
then modeled as normal random variables, where their shapes are chosen to
be similar to the corresponding histograms obtained from the AR parameters
identification on subjects. Thus, the pdfs are defined as

o ~ N(u,0?), (n=—1.23 0=0.1), (3.45)
g ~ N, 0?), (n=0.37, 0 =0.1), (3.46)
as ~ N(u,0?), (= —0.047, o = 0.09), (3.47)

where N is the normal density function, while ;4 and o are the mean and the
standard deviation. To model the initial parameters we also have to take into
account the stability of the AR model. Given the characteristic polynomial
of the AR process of order q

Cz)=1+ Zq:ajzj, (3.48)

J=1

the process is stable when the absolute values of its roots ¢ are lower than
one (|¢] < 1). Therefore, we draw the initial values of the AR parameters
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from their pdfs and we check whether they respect the stability constraints.
If the stability is verified, we use «a;, as and a3 in the identification step;
otherwise, we draw other initial values until we find a stable combination of
the AR parameters. Unfortunately, when we use these initial pdfs to identify
the model with the single step procedure, the solution is not unique and
depends on the particular realization of the initial parameters. To overcome
the problem, we operate as described in Sec 3.3.1.

Identification of the model parameters

Again, the estimation of the model parameters is performed by using the
nonlinear least square method but the residuals to minimize are now the
differences between the CGM sensor values Y; and the ones provided by the
whole model, which includes also the AR model of the measurement noise.
As a result, the residuals are expected to be a zero-mean white noise process.
According to the whole model defined in Eq. (3.1), we can write

Therefore, the estimated parameters are computed as
p = argmin||Y; — ®(p)||*, (3.50)

and the residuals are
i, = Y; — 0 (p). (3.51)

The minimization of (3.50) is performed using the MATLAB built-in func-
tions [sgnonlin and fmincon and the precision of the estimates are computed
exactly as in Sec. 3.3.1.
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Chapter 4

Results of the 1dentification of the
new model with the two-step

procedure

The identification of the new model with the two-step procedure has been
carried out in two different phases. In the first phase, we develop the strate-
gies to identify the optimal model and the corresponding parameters, and
then we test them on 10 random subjects. This approach has many advan-
tages: we have a preliminary view on how the algorithms work, we can solve
more easily the problems thanks to the limited number of data, and above
all, we can carry out an initial selection process, where we can discard the
calibration models that perform much worse than the others. In the second
phase, we extend the analysis to the entire dataset.

4.1 Calibration error model selection

To select the optimal calibration error model, we split the comparisons among
models into nine groups: three comprising comparisons between polyno-
mial models, three comprising comparisons between mono-exponential hy-
brid models, and three comprising comparisons between bi-exponential hy-
brid models. Starting from Group I and proceeding iteratively, we select the
best model in each group and we include it in the next one.

The model resulting the best one in Group IX is then selected as the
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Table 4.1: Composition of the polynomial groups for the calibration error
model selection where m and [ are the degree of the polynomials functions a(t)
and b(t) respectively. For each group, the pairs of models are compared by
using BIC criterion. Then, the models selected as best models are compared
each other. The procedure is repeated until a single best model for the group
is obtained. The best model of the i-th group is the initial reference model
for the (i 4 1)-th group.

Groups
I II II1
(m—=1-0) (m-1,1-0) (m—2,1-0)
\E \ \E
Polynomial (m-1,1-0) (m-2,1-0) (m=3,1-0)
models (m=1=0) (m=2,1=0) (m=3,1=0)
\E ' \E
(m=0, 1=1) (m=2,1=1) (m=3,1=1)
(m=1, 1=0) (m=2,1=0) (m=3,1=1)
\E & \E
(m=1l=1) (m=0,1=2) (m=3, 1=2)
(m=0, 1=1) (m=2,1=1) (m=3,1=2)
\E & \E
(m-1-1)  (m12)  (m-1-3)
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Table 4.2: Composition of the mono-exponential groups for the calibration
error model selection. a(t) and b(t) are polynomial or exponential functions.
In case of polynomials m and [ are their degrees, in case of mono-exponential
functions we refer to them as exp;. For each group, the pairs of models
are compared by using BIC criterion. Then, the models selected as best
models are compared each other. The procedure is repeated until a single
best model for the group is obtained. The best model of the i-th group is
the initial reference model for the (i 4+ 1)-th group.

Groups

v A% VI

(m=2,1=0) (m=2,1=0) (m=2,1=0)
\E N \E

Mono—exponential (epr 1:0) (epr 1:1) (epr ]:3)

hybrid models (m=2, 1=0)  (expy, 1=1) (exp1, 1=3)
VS VS VS

(m=0, exp;) (expy, 1=2) (m=3,exp;)

(expy, 1=0) (expy, 1=1)

VS VS

(expy, exp1) (m=1, exp;)

(m=0, exp;) (exp, 1=2)
Vs Vs /

(expy, exp1) (m=2, exp;)
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Table 4.3: Composition of the bi-exponential groups for the calibration
error model selection. a(t) and b(t) are polynomial or exponential functions.
In case of polynomials m and [ are their degrees, in case of bi-exponential
functions we refer to them as exps. For each group, the pairs of models
are compared by using BIC criterion. Then, the models selected as best
models are compared each other. The procedure is repeated until a single
best model for the group is obtained. The best model of the i-th group is
the initial reference model for the (i + 1)-th group.

