
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
CORSO DI LAUREA IN INGEGNERIA DELL’AUTOMAZIONE

Distributed Convex Optimisation using the
Alternating Direction Method of Multipliers

(ADMM) in Lossy Scenarios

Laureando:
Nicola BASTIANELLO

Relatore:
Prof. Ruggero CARLI

PADOVA, 16 APRILE 2018

ANNO ACCADEMICO 2017/2018

iii

Abstract

The interest for algorithms suited to solve convex optimisation problems in a distributed fash-
ion has recently been motivated by many applications from Machine Learning, to wireless
sensor networks, to Smart Grids, to Image Processing and many other. A particularly well
suited algorithm for this class of problems is the Alternating Direction Method of Multipliers
(ADMM) that shares ties with, on the one hand, augmented Lagrangian methods and, on the
other, with splitting operator theory. After a thorough literature and theoretical background
review, this Thesis proposes a new formulation of the ADMM that is robust to faulty com-
munications among the agents collaborating to the solution of the problem and, moreover,
that allows for local computations to be carried out asynchronously. The convergence of the
proposed ADMM formulation is proved in a probabilistic framework and, restricting to the
case of smooth and strongly convex costs, the rate of convergence is shown to be exponen-
tial and an explicit upper bound is given. The proposed algorithm is then extended to solve
problems conforming to the partition-based framework, in which the local cost of each agent
depends on local information and also information from its neighbours. The theoretical re-
sults presented are validated with extensive Monte Carlo simulations, performed on quadratic
and linear regression problems.

v

Contents

Abstract iii

1 Introduction 1
1.1 Introduction . 1
1.2 Convex Optimisation Literature Review . 2

1.2.1 Distributed optimisation . 2
1.2.2 Operator Theory and splitting operators 3

1.3 Alternating Direction Method of Multipliers 4
1.3.1 Asynchronous distributed ADMM 5
1.3.2 Linear convergence of the ADMM 6
1.3.3 Variants of the ADMM . 7

1.4 Contributions and Outline of the Thesis . 9

2 Alternating Direction Method of Multipliers 11
2.1 Alternating Direction Method of Multipliers 11
2.2 Splitting Operators . 12

2.2.1 Operator Theory . 12
2.2.2 Fixed point algorithms . 15
2.2.3 Application to convex optimisation 16

Peaceman-Rachford splitting . 17
Forward-backward splitting . 18

2.2.4 Subdifferential representation of the R-PRS 19
2.3 ADMM and Splitting Operators . 21

2.3.1 Dual problem . 21
2.3.2 Applying the splitting operators . 22

3 Distributed Alternating Direction Method of Multipliers 27
3.1 Distributed Consensus Optimisation with ADMM 27

3.1.1 Problem formulation . 27
3.1.2 Distributed ADMM . 28

3.2 Convergence and Linear Convergence Rate 32
3.3 Edge- and Node-Based Optimisation . 38

4 Randomised Alternating Direction Method of Multipliers 41
4.1 ADMM in Lossy Scenarios . 41

4.1.1 Robust ADMM . 41
4.1.2 Convergence . 43

4.2 Asynchronous and Robust ADMM . 44
4.3 Linear Convergence Rate . 45
4.4 Randomised ADMM and Final Considerations 51

vi

5 Partition-Based Randomised ADMM 53
5.1 Problem Formulation . 53
5.2 Partition-Based Randomised ADMM . 55
5.3 Quadratic Cost Functions . 57
5.4 Local Variables of Different Sizes . 58

6 Simulations Results 59
6.1 Note on the Methodology . 59
6.2 Robust and Asynchronous ADMM . 60

6.2.1 Quadratic cost functions . 60
6.2.2 Lasso . 64

Problem formulation . 64
Applying the ADMM . 65
Simulations results . 66

6.2.3 Considerations . 68
Synchronous vs asynchronous updates 69
The naïve criterion . 69

6.3 Comparison with Newton-Raphson . 71
The robust and asynchronous Newton-Raphson 71
Comparison . 72

6.4 Partition-Based ADMM . 72

7 Conclusions and Further Work 77

A Mathematical Background 79
A.1 Convex Analysis . 79

A.1.1 Convex functions . 79
A.1.2 Conjugation . 80
A.1.3 Convex optimisation . 81
A.1.4 Precursors of the ADMM . 83

A.2 Operator Theory . 85
A.2.1 Non-expansive operators . 85
A.2.2 Fixed point algorithms . 86
A.2.3 Proximal algorithms . 87
A.2.4 Splitting operators . 91

Peaceman-Rachford splitting . 92
Forward-backward splitting . 92

A.3 Subdifferentiability . 93
A.4 Monotone Operators . 96

B Stochastic Krasnosel’skiı̆-Mann Iteration 101

C Security Analysis of ADMM 105

vii

List of Figures

2.1 Representation of the action performed by α-averaged operators. 14
2.2 Representation of the relationship between proximal and reflective operators. 14
2.3 Depiction of the two-fold effect of the proximal operator. 15
2.4 Graphical representation of subdifferential. 19
2.5 Relationships between the variables of a relaxed PRS iteration. 20
2.6 Relationships between the algorithms. 26

4.1 Representation of the synchronous and asynchronous update criteria. 45

6.1 Example of random geometric graph withN = 10 nodes and communication
radius r = 0.1[p.u.]. 59

6.2 Error evolution of the r-ADMM for different step-sizes with quadratic costs. . 61
6.3 Error evolution of the r-ADMM for different penalty parameters. 61
6.4 Error evolution of the r-ADMM for different packet loss probabilities with

quadratic costs. 62
6.5 Stability boundaries of the r-ADMM for different packet loss probabilities

with quadratic costs. 62
6.6 Error evolution of the ra-ADMM for different update probabilities with quadratic

costs. 63
6.7 Empirical convergence rate and theoretical bound with quadratic costs. 64
6.8 Error evolution of the r-ADMM for different step-sizes applied to the Lasso

problem. 66
6.9 Error evolution of the r-ADMM for different penalty parameters applied to

the Lasso problem. 67
6.10 Error evolution of the r-ADMM for different packet losses applied to the

Lasso problem. 67
6.11 Coefficient of determination for different regularisation parameters and tol-

erances. 68
6.12 Error evolution of the ra-ADMM and naïve ADMM for different step-sizes

with quadratic costs. 71
6.13 Error evolution of the ra-ADMM and naïve ADMM for different packet loss

probabilities with quadratic costs. 71
6.14 Error evolution of the ra-ADMM and the ra-NR for different packet losses. . 73
6.15 Error evolution of the ra-ADMM for different step-sizes and the ra-NR with

ε = 0.9. 73
6.16 Error evolution of the ra-ADMM for different penalties and the ra-NR with

ε = 0.9. 74
6.17 Error evolution of the partition-based ra-ADMM for different packet loss

probabilities. 74
6.18 Stability boundaries of the partition-based ra-ADMM for different packet

loss probabilities. 75
6.19 Error evolution of the partition-based ra-ADMM for different step-sizes. . . . 75

viii

A.1 Representation of the convex conjugate for a generic function f : R→ R. . . 80
A.2 Action of the proximal operator for the indicator function of some particular

sets. 90
A.3 Proximal operator for a scalar quadratic function. 91
A.4 Relationships between fixed point algorithms. 94
A.5 Graphical representation of subdifferential. 95
A.6 Some examples of set-valued operators with different properties. 98

ix

List of Tables

3.1 Comparison of R-ADMM implementations. 32

6.1 Percentage of time instants in which a primal variable is updated with new
information. 69

6.2 Number of iterations for the ADMM varying the update periods with quadratic
costs. 69

6.3 Comparison of ra-ADMM and ra-NR. 72

xi

List of Algorithms

1 Modified distributed R-ADMM. 30
2 Distributed R-ADMM using Proposition 2.25. 31
3 Node-based implementation of the ADMM [93]. 39
4 Robust distributed ADMM. 42
5 Robust and asynchronous distributed ADMM. 46
6 Partition-based robust and asynchronous distributed ADMM. 56
7 Naïve robust and asynchronous distributed ADMM. 70

xiii

List of Abbreviations

ADMM Alternating Direction Method of Multipliers
R-ADMM Relaxed Alternating Direction Method of Multipliers
r-ADMM robust Alternating Direction Method of Multipliers
ra-ADMM robust and asynchronous Alternating Direction Method of Multipliers
ran-ADMM randomised Alternating Direction Method of Multipliers
PPA Proximal Point Algorithm
KM Krasnosel’skiı̆-Mann iteration
s-KM stochastic Krasnosel’skiı̆-Mann iteration
PRS PeacemanRachford Splitting
R-PRS Relaxed PeacemanRachford Splitting
DRS Douglas-Rachford Splitting
FBS Forward-Backward Splitting
KKT Karush-Kuhn-Tucker
ra-NR robust and asynchronous Newton-Raphson
LASSO Least Absolute Shrinkage and Selection Operator
WSN Wireless Sensor Network

xv

Notation

N field of natural numbers
R field of real numbers
R ∪ {+∞} extended real line
X real Hilbert space
E[·] mathematical expectation
P[·] probability of an event
A⊗B Kronecker product
vect(·) vectorisation operator
0n n× 1 vector of zeros
1n n× 1 vector of ones
ιC(·) indicator function of set C
∇f gradient of function f , by convention a column vector
∂f subdifferential of non-smooth function f
∇̄f subgradient of f , ∇̄f ∈ ∂f
dom(f) domain of function f
fix(T) set of fixed points of mapping T
zer(A) set of zeros of set-valued operator A
f∗ convex conjugate of function f
proxρf (·) proximal operator of function f with penalty ρ
reflρf (·) reflective operator of function f with penalty ρ
A � 0n×n matrix A ∈ Rn×n is positive definite

1

Chapter 1

Introduction

1.1 Introduction

Distributed optimisation algorithms have recently become the focus of intense research, mo-
tivated by the increasing availability of large data sets, the so-called Big Data. Indeed in
many scenarios it is increasingly easy and affordable to collect and store large amounts of
data, which cannot be analysed or even stored in a centralised fashion. Examples of fields
that are characterised by the possibility of collecting Big Data range from the Internet and
global-scale communications, to social media and ubiquitous mobile communication devices,
to surveillance cameras, medical and e-commerce applications [95, 10]. The availability of
economical (wireless) sensors that can be deployed in different scenarios contributes to the
diffusion of large data sets as well. And indeed the interest for algorithms that can be applied
to sample averaging for sensor networks, distributed learning in wireless sensor networks
(WSN) and Smart Grids has recently peaked [66, 50].

As hinted above, the hallmarks of Big Data are: the size of the data sets, which can total
up to million of data points; the high dimensionality of these data points, favoured by the
inexpensive collection and storage apparatuses; the often-times distributed nature of these
datasets [10]. Therefore in order to extract value from Big Data it is necessary to develop
efficient algorithms that can cope with the size and nature of these data sets, and in many
applications also be able to run online. The central idea is to apply divide et impera schemes
that assign a subset of the available data to each of a set of agents, for instance computers or
sensors in a network, which then collaborate with each other in order to reach a consensus
solution [67].

Big Data analytics finds its applications in a diverse range of scenarios, from signal pro-
cessing and network analysis [95], to Machine Learning [10], to classic Control [29], to
bioinformatics and health [66], and – to conclude this brief and incomplete overview – to
Smart Grids [100]. In many of these fields it is possible to formulate the data analytics
problems as convex optimisation problems, hence the particular focus of this work on con-
vex problems. For instance in Machine Learning the template of the most common training
problems is

min
x
{L(x;A, b) + λR(x)}

where L(x;A, b) is a function that weights the accuracy, or fitness, of the solution computed
on the data (A, b), andR(x;λ) a regularisation function which imposes a certain structure on
the solution [80]. Both functions are usually convex but possibly non-smooth, as in the case
of the Lasso problem [98] which is characterised by L(x; a, b) = ‖Ax− b‖2 and R(x) =
‖x‖1: both convex, but the latter is not smooth.

In order to successfully apply distributed optimisation algorithms in real-life scenarios it
is important to keep into account two issues: the potential loss of communications between
the co-operating agents, and the fact that the different capabilities of these agents might
lead to asynchrony. While asynchrony can be leveraged by design in order to speed up the

2 Chapter 1. Introduction

execution of an algorithm, and indeed has been the topic of many works [6], the robustness
of distributed optimisation algorithms to packet losses has seen less interest, despite the fact
that in many applications such as WSN and control [94, 90, 115] it is an intrinsic problem
that merits careful consideration from a rigorous point of view.

1.2 Convex Optimisation Literature Review

The present Section describes the state-of-the-art in distributed optimisation and fixed point
algorithms, which will be shown to have strong ties to convex optimisation and the Alternat-
ing Direction Method of Multipliers (ADMM), the focus of this Thesis.

1.2.1 Distributed optimisation

Much research has been devoted to the design of efficient algorithms for solving distributed
(convex) optimisation problems, given the interest induced by the advent of Big Data. This
Section will present a brief overview of the current state-of-the-art algorithms and results,
leaving out methods based on the ADMM which will be the focus of Section 1.3 below.
Where available, robust and asynchronous versions of the mentioned algorithms will be ref-
erenced.

A first class of distributed optimisation algorithms are the so-called subgradient methods,
first proposed in [73], which require that each agent compute locally a subgradient of the
assigned cost function. The advantage of these methods is that they do not require the cost
functions to be smooth, but they exhibit sub-linear convergence [74]. Subgradient methods
have been extended to work over time-varying graphs both in a discrete-time [72] and a
continuous-time settings [61]. The convergence is guaranteed by the choice of a suitably
decreasing step-size which, however, depends on the global time and therefore in practice
requires that all agents work synchronously.
In the case of smooth cost functions gradient methods have been proposed which can be seen
as a particular case of subgradient methods and share the same underlying idea of locally
computing a gradient [60, 107]. In [107] moreover, the problem of coordinating the step-
sizes is overcome by the use of a consensus scheme which allows the step-sizes to be assigned
independently to each agent.

A different class of algorithms called Newton-based methods exploits the smoothness of
the local cost functions in order to choose the descent direction via the second order derivative
(the Hessian) of the local cost functions. The works [104, 105] propose a possible implemen-
tation of Newton methods over time-varying graphs, but require a diminishing step-size to
ensure the convergence. An alternative approach has been introduced in [111, 112] that em-
ploys an average consensus scheme in order to substitute the diminishing step-size with a
constant one. This framework has been extended in [35] to solve non-convex optimisation
problems as well. The recent [8] builds upon this framework in order to design an asyn-
chronous algorithms which is also robust to packet losses. As a by-product, the authors are
able to design a gradient and Jacobi methods characterised by the substitution of the Hessian
computation with simpler descent direction choices.

Gradient descent methods have the issue of inexact convergence, that is, the algorithm
is guaranteed to converge only to a neighbourhood of the optimal solution and similarly to
subgradient methods, requires a decreasing step-size to do so. In order to solve this problem
the EXTRA has been proposed in [92], which generalises the gradient descent by adding a
cumulative correction term, ensuring exact convergence with a fixed step-size.
The ESOM algorithm [69] is instead based on the method of multipliers [10], which it modi-
fies by performing an inexact update based on the second-order expansion of the augmented

1.2. Convex Optimisation Literature Review 3

Lagrangian of the problem. This method, however, is shown to converge only in the case of
strongly convex local costs.
In [80] the sparsity of linear regression problems is exploited to design two algorithms for par-
allel computing. In particular, the first is an extension of the FISTA (fast iterative shrinkage
algorithm) [5] to the distributed set-up of interest, while the second, named GRock merges
a gradient descent method with a greedy descent direction choice criterion. The main is-
sue with these two proposed algorithms is that a central co-ordinator is necessary to collate
the results computed by each agent and transmit it back to the nodes, therefore requiring a
semi-decentralised architecture.
In [63] an asynchronous gossip-based algorithm is introduced, which is characterised by the
fact that each local variable is constrained to belong to the intersection of some convex sets
and at each update a projection is performed on one of these sets randomly chosen. The
authors show that exact convergence can be achieved by means of a diminishing step-size,
while inexact convergence is still achieved even if a constant step-size is employed.

Partition-based distributed optimisation The partition-based optimization framework
has been first introduced in [39] which presents a modified version of the Alternating Di-
rection Method of Multipliers to solve cooperative localisation in WSN, while in [71] the
partition-based ADMM is applied to solve an MPC problem. Other algorithms have been
proposed to solve partition-based problems, for example the Block-Jacobi algorithm of [100]
for the solution of quadratic programming problems, or the dual decomposition algorithm of
[13]. Finally, a generalised gradient algorithm has been described in [99]. Notice that the
works [100, 99] prove convergence in the case of lossy communications.
The author of this Thesis together with his advisor and colleagues have recently submitted a
paper describing a robust version of the partition-based ADMM [1].

1.2.2 Operator Theory and splitting operators

Some distributed optimisation algorithms, the ADMM being among them, can be formulated
making use of non-expansive operator theory. In particular the rationale is to recast a convex
optimisation problem into the problem of finding the fixed points of one such operator, for
which a large choice of algorithms is available. This Section serves as a brief overview of
the literature on non-expansive operator and fixed point algorithms, many of which will be
analysed in some detail in the following Chapters.

First of all, a very thorough overview of operator theory and its applications to convex
optimisation can be found in the book [3], while [4] introduces some further characterisations
of non-expansive operators. A particular class of non-expansive operators are the proximal
operators and the closely related class of reflective operators. The properties of these op-
erators are described in [3, 76], and [27, 24] which collect a large number of examples as
well.

The prototypical fixed point algorithm is the Banach-Picard iteration [3] which con-
sists of a simple iteration of a non-expansive operator, but is guaranteed to converge only if
stronger assumptions are done on the properties of the operator. Proximal operators and the
Banach-Picard iteration are connected by the proximal point algorithm, described first in [89]
and analysed further for instance in [87, 76, 30]. Proximal point algorithms find application
in a wide range of fields, from Statistics and Machine Learning [83, 76] to Signal Processing
[27, 24].
Proximal point algorithms however might be unwieldy when dealing with complex functions
to be minimised, which entail a complex evaluation in order to compute the corresponding
proximal operator. However in the applications of Machine Learning and Signal Process-
ing mentioned above, the objective functions of the problem that needs solving are often the

4 Chapter 1. Introduction

sum of two less complex functions (see Section 1.1 for an example). Therefore the class of
splitting operators has been developed in order to design fixed point algorithms that leverage
the separability of the objective function to break down the computational burden in more
manageable subproblems. Possibly the most well-known splitting algorithm is the Douglas-
Rachford splitting (DRS), introduced in [36], and the closely related Peaceman-Rachford
splitting, first described in [78]. These algorithms hinge on the Peaceman-Rachford opera-
tor1 which is the composition of two proximal operators, each dependent on one part of the
objective function, and therefore enjoy of the convergence properties guaranteed by the use
of the proximal operator. The Douglas-Rachford splitting has been shown to be a particular
case of the proximal point algorithm in [38] and, more importantly, the ADMM on which
this Thesis focuses can be derived applying the DRS on the Lagrange dual of the problem at
hand [64].

Another example of splitting algorithm is the Forward-Backward splitting (FBS) which
[3] discusses in detail, see also [27], and [49] for a tutorial with details on the practical im-
plementation. The FBS has been designed as a more general version of the gradient method,
and indeed requires that at least one of the functions in the problem be smooth. The FBS
has been successfully applied to Signal Processing [27], Image Processing [85] and Auto-
matic Control [45], to name a few. Distributed optimisation applications of the FBS has been
described in [108] and [45].

The splitting schemes mentioned above can generalised and enhanced using the Kras-
nosel’skiı̆-Mann iteration (KM), introduced in [65] and [62], which is characterised by the
iterated application of an operator derived by the convex combination of a non-expansive op-
erator and the identity operator. The KM iteration is guaranteed to converge to the fixed points
of the non-expansive operator to which it is applied [3], also in the presence of randomised
co-ordinate selection [57, 7] and errors [25]. Therefore the KM iteration is of particular inter-
est as it entails stronger robustness properties than the DRS and FBS alone. Furthermore, it is
possible to combine the KM iterate with an inertia scheme in order to result in an acceleration
of the algorithm [59].
Another splitting scheme that has been proposed is the primal-dual splitting (PDS) [28, 101],
designed to solve the minimisation problem of the sum of three convex functions, one of
which must be smooth. The algorithm presents a structure similar to the DRS, with two
proximal updates and a linear update, but also to the FBS since one of the proximal updates
is performed in conjunction with a gradient descent step. In the recent [106] the PDS has
been shown to converge almost surely when only a randomly drawn subset of co-ordinates is
updated at each iteration. Finally, [91] applies the PDS to the distributed consensus optimi-
sation problem that the ADMM was designed to solve and obtains the so-called primal-dual
method of multipliers (PDMM), which in a particular case can be shown to coincide with the
simpler form of ADMM.

1.3 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) was first introduced by Glowinski
and Marrocco in [48], and Gabay and Mercier in [42], but has only recently seen a surge in
popularity due to its suitability for Big Data and distributed computation applications. For
an historical perspective on the algorithm see [47] by Glowinski. For a tutorial about the
ADMM with some applications see [10] and [37].

1Sometimes referred to as Douglas-Rachford opearator.

1.3. Alternating Direction Method of Multipliers 5

For better reference in the present Section, the problem that the ADMM has been designed
to solve is the following

min
x,y
{f(x) + g(y)}

s.t. Ax+By = c
(1.1)

where the functions f and g are convex. Defining the augmented Lagrangian of the problem
as

L(x, y;w) = f(x) + g(y)− w>(Ax+By − c) +
ρ

2
‖Ax+By − c‖2

with w the vector of Lagrange multipliers, the ADMM is described by the following three
update equations

y(k + 1) = arg min
y
L(x(k), y;w(k))

w(k + 1) = w(k)− ρ (Ax(k) +By(k + 1)− c)
x(k + 1) = arg min

x
L (x, y(k + 1);w(k + 1)) .

1.3.1 Asynchronous distributed ADMM

Results about the convergence of the ADMM in scenarios prone to packet loss have been
first proposed in the paper [2] co-authored by this Thesis’ author. On the other hand, many
works have been devoted to the study of the ADMM under asynchronous communications
with different assumptions and restrictions, and they will be reviewed in the present Section.

The first results on the convergence of an asynchronous version of ADMM that have been
proposed are [57] and [103].
In the former, the ADMM is shown to converge if at each instant one single node performs
an update. However, this result has been subsequently generalised to allow the update of a
randomly selected subset of nodes at each time instant in [7]. The main idea underlying the
results of [57, 7] is to prove the convergence of a stochastic version of the Krasnosel’skiı̆-
Mann iteration in which randomly selected co-ordinates are updated, and then showing that
the asynchronous ADMM indeed conforms to this update scheme.
In [103] the authors introduce a reformulation of the ADMM in which at each instant a
randomly selected subset of edges is activated, and only the nodes connected by the activated
edges perform an update. Moreover, the convergence is shown to have a O(1/k) rate. The
drawback of this update scheme is that the agents need to agree on a global clock in order to
be able to perform an update at the time of activation of an edge.

A more recent result is the ARock framework described in [79] which has been designed
as a general purpose parallel and decentralised optimisation algorithm, that in some cases re-
quires a central memory storage. The ARock can be particularised to define an asynchronous
ADMM in which a single randomly selected node performs an update at each time instant
and then transmits to each of its neighbours the new information it has computed. The au-
thors prove the convergence of the ARock algorithm in a partially asynchronous scenario in
which, that is, a maximum delay between activations of a node is allowed. The authors of
[52] however are able to relax this constraint proving convergence with unbounded maximum
delays, i.e. totally asynchronous updates.

The asynchronous ADMM methods described above are characterised by a fully dis-
tributed architecture, in that the agents have all equal status and the solution is reached by
means of exchanges of locally computed updates between neighbours. Many works have
instead studied the convergence of the ADMM with a star topology for the communication
graph and asynchronous local updates, in which a central node – called master – has the task

6 Chapter 1. Introduction

of collating the updates performed with locally available information by all the other nodes
– referred to as slaves. Algorithms designed with this particular graph architecture are par-
ticularly appealing in parallel computing applications, but fall short in other such as Smart
Grids, distributed Machine Learning, WSN.
A first example of master-slave asynchronous ADMM is introduced in the paper [55]. In this
case, at each instant a random subset of slaves is activated and each computes a gradient on
the base of a local cost function, deputising the master to performing the necessary updates
based on the local gradients. This algorithm has two main advantages, the first being that it
is shown to converge even in the presence of non-convex local costs, and the second being
that it does not require a global clock to be available.
The paper [116] on the other hand requires a global clock to reach convergence, but is char-
acterised by a more complete distribution of the update and computational tasks to the slaves.
In particular each of the slaves stores and updates a local variable on the base of informa-
tion available to itself only, and the role of the master is to aggregate these updates once a
minimum number of them is received and broadcast the result.
Finally, [16] presents a partially asynchronous ADMM on a star communication graph that
reaches convergence even though the local functions are non-convex (but smooth). In order
to do so, the authors show that the parameters of the ADMM need to be chosen as functions
of the maximum delay allowed.

1.3.2 Linear convergence of the ADMM

The ADMM has first been shown to converge with a rate of O(1/k) in the general case
of convex non-smooth cost functions in [53] and more recently in the comprehensive [31],
which also proves that the ADMM for one-dimensional problems converges with a rate of
O(1/k2). Linear convergence on the other hand has been shown for different applications and
assumptions, which are reviewed below, concluding with the results available for distributed
and asynchronous versions of the ADMM. As in the case of [31], many of the works that
will be mentioned make use of the relationship between the DRS and the ADMM in order to
derive the convergence results.

Among the first results to be presented is [9] in which local linear convergence is proved
for a class of quadratic and linear programming problems using spectral analysis on a matrix
that describes the evolution of the iterates of the ADMM, suitably manipulated. Another
local result is proved in [81] in case the variables of the algorithm are constrained to belong
to closed sets, with a global extension provable if the sets are also convex.
Focused on quadratic programming problems as well is [84] in which the linear convergence
is derived by the imposition of upper and lower bounds on the value of the variables in the
algorithm.

The work [77] presents an original approach to prove linear convergence of the DRS
for convex non-smooth optimisation, based on the introduction of the so-called Douglas-
Rachford envelope, which is a continuously differentiable function with stationary points the
minimisers of the problem at hand. Moreover, the authors are able to extend the results to a
class of variants of the ADMM characterised by the substitution of matrix-weighted norms
in the definition of the augmented Lagrangian.
The authors of [75] prove linear convergence in the case of smooth cost functions with the
use of dynamical systems theory. In particular they show that the convergence of the ADMM
is linked to the stability of a suitably defined dynamical system, which provides also a more
general framework for convergence proofs.

A more recent and very comprehensive study has been presented in [34] that analyses
the global linear convergence of the ADMM under a large choice of assumptions on the cost
functions and the matrices that define the linear constraints of the problem. In particular

1.3. Alternating Direction Method of Multipliers 7

linear convergence is proved for different combinations of strong convexity and Lipschitz
continuous derivative of (one of) the objective functions, and full row rank of the matrices
in the constraints. Moreover the results are proved to hold also for a generalised version of
the ADMM that, similarly to [77], substitutes 2-norms with matrix-weighted norms in the
definition of the iterates.
A companion paper to the work [31] mentioned above is [32] in which the authors study
extensively the linear convergence of the DRS, PRS and ADMM under different regular-
ity conditions such as strong convexity, Lipschitz continuous derivative and bounded linear
regularity of the cost functions.
To conclude, [46] proves global linear convergence of the ADMM under assumptions of
strong convexity and smoothness of the objective functions, presenting a set of convergence
rate bounds that are shown to be tight. Moreover, the authors describe a heuristic for the
choice of the step-size and of the metric selection matrices (see below for an explanation) in
order to provide faster rates of convergence.

The linear convergence of the distributed ADMM has first been proved in [93] for a node-
based implementation of the algorithm, that is, in which each node updates a fixed set of local
variables, whose number does not depend on the network topology (see Section 3.3 for more
details). The authors restrict the analysis to the case of strongly convex local cost functions
and present a formula for the theoretical rate that depends on the communication graph topol-
ogy, on the properties of the local functions and the ADMM parameters. Therefore the results
can be used to design speed-up criteria for the algorithm.
The more recent [58] proves the linear convergence of the ADMM in its most classic for-
mulation with the assumption that the local costs are strongly convex in a neighbourhood
of the optimum of the problem. The authors propose a reformulation of the ADMM as a
linear update equation perturbed by a term that tends to zero super-linearly in a neighbour-
hood of the solution, therefore showing linear convergence as soon as the algorithm enters
the neighbourhood.
Finally, [19] studies the linear convergence of the master-slave ADMM introduced in [16] in
a partially asynchronous set-up with strongly convex cost functions with Lipschitz continu-
ous derivatives. In particular the rates are explicitly described as a function of the ADMM
parameters, the maximum delay and the number of agents in the network.

1.3.3 Variants of the ADMM

Many variants of the ADMM have been proposed with the aims of obtaining faster conver-
gence, reducing the computational costs or tailoring the algorithm for particular classes of
problems. This Section presents a brief and not exhaustive review of works on the most
common variants of the ADMM, both in a centralised and distributed set-up.

Multi-block ADMM A natural extension of the ADMM is to solve problems that are the
sum of three or more convex functions each in a different variable, with linear constraints,
that is modify problem (1.1) to

min
x,y,z
{f(x) + g(y) + h(z)}

s.t. Ax+By + Cz = d.
(1.2)

This class of problems is of particular interest in Image Processing applications.
Differently from the classic ADMM, the convergence of the three-block ADMM is not guar-
anteed in the case of convex cost functions, as [20] proved only recently, and indeed it is
necessary to provide stronger assumptions on the problem (1.2). Among the first results
to be proposed is [51] which shows convergence in case all three objective functions are

8 Chapter 1. Introduction

strongly convex, while [22] relaxes this condition by allowing one of the functions to be
simply convex.
In order to ensure convergence of the three-block ADMM with only convex functions – as
well as the further extension of the multi-block ADMM – works [97, 21] design a random
permutation scheme for performing the variables’ updates. In particular, the proposed algo-
rithm randomly selects at each iteration the order in which to perform the update of the three
– or m – variables.
More recent results are [33] and [56]. In particular, [33] presents a convergence result for a
splitting algorithm designed to solve the monotone inclusion problem of three operators. The
three- and multi-block ADMM follow as particular cases and can be shown to converge with
a rate of O(1/k) if at least one of the cost functions is strongly convex. On the other hand
[56] proves that the convergence of the multi-block ADMM is linear for strongly convex
problems, and to do so the authors show that for a sufficiently small step-size the primal and
dual optimality gaps decrease after each iteration of the proposed ADMM.

Acceleration schemes Different acceleration schemes have been proposed in order to
speed up the convergence of the ADMM, which employ different techniques. In the following
two possible approaches will be discussed: adaptive parameters selection and the metric
selection or preconditioning.

