
UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

GMM CLASSIFICATION OF
ENVIRONMENTAL SOUNDS FOR
SURVEILLANCE APPLICATIONS

Supervisors: Author:
Federico Avanzini Riccardo Levorato
Emanuele Menegatti

Master’s Degree in Computer Engineering
(Laurea Magistrale in Ingegneria Informatica)

Graduation Date: Padova, October 26th, 2010

Academic Year 2009/2010

Preface

The work reported in this thesis is part of a surveillance system’s development that integrates dif-
ferent types of sensors and provides mainly the integration of audio with video. Integrating audio
monitoring in surveillance applications is indeed advantageous in many respects: it is “cheap”
in terms of both hardware requirements and computational burdens; it complements the video
monitoring especially for areas not visible by cameras; it can be of fundamental importance in
early detection of awkward situations (burglary, theft, etc.). The algorithms and code developed
in this thesis work, focused only on the audio analysis, enable, with the support of a microphone,
to detect any type of impulsive sound and to classify with good accuracy four types of impul-
sive sounds in every surrounding environment: screams, gunshots, broken glasses and barking
dogs. Classification is achieved using Gaussian Mixture Models (GMM), trained on several au-
dio features extracted from the audio. The whole system is developed in the Network-Integrated
Multimedia Middleware (NMM), which simplifies communications between different types of
agents that are organized into interconnected nodes that simultaneously process the data coming
from the sensors.

The main innovative approach of this work is the willingness to integrate the experience in
the field of telecommunications with intelligent surveillance systems that merge environmental
sensors such as cameras or microphones in mobile robotic platforms that can intervene and pro-
vide on-site a completely automated, independent and more complete system than a network of
fixed sensors. The creation of an integrated system with fixed audio and video sensors will allow
mobile robots to propose surveillance systems with more than a mobile unit able to go to a site
in order to avoid false alarms.

Phases of the thesis
The thesis started from a project developed for the course “Informatica musicale”, titled “Tech-
niques of identification and automatic classification of environmental sounds for surveillance
applications”, and carried out in collaboration with the master student Carlo Alberto Cazzuffi
of the university of Padova. This project, based widely on [1][2], was entirely implemented in
Matlab and concerned only the off-line classification of screams and gunshots in a noisy envi-
ronment. These two papers1 describe a technique to develop the software, and suggest the most
relevant features to be extracted from the audio signals, in order to classify the sounds using

1The two papers are similar with small variants on the choice of the parameters. In fact they were published in
subsequent moments due to an improvement obtained by the same authors.

i

GMMs. In our implementation we refer mostly to [2] because it was the last update regarding
this work.

The first phase of the project dealt with an implementation of the sound classification using
the Matlab language, for the following reasons:

• simple and fast code programming;

• simple audio signals access from file .wav (functions wavread and wavwrite);

• GMM’s training algorithm already implemented in the Statistics Toolbox;

• availability of a Matlab tool that extracts 30 Mel-Frequency Cepstral Coefficients (MFCCs)
and other features from an audio signal, developed by Enrico Marchetto, PhD student of
the university of Padova.

In a second phase, when I decided to extend the work to my thesis, the code had to be
implemented in C++, in order to integrate it over the Network-Integrated Multimedia Middleware
(NMM). For this reason, a long period of work has been devoted to porting all the code from
Matlab to C++, except for the GMM’s training algorithm and the audio test maker. The reason
why I choose not to port the GMM’s training algorithm is because the classification of the sounds
(and of the environmental noise) can be made off-line, as well as the creation of the audio tests,
and is compatible with a hypothetical product that does not require on-board training. The porting
period lead fortunately to a strong optimization of the code, correction of some bugs/errors and a
faster execution of the algorithm. In this period I introduced also two new classes of sounds with
respect to the initial project: broken glasses and barking dogs.

In the third period the attention switched to the porting of the software over the NMM archi-
tecture following the suggestion of Prof. Emanuele Menegatti, who supervises a large project
on surveillance with many analytical nodes (audio and video). In collaboration with Alberto
Salamone, a master student of the University of Padova who realized a fall detector with an om-
nidirectional camera and a steerable PTZ camera, I installed NMM and realized some processing
nodes that can analyse and classify the recorded sound in real-time.

In the fourth and last period I assessed the performance of the audio classification in several
aspects, both on the off-line C++ implementation and on the real-time NMM realization.

Structure of the thesis
This thesis is structured in six chapters with an additional appendix. Chapter 1 reviews the state
of the art on this topic. In Chapter 2, all the mathematical tools used to realize and implement the
classification system are listed and explained. Chapter 3 contains the complete description of the
original work with project choices, and implementations. Chapter 4 is structured in three parts.
The first part is a description of all the development tools used in the project. The second part is
written as a “HowTo”guide to simplify the installation and configuration of the environment to
work easily with the used middelware (NMM). The third part describes the implementation of
the project in the middleware. All the experimental results are explained in Chapter 5, including

ii

both off-line and real-time tests. The final Chapter contains the conclusions of the work, as
well as further developments and hints suggested to improve the system. The appendix lists and
describes all the libraries needed to install NMM.

iii

Prefazione

Il lavoro riportato in questa tesi fa parte dello sviluppo di un sistema di sorveglianza che integra
diversi tipi di sensori e fornisce principalmente l’integrazione dell’audio con il video. Integrare
il monitoraggio audio in applicazioni di sorveglianza è molto vantaggioso per molti aspetti: è
“economico” sia in termini di requisiti hardware che di onerosità di calcolo; integra il monito-
raggio video in particolare per le zone non visibili da telecamere; può essere di fondamentale
importanza nella rilevazione preventiva di situazioni scomode (furti, scassi, ecc.). Gli algoritmi e
il codice sviluppato in questo lavoro di tesi, concentrato solo sull’analisi dell’audio, consentono,
con il supporto di un microfono, di individuare qualsiasi tipo di suono impulsivo e di classificare
con esattezza ben quattro tipi di suoni impulsivi in ogni tipo di ambiente circostante: urla, spari,
vetri rotti e cani che abbaiano. La classificazione è realizzata usando i Gaussian Mixture Mo-
dels (GMM), addestrati su diverse feature audio estratte dall’audio. L’intero sistema è sviluppato
nel Network-Integrated Multimedia Middleware (NMM), che semplifica le comunicazioni tra i
diversi tipi di agenti che sono organizzati in nodi interconnessi i quali elaborano contemporanea-
mente i dati provenienti dai sensori.

Il principale approccio innovativo di questo lavoro è la volontà di integrare l’esperienza nel
campo delle telecomunicazioni con sistemi di sorveglianza intelligenti che fondono sensori am-
bientali come telecamere o microfoni in piattaforme robotiche mobili che possano intervenire e
fornire sul sito un sistema completamente automatizzato, indipendente e più completo di una rete
di sensori fissi. La creazione di un sistema integrato con sensori audio e video fissi permetterà a
robot mobili di proporre sistemi di sorveglianza con più di una unità mobile in grado di andare
in un sito per evitare falsi allarmi.

Fasi della tesi
La tesi ha avuto inizio da un progetto sviluppato per il corso “Informatica Musicale”, dal titolo
“tecniche di identificazione e classificazione automatica di suoni ambientali per applicazioni
di sorveglianza”, e realizzata in collaborazione con Carlo Alberto Cazzuffi, studente magistrale
dell’università di Padova. Il progetto, basato in gran parte su [1][2], è stato interamente imple-
mentato in Matlab e ha riguardato solo la classificazione off-line di urla e spari in un ambiente
rumoroso. Questi due documenti2 descrivono una tecnica per sviluppare il software, e sug-
geriscono le features più rilevanti da estrarre dai segnali audio, al fine di classificare i suoni me-

2I due articoli sono simili ma con piccole varianti sulla scelta dei parametri. In realtà sono stati pubblicati in
momenti successivi per un miglioramento ottenuto dagli stessi autori.

v

diante GMM. Nella nostra implementazione ci riferiamo soprattutto a [2] perché è stato l’ultimo
aggiornamento riguardante questo lavoro.

La prima fase del progetto ha riguardato l’implementazione della classificazione del suono
utilizzando il linguaggio Matlab per le seguenti ragioni:

• linguaggio di programmazione semplice e veloce;

• semplice accesso ai segnali audio da file .wav (con funzioni wavread e wavwrite);

• algoritmo di training delle GMM già implementato nello Statistics Toolbox;

• disponibilità di un tool in Matlab che estrae 30 Mel-Frequency Cepstral Coefficients (MFCCs)
e altre feature di un segnale audio, sviluppato da Enrico Marchetto, dottorando dell’Università
di Padova.

In una seconda fase, quando ho deciso di estendere il lavoro alla mia tesi, si è verificato il
bisogno di implementare il codice in C++, al fine di integrarlo nel Network-Integrated Multime-
dia Middleware (NMM). Per questo motivo, ho dedicato un lungo periodo di lavoro al porting
di tutto il codice da Matlab a C++, fatta eccezione per l’algoritmo di training dei GMM e il
programma per la creazione di test audio. Il motivo per cui ho scelto di non fare il porting
dell’algoritmo di training dei GMM è perché la classificazione dei suoni (e del rumore ambien-
tale) può essere effettuata off-line, cosı̀ come per la creazione dei test audio, ed è compatibile
con un ipotetico prodotto che non richiede il training on-board. Il periodo di porting ha portato
fortunatamente ad una forte ottimizzazione del codice, alla correzione di alcuni bug/errori e ad
una più veloce esecuzione dell’algoritmo. In questo periodo ho introdotto anche due nuove classi
di suoni rispetto al progetto iniziale: vetri rotti e cani che abbaiano.

Nel terzo periodo mi sono occupato del porting del software sull’architettura NMM seguendo
il suggerimento del Prof. Emanuele Menegatti, che supervisiona un grande progetto sulla sorve-
glianza con molti nodi analitici (audio e video). In collaborazione con Alberto Salamone, stu-
dente magistrale dell’Università di Padova che ha realizzato un rivelatore di caduta con una
telecamera omnidirezionale e una telecamera PTZ orientabile, ho installato NMM e realizzato
alcuni nodi di elaborazione in grado di analizzare e classificare il suono registrato in tempo reale.

Nel quarto e ultimo periodo ho testato le prestazioni della classificazione audio in parecchi
aspetti, sia nell’implementazione off-line in C++ sia nella realizzazione in tempo reale in NMM.

Struttura della tesi
Questa tesi è strutturata in sei capitoli con un’appendice aggiuntiva. Il Capitolo 1 è la recen-
sione dello stato dell’arte dell’argomento della tesi. Nel Capitolo 2 sono elencati e spiegati tutti
gli strumenti matematici utilizzati per realizzare e implementare il sistema di classificazione. Il
Capitolo 3 contiene la descrizione completa del lavoro originale con scelte progettuali e imple-
mentazioni. Il Capitolo 4 è strutturato in tre parti. La prima parte è una descrizione di tutti gli
strumenti di sviluppo utilizzati nel progetto. La seconda parte è scritta come una guida “HowTo”
per semplificare l’installazione e la configurazione dell’ambiente per poter lavorare facilmente

vi

con il middelware utilizzato (NMM). La terza parte descrive l’implementazione del progetto nel
middleware. Tutti i risultati sperimentali sono spiegati nel Capitolo 5, che include sia i test off-
line che quelli in tempo reale. Il Capitolo finale contiene le conclusioni del lavoro, nonché gli
ulteriori sviluppi e spunti suggeriti per migliorare il sistema. L’appendice elenca e descrive tutte
le librerie necessarie per installare NMM.

vii

Abstract

This thesis describes an audio event detection system which automatically classifies an impul-
sive audio event as scream, gunshot, broken glasses or barking dogs with every background
noise. The classification system uses four parallel Gaussian Mixture Models (GMMs) classifiers
each of which decides if the sound belongs to its class or is only noise. Each classifier is trained
using different features, chosen from a set of 40 audio features. Simultaneously the system can
detect any kind of impulsive sounds using only one feature with very high precision. The clas-
sification system is implemented in the Network-Integrated Multimedia Middleware (NMM) for
real-time processing and communications with other surveillance applications. In order to val-
idate the proposed detection algorithm, we carried out extensive experiments (both off-line and
real-time) on a hand-made set of sounds mixed with ambient noise at different Signal-to-Noise
ratios (SNRs). Our results demonstrate that the system is able to guarantee 70% of accuracy and
90% of precision at 0 dB SNR, starting from 100% of both accuracy and precision with clean
sounds at 20 dB SNR.

ix

Sommario

Questa tesi descrive un sistema di rilevazione di eventi audio che classifica automaticamente un
rumore impulsivo come urla, spari, vetri rotti o cani che abbaiano con qualsiasi rumore di sot-
tofondo. Il sistema di classificazione utilizza quattro classificatori in parallelo, costruiti con i
Gaussian Mixture Models (GMMs), ciascuno dei quali decide se il suono appartiene alla pro-
pria classe o se è soltanto rumore. Ogni classificatore è addestrato con differenti feature, scelte
da un insieme di 40 feature audio. Contemporaneamente il sistema può rilevare qualsiasi tipo
di suoni impulsivi utilizzando una sola feature con una precisione molto elevata. Il sistema
di classificazione è implementato nel Network-Integrated Multimedia Middleware (NMM) per
l’elaborazione in tempo reale e le comunicazioni con altre applicazioni di sorveglianza. Al fine
di validare l’algoritmo di rilevazione proposto, sono stati effettuati vari esperimenti (sia off-line
sia in tempo reale) su un personale database di suoni, mescolati con rumore ambientale, a diversi
rapporti di segnale-rumore (SNR). I nostri risultati dimostrano che il sistema è in grado di garan-
tire il 70% di accuratezza e il 90% di precisione a 0 dB di SNR, a partire da 100% di accuratezza
e precisione con suoni puliti a 20 dB di SNR.

xi

Acknowledgements
First I want to thank my parents with a special hug, hoping that this goal would fill them with
satisfaction. I would like to thank my professors Federico Avanzini and Emanuele Menegatti to
help me and direct my work in the right way. Special thanks go to Carlo Alberto Cazzuffi and
Alberto Salamone that worked with me in this project and to Federica Ziliotto that helped me
to correct the English version of this thesis. Thanks to Isacco Saccoman, author of the fabulous
comics in my final slide of the presentation. Acknowledgements go also to everyone that helped
and supported me directly or indirectly in my studies.