Groups
VII VIII IX
(m=2,1=0) (m=2,1=0) (m=2,1=0)
Vs Vs \&
Bi-exponential  (exp,, 1=0)  (expy, 1=1)  (expy, 1=3)
hybrid models (m—2,1-0) (expy, 1=1) (expy, 1-3)
Vs Vs VS
(m=0, exps)  (expy, 1=2)  (m=3,exps)
(expa, 1=0)  (expa, 1=1)
Vs Vs /
(expz, expz)  (m=1, expo)
(m=0, expa)  (expy, 1=2)
Vs Vs /
(exp2, expz)  (m=2, expo)
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optimal. To select the best model in a group, the models are sorted according
to their increasing number of parameters and then arranged in adjacent pairs.
Each pair is then compared by using BIC criterion, as described in Sec. 3.3.1.
This procedure is repeated for the models that were selected as best models
in the previous round of comparisons, until a single best model is obtained
in the group. The composition of the nine groups are resumed in Tables 4.1,
4.2, 4.3.

From the preliminary analysis on the 10 subjects, we find out that the
best performing calibration error model is the (m = 2, [ = 0), then we expect
the gain contribution a(t) to be more involved than the offset contribution
b(t). Moreover, calibration error models including cubic order polynomials or
bi-exponential functions never outperform the others in terms of BIC. This
is likely because their higher complexity is not rewarded with a better fit;
taking into account also the parsimony principle, we decide to remove such
models from the remainder of the study, i.e., in the following analysis we are
not considering Groups ITI, VI, VII, VIII, and IX.

The main results of the analysis on the entire dataset are reported in
the boxplots of Figures 4.1, 4.2, 4.3, and 4.4. Regarding Group I, we dis-
card (m = | = 0) because BIC(;,—1,—0) < BIC(,=i—0) and BICq,—0;—1) <
BIC(;—i=0) in more than 60% of the cases and there are many outliers with
positive ABIC. Similarly, we eliminate the model (m = [ = 1) because
ABIC ((m=1,=0), m=i=1) > 0 and ABIC(—0,=1), m=i=1) > 0 in the 31% and in
the 39% of the subjects, respectively. Therefore, the final comparison for this
group is between the (m =1, [ = 0) model and the (m =0, [ = 1) one. As
reported in the last boxplot of Figure 4.1, ABIC (,=1,=0), (m=0,=1)) > 0 in
the 36% of the subjects; thus we select the polynomial model (m = 1,1 = 0)
as the optimal for the group and we insert it into the next one.

Regarding Group II, the BIC value of the (m = 2,1 = 0) is lower
than that of the (m = 1,{ = 0) in the 55% of the cases, and the ABIC
presents many outliers with positive values. For these reasons we discard
the (m = 1,1 = 0) model. Incrementing the number of parameters used
to describe the offset does not lead to a better description of the data. In-
deed, ABIC((m=2,=0), (m=2,=1)) > 0 in the 33% of the subjects. Also con-
sidering (m = 0,1 = 2) does not significantly improve the results, with
BIC(m=2,=0) < BIC(—0,=2) in the 71% of the subjects.
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Figure 4.1: Boxplot of ABIC values obtained in the group I of polynomial
models while selecting the calibration error function. The red line indicates
the median value, the diamond shows the mean value, the plus are the outliers
values. Note that a positive value of ABIC means that the model with more
parameters is preferable.
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Figure 4.2: Boxplot of ABIC values obtained in the group IT of polynomial
models while selecting the calibration error function. The red line indicates
the median value, the diamond shows the mean value, the plus are the outliers
values. Note that a positive value of ABIC means that the model with more
parameters is preferable.
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Figure 4.3: Boxplot of ABIC values obtained in the group IV of mono-
exponential hybrid models while selecting the calibration error function. The
red line indicates the median value, the diamond shows the mean value, the
plus are the outliers values. Note that a positive value of ABIC means that
the model with more parameters is preferable.

Finally, comparing (m = 2,1 = 1) with (m = [ = 2) yields to BIC(;,—=2) <
BIC(;,—2,=1) in the 21% of the cases; thus we discard also the model (m =
[ = 2). Owing to these results, we select the (m = 2,1 = 0) model as the
best model of Group II and we insert it into the next group.

Considering Group IV, where the two functions a(¢) and b(t) can be either
a polynomial or a mono-exponential, we first compare the (m = 2,1 = 0)
with the (exp;,l = 0) and the (m = 0,exp,). As represented in Figure 4.3,
BIC (exp, i=0) < BIC(1=2,=0) and BIC(,—0.exp,) < BIC(1=2,=0) in the 33% and
the 30% of the cases, respectively. Thus, the model (m = 2,1 = 0) is the
one that perform better. Instead, when we compare both the (exp,,l =
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Figure 4.4: Boxplot of ABIC values obtained in the group V of mono-
exponential hybrid models while selecting the calibration error function. The
red line indicates the median value, the diamond shows the mean value, the
plus are the outliers values. Note that a positive value of ABIC means that
the model with more parameters is preferable.

0) and the (m = 0,exp,) with the (exp,exp,), we obtain BIC exp, exp,) <
BIC exp, i=0) in the 48% of the cases and BIC(exp, exp,) < BICun=oexp,) in
the 54%. In both cases there are few outliers that performs better with
one of the two model analysed, so we follow the parsimony principle and
we discard the model (exp,,exp;). From these comparisons, the polynomial
model (m = 2,1 = 0) is the best model of Group IV. To validate the choice,
we also directly compare the (m = 2,1 = 0) with the (expy, exp;), resulting
in ABIC ((m=2,=0), (exp,.exp,)) > 0 in the 38% of the subjects.