The classic ADMM is characterised by a penalty parameter that weights the violation
of the constraints at each iteration (the ρ parameter in the augmented Lagrangian above),
and the algorithm is shown to converge for any positive value of this penalty. However in
[54] the authors propose an adaptive scheme for the choice of the penalty at each iteration
on the basis of the current reached value of the cost function, and prove that the ADMM
endowed with this choice criterion converges. See also [10] for a discussion of this variant of
ADMM. More recently this idea has been extended to the decentralised ADMM in [96] with
a modified penalty selection criterion that bases the choice on the network topology.
The same rationale behind the adaptive ADMM described above is applied in [109] and
[110] to the relaxed ADMM for both the tunable parameters that characterise the algorithm
in a distributed set-up.

The convergence rate of the ADMM depends on the conditioning of the problem data, that
is, on the matrices that appear in the linear constraints of the problem, in particular on their
maximum and minimum eigenvalues. Therefore preconditioning the data by multiplying it
by an invertible matrix can lead to better performance of the algorithm in terms of number of
iterations required.
The authors of [44, 46] propose a preconditioning criterion for a class of problems for which
the ADMM exhibits linear convergence, which is based on the explicit derivation of the con-
vergence rate as a function of the eigenvalues of the preconditioned data matrices. Moreover,
they are able to provide an heuristic for the selection of the conditioning matrices even in
the case some of the assumptions are violated. The same idea is explored also in [43] in the
context of quadratic problems.
Other algorithms exploiting metric selection are presented in [45] for the FBS, in [12] for the
Uzawa splitting algorithm in the case of saddle point problems, and in [82] for primal-dual
algorithms.
Notice that this techniques are also referred to as metric selection since preconditioning the
data corresponds to requiring that the variables belong to a different space than the original.

Miscellaneous algorithms The classic ADMM needs to solve two optimisation problems
at each iteration in order to update the primal variables but, depending on the problem at
hand, this can be a computationally intensive task. In particular in distributed scenarios

1.4. Contributions and Outline of the Thesis 9

this can lead to infeasibly long convergence times as the local agents struggle to solve very
complex problems with limited capabilities. Therefore the class of inexact ADMM algorithms
has been proposed, first in [17] and then [18], in which each agent is not required to solve
precisely the local problem. Instead, each update is performed via a step of the proximal
gradient method exploiting the smoothness of the cost function, resulting in simpler local
update steps that guarantee convergence nonetheless. An example of inexact ADMM has
recently been applied in [23] to the problem of Poisson image deblurring with promising
results.

On the other hand, if the system solving the optimisation does not have stringent com-
putational constraints, a possible class of algorithms are the bi-alternating direction method
of multipliers (bi-ADMM), introduced in [113] and later in [114]. The idea is to incorporate
in the augmented Lagrangian both informations on the cost functions and the corresponding
dual functions, in order to perform at each iteration a more effective update. This class of
ADMM variants has been shown in [113] to converge with a rate that is O(1/k).

An idea similar to that of the bi-ADMM is to substitute the 2-norm term in the augmented
Lagrangian with matrix-weighted norms and additional quadratic terms [34], or with a Breg-
man divergence term [102]. The Bregman divergence is particularly versatile as it can be
tailored to the problem at hand in order to obtain faster and more efficient updates. More-
over, in [102] the authors show that the proposed algorithm defines a general framework that
encompasses different variants of the ADMM such as the inexact ADMM discussed above,
the Bethe-ADMM [40] and the generalised ADMM of [34].

1.4 Contributions and Outline of the Thesis

This Thesis presents for the first time an analysis of the convergence of the ADMM and
the more general relaxed version in a distributed set-up in the presence of possibly faulty
communications between the agents collaborating to the solution of a convex optimisation
problem. In particular the convergence of the proposed robust ADMM is proved with the
use of operator theoretical results, also in the case of asynchronous update criteria or more
general co-ordinate selection schemes.
Moreover, the convergence rate of the proposed algorithm is shown to be linear in case the
cost functions defining the problem are strongly convex and a theoretical upper bound to this
rate is given as the maximum eigenvalue of a matrix depending on the ADMM parameters
and the packet loss and update probabilities.
Finally, the convergence results are extended to the partition-based framework in which local
cost functions depend not only on the local variable but also on the variables of the agent’s
neighbours.

All the results are validated by extensive Monte Carlo simulations presenting the perfor-
mance of the ADMM as a function of its parameters and the packet loss and update proba-
bilities. In particular, the proposed algorithm is applied to quadratic problems, for which an
analysis of the convergence rate is presented as well, and to the Lasso problem.

A partial selection of the results presented in this Thesis appears in [2] and in the submit-
ted [1].

The Thesis is organised as follows. Chapter 2 presents a review of the ADMM and
the more general relaxed ADMM, as well as the necessary operator theory notions used
throughout the Thesis. In Chapter 3 the ADMM is applied to distributed convex optimisation
problems and analysed in detail. Chapter 4 introduces the randomised ADMM and proves
convergence in the presence of packet losses and asynchronous updates. Moreover, the linear
convergence is proved in the case of strongly convex cost functions. Chapter 5 extends the
results of the previous one to the partitioned-based framework, while Chapter 6 describes

10 Chapter 1. Introduction

the simulations results testing the proposed algorithms. Chapter 7 concludes the work and
describes some further lines of study.

At the end of the Thesis, Appendix A presents a review of the necessary mathematical
background and of some further theoretical results omitted from the main text. Appendix
B presents and discusses the convergence of the stochastic Krasnosel’skiı̆-Mann iteration at
the base of the algorithms proposed in this Thesis. Appendix C presents a simple security
analysis of the proposed algorithm for the quadratic case.

11

Chapter 2

Alternating Direction Method of
Multipliers

The present Chapter serves as a background on the Alternating Direction Method of Multi-
pliers in the deterministic formulation and as an introduction to operator theory with a brief
overview of useful results.

2.1 Alternating Direction Method of Multipliers

This Section introduces the Alternating Direction Method of Multipliers (hereafter, ADMM),
popularised by the work of Stephen Boyd [10] and of widespread use. As the next Sec-
tions will show, however, this formulation is actually a particular case of the general relaxed
ADMM, so the present Section serves also as a bridge to understand the link between the two
formulations.

Consider the following optimisation problem, which represents the most general formu-
lation usually associated with the ADMM,

min
x∈X , y∈Y

{f(x) + g(y)}

s.t. Ax+By = c
(2.1)

where X and Y are Hilbert spaces, f : X → R ∪ {+∞} and g : X → R ∪ {+∞} are
closed, proper and convex functions1. Hereafter it is assumed that problem (2.1) has at least
one solution.
In order to define the ADMM it is necessary to introduce the so-called augmented Lagrangian
of the problem, which is

L(x, y;w) = f(x) + g(y)− w>(Ax+By − c) +
ρ

2
‖Ax+By − c‖2 (2.2)

where ρ > 0 is a free parameter and w represents the vector of Lagrange multipliers. Note
that (2.2) differs from the commonly used Lagrangian (see Appendix A.1) for the addition of
the penalty term (ρ/2) ‖Ax+By − c‖2. The purpose of the penalty term is to ensure that the
optimisation algorithm is, at all times, close to satisfying the linear constraint Ax+By = c.
Finally, the ADMM is defined by the iteration of the following three equations

y(k + 1) = arg min
y
L(x(k), y;w(k)) (2.3)

w(k + 1) = w(k)− ρ (Ax(k) +By(k + 1)− c) (2.4)

x(k + 1) = arg min
x

L (x, y(k + 1);w(k + 1)) (2.5)

1See Appendix A.1 for a review of the necessary mathematical background.

12 Chapter 2. Alternating Direction Method of Multipliers

that consist of the two optimisation problems (2.3) and (2.5) for the primal variables y and
x, respectively, and a simple update for the Lagrange multipliers w or dual variables. Notice
that this formulation is equivalent to that presented in [10], but for a change in the order of
the update equations.
The ADMM is provably shown to converge to the optimum of problem (2.1) for any ρ >
0. See for instance the convergence proof of [10], which requires that the Lagrangian of
the problem (i.e. the augmented Lagrangian with ρ = 0) have a saddle point. Other, less
restrictive proofs are presented in [41, 38].

As described above, the formulation (2.3)–(2.5) of the ADMM can be interpreted as an
augmented Lagrangian method. However the algorithm naturally arises from the application
of the Douglas-Rachford splitting operator to the dual of problem (2.1). In order to show this
result, the following Section introduces some necessary background on splitting methods and
operator theory.

2.2 Splitting Operators

The interest in operator theory in the context of convex optimisation stems from the fact
that such problems can be cast into the problem of finding the fixed points of suitable non-
expansive operators. This Section introduces therefore some background on operator theory
and the mathematical tools necessary to solve fixed points problems (while more details can
be found in the Appendix A.2).
Most of the theory presented hereafter is discussed very thoroughly in the book by Bauschke
and Combettes [3], therefore this reference will generally be omitted.

2.2.1 Operator Theory

Let X and Y be non-empty sets, an operator or mapping T maps every point x ∈ X to a
point Tx ∈ Y . Throughout this Section the two sets X and Y are assumed to be real Hilbert
spaces equipped with the inner product 〈·, ·〉 and the associated norm ‖·‖2.

Definition 2.1 (Fixed points of an operator). Let T : X → X be an operator on the Hilbert
space X , then the set of fixed points of T is defined as the set

fix(T) =
{
x ∈ X

∣∣∣ Tx = x
}
.

The following particular class of operators is important from a convex optimisation per-
spective as it enjoys good convergence properties. Here “convergence properties” means that
it is possible to develop efficient algorithms for finding the fixed points of these operators.

Definition 2.2 (Non-expansive operators). Let X be a Hilbert space, an operator T : X → X
is said to be non-expansive if it has unitary Lipschitz constant, that is it verifies

‖Tx− Ty‖ ≤ ‖x− y‖

for any two x, y ∈ X .

The following class of operators is characterised by even more restrictive convergence
properties.

2Note that in this Section the Hilbert spaces might in general be infinite dimensional. However in the follow-
ing the attention will be restricted to finite dimensional spaces.

2.2. Splitting Operators 13

Definition 2.3 (Firmly non-expansive operators). Let X be a Hilbert space, an operator T :
X → X is said to be firmly non-expansive if for any x, y ∈ X it satisfies

‖Tx− Ty‖2 + ‖(I − T)x− (I − T)y‖2 ≤ ‖x− y‖2

where I is the identity operator on the Hilbert space X .

Clearly firm non-expansiveness implies non-expansiveness, and moreover the following
result holds.

Proposition 2.4 ([3, Proposition 4.2]). Let X be a Hilbert space and let T : X → X . Then
the following are equivalent

(i). T is firmly non-expansive,

(ii). I − T is firmly non-expansive,

(iii). 2T − I is non-expansive,

(iv). ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 for any x, y ∈ X .

The following class of operators will be instrumental in developing fixed point algo-
rithms.

Definition 2.5 (Averaged operators). Let X be a Hilbert space, let the operator T : X → X
be non-expansive and let α ∈ (0, 1]. Then the operator Tα : X → X defined as Tα =
(1− α)I + αT is said to be averaged or α-averaged.

Notice that the α-averaging of an operator is sometimes referred to as relaxation.
Indeed averaged operators satisfy the following property, which can be easily verified

using the definition of fixed point.

Proposition 2.6. Let T : X → X be a non-expansive operator on the Hilbert space X and
Tα : X → X be the corresponding averaged operator Tα = (1 − α)I + αT . Then it is
fix(T) = fix(Tα).

Remark 2.7. Note that a non-expansive operator is averaged with α = 1, while an operator
is firmly non-expansive if and only if it is 1/2-averaged.
Figure 2.1 is a graphical representation of the action performed by α-averaged and, for the
remark above, non-expansive and firmly non-expansive operators in R2. In particular the
areas shaded in grey represent the region of R2 in which Tx − Ty can be located, for any
two x, y ∈ R2.

The following property will be useful in the following.

Proposition 2.8 ([4, Lemma 4.10]). The composition of two non-expansive operators is a
non-expansive operator itself.

To conclude this brief overview the following two examples of operators are presented.

Definition 2.9 (Proximal and reflective operators). Let X be a Hilbert space, let f : X →
R ∪ {+∞} be a closed, proper, convex function and let ρ > 0. The proximal operator, or
proximity operator, of f with penalty ρ is the operator proxρf : X → X defined as

proxρf (x) = arg min
y∈X

{
f(y) +

1

2ρ
‖x− y‖2

}
. (2.6)

Moreover, the reflective operator of f is defined as

reflρf = 2 proxρf −I. (2.7)

14 Chapter 2. Alternating Direction Method of Multipliers

α = 1
(NE)

α = 3/4

α = 1/2
(FNE)

α = 1/4
0

x− y

FIGURE 2.1: Representation of the action performed by α-averaged opera-
tors.

Remark 2.10. The proximal operator is firmly non-expansive and the reflective operator is
non-expansive. The first result is proved in [3, Proposition 12.27] and the second is a conse-
quence of Proposition 2.4.

Remark 2.11. Notice that the proximal operator is unique at any point x ∈ X since it is the
minimum of a strongly convex function, by the fact that f is convex and the squared norm
is strongly convex. Moreover, since the function f is assumed to be proper, then the domain
of the proximal is the whole space X , because the solution to the minimisation problem is
always well defined.

Figure 2.2 depicts the relationship between the proximal and reflective operators of a function
f : X → R∪{+∞} with penalty parameter ρ. Clearly the name of reflective operator stems
from the fact that reflρf (x) is the reflection of x with respect to the symmetry axis passing
through proxρf (x) and orthogonal to the vector proxρf (x).

x

proxρf (x)

reflρf (x)

proxρf (x)

FIGURE 2.2: Representation of the relationship between proximal and re-
flective operators.

Given the important role that the proximal operator will play in the following, it is inter-
esting to analyse the effect that it has. The proximal operator has two important characteris-
tics:

2.2. Splitting Operators 15

• it pushes points that are outside the domain of f onto points that are on the boundary
of dom(f). This can be seen for example if the proximal is applied to the indicator
function of the norm-2 ball C = {x ∈ R2 | ‖x‖2 ≤ 1}. In this case the proximal
becomes the projection operator

P2(x) =

{
x ‖x‖2 ≤ 1
x
‖x‖2 otherwise.

(2.8)

and it is depicted in Figure 2.3 (left).

• Moreover, it draws the points which it is applied to closer to the minimum of f . Con-
sider for example the simple quadratic cost f(x) = ax2, it is easily verified that
proxρf (x) = x/(2ρ + 1), which indeed draws x closer to the origin each time it is
applied. Figure 2.3 (right) depicts the repeated application of the proximal operator for
the quadratic function. The extent by which the point is drawn closer to the minimum
depends on the penalty ρ, with larger values that correspond to points mapped closer,
which in this example is given by proxf depending on the inverse of ρ.

x

f(·)

proxf (·)

x0

x1

x1

x2

x2

x3

x3

. . .

FIGURE 2.3: Depiction of the two-fold effect of the proximal operator.

2.2.2 Fixed point algorithms

As mentioned above, often it is required to find the fixed points of a non-expansive operator.
Different algorithms are available to perform this task, and in the following two of them will
be briefly reviewed, the Banach-Picard iteration and the Krasnosel’skiı̆-Mann iteration.

Before describing the two fixed-point algorithms the following definitions are introduced.

Definition 2.12 (Weak and strong convergence). Let {x(k)}k∈N be a sequence of points in
the Hilbert space X . The sequence is said to converge weakly to a point x̄ ∈ X if

〈x(k), y〉 → 〈x̄, y〉 ∀y ∈ X

for k that tends to infinity. Weak convergence will be denoted as x(k) ⇀ x̄.
Moreover, the sequence is said to converge strongly if

‖x(k)− x̄‖ → 0

for k →∞, and this fact will be denoted with x(k)→ x̄.

16 Chapter 2. Alternating Direction Method of Multipliers

The simplest algorithm that can be applied to find the fixed points of an operator is the
Banach-Picard iteration [3, Theorem 1.48], defined as

x(k + 1) = Tx(k). (2.9)

The sequence {x(k)}k∈N generated by this algorithm can be proved to converge weakly to
a fixed point of the non-expansive operator T if the asymptotic regularity property x(k) −
Tx(k)→ 0 holds [3, Theorem 5.13]. Moreover, if the operator is firmly non-expansive then
the weak convergence to a point in fix(T) is guaranteed [3, Example 5.17].
However if this is not the case, the algorithm might not converge. Therefore the Kras-
nosel’skiı̆-Mann iteration [65, 62] is introduced, which enjoys more robust convergence prop-
erties that impose only the non-expansiveness on the operator.

Theorem 2.13 (Krasnosel’skiı̆-Mann iteration [3, Theorem 5.14]). Let D be a non-empty,
closed, convex subset of the Hilbert space X , let T : D → X be a non-expansive operator
such that fix(T) 6= ∅. Moreover, let {αk}k∈N be a sequence in [0, 1] such that∑

k∈N
αk(1− αk) = +∞. (2.10)

The Krasnosel’skiı̆-Mann iteration is defined as

x(k + 1) = (1− αk)x(k) + αkTx(k) (2.11)

with initial condition x(0) ∈ D.
The following results hold for the sequence of points generated by the Krasnosel’skiı̆-Mann
iteration.

(i). {Tx(k)− x(k)}k∈N converges strongly to 03,

(ii). {x(k)}k∈N converges weakly to a point in fix(T).

This result therefore ensures that the Krasnosel’skiı̆-Mann iteration of a non-expansive
operator converges (weakly) to a fixed point of said operator, given a suitable sequence of
step-sizes {αk}k∈N.

Remark 2.14. The Krasnosel’skiı̆-Mann iteration (2.11) at each time instant k essentially
evaluates the αk-averaged operator of T in the current state x(k).

Remark 2.15. Note that the convergence result is satisfied in particular by a sequence of step-
sizes αk = α for a constant α. In this case the Krasnosel’skiı̆-Mann iteration of operator T
coincides with the Banach-Picard iteration of the α-averaged operator Tα.

2.2.3 Application to convex optimisation

The two fixed point algorithms described above find a natural application in the context of
convex optimisation, giving rise to the class of proximal algorithms.

The first proximal algorithm to be introduced was the Proximal Point Algorithm (PPA)
[89], which establishes the framework in which many fixed point algorithms can be defined,
such as the Douglas-Rachford splitting.
Let X be a Hilbert space, let f : X → R ∪ {+∞} be a closed, proper and convex function,
and consider the following convex optimisation problem

min
x∈X

f(x). (2.12)

3Which implies that the asymptotic regularity condition mentioned above is satisfied.

2.2. Splitting Operators 17

The PPA algorithm is then defined by the following iteration

x(k + 1) = proxρf (x(k)) (2.13)

for some parameter ρ > 0. Notice that this algorithm corresponds to the Banach-Picard
iteration (2.9) applied to the proximal operator of f , and since the proximal operator is firmly
non-expansive (see Remark 2.10), the weak convergence to a fixed point is ensured.
Moreover, since x∗ ∈ X is a fixed point of the proximal operator if and only if it is a
minimiser of the function f4, the convergence to the solution of problem (2.12) is guaranteed.
The main issue with the PPA is that at each iteration it requires to compute the proximal
operator of f , which might be quite difficult and time consuming, depending on the structure
of the function.

Many convex optimisation problems, however, have a structure amenable to the imple-
mentation of more efficient algorithms. Indeed, in particular in Machine Learning applica-
tions [80], the problems that need solving are characterised by an objective function that can
be split into the sum of two terms

min
x∈X

{f(x) + g(x)} (2.14)

with f and g closed, proper and convex. A first approach to finding the solution might be to
simply apply the PPA to the function F (x) = f(x) + g(x). However this is not always an
efficient solution, because as noted above the proximal operator of function F (x) might be
very difficult to compute.
Therefore a different approach relies instead on the so-called splitting operators, which lever-
age the separability of the cost function in order to define a series of smaller and simpler steps
to be performed at each iteration.

Peaceman-Rachford splitting

An important class of splitting operators, particularly for their relationship with the ADMM,
is centred on the Peaceman-Rachford operator [78] defined as

TPR = reflρf ◦ reflρg . (2.15)

Consider now the sequence of step-sizes {αk}k∈N satisfying property (2.10), applying the
Krasnosel’skiı̆-Mann iteration to the PR operator yields the so-called Relaxed Peaceman-
Rachford Splitting (R-PRS) scheme

z(k + 1) = (1− αk)z(k) + αkTPR(z(k)) (2.16)

where z is an auxiliary variable from which the optimum of problem (2.14) can be computed
according to x∗ = proxρg(z

∗) with z∗ a fixed point of TPR.
A possible implementation of the R-PRS is given by the following equations

ψ(k) = proxρg(z(k)) (2.17)

ξ(k) = proxρf (2ψ(k)− z(k)) (2.18)

z(k + 1) = z(k) + 2αk (ξ(k)− ψ(k)) . (2.19)

4This fact can be easily proved by imposing that x∗ = proxρf (x∗) and recalling the definition of proximal
operator.

18 Chapter 2. Alternating Direction Method of Multipliers

Proof. Substituting the definition of reflective operator in TPR and dropping the time instant
indication yields

TPR(z) = (reflρf ◦ reflρg) (z) =
(
2 proxρf −I

)
◦
(
2 proxρg −I

)
(z)

= 2 proxρf
(
2 proxρg(z)− z

)
+ 2 proxρg(z) + z

= 2
(
proxρf

(
2 proxρg(z)− z

)
− proxρg(z)

)
+ z

= 2(ξ − ψ) + z

where

ψ = proxρg(z)

ξ = proxρf
(
2 proxρg(z)− z

)
= proxρf (2ψ − z)

which correspond to Equations (2.17) and (2.18). Finally, substituting the new formulation
obtained for TPR(z) in (2.16) Equation (2.19) follows.

This scheme splits the computational effort between the two steps (2.17) and (2.18), unlike
the PPA (2.13), taking advantage of the particular structure of (2.14).

Finally, there are two more splitting schemes based on the PR operator: the Douglas-
Rachford Splitting (DRS) [36] and the Peaceman-Rachford Splitting (PRS) [78]. Both can be
derived from the R-PRS with the particular choice of step-sizes αk = 1/2 and αk = 1, for
all k ∈ N, respectively.

Remark 2.16. The DRS therefore can be defined as the Banach-Picard iteration of the oper-
ator TDR = (I + TPR)/2 while the PRS as the Banach-Picard iteration of TPR.

Forward-backward splitting

A splitting scheme that is not based on the Peaceman-Rachford operator is the so-called
forward-backward splitting (FBS).
Suppose that in problem (2.14) the function f is continuosly differentiable and that its gradi-
ent is Lipschitz continuous with Lipschitz constant γ5. Then the forward-backward operator
is defined as

TFB = proxηg ◦ (I − η∇f) (2.20)

where η ∈ (0, 2/γ], and can be shown to be αFB-averaged [31] with

αFB =
1

2− ηγ/2 .

The FBS is therefore characterised by the Krasnosel’skiı̆-Mann iterate of TFB and can be
shown to converge to a minimum of problem (2.14) if the step-sizes are a sequence in [0, δ]
with δ = min{1, 1/(γη)}+ 1/2 such that

∑
k∈N αk(δ − αk) = +∞ [3].

Remark 2.17. The FBS is sometimes defined as the Banach-Picard iterate of the TFB opera-
tor, and the Krasnosel’skiı̆-Mann iterate of TFB is referred to as generalised FBS.
Moreover, it is possible to vary the parameter η at each instant, provided that each element in
the sequence {ηk}k∈N lies in (0, 2/γ].

5A function h : X → X is said to be Lipschitz continuous with constant γ if it verifies ‖h(x)− h(y)‖ ≤
γ ‖x− y‖ for any x, y ∈ X .

2.2. Splitting Operators 19

2.2.4 Subdifferential representation of the R-PRS

Turning to the theory of subdifferentials it is possible to give an interpretation of the R-PRS
that highlights the relationships between the different terms that compose the algorithm.

In the following some notions and results about subdifferentials are briefly introduced,
for a broader overview see Appendix A.3.

Definition 2.18 (Subdifferential). Let f : X → R∪ {+∞} be proper. The subdifferential of
f is the set-valued operator

∂f : X → 2X : x 7→ {u ∈ X | 〈y − x, u〉+ f(x) ≤ f(y) ∀y ∈ X} . (2.21)

Let x ∈ X , then f is subdifferentiable at x if ∂f(x) 6= ∅. The elements of ∂f(x) are the
subgradients of f at x and they will be indicated as ∇̄f(x) ∈ ∂f(x).

The definition therefore states that a vector u ∈ X is a subgradient of f at x if the continuous
affine functional y 7→ 〈y − x, u〉 + f(x) coincides with f at x and is below it elsewhere. In
other words a vector u ∈ X is a subgradient of f at x if it is the “slope” of a continuous affine
minorant of f which equals f(x) at x. This second geometrical interpretation is depicted in
Figure 2.4.

X

R

f(·)

〈· − x, u〉+ f(x)

f(x)

x

u

FIGURE 2.4: Graphical representation of subdifferential.

The relationship of subdifferential and convex optimisation is given by the following
Theorem.

Theorem 2.19 (Fermat’s rule [3, Theorem 16.2]). Let f : X → R ∪ {+∞} be proper. Then

arg min f = zer ∂f = {x ∈ X | 0 ∈ ∂f(x)}.

Finally, the proximal operator can be reinterpreted in term of the subdifferential of f .

Proposition 2.20. Let f be closed, proper and convex, let x, u ∈ X and let ρ > 0. Then

u = proxρf (x) ⇔ x− u ∈ ρ∂f(u). (2.22)

20 Chapter 2. Alternating Direction Method of Multipliers

Let now ∇̄f(u) ∈ ∂f(u) be a subgradient, then by Proposition 2.20 it holds that

x− u = ρ∇̄f(u)

and substituting u = proxρf (x) and rearranging the terms it follows that

proxρf (x) = x− ρ∇̄f
(
proxρf (x)

)
. (2.23)

Moreover, recalling the definition of the reflective operator it holds

reflρf (x) = x− 2ρ∇̄f
(
proxρf (x)

)
. (2.24)

The theory of subdifferentials can now be employed in order to derive the following
Proposition.

Proposition 2.21. Let ψ = proxρg(z) and ξ = proxρf (reflρg(z)), then the R-PRS imple-
mentation (2.17)–(2.19), omitting the time instant indication, is equivalent to

ψ = z − ρ∇̄g(ψ) (2.25)

ξ = ψ − ρ
(
∇̄g(ψ) + ∇̄f(ξ)

)
(2.26)

TPR,α(z) = z − 2αρ
(
∇̄g(ψ) + ∇̄f(ξ)

)
(2.27)

where TPR,α = (1− α)I + αTPR.

Proof. Equation (2.25) follows by the definition used for ψ and Equation (2.23).
By (2.23) applied to function f and (2.24) applied to g it follows

ξ = reflρg(z)− ρ∇̄f(ξ)

= z − 2ρ∇̄g(ψ)− ρ∇̄f(ξ)

= (z − ρ∇̄g(ψ))− ρ
(
∇̄g(ψ) + ρ∇̄f(ξ)

)
.

Equation (2.27) follows by substituting (2.25) and (2.26) into (2.19).

Making use of Proposition 2.21 it is possible to represent the relationships between the
variables involved in the Peaceman-Rachford algorithm with the diagram of Figure 2.5.

z TPR(z)

ψ ξ

TPR,α(z)

−ρ∇̄g(ψ)

−ρ∇̄g(ψ) −ρ∇̄f(ξ)

−ρ∇̄f(ξ)

(1− α) α

FIGURE 2.5: Relationships between the variables of a relaxed PRS iteration.

2.3. ADMM and Splitting Operators 21

Therefore during one iteration of the R-PRS the algorithm travels clock-wise around the
perimeter of the triangle starting in z and ending in TPR(z), and then computes the convex
combination of z and TPR(z) which yields TPR,α(z).

To conclude, it is possible to use the subdifferential theory to prove that the solution to
problem (2.14) is indeed given by x∗ = proxρg(z

∗) with z∗ a fixed point of the Peaceman-
Rachford operator.

Proposition 2.22. Let x∗ = arg minx∈X {f(x)+g(x)} be a solution of problem (2.14), then
it holds

x∗ ∈ zer(∂f + ∂g) = {proxρg(z) | z ∈ X s.t. TPR(z) = z}
or equivalently, if z∗ is a fixed point of TPR,

z∗ − x∗ = ρ∇̄g(x∗) ∈ ∂g(x∗).

Proof. From the Fermat’s rule of Theorem 2.19 and the fact that ∂(f + g) = ∂f + ∂g then
clearly arg min{f + g} = zer(∂f + ∂g), and the definition of zer(∂f + ∂g) is given in [3,
Proposition 25.1]. The equivalent characterisation follows from the fact that

x∗ = proxρg(z
∗) = z∗ − ρ∇̄g(proxρg(z

∗))

where the second equality is derived from Equation (2.23). Therefore rearranging the terms
and using the first equality above it follows that z∗ − x∗ = ρ∇̄g(x∗).

Finally, note that if z∗ ∈ fix(TPR) then the base of the triangle reduces to a point and the two
catheti coincide and therefore at the optimum it is x∗ = ψ∗ = ξ∗.

2.3 ADMM and Splitting Operators

The previous Section introduced operator theory, the problem of finding the fixed points of a
non-expansive operator and algorithms designed to solve this problem. Moreover in the last
paragraph the application of these concepts was shown to be useful for the solution of convex
optimisation problems.
The aim of this Section is now to explain the relationship between the splitting operators and
the ADMM or, better, a more general version of the ADMM than that described in Section
2.1.

Recall that the ADMM was introduced to solve problems of the type

min
x∈X , y∈Y

{f(x) + g(y)}

s.t. Ax+By = c

with f and g closed, proper and convex functions.

2.3.1 Dual problem

The first step is to derive the Lagrange dual (or simply dual) problem of (2.1) (reported above
for convenience).

Proposition 2.23 ([79]). The dual problem of (2.1) is

min
w∈W

{df (w) + dg(w)} (2.28)

22 Chapter 2. Alternating Direction Method of Multipliers

where w represents the vector of Lagrange multipliers, with

df (w) = f∗(A>w), (2.29)

dg(w) = g∗(B>w)− w>c. (2.30)

Proof. The Lagrange function of the primal problem is given by

L0(x, y;w) = f(x) + g(y)− w> (Ax+By − c)

where the subscript 0 indicates that the Lagrangian is not augmented.
Therefore the Lagrange dual function can be computed as follows

d(w) = min
x∈X ,y∈Y

L0(x, y;w)

= min
x∈X

{
f(x)− w>Ax

}
+ min

y∈Y

{
g(y)− w>By

}
+ w>c

= −max
x∈X

{
−f(x) + w>Ax

}
−max

y∈Y

{
−g(y) + w>By

}
+ w>c

= −f∗(A>w)− g∗(B>w) + w>c

where the definition of convex conjugate was used, see Appendix A.1.
Defining the dual functions df and dg according to (2.29) and (2.30) yields

d(w) = −(df (w) + dg(w)).

Therefore maximising the dual function d is equivalent to minimising the sum of df and dg,
which proves (2.28) and hence the Proposition.