I sincerely apologize with Classical Music to have neglected it in order to finish my university
studies.

xiii

Ringraziamenti
Prima di tutto vorrei ringraziare i miei genitori con un abbraccio speciale, sperando che questo
traguardo li riempia di soddisfazione. Vorrei ringraziare i miei professori Federico Avanzini
e Emanuele Menegatti per avermi aiutato e aver indirizzato il mio lavoro verso la direzione
giusta. Ringraziamenti particolari vanno a Carlo Alberto Cazzuffi e Alberto Salamone che hanno
lavorato con me in questo progetto e a Federica Ziliotto che mi ha aiutato a correggere la versione
in inglese di questa tesi. Grazie a Isacco Saccoman, autore del favoloso fumetto nella slide finale
della mia presentazione. Ringraziamenti particolari vanno anche a tutti coloro che mi hanno
aiutato e sostenuto direttamente o indirettamente durante i miei studi.

Mi scuso profondamente con la Musica Classica per averla trascurata per terminare i miei
studi universitari.

xv

Contents

Preface i

Prefazione v

Abstract ix

Sommario xi

Acknowledgments xiii

Ringraziamenti xv

1 State of the Art 1

2 Principles of audio classification 3
2.1 Audio Features . 3

2.1.1 Temporal features . 4
2.1.1.1 Teager Energy Operator (TEO) 4
2.1.1.2 Zero-Crossing Rate (ZCR) 6

2.1.2 Perceptual features . 6
2.1.2.1 Mel-Frequency Cepstral Coefficients (MFCCs) 6

2.1.3 Spectral features . 8
2.1.3.1 Spectral Flatness Measure (SFM) 8
2.1.3.2 Spectral Centroid . 8
2.1.3.3 Spectral Skewness . 8
2.1.3.4 Spectral Slope . 9
2.1.3.5 Spectral Decrease . 9
2.1.3.6 Band Periodicity . 9

2.1.4 Correlation Features . 9

xvii

2.1.4.1 Correlation Slope . 9
2.1.4.2 Correlation Decrease . 10

2.2 Gaussian Mixture Models (GMMs) . 10
2.2.1 The multivariate Gaussian pdf . 10
2.2.2 GMM Training . 11
2.2.3 Classification test . 12

3 Surveillance Algorithm for Recognition of Impulsive Sounds (SARIS) 15
3.1 Sound Classification . 15

3.1.1 Creation of the database of impulsive sounds 15
3.1.2 Creation of the classification models . 16
3.1.3 Classification step during audio processing 17

3.2 Detection of impulsive sounds . 19
3.3 Audio test creation . 20

4 Development tools and Network-Integrated Multimedia Middleware (NMM) 23
4.1 Development tools . 23

4.1.1 Middleware . 23
4.1.2 Software tools . 23

4.1.2.1 Programming languages . 23
4.1.2.2 Integrated Development Environment (IDE) 23
4.1.2.3 Operative Systems (OS) . 24
4.1.2.4 Graphic User Interface (GUI) 24
4.1.2.5 Subversion (SVN) . 24

4.1.3 Audio tools . 24
4.2 Introduction to NMM . 25

4.2.1 Nodes, Jacks, and Flow Graphs . 26
4.2.2 Messaging System . 27
4.2.3 Interfaces . 27
4.2.4 Distributed Flow Graphs . 28
4.2.5 Distributed Synchronization . 29
4.2.6 Registry Service . 29
4.2.7 Clic - An Application for Setting up NMM Multimedia Flow Graphs . . 30

4.3 Installation of NMM . 32
4.3.1 Hardware prerequisites . 32
4.3.2 Network configuration . 32
4.3.3 Software configuration . 33
4.3.4 Testing the middleware . 36

4.4 Software Developer Kit (SDK) . 37
4.5 Audio Surveillance Graph . 38

xviii

5 Experimental Results 43
5.1 Testing Off-line . 43

5.1.1 Global classification performance . 45
5.1.2 Single class classification performance 46

5.1.2.1 Gunshots . 47
5.1.2.2 Screams . 49
5.1.2.3 Broken Glasses . 51
5.1.2.4 Barking dogs . 53

5.2 Testing Real-time . 55
5.2.1 Classification performance . 55
5.2.2 Impulse detection performance . 55

6 Conclusions and further work 57

Appendix 61

A Libraries for the installation of NMM 61
A.1 Informations on external libraries . 63

A.1.1 a52dec . 63
A.1.2 faad . 64
A.1.3 ffmpeg . 64
A.1.4 I1394 . 66
A.1.5 libmp3lame . 66
A.1.6 libraw1394 . 67
A.1.7 libmad . 67
A.1.8 libdvdnav . 67
A.1.9 libdvdread . 68
A.1.10 libogg . 68
A.1.11 libvorbis . 69
A.1.12 libshout . 69
A.1.13 fftw . 70
A.1.14 libliveMedia . 70
A.1.15 mpeg2dec . 71
A.1.16 cdparanoia . 72
A.1.17 libpng . 72
A.1.18 asoundlib . 72
A.1.19 Xlib . 73
A.1.20 libjpeg . 73
A.1.21 ImageMagick . 73
A.1.22 ImageMagick for Windows . 74
A.1.23 mplayer . 74
A.1.24 vlc . 74
A.1.25 transcode . 75

xix

A.1.26 ogmtools . 75
A.1.27 libxml++ . 75
A.1.28 libx264 . 76
A.1.29 DVB API 5.1 . 76
A.1.30 ulxmlrpcpp . 76
A.1.31 openssl . 77
A.1.32 expat . 77

xx

List of Figures

2.1 Signal with four impulsive sounds and his TEO. 5
2.2 Plots of pitch mels versus hertz. 7
2.3 Generic data distribution generated from a mixture of four bivariate Gaussian

distributions. 12
2.4 Estimated probability density contours for the distribution with various values of

the number of the components k. 13

3.1 Visualization of likelihood and detection in time. The upper plot is the detection
over the time and in the other plots there are the values of the likelihood of each
model. Legend: black - impulsive sound; red - gunshots; green - screams; blue -
broken glasses; light blue - barking dogs. 21

4.1 Client/server streaming consists of two isolated applications that do not provide
fine-grained control or extensibility. 25

4.2 A multimedia middleware is a distributed software layer that eases application
development by providing transparency. 25

4.3 A flow graph for playing back MP3 files. 27
4.4 A distributed flow graph for playing back MP3 files. 28
4.5 The Audio Surveillance Graph. 39

5.1 High accuracy but low precision. 44
5.2 High precision but low accuracy. 44
5.3 Accuracy of all the classes. 45
5.4 Precision of all the classes. 46
5.5 Accuracy of the Gunshot class with simple validation. 47
5.6 Precision of the Gunshot class with simple validation. 47
5.7 Accuracy of the Gunshot class with LOOCV. 48
5.8 Precision of the Gunshot class with LOOCV. 48
5.9 Accuracy of the Scream class with simple validation. 49
5.10 Precision of the Scream class with simple validation. 49
5.11 Accuracy of the Scream class with LOOCV. 50
5.12 Precision of the Scream class with LOOCV. 50
5.13 Accuracy of the Broken Glasses class with simple validation. 51
5.14 Precision of the Glass class with simple validation. 51

xxi

5.15 Accuracy of the Glass class with LOOCV. 52
5.16 Precision of the Glass class with LOOCV. 52
5.17 Accuracy of the Barking dogs class with simple validation. 53
5.18 Precision of the Bark class with simple validation. 53
5.19 Accuracy of the Bark class with LOOCV. 54
5.20 Precision of the Bark class with LOOCV. 54

xxii

List of Tables

3.1 Number of files and total duration in seconds for each audio sound class. 16
3.2 Features selected to create the Gaussian Mixture Models. 16
3.3 Thresholds and the lengths of the windows used for selecting the likelihood of

the sounds for detection. 19
3.4 Threshold and the length of the windows used for selecting the TEO-signal of

the sound. 20

xxiii

Chapter 1

State of the Art

In addition to the traditional video cameras, the use of audio sensors in surveillance and monitor-
ing applications is becoming increasingly important [3]. Audio is useful especially in situations
when other sensors, such as video, fails to detect correctly the events. For example, when objects
are occluded or in the dark, audio sensors can be more appropriate in detecting a “noisy” pres-
ence. Conceptually, there are many events which can be detected better using audio rather than
other sensors, e.g. screams or gunshots [4][5], broken glasses, barking dogs, etc. Furthermore,
audio sensors are a quite accessible resource for the costs.

Such detection systems can be efficiently used to advert an automated system that an event
has occurred with high probability and, at the same time, to enable further processing like auto-
matic video-camera steering. Traditional tasks in the area of the automatic audio classification
and matching are speech/music segmentation, classification and audio retrieval. Much of the pre-
vious work about audio-based surveillance systems concentrated on the task of detecting some
particular audio events. More recently, were developed specific works covering the detection of
particular classes of events for multimedia-based surveillance. For example, detection systems
specifically designed for impulsive sound1 recognition consist of a segmentation step, where is
detected the presence of an event, followed by a classification step, which refines the result as-
signing a class label to the event. The results reported in [6], show that these systems fail under
real-world conditions reaching less than 50% accuracy at 0 dB SNR (Signal-to-Noise Ratio).

Mel-Frequency Cepstral Coefficients (MFCCs) are the most common features representation
for non-speech audio recognition. Peltonen et al. in [7] implemented a system for recogniz-
ing 17 sound events using 11 features individually and obtained best results with the MFCCs.
In a comparison of several feature sets, MFCCs perform well [8], although the classification
granularity affects the relative importance of different feature sets. Cai et al. in [9] used a com-
bination of statistical features and labels describing the energy envelope, harmonicity, and pitch
contour for each sample. None of these representations, unfortunately, shows clear performance
or conceptual advantages over MFCCs.

In the SOLAR system presented in [10], the segmentation step is avoided by decomposing

1A definition of impulsive sound is a sound with a rapid rise and decay of sound pressure level, lasting less than
one second. It is caused by sudden contact between two or more surfaces or by a sudden release of pressure. In
other words it is a sound that makes you turn your head and open your ears putting your body in an “alarm” state.

1

2 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

audio tracks into short overlapping audio windows. For each window, a set of 138 features
is extracted and evaluated by a series of boosted decision trees. Though efficient in real time
computations, the SOLAR system suffers from large differences in classification accuracy from
class to class. More recent works showed that a hierarchical classification scheme, composed
by different levels of binary classifiers, generally achieves higher performance than a single-
level multi-class classifier. In [11] a hierarchical set of cascaded GMMs (Gaussian Mixture
Models) is used to classify 5 different sound classes. Each GMM is tuned using only one feature
from a feature set including both scalar features (e.g. Zero-Crossing Rate (ZCR)) or vector
features (e.g. Linear-Log Frequency Cepstral Coefficients (LLFCC)). Reported results show that
the hierarchical approach yields accuracies from 70 to 80% for each class, while single level
approaches reach high accuracies for one class but poor results for the others.

The hierarchical approach has also been employed in [4] to design a specific system able to
detect screams/shouts in public transport environments. After a preliminary segmentation step,
a set of perceptual features such as MFCCs or Perceptual Linear Prediction (PLP) coefficients
are extracted from audio segments and used to perform a 3-levels classification. First, the au-
dio segment is classified either as noise or non-noise; second, if it is not noise, the segment is
classified either as speech or not speech; finally, if speech, it is classified as a shout or not. The
authors tested this system using both GMMs and Support Vector Machines (SVMs) as classifiers,
showing that generally GMMs provide higher precision.

A different technique is used in [5] to detect gunshots in public environments. In this work,
the performance of a binary gunshot/noise GMM classifier is compared to a classification scheme
in which several binary sub classifiers for different types of firearms run in parallel. A final binary
decision (gunshot/noise) is taken evaluating the logical OR of the results of each classifier. In
this way, the false rejection rate of the system is reduced by a 50% on average with respect to the
original binary classifier.

In a recent work [1][2], Valenzise et al. proposed a system that is able to detect accurately two
types of audio events: screams and gunshots. They extract a very large set of features, including
some descriptors like spectral slope and periodicity, and innovative features like correlation roll-
off and decrease. To the authors knowledge, these features have never been used for the task of
sound-based surveillance and it is shown that they provide a significant performance gain using
a GMM as classifier.

The current project is a deep study and elaboration of the works [1][2] and can be seen as
an implementation and improvement of them. This work is different from the previous ones in
the following aspects. First, to manage a multimedia surveillance system and synchronize all
processes of sensors and agents, is used NMM (Network-Integrated Multimedia Middleware).
Second, the system can detect any kind of impulsive sound, with only one feature, using only a
single microphone data with very high precision. Finally, over the screams and gunshots impul-
sive sound classes, the system can detect and classify even broken glasses and barking dogs.

Chapter 2

Principles of audio classification

In this chapter we describe the main mathematical tools used in the project to introduce the reader
to the main topics of the thesis.

2.1 Audio Features
A considerable number of audio features was used in the project. Traditionally, these features
are classified in:

• Temporal features - e.g. Teager Energy Operator (TEO) or Zero-Crossing Rate (ZCR);

• Perceptual features - e.g. loudness, sharpness or Mel-Frequency Cepstral Coefficients
(MFCCs);

• Energy features - e.g. Short Time Energy (STE);

• Spectral features - e.g. spectral flatness, spectral skewness;

In this work are discarded the audio features which are too sensitive to the SNR conditions,
like STE and loudness. In addition to the traditional features listed above, are employed some
other features which have been introduced in [1][2], such as spectral distribution (spectral slope,
spectral decrease), periodicity descriptors and new features based on the auto-correlation func-
tion: correlation decrease and correlation slope. The number of features extracted is 41 and are
the following:

• Teager Energy Operator (TEO);

• Zero Crossing Rate (ZCR);

• 30 Mel-Frequency Cepstral Coefficients (MFCCs);

• Spectral Flatness Measure (SFM);

3

4 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• Spectral Centroid;

• Spectral Skewness;

• Spectral Slope;

• Spectral Decrease;

• Whole-Band Periodicity;

• Filtered-Band Periodicity;

• Correlation Slope;

• Correlation Decrease.