Finally, we analyze the models in Group V. First, we compare the model
(m = 2,1 = 0) with the (exp;,/ = 1) one and we obtain BICp, 1=1) <
BIC(n=2,=0) in the 28% of the cases. Therefore, the (m = 2,1 = 0) is
preferable. Then, as reported in Figure 4.4, we find out that increasing the
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Figure 4.5: Boxplot of ABIC values obtained in the second round of com-
parisons in the group V of mono-exponential hybrid models while selecting
the calibration error function. The red line indicates the median value, the
diamond shows the mean value, the plus are the outliers values. Note that
a positive value of ABIC means that the model with more parameters is
preferable.

number of parameters is not convenient. Indeed, ABIC (exp, i=1), (exp,.i=2)) >
0 in the 41% of the subjects and there are few outliers with positive ABIC.
Regarding the model (m = 1,exp,), it is equivalent to the (exp,,/ = 1) one
because BIC (exp, i=1) < BIC(p—1exp,) in the 53% of the cases, the outliers
are not relevant and the complexity of the model is the same (they both
involve 5 parameters). Thus, the model (m = 1, exp,) is set apart. Instead,
when we compare the models (exp,,l =2) and (m = 2,exp,), we obtain
BIC(m=2exp,) < BlC(exp, i=2) in the 59% of the cases. For this reason we
discard the (exp,,l = 2).

From these comparisons, we obtain three possible optimal models: (m =
2,1 = 0), (m = l,expy) and (m = 2 exp;). We sorted these models ac-
cording to their increasing number of parameters and then we arranged in

adjacent pairs. As represented in Figure 4.5, BIC(=1,exp,) < BIC(n=2=0)
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Figure 4.6: 1Gg; curves comparison on a representative subject ¢ with dif-
ferent calibration error models during day 2 (top), day 4 (center) and day 10
(bottom). The IGg; curves are obtained with the model (m =1 = 0) (light
blue lines), the model (m = = 1) (yellow lines) and the model (m = 2,] = 0)
(red lines).
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and BIC(p—2.exp,) < BIC(n=2=0) in the 34% and the 36% of the cases,
respectively. Therefore, we discard both the models (m = 1,exp,) and
(m = 2,exp;) and we select the polynomial model (m = 2, | = 0) as the
optimal one.

In Figure 4.6, we reported an example of how different calibration error
models perform. The use of the optimal model (m = 2,1 = 0) (red line) allows
to describe the CGM sensor profile much better than the model (m =1 = 0)
(light blue line), which is not sufficient to explain the time-variant behavior
of the calibration error. Instead, the model (m =1 = 1) gives a satisfactory
description of the calibration error on day 2 and 10 but it worsens on day 4,
meaning that a better characterization of the time variation of a(t) and b(t)
is needed.

4.2 Parameter estimation

Once the calibration error functions have been set, we have to identify its
parameters ag, ai, as, by and the time constant 7 for each subject. We can
then compute the I1Gg; profile with the estimated parameters.

The values and the precision of the estimates are shown in Table 4.4,
where the median, the 5th and the 95th percentiles, and the percentage of the
estimates with CV < 5%, CV < 10%, and CV < 30% are reported. Results

Table 4.4: Median, 5th and 95th percentiles values for model parameters

7, ag, G, as, by, and percentage of values estimated with CV < 5%, CV <
10%, CV < 30% with the selected calibration error model (m = 2,1 = 0).

Percentile % of values estimated with
Parameter
50tk 5th 95th CV <% CV<10% CV <30%

T 3.7675 0.0323 11.6446 85.2% 88.8% 90.1%
ag 0.9405 0.6398 1.1171 100% 100% 100%
aq 0.0068 -0.0657 0.1196 79% 93.8% 98.8%
as -0.0007 -0.0093 0.0054 79% 93.8% 95.1%
130 7.5857 -1.2057 18.5540 81.5% 87.7% 91.4%
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Figure 4.7: Histograms and relative probability density functions of param-
eters 7, ag, ap, ao, and by obtained from estimated values and kernel density
estimation procedure with the selected calibration error model (m = 2,1 = 0).

show that the parameters are identified with great precision: the percentage
of estimates with C'V < 30% is always greater than 90%, while the one with
CV < 5% never drops below 79%. We can make some considerations on the
distribution of 7: its median value of ~ 3.8 min is surprisingly low from a
physiological point of view; indeed, from previous studies, 7 is expected to
span from 3 to 12 minutes, with a median around 7-8 minutes. However, the
inter-individual variability of 7 is large, with values spanning from almost 0
to 14.1, confirming that it is subject specific. Regarding the parameters of
the calibration error model, the values of ag, a1, and ay are much variable
among subjects. We remark that non null values of a; and as correspond to
a drift in time of the sensor sensitivity.

To better appreciate the parameter estimates’ distributions, we assess
both their histograms and their probability density functions that are ob-
tained through a kernel estimation procedure. Similar to the histogram, the
kernel estimation process builds a function to represent the probability distri-
bution of the parameters. But unlike the histogram, which places the values
of parameters into discrete bins, the kernel distribution sums the component
smoothing functions for each value to produce a smooth, continuous proba-
bility curve. Having continuous pdfs can be useful in several applications, like
generating random values for the parameters in a simulation environment.
From Figure 4.7, we verify that the resulting distributions are consistent with
the ones observed in [1, 2|, apart from the distribution of 7. Specifically, in
the analysis we obtain 7 ~ 0 for a certain number of subjects; this value is
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Figure 4.8: Scatterplots between pairs of parameters of the selected cali-
bration error model. The boxes on the top represent the scatterplots between
a(t) parameters ag, a; and ag, while the boxes on the bottom represent the
scatterplots between a(t) parameters and by.

not realistic because the glucose diffusion from blood to interstitial fluid is
not instantaneous. A deeper insight of the problem is described in the next
section.
After assessing the parameters values, we plot their scatterplots to study
their correlations. In Figure 4.8 we study the correlation among the calibra-
tion error model parameters. In particular, to verify whether a simple linear
relationship is sufficient to describe their relation, we introduce the coeffi-
cient of Pearson p. Such coefficient measures the strength and the direction
of the linear relationship between two variables  and ¢, and it is defined as
cov(z,y)

Pay = Tay Py € [—1,1] (4.1)

where cov(x,y) is the covariance, o, is the standard deviation of z, and o,
is the standard deviation of y.