Clearly the dual problem (2.28) belongs to the class of problems (2.14) and therefore
can be solved by the application of the splitting methods described in the previous Section
2.2. Note that this is indeed the case because the dual functions df and dg are closed, proper
and convex, which can be proved from the fact that both f and g have these properties, see
Appendix A.1.

2.3.2 Applying the splitting operators

As was mentioned at the beginning of the Chapter, applying the R-PRS to the dual problem
(2.28) yields a general formulation of the ADMM, the so-called relaxed ADMM (R-ADMM),
of which (2.3)–(2.5) is a particular case.
The R-PRS becomes in this case

ψ(k) = proxρdg(z(k)) (2.31)

ξ(k) = proxρdf (2ψ(k)− z(k)) (2.32)

z(k + 1) = z(k) + 2αk (ξ(k)− ψ(k)) (2.33)

with the step-sizes satisfying (2.10). The following Proposition is instrumental in order to
implement the algorithm.

2.3. ADMM and Splitting Operators 23

Proposition 2.24. The two problems (2.31) and (2.32) can be solved according to the fol-
lowing schemes

y(k) = arg min
y

{
g(y)− z>(k)(By − c) +

ρ

2
‖By − c‖2

}
ψ(k) = z(k)− ρ (By(k)− c)

and

x(k) = arg min
x

{
f(x)− (2ψ(k)− z(k))>Ax+

ρ

2
‖Ax‖2

}
ξ(k) = 2ψ(k)− z(k)− ρAx(k)

respectively.

Proof. Consider first problem (2.31), by the definition of proximal operator and of the dual
function dg it is necessary to find the argument of

min
s

{
dg(s) +

1

2γ
‖s− z‖2

}
= min

s

{
g∗(B>s)− s>c+

1

2γ
‖s− z‖2

}
= min

s

{
max
u

{
s>Bu− g(u)

}
− s>c+

1

2γ
‖s− z‖2

}
= min

s

{
max
u

{
s>Bu− g(u)− s>c+

1

2γ
‖s− z‖2

}}
= max

u

{
min
s

{
s>Bu− g(u)− s>c+

1

2γ
‖s− z‖2

}}
= max

u

{
min
s

{
s>(Bu− c)− g(u) +

1

2γ
‖s− z‖2

}}
= max

u

{
min
s

{
s>(Bu− c) +

1

2γ
‖s− z‖2

}
− g(u)

}
.

Imposing the first-order necessary condition, the solution to problem

min
s

{
s>(Bu− c) +

1

2γ
‖s− z‖2

}
is s∗ = z − γ(Bu− c) and hence

min
s

{
s>(Bu− c) +

1

2γ
‖s− z‖2

}
= z>(Bu− c)− γ

2
‖Bu− c‖2 .

Therefore it follows that

min
s

{
dg(s) +

1

2γ
‖s− z‖2

}
= max

u

{
z>(Bu− c)− γ

2
‖Bu− c‖2 − g(u)

}
= −min

u

{
g(u)− z>(Bu− c) +

γ

2
‖Bu− c‖2

}
.

This problem can now be solved applying the method of multipliers [10] which gives the
desired result

y = arg min
y

{
g(y)− z>(By − c) +

ρ

2
‖By − c‖2

}
ψ = z − ρ (By − c) .

24 Chapter 2. Alternating Direction Method of Multipliers

For what concerns problem (2.32) the result

x = arg min
x

{
f(x)− (2ψ − z)>Ax+

ρ

2
‖Ax‖2

}
ξ = 2ψ − z − ρAx

can be obtained with the same procedure applied above to (2.31) where g is substituted by f ,
B by A and c by the null vector.

Therefore the R-ADMM is characterised by the following set of five equations

y(k) = arg min
y

{
g(y)− z>(k)(By − c) +

ρ

2
‖By − c‖2

}
(2.34)

ψ(k) = z(k)− ρ (By(k)− c) (2.35)

x(k) = arg min
x

{
f(x)− (2ψ(k)− z(k))>Ax+

ρ

2
‖Ax‖2

}
(2.36)

ξ(k) = 2ψ(k)− z(k)− ρAx(k) (2.37)

z(k + 1) = z(k) + 2αk (ξ(k)− ψ(k)) . (2.38)

Recalling now the definition of the augmented Lagrangian (2.2)

L(x, y;w) = f(x) + g(y)− w>(Ax+By − c) +
ρ

2
‖Ax+By − c‖2

the following Proposition traces a parallel between the R-ADMM and the ADMM presented
in the first Section.

Proposition 2.25. The relaxed ADMM defined by the five equations (2.34)–(2.38) is equiva-
lently expressed in the formulation

y(k + 1) = arg min
y
{L(x(k), y;w(k)) + ρ(2αk − 1)〈By, (Ax(k) +By(k)− c)〉}

(2.39)

w(k + 1) = w(k)− ρ(Ax(k) +By(k + 1)− c)− ρ(2αk − 1)(Ax(k) +By(k)− c)
(2.40)

x(k + 1) = arg min
x

L(x, y(k + 1);w(k + 1)). (2.41)

Proof. From Equations (2.37) and (2.35) follow respectively

2ψ(k)− z(k) = ξ(k) + ρAx(k) (2.42)

z(k) = ψ(k) + ρ(By(k)− c). (2.43)

Combining these two results yields

ξ(k) = ψ(k)− ρ(Ax(k) +By(k)− c) (2.44)

and substituting back into (2.42) it follows

2ψ(k)− z(k) = ψ(k)− ρ(By(k)− c). (2.45)

2.3. ADMM and Splitting Operators 25

Plugging now (2.45) into Equation (2.36) yields

x(k) = arg min
x

{
f(x)− ψ(k)>Ax+ ρ(By(k)− c)>Ax+

ρ

2
‖Ax‖2

}
= arg min

x

{
f(x) + g(y(k))− ψ(k)>(Ax+By(k)− c) +

ρ

2
‖Ax+By(k)− c‖2

}
= arg min

x
L(x, y(k);ψ(k))

where the second equality was derived by adding the terms g(y(k)), (ρ/2) ‖By(k)− c‖2 and
−ψ(k)>(By(k)−c) which do not depend on x, and the third equality by using the definition
of augmented Lagrangian (2.2).

From Equation (2.44) it follows that ξ(k)−ψ(k) = −ρ(Ax(k) +By(k)− c), which can
be plugged into (2.38) to obtain

z(k + 1) = z(k)− 2αkρ(Ax(k) +By(k)− c)
= ψ(k) + ρ(By(k)− c)− 2αkρ(Ax(k) +By(k)− c)
= ψ(k)− ρ(2αk − 1)(Ax(k) +By(k)− c)− ρAx(k) (2.46)

where the second equality holds because of (2.43) and the third by simply adding and sub-
tracting ρAx(k).
Evaluating (2.43) at time k + 1 and reordering the terms yields ψ(k + 1) = z(k + 1) −
ρ(By(k + 1)− c), therefore combining it with (2.46) results in

ψ(k+ 1) = ψ(k)− ρ(Ax(k) +By(k+ 1)− c)− ρ(2αk− 1)(Ax(k) +By(k)− c). (2.47)

Finally computing Equation (2.34) at time k + 1 and using (2.46) gives

y(k + 1) = arg min
y

{
f(x(k)) + g(y)− ψ>(k)(Ax(k) +By − c)+

+
ρ

2
‖Ax(k) +By − c‖2 + ρ(2αk − 1)〈By,Ax(k) +By(k)− c〉

}

where the terms f(x(k)), −ψ>(k)Ax(k) and ρ ‖Ax(k)‖2 were added since they do not
depend on y, and for the same reason the term−ρ(2αk− 1)〈c, Ax(k) +By(k)− c〉 was dis-
carded. And recalling once again the definition of the definition of the augmented Lagrangian
yields the desired result.

Finally, by renaming ψ as the dual variable w, Proposition 2.25 is proved.

Remark 2.26. Note that the ADMM and the R-ADMM of the Proposition differ only for the
terms weighted by 2αk − 1 in the updates for the y and w. Therefore the simple ADMM can
be recovered setting αk = 1/2 for all k ∈ N. Which in turn implies that it is the application
of the DRS on the dual problem (2.28), as indeed was shown in [41].

Remark 2.27. A key difference between ADMM and R-ADMM is that the first has one single
tunable parameter, ρ, while the second in addition to ρ has the entire sequence of step-sizes
{αk}k∈N to be chosen. Section 6.2 will explore the importance of the step-size sequence for
the convergence rate of the algorithm with the aid of simulations.

Remark 2.28. The trajectory k → x(k) that is generated by the implementation of the R-
ADMM in (2.34)–(2.38) is equal to the trajectory generated by the implementation (2.39)–
(2.41) if the initial conditions x(0) and y(0) are the same and if, given the initial condition

26 Chapter 2. Alternating Direction Method of Multipliers

w(0) for the Lagrange multipliers, it holds

ψ(0) = w(0),

ξ(0) = w(0)− ρ(Ax(0) +By(0)− c),
z(0) = w(0) + ρ(By(0)− c).

This is a clear consequence of the relationships between the variables used in the two imple-
mentations.

To conclude this Section, Figure 2.6 depicts the relationships between the algorithms
introduced in this Chapter.

R-PRS

PRS

DRS

R-ADMM

ADMM

αk = 1/2

αk = 1
on the Lagrange

dual (2.28)

on the Lagrange
dual (2.28)

αk = 1/2

FIGURE 2.6: Relationships between the algorithms.

27

Chapter 3

Distributed Alternating Direction
Method of Multipliers

The present Chapter describes the application of the Alternating Direction Method of Multi-
pliers to distributed consensus optimisation problems of which it proves convergence and, in
the particular case of strongly convex cost functions, linear convergence.

3.1 Distributed Consensus Optimisation with ADMM

This Section introduces the problem that will be the focus of the following Chapters.

3.1.1 Problem formulation

Let G = (V, E) be a graph, with V the set of N nodes and E the set of undirected edges.
Consider the convex optimisation problem

min
x

N∑
i=1

fi(x) (3.1)

where each function fi : Rn → R ∪ {+∞} is closed, proper and convex, and available only
to node i1. The aim is to solve (3.1) in a distributed fashion in which nodes use only the
information available to them and that is sent from their neighbours.
The problem then is cast as a consensus optimisation by the introduction of the new variables
xi, i = 1, . . . , N , each one assigned to a node, and requiring that at the optimum the variable
of node i be equal to those of its neighbours. That is, (3.1) becomes

min
xi, ∀i

N∑
i=1

fi(xi)

s.t. xi = xj ∀(i, j) ∈ E
(3.2)

where the introduction of the 2|E| constraints ensures that the consensus is reached at the
optimum.
In order to apply the R-ADMM to this problem it is necessary to reformulate the constraints
with the introduction of the bridge variables yij and yji, one for each constraint:

xi = yij

xj = yji ∀(i, j) ∈ E .
yij = yji

1Note that hereafter the focus is restricted to problems defined on Rn and not the general Hilbert space X .

28 Chapter 3. Distributed Alternating Direction Method of Multipliers

Let now x ∈ RnN be the vector containing all variables xi, i = 1, . . . , N , y ∈ R2n|E| be
the vector containing all bridge variables, and define the function f(x) =

∑N
i=1 fi(xi). The

problem can be equivalently formulated as follows

min
x

f(x)

s.t. Ax + y = 0

y = Py

with a suitable matrix A and P the permutation matrix swapping element yij with yji.
In order to apply the R-ADMM of the previous Section to this problem, define the indicator
function of a matrix M as

ιM (x) =

{
0 if Mx = 0

+∞ otherwise
(3.3)

which therefore penalises all vectors that are not in the kernel of matrix M . Hence the
constraint y = Py is enforced using the indicator function ι(I−P)(y), and the problem is
finally

min
x

{
f(x) + ι(I−P)(y)

}
s.t. Ax + y = 0

(3.4)

which corresponds to problem (2.1) with f(x) = f(x), g(y) = ι(I−P)(y), B = I and c = 0.
Hereafter (one of) the optimal solution(s) of problem (3.4) will be denoted with x∗ = 1⊗x∗
where x∗ is the solution to (3.1).

3.1.2 Distributed ADMM

The following Proposition reports the formulation of the distributed R-ADMM.

Proposition 3.1. The distributed implementation of the R-ADMM for problem (3.4) is given
by the two iterates

xi(k) = arg min
xi

fi(xi)−∑
j∈Ni

z>ji(k)xi +
ρ|Ni|

2
‖xi‖2

 (3.5)

zij(k + 1) = (1− αk)zij(k)− αkzji(k) + 2αkρxi(k), ∀j ∈ Ni (3.6)

that are carried out by each node in parallel.

Proof. Equation (2.34) applied to the distributed consensus problem (3.4) becomes

y(k) = arg min
y

{
ι(I−P)(y)− z>(k)y +

ρ

2
‖y‖2

}
= arg min

y=Py

{
−z>(k)y +

ρ

2
‖y‖2

}
which is a convex constrained optimisation problem. The Karush-Kuhn-Tacker (KKT) con-
ditions [11] for this problem are

(I − P)ȳ =0 (3.7)

−z(k) + ρȳ + (I − P)ν̄̄ν̄ν =0 (3.8)

3.1. Distributed Consensus Optimisation with ADMM 29

where ȳ and ν̄̄ν̄ν represent the optimal value of the primal and dual variables respectively.
Reorganising Equation (3.8) yields

ȳ =
1

ρ
[z(k) + (I − P)ν̄̄ν̄ν] (3.9)

and substituting it into the right-hand side of ȳ = P ȳ (3.7) results in

ȳ =
1

ρ
P [z(k) + (I − P)ν̄̄ν̄ν] =

1

ρ
[Pz(k)− (I − P)ν̄̄ν̄ν] (3.10)

which is true since by P 2 = I it holds P (I − P) = P − I = −(I − P).
Finally, summing (3.9) and (3.10) gives

y(k) = ȳ =
1

2ρ
(I + P)z(k). (3.11)

For what concerns Equations (2.35) and (2.37) by the result (3.11) obtained above it follows
that

ψψψ(k) =
1

2
(I − P)z(k)

ξξξ(k) = −Pz(k)− ρAx(k)

where the fact 2ψψψ(k)− z(k) = −Pz(k) was used. Moreover (2.36) becomes

x(k) = arg min
x

{
f(x) + (Pz(k))>Ax +

ρ

2
‖Ax‖2

}
. (3.12)

Using the results derived above it is possible to rewrite (2.38) as

z(k + 1) = (1− αk)z(k)− αkPz(k)− 2αkρAx(k). (3.13)

Notice that the updates for the primal and auxiliary variable depend only on the vectors
z(k) and x(k), which means that all the information necessary to apply the algorithm is
contained in Equations (3.12) and (3.13).
Making use of the particular structure ofA and P the proof can now be concluded. Recall that
the matrix A ∈ R2|E|×N with the (ij)-th row selects the component xi of x and multiplies
it by −1, and that the permutation matrix P ∈ R2|E|×2|E| swaps the (ij)-th element with the
(ji)-th.
Therefore it follows

(Pz(k))>Ax =
[
· · · z>ji(k) · · · z>ij(k) · · ·

]

...
−xi

...
−xj

...

= −

∑
(i,j)∈E

(
z>ji(k)xi + z>ij(k)xj

)

= −
N∑
i=1

∑
j∈Ni

z>ji(k)

xi.

30 Chapter 3. Distributed Alternating Direction Method of Multipliers

Moreover since xi appears in |Ni| constraints, it holds ‖Ax‖2 =
∑N

i=1 |Ni| ‖xi‖2.
Finally substituting these results back into (3.12) and (3.13) proves the Proposition.

Notice that the only information that node i needs in order to compute the updates (3.5) and
(3.6) are the variables {zji}j∈Ni received from its neighbours. The variables that the node
needs to store in local memory are therefore xi, {zij}j∈Ni and {zji}j∈Ni .

Suppose however that node i is tasked with updating variables {zji}j∈Ni instead of vari-
ables {zij}j∈Ni . In this scenario the last two terms of update (3.6), which is performed by
node j, both require information that is transmitted from node i.
Therefore it is possible to derive a new implementation of the R-ADMM in which the nodes
exchange the auxiliary variables

qi→j = −zji(k) + 2ρxi(k) (3.14)

instead of the z variables, and (3.6) becomes

zij(k + 1) = (1− αk)zij(k) + αkqi→j . (3.15)

The main advantage of this formulation is that update (3.5) depends on information that
is stored and updated by node i itself, and only the {zji}j∈Ni variables depend on outside
information, namely {qj→i}j∈Ni .
The following Algorithm 1 formalises the implementation of the R-ADMM for distributed
scenarios described above. Note that this implementation assumes the updates to occur in a
synchronous fashion.

Algorithm 1 Modified distributed R-ADMM.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: xi(0) and zji(0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: compute xi(k) according to (3.5)

xi(k) = arg min
xi

fi(xi)−∑
j∈Ni

z>ji(k)xi +
ρ|Ni|

2
‖xi‖2

4: for all j ∈ Ni compute qi→j as in (3.14)

qi→j = −zji(k) + 2ρxi(k)

5: transmit qi→j to node j
6: gather qj→i from each neighbour j
7: update zji as in (3.15)

zji(k + 1) = (1− αk)zji(k) + αkqj→i

8: k ← k + 1
9: end while

While Algorithm 1 was obtained applying the five equations (2.34)–(2.38), a different
implementation can be derived by applying the three equations given in Proposition 2.25.
Algorithm 2 presents such implementation.

3.1. Distributed Consensus Optimisation with ADMM 31

Proposition 3.2. Applying the three equations of Proposition 2.25 to the distributed consen-
sus optimisation problem (3.4) yields Algorithm 2.

Algorithm 2 Distributed R-ADMM using Proposition 2.25.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: xi(0), yij(0) and wij(0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: gather xj(k), yji(k) and wji(k) from each neighbour j ∈ Ni
4: compute in order

yij(k + 1) =
1

2ρ

[
(wij(k) + wji(k))+

+ 2αρ(xi(k) + xj(k))− ρ(2α− 1)(yij(k) + yji(k))
]

wij(k + 1) =
1

2

[
(wij(k)− wji(k))+

+ 2αρ(xi(k)− xj(k))− ρ(2α− 1)(yij(k)− yji(k))
]

xi(k + 1) = arg min
xi

{
fi(xi) +

ρ

2
|Ni|‖xi‖2+

+
(∑
j∈Ni

wij(k + 1)− ρyij(k + 1)
)>
xi

}

5: broadcast xi(k + 1), yij(k + 1) and wij(k + 1) to all neighbours
6: k ← k + 1
7: end while

Proof. The proof of this result resembles very closely that of Proposition (3.1) and therefore
is only sketched.
By applying the KKT conditions to problem (2.39) gives the following

ȳ =
1

ρ
[w(k)− 2αkρAx(k)− ρ(2αk − 1)y(k) + (I − P)ν̄̄ν̄ν]

ȳ = P ȳ.

Now it is possible to substitute the first equation into the right-hand side of the second and
sum the result with the first equation, which yields

y(k + 1) = ȳ =
1

2ρ
(I + P) [w(k)− 2αkρAx(k)− ρ(2αk − 1)y(k)] . (3.16)

A simple substitution of (3.16) into (2.40) results in

w(k + 1) =
1

2
(I − P) [w(k)− 2αkρAx(k)− ρ(2αk − 1)y(k)] .

Using the results obtained above and the structure of the A and P matrices yields the desired
result.

32 Chapter 3. Distributed Alternating Direction Method of Multipliers

Note that Algorithms 1 and 2 differ for the number of variables that need to be stored,
updated, and transmitted to each neighbour, which are reported in Table 3.1. Moreover,
Algorithm 1 makes use of temporary variables that do not have to be stored from iteration to
iteration. Recall however that what here is referred to as ‘variable’ is in general a vector of
dimension n.

TABLE 3.1: Comparison of R-ADMM implementations.

Algorithm 1 Algorithm 2
Update and store |Ni|+ 1 2|Ni|+ 1

Temporary |Ni| −
Send |Ni| 2|Ni|+ 1

3.2 Convergence and Linear Convergence Rate

The following Lemma will be instrumental in proving the convergence of the proposed algo-
rithm.

Lemma 3.3 ([3, Corollary 27.4]). Consider problem (2.14), rewritten here

min
x∈X
{f(x) + g(x)},

with f : X → R ∪ {+∞} and g : X → R ∪ {+∞} closed, proper and convex functions.
Assume that the problem has solution, and let ρ > 0, {αk}k∈N be a sequence in [0, 1] such
that

∑
k∈N αk(1− αk) = +∞, and x(0) ∈ X .

Assume to apply equations (2.17)–(2.19) to the problem. Then there exists z∗ such that

• x∗ = proxρg(z
∗) ∈ arg minx{f(x) + g(x)},

• with {x(k)}k∈N and {z(k)}k∈N that converge weakly to x∗ and z∗ respectively.

Now Proposition 3.4 states the convergence result for Algorithm 1.

Proposition 3.4. Consider Algorithm 1. Let ρ > 0 and let {αk}k∈N be a sequence in [0, 1]
such that

∑
k∈N αk(1 − αk) = +∞. Then, for any initial conditions, the trajectories k →

xi(k), i ∈ V , generated by the Algorithm converge to the optimal solution of (3.1), i.e.

lim
k→∞

xi(k) = x∗, ∀i ∈ V,

for any xi(0) and zji(0), j ∈ Ni.

Proof. The aim is to show that Lemma 3.3 applies to the dual of problem (3.4). First of all,
by the formulation of the problem f is proper and convex. Moreover, the set of vectors y
that satisfy (I − P)y = 0 is convex, and given that the indicator function of a convex set is
convex [3, Example 8.3] and, by definition, proper, it follows that g is proper and convex.
Now [88, Theorem 12.2] states that the convex conjugate of a proper and convex function is
closed, proper and convex. Therefore both df and dg are closed, proper and convex, which
means that Lemma 3.3 applies to the dual of problem (3.4).
Therefore the R-ADMM applied to the dual converges weakly to the dual optimum w∗ =
proxρdg(z

∗). But since the duality gap is zero, attaining the optimum for the dual problem
implies that the optimum for the primal is attained as well.

3.2. Convergence and Linear Convergence Rate 33

In order to prove exponential convergence of the R-ADMM the cost functions fi in (3.1)
are assumed to be strongly convex2. Suppose for simplicity the step-size to be constant, i.e.
αk = α for any k ∈ N. Before stating the main result the following Lemmas are derived.

Lemma 3.5. The update equations (3.5) and (3.6) in the case of strongly convex local cost
functions can be rewritten as

x(k) = ρN proxh

(
1

ρ
N−1Dz(k)

)
(3.17)

z(k + 1) = Az(k)− FE(x(k)− x∗) + c (3.18)

with the notation conventions defined in the proof of this result. Moreover Equation (3.17)
can be rewritten as

x(k) = H−1Dz(k)−H−1E(x(k)− x∗)−H−1b. (3.19)

Proof. The update equation (3.5) for the xi can be rewritten as follows

xi(k) = arg min
xi

{
fi(xi)− (Diz(k))>xi +

ρ|Ni|
2
‖xi‖2

}
= ρ|Ni| arg min

xi

{
1

ρ|Ni|
fi(xi)−

1

ρ|Ni|
(Diz(k))>xi +

1

2
‖xi‖2

}
= ρ|Ni| arg min

xi

{
hi(xi) +

1

2

∥∥∥∥xi − 1

ρ|Ni|
Diz(k)

∥∥∥∥2
}

where the definition hi(xi) = fi(xi)/ρ|Ni| was used and the last inequality was obtained by
adding the term ‖Diz(k)/(ρ|Ni|)‖2, independent from xi.
Recalling the definition of proximal operator, it follows that

xi(k) = ρ|Ni|proxhi

(
1

ρ|Ni|
Diz(k)

)
. (3.20)

Defining h(x) =
[
h1(x1) · · · hN (xN)

]>, with a slight abuse of notation it is possible to
give the following matricial update equation

x(k) = ρN proxh

(
1

ρ
N−1Dz(k)

)
(3.21)

where N = diag{|Ni|, i = 1, . . . , N}, D =
[
D>1 · · · D>N

]> and

proxh(u) =

 proxh1(u1)
...

proxhN (uN)

 .
In order to derive an expression for the z variables first it is necessary to reformulate the

update equation of the xi in a suitable manner.
Recalling that the function fi is twice differentiable, the first order optimality condition for
the problem (3.20) is

∇fi(xi(k))−Diz(k) + ρ|Ni|xi(k) = 0 (3.22)

2That is for any x ∈ Rn there exists c > 0 such that∇2fi(x) � cI .

34 Chapter 3. Distributed Alternating Direction Method of Multipliers

where xi(k) plays the role of the optimum.
Moreover, when xi is sufficiently close to the (unique) optimum x∗ the first order Taylor
expansion for the gradient of fi can be computed, which is

∇fi(xi) = ∇fi(x∗) +∇2fi(x
∗)(xi − x∗) + E(xi − x∗) (3.23)

where ‖Ei(x)‖ / ‖x‖ → 0 when x→ 0.
Now combining equations (3.22) and (3.23), with the second evaluated in xi(k), it follows

Diz(k)−ρ|Ni|xi(k) =

= ∇fi(x∗) +∇2fi(x
∗)(xi(k)− x∗) + E(xi(k)− x∗).

Solving for the xi(k) yields

xi(k) = H−1
i Diz(k)−H−1

i Ei(xi(k)− x∗)−H−1
i bi

where Hi = ∇2fi(x
∗) + ρ|Ni|I , invertible by strong convexity, and bi = ∇fi(x∗) −

∇2fi(x
∗)x∗. The following matricial update can hence be obtained by stacking together

all these equations

x(k) = H−1Dz(k)−H−1E(x(k)− x∗)−H−1b

choosing matrix H = diag{H1, . . . ,HN}, vector b = [b>1 · · · b>N]>, and the o-little function
E(x) = [E1(x1)> · · ·EN (xN)>]>.

Plugging (3.19) into the update z(k+ 1) = ((1−α)I−αP)z(k) + 2αρCx(k) results in

z(k + 1) = Az(k)− FE(x(k)− x∗) + c

with A = (1− α)I − αP + 2αρCH−1D, F = 2αρCH−1 and c = −2αρCH−1b.

Remark 3.6. Lemma 3.5, proved with an approach similar to that employed in [58], shows
that in the case of strongly convex cost functions the updates characterising the R-ADMM
can be written as the sum of a linear term and of a perturbation term which in practice is
a little-o w.r.t. the linear evolution of the x. However this result in general holds only in a
neighbourhood of the optimum, but in the case of quadratic cost functions the result holds
globally since the second order expansion of the costs around the optimum is exact.

The following Lemma will provide a useful result for the derivation of an upper bound
on the distance of the algorithms’ iterate from the optimum.

Lemma 3.7. Let A be defined as in Lemma 3.5, then
∥∥DAk∥∥ ≤ a|λ|k with λ the eigenvalue

of A inside the unitary circle with maximum absolute value.

Proof. Suppose that A is diagonalisable by [68, p. 517] it is possible to apply the spectral
decomposition

A = λ1G1 + . . .+ λrGr (3.24)

where λ1, . . . , λr are the distinct eigenvalues of A, and the Gi matrices are such that

• they are projection matrices orthogonal w.r.t. each other, i.e.

GiGj =

{
Gi if i = j

0 if i 6= j,

• (A− λiI)Gi = Gi(A− λiI) = 0.

3.2. Convergence and Linear Convergence Rate 35

Therefore the following chain of equalities holds

Ak = λk1G
k
1 + . . .+ λkrG

k
r

= λk1G1 + . . .+ λkrGr

=
∑

i:|λi|=1

λkiGi +
∑

i:|λi|<1

λkiGi (3.25)

where the first and second follow from GiGj = 0, i 6= j, and G2
i = Gi respectively.

Consider now
∥∥DAk∥∥, since Proposition 3.4 guarantees the convergence of the algo-

rithm, then it must be that
∥∥DAk∥∥→ 0 for k →∞. But by Equation (3.25) follows

∥∥∥DAk∥∥∥ =

∥∥∥∥∥∥D
∑

i:|λi|=1

λkiGi +D
∑

i:|λi|<1

λkiGi

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i:|λi|=1

λkiDGi

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑

i:|λi|<1

λkiDGi

∥∥∥∥∥∥
=

∑
i:|λi|=1

‖DGi‖+
∑

i:|λi|<1

|λki | ‖DGi‖

where the second equality holds for the properties of the spectral projectors Gi and the third
for the properties of the norm and the fact that the eigenvalues in the first sum have unitary
absolute value.
Now, since the right-most sum converges to zero with a rate that is smaller than or equal3

to the absolute value of the largest eigenvalue of A that is inside the unitary circle, then for
k → ∞ it must be that

∑
i:|λi|=1 ‖DGi‖ → 0, which can only be possible if the columns of

Gi are in the kernel of D. Therefore the value
∥∥DAk∥∥ converges to zero with a rate dictated

by
λM = max

i

{
|λi|

∣∣∣ λi ∈ Λ(A) s.t. |λi| < 1
}
. (3.26)

Suppose now that A is not diagonalisable, then the more general spectral decomposition
[68, p. 603-604] can be applied, which states that

A =
r∑
i=1

(λiGi +Ni)

with the spectral projectors Gi and matrices Ni that satisfy

• the Gi matrices are projection matrices orthogonal w.r.t. each other (as above),

• (A− λiI)kiGi = Gi(A− λiI)ki = 0 where ki is the index of the eigenvalue λi,

• Ni = (A− λiI)Gi = Gi(A− λiI) and it is nilpotent of index ki.

Consider now the product (λiGi + Ni)(λjGj + Nj) with i 6= j, by the properties of the
spectral projectors and the fact that by definition NiNj = 0 then it follows that it is zero.
Which implies that

Ak =

r∑
i=1

(λiGi +Ni)
k.

3Since some modes could not be excited.

36 Chapter 3. Distributed Alternating Direction Method of Multipliers

Expanding (λiGi +Ni)
k and assuming that k > ki, it holds

(λiGi +Ni)
k = λkiGi +

k−1∑
j=1

(
k

j

)
λk−ji GiN

j
i +Nk

i

= λkiGi +

ki−1∑
j=1

(
k

j

)
λk−ji GiN

j
i

where the fact G2
i = Gi and the nilpotency of Ni were used.

Using the results derived above it is now possible to compute
∥∥DAk∥∥ as follows

∥∥∥DAk∥∥∥ =

∥∥∥∥∥∥D
r∑
i=1

λkiGi +

ki−1∑
j=1

(
k

j

)
λk−ji GiN

j
i

∥∥∥∥∥∥
=

r∑
i=1

∥∥∥∥∥∥λkiDGi +

ki−1∑
j=1

(
k

j

)
λk−ji DGiN

j
i

∥∥∥∥∥∥
=

r∑
i=1

|λki |

∥∥∥∥∥∥DGi
I +

ki−1∑
j=1

(
k

j

)
λ−ji N j

i

∥∥∥∥∥∥
where the fact GiGj = 0 for j 6= i was used.
Similarly to the diagonalisable case, the terms that correspond to eigenvalues with |λi| < 1
converge to zero with a rate smaller than or equal to λM as defined above. Therefore for∥∥DAk∥∥ to be zero it must be that DGi = 0 which implies that the columns of Gi are in the
kernel of D.