Now it follows a detailed definition of all the features used in the project. Note that an audio
frame is a small audio segment of the whole audio signal. In other words, a frame is a fixed-
length array containing a part of the values of the audio signal. TEO will be used to detect a
generic impulsive sound and all other features will be used for the classification of the impulsive
sounds.

2.1.1 Temporal features
2.1.1.1 Teager Energy Operator (TEO)

The Teager Energy Operator (TEO) [12] is a powerful non-linear operator that takes trace of the
modulation energy and identifies the amplitude and the instantaneous frequency. Compared to
the traditional suppression of the noise based on the frequency domain, TEO’s noise suppres-
sion is based on the time domain. It was demonstrated experimentally that TEO can enhance
the discrimination between impulsive sounds and background noise because “it can flatten” the
pseudo-constant noisy component of the sound. Furthermore, it will be attenuated the increasing
volume of the background signal too (see first part of the signal before the first impulsive sound
in figure 2.1).

In continuous time TEO is defined as:

Ψc[s(t)] = [ṡ(t)]2 − s(t) · s̈(t) (2.1)

where s(t) is a continuous time signal and ṡ = ds
dt

.
In discrete time the operator can be simplified as:

Ψd[s(n)] = s(n)2 − s(n− 1) · s(n+ 1) (2.2)

where s(n) is a discrete time signal.
Consider now a signal s(n) containing a scream corrupted by uncorrelated additive noise

u(n). The resulting signal y(n) is:

Chapter 2. Principles of audio classification 5

0 1 2 3 4 5 6 7 8 9

x 10
5

−1

−0.5

0

0.5

1

Samples

A
m

pl
itu

de

Signal − s(n)

0 1 2 3 4 5 6 7 8 9

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

Samples

A
m

pl
itu

de

Teager − TEO[s(n)]

Figure 2.1: Signal with four impulsive sounds and his TEO.

y(n) = s(n) + u(n) (2.3)

Let Ψs[y(n)] the TEO of the signal y(n). It is defined as:

Ψd[y(n)] = Ψd[s(n)] + Ψd[u(n)] + 2 · Ψ̃d[s(n), u(n)] (2.4)

where Ψd[s(n)] and Ψd[u(n)] are the TEO of the scream and of the additive noise respectively.
Let Ψ̃d[s(n), u(n)] the mutual energy Ψd between s(n) and u(n) such that:

Ψ̃d[s(n), u(n)] = s(n) · u(n)− 0.5 · s(n− 1) · u(n+ 1) + 0.5 · s(n+ 1) ◦ u(n− 1) (2.5)

where ◦ represents the inner product.
As the signals s(n) and u(n) have zero mean and are uncorrelated, the expected value of the

mutual energy Ψ̃d[s(n), u(n)], is zero. So it is possible to obtain the following equation:

E{Ψd[y(n)]} = E{Ψd[s(n)]}+ E{Ψd[u(n)]} (2.6)

6 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

In fact, TEO of the scream is significantly higher than TEO of the noise. So, compared to
E{Ψd[y(n)]}, the expected value E{Ψd[u(n)]} is irrelevant. Finally we obtain the relation:

E{Ψd[y(n)]} ≈ E{Ψd[s(n)]} (2.7)

2.1.1.2 Zero-Crossing Rate (ZCR)

ZCR is the rate of sign-changes along a signal [13]. In other words it is a measure of times’
number the signal value crosses the zero axis rated by the number of values of the signal. Periodic
sounds tend to have small ZCR, while noisy sounds tend to have high ZCR. The formula is:

ZCR =
1

N − 1
·
N−1∑
n=1

π(s(n) · s(n− 1) < 0) (2.8)

where s is a signal of length N and the function π(x) is 1 if its argument x is True and 0
otherwise.

2.1.2 Perceptual features
2.1.2.1 Mel-Frequency Cepstral Coefficients (MFCCs)

The mel scale, proposed by Stevens, Volkman and Newman in 1937 [14], is a perceptual scale
of pitches judged by listeners to be equal in distance from one another. The reference point
between this scale and normal frequency measurement is defined by equating a 1000 Hz tone,
40 dB above the listener’s threshold, with a pitch of 1000 mels. Above about 500 Hz, larger
and larger intervals are judged by listeners to produce equal pitch increments. As a result, four
octaves on the hertz scale above 500 Hz are judged to comprise about two octaves on the mel
scale (see Figure 2.2). The name mel comes from the word melody to indicate that the scale is
based on pitch comparisons.

A popular formula to convert f hertz into m mel is1:

m = 2595 log10

(
f

700
+ 1

)
= 1127 loge

(
f

700
+ 1

)
(2.9)

And the inverse:

f = 700(10m/2595 − 1) = 700(em/1127 − 1) (2.10)

The mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of
a sound, based on a linear cosine transform of a log power spectrum on a non-linear mel scale of
frequency.

1The base-10 formula with 2595 is from O’Shaughnessy (1987) [15]. The natural-log formula with coefficient
1127 is widely used more recently. Older publications typically use the break frequency of 1000 Hz rather than 700
Hz.

Chapter 2. Principles of audio classification 7

Figure 2.2: Plots of pitch mels versus hertz.

MFCCs collectively make up an MFC [13]. They are derived from a type of cepstral repre-
sentation of the audio clip (a non-linear “spectrum-of-a-spectrum”). In the MFC the frequency
bands are equally spaced on the mel scale, which approximates the human auditory system’s
response more closely than the linearly-spaced frequency bands used in the normal cepstrum. In
fact MFCC reflects the energy distribution over the basilar membrane. Due to their perceptually
motivated nature, MFCCs are considered to carry a high amount of relevant information related
to a sound signal. In fact they are often used to characterize a sound signal in such applications as
automatic speech/speaker recognition, and are increasingly used in music information retrieval
applications too [16].

The MFCCs are derived as follows:

1. take the Fourier transform of a frame of a signal;

2. map the powers of the spectrum obtained above onto the mel scale, using triangular over-
lapping windows;

3. take the log of the powers at each of the mel frequencies;

4. take the discrete cosine transform of the list of mel log powers, as if it were a signal;

5. the MFCCs are the amplitudes of the resulting spectrum.

In the present project we extract 30 MFCCs as in [1][2].

8 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

2.1.3 Spectral features

2.1.3.1 Spectral Flatness Measure (SFM)

SFM is a measure used in digital signal processing to characterize an audio spectrum [13]. High
spectral flatness indicates that the spectrum has a similar amount of power in all spectral bands
and this would sounds similar to white noise. Low spectral flatness, instead, indicates that the
spectral power is concentrated in a relatively small number of bands and it is typical for tonal
sounds.

The spectral flatness is calculated by dividing the geometric mean of the power spectrum by
the arithmetic mean of the power spectrum. The spectral flatness used is measured across the
whole band.

SFM =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)

N

(2.11)

where x(n) represents the magnitude of bin number n of the power spectrum.

2.1.3.2 Spectral Centroid

Spectral centroid is a measure that indicates where is the “center of mass” of the spectrum [13].
Perceptually, it has a robust connection with the impression of “brightness” of a sound. It is
calculated as the weighted mean of the frequencies present in the frame, determined using a
Fourier transform, with their magnitudes as weights:

Centroid =

∑N−1
n=0 f (n) · x (n)∑N−1

n=0 x (n)
(2.12)

where x(n) represents the weighted frequency value, or magnitude, of bin number n, and
f(n) represents the center frequency of that bin.

2.1.3.3 Spectral Skewness

Spectral skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable that in this context is the spectrum of the signal [13]. The skewness value can
be positive or negative, or even zero. Qualitatively, a negative skew indicates that the tail on the
left side of probability density function is longer than the right side and the bulk of the values
(including the median) lies to the right of the mean. A positive skew indicates that the tail on
the right side is longer than the left side and the bulk of the values lies to the left of the mean.
A zero value indicates that the values are relatively evenly distributed on both sides of the mean,
typically but not necessarily implying a symmetric distribution.

For a sample of N values forming a frame, the skewness is:

Chapter 2. Principles of audio classification 9

Skewness =
m3

m
3/2
2

=
1
N
·
∑N−1

n=0 (x(n)− x)3(
1
N
·
∑N−1

n=0 (x(n)− x)2
)3/2

(2.13)

where x represents the mean of the magnitudes, m3 is the sample third central moment, and
m2 is the sample variance.

2.1.3.4 Spectral Slope

Spectral slope represents the amount of decreasing of the spectral amplitude [13]. It is computed
by linear regression of the spectral amplitude. In other words it is the slope of the line-of-best-fit
through the spectral data.

2.1.3.5 Spectral Decrease

Spectral decrease also represents the amount of decreasing of the spectral amplitude. This for-
mulation comes from perceptual studies and it is supposed to be more correlated to human per-
ception. The formula is:

Decrease =
1∑N−1

n=1 x(n)
·
N−1∑
n=1

x(n)− x(0)

N − 1
(2.14)

where x(n) represents the weighted frequency value, or magnitude, of bin number n.

2.1.3.6 Band Periodicity

Band periodicity is defined in [17] as the periodicity of a sub band and can be derived by sub
band correlation analysis. In the current project it was chosen to use two different bands: the
first one goes from 300 to 2500 Hz (called Filtered-Band Periodicity), the second one is from 0
to 22050 Hz (called Whole-Band Periodicity) as suggested in [1][2]. The periodicity property of
each sub band is represented by the maximum local peak of the normalized correlation function
calculated from the current frame and previous frame.

2.1.4 Correlation Features

These features are similar to spectral distribution descriptors but, in lieu of the spectrogram, they
are computed starting from the auto-correlation function of each frame of the audio signal.

2.1.4.1 Correlation Slope

This feature is calculated giving the auto-correlation function of each frame of the audio signal
as input to the slope function.

10 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

2.1.4.2 Correlation Decrease

This feature is calculated giving the auto-correlation function of each frame of the audio signal
as input to the decrease function.

2.2 Gaussian Mixture Models (GMMs)
Gaussian Mixture Models (GMMs) are among the most statistically mature methods for clus-
tering [18] and are gaining increasing attention in the pattern recognition community. GMMs
are widely used in audio applications like speaker recognition and music classification. GMM is
an unsupervised classifier which means that the training samples of a classifier are not labelled
to show their category membership. More precisely, what makes GMM unsupervised is that
during the training of the classifier, we try to estimate the underlying probability density func-
tions (pdf’s) of the observations. GMM can be classified as a semi-parametric density estimation
method too, since it defines a very general class of functional forms for the density model. In
this mixture model, a probability density function is expressed as a linear combination of basis
functions. An interesting property of GMMs is that the training procedure is done indepen-
dently for the classes by constructing a Gaussian mixture for each given class separately. So,
adding a new class to a classification problem does not require retraining the whole system and
does not affect the topology of the classifier making it attractive for pattern recognition applica-
tions. While GMM provides very good performances and interesting properties as a classifier, it
presents some problems that may limit its practical use in real-time applications. One problem
is that a GMM can require large amounts of memory to store various coefficients and complex
computations mainly involving exponential calculations.

2.2.1 The multivariate Gaussian pdf
In the GMM classifier, the conditional-pdf of the observation vector is modeled as a linear com-
bination of multivariate Gaussian pdfs, each of them with the following general form:

p(x) =
1

(2π)
d
2 · |Σ|2

e{−
1
2
(x−µ)TΣ−1(x−µ)} (2.15)

where :

• d is the number of features in the model;

• x is a d-component feature vector;

• µ is the d-component vector containing the mean of each feature;

• Σ is the d-by-d covariance matrix and |Σ| is its determinant. It characterizes the dispersion
of the data on the d-dimensions for the feature vector. The diagonal element σii is the
variance of xi and the non diagonal elements are the covariances between features. Often

Chapter 2. Principles of audio classification 11

the assumption is that the features are independent, so Σ is diagonal and p(x) can actually
be written as the product of the univariate probability densities for the elements of x.

It is important to note that each multivariate Gaussian pdf is completely defined if we know
θ = [µ,Σ].

2.2.2 GMM Training
To classify data using features vectors in a class, GMM needs a training step. At this stage, we
have to estimate the parameters of the multivariate Gaussian pdfs: θi = [µi,Σi] with i = 1, . . . , k
and k the number of multivariate Gaussian pdfs. In literature, the Expectation-Maximization
algorithm (EM) is the most often used solution for this problem. EM is an iterative method
which starts from a random distribution and alternates between performing an expectation (E)
step, which computes the expectation of the log-likelihood evaluated using the current estimate
for the latent variables, and a maximization (M) step, which computes parameters maximizing
the expected log-likelihood found on the E step. These parameter-estimates are then used to
determine the distribution of the latent variables in the next E step. This algorithm is assured to
converge to a local optimum. Note that the training set provided to GMM has to be well thought
out in order to have a model to be general enough to avoid the common problem of overfitting.

A simple Matlab example with real data will explain better the argument. To demonstrate the
process, first generate some simulated data from a mixture of four bivariate Gaussian distribu-
tions using the mvnrnd function2 (see Figure 2.3).

mu1 = [1 2];
sigma1 = [3 0.2; 0.2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
mu3 = [-4 2];
sigma3 = [1 0; 0 1];
mu4 = [-6 -2];
sigma4 = [2 -1; -1 2];

X = [mvnrnd(mu1,sigma1,100); mvnrnd(mu2,sigma2,100);
mvnrnd(mu3,sigma3,100); mvnrnd(mu4,sigma4,100)];
scatter(X(:,1),X(:,2),10,’ok’)

Now we have to fit the data with the GMM training algorithm. Here, we know that the
correct number of components to use is k = 4. Actually, with real data, this decision would
require comparing models with different number of components.

gm = gmdistribution.fit(X,k);

2Here we assume that all data belong to the same class and are independent each other, even if they are not,
simply to have a generic data distribution.