When |p,,| = 1 the relation between = and y is perfectly described by
a linear equation, and we refer to it as a "perfect correlation"; whereas,
when p, , = 0 there is no linear correlation between the variables. Moreover,
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pzy > 0 indicates a positive correlation, while p,, < 0 indicates a negative
one. Observing Figure 4.8 (top), we can see strong negative correlations
between G, and ay (pa,a, = —0.98) and between ag and a; (paga, = —0.79),
while there is a strong positive correlation between ay and as (paga, = 0.73).
On the contrary, there is not a linear relationships between the coefficients of
the sensor gain and the one of the sensor offset (Figure 4.8 (bottom)). This
result is confirmed by the low values of the Pearson’s correlation coefficients:
Paoi, = 0-16, p; 3, = —0.32, and p, ; = 0.29.

4.2.1 Problem in 7 estimation

In this section we discuss about the problem in estimating the diffusion time
constant we encountered in the previous section for few subjects. In partic-
ular, eight subjects have an estimated time constant almost equal to zero,
and this is not consistent with the physiology of the BG-to-1G kinetic. The
CVs obtained for these subjects are generally low but except the CV values
referring to the diffusion time constant, which have very high values. This
indicates a low accuracy in the estimation of 7 only. Identifying the causes of
this problem is not trivial: we can speculate there may be some errors in the
recording of the temporal CGM /YSI data for these subjects. The presence of
possible errors in the data acquisition suggests to discard a posteriori these
subjects from the analysis.

After the elimination, the obtained histogram (right panel in Figure 4.9)
has no spurious peak around zero, and it is now in line with the one reported
in [2]. The new estimated parameters and their CVs are reported in Table
4.5. The results are improved: the median value of 7 increases from ~ 3.77 to
~ 3.98, while the percentage of subjects with the CV referred to 7 below the
30% changes from 90.1% to 100%. Finally, regarding the other parameters,
there are not significant changes both in their values and in their distributions
(Figure 4.10).
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Figure 4.9: Histogram and relative probability density function of 7 ob-
tained from estimated values and kernel density estimation procedure before
(left) and after (right) the elimination of subjects with 7 ~ 0, with the se-
lected calibration error model (m = 2,1 =0).
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Figure 4.10: Histograms and relative probability density functions of pa-
rameters ag, ap, as, and by obtained from estimated values and kernel density
estimation procedure after the elimination of subjects with 7 ~ 0 with the
selected calibration error model (m = 2,1 = 0).
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Table 4.5: Median, 5th and 95th percentiles values for model parameters
T, Qg, a1, Qo, 130, and percentage of values estimated with CV < 5%, CV <
10%, CV < 30% after the elimination of subjects with 7 ~ 0 with the
selected calibration error model (m = 2,1 = 0).

Percentile % of values estimated with
Parameter
50t" 5th 95" OV <5% OV <10% OV <30%

T 3.9755 1.1289 11.9837 94.5% 98.6% 100%
ag 0.9559 0.6504 1.1198 100% 100% 100%
a1 0.0017 -0.0624 0.1215 83.6% 93.1% 98.6%
Qo -0.0004 -0.0097  0.0050 82.2% 93.1% 94.5%
ISO 7.4000 -1.7903 18.5788 79.4% 86.3% 90.4%

4.2.2 Trends of the sensors gain

The optimal calibration error model describes the gain via a quadratic func-
tion. Therefore, depending on the values assumed by the coefficients ag, a;
and ag, a(t) evolves differently in time. It is interesting to understand how
a(t) varies among subjects to include this information in CGM sensors so
to improve their calibration algorithms. In particular, we can distinguish
the subjects on the basis of the concavity of a(t), which can be upward or
downward depending on the sign of as.

We find that 32 subjects out of 73 have an upward concavity (as > 0),
while the remaining 41 subjects have a downward concavity (as < 0). Thus,
we conclude that there is no prevalence between the two forms. In Figure
4.11 we report the spaghetti plot (to the left) and variability bands (to the
right) for the two concavity groups separately. The spaghetti plots highlight
two main behaviours: quasi-linear, either increasing or decreasing, which has
as almost equal to zero, and quadratic. Finally, we compute the variability
bands at 90%. The results show that they are similarly wide, about 0.4, and
the median curve is in both cases quasi-constant.
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Figure 4.11: Spaghetti plots and variability bands of a(t) among subjects
with concavity upward ay > 0 (top), and with concavity downward ay <
0 with the selected calibration error model (m = 2,1 = 0). The orange
lines represent the quadratic behaviour of a(t), while the red lines and the
blue lines represent the quasi-linear behaviour, respectively increasing and
decreasing.
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4.3. AUTO-REGRESSIVE MODEL IDENTIFICATION
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Figure 4.12: Colored residual profile (left) and corresponding white residual
profile (right) of a representative subject obtained with the selected calibra-
tion error model (m = 2,1 = 0).

4.3 Auto-regressive model identification

Once the diffusion constant 7 and the parameters of the calibration error
models are identified, we can obtain the IGg; profile and compute the resid-
uals with respect to the CGM sensor data as explain in Sec. 3.3.1. As an
example, Figure 4.12 (left) represents the colored residuals v, in a specific
time window for a random subject, where we can clearly distinguish the
auto-regressive component, while Figure 4.12 (right) shows the correspond-
ing whitened residuals obtained as in Eq. (3.41) in Sec. 3.3.1.

It is important to note that while the different coefficients of the AR
model are estimated for each specific residuals segment, the order ¢ used
is the same for all the segments. To find the optimal order we follow the
procedure specified in Sec. 3.3.1.