Finally it is possible to prove the linear convergence of the R-ADMM.

Proposition 3.8. Assume the cost functions fi are strongly convex. Then, there exists a
neighbourhood Nx∗ of the optimal point x∗ such that, if x(0) ∈ Nx∗ , then Algorithm 1
converges exponentially fast, i.e.,

‖xi(k)− x∗‖ ≤ Cλ−k‖xi(0)− x∗‖, ∀i ∈ V,

for suitable constants C > 0 and 0 ≤ λ < 1.

Proof. The proof is divided in two parts, the first one concerned with the derivation of a
fundamental inequality on the norm of the error x(k)− x∗, and the second that proves expo-
nential convergence with an argument similar to that employed in [58].

Error inequality By iterating the update equation (3.18) the following formula is obtained

z(k) = Akz(0)−
k−1∑
l=0

Ak−l−1 (FE(x(l)− x∗)− c) . (3.27)

Note that this equation is satisfied by any z∗ ∈ fix(TPR) with z(0) = z∗ and x(l) = x∗ for
any l.
Since the components of proxh are non-expansive so is it, and therefore the following chain

3.2. Convergence and Linear Convergence Rate 37

of inequalities holds

‖x(k)− x∗‖ =

∥∥∥∥ρN (proxh

(
N−1

ρ
Dz(k)

)
− proxh

(
N−1

ρ
Dz∗

))∥∥∥∥
≤ ‖D(z(k)− z∗)‖

≤
∥∥∥DAk(z(0)− z∗)

∥∥∥+

k−1∑
l=0

∥∥∥DAk−l−1FE(x(l)− x∗)
∥∥∥

≤
∥∥∥DAk∥∥∥ ‖z(0)− z∗‖+

k−1∑
l=0

∥∥∥DAk−l−1
∥∥∥ ‖F‖ δ ‖x(l)− x∗‖

Note that for the second and third inequality the properties of the norm were used and the
fact that by definition of E it is possible to find δ ∈ (0, 1) such that ‖E(x(l)− x∗)‖ ≤
δ ‖x(l)− x∗)‖.

Applying Lemma 3.7 it is possible to rewrite the upper bound for the error as

‖x(k)− x∗‖ ≤ c̄λk + c̄δ
k−1∑
l=0

λk−l−1 ‖x(l)− x∗‖ (3.28)

where it was defined c̄ = amax{‖z(0)− z∗‖ , ‖F‖}.

Linear convergence The aim now is to exploit inequality (3.28) in order to prove the linear
convergence, that is in particular, to show that

∀ε > 0 sup
k

(λ+ ε)−k ‖x(k)− x∗‖ <∞. (3.29)

Defining the function w(k) = (λ+ ε)−k ‖x(k)− x∗‖ proving that (3.29) holds can be done
by showing that w(k) < B ∀k for some B ∈ R+.
Assuming ‖x(0)− x∗‖ < B, then by definition w(0) < B. By induction suppose that
w(l) < B holds for any l < k and prove that indeed w(k) < B as well.

By inequality (3.28) it holds

w(k) ≤ c̄
(

λ

λ+ ε

)k
+ c̄δ

k−1∑
l=0

λk−l−1

(λ+ ε)k
‖x(l)− x∗‖ .

And given that
λk−l−1

(λ+ ε)k
=

1

λ

(
λ

λ+ ε

)k−l 1

(λ+ ε)l

it follows

w(k) ≤ c̄
(

λ

λ+ ε

)k
+
c̄δ

λ

k−1∑
l=0

(
λ

λ+ ε

)k−l
w(l)

< c̄+
c̄δB

λ

k−1∑
l=0

(
λ

λ+ ε

)k−l

38 Chapter 3. Distributed Alternating Direction Method of Multipliers

where the last inequality holds because λ/(λ+ ε) < 1 and by the inductive hypothesis.
Finally using a new index m = k − l for the sum and extending it to infinity yields

w(k) < c̄+
c̄δB

λ

∞∑
m=0

(
λ

λ+ ε

)k−l
= c̄+

c̄δB

λ

λ+ ε

ε
. (3.30)

Up until this point the two parameters δ and B have not yet been fixed, therefore these
two degrees of freedom can be exploited to impose that w(k) < B. By inequality (3.30) this
is true if, for instance, the right-hand side is equal to B, that is if

B =
c̄λε

λε− c̄(λ+ ε)δ
.

However it must be B > 0, which can be guaranteed by choosing δ < λε/(c̄(λ+ ε)).
Notice that the condition for δ does not respect the constraint δ < 1 if c̄ < ε; but if this is
the case the definition c̄ = max{ε, a ‖z(0)− z∗‖ , a ‖F‖} can be used and obtain the same
results.

Therefore the linear convergence of the algorithm has been proved in a neighbourhood
of radius B from the optimum of the problem.

Remark 3.9. Many works have proved the linear convergence of the ADMM with strongly
convex costs – see Section 1.3.2. The purpose of this Section was to introduce useful notation
and results that will be used in the proof of the linear convergence for the R-ADMM in a lossy
and asynchronous scenario, on which Chapter 4 focuses.

3.3 Edge- and Node-Based Optimisation

The formulation of relaxed ADMM for distributed optimisation problems is not the only one
possible, and presents both pros and cons. This formulation belongs to the class of edge-
based optimisation algorithms, because each node updates and stores a local variable and a
set of auxiliary variables one for each of its neighbours.
However, the ADMM can also be reformulated as a node-based optimisation algorithm, in
which each node does not need to store and update an auxiliary variable for each of its
neighbours. The following Algorithm 3 introduced in [93] presents an example of a node-
based implementation of the ADMM. Another implementation is presented in [70], which
however requires the costs to be strongly convex and a colouring of the graph to be available
and agreed upon by all nodes.

By inspection of the node-based ADMM formulation it is clear that the number of vari-
ables that each node needs to store is always constant (equal to two), regardless of the number
of neighbours that the node has. On the other hand, recalling Table 3.1, the number of vari-
ables stored by the R-ADMM is |Ni| + 1, excluding temporary variables. Therefore in the
worst-case scenario the storage requirement is O(1) and O(N) respectively. However, it is
possible to reformulate the R-ADMM in order to have an O(1) storage requirement. Indeed
consider the update equations

zij(k + 1) = (1− αk)zij(k)− αkzji(k) + 2αkρxi(k)

zji(k + 1) = (1− αk)zji(k)− αkzij(k) + 2αkρxj(k)

3.3. Edge- and Node-Based Optimisation 39

Algorithm 3 Node-based implementation of the ADMM [93].

Input: penalty ρ, termination condition K.
Initialise: xi(0), vi(0)← 0 for each node i.

1: k ← 0
2: while k < K each agent i do
3: update xi(k + 1) by solving

∇̄fi(xi(k + 1)) + vi(k) + 2ρ|Ni|xi(k + 1)− ρ

|Ni|xi(k) +
∑
j∈Ni

xj(k)

 = 0

4: broadcast xi(k + 1) to all neighbours j ∈ Ni
5: gather xj(k + 1) from each neighbour j
6: compute vi(k + 1) with

vi(k + 1) = vi(k) + ρ

|Ni|xi(k + 1) +
∑
j∈Ni

xj(k + 1)

7: k ← k + 1
8: end while

of which the first is carried out by node i and the second by neighbour j.
Summing the updates for {zij}j∈Ni and the updates for {zji}j∈Ni yields∑

j∈Ni
zij(k + 1) = (1− αk)

∑
j∈Ni

zij(k)− αk
∑
j∈Ni

zji(k) + 2αkρ|Ni|xi(k)

∑
j∈Ni

zji(k + 1) = (1− αk)
∑
j∈Ni

zji(k)− αk
∑
j∈Ni

zij(k) + 2αkρ
∑
j∈Ni

xj(k)

and defining vi(k) =
∑

j∈Ni zij(k) and wi(k) =
∑

j∈Ni zji(k) they become

vi(k + 1) = (1− αk)vi(k)− αkwi(k) + 2αkρ|Ni|xi(k) (3.31)

wi(k + 1) = (1− αk)wi(k)− αkvi(k) + 2αkρ
∑
j∈Ni

xj(k). (3.32)

Note that in order to compute (3.32) node i needs only the state variables of its neighbours
{xj(k)}j∈Ni , and moreover that in (3.5) the only necessary information to find xi(k) is
precisely wi(k). Therefore if each node stores both vi and wi, updating them with its own
local state and the states of its neighbours, them the storage requirement is O(1).

The computational complexity instead is always the same for both edge- and node-based
methods, because they need to solve a single minimisation problem at each time instant and
then perform updates that are O(1). Moreover, the data that each node needs to exchange
with its neighbours in both formulations is the same, that is, one packet containing a vector
in Rn to each neighbour, but for Algorithm 3 a broadcast transmission can be used.

Therefore the edge-based formulation is worse than the node-based formulation from a
storage point of view only, and they are equal for what concerns the computational complex-
ity and the number of transmissions required.
However the choice of using the R-ADMM is motivated by the fact that it shares a clear link
with operator theory and splitting methods. Indeed these mathematical tools will be impor-
tant in the following Chapter to develop a robust and asynchronous version of the R-ADMM

40 Chapter 3. Distributed Alternating Direction Method of Multipliers

for which convergence guarantees can be given.

41

Chapter 4

Randomised Alternating Direction
Method of Multipliers

The aim of the present Chapter is to derive a new formulation of the ADMM described
above that is robust to packet losses and can be implemented asynchronously. Note that for
simplicity hereafter ADMM will refer to the relaxed ADMM.

4.1 ADMM in Lossy Scenarios

In order to give a clearer and more intuitive derivation of the randomised ADMM the current
Section will focus only on the problem of making the ADMM robust to packet losses. This
Section therefore introduces the robust ADMM (r-ADMM), which can be seen as a particular
case of the more general randomised ADMM.

4.1.1 Robust ADMM

The ADMM described in Algorithm 1 in the previous Chapter consists of the synchronous
iteration of the following updates

xi(k) = arg min
xi

fi(xi)−∑
j∈Ni

z>ji(k)xi +
ρ|Ni|

2
‖xi‖2

zji(k + 1) = (1− αk)zji(k) + αkqj→i

where

qj→i = −zij(k) + 2ρxj(k)

is computed and sent to node i by neighbour j.
Therefore if the loss of a packet transmitted from node j to node i occurs, the variable qj→i
is unavailable to i, which as a consequence cannot update zji. The following Assumption
describes the failure mode of the communication network.

Assumption 4.1. During any iteration of Algorithm 1 the communication from node i to
node j can be lost with some probability p.

In order to describe the possible communication failures more rigorously, a binary random
variable Lij is associated to each edge (i, j) ∈ E of the graph, such that

P[Lij = 1] = p, P[Lij = 0] = 1− p

The random variables {Lij}(i,j)∈E are assumed to be independent from each other, that is,
they are i.i.d.

42 Chapter 4. Randomised Alternating Direction Method of Multipliers

With this formalism, if the packet sent from i to j at the k-th iteration of Algorithm 1 is lost
then Lij(k) = 1, with Lij(k) realisation of Lij at time k, otherwise Lij(k) = 0.

The policy that is adopted in order to deal with communication failures is therefore that
of updating variable zji if and only if the transmission qj→i was received.
Note that this is not the only possible policy, indeed a naïve approach could be that of us-
ing the last information available to compute the update. However for this case there is no
theoretical guarantee of convergence, while for the first policy there is, as will be explained
below. See Section 6.2.3 for a comparison of the two policies carried out in simulations.

Algorithm 1 can now be rewritten as Algorithm 4 in order to handle possible packet
losses.

Algorithm 4 Robust distributed ADMM.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: xi(0) and zji(0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: compute xi(k) according to (3.5)

xi(k) = arg min
xi

fi(xi)−∑
j∈Ni

z>ji(k)xi +
ρ|Ni|

2
‖xi‖2

4: for all j ∈ Ni compute qi→j as in (3.14)

qi→j = −zji(k) + 2ρxi(k)

5: transmit qi→j to node j
6: for j ∈ Ni if qj→i is received do
7: update zji as in (3.15)

zji(k + 1) = (1− αk)zji(k) + αkqj→i

8: end for
9: k ← k + 1

10: end while

The update (3.15) can therefore be rewritten as follows in order to account for the com-
munication failures

zji(k + 1) = Lji(k)zji(k) + (1− Lji(k))((1− αk)zji(k) + αkqj→i). (4.1)

However note that this is only a mathematical formalism, if the packet is lost node i actually
does not perform any action, simply leaving the stored zji unchanged.
A matricial formulation of Equation (4.1) can be given as

z(k + 1) = L(k)z(k) + (I − L(k))TPRz(k) (4.2)

by defining the random matrix

L = diag{Lij , ∀i ∈ V, j ∈ Ni}

and its realisation at each time k as L(k). Note that ((1 − αk)Pz(k) + αkq with the vector
q = [q>i→j , ∀i ∈ V, j ∈ Ni]>.

4.1. ADMM in Lossy Scenarios 43

4.1.2 Convergence

The following Proposition guarantees the convergence of the r-ADMM.

Proposition 4.2. Consider Algorithm 4 working under the scenario described in Assumption
4.1. Let {αk}k∈N be a sequence of step-sizes such that

0 < lim inf
k

αk ≤ lim sup
k

αk < 1 (4.3)

and ρ > 0. Then, for any initial conditions, the trajectories k → xi(k), i ∈ V , generated by
Algorithm 4, converge almost surely to the optimal solution of (3.4), i.e.,

lim
k→∞

xi(k) = x∗, ∀i ∈ V,

with probability one, for any xi(0) and zji(0), j ∈ Ni.

Proof. The first step to proving Proposition 4.2 is to introduce the stochastic Krasnosel’skiı̆-
Mann iteration described in [57, 7]. It is then possible to show that the r-ADMM conforms
to such iterate and therefore enjoys the same convergence properties.

Recall from Chapter 2.2 that the Krasnosel’skiı̆-Mann iteration was defined for a non-
expansive operator T : X → X as

z(k + 1) = (1− αk)z(k) + αkTz(k) (4.4)

for a sequence {αk}k∈N of step-sizes in (0, 1]. This iterate updates at each time instant all
the components of z. However this is not the case of the r-ADMM, which possibly updates
only a subset of co-ordinates at each instant.
Consider the following stochastic operator T (µ) : X → X , where µ is a subset of the co-
ordinatesM = {1, . . . ,M} of z, whose components are defined such that

T
(µ)
i z =

{
Tiz if i ∈ µ,
zi if i 6∈ µ.

Therefore the i-th component is updated if and only if it is included in the subset µ of selected
co-ordinates.
The stochastic operator T (µ) substitutes now operator T in the Krasnosel’skiı̆-Mann iteration,
resulting in

z(k + 1) = (1− αk)z(k) + αkT
(µk+1)z(k) (4.5)

where µk+1 indicates that in general the subset of co-ordinates to be updated can vary at each
time instant. Indeed given the probability space (Ω,F ,P) the sequence {µk}k∈N is a random
i.i.d. sequence with µk : Ω→ 2M.

The stochastic iteration (4.5) satisfies the following convergence result, adapted from [7]
using the fact that a non-expansive operator is 1-averaged. For the sake of completeness,
Appendix B reports the more general result along with the proof and some comments.

Proposition 4.3 ([7, Theorem 3]). Let T be a non-expansive operator with fix(T) 6= ∅.
Assume that for all k the sequence of step-sizes {αk}k∈N is such that

0 < lim inf
k

αk ≤ lim sup
k

αk < 1.

Let {µk}k∈N be a random i.i.d. sequence on 2M such that the following condition holds

∀i ∈M, ∃µ ∈ 2M s.t. i ∈ µ and P[µ0 = µ] > 0. (4.6)

44 Chapter 4. Randomised Alternating Direction Method of Multipliers

Then for any deterministic initial condition z(0) the stochastic Krasnosel’skiı̆-Mann iteration
(4.5) converges almost surely to a random variable with support in fix(T).

Remark 4.4. The meaning of condition (4.6) is that the random sequence {µk}k∈N must be
such that, for each co-ordinate i ∈ M, there is at least one subset µ with i ∈ µ which has a
non-zero probability of being selected as the first subset of co-ordinates to be updated, that is,
as µ0. In other words, there must be a non-zero probability that each co-ordinate be updated
at the first iteration. This condition is rather technical but not very restrictive, and is required
to avoid a possible division by zero in the proof, see Appendix B.

For what concerns now the r-ADMM, recall that the update for z can be compactly writ-
ten as

T
(µk+1)
PR z(k) = L(k)z(k) + (I − L(k))TPRz(k) (4.7)

where L(k) is a realisation of the diagonal random matrix with elements the packet loss
random variables Lij . This operator conforms to the definition used in the stochastic Kras-
nosel’skiı̆-Mann iteration, since TPR is non-expansive and at each time instant only a subset
of the co-ordinates is updated.
Notice that in the derivation above the α-averaging of the Krasnosel’skiı̆-Mann iteration is
applied first and the stochastic co-ordinate update selection second, while in the stochastic
(4.5) they are applied in the inverse order. However it is easy to see that the are equivalent.
Therefore the convergence result 4.3 holds, which means that the sequence {z(k)}k∈N con-
verges almost surely to a fixed point of TPR. Moreover, the dual optimum is reached and can
be computed as w∗ = proxρdg(z

∗). But since the duality gap is zero, then also the primal
optimum is reached, which means that the sequence {x(k)}k∈N converges to x∗.

4.2 Asynchronous and Robust ADMM

The present Section will extend the formulation described above for the r-ADMM to the case
of asynchronous and potentially lossy communications. This more general algorithm will be
called the robust and asynchronous ADMM, ra-ADMM for short.

The results presented in the previous Section assume that the update and transmission
phases happen all at the same time and are perfectly synchronised. This is often very difficult
to guarantee in a real-life scenario, or might lead to inefficient execution of the algorithms,
hence the interest for an asynchronous version of the r-ADMM. A technical difficulty for
implementing synchronous distributed algorithms is that all agents must agree on a global
clock that regulates the update and transmission phases, which in practice might require that
a central node be present to regulate the clocks of each agent, defying some of the advantages
of distributed set-ups. The following Remark instead presents an example of application in
which asynchrony can improve the performance of an algorithm.

Remark 4.5. As mentioned in the introduction, one of the possible use cases of the ADMM
is in a collaborative effort to the solution of a Machine Learning problem, involving many
different and independent agents, that is, computers, connected in a network. Ensuring that
the computers all act synchronously, if at all possible, would require a loss of CPU cycles as
the faster computers, once terminated the update phase, would have to wait for the slower to
catch up. This situation is depicted in Figure 4.1.

Therefore Assumption 4.1 will be now complemented by the following Assumption on the
asynchrony of the node updates.

Assumption 4.6. During any iteration of Algorithm 1, any node i performs an update, that
is, computes xi(k), with some probability q.

4.3. Linear Convergence Rate 45

Agent 3

idle idleAgent 2

idle idleAgent 1

(A) Synchronous update.

Agent 3

· · ·Agent 2

· · ·Agent 1

(B) Asynchronous update.

FIGURE 4.1: Representation of the synchronous and asynchronous update
criteria.

To the family of random variables Lij introduced in Assumption 4.1 the following family of
independent binary variables ui(k), k = 1, . . . , N is added, one for each node, such that

P[node i updates] = P [ui = 1] = q.

Furthermore the two sets of variables are assumed to be independent from each other.

Remark 4.7. Note that all the results that follow, as well as those for the r-ADMM, can be
extended to the case of different packet loss probabilities and update probabilities for each
edge and node, respectively. Assumptions 4.1 and 4.6 have been chosen only for the sake of
simplicity in the discussion.

With regard to Algorithm 1 and the discussion in Section 4.1, clearly node i is able to
update zji if and only if node j performed an update and then successfully sent the variable
qj→i to it.
Therefore a third set of random variables can be introduced that account for both the update
and packet loss events βij(k), k = 0, 1, 2, . . ., i ∈ V , j ∈ Ni, such that

P[βij = 1] = P [uj = 1]P [Lji = 0] = q(1− p) = r.

Note that this set of variables are identically distributed but not independent, since the vari-
ables {βij}j∈Ni all depend on the value of ui.
A simple expression for the βij random variables is

βij = 1−max{Lji, 1− uj}.

Algorithm 5 describes now the implementation of the ra-ADMM.
In this case, at k-th iteration node i updates xi as in (3.5) if it scheduled to do so, that is if
u(k) = 1. Then, for j ∈ Ni, it computes qi→j as in (3.14) and transmits it to node j. If node
j receives qi→j , then it updates zij as zij(k + 1) = (1− αk)zij(k) + αkqi→j , otherwise zij
remains unchanged, i.e., zij(k + 1) = zij(k). This last step can be compactly described as

zij(k + 1) = (1− βij(k)) zij(k) + βij(k) ((1− αk)zij(k) + αkqi→j)

which shares the same structure of (4.1).
Therefore the convergence result Proposition 4.2 extends to the ra-ADMM, since in the proof
the co-ordinate selection can be performed over any possible probability space.

4.3 Linear Convergence Rate

In this Section the linear convergence of the ra-ADMM is proved in the case of strongly
convex local cost functions in problem (3.4). Before stating the main result, two useful
Lemmas are presented and proved.

46 Chapter 4. Randomised Alternating Direction Method of Multipliers

Algorithm 5 Robust and asynchronous distributed ADMM.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: xi(0) and zji(0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: if update scheduled then
4: compute xi(k) according to (3.5)

xi(k) = arg min
xi

fi(xi)−∑
j∈Ni

z>ji(k)xi +
ρ|Ni|

2
‖xi‖2

5: for all j ∈ Ni compute qi→j as in (3.14)

qi→j = −zji(k) + 2ρxi(k)

6: transmit qi→j to node j
7: end if
8: for j ∈ Ni if qj→i is received do . i.e. j updated and the packet was not lost
9: update zji as in (3.15)

zji(k + 1) = (1− αk)zji(k) + αkqj→i

10: end for
11: k ← k + 1
12: end while

Lemma 4.8. Assume that the local costs are strongly convex functions. The update of Lemma
3.5 for the z can be written for the ra-ADMM as

z(k + 1) = A(k)z(k)−B(k) (FE(x(k)− x∗)− c) (4.8)

where A(k) = I − B(k) + B(k)A and B(k) a realisation of the random matrix B =
diag{βij , i ∈ V, j ∈ Ni}.
Moreover the following formula holds

z(k) = Q(k)z(0)−B(k − 1) (FE(x(k − 1)− x∗)− c) +

−
k−2∑
l=0

A(k − 1) · · ·A(l + 1)B(l) (FE(x(l)− x∗)− c)
(4.9)

with Q(k) = A(k − 1) · · ·A(1).

Proof. The first equation derives from the application of the random co-ordinate selection to
the update of Lemma 3.5, that is from

z(k + 1) = (I −B(k))z(k) +B(k) (Az(k)− FE(x(k)− x∗) + c) ,

while the second results by iterating the former.

Lemma 4.9. Let the eigenspace of A relative to the unitary eigenvalue(s) be

U1 = 〈v1, . . . , vm〉,

4.3. Linear Convergence Rate 47

with m ≥ 1. Then it is

Q∞ = lim
k→∞

Q(k) = v1ρ
>
1 + . . .+ vmρ

>
m

for ρi stochastic random vectors.

Proof. By the convergence theorem it is known that the z vector converges almost surely to
a fixed point of the operator TPR. Therefore defining limk→∞ z(k) = z∞ it holds z∞ =
Az∞ + c and also that z∗ = Az∗ + c for z∗ ∈ fix(TPR). Subtracting the two equations it
follows z∞ − z∗ = A(z∞ − z∗), which means that z∞ − z∗ must be in the eigenspace of A
relative to the unitary eigenvalue.
Moreover by equation (4.9) it is

z∞ − z∗ = lim
k→∞

(z(k)− z∗) = lim
k→∞

Q(k)(z(0)− z∗)

which means that Q∞(z(0)− z∗) must belong to the eigenspace U1 as well.
Suppose now that U1 = 〈v〉, therefore it can be written Q∞(z(0) − z∗) = γv for γ a

random variable. This is satisfied ifQ∞ can be written as vρ> where ρ is a stochastic random
vector such that γ = ρ>(z(0)− z∗).
The same result holds in the case thatm > 1, indeed it isQ∞(z(0)−z∗) = γ1v1+. . .+γmvm
which is satisfied if Q∞ = v1ρ

>
1 + . . .+ vmρ

>
m with γi = ρ>i (z(0)− z∗).

Lemma 4.10. Let U1 = 〈v1, . . . , vm〉 be the eigenspace of A relative to the unitary eigen-
value. Then it holds vi ∈ ker(D) for all i = 1, . . . ,m.

Proof. Recall that by the strong convexity of the cost functions, the optimum x∗ is unique.
Moreover, given a fixed point z∗ ∈ fix(TPR) it satisfies z∗ = Az∗ + c, having set x(l) = x∗

in (3.18). But also any vector z∗ + γvi with γ ∈ R and vi ∈ U1 satisfies the equation
z∗ + γvi = A(z∗ + γvi) + c since Avi = vi.
Therefore by the uniqueness of the optimum and using (3.19) it must hold

H−1Dz∗ −H−1b = x∗ = H−1D(z∗ + γvi)−H−1b.

This is true if and only if γH−1Dvi = 0 that is, recalling that H is invertible, vi ∈ ker(D).

The following Proposition 4.11 finally proves the linear convergence of the ra-ADMM
applied to strongly convex cost functions.

Proposition 4.11. Assume functions fi in (3.4) are strongly convex. Then, there exists a
neighbourhood Nx∗ of the optimal point x∗ such that, if x(0) ∈ Nx∗ , then Algorithm 5
converges in mean-square exponentially fast to the optimal solution, i.e.,

E
[
‖xi(k)− x∗‖2

]
≤ Cλ−k‖xi(0)− x∗‖2, ∀i ∈ V,

for suitable constants C > 0 and 0 ≤ λ < 1.

Proof. The probabilistic framework used to define the ra-ADMM requires that the expected
error E[‖x(k)− x∗‖2] be evaluated to prove the almost sure convergence with linear rate.
Similarly to the deterministic case, the first step is to derive an upper bound to the expected
error, and then to exploit it in order to prove the Proposition.

48 Chapter 4. Randomised Alternating Direction Method of Multipliers

By following the steps used in the deterministic case, with the difference that expectation
are involved and the new update (4.9) is used, it follows

E[‖x(k)− x∗‖2] ≤ E
[
‖DQ(k)(z(0)− z∗)‖2

]
+

+
k−2∑
l=0

E
[∥∥∥DA(k − 1) · · ·A(l + 1)B(l)FE(x(l)− x∗)

∥∥∥2]
+

+ E
[
‖DB(k − 1)FE(x(k − 1)− x∗)‖2

]
and each of the three terms on the right-hand side will now be computed separately.

First of all consider the first term

E
[
‖DQ(k)(z(0)− z∗)‖2

]
= (z(0)− z∗)>E

[
Q>(k))D>DQ(k)

]
(z(0)− z∗).

Defining ∆(k) = E[Q>(k)∆(0)Q(k)] = E[A>(0) · · ·A>(k − 1)∆(0)A(k − 1) · · ·A(0)],
with ∆(0) = D>D, it is clear that the error depends on the dynamics of the following linear
system:

∆(k + 1) = E[A>(0)∆(k)A(0)] = L(∆(k)).

By an iterative argument it can be derived that ∆(k) = Lk(∆(0)) and therefore the goal is
to prove linear convergence of this system.

By Proposition 4.9 it holds

lim
k→∞

Lk(∆(0)) = lim
k→∞

E[Q>(k)∆(0)Q(k)]

= lim
k→∞

E

[(
m∑
i=1

ρiv
>
i

)
∆(0)

(
m∑
i=1

viρ
>
i

)]

= lim
k→∞

E

 m∑
i=1

m∑
j=1

ρiv
>
i ∆(0)vjρ

>
j

 .
Recalling that ∆(0) = D>D and that by Lemma 4.10 it is Dvi = 0 for any i = 1, . . . ,m, it
follows that

lim
k→∞

Lk(∆(0)) = 0 (4.10)

thus proving the linear convergence of the L(·) system and therefore of the first term in the
inequality.
Since ∆(k + 1) = E[A>(0)∆(k)A(0)], by the property of the vectorisation operator

vect(ABC) = (C> ⊗A) vect(B)

for matrices A,B and C of suitable dimensions, it holds

vect(∆(k + 1)) = vect
(
E
[
A>(0)∆(k)A(0)

])
= E

[
vect(A>(0)∆(k)A(0))

]
= E

[
A>(0)⊗A>(0)

]
vect(∆(k))

= Σ> vect(∆(k)).

Therefore the convergence rate of the system ∆(k) = Lk(∆(0)) is given by the largest

4.3. Linear Convergence Rate 49

eigenvalue of Σ1 that is smaller than one. This eigenvalue will be indicated with λ, called the
effective spectral radius. It follows that E

[
‖DQ(k)(z(0)− z∗)‖2

]
≤ dλk with d ∈ R.

By the properties of the norm and the expected value finally the error inequality can be
rewritten as

E
[
‖x(k)− x∗‖2

]
≤ c̄λk + c̄δE[‖x(k − 1)− x∗‖2]

+ c̄δ
k−2∑
l=0

λk−l−1E[‖x(l)− x∗‖2]

where c̄ = max
{
d, dE[‖B(l)F‖2],E[‖B(k − 1)F‖2]

}
and the fact that ‖E(x(l)− x∗)‖ ≤

δ ‖x(l)− x∗‖ was used.
The proof can be concluded following the steps described in the previous Chapter for the

deterministic algorithm, with the difference that w(k) = (λ+ ε)−kE[‖x(k)− x∗‖2].

The following Corollary of Proposition 4.11 gives an estimate of the convergence rate.

Corollary 4.12. The expected convergence rate of the ra-ADMM depends on the effective
spectral radius of the matrix Σ = E

[
A>(0)⊗A>(0)

]
, that is on the largest eigenvalue of Σ

that is strictly smaller than one. Moreover, an explicit formula for computing Σ is as follows

Σ = (1− 2r)I ⊗ I + rI ⊗A+R−R(I ⊗A) + rA⊗ I −R(A⊗ I) +R(A⊗A) (4.11)

with a suitable R matrix defined below.

Proof. The first claim of the Corollary follows from the proof of Proposition 4.11 reported
above, while the explicit equation for computing Σ is described in the following.
Recall that A(0) = I −B(0) +B(0)A with B(0) a realisation of the matrix B = diag{βββ},
where βββ is the stacked vector of the random variables βij are Bernoulli with probability r but
not all independent.
Therefore, omitting the time index which can be done since the matrix B(0) appears in the
expectation only, it is necessary to compute

E[(I −B +BA)⊗ (I −B +BA)] = E
[
I ⊗ I − I ⊗B + I ⊗BA−B ⊗ I +B ⊗B+

−B ⊗BA+BA⊗ I −BA⊗B +BA⊗BA
]

where each single term on the right-hand side can be computed separately by the linearity of
the expectation.
The first term is clearly equal to itself, while the other are derived in the following. Note that
where convenient the βij variables will be enumerated with the index e = 1, . . . ,M , with M
equal to twice the number of edges.