12 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

−10 −5 0 5
−6

−4

−2

0

2

4

6

Figure 2.3: Generic data distribution generated from a mixture of four bivariate Gaussian dis-
tributions.

Fitting the data with a low number of Gaussians can lead to a bad fitting to the data. This is
visible looking at the resulting estimated probability density with various values of the number
of the components k in Figure 2.4.

2.2.3 Classification test
Once we trained the GMM, we can proceed to the classification test. This step consists in eval-
uating the log-likelihood of a feature vector x in the model. Now we need a decision step to
discriminate if the features vector fits or not the model and say if the observation vector belongs
to the model’s class3. This step will be explained in detail in Chapter 3.

3Note that we have to construct a GMM for each class we want to insert in our classifier. So if we have to
classify more than one class, we have to build a database in which all data/files must be divided into classes to
separate different data coming from different classes. It follows that each model will be trained over all the data
referred to a determinate class.

Chapter 2. Principles of audio classification 13

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

x

With 1 Gaussian

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

x

y

With 2 Gaussians

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

x

With 3 Gaussians

−10 −5 0 5
−8

−6

−4

−2

0

2

4

6

x

y

With 4 Gaussians

Figure 2.4: Estimated probability density contours for the distribution with various values of the
number of the components k.

Chapter 3

Surveillance Algorithm for Recognition of
Impulsive Sounds (SARIS)

3.1 Sound Classification

3.1.1 Creation of the database of impulsive sounds
In order to create the models of the four classes of sounds (gunshots, screams, broken glasses and
barking dogs) we need a database of audio sounds. Unfortunately there are no Web database for
the classification of environmental sounds, while there are many for the speech/speaker recog-
nition that, in addition to being large, are made with certain criteria designed for the testing
purpose. For example there are the Timit database1 and the Nist database2. So we have the prob-
lem of creating an uniform database at home and the difficulty to deal with the literature because
there is a common reference.

Our database has been created downloading audio files from “The Freesound Project”[19]
without noise environment or eventually with a very high SNR. Every sound signal was stored
with some properties that are also the initial conditions and criteria for the well-functioning of
the algorithm. Every sound signal:

• has a sampling rate of 44100 Hz and has only one channel (mono)3;

• has zero mean (the signal is centered on the x axis);

• is not normalized (the maximum absolute value of the signal is not necessarily 1);

• is cleaned from the first and last silence parts to create an homogeneous database and to
have a robust training step without frames of sounds that not concern about the “essence”
of the sound class.

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
2http://www.itl.nist.gov/iad/mig//tests/sre/.
3Audio files with two channels (stereo) were transformed in one channel audio files (mono) summing the two

channels arrays and halving the values of the obtained array to avoid clipping (.wav files have a range that goes from
-1 to 1).

15

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.itl.nist.gov/iad/mig//tests/sre/

16 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

The number of sounds used in the database is listed in 3.1.

Sound Class Number of files Total duration (seconds)
Screams 41 41.3
Gunshots 30 18

Broken Glasses 21 7.2
Barking Dogs 28 2.9

Total 120 69.4

Table 3.1: Number of files and total duration in seconds for each audio sound class.

3.1.2 Creation of the classification models
For the classification of every class of the sounds, was selected a limited number of features
(10-12) from those extracted (40 excluding TEO) from the signal, described in 2.1, in order to
calculate in real-time the likelihood of all the models for each frame. The selection of the features
followed mainly [2]. For a lack of a feature selection algorithm which lists in decreasing order
the features that discriminate better the data in a determined class using thus only the first 10 or
15 “best” features, it was chosen to use the same features of the Gunshots for the Broken Glasses
and the same features of the Screams for the Barking Dogs. This arbitrary choice is justified by
a sort of similarity between the two couple of sounds, hoping that this would be not so different
from the optimal choice of the features. In the table 3.2 are listed all the features used for the
classification.

Gunshots and Broken Glasses classifiers Screams and Barking Dogs classifiers
1 MFCC 1 MFCC 2
2 MFCC 2 MFFC 3
3 MFCC 3 MFCC 9
4 MFCC 11 MFCC 12
5 MFCC 28 SFM
6 MFCC 29 Skewness
7 MFCC 30 Spectral Slope
8 ZCR Correlation Slope
9 Spectral Centroid Spectral Decrease

10 Filtered Periodicity Correlation Decrease
11 Periodicity
12 Filtered Periodicity

Table 3.2: Features selected to create the Gaussian Mixture Models.

For every class is trained a model from the background noise file with the features of the
related class too. This helps to control if the current sound is part of the environmental noise

Chapter 3. Surveillance Algorithm for Recognition of Impulsive Sounds (SARIS) 17

or a new sound and it is made simply comparing the likelihoods of the sound and noise models
and “eliminating” the frames that fit better the noise model instead of the sound model of a
determined sound class. This step, suggested in [1] and [2], will be treated with more detail later.
All the features that are used to classify the sounds are extracted from 23 milliseconds analysis
frames at a sampling frequency of 44100 Hz with 1/3 overlap as in [2] except for the sampling
rate that was doubled. After the extraction of all the features for every class we are ready to
run the GMM training algorithm of Matlab4. Note that the creation of GMMs for all the classes
is made off-line. In real-time processing there is an initial step in which the models are loaded
from .txt files5 created and stored off-line. In the learning algorithm are used 6 components
(Gaussians) because is a good trade off between the fitness of the models to data versus the CPU
overload during real-time operations.

During the training and the classification steps, all the frames are considered independent to
each other but the overlap between frames helps to correlate them to each other, introducing a
sort of causality.

3.1.3 Classification step during audio processing
This step is the core of the algorithm6. Once loaded the models, for every frame, are calculated
all the selected features and the related likelihood in all the models (sound and noise models).
After that, it follows a cascade of three operators:

1. Noise exclusion;

2. Likelihood selection;

3. Temporal selection.

For each class and each frame is selected the largest likelihood between the two models
(sound and noise). If the likelihood of the sound model is larger than the likelihood of the noise
model, the likelihood is set to the likelihood of the sound model, zero otherwise. This step is
called “Noise exclusion”.

if(likelihoodNoiseClassX > likelihoodSoundClassX)
likelihoodClassX = 0;

else
likelihoodClassX = likelihoodSoundClassX;

The second operator selects the frames that pass a threshold over the likelihood. If the frame
does not pass the condition, its likelihood is set to zero. This operator is also called “Likelihood
selection” because selects the likelihoods in the chart frames-likelihood (respectively x and y
axis).

4For the project has being used the Matlab implementation with a maximum of 300 iterations.
5In this files are contained all the GMM parameters that permit to evaluate the likelihood of the frames in a

model (see 2.2).
6This step can be applied both to test signals and in real-time.

18 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

if(likelihoodClassX < likelihoodThresholdClassX)
likelihoodClassX = 0;

Now that the candidate frames are selected, is applied the third operator that is divided in two
steps:

• Weighted Moving Average (WMA) of the likelihoods with a fixed number of frames for the
window called numFramesWMA;

• selection of the likelihoods using a number of frames as threshold numFramesWMADuration
larger than numFramesWMA.

For the fist step was implemented a WMA defined as:

WMAM =
n · pM + (n− 1) · p(M−1) + · · ·+ 2 · p(M−n+2) + p(M−n+1)

n+ (n− 1)− · · ·+ 2 + 1
(3.1)

were p is the array of values and M = numFramesWMA is the window length.
When calculating the WMA across successive values, it can be noted that the difference

between the numerators of WMAM+1 and WMAM is n · pM+1 − pM − · · · − pM−n+1. If we
denote the sum pM + ...+ pM−n+1 by TotalM , then

TotalM+1 = TotalM + pM+1 − pM−n+1 (3.2)

NumeratorM+1 = NumeratorM + n · pM+1 − TotalM (3.3)

WMAM+1 =
NumeratorM+1

n+ (n− 1) + · · ·+ 2 + 1
(3.4)

In the second step, are discarded all the frames that have a number of consecutive positive
values of the WMA less to numFramesWMADuration. In other words is used a binary
variable associated to every frame of every sound class that determines if there was or not a
sound of a determined class.

if(PassTemporalDuration)
FrameEventClassX = 1;

else
FrameEventClassX = 0;

This passage is made to avoid that sporadic and isolated frames that pass the Noise exclusion
and the Likelihood selection steps detecting an event only for a single frame duration. In fact
WMA flats the “spiky” values and permits to have an homogeneous likelihood. This operator
is called “Temporal selection” because it considers only the frames that overcome the threshold
for a determinate number of frames which can be seen as a temporal constraint. The thresholds

Chapter 3. Surveillance Algorithm for Recognition of Impulsive Sounds (SARIS) 19

threshold numFramesWMA numFramesWMADuration
Screams 0.1 30 35
Gunshots 3 ∗ 10−4 10 15

Broken Glasses 5 ∗ 10−6 10 13
Barking Dogs 0.1 10 13

Table 3.3: Thresholds and the lengths of the windows used for selecting the likelihood of the
sounds for detection.

and the lengths of the windows are listed in Table 3.3 and were found manually with repeated
test monitoring the accuracy of the classification algorithm.

Note that the cascade of the second and third operator is correct because if there are only
zero values coming from the cascade, no frame passes the third selector because all the values
after the WMA are zero and so there are no consecutive positive values. When the selection step
is done we only have to plot the frames that pass the previous conditions in the temporal axis
(see Figure 3.1. The decision that an event of the four classes occurs, is taken by computing
the logical OR of the four classifiers (that are independent to each other) as in [2], to take into
account the possibility of contemporaneous events.

3.2 Detection of impulsive sounds
The detection of the impulsive sounds is independent from the classification step and is used for
the following reasons:

• to find the other impulsive sounds that are not taken in consideration in the classification
step. They can be important for surveillance applications;

• to find also the impulsive sounds that are not detected by the classifier but belonging to one
of the classes of sounds (miss).

To detect impulsive sounds is used TEO that is extracted over all the samples at a sampling
frequency of 44100 Hz.

The idea of detecting the impulsive sound came from the one used for selecting the likeli-
hoods of the models7. In fact we used a cascade of a Threshold selection followed by a Temporal
selection. But the fact that TEO is a temporal feature calculated over each sample, led to a heavy
processing time for the calculation of a WMA due to the fact that the windows were too large.

The problem was simply avoidable calculating WMA in the faster way for successive values
as stated before. However, during the implementation of this detector in real-time, it was simpler,
for the writing of the code8, to aggregate in an unique value, with a simple mean, the values of
the TEO belonging to a frame.

7This idea turned out to be very interesting because led to build a powerful impulse detector.
8The porting from Matlab to C++ suffered from the fact that all calculations were made off-line and for the use

of the Matlab filters that were hidden built-in functions that has been ported in C++ using reverse engineering.

20 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Therefore, 23 milliseconds windows were used to calculate the TEO feature with 1/3 overlap
as in the classifier. In a second time, when the two detectors were divided in two NMM nodes,
were avoided overlapping windows and the TEO’s mean was calculated only over a window
frame with length equal to the window step (about 7.6 milliseconds). In other words, now, is
extracted only one TEO value per frame without overlap; it can be considered actually a sound
feature like the others used to classify the sound. The parameters used in the operators are listed
in Table 3.3.

threshold numFramesWMA numFramesWMADuration
5 ∗ 10−5 5 7

Table 3.4: Threshold and the length of the windows used for selecting the TEO-signal of the
sound.

Summarizing, it follows that the system achieves the detection of an impulsive sound with
only one feature!

3.3 Audio test creation
Testing was made using two types of audio test signals:

1. test signals for the accuracy calculation;

2. test signals for real-time testing.

In the first type the duration of the test is equal to the duration of the database tests. The new
file is created by selecting a random piece of the background noise signal and adding a random
signal of the database. The length of the noise audio signal is the equal to that of the pure audio
signal. The addition is weighted by the 0 ≤ NoiseAmplitudeModulation ≤ 1. To avoid
clipping in .wav files is used this formula:

newSound = NoiseAmplitudeModulation · cut+ (1−NoiseAmplitudeModulation) · pureSound (3.5)

where cut is the piece of the background noise signal and pureSound is the clean signal from
the database.

The Signal-To-Noise Ratio (SNR) of a new audio file with noise for the accuracy calculation
is:

SNR{dB} = 10 · log10(Se/Ne) (3.6)

where Se is the total energy of the clean signal
∑

n(pureSound[n]
2) and Ne is the total

energy of the noise signal
∑

n(cut[n]
2). Note that this formula is correct because the two signals

pureSound and cut have exactly the same length.

Chapter 3. Surveillance Algorithm for Recognition of Impulsive Sounds (SARIS) 21

In the second type, tests are 20 seconds long (duration of the background noise used9): in
this time lag is inserted in a random position10, an arbitrary number of sounds taken from the
database (as in Figure 3.1).

Figure 3.1: Visualization of likelihood and detection in time. The upper plot is the detection over
the time and in the other plots there are the values of the likelihood of each model. Legend: black
- impulsive sound; red - gunshots; green - screams; blue - broken glasses; light blue - barking
dogs.

9Extract from an audio file taken in a London square downloaded from [19].
10Overlap between sounds can occur so it is possible to see the independence of each classifier in relation to the

others

Chapter 4

Development tools and Network-Integrated
Multimedia Middleware (NMM)

4.1 Development tools

In this section are listed all the development tools used in the project.

4.1.1 Middleware

• Network-Integrated Multimedia Middleware (NMM) described in deep detail in this chap-
ter.

4.1.2 Software tools

4.1.2.1 Programming languages

The programming languages used for the implementation of the software are:

• Matlab - Octave;

• C/C++.

4.1.2.2 Integrated Development Environment (IDE)

The Integrated Development Environment (IDE) used are:

• Microsoft Visual Studio 2008 (for C++ Windows implementation);

• Eclipse (for C++ Linux implementation).