4.3.1 Optimal order selection

Figure 4.13 represents the histogram with the counts of segments in which
the specific order has been selected as the best. As we can see, the most
frequent order is 2. This result is consistent with the one in [2| and suggests
that a low order is sufficient to describe the auto-regressive component of the

measurement noise.
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Table 4.6: Median, 5th and 95th percentiles values for the auto-regressive
model parameters a; and a, obtained with the selected order 2 of the AR

model .

Percentile
Parameter
50th 5th 95th
o %1 -1.2766 -1.5762 -0.8441
o) 0.4339 0.0387  0.6905
150

100 1

Counts

50

1. 2 3 4 5 6 7 8 9 10
Order

Figure 4.13: Histogram of AR orders. It reports the counts of segments in
which the specific order has been selected as optimal.
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Figure 4.14: Histograms and relative probability density functions obtained
from estimated values and kernel density estimation procedure for the auto-
regressive model parameters a; and as.
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The output of the AR model is then
v;i(t) = Quji vji(t — 1) + g vji(t — 2) + wyi(t) (4.2)

where & ;; and dyj; are the model parameters for the j-th segment of the i-th
subject and wy;(¢) is the zero-mean white noise process.

Table 4.6 shows the results of the AR model parameters identification,
where the median, the 5th, the 95th percentiles values are reported. Fur-
thermore, both the histogram and the relative probability density function
derived from the kernel density estimation procedure are represented in Fig-
ure 4.14.

4.3.2 Analysis of the auto-regressive model parameters

for different days of monitoring

To better understand the evolution of the sensor error in time, we analyse
the auto-regressive component in the three time windows of YSI recording,
namely day 1 or 2, 4 and 10. To select the optimal order we operate using the
same procedure of the previous section but arranging the segments according
to the time window they belong. The corresponding histograms are reported
in Figure 4.15 for the three different time windows. We can see that the order
2 is the optimal for all days; however, the distributions vary among the time
windows: in the first days order 2 clearly dominates the others, while in the
last day the gap between order 2 and 3 is smaller. A possible explanation
is that a degradation in time of sensor performances leads to the need of a
more complex model near the end of the sensor lifetime.

Once the optimal order as been selected for each time window, we estimate
the AR parameters as in previous section. Table 4.7 summarizes the results
of the parameters identification, reporting the median, the 5th and the 95th
percentiles values of a;, s and the variance of the estimated random noise
w(t) 2. Regarding d; and ds, there are no evident differences among the
time windows. Conversely, 62 is greater in the first and in the last day because
of the uncertainty on the sensor measurements after its insertion and close
to the end of its lifetime. This confirms our expectations since in the first

period, after the insertion, a greater immune system response can lead to
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Figure 4.15: Histogram of AR orders in in days 1 or 2 (left), 4 (center), 10
(right). Each histogram reports the counts of segments in which the specific
order has been selected as optimal.

instabilities in the measurements, while in the last period a degradation of
the sensor performances can occur due to the closeness of the sensor end of
life. To complete the analysis we also plot the histograms of &;, &, and 62
in Figures 4.16, 4.17, 4.18 respectively. The same considerations made for
the values reported in Table 4.7 still hold for the histograms of Figures 4.16,

4.17, 4.18.
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Figure 4.16: Histograms of parameter o obtained from estimated values
in days 1 or 2 (left), 4 (center), 10 (right).
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Figure 4.17: Histograms of parameter as obtained from estimated values
in days 1 or 2 (left), 4 (center), 10 (right).
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Figure 4.18: Histograms of parameter 6° obtained from estimated values

in days 1 or 2 (left), 4 (center), 10 (right).
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Table 4.7: Median, 5th and 95th percentiles values for model parameters
&1, G, 62 in days 1 or 2 , 4, 10 obtained with the selected order 2 of the
AR model.

Parameter Days Percentile

50" 5th 95th

1/2  -1.2405 -1.5797 -0.8718

o 4 -1.3031 -1.5693 -0.9349
10 -1.2519 -1.5811 -0.6317

1/2  0.4038 0.0375  0.6862

Qo 4 0.4802  0.1524  0.7207
10 0.4062 -0.0992  0.6669

1/2  10.2654 1.6031 46.6246

o’ 4 7.0339 24440 21.8484
10 7.5690 2.1049 63.7126
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Chapter 5

Results of the identification of the
new model with the single-step

procedure

The single-step identification analysis has been accomplished with three al-
ternative procedures considering only the optimal calibration error model
(m = 2,1 = 0) and the optimal AR model of order 2 obtained in the two-step
analysis. The first method identifies the model parameters without consid-
ering any stability constraint for the AR model, and verifies a posteriori
whether the model is stable. In the second procedure, we include the con-
straints in the identification process to guarantee the AR model stability.
Finally, we repeat the parameters identification by including some priors on
the parameters distributions and we verify the choice of the AR order g = 2
exploring different orders (q € (1,2, 3)).

5.1 Parameter estimation

We identify for each subject the parameters 7, ag, a1, as, by, a; and ay by
using the three alternative procedures, as described in Sec. 3.3.2.

The values and the precision of the estimates achieved with the first
procedure are shown in Table 5.1, where the median, the 5th and the 95th
percentiles, and the percentage of the estimates with C'V < 5%, CV < 10%,
and CV < 30% are reported. Not all the parameters have a great precision:
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Table 5.1: Median, 5th and 95th percentiles values for model parameters
T, Qg, G1, G2, 130, a1, (g, and percentage of values estimated with C'V <
5%, CV < 10%, CV < 30% obtained in the single-step analysis without
constraints.