• First of all it holds

E[I ⊗B] = E[diag{diag{βββ}, . . . ,diag{βββ}}] = rI ⊗ I.

• E[B ⊗ B] is a block diagonal matrix with the block relative to edge (i, j) equal to
E[βij diag{βββ}]. The diagonal elements of each block are of the type E[βijβlk] where
in general it might be i = l. In case i 6= l then βij and βlk are independent and
E[βijβlk] = r2.

1Recalling that spectrum of a square matrix corresponds to the spectrum of its transpose.

50 Chapter 4. Randomised Alternating Direction Method of Multipliers

However if ij = lk then it is E[β2
ij] = r, while if i = l but j 6= k it is E[βijβlk] =

r2/q. This last result can be derived by considering that the product βijβlk is equal
to one if and only if Lij = Llk = 0 and ui = 1; this event happens with probability
q(1− p)2 = r2/q.
For simplicity in the following this matrix will be denoted with R = E[B ⊗B].

• E[B⊗ I] is a block diagonal matrix with the ij-th block equal to E[βijI] = rI . There-
fore E[B ⊗ I] = rI ⊗ I .

• The diagonal blocks of E[I ⊗ BA] are equal to E[BA] = E[B]A = rA, hence it can
be written E[I ⊗BA] = rI ⊗A.

• The matrix E[BA⊗ I] is equal to

E

β1a11I · · · β1a1MI
β2a21I · · · β2a2MI

...
. . .

...
βMaM1I · · · βMaMMI

which gives E[BA⊗ I] = rA⊗ I .

• The ij-th block diagonal element of E[B ⊗ BA] is equal to E[βijB]A = RijA, with
Rij the ij-th diagonal block of R. Therefore it follows E[B ⊗BA] = R(I ⊗A).

• E[BA⊗B] is equal to

E

β1a11B · · · β1a1MB
β2a21B · · · β2a2MB

...
. . .

...
βMaM1B · · · βMaMMB

that is, E[BA⊗B] = R(A⊗ I).

• Finally E[BA⊗BA] is

E

β1a11BA · · · β1a1MBA
β2a21BA · · · β2a2MBA

...
. . .

...
βMaM1BA · · · βMaMMBA

which yields E[BA⊗BA] = R(A⊗A).

Summing all terms the expression for Σ reported in the Corollary follows.

Remark 4.13. Note that a diagonal block Rij of matrix R in practice has all the elements
equal to r2, except for E[βijβik] = r2/q and E[β2

ij] = r.

Remark 4.14. Note that the complex structure of R is due to the fact that all the {βij}j∈Ni
coefficients depend on the same random variable ui. Restricting to the case of synchronous
updates the ij-th diagonal block of R reduces to the matrix r2 diag{1, . . . , 1, 1/r, 1, . . . , 1},
the 1/r being in the ij-th position.

Corollary 4.15. In case the cost functions are quadratic functions, then the linear conver-
gence holds globally both for the ra-ADMM.

4.4. Randomised ADMM and Final Considerations 51

Proof. This is a consequence of the fact that the Taylor expansion used to derive Equation
(4.9) is not an approximation, and therefore z(k + 1) = A(k)z(k) +B(k)c.

4.4 Randomised ADMM and Final Considerations

Notice that both the r-ADMM and ra-ADMM conform to the randomised Krasnosel’skiı̆-
Mann iteration of (4.5), and moreover that the convergence Proposition 4.3 does not depend
on the actual probability space that selects the subset of co-ordinates to be updated, as long
as condition (4.6) is satisfied.
Therefore it is possible to prove the convergence of the more general randomised ADMM
(ran-ADMM) in which the co-ordinate selection can account for any number of reasons for
a communication to take place or not.

In particular, the parallel with optimisation over graphs with time-varying topologies is
clear. Indeed it is possible to adapt the ran-ADMM to account for the variation in the topology
of the graph in the following way. Assume that the underlying connection graph is complete,
that is, each node is connected by an edge to any other node. This would entail a number
of edges equal to N !. Now, at any given time it is possible to require that only a very small
subset of edges A ⊂ E is active. Hence in the ran-ADMM collaboration between nodes i
and j is possible if and only if (i, j) ∈ A. Moreover, the packet loss and update probabilities
can be included on top.
In most applications the topology of the graph would vary with low frequency (if at all),
for example in the case of distributed Machine Learning problems solved with a network of
CPUs, but in other it might vary quite often, being therefore an important factor, for example
reconnaissance with Unmanned Aerial Vehicles (UAVs) or localisation in WSN.

Another interesting scenario arises if the packet loss between node i and its neighbour
j is due to a failure of the link that bars both in-going and out-going transmissions to be
delivered. In this case the r.v.s Lij and Lji are no longer independent, but instead can be
unified in a single r.v. that accounts for the failure of the physical channel for instance.

Consider the r-ADMM, by Assumption 4.1 an auxiliary variable is not updated if Lij =
1, which happens with a probability equal to p. Let K > 0 be the length of a time interval,
therefore since the variable is updated according to a Bernoulli random variable, then the
probability of updating k times during the interval K is equal to

P[zij updated k times] =

(
K

k

)
pK−k(1− p)k,

that is, the number of updates performed in a given interval is a binomial random variable.
Therefore the mean number of updates during the interval is equal to (1 − p)K, and the
probability of not updating zij is P[no update] = pK . Therefore there is an analogy between
the results presented in this Chapter and the convergence theorem presented in [52] for a
totally asynchronous version of the ADMM with a single co-ordinate update at each instant.
However, the likelihood of never updating a particular co-ordinate converges exponentially
fast to zero.

53

Chapter 5

Partition-Based Randomised ADMM

The previous Chapter described the randomised ADMM for consensus optimisation prob-
lems with local cost functions, that is, cost functions that depend only on the local state
variable. However, it is possible that the problems to be solved have more complicated cost
functions that, for example, depend on the local variable and the variables of a node’s neigh-
bours. This class of problem has been studied in the field of WSN and distributed Control.
This Chapter therefore aims at extending the results of the previous one to this more complex
scenario.

5.1 Problem Formulation

Consider a graph G = (V, E) with N nodes, each of which is assigned a local variable
xi ∈ Rn, i = 1, . . . , N . The objective is to solve with a consensus procedure the following
problem

min
xi, i∈V

N∑
i=1

fi(xi, {xj}j∈Ni) (5.1)

where the scalar costs fi(xi, {xj}j∈Ni) are convex functions of the local variable xi and the
variables of node i’s neighbours {xj}j∈Ni . Therefore differently from the previous problem
(3.1) a node needs information from all its neighbours in order to compute the current cost.
In order to recast problem (5.1) into a formulation amenable to distributed solving proce-
dures, the following steps are taken. Notice that this derivation follows essentially the one
described in Section 3.1.1.

First of all, for each node i a new set of variables is defined x(i)
i and

{
x

(i)
j

}
j∈Ni

where

the superscript (i) indicates that the variables are local copies of xi and {xj}j∈Ni stored by
node i.
The problem therefore becomes

min
x
(i)
i ,{x(i)j }j∈Ni , i∈V

N∑
i=1

fi

(
x

(i)
i ,
{
x

(i)
j

}
j∈Ni

)
s.t. x

(i)
i = x

(j)
i ,

x
(i)
j = x

(j)
j ∀j ∈ Ni

(5.2)

where the constraint imposes that at the optimum consensus is reached.
The next step is to introduce the so-called bridge variables, which allow to rewrite the prob-
lem in a form suitable for application of the ADMM. In particular, the constraints in (5.2) are

54 Chapter 5. Partition-Based Randomised ADMM

rewritten as

x
(i)
i = y

(i,j)
i x

(i)
j = y

(i,j)
j

x
(j)
i = y

(j,i)
j x

(j)
j = y

(j,i)
j

and

y
(i,j)
i = y

(j,i)
i y

(i,j)
j = y

(j,i)
j

where the the superscript (i, j) indicates that the bridge variable is stored by node i and
communicated to neighbour j.
Now, in order to simplify the notation, the following vectors are introduced to collect all the
variables and bridge variables that node i stores

x(i) =

 x
(i)
i{

x
(i)
j

}
j∈Ni

 , y(i) =

{
y

(i,j)
i

}
j∈Ni{

y
(i,j)
j

}
j∈Ni

 .
Note that overall there are two sets of |Ni| bridge variables each,{

y
(i,j)
i

}
j∈Ni

and
{
y

(i,j)
j

}
j∈Ni

,

corresponding to the constraints x(i)
i = y

(i,j)
i and x

(i)
j = y

(i,j)
j respectively. Moreover,

variable x(i)
i appears in |Ni| constraints, while the variables x(i)

j appear in one constraint
each.

Finally problem (5.2) can be rewritten as

min
x(i), i∈V

N∑
i=1

fi

(
x(i)
)

s.t. Aix
(i) + y(i) = 0,

y(i) = Piy
(j) ∀j ∈ Ni

(5.3)

for a suitable matrix Ai and permutation matrix Pi, i = 1, . . . , N .
Stacking the constraints and defining

x =

x(1)

...
x(N)

 , y =

y(1)

...
y(N)

problem (5.3) can be therefore rewritten in the formulation of problem (3.4), which means
that the ADMM described in the previous Chapters can be applied to solve it.

Remark 5.1. Throughout this Chapter it will be assumed that the variables {xi}i∈V are all
vectors in Rn and hence so are the corresponding local copies. However it is possible to
derive the results of the following Sections also in the case xi ∈ Rni with in general the
ni’s all different. This would lead to each node storing a series of local copies of vectors of
different dimensions, e.g. x(i)

i ∈ Rni but x(i)
j ∈ Rnj with ni 6= nj .

5.2. Partition-Based Randomised ADMM 55

5.2 Partition-Based Randomised ADMM

Now that the problem has been cast in the right framework, that is, it can be rewritten as

min
x(i), i∈V

N∑
i=1

fi

(
x(i)
)

s.t. Ax + y = 0,

y = Py

for suitable A and P matrices, it is possible to apply the ran-ADMM studied in the previous
Chapter.
Applying Equations (3.5) and (3.6) the ran-ADMM for the partition-based problem (5.1) is
given by the following equations

x(i)(k) = arg min

{
fi

(
x

(i)
i , {xj(i)}j∈Ni

)
+
ρ

2
|Ni|

∥∥∥x(i)
i

∥∥∥2
+
ρ

2

∑
j∈Ni

∥∥∥x(i)
j

∥∥∥2
+

− 〈
∑
j∈Ni

z
(j,i)
i (k), x

(i)
i 〉 −

∑
j∈Ni
〈z(j,i)
j (k), x

(i)
j 〉
} (5.4)

and {
z

(i,j)
i (k + 1) = (1− αk)z(i,j)

i (k)− αkz(j,i)
i (k) + 2αkρx

(i)
i (k)

z
(i,j)
j (k + 1) = (1− αk)z(i,j)

j (k)− αkz(j,i)
j (k) + 2αkρx

(i)
j (k)

(5.5)

for each j ∈ Ni.
Notice that the updates (5.5) for the auxiliary variables has the same form as (3.6) with
the difference that they use a different primal variable. On the other hand, the update for
the primal variables (5.4) depends now on all the components of x(i) which means that in
general it is not possible to compute each component separately, unless the cost function fi
is separable. However, the interest for the partition-based formulation stems exactly from the
possibility of dealing with this type of costs.

Now that the update equations for the auxiliary variables have been established, it is
possible to define the random variables β(i,j)

i and β(i,j)
j which are equal to one if respectively

z
(i,j)
i and z(i,j)

j have to be updated or not. Therefore similarly to the previous Chapter the
ran-ADMM hinges on the following updates

z
(i,j)
i (k + 1) =(1− β(i,j)

i (k))z
(i,j)
i (k)+

+ β
(i,j)
i (k)

(
(1− αk)z(i,j)

i (k)− αkz(j,i)
i + 2αkρx

(i)
i (k)

) (5.6)

z
(i,j)
j (k + 1) =(1− β(i,j)

j (k))z
(i,j)
j (k)+

+ β
(i,j)
j (k)

(
(1− αk)z(i,j)

j (k)− αkz(j,i)
j + 2αkρx

(i)
j (k)

) (5.7)

for each j ∈ Ni. For the general case of the ran-ADMM the β random variables can depend
on any possible probability space.

Consider now the robust and asynchronous case, with the same reasoning applied in the
previous Chapter to Equations (3.5) and (3.6) it is possible to assign to node i the storage and
update of the variables

{
z

(j,i)
i , z

(j,i)
j

}
j∈Ni

so that the computation of x(i) requires only local

information. In order to update z(j,i)
i and z(j,i)

j , node i needs to receive information from its

56 Chapter 5. Partition-Based Randomised ADMM

neighbour j, information that can be entirely stored in the temporary variables

q
(i→j)
i = −z(j,i)

i (k) + 2ρx
(i)
i (k)

q
(i→j)
j = −z(j,i)

j (k) + 2ρx
(i)
j (k).

(5.8)

Before introducing the implementation of the partition-based ra-ADMM, the following
Assumption will be made in order to simplify the algorithm, knowing that the convergence
is guaranteed in the general case. Similarly to the case of Section 4.2 the random variables
u

(i)
i , {u(i)

j }j∈Ni schedule the update of the primal variables, while the random variables

{L(i,j)
i }j∈Ni , {L

(i,j)
j }j∈Ni indicate if a packet sent from i to j is lost.

Assumption 5.2.

• A node computes all the components of x(i), if it is scheduled to update, or none at all.
This means that at each k ∈ N it holds u(i)

i (k) = u
(i)
j (k) =: u(i)(k) for any j ∈ Ni,

and u(i)(k) are independent when k varies.

• A packet is either completely received or not at all, there is no partial information loss.
That is, at each k ∈ N it holds L(i,j)

i (k) = L
(i,j)
j (k) =: L(i,j)(k), and L(i,j)(k) are

independent when k varies.

• The families of random variables {u(i)}i∈V and {L(i,j)}(i,j)∈E are both i.i.d. Bernoulli
with probability q and p respectively, and they are independent from each other at all
times.

The partition-based ra-ADMM is therefore described by the following Algorithm.

Algorithm 6 Partition-based robust and asynchronous distributed ADMM.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: x(i)

i (0), x(i)
j (0), z(j,i)

i (0) and z(j,i)
j (0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: if update scheduled then
4: compute x(i)

i (k) and {x(i)
j (k)}j∈Ni according to (5.4)

5: for all j ∈ Ni compute q(i→j)
i and q(i→j)

j as in (5.8)

6: transmit
{
q

(i→j)
i , q

(i→j)
j

}
to node j

7: end if
8: for j ∈ Ni if {q(j→i)

j , q
(j→i)
i } is received do

9: update z(j,i)
i and z(j,i)

j as

z
(j,i)
i (k + 1) = (1− αk)z(j,i)

i (k) + αkq
(j→i)
i

z
(j,i)
j (k + 1) = (1− αk)z(j,i)

j (k) + αkq
(j→i)
j

10: end for
11: k ← k + 1
12: end while

5.3. Quadratic Cost Functions 57

5.3 Quadratic Cost Functions

This Section will describe the partition-based ra-ADMM in the case of quadratic cost func-
tions, which is used in the simulations reported in Section 6.4.

The cost functions are as follows

fi(x
(i)
i , {x

(i)
j }j∈Ni) =

Aiix(i)
i +

∑
j∈Ni

Aijx
(i)
j − bi

>Qi
Aiix(i)

i +
∑
j∈Ni

Aijx
(i)
j − bi

whereAii, {Aij}j∈Ni ∈ Rri×n, bi ∈ Rri , and withQi ∈ Rri×ri a positive definite symmetric
matrix. Hereafter it will be assumed that ri = r for all i ∈ V , but the results hold equally for
different sizes of the Qi matrices.
In this case it is possible to find a closed-form solution for the minimisation in (5.4), which
will be derived in the following. In order to simplify the derivation, assume that

x(i) =

x

(i)
1

x
(i)
2
...
x

(i)
N

where the components of x(i) have been re-ordered by subscript and a x(i)

j variable has been
added for each j ∈ V even though (i, j) 6∈ E . Define now

Ai =
[
Ai1 Ai2 · · · AiN

]
where Aij = 0r×n if (i, j) 6∈ E . The cost functions can be rewritten as

fi

(
x(i)
)

=
(
Aix

(i) − bi
)>

Qi

(
Aix

(i) − bi
)

(5.9)

and by the definition of the Ai matrix it is clear that any component x(i)
j with (i, j) 6∈ E does

not appear in the cost.
The update equation (5.4) becomes therefore

x(i)(k) = arg min
x(i)

{(
Aix

(i) − bi
)>

Qi

(
Aix

(i) − bi
)

+
ρ

2
x(i)>Nix

(i) − 〈zi,x(i)〉
}

where
Ni = diag{1, . . . , 1, |Ni|, 1, . . . , 1} ⊗ In

and
zi =

[
z

(1,i)
1 · · · z

(i−1,i)
i−1

∑
j∈Ni z

(j,i)
i z

(i+1,i)
i+1 · · · z

(N,i)
N

]
with z(j,i)

i = z
(j,i)
j = 0n if (i, j) 6∈ E .

The solution can now be found imposing the first-order optimality condition which yields

x(i) =
(

2A>i QiAi + ρNi

)−1 (
zi + 2A>i Qibi

)
(5.10)

where
(
2A>i QiAi + ρNi

)
is non-singular because Qi is positive definite and Ni is clearly

non-singular.

58 Chapter 5. Partition-Based Randomised ADMM

5.4 Local Variables of Different Sizes

As noted in Remark 5.1, the results presented in the previous Sections hold even though the
local vectors {xi}i∈V are of different sizes. If now it is assumed that xi ∈ Rni with ni
in general different from nj , j ∈ Ni, an interesting scenario occurs if the local costs are a
function of the local variables only.
Therefore the partition-based problem (5.2) is equivalent to the problem of finding the min-
imum of the sum of functions that depend on variables of different sizes, and doing so in a
distributed set-up in which neighbours exchange information in order to reach the solution.
In a sense, it is the extension of the consensus optimisation problem treated in Chapters 3 and
4 for the case of local variables with different sizes.

In the scenario described above the local cost function becomes fi(x
(i)
i , {x

(i)
j }j∈Ni) =

fi(x
(i)
i), and therefore the update problem (5.4) requires the minimisation of an objective

function that is separable in x(i)
i and in x(i)

j , j ∈ Ni. Then Equation (5.4) is equivalent to

x
(i)
i (k) = arg min

{
fi

(
x

(i)
i

)
+
ρ

2
|Ni|

∥∥∥x(i)
i

∥∥∥2
− 〈
∑
j∈Ni

z
(j,i)
i (k), x

(i)
i 〉
}

{
x

(i)
j (k)

}
j∈Ni

= arg min
∑
j∈Ni

{
ρ

2

∥∥∥x(i)
j

∥∥∥2
− 〈z(j,i)

j (k), x
(i)
j 〉
}

and, imposing the first-order condition, it follows that

x
(i)
j (k) =

1

ρ
z

(j,i)
j (k).

Therefore it is clear that storing and updating local copies on agent i’s neighbours is no longer
needed, only the corresponding auxiliary variables are required. Indeed it holds

q
(i→j)
i = −z(j,i)

i (k) + 2ρx
(i)
i (k)

q
(i→j)
j = z

(j,i)
j (k)

in which the variables x(i)
j (k) do not appear and node i needs only to compute z(j,i)

j , j ∈ Ni,
which are only used to reach consensus and do not bear information that has been locally
computed by solving an optimisation problem as is the case for z(j,i)

i .
In this scenario the packets that need to be transmitted by node i to each of its neighbours are
of the type

{
q

(i→j)
i , z

(j,i)
j (k)

}
.

Remark 5.3. The number of variables that a node needs to store and update goes from the
3|Ni|+ 1 of the general case to 2|Ni|+ 1 in this particular scenario.

59

Chapter 6

Simulations Results

The current Chapter presents the results of an extensive campaign of simulations carried out
to evaluate the performance of the algorithms proposed in this Thesis.

6.1 Note on the Methodology

The simulations presented in this Chapter have been performed with the following set-up and
methodology.

The graphs used to represent the underlying communication network at each run of the
simulations are random geometric graphs with communication radius r = 0.1[p.u.], in which
two nodes are connected by an edge if and only if their relative distance is smaller than r.
Figure 6.1 depicts an example of this type of graphs.

FIGURE 6.1: Example of random geometric graph with N = 10 nodes and
communication radius r = 0.1[p.u.].

In order to derive from the simulations the characteristics of the proposed Algorithms
and reject all artifices due to the particular set-up of each run, all the results presented have
been derived averaging over a set of 50 to 100 Monte Carlo runs. For each run the set-up of
the simulation has been drawn independently from the other runs, e.g. the communication
graph is randomly generated at the beginning of each run.

The main metric for the evaluation of the proposed algorithms is the (evolution of the)
relative error. Let x∗ = 1⊗ x∗ be the optimum of the consensus problem (3.4) where x∗ is
the minimum of

∑N
i=1 fi(x), then the relative error in logarithmic scale at the k-th iteration

is defined as

log
‖x(k)− x∗‖
‖x∗‖ = log

∑N
i=1 ‖xi(k)− x∗‖√

N ‖x∗‖
. (6.1)

60 Chapter 6. Simulations Results

This error will be employed to evaluate all simulations except for those relative to the ADMM
for partition-based problems, in which case the metric will be modified as follows

log

N∑
i=1

∥∥∥x(i)(k)− x∗(i)

∥∥∥∥∥∥x∗(i)∥∥∥ (6.2)

where

x∗(i) =

[
x∗i

{x∗j}j∈Ni

]
.

Finally, the termination condition used during the simulations was two-fold: a maximum
number of iterations, usually 103, was imposed, and an early termination was performed
whenever the relative error fell under a certain threshold (10−7 for quadratic costs and 10−3

for the Lasso and partition-based costs).

6.2 Robust and Asynchronous ADMM

In the simulations presented in this Section Algorithm 5 has been applied to two different
problems, changing the values of the tunable parameters, step-size α (assumed constant) and
penalty ρ, and the values of packet loss and update probabilities p and q.

6.2.1 Quadratic cost functions

The first benchmark functions used are quadratic costs of the type

fi(x) = aix
2 + bix+ ci (6.3)

with ai ∈ R/{0} and bi, ci ∈ R. In general the parameters of the local cost functions are
different from each other, and randomly drawn at the beginning of each run.
Since the costs are differentiable, a closed-form solution can be derived for the problem that
needs solving in the update equation (3.5), which is

xi(k) =

∑
j∈Ni zji(k)− bi
2ai + ρ|Ni|

. (6.4)

Figure 6.2 depicts the evolution of the relative error when different values of the step-size
α are used, with a fixed penalty ρ = 3, packet loss p = 0.2 and for simplicity synchronous
updates. Recalling that the classic ADMM is characterised by α = 1/2, then as the Figure
shows the use of a relaxed ADMM can improve the convergence rate of the algorithm. In
particular for values larger than 1/2 that are inside the convergence region the r-ADMM is
faster than it is with α ≤ 1/2.
Therefore these results justify the use of the somewhat more complicated relaxed ADMM
instead of the classic version.
The effect of the second tunable parameter, the penalty ρ, is depicted in Figure 6.3 with a
step-size of 1/2, p = 0.4 and synchronous updates. Overall, the penalty that leads to the
faster convergence is ρ = 1, but this might not be the case when the algorithm is applied to
different problems. Therefore it is important to keep in mind that this second parameter can
make the difference as well.

The following results analyse the effect that different packet loss probabilities have on
the performance of the r-ADMM. First of all, Figure 6.4 reports the error evolution with
α = 3/4 and ρ = 3/2 for different values of p. As expected, the speed of convergence is

6.2. Robust and Asynchronous ADMM 61

5 10 15 20 25 30 35

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

FIGURE 6.2: Error evolution of the r-ADMM for different step-sizes with
quadratic costs.

5 10 15 20 25 30 35 40 45 50

-2

-1.5

-1

-0.5

0

0.5

FIGURE 6.3: Error evolution of the r-ADMM for different penalty parame-
ters.

negatively impacted by a larger probability of packet losses occurring, since each node on
average performs less updates of the auxiliary variables in a given interval.
On the other hand, Figure 6.5 reports an interesting and counter-intuitive result. The Figure

62 Chapter 6. Simulations Results

2 4 6 8 10 12 14 16 18 20 22

-2

-1.5

-1

-0.5

0

0.5

FIGURE 6.4: Error evolution of the r-ADMM for different packet loss prob-
abilities with quadratic costs.

2 4 6 8 10

0.5

1

1.5

FIGURE 6.5: Stability boundaries of the r-ADMM for different packet loss
probabilities with quadratic costs.

represents the empirical stability regions of the r-ADMM for different values of the packet
loss probability. Proposition 4.2 guarantees the convergence if the free parameters are chosen

6.2. Robust and Asynchronous ADMM 63

such that 0 < α < 1 and ρ > 0 but this is only a sufficient condition, and indeed the simu-
lations results show that convergence is possible outside this region. The curves depicted in
Figure 6.5 represent the boundary below which the r-ADMM converges and above which it
diverges1. Clearly, for any of the packet loss probabilities the convergence region is larger
then that guaranteed by Proposition 4.2. Moreover, the interesting phenomenon of the stabil-
ity regions growing larger the larger p is can be observed. However as presented in Figure
6.4 this is counterbalanced by a slower rate of convergence.

The previous results were all obtained assuming that the updates are carried out syn-
chronously, however the case of asynchronous updates is far more interesting for practical
applications. By the framework described in Section 4.2, the introduction of asynchronous
updates has the consequence of decreasing the probability of performing the update of an
auxiliary variable from 1 − p to q(1 − p), due to the fact that updated primal variables are
not available at each time instant. Therefore the results obtained from the simulations of the
ra-ADMM are very similar to those obtained for the r-ADMM even though the cause of a
missed auxiliary update is in part different.
For example, similarly to Figure 6.4, the following Figure 6.6 depicts the evolution of the
relative error for different values of the update probability q. Clearly the larger is the average
number of updates carried out by a node, the faster is the convergence rate of the algorithm.

5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

FIGURE 6.6: Error evolution of the ra-ADMM for different update proba-
bilities with quadratic costs.

Finally, Section 4.3 proved that the convergence of the ra-ADMM is linear (in logarithmic
scale, i.e. exponential) whenever the cost functions are strongly convex in the sense that there
exists a constant c > 0 such that ∇2fi(xi) � cIn. This can be clearly observed in Figures
6.2, 6.3, 6.4, 6.6 where the evolution of the logarithm of the relative error is characterised by
a line, since quadratic cost functions are indeed strongly convex.

1Since these results are averaged over 100 Monte Carlo runs, the r-ADMM is said to converge for a particular
combination of α and ρ if it converges for a majority of the simulation repetitions.

64 Chapter 6. Simulations Results

Moreover, Corollary 4.12 states that an upper bound to the convergence rate of the ra-ADMM
is given by the absolute value of the largest eigenvalue of the matrix Σ given by Equation
(4.11). Figure 6.7 depicts the convergence rate measured empirically and the theoretical
upper bound described by Corollary 4.12 in the case of p = 0.4, q = 0.8 and for different
values of the free parameters α and ρ.

0.5
1 10

0.6

0.7

0.8

0.9

0.5 5

1

0 0

FIGURE 6.7: Empirical convergence rate and theoretical bound with
quadratic costs.

Clearly the (semi-transparent) upper bound is tighter for large values of the penalty, but looser
for smaller values of ρ.

6.2.2 Lasso

The following paragraphs introduce the distributed Lasso problem, then how the robust and
asynchronous ADMM can be applied to solve it, and finally the results of the simulations
performed on a synthetic data-set.

Problem formulation

The Lasso (from least absolute shrinkage and selection operator) problem, introduced by
Tibshirani in [98], is a prominent method for linear regression in Machine Learning applica-
tions. The problem is defined as

min
x,x0

1

2D

D∑
d=1

‖adx+ x0 − bd‖22 + λ ‖x‖1 (6.5)

6.2. Robust and Asynchronous ADMM 65

where the data are the input-output pairs (ad, bd), x is the vector of parameters of the model
and x0 the intercept that need to be found, and the variable λ > 0 is called the regular-
isation parameter. Notice that the objective function of (6.5) consists of two terms, the
first that depends on the accuracy of the parameters estimated and can be summarised with
‖Ax+ 1x0 − b‖22 for suitable matrix A ∈ RD×n and vector b ∈ RD, and the second that
penalises the size of the parameters, and is therefore called a regularisation term. Therefore
the joint action of these two terms ensures that the solution with smallest 1-norm be found.
The remainder of this paragraph will present the distributed formulation of the Lasso. The
possibility of solving the Lasso in a distributed fashion is of interest in many data-rich appli-
cations from Machine Learning to Smart Grids to healthcare [66, 95].

With a simple division of the regularisation term, problem (6.5) can be rewritten as

min
x,x0

N∑
i=1

{
1

2D
‖Aix+ x0 − bi‖22 +

λ

N
‖x‖1

}
where the data have been divided in N blocks (Ai, bi), not necessarily of the same size.
If now each block of data is assigned to a single node, the distributed Lasso can be straight-
forwardly defined as

min
x,x0

N∑
i=1

{
1

2D
‖Aixi + x0,i − bi‖22 +

λ

N
‖xi‖1

}
s.t. xi = xj and x0,i = x0,j ∀(i, j) ∈ E .

(6.6)

Clearly problem (6.6) conforms to the problem (3.2) with the choice of local cost functions

fi(xi, x0,i) =
1

2D
‖Aixi + x0,i − bi‖22 +

λ

N
‖xi‖1 . (6.7)

Notice that the fi’s are convex but not differentiable due to the presence of the non-smooth
1-norm regularisation term. Moreover, with this reformulation of the problem each node has
to store locally the data (Ai, bi) without the need to share them with any other node. This
is particularly appealing in healthcare applications for instance, in which privacy policies
dictate that the data from patients be protected.

Applying the ADMM

Applying the Algorithm 5 requires now that at each iteration in which node i performs an
update, the following problem be solved[

xi
x0,i

]
(k) = arg min

xi,x0,i

{
1

2D
‖Aixi + x0,i − bi‖22 +

λ

N
‖xi‖1 +

− 〈
∑
j∈Ni

zji(k),

[
xi
x0,i

]
〉+

ρ

2
|Ni|

∥∥∥∥[xix0,i

]∥∥∥∥2
} (6.8)

However since fi is not differentiable there is no closed-form solution to (6.8) and an iterative
algorithm has to be applied. Since (6.8) conforms to the problem (2.14) then it is possible to
apply the relaxed Peaceman-Rachford to solve it efficiently.
By choosing f in (2.14) to be the sum of all differentiable terms in problem (6.8), and g to
be simply the 1-norm term, it is possible to leverage the following property of the proximal

66 Chapter 6. Simulations Results

operator to simplify the R-PRS iterates[
proxργ‖·‖1(u)

]
i

= sign(ui) max{|ui| − ργ, 0}. (6.9)

Therefore a closed-form solution can be found for both the updates (2.17) and (2.18). Notice
that the R-PRS requires a step-size and a penalty parameter to be defined, and they can be
selected with considerations similar to those described above for the ra-ADMM.