23

24 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

4.1.2.3 Operative Systems (OS)

The OS used are:

• Windows (XP - 7);

• Ubuntu 9.04 - 9.10.

4.1.2.4 Graphic User Interface (GUI)

For plotting charts of both off-line and real-time tests, it was used the Freeware library ChartDi-
rector [20].

4.1.2.5 Subversion (SVN)

Subversion (also known as SVN) is an open source version control system designed by CollabNet
Inc used for:

• saving and updating the source files of the project;

• comparing different chronological versions of the project for consideration of possible
errors due to changes and updates;

• merging different versions of the same source file.

This tool was so helpful because the files were always protected from data loss and it fastened
the update from one computer to another, also with different SO.

4.1.3 Audio tools
These tools are used mainly for the real-time tests:

• external sound card: Edirol UA-101: USB Audio Interface by Roland1;

• microphone: SM58 by Shure2;

• loud speaker: MP2-A Compact Amplified Monitor System by Generalmusic.

For the creation of the database of sounds is used the following software:

• Audacity. Sound editor for cutting audio files3;

• Matlab - Octave. Functions for reading the .wav files.
1http://www.rolandus.com/products/productdetails.php?ProductId=703.
2http://www.shure.com/americas/products/microphones/sm/

sm58-vocal-microphone
3http://audacity.sourceforge.net/.

http://www.rolandus.com/products/productdetails.php?ProductId=703
http://www.shure.com/americas/products/microphones/sm/sm58-vocal-microphone
http://www.shure.com/americas/products/microphones/sm/sm58-vocal-microphone
http://audacity.sourceforge.net/

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 25

4.2 Introduction to NMM

This section is a description of NMM taken from the NMM documentation [21]. Besides the PC,
an increasing number of multimedia devices - such as set-top boxes, PDAs, and mobile phones
- already provide networking capabilities. However, today’s multimedia infrastructures adopt a
centralized approach, where all multimedia processing takes place within a single system. The
network is, at best, used for streaming predefined content from a server to clients. Conceptually,
such approaches consist of two isolated applications, a server and a client (see Figure 4.1). The
realization of complex scenarios is therefore complicated and error-prone, especially since the
client has typically no or only limited control of the server.

Figure 4.1: Client/server streaming consists of two isolated applications that do not provide
fine-grained control or extensibility.

The Network-Integrated Multimedia Middleware (NMM) [21] overcomes these limitations
by enabling access to all resources within the network: distributed multimedia devices and soft-
ware components can be transparently controlled and integrated into an application. In contrast
to all other multimedia architectures available, NMM is a middleware, i.e. a distributed software
layer running in between distributed systems and application (see Figure 4.2).

Figure 4.2: A multimedia middleware is a distributed software layer that eases application
development by providing transparency.

26 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

As an example, this allows the quick and easy development of an application that receives
TV from a remote device – including the transparent control of the distributed TV receiver.
Even a PDA with only limited computational power can run such an application: the media
conversions needed to adapt the audio and video content to the resources provided by the PDA
can be distributed within the network. While the distribution is transparent for developers, no
overhead is added to all locally operating parts of the application. To this end, NMM also aims
at providing a standard multimedia framework for all kinds of desktop applications.

NMM is both an active research project at Saarland University in Germany and an emerging
Open Source project. NMM runs on a variety of operating systems and hardware platforms.
NMM is implemented in C++, and distributed under a dual-license: NMM is released under
“free” licenses, such as the GPL, and commercial licenses.

4.2.1 Nodes, Jacks, and Flow Graphs

The general design approach of the NMM architecture is similar to other multimedia architec-
tures. Within NMM, all hardware devices (e.g. a TV board) and software components (e.g.
decoders) are represented by so called nodes. A node has properties that include its input and
output ports, called jacks, together with their supported multimedia formats. A format precisely
defines the multimedia stream provided, e.g. by specifying a human readable type, such as “au-
dio/raw” for uncompressed audio streams, plus additional parameters, such as the sampling rate
of an audio stream. Since a node can provide several inputs or outputs, its jacks are labelled with
tags. Depending on the specific kind of a node, its innermost loop produces data, performs a
certain operation on the data, or consumes data.

The system distinguishes between different types of nodes: a source produces data and has
one output jack. A sink consumes data, which it receives from its input jack. A filter has one
input and one output jack. It only modifies the data of the stream and does not change its format
or format specific parameters. A converter also has one input and one output jack but can change
the format of the data (e.g. from raw video to compressed video) or may change format specific
parameters (e.g. the video resolution). A multiplexer has several input jacks and one output jack;
a demultiplexer has one input jack and several output jacks. Furthermore, there is also a generic
mux-demux node available. In section 4.4 will be explained step-by-step how to develop a new
node.

These nodes can be connected each other to create a flow graph, where every two connected
jacks need to support a “matching” format, i.e. the formats of the connected input jack respec-
tively output jack need to provide the same type and all parameters and the respective values
present in one format need to be available for the other and vice versa. The structure of this
graph then specifies the operation to be performed, e.g. the decoding and playback of an MP3
file (see Figure 4.3).

Together, more than 60 nodes are already available for NMM, which allows for integrating
various input and output devices, codecs, or specific filters into an application.

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 27

Figure 4.3: A flow graph for playing back MP3 files.

4.2.2 Messaging System

The NMM architecture uses a uniform messaging system for all communication. There are two
types of messages. Multimedia data is placed into buffers. Event forward control information
such as a change of speaker volume. Events are identified by a name and can include arbitrary
typed parameters.

There are two different types of interaction paradigms used within NMM. First, messages
are streamed along connected jacks. This type of interaction is called instream and is most often
performed in downstream direction, i.e. from sources to sinks; but NMM also allows for sending
messages in upstream direction.

Notice that both buffers and events can be sent instream. For instream communication, so
called composite events are used that internally contain a number of events to be handled within
a single step of execution. Instream events are very important for multimedia flow graphs. For
example, the end of a stream (e.g. the end of a file) can be signalled by inserting a specific event
at the end of a stream of buffers. External listener objects can be registered to be notified when
certain events occur at a node (e.g. for updating the GUI upon the end of a file or for selecting a
new file).

Events are also employed for the second type of interaction called out-of-band, i.e. interaction
between the application and NMM objects, such as nodes or jacks. Events are used to control
objects or for sending notifications from objects to registered listeners.

4.2.3 Interfaces

In addition to manually sending events, object-oriented interfaces allow to control objects by
simply invoking methods, which is more type-safe and convenient then sending events. These
interfaces are described in NMM Interface Definition Language (NMM IDL) that is similar to
CORBA IDL. According to the coding style of NMM, interfaces start with a capital “I”. For
each description, an IDL compiler creates an interface and a implementation class. While an
implementation class is used for implementing specific functionality within a node, an interface
class is exported for interacting with objects. During runtime, supported events and interfaces
can be queried by the application. Notice that interfaces described in NMM IDL describe out-
of-band and instream interaction.

28 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

4.2.4 Distributed Flow Graphs

What is special about NMM is the fact that NMM flow graphs can be distributed across the
network: local and remote multimedia devices or software components encapsulated within
nodes can be controlled and integrated into a common multimedia processing flow graph, a dis-
tributed flow graph. While this distribution is transparent for application developers, no overhead
is added to all locally operating parts of the graph: In such cases, references to already allocated
messages are simply forwarded - no networking is performed at all.

The following shows an example for a distributed flow graph for playing back encoded (com-
pressed) files, e.g. MP3 files. A source node for reading data from the local file system (Au-
dioReader) is connected to a node for decoding audio streams (AudioDecoder). This decoder
is connected to a sink node for rendering uncompressed audio using a sound board (AudioRen-
derer). Once the graph is started, the source nodes reads a certain amount of data from a given
file, encapsulates it into buffers, e.g. of size 1024 bytes, and forwards these buffers to its succes-
sor. After being decoded to uncompressed “raw” audio, the converter node forwards data buffers
to the sink node (see Figure 4.4).

Figure 4.4: A distributed flow graph for playing back MP3 files.

The application controls all parts of this flow graph using interfaces, e.g. INode for control-
ling the generic aspects of all instantiated nodes. Notice that three different hosts are present in
our example. The application itself runs on host1, the source node on host2, and the decoder and
sink node on host3. Therefore, NMM automatically creates networking connections between
the application and the three distributed nodes (out-of-band interaction), but also between the
source and the decoder node (instream interaction). Therefore, compressed MPEG audio data is
transmitted over the network.

Notice that such a simple but distributed flow graph already provides many benefits. First,
it allows an application to access files stored on distributed systems without the need for a dis-
tributed file system, such as NFS. Second, the data streaming between connected distributed
nodes is handled automatically by NMM. Third, the application acts as “remote control” for all

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 29

distributed nodes. As an example, this allows for transparently changing the output volume of the
remote sound board by a simple method invocation on a specific interface, e.g. IAudioDevice.

4.2.5 Distributed Synchronization

Since NMM flow graphs can be distributed, they allow for rendering audio and video on different
systems. For example, the video stream of an MPEG2 file can be presented on a large screen
connected to a PC while the corresponding audio is played on a mobile device. To realize syn-
chronous playback of nodes distributed across the network, NMM provides a generic distributed
synchronization architecture. This allows for achieving lip-synchronous playback as required
for the above described setup. In addition, media presentations can also be performed on several
systems simultaneously. A common application is the playback of the same audio stream using
different systems located in different rooms of a household - a home-wide music system.

The basis for performing distributed synchronization is a common source for timing informa-
tion. It is used a static clock within each address space. This clock represents the system clock
that is globally synchronized by the Network Time Protocol (NTP) and can therefore be assumed
to represent the same time basis throughout the network. With the current setup, it is found the
time offset between different systems to be in the range of 1 to 5 ms, which is sufficient for the
purpose of the current thesis project.

4.2.6 Registry Service

The registry service in NMM allows discovery, reservation, and instantiation of nodes available
on local and remote hosts. On each host a unique registry server administrates all NMM nodes
available on this particular system. For each node, the server registry stores a complete node
description that includes the specific type of a node (e.g. “sink”), its name (e.g. “Playbac-
kNode”), the provided interfaces (e.g. “IAudioDevice” for increasing or decreasing the output
volume), and the supported input and output formats (e.g. an input format “audio/raw” including
additional parameters, such as the sampling rate).

The application uses a registry client to send requests to registry servers running on either the
local or remote hosts. Registry servers are contacted by connecting to a well-known port. After
successfully processing the request the server registry reserves the requested nodes. Nodes are
then created by a factory either on the local or remote host. For nodes to be instantiated on the
same host, the client registry will allocate objects within the address space of the application to
avoid the overhead of an interprocess communication.

To setup and create complex distributed flow graphs, an application can either request each
node separately or use a graph description as query. Such a description includes a set of node
descriptions connected by edges.

For an application to be able to create a distributed flow graph, the NMM application called
serverregistry needs to be running on each participating host. For purely locally operating appli-
cations this is not required. Then, a server registry is running within the application itself but not
accessible from remote hosts.

30 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Before a server registry can be used, it needs to determine which devices and software com-
ponents are available on a particular host. Therefore, the registry needs to be initialized once
using following command:

user@linux:˜/nmm/bin> ./serverregistry -s

Create config file with plugin information ...
Loading plugins...
AC3DecodeNode available
AVDemuxNode available
AVIReadNode available
... and many further nodes

Config file successfully written.

4.2.7 Clic - An Application for Setting up NMM Multimedia Flow Graphs
The NMM framework is used to build up multimedia applications. The basic components in this
framework are nodes which perform a certain functionality, like reading a video file or decoding
it. Such nodes can be connected to a flow graph to perform a certain task like watching a film or
transcoding it into another format.

Especially transcoder jobs do not need any additional user interaction if the application is
running. Writing such an application without any user interaction is currently straightforward.
First, the application requests these nodes from the registry, connects them to a flow graph and
finally starts the entire flow graph.

To use the features provided by NMM we can follow two procedures. The first and easiest
is discussed in this section and is based on the use of the executable clic; the second is to write,
compile and run C++ code that uses libraries, namespaces and interfaces of NMM as can be seen
in the helloworld examples located in the folder examples of NMM.

The application clic is used to build such a standard NMM application automatically from a
textual description. clic stands for Command Line Interaction and Configuration and provides
a tool for using the existing nodes with the possibility to configure some of their parameters.
Starting from the knowledge of the functions of each node, textitclic can create a flow graph
from its textual description which is called “graph description”. With clic becomes very easy to
write and run an application that does not require interaction with a user; just correctly create a
file with extension .gd (graph description) and run it with clic.

Will now follow the details of the syntax of the graph description and the usage of the clic
application.

A graph description consists of two major parts. The first part is an (optional) comment
introduced by the character %. The second part specifies the flow graph which describes how to
connect the nodes. The following example describes a simple graph to play a .wav audio file.

% This graph description realizes a simple WAV player.
% Use the -i option of clic to specify an WAV file

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 31

WavReadNode ! ALSAPlaybackNode

To run this graph description, copy it into a file, e.g. wavplay.gd, and start clic with the
following command:

./clic wavplay.gd -i /home/username/audio/song.wav

The option “-i” is used to specify the input file. To exit the application, enter “q” at the
command line and press enter.

The flow graph section of a graph description describes how to connect the nodes. A node
is identified by its name, which is (normally) the C++ class name. The exclamation mark (!) is
used to denote a connection between two nodes as seen in the graph description for playing WAV
files. In this example the statement:

WavReadNode ! ALSAPlaybackNode

results in clic to request the nodes WavReadNode and ALSAPlaybackNode. If all nodes can
be successfully requested, the WavReadNode is connected to the ALSAPlaybackNode. Then,
clic sets the specified parameters from the command line, for example an input file, and starts the
entire flow graph.