Parametor Percentile % of values estimated with
501" 5th 95t CV <5% CV <10% CV <30%
T 4.7897 0.9366 12.2352 54.3% 96.3% 100%
ao 0.9442  0.6047 1.1155 97.5% 97.5% 100%
a1 0.0060 -0.0679  0.1156 16% 34.5% 4%
o -0.0006 -0.0108  0.0053 14.8% 39.5% 75.3%
by 6.4406 -4.0155  22.55 11.1% 39.5% 72.8%
a1 -1.2770  -1.5252  -0.9517 100% 100% 100%
Qo 0.4049  0.1005  0.5816 63% 92.6% 100%

in particular, 7, ag, &; and & have a very good accuracy with CV < 30%
for all the subjects, while a,, a, and lA)o are not so accurate. Indeed, the
percentage of the estimates with C'V < 30% is greater than the 70% and
the one with CV < 10% assumes values around the 30-40%. Regarding
the values of the parameters, we see that 7 preserves the inter-individual
variability spanning from almost 1 to 12.2 minutes. Moreover, its median
value is ~ 4.8 min, almost a minute greater than the one of the two steps
analysis and consequently more physiologically meaningful. In this approach,
we verify the stability of the AR model a posteriori, finding out that the
identified model is stable for each subject.

Even if the first procedure always provides stable models, it is conve-
nient to guarantee the stability in the estimation process without checking it
a posteriori. Details about such procedure have been described in Sec. 3.3.2.
The obtained values and the precision of the estimates are shown in Table 5.2
where the median, the 5th and the 95th percentiles, and the percentage of
the estimates with CV < 5%, CV < 10%, and CV < 30% are reported.
We can see that the CVs are the same of the previous procedure and also
the estimates are very similar; thus, the introduction of stability constraints
does not affect significantly the model parameters estimation.
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Table 5.2: Median, 5th and 95th percentiles values for model parame-
ters 7, ag, a1, a9, Z;O, a1, Qg, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with
constraints.

Parametor Percentile % of values estimated with
50t 5th 95t CV <5% CV <10% CV <30%
T 4.8113 1.2530 12.6564 54.3% 96.3% 100%
o 0.9442  0.6337  1.1425 97.5% 97.5% 100%
a1 0.0060 -0.0679  0.1080 16% 34.5% 4%
s -0.0006 -0.0099  0.0057 14.8% 39.5% 75.3%
bo 6.2777 -5.6133 22.5517 11.1% 39.5% 72.8%
o2 -1.2770  -1.5465 -0.9517 100% 100% 100%
Qo 0.4049 0.1005 0.6038 63% 92.6% 100%

Therefore, to improve the precision of the estimates, we include in the
identification process a priori information by using the Bayesian approach as
defined in Sec 3.3.2. The values and the precision obtained with the Bayesian
estimation are shown in Table 5.3, where the median, the 5th and the 95th
percentiles, and the percentage of the estimates with CV < 5%, CV <
10%, and CV < 30% are reported. The inclusion of priors leads to slight
changes in the parameters’ accuracy. The CVs of 7 are improved; indeed, the
percentage of the estimates with C'V < 10% changes from the 96.3% to the
97.5%, and the one with CV < 5% increases from the 54.3% to the 56.8%.
However, the accuracy of by worsens, suggesting that the inclusion of its
prior does not give the expected results. By repeating the analysis without
adding the prior in by, the percentage of the estimates with CV < 30%
slightly increases from the 71.6% to the 74%, as reported in Table 5.4 but,
the overall improvement with the introduction of priors is small, suggesting
that the priors are not so effective. Actually, we could expect these results
because including priors is especially useful when the data are "poor" or
"very noisy", and our dataset does not belong to neither of the two cases.
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Table 5.3: Median, 5th and 95th percentiles values for model parame-
ters 7, ag, ai, as, I;O, &1, (g, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with
constraints and prior on 7, ag, bg.

Parametor Percentile % of values estimated with
501" 5th 95t CV <5% CV <10% CV <30%
T 4.8645 1.2815 12.5189 56.8% 97.5% 100%
ao 0.9448 0.6368  1.1424 97.5% 97.5% 100%
a1 0.0060 -0.0679  0.1068 16% 33.3% 72.8%
o -0.0006 -0.0099  0.0057 14.8% 39.5% 75.3%
bo 6.1974 -5.6324 22.4371 11.1% 39.5% 71.6%
a1 -1.2770  -1.5472  -0.9517 100% 100% 100%
Qo 0.4051  0.1005  0.6040 63% 92.6% 100%

Table 5.4: Median, 5th and 95th percentiles values for model parame-
ters 7, ag, a1, as, by, 1, Go, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with

constraints and prior on 7 and ay.

Parametor Percentile % of values estimated with
50th 5th 95th CV <5% CV<10% CV <30%
T 4.8442  1.2818 12.5131 56.8% 97.5% 100%
o 0.9445 0.6359  1.1424 97.5% 97.5% 100%
ax 0.0060 -0.0677  0.1067 16% 33.3% 72.8%
s -0.0006 -0.0099  0.0057 14.8% 39.5% 75.3%
bo 6.2187 -5.6863 22.5278 11.1% 39.5% 4%
Q1 -1.2770  -1.5470 -0.9517 100% 100% 100%
Gg 0.4051  0.1004  0.6042 63% 92.6% 100%
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Figure 5.1: Boxplots of comparisons of the AR models obtained in the
single-step analysis with constraints and prior on 7 and ag. The red line
indicates the median value, the diamond shows the mean value, the plus are
the outliers values.

5.2 Auto-regressive model selection

As explained above, we explore different orders for the AR model of the mea-
surement noise. To select the optimal one we apply the procedure described
in Sec. 3.3.1, where the ABIC are defined as

ABIC(ARl,ARg) - BIC(ARl) - BIC(ARQ), (51)
ABIC(ARl,AR;;) - BIC(AR1) - BIC(AR3)7 (52)
ABIC (AR, ARs) = BIC(aR,) — BIC(aRy), (5.3)

where AR, ARy and ARj refer to the auto-regressive model of order 1, 2 and
3 respectively. Results show that ABIC(4g, ar,) > 0 in the 77% of subjects
and ABIC(ag, ary) > 0 in the 71% ; thus we discard the order 1. The final
selection is between the orders 2 and 3, where ABIC4g, ar;) > 0 in the
30% of subjects. Due to this percentage, we are tempted to select the order
q = 2 but, looking at the boxplots reported in Figure 5.1, we can see that

65



CHAPTER 5. RESULTS OF THE IDENTIFICATION OF THE NEW
MODEL WITH THE SINGLE-STEP PROCEDURE

Table 5.5: Median values of error model parameters and percentage of
values estimated with CV < 30%, obtained with the two-step identification
and the single-step identification (with constraints and prior on 7 and ay).