Simulations results

For simplicity, the following results were obtained by applying assuming that the updates are
carried out synchronously.

First of all, the effect of varying the tunable parameters α and ρ is depicted in Figures 6.8
and 6.9, respectively.

10 20 30 40 50 60

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIGURE 6.8: Error evolution of the r-ADMM for different step-sizes applied
to the Lasso problem.

Clearly the results resemble very closely those obtained for the quadratic case, with step-
sizes larger than 1/2 guaranteeing faster convergence, and with a unitary penalty resulting in
a smaller convergence rate.

Secondly, the effect of different packet loss probabilities is depicted in Figure 6.10, in
which the larger p is, the slower the convergence of the r-ADMM results.

Notice that as in the case of quadratic cost functions, also for the Lasso problem the
algorithm exhibits linear convergence in logarithmic scale. However, the results presented in
Section 4.3 hold only if the cost functions are smooth, while the 1-norm is not differentiable
in the origin. However, an alternative definition of strong convexity that can be applied to
non-smooth functions states that f : Rn → R ∪ {+∞} is strongly convex if and only if
f(·)− (β/2) ‖·‖2 is convex for some β > 0. Therefore, since the cost functions of the Lasso
problem are strongly convex under this definition, the following Conjecture is proposed that
will be the focus of further studies.

6.2. Robust and Asynchronous ADMM 67

5 10 15 20 25
-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIGURE 6.9: Error evolution of the r-ADMM for different penalty parame-
ters applied to the Lasso problem.

10 20 30 40 50 60

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIGURE 6.10: Error evolution of the r-ADMM for different packet losses
applied to the Lasso problem.

Conjecture 6.1. The robust and asynchronous ADMM converges exponentially fast if the
cost functions fi are strongly convex in the sense that there exists a coefficient β > 0 such
that fi(·)− (β/2) ‖·‖2 is a convex function.

68 Chapter 6. Simulations Results

In conclusion, usually the performance of an algorithm applied to Machine Learning
problems is evaluated by the fitness of the solution that it obtains when evaluated on the test
set, a subset of the available data that is not used to compute the parameters x and intercept
x0. A particular metric well suited to this task is the coefficient of determination defined as

R2 = 1−

∥∥∥bt − b̂t∥∥∥2

∥∥bt − b̄t∥∥2 (6.10)

where bt is the output vector of the test data, b̂t is the predicted output computed as b̂t =
Atx̂ + 1x̂0 with x̂ and x̂0 the solution found by the ADMM, and b̄t the mean of bt. R2 is
a number always smaller than one and the closer it is to one the better the parameters fit the
data.
Figure 6.11 reports the R2 averaged over 100 Monte Carlo runs obtained varying both the
regularisation parameter λ and the tolerance in the solution Tx, that is the threshold for the
error below which the simulation terminates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FIGURE 6.11: Coefficient of determination for different regularisation pa-
rameters and tolerances.

It is clear that the larger λ is, the less the solution fits the data, since the regularisation term
imposes the parameters to be more sparser. On the other hand, for tolerances smaller than
10−1 the results are quite similar, suggesting that the algorithm has very good performances
even though it has a looser early termination condition.

6.2.3 Considerations

In conclusion of the present Section some considerations are reported about the proposed
ra-ADMM.

6.2. Robust and Asynchronous ADMM 69

Synchronous vs asynchronous updates

As adduced in Chapter 4, the use of asynchronous updates can lead to better performance
of the proposed algorithm as it results in a more efficient utilisation of the agents’ time.
However the results presented above do not highlight this effect since the asynchrony of
updates is merely treated as a cause of missed auxiliary variables updates. In the following a
simple example is presented that instead emphasises the positive aspects of asynchrony.

Consider a graph with three nodes all connected among each other, and suppose that one
has a fixed period of T = 5 steps, in the sense that it needs T instants in order to solve the
problem for updating the primal variable. The other two have periods T ′ and T ′′ that vary
between one and T . Suppose that the algorithm is evaluated by the number of updates that
the nodes can carry out with new information U(T ′, T ′′). This is to take into account the fact
that if a node updates without any neighbour having sent new information then the primal
variable computed is the same as before.

The following Table 6.1 reports the percentage of time instants in which an update with
new information can be carried out for different values of the periods T ′ and T ′′. Clearly
if the nodes are allowed to update asynchronously, then it is possible to achieve a greater
density of meaningful updates than with synchronous updates in most of the cases. Due to
some overlapping of the periods, however, an improvement is not necessarily guaranteed.

TABLE 6.1: Percentage of time instants in which a primal variable is updated
with new information.

1 2 3 4 5
1 100 59.09 45.45 38.64 27.27
2 50 25.45 29.55 22.73
3 33.18 16.36 21.36
4 25 20.45
5 27.27

The larger number of updates with new information that the nodes are able to carry out
asynchronously leads, intuitively, to a larger convergence rate. Assuming the absence of
packet losses, the algorithm was tested with quadratic costs and with the same range of
periods used above. Table 6.2 reports the number of steps that the algorithm required to
converge, averaged over 100 Monte Carlo runs2.

TABLE 6.2: Number of iterations for the ADMM varying the update periods
with quadratic costs.

1 2 3 4 5
1 112 115 105 158 757
2 105 130 141 758
3 169 167 758
4 558 759
5 551

The naïve criterion

In the proposed implementation of the ra-ADMM of Algorithm 5, a node updates the aux-
iliary variable relative to an edge (i, j) j ∈ Ni only if a new information qj→i has been

2In general the number of iterations is not symmetric as the Table suggests, since the cost functions of a node
might be more or less informative than the others’, but for simplicity the cost were chosen to be equal.

70 Chapter 6. Simulations Results

received. That is, if node i does not receive a new packet from neighbour j then it does
nothing.
However, a simpler criterion for dealing with the absence of new information would be for
node i to perform an update of zji using the last packet q′j→i that it received. Algorithm 7
represents an implementation of the ra-ADMM that employs such criterion, in which node i
stores in memory the variable qj→i which is overwritten with a new packet qnewj→i whenever it
arrives. The choice of always updating, possibly with the last packet received, is referred to
as the naïve criterion since it is a simple and straightforward idea.

Algorithm 7 Naïve robust and asynchronous distributed ADMM.

Input: step-sizes {αk}k∈N, penalty ρ, termination condition K.
Initialise: xi(0) and zji(0) for each node i and neighbour j ∈ Ni.

1: k ← 0
2: while k < K each agent i do
3: if update scheduled then
4: compute xi(k) according to (3.5)
5: for all j ∈ Ni compute qi→j as in (3.14) and transmit it to node j
6: end if
7: for j ∈ Ni do
8: if packet qnewj→i received then
9: qj→i ← qnewj→i

10: end if
11: update zji as in (3.15)
12: end for
13: k ← k + 1
14: end while

Both the ra-ADMM and the naïve ra-ADMM were tested with a set of simulations chang-
ing the step-size, the penalty and the packet loss probability, with synchronous updates for
simplicity. In order to compare the two algorithms the difference of iterations required by
the ra-ADMM and the naïve was computed for any choice of the parameters. Clearly if there
is no packet loss, the two algorithms are equivalent. However if p > 0 then the naïve ra-
ADMM requires on average ∼ 16 iterations less than the ra-ADMM, with the relatively high
standard deviation of ∼ 26 iterations.
There are two issues that suggest the use of the ra-ADMM instead of the naïve version,
besides the fact that the speed-up with the latter is not very large. First of all, in Algorithm
7 each node needs to store qj→i locally, hence taking the total number of variables stored by
the single node from |Ni|+ 1 to 2|Ni|+ 1, see Table 3.1. Secondly, even though in practice
the naïve ra-ADMM is observed to converge it is not possible, to the best of the author’s
knowledge, to prove the convergence rigorously.

Consider now the Algorithm 2 characterised by the implementation of the ADMM de-
scribed by the three Equations (2.39)–(2.41), and suppose to apply the naïve criterion in order
to handle the loss of a packet. The resulting algorithm, referred to as naïve ADMM, appears
to be faster than the proposed ra-ADMM, as illustrated by Figures 6.12 and 6.13.
However the naïve ADMM presents some problems that justify the choice of the proposed
ra-ADMM. Indeed as highlighted by Table 3.1 the number of variables that each node needs
to store using the naïve ADMM is 2|Ni| + 1, larger than the |Ni| + 1 required by the ra-
ADMM. Moreover as was the case for the naïve ra-ADMM described in Algorithm 7, there
is no theoretical guarantee of convergence for the naïve ADMM.

6.3. Comparison with Newton-Raphson 71

0 50 100 150 200 250 300 350
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

FIGURE 6.12: Error evolution of the ra-ADMM and naïve ADMM for dif-
ferent step-sizes with quadratic costs.

0 50 100 150 200 250
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

FIGURE 6.13: Error evolution of the ra-ADMM and naïve ADMM for dif-
ferent packet loss probabilities with quadratic costs.

6.3 Comparison with Newton-Raphson

The robust and asynchronous Newton-Raphson

The robust and asynchronous Newton-Raphson (ra-NR) developed in [15, 14, 8] addresses
the problem of solving convex distributed optimisation problems. The algorithm is based on

72 Chapter 6. Simulations Results

the Newton-Raphson method, characterised by the iterate

x(k + 1) = x(k)− ε
(
∇2f(x(k))

)−1∇f(x(k)), (6.11)

which is integrated with a push-sum and a robust ratio consensus algorithms in order to
account for packet losses and asynchronous updates.
The ra-NR is guaranteed to converge if the cost functions are C3 and strongly convex. This is
indeed the main difference with the ra-ADMM, which does not require smooth cost functions,
and therefore is more widely applicable. Another difference is that the ra-NR requires to
store and update more variables than the ra-ADMM, but needs to transmit less variables and,
moreover, the transmission can be a broadcast to all neighbours since the same information
needs to be sent to all neighbours. Table 6.3 reports a comparison of the exact counts of
variables involved in the two algorithms.

TABLE 6.3: Comparison of ra-ADMM and ra-NR.

ra-ADMM ra-NR
Update and store |Ni|+ 1 2|Ni|+ 7

Temporary |Ni| −
Send |Ni| 2

Finally, notice that the ra-NR has a single tunable parameter, the step-size ε, while the ra-
ADMM has more degrees of freedom, the penalty ρ and the sequence of step-sizes {αk}k∈N.

Comparison

Due to the fact that the ra-NR requires differentiable costs, the comparison simulations with
the proposed ra-ADMM were performed using quadratic costs.

Figure 6.14 reports the error evolution for the ra-ADMM (above) with fixed step-size
α = 0.6 and penalty ρ = 4, and the ra-NR (below) with step-size ε = 0.9, both evaluated
with an update probability equal to 0.8.
The ra-ADMM has a faster convergence rate than the ra-NR, indeed for instance it reaches
an error of 10−5 approximately 150 iterations before the latter.

Similar results are obtained in Figure 6.15 in which all the values of α evaluated for
the ra-ADMM except for 1/2 lead to a faster convergence. And again in Figure 6.16 the
ra-ADMM shows better performances for almost any choice of the penalty.

6.4 Partition-Based ADMM

The partition-based costs defined in 5.3 were used to assess the proposed Algorithm 6. In
particular it was chosen n = 2 and r = 5, the matrices {Aij}j∈Ni∪{i} were independently
generated with elements from a uniform distribution U(0, 1), the components of vector bi
were drawn from the normal distribution N (0, 1), and matrix Qi was computed as

Qi =
1

2
(R+R>) + rIr

with R ∈ Rr×r a matrix drawn from the uniform U(0, 1).
Figure 6.17 shows that, similarly to the case analysed in 6.2, the larger the packet loss

probability is, the more negative an effect it has on the convergence speed of the proposed
algorithm.

6.4. Partition-Based ADMM 73

0 100 200 300 400 500 600 700
-5

-4

-3

-2

-1

0

0 100 200 300 400 500 600 700
-5

-4

-3

-2

-1

0

FIGURE 6.14: Error evolution of the ra-ADMM and the ra-NR for different
packet losses.

0 100 200 300 400 500 600 700 800
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

FIGURE 6.15: Error evolution of the ra-ADMM for different step-sizes and
the ra-NR with ε = 0.9.

However, this is counterbalanced by the fact that the stability regions in the parameters space,
depicted in Figure 6.18, are larger the more likely the loss of a packet becomes. This result
resembles very closely the one obtained for the simple ra-ADMM of Section 6.2.

74 Chapter 6. Simulations Results

0 100 200 300 400 500 600 700
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

FIGURE 6.16: Error evolution of the ra-ADMM for different penalties and
the ra-NR with ε = 0.9.

10 20 30 40 50 60 70 80

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIGURE 6.17: Error evolution of the partition-based ra-ADMM for different
packet loss probabilities.

Finally, Figure 6.19 presents the error evolution of the partition-based ra-ADMM for
three different values of the step-size α. Clearly the relaxation can be leveraged in order

6.4. Partition-Based ADMM 75

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

FIGURE 6.18: Stability boundaries of the partition-based ra-ADMM for dif-
ferent packet loss probabilities.

to improve the rate of convergence of the proposed algorithm as was the case with the ra-
ADMM.

10 20 30 40 50 60
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIGURE 6.19: Error evolution of the partition-based ra-ADMM for different
step-sizes.

76 Chapter 6. Simulations Results

Remark 6.2. In some of the results presented above, particularly those relative to partition-
based problems, the error evolution presents two distinct phases. The first is a transitory that
reduces the error with relative large rate. For instance in the case of the normal ra-ADMM
of Figures 6.12 and 6.13 during this phase the error reaches values in the order of 10−2. The
second phase is instead characterised by a linear convergence with slower rate. This long-tail
behaviour of the ADMM has been remarked upon for instance in [96]. Notice that the upper
bound presented in Figure 6.7 refers to the slower convergence rate of the second phase.

77

Chapter 7

Conclusions and Further Work

Conclusions The aim of this Thesis has been to propose a formulation of the notorious
Alternating Direction Method of Multipliers for solving distributed convex problem that is
robust to faulty communications among agents and that can be applied with asynchronous
updates. The convergence of the algorithm has been proved in a probabilistic framework
and moreover the linear convergence has been proved in the case of strongly convex costs.
The proposed algorithm has then been extended to solve partition-based problems, which are
characterised by the dependence of the costs on the local variable of an agent but also on the
local variables of its neighbours.
Extensive Monte Carlo simulations have been performed and the results analysed in detail.
In particular the effect of the two tunable parameters of the algorithm has been investigated,
alongside the performance reduction due to packet losses and asynchronous updates. The
algorithm has been evaluated solving quadratic and Lasso problems, also comparing it with
the robust and asynchronous Newton-Raphson.

Further Work The linear convergence of the proposed algorithm has been characterised
by an upper bound for which an explicit formula is given. Moreover the convergence is
guaranteed with a time-varying step-size. Therefore a first possible direction for further
studies is to exploit these results in order to design an adaptive step-size scheme that can
speed up the convergence of the algorithm.
An interesting phenomenon has been highlighted by the simulations results, namely the fact
that the convergence in practice is guaranteed for values of the tunable parameters outside
the region prescribed by the convergence Proposition. This behaviour is therefore a possible
object for further studies.
Finally, the simulations carried out for the Lasso problems have shown a linear convergence
rate. However the theory developed in this Thesis guarantees a linear rate of convergence
only in the case of twice differentiable costs with Hessian bounded below. On the other hand
a more general definition of strong convexity states that f has this property if there exists
β > 0 such that f(·)− (β/2) ‖·‖2 is convex. Therefore studying the convergence rate of the
proposed algorithm for this class of functions is certainly of interest.

79

Appendix A

Mathematical Background

A.1 Convex Analysis

This Section contains miscellaneous notions regarding convex functions and convex optimi-
sation problems.

A.1.1 Convex functions

Definition A.1 (Hilbert space). An Hilbert space X is a real or complex space with an inner
product and such that all Cauchy sequences converge to points inside X with respect to the
norm defined on the inner product.

The following definitions and properties all refer to the scalar function f : X → R ∪
{+∞} defined over the Hilbert space X .

Definition A.2 (Closed function). A function f is said to be closed if for any a ∈ R the set

{x ∈ dom(f) | f(x) ≤ a}

is closed.

Definition A.3 (Proper function). A function f is said to be proper if it does not attain −∞.

Definition A.4 (Convex and concave functions). A function f is said to be convex if for any
x, y ∈ X and scalar λ ∈ [0, 1] it holds

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (A.1)

A function f is said to be concave if −f is convex.

A function is said strictly convex if A.1 holds with a strict inequality. Now some properties
and examples of convex functions follow.

Proposition A.5. The domain of a convex function f , defined as

dom(f) = {x ∈ X
∣∣f(x) < +∞}

is a convex set.

Proposition A.6. Let Y be a real Hilbert space, let L : X → Y be an affine function1 and
let f : Y → R ∪ {+∞}. Then f ◦ L is a convex function.

Example A.1. The following are examples of convex functions.

• The indicator function ιC of set C is a convex function if and only if C is a convex set.
1A function L : X → Y is affine if L(λx+ (1−λ)y) = λL(x) + (1−λ)L(y) for any x, y ∈ X and λ ∈ R.

80 Appendix A. Mathematical Background

X

R

f(·)
〈·, y〉

f∗(y)

FIGURE A.1: Representation of the convex conjugate for a generic function
f : R→ R.

• The norm ‖·‖ and the squared norm ‖·‖2 are convex functions.

Definition A.7 (Strongly convex function). A function f is said to be strongly convex if it is
twice differentiable, i.e. f ∈ C2, and its Hessian is bounded from below, that is∇2f(x) � cI
for any x ∈ X and some positive scalar c.

The following alternative definition of strong convexity applies to non-smooth functions as
well.

Definition A.8 (Strongly convex - alternative). A possibly non-smooth proper function f :
X → R ∪ {+∞} is strongly convex with constant β > 0 if and only if f − β

2 ‖·‖
2 is convex.

A.1.2 Conjugation

Definition A.9 (Convex conjugate). The convex conjugate, or Legendre transform, or Leg-
endre-Fenchel transform, or Fenchel conjugate, of a convex function f is defined as

f∗(x) = sup
y∈X
{〈x, y〉 − f(y)} = − inf

y∈X
{f(y)− 〈x, y〉}. (A.2)

In other words, the convex conjugate is the supremum of the signed vertical distance
between the function f and the continuous linear functional 〈·, y〉. Figure A.1 depicts with
the dashed arrow the convex conjugate of a scalar function for a fixed y, which is indeed the
distance between f and 〈·, y〉.

Proposition A.10 ([88, Theorem 12.2]). The convex conjugate f∗ of a function f is always
a closed and convex function. Moreover it is proper if and only if f is proper.

Proposition A.11 (Fenchel-Young inequality [3, Proposition 13.13]). Let f be proper, then

f(x) + f∗(y) ≥ 〈x, y〉 (A.3)

for any x, y ∈ X .

A.1. Convex Analysis 81

Example A.2. Let f : X → [−∞,+∞], then f = f∗ if and only if f = 1
2 ‖·‖

2.

Definition A.12 (Fenchel-Moreau [3, Theorem 13.32]). Let f be closed, proper and convex,
then f = f∗∗.

An important corollary of the Fenchel-Moreau theorem follows.

Corollary A.13. The convex conjugate of a closed, proper and convex function is closed,
proper and convex.

Let f, g : X → R ∪ {+∞} be proper, a frequent problem to be solved, for instance in
Machine Learning applications, is

min
x∈X
{f(x) + g(x)}. (A.4)

The dual problem of (A.4) is defined as

min
y∈X
{f∗(y) + g∗(−y)}

and this result goes under the name of Fenchel duality. The primal and dual optimal values
are given by p = infx∈X {f(x) + g(x)} and q = infy∈X {f∗(y) + g∗(−y)} respectively,
therefore the duality gap is

∆ =

{
0, if p = −q ∈ {−∞,+∞},
p+ q, otherwise.

Proposition A.14 ([3, Proposition 15.12]). Under the assumptions described above, the fol-
lowing conditions are equivalent

(i). p ≥ q,

(ii). ∆ ∈ [0,+∞],

(iii). p = q if and only if ∆ = 0.

Finally, in many applications the functions f and g are actually closed, proper and convex, in
which case the following result holds.

Proposition A.15 ([3, Proposition 15.13]). Let the closed, proper and convex functions f and
g be such that the null vector belongs to the interior of dom(f) − dom(g) = {x − y, x ∈
dom(f), y ∈ dom(g)}. Then the duality gap is zero, that is p = −q.

A.1.3 Convex optimisation

This Section will review some basic concepts in convex optimisation. Notice that the main
part of the results reported below are taken from [11] and this reference will be omitted.
Moreover, the attention is narrowed to functions defined on the real space Rn.

The prototypical problem that has to be solved is of the form

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

(A.5)

82 Appendix A. Mathematical Background

with x ∈ Rn and f0, {fi}mi=1, {hi}pi=1 : Rn → R.
The domain is the subset of Rn defined as

D =

m⋂
i=0

dom(fi) ∩
p⋂
i=1

dom(hi) (A.6)

and a point is said to be feasible if it belongs to D. In the following it is assumed D 6= ∅, and
the optimal value of (A.5) will be denoted by p∗.

Definition A.16 (Lagrangian and dual function). The Lagrangian of problem (A.5) is the
functional L : Rn × Rm × Rp → R defined as

L(x;λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (A.7)

where λ and ν are called the dual variables or Lagrange multipliers2.
The Lagrange dual function relative to problem (A.5) is now defined as

g(λ, ν) = inf
x∈D
L(x;λ, ν). (A.8)

The dual function is, by definition, always a lower bound to the optimal value p∗, that is,
for any λ ≥ 0 and ν it holds g(λ, ν) ≤ p∗. Therefore it is of interest finding which is the best
among these possible lower bounds, that will be the solution of the Lagrange dual problem
(whereas (A.5) is referred to as the primal problem)

max
λ,ν

g(λ, ν)

s.t. λ ≥ 0.
(A.9)

A point (λ, ν) is said to be dual feasible if λ ≥ 0 and g(λ, ν) > −∞. Notice that the dual
problem is convex even though the primal is not.

Denoting with d∗ the optimal value of the dual (A.9), then the following inequality holds,
which is called weak duality

d∗ ≤ p∗

and the value p∗ − d∗ is named duality gap. If p∗ = d∗ than strong duality holds and the
duality gap is zero.
Conditions for strong duality to hold are very important for the purpose of solving (A.5).
Suppose that the equality constraints in (A.5) are linear and that f0, . . . , fm are convex, then
the problem becomes

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

Ax = b.

(A.10)

Proposition A.17 (Slater’s conditions). If there exists a point x ∈ rel int(D) such that

fi(x) < 0, i = 1, . . . ,m and Ax = b (A.11)

2Some texts use the inverse of the Lagrange multipliers as they were defined here, therefore subtracting the
constraints in the Lagrangian. The two conventions are clearly equivalent.

A.1. Convex Analysis 83

then strong duality holds3 This is called Slater’s condition.
Moreover, if fi i = 1, . . . , l < m are affine functions, then Slater’s condition can be refined
as

fi(x) ≤ 0, i = 1, . . . , l, fi(x) < 0, i = l + 1, . . . ,m and Ax = b. (A.12)

Remark A.18. Slater’s conditions reduce to the feasibility of a point in rel int(D), that is the
existence of a solution, if all constraints are linear equalities and inequalities and dom(f0) is
open.

If in problem (A.5) the functions f0, . . . , fm are convex and the functions h1, . . . , hp are
affine, then it possible to define the following sufficient condition for optimality of a triple
x∗, λ∗ and ν∗.

Proposition A.19 (Karush-Kuhn-Tucker conditions). If a triple x∗, λ∗ and ν∗ satisfies the
Karush-Kuhn-Tucker (KKT) conditions

fi(x
∗) ≤ 0 i = 1, . . . ,m

hi(x
∗) = 0 i = 1, . . . , p

λ∗i ≥ 0 i = 1, . . . ,m

λ∗i fi(x
∗) = 0 i = 1, . . . ,m

∇f0(x∗) +

m∑
i=1

λ∗i∇fi(x∗) +

p∑
i=1

ν∗i∇hi(X∗) = 0

(A.13)

then x∗ and (λ∗, ν∗) are the primal and dual optimums respectively and the duality gap is
zero.

Remark A.20. If the problem satisfies the Slater’s conditions, then the KKT conditions be-
come necessary and sufficient optimality conditions.

A.1.4 Precursors of the ADMM

This final part of the Section will briefly introduce two algorithms that are precursors of the
ADMM, more details can be found in [10].

Consider problem

min
x

f(x)

s.t. Ax = b
(A.14)

with f : Rn → R a convex function.
The dual ascent algorithm is characterised by the two iterates

x(k + 1) = arg min
x

L(x;λ(k))

λ(k + 1) = λ(k) + αk(Ax(k + 1)− b)

where λ is the vector of Lagrange multipliers and {αk}k∈N, αk > 0, a sequence of step-
sizes. If the cost function is separable, i.e. f(x) =

∑N
i=1 fi(xi) then the dual ascent can be

3The relative interior ofD, denoted with rel int(D) are the points in the interior ofD that lie within the affine

hull aff(D) =
{
α1x1 + . . .+ αlxl

∣∣∣ l > 0, xi ∈ D, αi ∈ R s.t.
∑l
i=1 αi = 1

}
.

84 Appendix A. Mathematical Background

reformulated as

xi(k + 1) = arg min
xi

Li(xi;λ(k))

λ(k + 1) = λ(k) + αk(Ax(k + 1)− b)

which is called the dual decomposition algorithm, where

Li(xi;λ) = fi(xi) + λ>Aixi −
1

N
λ>b.

Notice that an implementation of the dual decomposition cannot be perfectly decentralised
as the vector λ needs to be updated using information from all the agents that compute the
xi’s.

A generalisation of the Lagrangian for problem (A.14) is the so-called augmented La-
grangian defined as

Lρ(x;λ) = f(x) + λ>(Ax− b) +
ρ

2
‖Ax− b‖2 (A.15)

where ρ > 0 is called penalty parameter.
The method of multipliers is now defined applying the dual ascent algorithm to problem
(A.14) but using the augmented Lagrangian

x(k + 1) = arg min
x

Lρ(x;λ(k))

λ(k + 1) = λ(k) + ρ(Ax(k + 1)− b).

To conclude, recall that the classic ADMM (or the R-ADMM with αk = 1/2 for all
k ∈ N, solves problem

min
x,y

f(x) + g(y)

s.t. Ax+By = c

with the iterates

x(k + 1) = arg min
x

Lρ(x, y(k);λ(k))

y(k + 1) = arg min
y
Lρ(x(k + 1), y;λ(k))

λ(k + 1) = λ(k) + ρ(Ax(k + 1) +By(k + 1)− c).

Then the resemblance with the dual ascent is clear, since there is a primal variable minimi-
sation step (divided in two steps, one for the x and one for the y) and a dual variable update
step. Moreover, as in the method of multipliers the step-size used is equal to the penalty
parameter ρ, but in this case the primal update is divided in two steps instead of the single
one

(x(k + 1), y(k + 1)) = arg min
x,y

λρ(x, y;λ(k)), (A.16)

hence the name of alternating direction method.

A.2. Operator Theory 85

A.2 Operator Theory

This Section collects various notions in Operator Theory, some of which have been already
introduced in the main text.

A.2.1 Non-expansive operators

Definition A.21 (Operator). An operator T on the Hilbert space X is a mapping T : X → X
that assigns to each point x ∈ X the corresponding point Tx ∈ X .

Definition A.22 (Non-expansive operators). Let X be a Hilbert space, an operator T : X →
X is said to be non-expansive if it has unitary Lipschitz constant, that is it verifies

‖Tx− Ty‖ ≤ ‖x− y‖

for any two x, y ∈ X .

Definition A.23 (Contractive operators). Let X be a Hilbert space, an operator T : X → X
is said to be contractive if it has Lipschitz constant strictly smaller than one, that is it verifies

‖Tx− Ty‖ ≤ L ‖x− y‖ < ‖x− y‖

with 0 < L < 1 for any two x, y ∈ X .

Clearly contractiveness implies non-expansiveness, but not vice-versa. Note also that some
authors use the term non-expansive to denote in general the class of operators with Lipschitz
constant in (0, 1].

Proposition A.24 ([4, Lemma 4.10]). The composition of two non-expansive operators is a
non-expansive operator itself.

The following class of operators is characterised by even more restrictive properties.

Definition A.25 (Firmly non-expansive operators). Let X be a Hilbert space, an operator
T : X → X is said to be firmly non-expansive if for any x, y ∈ X it satisfies

‖Tx− Ty‖2 + ‖(I − T)x− (I − T)y‖2 ≤ ‖x− y‖2

where I is the identity operator on the Hilbert space X .

Clearly firm non-expansiveness implies non-expansiveness, and moreover the following re-
sult holds.

Proposition A.26 ([3, Proposition 4.2]). Let X be a Hilbert space and let T : X → X . Then
the following are equivalent

(i). T is firmly non-expansive,

(ii). I − T is firmly non-expansive,

(iii). 2T − I is non-expansive,

(iv). ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 for any x, y ∈ X .

Definition A.27 (Averaged operators). Let X be a Hilbert space, let the operator T : X → X
be non-expansive and let α ∈ (0, 1]. Then the operator Tα : X → X defined as Tα =
(1− α)I + αT is said to be averaged or α-averaged.

86 Appendix A. Mathematical Background

Remark A.28. Note that a non-expansive operator is averaged with α = 1, while an operator
is firmly non-expansive if and only if it is 1/2-averaged.

Remark A.29. The α-averaging of a non-expansive operator is sometimes referred to as re-
laxing.

A useful characterisation of α-averaged operators is given by the following Proposition.

Proposition A.30 ([3, Proposition 4.25]). Let T : X → X be a non-expansive operator, then
it is α-averaged if and only if the following inequality holds

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(I − T)x− (I − T)y‖2 (A.17)

for any pair of x, y ∈ X .

A.2.2 Fixed point algorithms

Working with non-expansive operators the objective is often to find their fixed points, partic-
ularly when they are applied to convex optimisation problems.

Definition A.31 (Fixed points of an operator). Let T : X → X be an operator on the Hilbert
space X , then the set of fixed points of T is defined as the set

fix(T) =
{
x ∈ X

∣∣∣ Tx = x
}
.

The set of fixed points satisfies the following property.

Proposition A.32. LetD be a non-empty, closed, and convex subset ofX and let T : D → X
be non-expansive. Then fix(T) is closed and convex.

Before describing some possible fixed point algorithms, i.e. algorithm designed to find
the fixed points of an operator, the following definitions are introduced.

Definition A.33 (Weak and strong convergence). Let {x(k)}k∈N be a sequence of points in
the Hilbert space X . The sequence is said to converge weakly to a point x̄ ∈ X if

〈x(k), y〉 → 〈x̄, y〉 ∀y ∈ X

for k that tends to infinity. Weak convergence will be denoted as x(k) ⇀ x̄.
Moreover, the sequence is said to converge strongly if

‖x(k)− x̄‖ → 0

for k →∞, and this fact will be denoted with x(k)→ x̄.