In several cases a node must be configured before it can be used. In the previous examples,
the name of a .wav file needs to be specified for the WavReadNode to read data from this file.
Even though the clic-application offers a command line arguments for such a scenario, other
nodes might require additional parameters, which can not be specified in this way. In this case,
you ust call a node’s specific method, offered by an NMM interface specified in NMM-IDL
(Interface Definition Language). Each method of an NMM interface can be called from graph
description as well. For this purpose you have to write the corresponding IDL method with all
arguments prefaced by the character “$”. Furthermore you have to specify the state in which
the method must be executed. For example the WavReadNode offers the method setFilename
in one of its interfaces to set a WAV file, which must be called in the state INITIALIZED. Fur-
thermore you might want to change the queue of the ALSAPlaybackNode for incoming buffers,
which can be done using the method setDownstreamMaxSize which must be called in the state
CONSTRUCTED. The following example shows how to call these two methods from a graph
description.

% This graph description describes a simple WAV player and shows
% how to call interface methods from a graph description. It is
% not required to set the input file using the option -i of clic.
WavReadNode $ setFilename("/home/username/audio/song.wav")
INITIALIZED

! ALSAPlaybackNode $ setDownstreamMaxSize(1, "default") CONSTRUCTED

32 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

As can be seen in this example, the methods to be called are specified with their common
name and additional parameters followed by the state of the node in which they should be exe-
cuted.

Be careful using this feature. The given arguments are read as strings and converted to the
expected type. Thus, it can cause errors if you set invalid arguments. Furthermore, you must
specify all arguments: default arguments are currently not supported.

4.3 Installation of NMM

The middleware was installed using the 9.04 and 9.10 Ubuntu releases. It is also available to
work in virtual machines because the emulation of the hardware peripherals like the sound card
or video card does not create problems for the manage of the middleware.

4.3.1 Hardware prerequisites

For the Linux installation is needed a rightly configured video card with the Xv (X-Video) ex-
tension. This extension indicates a mechanism of output video for the X-Window system which
is a windows visualization protocol used mainly in Unix-like systems. To know if it is all right
run the following command:

xvinfo

This command prints all the informations of the video card for the X-Video extension. If
it prints the settings of the video card then no changes are necessary, otherwise it returns an
error. In this case you have to verify the correct installation of the xvinfo package on the Linux
distribution used.

NMM also need a sound card or an audio chip able to reproduce sounds at different sampling
rates (e.g. at 44.1 KHz). At present each personal computer has a sound card with this function-
ality integrated. By the way the precondition implies the proper recognition of the hardware by
the operating system.

4.3.2 Network configuration

To configure the network must be opened all ports 22801 and the interval 5000-6000, that’s to
say that they should not be blocked by firewalls or other protection systems. Then it is necessary
to set the hosts’ file which are usually located in the /etc/hosts folder. Here we have to enter the
domain, the hostname, and then, if there is a DNS (Domain Name System), we must also enter
the IP addresses because NMM is unable to recognize them directly.

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 33

4.3.3 Software configuration

Before installing NMM we have to prepare the working environment. Specifically, working with
Ubuntu, many of the packages required for the proper functioning of the middleware were absent
and therefore it was required a prior installation. There are three ways to install:

• download the archive available by Motama containing the precompiled libraries and un-
pack it in a folder. These libraries do not necessarily cover all requirements and also does
not guarantee the correctness of the operations in all system. The method is simple, but
can sometimes cause problems redirecting thus to one of the following two options;

• download, compile and install the libraries using the source codes. All the informations
and descriptions of the libraries needed for the right functioning are listed in A;

• install the package on the Linux distribution used. Beware that many distributions provide
the header files, divided by library files called developer4.

It is recommended to use the first solution, which involves a simple download of a package
of already precompiled libraries (e.g. nmm-2.2.0-optional-external-libs-linux.tar.gz) and install
it by following these instructions:

cd /home/username/
tar xvfz nmm-2.2.0-optional-external-libs-linux.tar.gz

Despite the advice, this alternative did not achieve the desired results, because after the in-
stallation of NMM many nodes were still not available. The second alternative, instead, was
successful.

There are libraries for the management of audio such as “asoundlib”, for the manage of
the video as “Xlib” and for the interaction with various devices. Of course, for a complete
installation, all the libraries should be installed; but if, for example, the firewire cameras are not
used, the libraries “l1394” may be omitted.

Once identified the libraries, the installation can be done simply by using the Synaptic Pack-
age Manager in Ubuntu, making sure to install from the list all the files *-dev. Some libraries,
however, are not available through Synaptic and then require manual installation (for example,
the ALSA libraries for managing audio).

Once prepared the environment, you can proceed with the actual installation of NMM. From
site Motama you need to download the latest release (e.g. the file nmm-2.2.0.tar.gz) and unzip it
to a folder (e.g. /home/username/nmm). From this new folder give these commands in sequence:

./configure
make
sudo make install

4If a package is called libABC, the package developer file will call most likely libABC-developer or libABC-dev.

34 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

The ./configure permits to see which basic functions of NMM are enabled. At the beginning
there should be entries marked disabled, but after the installation of all external packages, the
items concerned should all be marked enabled. After performing these steps, if no errors occurs,
NMM should be properly installed.

As a first test you can try the command:

serverregistry -s

that returns the list of all available nodes. The following is an example of the result of this
command:

serverregistry and Network-Integrated
Multimedia Middleware (NMM) Version 2.2.0

Copyright (C) 2005-2010
Motama GmbH, Saarbruecken, Germany
http://www.motama.com

See licence for terms and conditions of usage

No plugin information available! If you start NMM for
the first time this information is created automatically.
Note: If you ever change your hardware configuration or
update the NMM version you must delete the file
/home/username/.nmm/plugins.2.2.0.xps._usr_local
or run ’serverregistry -s’ again.

Create config file with plugin information ...
Loading plugins...
AC3DecodeNode available
AC3ParseNode available
ALSAPlaybackNode available
ALSARecordNode available
AVDemuxNode available
AVMuxNode available
AnalyseDataIdNode available
AudioMuxNode available
BrightnessNode available
BufferDropNode available
BufferShapingNode available
BufferTimestampControlNode available
BufferTimestampNode available
CopyNode available
DVBS2ReadNode not available
DVBSimulatorNode available
DevNullNode available

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 35

DummyAudioSinkNode available
DummyVideoSinkNode available
FFMPEGDeinterlaceNode available
FFMpegAVIReadNode available
FFMpegAVIWriteNode available
FFMpegAudioDecodeNode available
FFMpegAudioEncodeNode not available
FFMpegDecodeNode available
FFMpegEncodeNode available
FLACReadNode available
FramerateConverterNode available
GenericReadNode available
GenericWriteNode available
H264DecodeNode available
IVTVReadNode not available
IcecastNode available
IdNode available
JPEGDecodeNode available
JPEGEncodeNode available
LogoNode available
M4AReadNode available
MP3ReadNode available
MPEGAudioDecodeNode available
MPEGAudioEncodeNode available
MPEGDemuxNode available
MPEGReadNode available
MPEGTSDemuxNode available
MPEGTSReadNode available
MPEGTimeShiftingNode available
MPEGTimeShiftingNode2 available
MPEGVSHDetectionNode available
MPEGVideoDecodeNode available
MagickManipulationNode available
MagickReadNode available
MagickWriteNode available
MessageSeekNode not available
NetSourceNode not available
OGMDemuxNode available
OSDManagerNode available
OggVorbisDecodeNode available
OverlayNode available
PCMDecodeNode available
PCMEncodeNode available
PNGReadNode available
PNGWriteNode available

36 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

PlaybackNode available
RGBtoRGBConverterNode available
RGBtoYV12ConverterNode available
RawNode available
RecordNode available
ScopeNode available
TSDemuxNode available
TVCardReadNode available
TVCardReadNode2 available
TimeDisplayNode available
TimedBufferDropNode available
URLNode available
VISCACameraReadNode not available
VideoCropNode available
VideoGrabNode available
VideoMuxNode available
VideoScalerNode available
VoiceDetectorNode not available
WavReadNode available
WavWriteNode available
WhiteNoiseNode available
XDisplayNode available
YUVDeInterlaceNode available
YUVtoRGBConverterNode available
YUVtoYUVConverterNode available
Finished loading plugins ...

Config file successfully written.

This list can be taken as an example of a first inspection of a NMM’s correct installation.

4.3.4 Testing the middleware
After the installation, is required a testing phase that verifies the NMM’s correct functioning.
A first simple test can be the execution of a simple audio player using clic. First enter in the
following NMM’s directory path:

../nmm-2.2.0/apps/clic/gd/linux/playback/audio/

In this folder there are files with extension .gd ready for use. You can launch this example:

clic wavplay.gd -i <file audio .wav>

that will execute the file wavplay.gd with input any audio file .wav. This should allow you to
hear the audio file.

In a second test you can try to view a video. The procedure is the same as before. From the
folder:

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 37

nmm-2.2.0/apps/clic/gd/linux/playback/video/

give:

clic noise.gd

which should show a display window with video noise.

4.4 Software Developer Kit (SDK)
Motama provides a kit called NMM-SDK for software’s development. Actually, this kit consists
of a simple interface in NMM-IDL, a plugin that implements this interface and a flow graph using
these two components, namely providing an example of what a developer should do to create his
own plugins recognizable from the registry service (usable in a flow graph) and how to use them.

Let’s see how to install the NMM-SDK. The most important prerequisite is the correct in-
stallation of NMM. After NMM’s installation, download the SDK-package from the web (e.g.
nmm-sdk-2.2.0) and unpack it. Now from the SDK folder give:

./configure --with-nmm=/usr/local
make
sudo make install

After the installation, go inside the folder:

...nmm-sdk-2.2.0/nmm/plugins/audio/filter

in which there is an example node, AudioVolumeFilterNode, that can open a file .wav and
adjust the volume from the shell. The recommended way to learn how to build new nodes is to
create an own node or otherwise modify the AudioVolumeFilterNode to take inspiration from it.

Watching .cpp files it is easy to understand the NMM’s syntax but the first problem is trying
to build the project including other external files (.cpp and .hpp) with the file AudioVolume-
Filter.cpp.

To do this we must include in make.am the files used:

libnmmMyNode_la_SOURCES = \
MyNode.cpp \
file1.cpp \
file2.cpp

treepkginclude_HEADERS = \
$(IDLHEADERS) \
MyNode.hpp \
file1.hpp \
file2.hpp

38 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

After editing the make.am file from the SDK directory we need to use the autotools functions5

to generate the make.in and subsequently the makefile:

chmod +x autogen.sh && ./autogen.sh

Now we have everything ready. Now just give a reconfiguration, remembering that the SDK
requires the NMM installation path:

./configure --with-nmm=/usr/local

Now that we generated the makefiles, we have to write from the SDK root:

make
sudo make install

If all ends without errors, writing:

serverregistry -s

you should see the name of our new node in the list:

MyNode available

Note that if you use external libraries in your code, they have to be added into make.am.

4.5 Audio Surveillance Graph
The Audio Surveillance Graph is a cascade of five nodes, simply described by the clic syntax:

RecordNode $setDevice("/dev/audio1") CONSTRUCTED
!ImpulseDetectorNode
!AudioClassificationNode
!AudioEventReceiverNode
!XDisplayNode

The RecordNode, a SourceNode, records the sound at a fixed framerate and bitrate (respec-
tively 44100 Hz and 16 bit/value) and sends the signal to the ImpulseDetectorNode that is a
FilterNode like AudioClassificationNode. FilterNodes are nodes that have the output signal that
is the same of the input signal and they only make an analysis and processing step of the signal.
When they found an event, they notify it with an event-message that is propagated downstream in
the graph. The AudioEventReceiverNode, a GenericFilterNode, is a listener of the graph events
and catch all the events launched by the ImpulseDetectorNode and the AudioClassificationNode.
GenericFilterNodes are nodes that have an input format different from the output one. In fact the

5For those not familiar with autotools or those who want to know more, take a look at this on-line guide http:
//sourceware.org/autobook/autobook/autobook_toc.html.

http://sourceware.org/autobook/autobook/autobook_toc.html
http://sourceware.org/autobook/autobook/autobook_toc.html

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 39

Figure 4.5: The Audio Surveillance Graph.

AudioEventReceiverNode receives in input an audio signal and sends in output an image that is
the real-time plot of the analysis of the audio signal constructed with the timestamps of the events
generated from the two filter nodes. Finally, to see the real-time plot, we need a connection to
the XDisplayNode, a SinkNode, that opens a window with the plot refreshed every second. Note
that using NMM has simplified a lot the managing of the audio stream that involves the mutual
exclusion of the buffer containing the audio samples implemented as a circular array.

In a first implementation the three FilterNodes were unified in a single node that processed
the audio signal and generated the plot. This, however, went in opposition with the modular
way of thinking of NMM. So, the main functions of the old node were selected and the node was
divided in three single processing nodes with distinct and independent aims. In fact classification
and impulse detection are two distinct and separated processes (see Figure 4.5). In this way, a
future user will have more freedom in locating the nodes in the graph, adding some new nodes
between them or simply removing one of them if it is needless. we found a problem due to
the integrated sound card that applied a DC offset (an additive component to the amplitude of
the audio signal)6 that caused a bad classification. In fact all the training files are stored in the
database at zero mean by and so the real-time recorded sound from the microphone has to be at
zero mean. To overcome this problem, was used an external usb audio card, the Edirol UA-101:
USB Audio Interface by Roland, that sets by default the recorded sound at zero mean.