% of values estimated
50" Percentile

Parameter with CV<30%

Two steps Single step Two steps Single step

identification identification identification identification

# 3.9755 4.8442 100% 100%
ao 0.9559 0.9445 100% 100%
i 0,0017 0,0060 98.6% 72.8%
as -0.0004 -0.0006 94.5% 75.3%
bo 7.4000 6.2187 90.4% 74%

b -1.2234 -1.2770 / 100%
Gy 0.3827 0.4051 / 100%

neither of the two model is dominant. Taking into account both these results
and following the parsimony principle, we select 2 as the final order of the
model. Thus, the optimal order obtained with the single step and the two
steps procedure is the same, highlighting the consistency of the results.

5.3 Comparison to two-steps parameters esti-

mation

The two-step identification allows to separate the complex identification
problem into two simpler problems with a lower number of parameters es-
timated. However, as the parameters are estimated sequentially and not
simultaneously, this may introduce bias in the parameters’ estimates. The
problem should be overcome by the single-step identification method, al-
though the estimation of a large number of parameters simultaneously can
be difficult for some sensors. Therefore, we compare the results of the two
methods to verify the soundness of the results obtained with them.
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Figure 5.2: Histograms and relative probability density functions of pa-
rameters 7, ag, ai, as, and l;o obtained from estimated values and kernel
density estimation procedure in the two-step identification (above) and in
the single-step identification (below).

First, we compare the median values of the model parameters and the
percentage of the values estimated with C'V < 30%. They are reported in
Table 5.5, where the &; and the &y referring to the two-step identification
are obtained by aggregating all the segments of each subject. Regarding the
median values, the estimates given by the two methods are very close to each
other; thus, the single-step identification represents a reliable alternative for
estimating the sensor error model parameters. As explained in the previous
section, the median value of 7 in the single-step analysis is almost a minute
greater than the one of the two-step analysis, suggesting an improvement in
the estimation of the time constant. This is confirmed by the parameters
distributions, reported in Figure 5.2, where the distribution of 7, identified
with the single-step analysis, is comparable to the one obtained with the two
steps analysis but shifted to the right. Consequently, there are no values with
7 close to zero and the problem of its identification, described in Sec. 4.2.1,
is absent with the single-step identification. Regarding the precision of the
estimates, we can see that the two-step identification yields better results,
even if, also the ones obtained with the single-step are acceptable.

Then, we compare both the colored residuals and the white residuals
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Figure 5.3: Comparisons between the colored residuals (left) and the white
residuals (right) in the single step identification (orange signal) and in the
two steps identification (blue signal).
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Figure 5.4: Comparisons between the RSS distributions of the colored
residuals (left) and the white residuals (right) in the single step identification
(orange bars) and in the two steps identification (blue bars).

computed with the two methods. It is important to remark that these meth-
ods minimize different objective functions. In the two-step analysis, the
colored residuals are those to be minimized, while the white residuals are
obtained afterwards, as described in Sec. 4.3. On the contrary, in the single-
step analysis, the white residuals are those to be minimized, while the col-
ored ones are saved during the least square computation. Ideally, we would
like the residuals, both colored and white, to be the same for the two meth-
ods, independently from the objective function. Figure 5.3 shows that the
residuals obtained by the two-step analysis and the single-step analysis are
not equal but they are very similar, confirming the goodness of the results.

Finally, Figure 5.4 compares the distributions of the sum of the residuals
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squares (RSS), colored and white, obtained with the two methods. The re-
sults achieved are similar but the single-step method provides white residuals
with RSS lower than those of the two-step method. Since the white residuals
represent the dynamics that the model is not able to explain, the single-step

identification should be preferred.
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Chapter 6

Conclusion and future

developments

CGM sensors are becoming essential monitoring systems in diabetes therapy,
but as all the measurement systems, they are affected by errors that weaken
their accuracy and limit in practice the use of CGM-based applications. De-
veloping a model of the error can be extremely useful not only to better
understand the sources of error, but also to create more realistic simulations
that can help the design and test of CGM-based applications. CGM error
models developed in the literature were derived for sensor requiring twice
calibrations per day, and thus their domain of validity is limited to 12 hours.
These models are not suitable to describe the error of new generation sensors,
which are factory calibrated and lost for 10 days. The aim of this thesis was
to propose a new model for the error in factory-calibrated devices.

The proposed model of the sensor error is based on the previous works of
Facchinetti et al. [1, 2]. Similarly, the error arises from three different sources:
the BG-to-IG kinetics, the sensor calibration, and a random noise in the
measurement. While in [2] the model parameters change at each calibration,
in this work they are identified for the whole sensor lifetime of 10 days.
Moreover, new calibration error models are introduced to better investigate
the time variability of CGM sensor sensitivity. Specifically, two procedures
have been proposed for the identification: a two-step method [2|; and a
single-step method, where all the parameters are estimated simultaneously.

The analysis has been conducted on a dataset of 81 subjects wearing
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factory calibrated Dexcom G6 sensors.