Definition A.34 (Fejér monotonicity). Let D be a non-empty subset of the Hilbert space X
and let {x(k)}k∈N be a sequence in X . Then the sequence is Fejér monotone with respect to
D if

‖x(k + 1)− x‖ ≤ ‖x(k)− x‖
for all x ∈ X and for all k ∈ N.

Now, the simplest algorithm that can be applied to find the fixed points of an operator is
the Banach-Picard iteration [3, Theorem 1.48], defined as

x(k + 1) = Tx(k). (A.18)

A.2. Operator Theory 87

The sequence {x(k)}k∈N generated by this algorithm can be proved to converge weakly to
a fixed point of the non-expansive operator T if the asymptotic regularity property x(k) −
Tx(k)→ 0 holds [3, Theorem 5.13]. Moreover, if the operator is firmly non-expansive then
the weak convergence to a point in fix(T) is guaranteed [3, Example 5.17].
However if this is not the case, the algorithm might not converge. Therefore the Kras-
nosel’skiı̆-Mann iteration [65, 62] is introduced, which enjoys more robust convergence prop-
erties that impose only the non-expansiveness on the operator. The Krasnosel’skiı̆-Mann
iteration hinges on the following property of the averaged operators.

Proposition A.35. Let T : X → X be a non-expansive operator on the Hilbert space X
and Tα : X → X be the corresponding averaged operator Tα = (1− α)I + αT . Then it is
fix(T) = fix(Tα).

And the definition is given by the following Theorem.

Theorem A.36 (Krasnosel’skiı̆-Mann iteration [3, Theorem 5.14]). Let D be a non-empty,
closed, convex subset of the Hilbert space X , let T : D → D be a non-expansive operator
such that fix(T) 6= ∅. Moreover, let {αk}k∈N be a sequence in [0, 1] such that∑

k∈N
αk(1− αk) = +∞. (A.19)

The Krasnosel’skiı̆-Mann iteration is defined as

x(k + 1) = (1− αk)x(k) + αkTx(k) (A.20)

with initial condition x(0) ∈ D.
The following results hold for the sequence of points generated by the Krasnosel’skiı̆-Mann
iteration.

(i). {x(k)}k∈N is Fejér monotone with respect to fix(T),

(ii). {Tx(k)− x(k)}k∈N converges strongly to 0,

(iii). {x(k)}k∈N converges weakly to a point in fix(T).

This result therefore ensures that the Krasnosel’skiı̆-Mann iteration of a non-expansive
operator converges (weakly) to a fixed point of said operator, given a suitable sequence of
step-sizes {αk}k∈N.

Remark A.37. The Krasnosel’skiı̆-Mann iteration (A.20) at each time instant k essentially
evaluates the αk-averaged operator of T in the current state x(k).
Moreover, the convergence result is satisfied in particular by a sequence of step-sizes αk = α
for a constant α. In this case the Krasnosel’skiı̆-Mann iteration of operator T coincides with
the Banach-Picard iteration of the α-averaged operator Tα.

Remark A.38. Result (ii). implies that the asymptotic regularity property required for the
Banach-Picard iteration to converge is satisfied by the Krasnosel’skiı̆-Mann iteration.

A.2.3 Proximal algorithms

Definition A.39 (Proximal and reflective operators). Let X be a Hilbert space, let f : X →
R ∪ {+∞} be a closed, proper, convex function and let ρ > 0. The proximal operator, or
proximity operator, of f with penalty ρ is the operator proxρf : X → X defined as

proxρf (x) = arg min
y∈X

{
f(y) +

1

2ρ
‖x− y‖2

}
. (A.21)

88 Appendix A. Mathematical Background

Moreover, the reflective operator of f is defined as

reflρf = 2 proxρf −I. (A.22)

Proposition A.40. The proximal operator is firmly non-expansive and the reflective operator
is non-expansive.

Proof. The first result is proved in [3, Proposition 12.27] and the second is a consequence of
Proposition A.26.

In the following are reported some properties of and results about the proximal operator,
for the proofs and more details see [76, 27, 24].

Proposition A.41 (Translation, scaling, reflection). Let f be closed, proper, and convex, and
let y ∈ X , then the proximal operator of f(x− y) is

y + proxρf (x− y).

Let β ∈ R \ {0}, then the proximal of f(x/β) is

β proxρf/β2

(
x

β

)
.

Finally, the proximal operator of f(−x) is

−proxρf (−x).

Proposition A.42 (Separable functions). If the closed, proper, convex function f is separable
across two variables, i.e. f(x, y) = ϕ(x) + ψ(y), then it holds

proxρf (x, y) =
(
proxρϕ(x),proxρψ(y)

)
.

Moreover, if it is fully separable, that is f(x) =
∑n

i=1 fi(xi), then

[proxρf (x)]i = proxρfi(xi).

Proposition A.43 (Affine transformation). Let f : X → R ∪ {+∞} be a closed, proper,
convex function. The proximal of the affine transformation af(x) + b with a > 0 is

proxaρf (x).

Proposition A.44 (Quadratic perturbation). Let f be closed, proper and convex, let a ≥ 0
and β ∈ R. Then the proximal operator of the quadratic perturbation f(x) + a ‖x‖2 /2 +
u>x+ β is

proxρf/(a+1)

(
x− u
a+ 1

)
. (A.23)

In order to gain a better understanding of proximal operators, in the following the main
two aspects of their effect are discussed.
First of all, the proximal operator maps the points that are outside the domain of the function
f : X → R ∪ {+∞} it is applied to onto the closest point on the boundary of dom(f). This
is a consequence of the fact that points outside the domain of f will be penalised with an
infinite cost by f , and therefore the proximal operator will minimise this cost by selecting a
point that does not violate the domain, and this point will be the closest possible because of

A.2. Operator Theory 89

the norm ‖x− y‖2 /(2ρ) that is part of the cost function. The following Example clarifies
this description by looking at the proximal operator of the indicator function of four convex
sets.

Example A.3. Let C be a convex set and define the corresponding indicator function as

ιC(x) =

{
0 if x ∈ C,
+∞ otherwise.

(A.24)

The proximal operator of ιC(x), indicated for short as proxC(x), is the projection operator
on the set C defined as

proxC(x) = PC(x) = arg min
y∈C

{
1

2
‖y − x‖2

}
. (A.25)

Some examples of projection operators follow, which are depicted in Figure A.2. In the
figures, the thick lines represent the boundaries of each set C, while the arrows map points
outside the set C onto points on its boundary.

• C = {x ∈ X | ‖x‖2 ≤ 1}, see Fig. A.2a:

P2(x) =

{
x ‖x‖2 ≤ 1
x
‖x‖2 otherwise.

• C = {x ∈ X | ‖x‖∞ ≤ 1}, see Fig. A.2b:

[P∞(x)]i = min{max{xi,−1}, 1}.

• C = {x ∈ X | ‖x‖1 ≤ 1}, see Fig. A.2c:

[P1(x)]i =

{
xi ‖x‖1 ≤ 1

sign(xi) max{|xi| − λ, 0} otherwise

where λ is the solution of
∑n

i=1 max{|xi| − λ 0} = 1.

• C = {x ∈ X | x ≥ 0}, see Fig. A.2d:

P+(x) = max{x, 0}.

Secondly, suppose that the proximal operator is applied to a point inside the domain of f .
Then the operator will draw this point closer to the minimum of f , since it is effectively
minimising f , but because of the 2-norm term the amount by which the point is shifted will
depend on the penalty parameter ρ. Indeed the larger the penalty parameter is, the more the
point will be drawn closer to the minimum since the penalty term weights increasingly less.
The following Example represents this effect of the proximal operator.

Example A.4. Consider the simple quadratic cost f(x) = ax2, it is easily verified that
proxρf (x) = x/(2ρ + 1), which indeed draws x closer to the origin each time it is applied.
Figure A.3 depicts the repeated application of the proximal operator for the quadratic func-
tion. The extent by which the point is drawn closer to the minimum depends on the penalty ρ,
with larger values that correspond to points mapped closer, which in this example is an effect
of proxf depending on the inverse of ρ.

90 Appendix A. Mathematical Background

(A) C = {x ∈ R2 | ‖x‖2 ≤ 1}. (B) C = {x ∈ R2 | ‖x‖∞ ≤ 1}.

(C) C = {x ∈ R2 | ‖x‖1 ≤ 1}. (D) C = {x ∈ R2 | x1 ≥ 0}.

FIGURE A.2: Action of the proximal operator for the indicator function of
some particular sets.

In case the proximal of the convex conjugate f∗ is easier to compute than that of f , the
Moreau decomposition is a very useful result.

Definition A.45 (Moreau decomposition [76]). Let f : X → R∪{+∞} be a closed, proper,
convex function, then the Moreau decomposition holds for any point x ∈ X

x = proxρf (x) + ρproxf∗/ρ(x/ρ). (A.26)

Remark A.46. Notice that the Moreau decomposition generalises the orthogonal decompo-
sition induced by a subspace, which states that a vector can be expressed as the sum of its
projection onto a subset and onto the corresponding orthogonal subset.

The following Proposition links proximal operators and convex optimisation problems,
hence highlighting the importance of this class of non-expansive operators.

Proposition A.47. Let f : X → R ∪ {+∞} be a closed, proper, convex function. Then a
point x∗ is a minimiser of f if and only if it is a fixed point of proxρf .

Proposition A.47 suggests that in order to solve a convex optimisation problem with cost
function f it is sufficient to find the fixed points of the corresponding proximal operator.

A.2. Operator Theory 91

x

f(·)

proxf (·)

x0

x1

x1

x2

x2

x3

x3

. . .

FIGURE A.3: Proximal operator for a scalar quadratic function.

Hence the focus is shifted from an optimisation problem to a fixed point problem, which
can be solved with the algorithms described in A.2.2. And since the operator is a proximal
operator, these algorithms go under the name of proximal algorithms.

To conclude this section the proximal point algorithm (PPA) [89] is introduced, which
historically is the first proximal point to have been proposed.

Theorem A.48 (Proximal point algorithm [3, Theorem 27.1]). Let f : X → R ∪ {+∞} be
closed, proper and convex. Let {αk}k∈N be a sequence in R+ such that

∑
k∈N αk = +∞

and let x(0) ∈ X . Then the proximal point algorithm is defined as

x(k + 1) = proxαkf (x(k)) (A.27)

and is guaranteed to converge weakly to a minimiser of f .

Remark A.49. Notice that if the sequence {αk}k∈N is such that αk = α for any k ∈ N, then
the PPA corresponds to the Banach-Picard iteration (A.18) applied to the proximal operator
proxαf .

A.2.4 Splitting operators

The main issue with the PPA is that at each iteration it requires to compute the proximal
operator of f , which might be quite difficult and time consuming, depending on the structure
of the function.

Many convex optimisation problems, however, have a structure amenable to the imple-
mentation of more efficient algorithms. Indeed, in particular in Machine Learning applica-
tions [80], the problems that need solving are characterised by an objective function that can
be split into the sum of two terms

min
x∈X

{f(x) + g(x)} (A.28)

with f and g closed, proper and convex. A first approach to finding the solution might be to
simply apply the PPA to the function F (x) = f(x) + g(x). However this is not always an
efficient solution, because as noted above the proximal operator of function F (x) might be
very difficult to compute.

92 Appendix A. Mathematical Background

Therefore a different approach relies instead on the so-called splitting operators, which lever-
age the separability of the cost function in order to define a series of smaller and simpler steps
to be performed at each iteration.

Peaceman-Rachford splitting

An important class of splitting operators, particularly for their relationship with the ADMM,
is centred on the Peaceman-Rachford operator [78] defined as

TPR = reflρf ◦ reflρg . (A.29)

Consider now the sequence of step-sizes {αk}k∈N satisfying property (A.19), applying the
Krasnosel’skiı̆-Mann iteration to the PR operator yields the so-called Relaxed Peaceman-
Rachford Splitting (R-PRS) scheme

z(k + 1) = (1− αk)z(k) + αkTPR(z(k)) (A.30)

where z is an auxiliary variable from which the optimum of problem (A.28) can be computed
according to x∗ = proxρg(z

∗) with z∗ a fixed point of TPR.
A possible implementation of the R-PRS is given by the following equations4

ψ(k) = proxρg(z(k)) (A.31)

ξ(k) = proxρf (2ψ(k)− z(k)) (A.32)

z(k + 1) = z(k) + 2αk (ξ(k)− ψ(k)) (A.33)

This scheme splits the computational effort between the two steps (A.31) and (A.32), unlike
the PPA (A.27), taking advantage of the particular structure of (A.28).

Finally, there are two more splitting schemes based on the PR operator: the Douglas-
Rachford Splitting (DRS) [36] and the Peaceman-Rachford Splitting (PRS) [78]. Both can be
derived from the R-PRS with the particular choice of step-sizes αk = 1/2 and αk = 1, for
all k ∈ N, respectively.

Remark A.50. The DRS therefore can be defined as the Banach-Picard iteration of the oper-
ator TDR = (I + TPR)/2 while the PRS as the Banach-Picard iteration of TPR.

Forward-backward splitting

A splitting scheme that is not based on the Peaceman-Rachford operator is the so-called
forward-backward splitting (FBS).
Suppose that in problem (A.28) the function f is continuously differentiable and that its
gradient is Lipschitz continuous with Lipschitz constant γ5. Then the forward-backward
operator is defined as

TFB = proxηg ◦ (I − η∇f) (A.34)

where η ∈ (0, 2/γ], and can be shown to be αFB-averaged [31] with

αFB =
1

2− ηγ/2 .

4See Section 2.2 for the proof.
5A function h : X → X is said to be Lipschitz continuous with constant γ if it verifies ‖h(x)− h(y)‖ ≤

γ ‖x− y‖ for any x, y ∈ X .

A.3. Subdifferentiability 93

The FBS is therefore characterised by the Krasnosel’skiı̆-Mann iterate of TFB and can be
shown to converge to a minimum of problem (A.28) if the step-sizes are a sequence in [0, δ]
with δ = min{1, 1/(γη)}+ 1/2 such that

∑
k∈N αk(δ − αk) = +∞ [3].

Remark A.51. The FBS is sometimes defined as the Banach-Picard iterate of the TFB oper-
ator, and the Krasnosel’skiı̆-Mann iterate of TFB is referred to as generalised FBS.
Moreover, it is possible to vary the parameter η at each instant, provided that each element in
the sequence {ηk}k∈N lies in (0, 2/γ].

From the FBS it is possible to derive the proximal point algorithm in the particular case
of f = 0, and also the gradient method [24]

x(k + 1) = x(k)− η∇f(x(k)) (A.35)

in the case of g = 0. For this reason the FBS is sometimes referred to as the proximal
gradient method.

Figure A.4 depicts the web of connections that links the fixed point algorithms that were
introduced in this Section, highlighting the conditions to derive one from the other.

A.3 Subdifferentiability

Many notions and results in convex optimisation with non-smooth functions and operator
theory are tied to the concept of subdifferential, which is introduced in this Section.

Definition A.52 (Subdifferential). Let f : X → R ∪ {+∞} be proper. The subdifferential
of f is the set-valued operator

∂f : X → 2X : x 7→ {u ∈ X | 〈y − x, u〉+ f(x) ≤ f(y) ∀y ∈ X} . (A.36)

Let x ∈ X , then f is subdifferentiable at x if ∂f(x) 6= ∅. The elements of ∂f(x) are the
subgradients of f at x.

By the definition it follows that a vector u ∈ X is a subgradient of the proper function f at
x ∈ dom(f) if the continuous affine functional y 7→ 〈y − x, u〉 + f(x), which coincides
with f(x) at x, minorises f . That is, u is the “slope” of a continuous affine minorant of f
that coincides with f at x. Figure A.5 gives a graphical representation of this interpretation
of subdifferential.
Note that in general there can be more than one subgradient at a point x ∈ dom(f), and
indeed in the Figure there are many possible lines that underestimate f with different slopes.

The importance of subdifferentiation in convex analysis is highlighted by the following
Theorem.

Theorem A.53 (Fermat’s rule [3, Theorem 16.2]). Let f : X → R∪ {+∞} be proper. Then

arg min f = zer ∂f = {x ∈ X | 0 ∈ ∂f(x)}.

Therefore finding the minimisers of a proper function f is equivalent to finding the zeros
of the subdifferential ∂f of f . There is an analogy with the case of differentiable functions,
in which a necessary condition for a point to be a minimiser of f is that the gradient be zero
in that point.

In the following some properties of the subdifferential are reported that hold in general
for convex and non-convex functions.

Proposition A.54 ([3, Proposition 16.3]). Let f : X → R ∪ {+∞} be proper and let
x ∈ dom(f). Then the following hold

94 Appendix A. Mathematical Background

B
anach-Picard

iteration
x

(k
+

1)
=
T
x

(k
)

K
rasnosel’skiı̆-M

ann
iteration

x
(k

+
1)

=
(1−

α
)x

(k
)

+
α
T
x

(k
)

Proxim
alpointalgorithm

x
(k

+
1
)

=
p

rox
(x

(k
))

R
elaxed

PR
S

x
(k

+
1)

=
(1−

α
)x

(k
)

+
α
T
P
R
x

(k
)

Peacem
an-R

achford
splitting

x
(k

+
1)

=
T
P
R
x

(k
)

w
ith

T
P
R

=
refl

f ◦
refl

g

D
ouglas-R

achford
splitting

x
(k

+
1)

=
12
x

(k
)

+
12
T
P
R
x

(k
)

Forw
ard-B

ackw
ard

splitting
x

(k
+

1)
=
T
F
B
x

(k
)

w
ith

T
F
B

=
p

rox
f ◦(I−

∇
g
)

on
averaged

operators
on

p
rox

on
T
P
R

α
=

1
α

=
1/

2

g
=

0

on
T
F
B

F
IG

U
R

E
A

.4:
R

elationships
betw

een
fixed

pointalgorithm
s.

A.3. Subdifferentiability 95

X

R

f(·)

〈· − x, u〉+ f(x)

f(x)

x

u

FIGURE A.5: Graphical representation of subdifferential.

(i). dom(∂f) ⊂ dom(f),

(ii). ∂f(x) is closed and convex.

Proposition A.55. Let f : X → R ∪ {+∞} be proper, let x, u ∈ X . Then u ∈ ∂f(x) if and
only if f(x) + f∗(u) = 〈x, u〉, which in turn implies that x ∈ ∂f∗(u).

Which means that the subgradients of f at x are those points u for which the Fenchel-
Young inequality (A.3) becomes an equality.

Example A.5. The following properties hold.

• Let f = 1
2 ‖·‖

2 then ∂f = I .

• Let f = ‖·‖1 then

∂ ‖·‖1 (x) =

{
x
‖x‖1

, if x 6= 0

B(0; 1), if x = 0

where B(0; 1) is the ball of unitary radius centred in the origin.

If f is closed, proper and convex, then stronger results hold for the subdifferential.

Proposition A.56. Let f be a closed, proper and convex function. Then (∂f)−1 = ∂f∗.

Example A.6. Let f be a closed, proper and convex function and let γ > 0. Then

∂
(
f + (γ/2) ‖·‖2

)
= ∂f + γI.

The following important Proposition shows the interpretation of the proximal operator in
terms of the subdifferential of a convex function.

96 Appendix A. Mathematical Background

Proposition A.57. Let f be closed, proper and convex, let x, u ∈ X and let ρ > 0. Then

u = proxρf (x) ⇔ 1

ρ
(x− u) ∈ ∂f(u) (A.37)

or equivalently
proxρf = (I + ρ∂f)−1. (A.38)

As mentioned already, often it is required to minimise the sum of two convex functions,
which can be simplified by the following property.

Proposition A.58. Let f, g be closed, proper and convex functions such that one of the fol-
lowing holds

(i). dom(f) ∩ int dom(g) 6= ∅,

(ii). dom(g) = X .

Then ∂(f + g) = ∂f + ∂g.

Remark A.59. Notice that if g is continuously differentiable, then Proposition A.58 states
that

∂(f + g)(x) = ∂f(x) +∇g(x) = {y +∇g(x) | y ∈ ∂f(x)}
that is, the subgradients of f at each point x are translated by a quantity equal to∇g(x).

Also very useful in practice is the next Proposition.

Proposition A.60. Let f : Rn → R ∪ {+∞} be closed, proper and convex and let matrix
A ∈ Rm×n. Then ∂(f ◦A) = A>(∂f ◦A).

Turning now to convex optimisation, the gradient method defined in (A.35) above re-
quires the objective function to be smooth. If this is not the case, subdifferential theory has
been leveraged in order to design the so-called sub-gradient method, which substitutes the
necessity of computing the gradient with that of computing a subgradient.

A.4 Monotone Operators

The previous Sections highlighted the relationship between convex optimisation, fixed point
algorithms and subdifferentiability. A different framework in which these problems and many
of the results reported in A.2.4 can be recast is the theory of monotone operators.

Definition A.61 (Set-valued operator). Let X be a real Hilbert space, a set-valued operator
A maps each element of X into a set of elements in X , and is indicated with A : X ⇒ X or
sometimes A : X → 2X .

Remark A.62. Note that set-valued operators are different from the operators defined in A.21
because the latter are maps from one point to another of the Hilbert space, while the former
map in principle to a set of points.

Remark A.63 (Nomenclature). Some authors call set-valued operators simply operators and
the one-to-one operators of Definition A.21 mappings. In the following when clear from the
context the ‘set-valued’ modifier will be dropped.

Definition A.64 (Graph). A set-valued operator A : X ⇒ X on the Hilbert space X is
uniquely described by its graph, defined as

gr(A) = {(x, u) ∈ X × X | u ∈ A(x)}. (A.39)

A.4. Monotone Operators 97

Definition A.65 (Domain). The domain of a set-valued operator A : X ⇒ X on the Hilbert
space X is defined as

dom(A) = {x ∈ X | A(x) 6= ∅}. (A.40)

Definition A.66 (Zeros). The zeros of a set-valued operator A : X ⇒ X are defined as

zer(A) = {x ∈ X | 0 ∈ A(x)}. (A.41)

The following Definitions will be important for drawing a parallel between set-valued
operator theory and convex optimisation.

Definition A.67 (Monotone set-valued operators). A set-valued operator A : X ⇒ X is said
to be monotone if for any (x, u), (y, v) ∈ gr(A) it holds that

〈x− y, u− v〉 ≥ 0. (A.42)

Definition A.68 (Maximal monotone set-valued operators). Formally a monotone set-valued
operator A : X ⇒ X is said to be maximal monotone, or maximally monotone, if gr(A)
is not a proper subset of the graph of any other monotone operator. This definition means
that there does not exist another monotone operator B : X ⇒ X such that gr(B) properly
contains gr(A), that is for any (x, u) ∈ X × X

(x, u) ∈ gr(A) ⇔ 〈x− y, u− v〉 ≥ 0 for any (y, v) ∈ X × X . (A.43)

In other words it is not possible to find a point (x, u) ∈ X × X for which is verified the
condition of A.67 that does not belong to the graph of A.

Figure A.6 gives a graphical representation of monotone and maximally monotone set-
valued operators with X = R.

Example A.7. The subdifferential of a proper function f is monotone, and it is maximally
monotone if f is also closed and convex.

Definition A.69 (Inverse of set-valued operator). Let A : X ⇒ X be a set-valued operator,
the inverse operator is the operator A−1 such that x ∈ A−1(u) if and only if u ∈ A(x) for
any pair (x, u) ∈ X × X .

Definition A.70 (Resolvent and reflected resolvent). The resolvent of a monotone operator
A : X ⇒ X is defined as

JA = (I +A)−1, (A.44)

and the reflected resolvent as RA = 2JA − I .

An important example of resolvent operator is

Jρ∂f = proxρf (A.45)

for a closed, proper and convex function f : X → R. In this case therefore Rρ∂f = reflρf .
In the following some properties of the resolvent operator are reported.

Proposition A.71. Let A : X ⇒ X be a monotone set-valued operator, then JA is single-
valued, meaning that it is a mapping, and non-expansive. Moreover if A is maximal then

(i). dom(JA) = X ,

(ii). JA and I − JA are firmly non-expansive and maximal monotone both,

98 Appendix A. Mathematical Background

(A) Non-monotone operator. (B) Monotone but not maximal.

(C) Maximal monotone operator, example 1. (D) Maximal monotone operator, example 2.

FIGURE A.6: Some examples of set-valued operators with different proper-
ties.

A.4. Monotone Operators 99

(iii). the reflected resolvent RA is non-expansive.

Proposition A.72 (Resolvent identity). The resolvent of a monotone set-valued operator
satisfies the identity JA + JA−1 = I . If A is the subdifferential of a closed, proper and
convex function then this identity implies the Moreau decomposition A.45.

Minty’s theorem traces now a first parallel between monotone set-valued operators and
firmly non-expansive operators.

Theorem A.73 (Minty [4, Fact 1.2]). Let T : X → X be a firmly non-expansive operator
(or mapping), A : X ⇒ X a maximally monotone set-valued operator. Then

(i). B = T−1 − I is maximally monotone and JB = T ,

(ii). JA is firmly non-expansive and A = J−1
A − I .

Corollary A.74. An operator T : X → X is firmly non-expansive if and only if it is the
resolvent of a maximally monotone set-valued operator A : X ⇒ X .

Proposition A.75. Let T : X → X be an α-averaged operator, then it is also monotone.
Moreover, if α ∈ (0, 1/2] then it is maximally monotone.

The following result draw a parallel between fixed point algorithms and monotone oper-
ator theory.

Proposition A.76. Let A : X ⇒ X be monotone, then fix(JA) = zer(A).

Proposition A.77. Let A,B : X ⇒ X be monotone set-valued operators, then

zer(A+B) = JρB (fix(RρARρB)) (A.46)

where the “relaxed” resolvent is defined as JρA = (I + ρA)−1.

Finally the Peaceman-Rachford splitting defined above can be formulated in term of
monotone operators.

Proposition A.78 (Peaceman-Rachford splitting for monotone operators [3, Theorem 25.6]).
Let A,B : X ⇒ X be maximally monotone operators such that zer(A + B) 6= ∅. Let
{αk}k∈N be a sequence in [0, 1] such that

∑
k∈N αk(1−αk) = +∞, let ρ > 0 and x(0) ∈ X .

The Peaceman-Rachford splitting is characterised by the iterates

ψ(k) = JρB(z(k))

ξ(k) = JρA(2ψ(k)− z(k))

z(k + 1) = z(k) + 2αk(ξ(k)− ψ(k))

and there exists z∗ ∈ fix(RρARρB) such that

(i). JρB(z∗) ∈ zer(A+B),

(ii). {z(k)}k∈N weakly converges to z∗,

(iii). {ξ(k)}k∈N and {ψ(k)}k∈N weakly converge to JρB(z∗).

101

Appendix B

Stochastic Krasnosel’skiı̆-Mann
Iteration

The following Appendix will review in detail the stochastic Krasnosel’skiı̆-Mann iteration (s-
KM) employed in Chapter 4 to prove the convergence of the randomised ADMM. The s-KM
consists in a Krasnosel’skiı̆-Mann iteration in which the subset of co-ordinates to be updated
is randomly chosen at each step according to some probability space, and the Theorem stated
and proved below guarantees that this fixed point algorithm indeed converges to a fixed point
of the operator to which it is applied.
A first formulation of the s-KM that performs the update of a single random co-ordinate
at each instant was presented in [57], and then further extended to the update of a random
subset of co-ordinates in [7]. Note that similar results are derived in [25, 26] making use
of the quasi-Fejér monotonicity concept, and allowing for each update to be inexact due to
random errors.

Let T : X → X be a γ-averaged operator, with X a finite real Hilbert space and γ ∈
(0, 1]. LetM = {1, . . . ,M} be the set of indices denoting the co-ordinates of each element
in the Hilbert space X , and 2M be the set of all possible combinations of elements inM.
The first step is to define a new operator that allows for the averaged operator T to be applied
to only a subset of co-ordinates. With µ ∈ 2M the collection of indices inM denoting which
co-ordinates to updated, define the operator T (µ) : X → X such that

[T (µ)x]i =

{
Tix if i ∈ µ
xi otherwise.

(B.1)

Moreover, let (Ω,F ,P) be a probability space and define over it the random i.i.d. sequence
{µk}k∈N such that µk : Ω→ 2M. Suppose that the following assumption holds.

Assumption B.1. For any i ∈ M there exists a set µ ∈ 2M such that P[µ1 = µ] > 0 holds
for the sequence {µk}k∈N.

Then the s-KM iteration is defined as

x(k + 1) = (1− αk)x(k) + αkT
(µk+1)x(k) (B.2)

and the following Theorem guarantees its probabilistic convergence to a fixed point of the
operator T .

Theorem B.2 ([7, Theorem 3]). Let T : X → X be a γ-averaged operator with fix(T) 6= ∅.
Assume that for all k ∈ N the sequence of step-sizes {αk}k∈N satisfies

0 < lim inf
k

αk ≤ lim sup
k

αk <
1

γ
. (B.3)

102 Appendix B. Stochastic Krasnosel’skiı̆-Mann Iteration

Let {µk}k∈N be a random i.i.d. sequence on 2M for which Assumption B.1 holds.
Then for any deterministic initial condition x(0) ∈ X the stochastic KM iteration (B.2)
converges almost surely to a random vector with support in fix(T).

Remark B.3. Assumption B.1 requires that the random sequence of subsets of co-ordinates
to be updated guarantees that any co-ordinate can be selected with a non-zero probability at
the first iteration of the s-KM. The need for this rather technical condition will be clear in the
following proof.

Remark B.4. The Theorem states that the s-KM produces with probability one a point that
belongs to the set fix(T) therefore solving the fixed point problem. The probability distribu-
tion describing the likelihood of one fixed point to be the result of the s-KM depends on the
particular structure of the probability space (Ω,F ,P) and the initial condition x(0).

Proof. Let U = (1 − αk)I + αkT , by the properties of averaged operators [3] and the fact
that T is γ-averaged, then U is (αkγ)-averaged. Defining U (µ) = (1−αk)I+αkT

(µ), where
the time index of µk+1 is omitted for simplicity, the s-KM can be rewritten as x(k + 1) =
U (µ)x(k).
Let pµ = P[µ1 = µ] for any µ ∈ 2M and define the new inner product x•y =

∑M
i=1 qi〈xi, yi〉

where q−1
i =

∑
µ∈2M pµιi∈µ with ιi∈µ = 1 if i ∈ µ, 0 otherwise. The corresponding norm

will be denoted as |||x|||2 = x • x.
Conditionally to the sigma-field Fk = σ(µ1, . . . , µk), that is, on the past history of the

selected co-ordinates subsets, the following chain of equality holds.