All files are included in a subdirectory called “audio” contained in the NMM-SDK “plugins”
folder. To build the C++ project we used these makefiles:

6This problem has been observed in Ubuntu in which the recorded audio signal is translated in the amplitude
axis

40 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• ImpulseDetectorNode:

Don’t forget to add Makefile to configure.in (in project root directory)

helper rules for nasm
include $(top_srcdir)/Makefile.am.extra

this is a IDL Makefile, so include the according rules!
include $(top_srcdir)/Makefile.am.idlextra

Add any subdirectories, where another Makefile.am is located
"." is a cheap trick to force building of . first
SUBDIRS =

library name
pluginlib_LTLIBRARIES = libnmmImpulseDetectorNode.la

---------- libnmmImpulseDetectorNode.la ----------

all sources for this library in this directory
libnmmImpulseDetectorNode_la_SOURCES = \
ImpulseDetectorNode.cpp

additional linker flags for the library
version-info means the library compatibility number,
see documentation for details
do not remove, change only if you know what you do
libnmmImpulseDetectorNode_la_LDFLAGS = \
$(all_libraries) \
--version-info 0:0:0 -module

libraries against which the library should be linked
(example links against libtrallala.so and so on)
libnmmImpulseDetectorNode_la_LIBADD =

all header files, that are to install in the current directory
treepkginclude_HEADERS = \
$(IDLHEADERS) \
ImpulseDetectorNode.hpp

all extra things you want to be included in the tar-ball of the distribution
(standard files like *.cpp, *.hpp, README or Makefile.am will be included
anyway)
EXTRA_DIST = \
$(IDLS)

additional include paths needed to compile the librar{y,ies}
INCLUDES = $(USER_INCLUDES) \
$(all_includes)

Chapter 4. Development tools and Network-Integrated Multimedia Middleware (NMM) 41

• AudioClassificationNode:

Don’t forget to add Makefile to configure.in (in project root directory)

helper rules for nasm
include $(top_srcdir)/Makefile.am.extra

this is a IDL Makefile, so include the according rules!
include $(top_srcdir)/Makefile.am.idlextra

Add any subdirectories, where another Makefile.am is located
"." is a cheap trick to force building of . first
SUBDIRS =

library name
pluginlib_LTLIBRARIES = libnmmAudioClassificationNode.la

---------- libnmmAudioClassificationNode.la ----------

all sources for this library in this directory
libnmmAudioClassificationNode_la_SOURCES = \
AudioClassificationNode.cpp \
gmm.cpp \
mathPlus.cpp \

feature.cpp

additional linker flags for the library
version-info means the library compatibility number,
see documentation for details
do not remove, change only if you know what you do
libnmmAudioClassificationNode_la_LDFLAGS = \
$(all_libraries) \
--version-info 0:0:0 -module

libraries against which the library should be linked
(example links against libtrallala.so and so on)
libnmmAudioClassificationNode_la_LIBADD =

all header files, that are to install in the current directory
treepkginclude_HEADERS = \
$(IDLHEADERS) \
AudioClassificationNode.hpp \

gmm.h \
mathPlus.h \
feature.h

all extra things you want to be included in the tar-ball of the distribution
(standard files like *.cpp, *.hpp, README or Makefile.am will be included
anyway)
EXTRA_DIST = \
$(IDLS)

additional include paths needed to compile the librar{y,ies}
INCLUDES = $(USER_INCLUDES) \
$(all_includes)

42 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• AudioEventReceiverNode:

Don’t forget to add Makefile to configure.in (in project root directory)

helper rules for nasm
include $(top_srcdir)/Makefile.am.extra

this is a IDL Makefile, so include the according rules!
include $(top_srcdir)/Makefile.am.idlextra

Add any subdirectories, where another Makefile.am is located
"." is a cheap trick to force building of . first
SUBDIRS =

library name
pluginlib_LTLIBRARIES = libnmmAudioEventReceiverNode.la

---------- libnmmAudioEventReceiverNode.la ----------

all sources for this library in this directory
libnmmAudioEventReceiverNode_la_SOURCES = \
AudioEventReceiverNode.cpp

additional linker flags for the library
version-info means the library compatibility number,
see documentation for details
do not remove, change only if you know what you do
libnmmAudioEventReceiverNode_la_LDFLAGS = \
$(all_libraries) \
--version-info 0:0:0 -module \
-L/home/riccardo/nmm-sdk-2.2.0/nmm/plugins/audio/AudioEventReceiverNode \
-Wl,-R/home/riccardo/nmm-sdk-2.2.0/nmm/plugins/audio/AudioEventReceiverNode \
-lchartdir

libraries against which the library should be linked
(example links against libtrallala.so and so on)
libnmmAudioEventReceiverNode_la_LIBADD = \
/home/riccardo/nmm-2.2.0/nmm/utils/png/libnmmpngutils.la

all header files, that are to install in the current directory
treepkginclude_HEADERS = \
$(IDLHEADERS) \
AudioEventReceiverNode.hpp \
chartdir.h \
bchartdir.h \
memblock.h \
FinanceChart.h

all extra things you want to be included in the tar-ball of the distribution
(standard files like *.cpp, *.hpp, README or Makefile.am will be included
anyway)
EXTRA_DIST = \
$(IDLS)

additional include paths needed to compile the librar{y,ies}
INCLUDES = $(USER_INCLUDES) \
$(all_includes)

Chapter 5

Experimental Results

5.1 Testing Off-line
To know the performance of the system, testing off-line is made over the whole database, working
on audio files registered with a microphone. Three test variables are taken into account. The
former two are boolean, the third is numerical.

1. Noise exclusion on/off. This variable chooses whether to use or not the Noise exclusion (if
set to “off” is not required a noise classification step);

2. Technique of evaluating accuracy smooth/sharp. The simultaneous detection of different
classes of the same file belonging to one determinate class is evaluated as a correct detec-
tion in the smooth accuracy mode, a wrong detection in the sharp accuracy mode;

3. Signal-to-Noise Ratio (SNR). This variable goes from -20 dB to 25 dB with step of 5 dB.

Let N the number of the classes used in the system and C the set of all the classes such that
c1,...,N ∈ C. The performance parameters used are explained in the following:

• True positive: A sound file belonging to a class ci ∈ C and correctly classified in a sound
belonging to the same class ci. TP is the number of true positive files tested;

• False positive: A generic sound file not belonging to any of the classes of C that is wrongly
classified in a sound belonging to some class ci ∈ C. Note that in a multi class system
with N classes, this parameter incorporates both the prediction that the file that belongs to
a class ci ∈ C is wrongly classified in a sound belonging to a class cj ∈ C with j ̸= i, and
the prediction that the audio file that does not belong to any class is wrongly classified in a
sound belonging to some class ci ∈ C. FP is the number of false positive files tested;

• True negative: A sound file that does not belong to any class ci ∈ C and is not detected by
the system. TN is the number of true negative files tested;

43

44 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• False negative: A sound file belonging to a class ci ∈ C and not classified in any class.
FN is the number of false negative files tested.

The accuracy is the proportion of true results (both true positives and true negatives) in a
database:

Accuracy =
TP + TN

TP + FP + FN + TN
(5.1)

On the other hand, precision is defined as the proportion of the true positives against all the
positive results (both true positives and false positives):

Precision =
TP

TP + FP
(5.2)

Accuracy is the degree of veracity while precision is the degree of reproducibility. The anal-
ogy used here to explain the difference between accuracy and precision is the target comparison.
In this analogy, repeated measurements are compared to arrows that are shot at a target. Accuracy
describes the closeness of arrows to the bullseye at the target center. Arrows that strike closer to
the bullseye are considered more accurate. The closer a system’s measurements to the accepted
value, the more accurate the system is considered to be (see Figure 5.1).

Figure 5.1: High accuracy but low precision.

To continue the analogy, if a large number of arrows are shot, precision would be the size
of the arrow cluster. (When only one arrow is shot, precision is the size of the cluster one
would expect if this were repeated many times under the same conditions.) When all arrows
are grouped tightly together, the cluster is considered precise since they all struck close to the
same spot, even if not necessarily near the bullseye. The measurements are precise, though not
necessarily accurate (see Figure 5.2).

Figure 5.2: High precision but low accuracy.

However, it is not possible to reliably achieve accuracy in individual measurements without
precision: if the arrows are not grouped close to one another, they cannot all be close to the

Chapter 5. Experimental Results 45

bullseye (their average position might be an accurate estimation of the bullseye, but the individual
arrows are inaccurate).

To increase almost linearly the noise over the clean signals, the background noise was added
to the clean signal changing the NoiseAmplitudeModulation from 0 to 0.9 with 0.1 step.

Unfortunately there is not a good definition of SNR for a set of signals because the audio
files in the database have different loudness. Our definition of the mean SNR makes sense to
characterize a real situation where there are audio streams with almost stationary noise, with a
certain energy, and various signals with different energies.

SNR’s Average value makes sense because it can be representative of a real situation. Every
SNR value reported in the graphs is the mean of the SNRs of all the files referring to the same
NoiseAmplitudeModulation value (the variance has a constant range of ±10 dB). All the
following plots are structured in this way: in the x axis there is the mean SNRs and in the y axis
there are the statistical results of accuracy and precision. All data are the mean of 10 iterations
of the accuracy & precision algorithm because the training and the audio test-files construction
are random based.

5.1.1 Global classification performance
Here we show the global performance of the systems with all the four classes of sounds. The
values are calculated using all the files of the database for the training of the GMMs. Although
here the training set and the test set are the same, the purpose of this analysis is to look at the
effect of noise over the performance. In Figure 5.3 the global accuracy decreases as the SNR
decreases. Using the Noise Subtraction it seems that the accuracy does not improve; this means
that we can avoid to train the GMMs of the noise that varies according to the place in which
we want to install the system.

Figure 5.3: Accuracy of all the classes.

From Figure 5.4 we can observe that the whole system is very precise also when there is a
low SNR. Obviously, using the restrictive mode, the accuracy and the precision are lower; this is

46 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

due to simultaneous detection of different classes of the same file belonging to one determinate
class.

Figure 5.4: Precision of all the classes.

5.1.2 Single class classification performance
Now it follows a single performance evaluation of the four classifiers. In this section are tested
only the sounds belonging to a determinate class and are taken into account the results of all the
classifiers. This will show if there are some “interferences” between classes and if some classes
performs better than others. These tests are also a way to determine whether the features used
to classify the sounds of a given class are discriminatory for that class in relation with the other
classes.

For the evaluation of the performance we followed two methods:

1. use of all the database files both for the training and for the test (training set = test set) as
in the global performance;

2. leave-one-out cross-validation method (LOOCV).

The second approach is more accurate than the first one because it achieves more robust
performance values. As the name suggests, LOOCV involves using a single observation from
the original sample as the validation data, and the remaining observations as the training data.
This is repeated such that each observation in the sample is used once as the validation data. This
is the same as a K-fold cross-validation with K being equal to the number of observations in the
original sample. LOOCV, however, is usually very expensive from a computational point of view
because of the large number of times the training process is repeated.

Chapter 5. Experimental Results 47

5.1.2.1 Gunshots

Simple validation

For the gunshot class we can see (Figures 5.5 and 5.6) that the behaviour is the same as in the
overall performance but it worses as the SNR decreases.

Figure 5.5: Accuracy of the Gunshot class with simple validation.

Figure 5.6: Precision of the Gunshot class with simple validation.

48 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Leave-one-out cross-validation

The accuracy (Figure 5.7) decreases slowly from 80% at 25 dB SNR remaining at a high value
of 40% at -20 dB SNR. The precision (Figure 5.8) is very good and is quite constant to 90% in
all the SNR’s tested range. Very little difference in using the noise exclusion.

Figure 5.7: Accuracy of the Gunshot class with LOOCV.

Figure 5.8: Precision of the Gunshot class with LOOCV.

Chapter 5. Experimental Results 49

5.1.2.2 Screams

Simple validation

In this class we can see (Figures 5.9 and 5.10) that there is a larger gap between the two technique
for evaluating the accuracy (smooth/sharp) than in the other plots. This may mean that the model
of the screams classify well the sounds of its class (red and blue curves), but other models have
a lot of false positives because some screams are classified as belonging also to other classes
(yellow and green curves). This may be because we use the same features to classify different
classes of sounds (e.g. the screams and barking dogs classes). To understand which classes
confuse the sounds we should build a confusion matrix.

Figure 5.9: Accuracy of the Scream class with simple validation.

Figure 5.10: Precision of the Scream class with simple validation.

50 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Leave-one-out cross-validation

In the Figures 5.11 and 5.12 the gap is larger than in Figures 5.9 and 5.10 (same and strengthened
inferences as before). The accuracy now start from less than 80% and there is no difference in
using the noise exclusion.

Figure 5.11: Accuracy of the Scream class with LOOCV.

Figure 5.12: Precision of the Scream class with LOOCV.

Chapter 5. Experimental Results 51

5.1.2.3 Broken Glasses

Simple validation

This class performs better than the others (very high accuracy and precision) and looking to the
Figures 5.13 and 5.14 we can see that there is no difference in using the noise subtraction or not.
We can also see that there are no false positives and so no interferences with the other classes (the
yellow and green lines lie on the blue and red curves). This is probably due to the small database
regarding this class that is correlated also to the fact that precision is very high, suggesting that
the model does not generalizes too much and suffers of overfitting. Furthermore we see that
the precision is almost constant although the SNR decreases, perhaps because the sounds of this
class are so similar to white noise.

Figure 5.13: Accuracy of the Broken Glasses class with simple validation.

Figure 5.14: Precision of the Glass class with simple validation.

52 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Leave-one-out cross-validation

Here the precision (Figure 5.16) is not so constant as in the simple valuation and there is a little
interference with the other classes. No difference with the noise exclusion.

Figure 5.15: Accuracy of the Glass class with LOOCV.

Figure 5.16: Precision of the Glass class with LOOCV.

Chapter 5. Experimental Results 53

5.1.2.4 Barking dogs

Simple validation

This class performs quite well with medium high SNRs. With low SNRs accuracy and preci-
sion go to zero. With negative SNRs, the lines of the two different techniques of evaluation
(smooth/sharp) have the same behaviour, suggesting that other classes does not wrongly detect
barks as sounds of their class.

Figure 5.17: Accuracy of the Barking dogs class with simple validation.

Figure 5.18: Precision of the Bark class with simple validation.

54 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Leave-one-out cross-validation

Same notes stated in the simple evaluation paragraph of this class. Still no difference in using
the noise exclusion.

Figure 5.19: Accuracy of the Bark class with LOOCV.

Figure 5.20: Precision of the Bark class with LOOCV.

Chapter 5. Experimental Results 55

5.2 Testing Real-time
The testing of the system in real-time is made using a sound card, a microphone and a loud
speaker (see 4.1.3). For logistical reasons, we lacked spaces with stable conditions of background
noise. Tests were made in the Robotics Lab of DEI/O in Padova. The microphone records a
quite constant or stationary background noise with constant energy with added audio events with
different energies. So the mean SNR can be considered the mean value of the noise. This value
characterizes the noise with one value. Unfortunately it is impossible to calculate the accuracy
and the precision of the system in real-time for the difficulty of calculating the SNRs. So, in this
section, we will give only a qualitative accuracy.