Regarding the BG-to-1G kinetics, the results obtained with the two meth-
ods confirm that the time constant 7 is subject specific. Both the methods
identify the time constant with great precision (C'V < 30%) for all the sub-
jects. However, 7 values provided by the single-step method seems to be
more reliable in terms of physiological values, because its median value is
increased from 3.8 to 4.8 minutes, and no estimates with 7 ~ 0, which is it
not meaningful from the physiological point of view, result from the analysis.
Nevertheless, as remarked in [2], the BG-to-IG kinetics is the part of the
model which is most difficult to identify; in fact, we expect the median value
of 7 to be around the physiological value of 7 — 8 minutes.

Concerning the calibration error model, the results have shown that the
error is time-variant, with the gain a(¢) and the offset b(t) polynomials of or-
der 2 and 0, respectively. Therefore, while a constant function is sufficient to
describe the offset, the gain is better described by a quadratic function. The
parameters are estimated with varying precision, where the two-step method
achieves better results in general. Despite a great precision in estimating ag
for both the methods, a;, as, bo have CV < 30% for more than 90% of the
subjects by using the two-step method, while the precision of the estimates
for these parameters falls to 70% with the single-step method. Finally, from
the analysis of the spaghetti plots, we were able to distinguish two main
behaviours of the sensors gain a(t): quasi-linear and quadratic.

Regarding the measurement noise, the results of both the analysis have
shown that an AR model of order 2 is sufficient to effectively describe the
error contribution. The variance of the estimated random noise change ac-
cording to the day of monitoring, confirming an evolution of the sensor be-
havior in time. In particular, it is greater during the first days and the last
ones. This may be explained by the immune system response after the sensor
insertion and by the degradation of the performances at the sensor end of
life.

Other remarks can be drawn by analyzing the relations among the model
parameters. We found out that the parameters of the calibration error model
are strongly correlated together by a linear relationship, with absolute values
of the coefficients of Pearson around 0.7 — 0.9. Unfortunately, such a simple

relation does not exist between the calibration error parameters and .
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Overall, the two identification methods provide similar results. However,
the single-step method results preferable because it guarantees lower values
of the residual sum of squares, i.e. a better overall fit of the data, and it
improves the estimation of 7, providing estimates of the time constant which
are more physiologically meaningful.

Future developments

A first future development is to include the error model of factory-calibrated
CGM sensors in the T1D patient decision Simulator [31], to generate realistic
scenarios and re-creating reliable glucose sensors profiles. This would be par-
ticularly useful to develop and test CGM-based applications and to evaluate
the impact of the error on glycemic control algorithms. The implementation
of the model in the Simulator should take into account the provided trends of
the sensors gain and linear relations among the parameters of the calibration
error model.

The work assumed that at each CGM profile of the dataset corresponds
a different subject. While considering a single sensor per subject helped to
simplify the analysis, it also hindered the possibility to dissect the error into
a common contribution and a sensor specific one. In this sense, the model
can be further improved by using a dataset with patients wearing more than
one sensor simultaneously.

The obtained results provide acceptable precision of the estimates. Fur-
ther improvements in the precision are likely to be achieved by developing
ad hoc iterative estimation techniques. Moreover, a deeper knowledge of
the underling physiological phenomena could help in better investigating the
error model. For instance, new studies and experiments employing tracers
can give new insights on the glucose diffusion from blood to interstitial fluid,
potentially leading to a finer model of the BG-to-IG kinetics.

Another future development could be to integrate the sensor error model
with the one of the transient errors. Indeed, CGM sensor can be occasionally
affected by transient faults like disconnections or artifacts due to compres-
sion. Disconnections are caused by the interruption of the communication

between the transmitter and the receiver, and they cause the loss of one or
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more consecutive samples of CGM data. Compression artifacts are caused by
mechanical pressure applied to the sensors by the patients, e.g., while sleeping
prone, and they can induce a temporary loss of sensitivity with a consequent
distortion of the CGM trace. The model to describe these kinds of transient
errors have been already proposed by Facchinetti et. al for sensors requiring
multiple calibrations (every 12 hours) in [32]. The integration of such model
in factory-calibrated sensors could be useful to assess the possible interplay
with the sensor errors.

Finally, additional studies on the errors of factory-calibrated sensors,
other than Dexcom G6, would allow to confirm the soundness of the pro-
posed model.
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Appendix A

Bayesian smoothing

The Bayesian smoothing is a non-parametric technique that allows to turn
a discrete signal y with n sparse values sampled from a non-uniform time
grid ), into a signal @ with N dense values sampled from a uniform time
"virtual” grid €2,, where Q, C 2, and n < N.

The general measurement model of the signal y is given by
y = Gu + vy, (A1)

where G is the n x N transfer matrix, and v, is an additive measurement noise
with covariance matrix ¥, = 0,2B. Specifically, the matrix G is obtained
by eliminating the rows of GG, that do not correspond to the time samples
of 2, where G, is the N x N matrix that relates y, to v in the domain 2.
Without considering the measurement noise, we want u = v, i.e., G, = Iy,

where Iy is the N X N identity matrix.

In order to obtain the smoothed signal i, we observe that

e the y data are affected by the measurement noise; thus, the smoothing
procedure should only approzimate the data, without interpolate them
exactly;

e u is a biological signal; thus, it must have some reqularities.
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APPENDIX A. BAYESIAN SMOOTHING

The trade-off between these two aspects is modeled by the problem

@ = arg min, ||Ful)?
subject to : ,

ly — Gi||* = e

where F is a difference operator and ¢ is the quadratic norm of the residuals
y — Ga. In particular, the quality of the approximation is given by €, while
the regularity is measured by ||Fu||?, which is defined as the discrete form of
the energy of the m-th derivative of u. A closed form solution of the problem
is given by exploiting the method of Lagrange multipliers and it is computed

as
= (GT"B'G+ ¢’FT'F)'G"B ™!y (A.2)

where ¢° is the optimal value of the smoothing parameter ¢, the index that
determine the trade-off between approximation and regularity of .
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