E
[
|||x(k + 1)− x∗|||2

∣∣Fk] =
∑
µ∈2M

pµ

∣∣∣∣∣∣∣∣∣U (µ)x(k)− x∗
∣∣∣∣∣∣∣∣∣2

=
∑
µ∈2M

pµ
∑
i∈µ

qi ‖Uix(k)− x∗i ‖2 +
∑
µ∈2M

pµ
∑
i 6∈µ

qi ‖xi(k)− x∗i ‖2

=
∑
µ∈2M

pµ
∑
i∈µ

qi

(
‖Uix(k)− x∗i ‖2 − ‖xi(k)− x∗i ‖2

)
+ |||x(k)− x∗|||2

=
M∑
i=1

(
‖Uix(k)− x∗i ‖2 − ‖xi(k)− x∗i ‖2

)
+ |||x(k)− x∗|||2

=
(
‖Ux(k)− x∗‖2 − ‖x(k)− x∗‖2

)
+ |||x(k)− x∗|||2

where the definition of |||·|||2 was used to derive the second equality and to derive the third the
term

∑
µ∈2M pµ

∑
i∈µ qi ‖xi(k)− x∗i ‖2 was added and subtracted. Moreover, the second to

last equation was derived applying the definition of the coefficients qi.

Remark B.5. Note that the technical condition of Assumption B.1 ensures that each coeffi-
cient q−1

i be strictly positive, and thus to avoid a division by zero.

Since U is an (αkγ)-averaged operator obtained by averaging the operator T , then the
set of fixed points of U coincides with that of T , see Proposition A.35, and so x∗ fix(U).
Moreover, by Proposition A.30 it holds that

‖Ux(k)− x∗‖2 − ‖x(k)− x∗‖2 ≤ −1− αkγ
αkγ

‖(I − U)x(k)‖2

and by the fact that I − U = αk(I − T) it follows

E
[
|||x(k + 1)− x∗|||2

∣∣Fk] ≤ |||x(k)− x∗|||2 − αk(1− αkγ) ‖(I − T)x(k)‖2 (B.4)

Appendix B. Stochastic Krasnosel’skiı̆-Mann Iteration 103

which proves that the sequence of distances from the fixed point |||x(k)− x∗|||2 is a non-
negative supermartingale with respect to the filtration Fk. Therefore it has been proved that
the sequence |||x(k)− x∗|||2 converges with probability one towards a random vector that is
finite almost everywhere.
In practice this result implies that the expected value of the error at time k+ 1 is smaller than
the value of the error at the previous step, which means that the error is decreasing almost
surely and moreover, by [86, Theorem 1], that it converges to a finite value1.

The following part of the proof aims now to exploit inequality (B.4) to show that indeed
the sequence {x(k)}k∈N converges to a single fixed point of T with probability one.
Consider a countable dense subset X of fix(T), then by the result obtained above, for any
x̄ ∈ X there is a probability one set on which |||x(k)− x̄||| → dx̄ ∈ [0,∞).
Let ε > 0 and pick x̄ ∈ X such that |||x− x̄||| ≤ ε, with probability one therefore it follows
that

|||x(k)− x∗||| ≤ |||x(k)− x̄|||+ |||x̄− x∗||| ≤ dx̄ + 2ε (B.5)

for k sufficiently large. Similarly, |||x(k)− x∗||| ≥ dx̄ − 2ε for k large enough. Since these
results hold for any x∗ ∈ fix(T) and by the fact that dx̄ ∈ [0,∞), it follows that

R1 there is a probability one set on which |||x(k)− x∗||| converges for every x∗ ∈ fix(T).

This is a consequence of the fact that the error |||x(k)− x∗||| has an upper and lower bounds
almost everywhere finite and arbitrarily close to dx̄, since ε can be any infinitesimally small
positive number.

Taking the expectation on both sides of inequality (B.4) and iterating it in time for k that
goes to infinity, the following inequality can be derived

∞∑
k=0

αk(1− αkγ)E[‖(I − T)x(k)‖2] ≤ |||x(0)− x∗|||2. (B.6)

By condition (B.3) the step-sizes are positive numbers strictly smaller than one and hence∑∞
k=0 αk(1 − αkγ) = +∞. This in turn implies that E[‖(I − T)x(k)‖2] is finite since in

the inequality (B.6) the right-hand side is finite. Furthermore, by Markov’s inequality and
Borel-Cantelli’s lemma the following result is proved

R2 (I − T)x(k)→ 0 almost surely.

So far result R1 proves that the error |||x(k)− x∗||| is bounded, while result R2 that the
accumulation points of the sequence {x(k)}k∈N are in the set fix(T), since T is continu-
ous because it is averaged. The last step is then to prove that the accumulation points of
{x(k)}k∈N reduce to one single point to prove that indeed the sequence converges with prob-
ability one to a fixed point of T .
But assume that x̄∗ is an accumulation point, then by R1 the error |||x(k)− x̄∗||| converges,
which means that lim |||x(k)− x̄∗||| = lim inf |||x(k)− x̄∗||| = 0 proving that x̄∗ is unique.

1Note that this theorem is central in the proof of convergence of the asynchronous optimisation algorithm
ARock [79].

105

Appendix C

Security Analysis of ADMM

This Appendix briefly outlines a possible exploit that could be used to compromise the pri-
vacy of the data held by one node at the hand of a malicious node or man-in-the-middle
attacker. It has no pretence of being a thorough investigation, but only a demonstration that
the ADMM in the formulation of Algorithm 1 might have some security flaws.
Hereafter the attention is restricted to the case of quadratic cost functions with scalar primal
variables xi, that is

fi(xi) = aix
2
i + bixi + ci, ai, bi, ci ∈ R. (C.1)

Moreover, the step-size is assumed to be constant throughout all computations.
The objective of an attacker is therefore to reconstruct the data ai and bi by using the (possibly
intercepted) transmissions qi→j(k) sent by node i to each of its neighbours j ∈ Ni.

Recalling Algorithm 1 and using the costs (C.1), the iterates of the Algorithm become

xi(k) =
1

2ai + ρ|Ni|

∑
l∈Ni

zli(k)− bi

 (C.2)

zji(k + 1) = (1− α)zji(k) + αqj→i(k) (C.3)

where
qi→j(k) = −zji(k) + 2ρxi(k). (C.4)

Notice that the data ai and bi play a role only in the update (C.2), while the an attacker can
get hold of the packets qi→j’s only. Moreover it is assumed that the attacker knows the qj→i
packets sent by the neighbours of i, either because the attacker is a neighbour or because
tapping the channel between i and j gives access to both ingoing and outgoing data.

Plugging (C.2) into (C.4) and rearranging the terms yields

2aiqi→j(k) + zji(k)− 2ρ
∑
l∈Ni

zli(k) + 2ρbi = −ρ|Ni|qi→j(k) = c(k) (C.5)

where c(k) is known to the attacker and the terms on the left-hand side are not.

Reconstruction of ai In order to reconstruct ai the attacker needs only to control two of
i’s neighbours, thanks to the following scheme.
Consider (C.5) from the point of view of neighbours j and m

2aiqi→j(k) + zji(k)− 2ρ
∑
l∈Ni

zli(k) + 2ρbi = cj(k)

2aiqi→m(k) + zmi(k)− 2ρ
∑
l∈Ni

zli(k) + 2ρbi = cm(k)

106 Appendix C. Security Analysis of ADMM

and subtracting them it follows

2ai(qi→j(k)− qi→m(k)) + (zji(k)− zmi(k)) = cj(k)− cm(k). (C.6)

Now consider that (C.3) holds and substitute it into (C.6) evaluated at time k + 1, which
yields

2ai(qi→j(k + 1)− qi→m(k + 1)) + (1− α)(zji(k)− zmi(k)) =

= cj(k)− cm(k)− α(qj→i(k)− qm→i(k))
(C.7)

where by the assumptions the right-hand side is known.
Finally, (C.6) and (C.7) are two equations in the two unknowns ai and (zji(k)− zmi(k))

and the objective of reconstructing ai is achieved.

Reconstruction of bi As in the case of ai, the attacker needs only to hijack, or intercept
transmission to and from, two neighbours of i.
Plugging (C.3) into (C.5) evaluated at time k + 1, and assuming that ai has already been
computed, yields

(1− α)zji(k)− 2ρ
∑
l∈Ni

zli(k + 1) + 2ρbi = dj(k + 1). (C.8)

Moreover (zji(k) − zmi(k)) = e(k) is known, by the procedure above. Hence evaluating
equation (C.8) for neighbours j and m gives the following system of two equations

(1− α)zmi(k)− 2ρ
∑
l∈Ni

zli(k + 1) + 2ρbi = dj(k + 1)− (1− α)e(k)

(1− α)zmi(k)− 2ρ
∑
l∈Ni

zli(k + 1) + 2ρbi = dm(k + 1)

in the two unknowns bi and (1 − α)zmi(k) − 2ρ
∑

l∈Ni zli(k + 1), making it possible to
reconstruct bi.

To conclude, in order to compromise the privacy of the data stored by node i a malicious
agent need only get access to the packets qi→j and qj→i exchanged by i and two of its neigh-
bours over at least two consecutive time instants. This could be accomplished for instance
using a man-in-the-middle attack.

107

Bibliography

[1] Nicola Bastianello, Ruggero Carli, Luca Schenato, and Marco Todescato. A partition-
based implementation of the relaxed admm for distributed convex optimization over
lossy networks. In 2018 IEEE 57th Annual Conference on Decision and Control
(CDC) [submitted]. IEEE, 2018.

[2] Nicola Bastianello, Marco Todescato, Ruggero Carli, and Luca Schenato. Distributed
optimization over lossy networks via relaxed peaceman-rachford splitting: a robust
admm approach. In European Control Conference (ECC) 2018. IEEE, 2018.

[3] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Springer Publishing Company, Incorporated, 1st edition,
2011.

[4] Heinz H. Bauschke, Sarah M. Moffat, and Xianfu Wang. Firmly nonexpansive map-
pings and maximally monotone operators: Correspondence and duality. Set-Valued
and Variational Analysis, 20(1):131–153, 2012.

[5] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[6] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods, volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[7] Pascal Bianchi, Walid Hachem, and Franck Iutzeler. A coordinate descent primal-dual
algorithm and application to distributed asynchronous optimization. IEEE Transac-
tions on Automatic Control, 61(10):2947–2957, 2016.

[8] Nicoletta Bof, Ruggero Carli, Giuseppe Notarstefano, Luca Schenato, and Damiano
Varagnolo. Newton-raphson consensus under asynchronous and lossy communica-
tions for peer-to-peer networks. arXiv preprint arXiv:1707.09178, 2017.

[9] Daniel Boley. Local linear convergence of the alternating direction method of multipli-
ers on quadratic or linear programs. SIAM Journal on Optimization, 23(4):2183–2207,
2013.

[10] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[12] James H. Bramble, Joseph E. Pasciak, and Apostol T. Vassilev. Analysis of the inexact
uzawa algorithm for saddle point problems. SIAM Journal on Numerical Analysis,
34(3):1072–1092, 1997.

108 BIBLIOGRAPHY

[13] Ruggero Carli and Giuseppe Notarstefano. Distributed partition-based optimization
via dual decomposition. In 2013 IEEE 52nd Annual Conference on Decision and
Control (CDC), pages 2979–2984. IEEE, 2013.

[14] Ruggero Carli, Giuseppe Notarstefano, Luca Schenato, and Damiano Varagnolo.
Analysis of newton-raphson consensus for multi-agent convex optimization under
asynchronous and lossy communications. In 2015 IEEE 54th Annual Conference on
Decision and Control (CDC), pages 418–424. IEEE, 2015.

[15] Ruggero Carli, Giuseppe Notarstefano, Luca Schenato, and Damiano Varagnolo. Dis-
tributed quadratic programming under asynchronous and lossy communications via
newton-raphson consensus. In European Control Conference (ECC) 2015, pages
2514–2520. IEEE, 2015.

[16] Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng Wang. Asyn-
chronous distributed admm for large-scale optimization—part i: Algorithm and con-
vergence analysis. IEEE Transactions on Signal Processing, 64(12):3118–3130, 2016.

[17] Tsung-Hui Chang, Mingyi Hong, and Xiangfeng Wang. Multi-agent distributed large-
scale optimization by inexact consensus alternating direction method of multipliers.
In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6137–6141. IEEE, 2014.

[18] Tsung-Hui Chang, Mingyi Hong, and Xiangfeng Wang. Multi-agent distributed op-
timization via inexact consensus admm. IEEE Transactions on Signal Processing,
63(2):482–497, 2015.

[19] Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong, and Xiangfeng Wang. Asyn-
chronous distributed admm for large-scale optimization—part ii: Linear conver-
gence analysis and numerical performance. IEEE Transactions on Signal Processing,
64(12):3131–3144, 2016.

[20] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of
admm for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming, 155(1-2):57–79, 2016.

[21] Caihua Chen, Min Li, Xin Liu, and Yinyu Ye. On the convergence of multi-block al-
ternating direction method of multipliers and block coordinate descent method. arXiv
preprint arXiv:1508.00193, 2015.

[22] Caihua Chen, Yuan Shen, and Yanfei You. On the convergence analysis of the al-
ternating direction method of multipliers with three blocks. In Abstract and Applied
Analysis, volume 2013. Hindawi, 2013.

[23] Dai-Qiang Chen. Inexact alternating direction method based on newton descent algo-
rithm with application to poisson image deblurring. Signal, Image and Video Process-
ing, 11(1):89–96, 2017.

[24] Patrick L. Combettes and Jean-Christophe Pesquet. Proximal splitting methods in
signal processing. In Fixed-point algorithms for inverse problems in science and en-
gineering, pages 185–212. Springer, 2011.

[25] Patrick L. Combettes and Jean-Christophe Pesquet. Stochastic quasi-fejér block-
coordinate fixed point iterations with random sweeping. SIAM Journal on Optimiza-
tion, 25(2):1221–1248, 2015.

BIBLIOGRAPHY 109

[26] Patrick L. Combettes and Jean-Christophe Pesquet. Stochastic quasi-fejér block-
coordinate fixed point iterations with random sweeping ii: Mean-square and linear
convergence. arXiv preprint arXiv:1704.08083, 2017.

[27] Patrick L. Combettes and Valérie R. Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

[28] Laurent Condat. A primal–dual splitting method for convex optimization involving
lipschitzian, proximable and linear composite terms. Journal of Optimization Theory
and Applications, 158(2):460–479, 2013.

[29] Christian Conte, Tyler Summers, Melanie N. Zeilinger, Manfred Morari, and Colin N.
Jones. Computational aspects of distributed optimization in model predictive control.
In 2012 IEEE 51st Annual Conference on Decision and Control (CDC), pages 6819–
6824. IEEE, 2012.

[30] Etienne Corman and Xiaoming Yuan. A generalized proximal point algorithm and its
convergence rate. SIAM Journal on Optimization, 24(4):1614–1638, 2014.

[31] Damek Davis and Wotao Yin. Convergence rate analysis of several splitting schemes.
In Splitting Methods in Communication, Imaging, Science, and Engineering, pages
115–163. Springer, 2016.

[32] Damek Davis and Wotao Yin. Faster convergence rates of relaxed peaceman-rachford
and admm under regularity assumptions. Mathematics of Operations Research,
42(3):783–805, 2017.

[33] Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization
applications. Set-valued and Variational Analysis, 25(4):829–858, 2017.

[34] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized al-
ternating direction method of multipliers. Journal of Scientific Computing, 66(3):889–
916, 2016.

[35] Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization.
IEEE Transactions on Signal and Information Processing over Networks, 2(2):120–
136, 2016.

[36] Jim Douglas and Henry H. Rachford. On the numerical solution of heat conduction
problems in two and three space variables. Transactions of the American mathematical
Society, 82(2):421–439, 1956.

[37] Jonathan Eckstein. Augmented lagrangian and alternating direction methods for con-
vex optimization: A tutorial and some illustrative computational results. RUTCOR
Research Reports, 32:3, 2012.

[38] Jonathan Eckstein and Dimitri P. Bertsekas. On the douglas—rachford splitting
method and the proximal point algorithm for maximal monotone operators. Math-
ematical Programming, 55(1-3):293–318, 1992.

[39] Tomaso Erseghe. A distributed and scalable processing method based upon admm.
IEEE Signal Processing Letters, 19(9):563–566, 2012.

[40] Qiang Fu, Huahua Wang, and Arindam Banerjee. Bethe-admm for tree decomposition
based parallel map inference. arXiv preprint arXiv:1309.6829, 2013.

110 BIBLIOGRAPHY

[41] Daniel Gabay. Chapter ix applications of the method of multipliers to variational
inequalities. In Studies in Mathematics and its Applications, volume 15, pages 299–
331. Elsevier, 1983.

[42] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite element approximation. Computers & Mathematics
with Applications, 2(1):17–40, 1976.

[43] Euhanna Ghadimi, André Teixeira, Iman Shames, and Mikael Johansson. Optimal pa-
rameter selection for the alternating direction method of multipliers (admm): quadratic
problems. IEEE Transactions on Automatic Control, 60(3):644–658, 2015.

[44] Pontus Giselsson and Stephen Boyd. Diagonal scaling in douglas-rachford splitting
and admm. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC),
pages 5033–5039. IEEE, 2014.

[45] Pontus Giselsson and Stephen Boyd. Metric selection in fast dual forward–backward
splitting. Automatica, 62:1–10, 2015.

[46] Pontus Giselsson and Stephen Boyd. Linear convergence and metric selection for
douglas-rachford splitting and admm. IEEE Transactions on Automatic Control,
62(2):532–544, 2017.

[47] Roland Glowinski. On alternating direction methods of multipliers: a historical per-
spective. In Modeling, Simulation and Optimization for Science and Technology, pages
59–82. Springer, 2014.

[48] Roland Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre
un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet
non linéaires. Revue française d’automatique, informatique, recherche opérationnelle.
Analyse numérique, 9(R2):41–76, 1975.

[49] Tom Goldstein, Christoph Studer, and Richard Baraniuk. A field guide to forward-
backward splitting with a fasta implementation. arXiv preprint arXiv:1411.3406,
2014.

[50] Vehbi C. Gungor, Bin Lu, and Gerhard P. Hancke. Opportunities and challenges of
wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics,
57(10):3557–3564, 2010.

[51] Deren Han and Xiaoming Yuan. A note on the alternating direction method of multi-
pliers. Journal of Optimization Theory and Applications, 155(1):227–238, 2012.

[52] Robert Hannah and Wotao Yin. On unbounded delays in asynchronous parallel fixed-
point algorithms. Journal of Scientific Computing, pages 1–28, 2016.

[53] Bingsheng He and Xiaoming Yuan. On the o(1/n) convergence rate of the
douglas–rachford alternating direction method. SIAM Journal on Numerical Analy-
sis, 50(2):700–709, 2012.

[54] B.S. He, Hai Yang, and S.L. Wang. Alternating direction method with self-adaptive
penalty parameters for monotone variational inequalities. Journal of Optimization
Theory and applications, 106(2):337–356, 2000.

[55] Mingyi Hong. A distributed, asynchronous and incremental algorithm for nonconvex
optimization: An admm based approach. arXiv preprint arXiv:1412.6058, 2014.

BIBLIOGRAPHY 111

[56] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direc-
tion method of multipliers. Mathematical Programming, 162(1-2):165–199, 2017.

[57] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asynchronous
distributed optimization using a randomized alternating direction method of multipli-
ers. In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pages
3671–3676. IEEE, 2013.

[58] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Explicit conver-
gence rate of a distributed alternating direction method of multipliers. IEEE Transac-
tions on Automatic Control, 61(4):892–904, 2016.

[59] Franck Iutzeler and Julien M. Hendrickx. A generic online acceleration scheme for op-
timization algorithms via relaxation and inertia. Optimization Methods and Software,
pages 1–23, 2017.

[60] Dušan Jakovetić, Joao Xavier, and José MF Moura. Fast distributed gradient methods.
IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014.

[61] Solmaz S. Kia, Jorge Cortés, and Sonia Martínez. Distributed convex optimization
via continuous-time coordination algorithms with discrete-time communication. Au-
tomatica, 55:254–264, 2015.

[62] Mark Aleksandrovich Krasnosel’skiı̆. Two remarks on the method of successive ap-
proximations. Uspekhi Matematicheskikh Nauk, 10(1):123–127, 1955.

[63] Soomin Lee and Angelia Nedić. Asynchronous gossip-based random projection al-
gorithms over networks. IEEE Transactions on Automatic Control, 61(4):953–968,
2016.

[64] Pierre-Louis Lions and Bertrand Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[65] W. Robert Mann. Mean value methods in iteration. Proceedings of the American
Mathematical Society, 4(3):506–510, 1953.

[66] Gonzalo Mateos, Juan Andrés Bazerque, and Georgios B. Giannakis. Distributed
sparse linear regression. IEEE Transactions on Signal Processing, 58(10):5262–5276,
2010.

[67] Mehran Mesbahi and Magnus Egerstedt. Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[68] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra, volume 71. SIAM, 2000.

[69] Aryan Mokhtari, Wei Shi, Qing Ling, and Alejandro Ribeiro. A decentralized second-
order method with exact linear convergence rate for consensus optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(4):507–522,
2016.

[70] João F.C. Mota, João M.F. Xavier, Pedro M.Q. Aguiar, and Markus Püschel. D-admm:
A communication-efficient distributed algorithm for separable optimization. IEEE
Transactions on Signal Processing, 61(10):2718–2723, 2013.

[71] João F.C. Mota, João M.F. Xavier, Pedro M.Q. Aguiar, and Markus Püschel. Dis-
tributed optimization with local domains: Applications in mpc and network flows.
IEEE Transactions on Automatic Control, 60(7):2004–2009, 2015.

112 BIBLIOGRAPHY

[72] Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying di-
rected graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

[73] Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-
agent optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[74] Angelia Nedić, Asuman Ozdaglar, and Pablo A. Parrilo. Constrained consensus
and optimization in multi-agent networks. IEEE Transactions on Automatic Control,
55(4):922–938, 2010.

[75] Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, and Michael Jordan.
A general analysis of the convergence of admm. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 343–352, 2015.

[76] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends R© in
Optimization, 1(3):127–239, 2014.

[77] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Douglas-rachford split-
ting: Complexity estimates and accelerated variants. In 2014 IEEE 53rd Annual Con-
ference on Decision and Control (CDC), pages 4234–4239. IEEE, 2014.

[78] Donald W. Peaceman and Henry H. Rachford, Jr. The numerical solution of parabolic
and elliptic differential equations. Journal of the Society for Industrial and Applied
Mathematics, 3(1):28–41, 1955.

[79] Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin. Arock: an algorithmic frame-
work for asynchronous parallel coordinate updates. SIAM Journal on Scientific Com-
puting, 38(5):A2851–A2879, 2016.

[80] Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization.
In Conference on Signals, Systems and Computers, 2013 Asilomar, pages 659–646.
IEEE, 2013.

[81] Hung M. Phan. Linear convergence of the douglas–rachford method for two closed
sets. Optimization, 65(2):369–385, 2016.

[82] Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order
primal-dual algorithms in convex optimization. In 2011 IEEE International Confer-
ence on Computer Vision (ICCV), pages 1762–1769. IEEE, 2011.

[83] Nicholas G. Polson, James G. Scott, and Brandon T. Willard. Proximal algorithms in
statistics and machine learning. Statistical Science, 30(4):559–581, 2015.

[84] Arvind U. Raghunathan and Stefano Di Cairano. Admm for convex quadratic
programs: Linear convergence and infeasibility detection. arXiv preprint
arXiv:1411.7288, 2014.

[85] Hugo Raguet, Jalal Fadili, and Gabriel Peyré. A generalized forward-backward split-
ting. SIAM Journal on Imaging Sciences, 6(3):1199–1226, 2013.

[86] Herbert Robbins and David Siegmund. A convergence theorem for non negative al-
most supermartingales and some applications. In Optimizing Methods in Statistics,
pages 233–257. Elsevier, 1971.

BIBLIOGRAPHY 113

[87] R. Tyrrell Rockafellar. Augmented lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of Operations Research, 1(2):97–
116, 1976.

[88] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, 2nd edition,
1972.

[89] Ralph Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, 1976.

[90] Luca Schenato, Bruno Sinopoli, Massimo Franceschetti, Kameshwar Poolla, and
S. Shankar Sastry. Foundations of control and estimation over lossy networks. Pro-
ceedings of the IEEE, 95(1):163–187, 2007.

[91] Thomas Sherson, Richard Heusdens, and W. Bastiaan Kleijn. Derivation and analysis
of the primal-dual method of multipliers based on monotone operator theory. arXiv
preprint arXiv:1706.02654, 2017.

[92] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–
966, 2015.

[93] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence
of the admm in decentralized consensus optimization. IEEE Trans. Signal Processing,
62(7):1750–1761, 2014.

[94] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla,
Michael I. Jordan, and Shankar S. Sastry. Kalman filtering with intermittent obser-
vations. IEEE Transactions on Automatic Control, 49(9):1453–1464, 2004.

[95] Konstantinos Slavakis, Georgios B. Giannakis, and Gonzalo Mateos. Modeling and
optimization for big data analytics:(statistical) learning tools for our era of data deluge.
IEEE Signal Processing Magazine, 31(5):18–31, 2014.

[96] Changkyu Song, Sejong Yoon, and Vladimir Pavlovic. Fast admm algorithm for dis-
tributed optimization with adaptive penalty. In AAAI, pages 753–759, 2016.

[97] Ruoyu Sun, Zhi-Quan Luo, and Yinyu Ye. On the expected convergence of randomly
permuted admm. arXiv preprint arXiv:1503.06387, 2015.

[98] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[99] Marco Todescato, Nicoletta Bof, Guido Cavraro, Ruggero Carli, and Luca Schenato.
Generalized gradient optimization over lossy networks for partition-based estimation.
arXiv preprint arXiv:1710.10829, 2017.

[100] Marco Todescato, Guido Cavraro, Ruggero Carli, and Luca Schenato. A robust block-
jacobi algorithm for quadratic programming under lossy communications. IFAC-
PapersOnLine, 48(22):126–131, 2015.

[101] B`̆ang Công Vũ. A splitting algorithm for dual monotone inclusions involving cocoer-
cive operators. Advances in Computational Mathematics, 38(3):667–681, 2013.

[102] Huahua Wang and Arindam Banerjee. Bregman alternating direction method of mul-
tipliers. In Advances in Neural Information Processing Systems, pages 2816–2824,
2014.

114 BIBLIOGRAPHY

[103] Ermin Wei and Asuman Ozdaglar. On the o(1/k) convergence of asynchronous dis-
tributed alternating direction method of multipliers. In 2013 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 551–554. IEEE, 2013.

[104] Ermin Wei, Asuman Ozdaglar, and Ali Jadbabaie. A distributed newton method for
network utility maximization–i: Algorithm. IEEE Transactions on Automatic Control,
58(9):2162–2175, 2013.

[105] Ermin Wei, Asuman Ozdaglar, and Ali Jadbabaie. A distributed newton method for
network utility maximization–part ii: Convergence. IEEE Transactions on Automatic
Control, 58(9):2176–2188, 2013.

[106] Meng Wen, Shigang Yue, Yuchao Tang, and Jigen Peng. A stochastic coordinate
descent primal-dual algorithm with dynamic stepsize for large-scale composite opti-
mization. arXiv preprint arXiv:1604.04172, 2016.

[107] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed
gradient methods for multi-agent optimization under uncoordinated constant stepsizes.
In 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pages 2055–
2060. IEEE, 2015.

[108] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. A forward-backward breg-
man splitting scheme for regularized distributed optimization problems. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 1093–1098. IEEE, 2016.

[109] Zheng Xu, Mário A.T. Figueiredo, Xiaoming Yuan, Christoph Studer, and Tom Gold-
stein. Adaptive relaxed admm: Convergence theory and practical implementation. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
7234–7243, July 2017.

[110] Zheng Xu, Gavin Taylor, Hao Li, Mário AT Figueiredo, Xiaoming Yuan, and Tom
Goldstein. Adaptive consensus admm for distributed optimization. In International
Conference on Machine Learning, pages 3841–3850, 2017.

[111] Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto, and
Luca Schenato. Newton-raphson consensus for distributed convex optimization. In
2011 50th IEEE Conference on Decision and Control and European Control Confer-
ence (CDC-ECC), pages 5917–5922. IEEE, 2011.

[112] Filippo Zanella, Damiano Varagnolo, Angelo Cenedese, Gianluigi Pillonetto, and
Luca Schenato. Asynchronous newton-raphson consensus for distributed convex op-
timization. IFAC Proceedings Volumes, 45(26):133–138, 2012.

[113] Guoqiang Zhang and Richard Heusdens. Bi-alternating direction method of multipli-
ers. In 2013 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 3317–3321. IEEE, 2013.

[114] Guoqiang Zhang, Richard Heusdens, and W. Bastiaan Kleijn. On the convergence
rate of the bi-alternating direction method of multipliers. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3869–3873.
IEEE, 2014.

[115] Lixian Zhang, Huijun Gao, and Okyay Kaynak. Network-induced constraints in net-
worked control systems—a survey. IEEE Transactions on Industrial Informatics,
9(1):403–416, 2013.

BIBLIOGRAPHY 115

[116] Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus
optimization. In International Conference on Machine Learning, pages 1701–1709,
2014.

	Abstract
	Introduction
	Introduction
	Convex Optimisation Literature Review
	Distributed optimisation
	Operator Theory and splitting operators

	Alternating Direction Method of Multipliers
	Asynchronous distributed ADMM
	Linear convergence of the ADMM
	Variants of the ADMM

	Contributions and Outline of the Thesis

	Alternating Direction Method of Multipliers
	Alternating Direction Method of Multipliers
	Splitting Operators
	Operator Theory
	Fixed point algorithms
	Application to convex optimisation
	Peaceman-Rachford splitting
	Forward-backward splitting

	Subdifferential representation of the R-PRS

	ADMM and Splitting Operators
	Dual problem
	Applying the splitting operators

	Distributed Alternating Direction Method of Multipliers
	Distributed Consensus Optimisation with ADMM
	Problem formulation
	Distributed ADMM

	Convergence and Linear Convergence Rate
	Edge- and Node-Based Optimisation

	Randomised Alternating Direction Method of Multipliers
	ADMM in Lossy Scenarios
	Robust ADMM
	Convergence

	Asynchronous and Robust ADMM
	Linear Convergence Rate
	Randomised ADMM and Final Considerations

	Partition-Based Randomised ADMM
	Problem Formulation
	Partition-Based Randomised ADMM
	Quadratic Cost Functions
	Local Variables of Different Sizes

	Simulations Results
	Note on the Methodology
	Robust and Asynchronous ADMM
	Quadratic cost functions
	Lasso
	Problem formulation
	Applying the ADMM
	Simulations results

	Considerations
	Synchronous vs asynchronous updates
	The naïve criterion

	Comparison with Newton-Raphson
	The robust and asynchronous Newton-Raphson
	Comparison

	Partition-Based ADMM

	Conclusions and Further Work
	Mathematical Background
	Convex Analysis
	Convex functions
	Conjugation
	Convex optimisation
	Precursors of the ADMM

	Operator Theory
	Non-expansive operators
	Fixed point algorithms
	Proximal algorithms
	Splitting operators
	Peaceman-Rachford splitting
	Forward-backward splitting

	Subdifferentiability
	Monotone Operators

	Stochastic kmIteration
	Security Analysis of ADMM