5.2.1 Classification performance
Test were divided depending on the type of the source:

1. loud speaker - that plays the audio tests (The microphone is directed towards the speaker);

2. voice and firecrackers - that generate screams and simulate gunshots.

For the first type of source, the quality of the system remains with good performance having
some volume problems because the features are a bit dependent on the frequency and volume.
In fact, directing the microphone towards the tweeter of the speaker, the broken glasses class
achieved better performance; while a low volume sound, played by the speaker, was not detected.

For the second type of source the classifier performed worse, due mainly to the fact that the
database is small.

Furthermore it should be studied the effect of the reverberation in the room and the conse-
quences of it on the system because it caused some problems during the classification step.

5.2.2 Impulse detection performance
The impulse detector accuracy depends directly on the gain and volume of the microphone and
consequently to the threshold used to detect the impulse. When installing the microphone, this
parameter has to be set to a value that allows the system to detect low volume impulse sounds
making some tests in the environment. Once set the “volume” threshold to a value, most of the
impulsive sounds that overcome the threshold will be detected because we apply only a simple
threshold condition followed by another tight temporal condition that prevents some sporadic
isolated peaks of the signal.

Chapter 6

Conclusions and further work

This project achieves a good off-line classification of the environmental sound taken in consid-
eration (gunshots, screams, broken glasses and barking dogs) reaching still 70% of accuracy and
90% of precision at 0 dB SNR, starting from 100% of both accuracy and precision with clean
sounds at 20 dB SNR.

During the classification the noise exclusion step can be omitted because it does not improve
the performance (e.g. see Figure 5.11). This means that the overhead can be optimized and that
our system does not require a training step for training of the environmental noise. This can
be a winning feature for a future industrial product that does not require a particular set-up that
depends from the environmental background noise.

The detection of an impulsive sound is made with only one simple feature and has a very
high precision and accuracy according obviously to the volume threshold used.

Now we suggest some other works and hints that we have not developed for lack of time but
we think that they can improve the system:

• to enlarge the database. To achieve a more generic classifier for every audio class there is
the need to have a very large database;

• to investigate how much to cut (a formula or a handmade cut ?) the beginning and the tail
of the files of the database in order to keep the true “essence” of the audio files of each
class;

• feature selection. To improve the classification step, the features that best describe each
class should be identified and selected through a more rigorous feature selection stage,
using e.g. principal component analysis (PCA) or other statistical methods;

• to find the best local optimum of the GMMs with repeated iterations of the GMM algorithm
- both more iterations of the EM step (now they are 300) and more restarts of the algorithm
to avoid falling into a local optimum. This also will improve the classification step;

• to classify more sound classes. Adding a new class is very simple (it requires only the
construction of the GMM of the class) and does not affect in any way the classifier (it
requires only an insertion of an additional case in the possible outputs of the classifier);

57

58 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• to create a confusion matrix to know how much the models are separated;

• to improve the classification’s validation step using k-folds with a larger database;

• to implement an adaptive threshold for the impulse detector as suggested in [12];

• localization of the sound with arrays of microphones; this will provide more info to the
surveillance system;

• study of the environmental effects (e.g. reverberation) and possible improvements (e.g.
dereverberation).

APPENDIX

59

Appendix A

Libraries for the installation of NMM

• a52dec - AC3 audio decoder;

• faad - Decoder for AAC;

• ffmpeg - Various audio and video codecs;

• l1394 - Management of IEEE1394 devices,

• libmp3lame - MPEG layer3 audio encoder;

• libraw1394 - Low level IEEE1394 support;

• libmad - MPEG layer3 audio decoder;

• libdvdnav - DVD reading and navigation;

• libdvdread - DVD reading;

• libogg - OGG file parser;

• libvorbis - OGG/Vorbis audio decoder;

• libshout - Injection of audio streams into a ShoutCast server;

• fftw - Fast Fourier Transformation, used for audio visualization;

• libliveMedia - RTP support;

• mpeg2dec - MPEG version 1/2 video decoder;

• cdparanoia - CDDA Support for Linux.

• libpng - PNG file reader;

• asoundlib - ALSA headers and library;

61

62 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

• Xlib - X11 headers and libraries;

• libjpeg - JPEG Support;

• ImageMagick - Imaging Support;

• mplayer - Parts of the implementation of DirectXDisplayNode is based on MPlayer;

• vlc - Parts of the implementation of DirectXDisplayNode is based on vlc;

• transcode - Parts of the C implementation of deinterlacing algorithm in YUVDeInterla-
ceNode;

• ogmtools - Parts of the implementation of OGMDemuxNode is taken from the ogmtools
package;

• libxmlpp - Some optional plug-ins and features of NMM use a modified version of libxml++,
which is provided along with NMM;

• libx264 - H264 encoding support. Used by FFMpegEncodeNode;

• DVB API 5.1 - DVBS2ReadNode depends requires DVB API 5.1, which is part of the
Linux kernel headers;

• ulxmlrpcpp - XML-RPC library used by example client of TVCaster using XML-RPC
API;

• openssl - Dependency of ulxmlrpcpp;

• expat - Dependency of ulxmlrpcpp.

Chapter A. Libraries for the installation of NMM 63

A.1 Informations on external libraries
Here is the tables’ legend:

Name The original package name of the library
Description A brief description of the library
Version The version of the library which works with NMM.

NMM may or may not be be compatible with newer versions of the library.
If a custom version of the library is required, then this is indicated here.

Homepage The official project homepage of the external library
Source Name of the package which contains the full source code of the

external library as well as
build files required to build the library on all supported platforms.
The package is either an original source package of the library or a customized
source package which is based on an original source package.

Binary List of platforms for which precompiled binaries of the library are provided.
Licence The type of licence under which the external library is available.

For custom licences (i.e. licences other than the well-known GNU licences),
the full licence text is provided in this documentation.

Build Instructions Instructions to build the library from provided sources and build files
on all the platforms

A.1.1 a52dec
Name a52dec
Description AC3 audio decoder
Version 0.7.4
Homepage http://liba52.sourceforge.net/
Source tar.gz
Binary Linux, PS3, Mac OS X, Windows
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf a52dec-0.7.4.tar.gz
cd a52dec-0.7.4
./configure --enable-shared --disable-static
make
make install

64 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.2 faad
Name faad2
Description AAC audio decoder
Version 2.7
Homepage http://www.audiocoding.com
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

(Commercial non-GPL licensing possible)

Build Instructions:

tar -xvjf faad2-2.7.tar.bz2
cd faad2-2.7
./configure --with-mp4v2
make
mkdir faad_installed
make install DESTDIR=<ABSOLUTE_PATH>/faad_installed

A.1.3 ffmpeg
Name ffmpeg
Description Various audio and video codecs
Version 0.5
Homepage http://www.ffmpeg.org
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Build Instructions:
We assume that libmp3lame is installed in /home/bob. This is required to enable support

for MP3 encoding using the ffmpeg library. If you do not need this, you can omit the –enable-
libmp3lame configure switch and build ffmpeg without libmp3lame. NMM encoder plug-ins
which use ffmpeg will not be able to encode audio in MP3 format. We assume that libx264 is
installed in /home/bob. This is required to enable support for H264 encoding using the ffmpeg
library.

Chapter A. Libraries for the installation of NMM 65

Unpack the source file and set environment variables so that
dependencies are found:

tar xjf ffmpeg-0.5.tar.bz2
export LD_LIBRARY_PATH=/home/bob/lib
cd ffmpeg-0.5

Replace the following line in libavformat/avformat.h

#define MAX_STREAMS 20

by

#define MAX_STREAMS 99

If you need AMR support, build FFMPEG as follows:

cd libavcodec
mkdir amr_float
cd amr_float
unzip ../../../26104-510.zip
unzip 26104-510_ANSI_C_source_code.zip
cd ../../../

./configure --enable-shared --disable-static \
--enable-libmp3lame \
--enable-amr_nb --enable-amr_wb \
--extra-cflags=-I/home/bob/include \
--extra-ldflags=-L/home/bob/lib \
--enable-libx264 --enable-gpl
make
make install

If you do not need AMR support, build FFMPEG as follows:

./configure --enable-shared --disable-static \
--enable-libmp3lame \
--extra-cflags=-I/home/bob/include \
--extra-ldflags=-L/home/bob/lib \
--enable-libx264 --enable-gpl
make
make install

66 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.4 I1394
Name I1394
Description Management of IEEE1394 devices
Version 0.2.7
Homepage http://sourceforge.net/projects/l1394/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:
We assume that libraw1394 is installed, and header files are available in the standard include

paths. If libraw1394 is installed in a non-standard location, you can use the –with-raw1394
switch when running configure.

tar xzf l1394-0.2.7.tar.gz
cd l1394-0.2.7
./configure --enable-shared --disable-static
make -k
make -k install

A.1.5 libmp3lame

Name libmp3lame
Description MPEG layer3 audio encoder
Version 3.96.1
Homepage http://lame.sourceforge.net
Source tar.gz
Binary Linux, Windows, PS3, Mac OS X
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf lame-3.96.1.tar.gz
cd lame-3.96.1
./configure --enable-shared --disable-static
make
make install

Chapter A. Libraries for the installation of NMM 67

A.1.6 libraw1394
Name libraw1394
Description Low level IEEE1394 support
Version as provided by SuSE 11.0
Homepage http://sourceforge.net/projects/libraw1394
Binary version abailable no
Licence GNU LESSER GENERAL PUBLIC LICENCE Version 2.1

A.1.7 libmad
Name libmad
Description MPEG layer3 audio decoder
Version 0.15.1b
Homepage http://www.underbit.com/products/mad/
Source tar.gz
Binary Linux, Windows, PS3, Mac OS X
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf libmad-0.15.1b.tar.gz
cd libmad-0.15.1b/
./configure --enable-shared --disable-static
make
make install

A.1.8 libdvdnav
Name libdvdnav
Description DVD reading and navigation
Version 0.10.1
Homepage http://dvd.sourceforge.net/
Source tar.gz
Binary Linux, Windows, PS3, Mac OS X
Licence GNU GENERAL PUBLIC LICENCE Version 2

68 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

Build Instructions:

tar xzf libdvdnav-0.1.10.tar.gz
cd libdvdnav-0.1.10
./configure --enable-shared --disable-static
make
make install

A.1.9 libdvdread
Name libdvdread
Description DVD reading
Version 0.9.4
Homepage http://www.dtek.chalmers.se/groups/dvd/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf libdvdread-0.9.4.tar.gz
cd libdvdread-0.9.4/
./configure --enable-shared --disable-static
make
make install

A.1.10 libogg
Name libogg
Description OGG file parser
Version 1.1
Homepage http://xiph.org/ogg/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf libogg-1.1.tar.gz
cd libogg-1.1

Chapter A. Libraries for the installation of NMM 69

./configure --enable-shared --disable-static
make
make install

A.1.11 libvorbis
Name libvorbis
Description OGG/Vorbis audio decoder
Version 1.0.1
Homepage http://xiph.org/vorbis/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf libvorbis-1.0.1.tar.gz
cd libvorbis-1.0.1
./configure --enable-shared --disable-static --with-ogg=/home/bob
make -k
make -k install

A.1.12 libshout
Name libshout
Description Injection of audio streams into a ShoutCast server
Version 2.0
Homepage http://www.icecast.org/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf libshout-2.0.tar.gz
cd libshout-2.0
./configure --enable-shared --disable-static --with-ogg=/home/bob
--with-vorbis=/home/bob
make
make install

70 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.13 fftw
Name fftw
Description Fast Fourier Transformation, used for audio visualization
Version 2.1.5
Homepage http://www.fftw.org/
Source tar.gz
Binary Linux
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

tar xzf fftw-2.1.5.tar.gz
cd fftw-2.1.5
./configure --enable-shared --disable-static
make
make install

A.1.14 libliveMedia
Name libliveMedia
Description RTP support
Version 2009.06.02 with modifications by Motama
Homepage http://live555.com/liveMedia/
Source tar.gz
Binary Linux, Windows
Licence GNU LESSER GENERAL PUBLIC LICENCE Version 2.1

Build Instructions:

Unpack
tar xzf live.2009.06.02.tar.gz
cd live

Add -DUSE_SYSTEM_RANDOM to COMPILE_OPTS in config.linux (to avoid segfault)

Build static libraries
./genMakefiles linux
make

Build shared library
gcc -shared -o libliveMedia.so.2009.06.02 */*.a
ln -s libliveMedia.so.2009.06.02 libliveMedia.so

Chapter A. Libraries for the installation of NMM 71

install to \$INSTALLDIR
find -name *.hh -exec cp "{}" \$INSTALLDIR/include/live ";"
find -name *.h -exec cp "{}" \$INSTALLDIR/include/live ";"
cp libliveMedia.so.2009.06.02 libliveMedia.so \$INSTALLDIR/lib

Build Instructions (Windows):

Open Microsoft Visual Studio 2005.

Unpack the file live.2005.07.13.tar.gz.

Open the solution file liveMedia.sln from the source package.

In the combo box for selecting the build configuration, pick Release.

Choose "Build Solution" from the "Build" menu

Copy the DLL file from the Release directory to a directory that is
listed in your PATH environment variable.
This is required for running NMM-based applications that use this library.

Copy the LIB file from the Release directory to a directory that is listed as
additional library directory in your Visual Studio project files that use this
external library.
(This is only required for development of applications that use this
library directly.
You may not need to do this at all.)

A.1.15 mpeg2dec

Name mpeg2dec
Description MPEG version 1/2 video decoder
Version 0.4.0b
Homepage http://libmpeg2.sourceforge.net/
Source tar.gz
Binary Linux, Windows, Mac OsX
Licence GNU GENERAL PUBLIC LICENSE Version 2

Build Instructions:

tar xzf mpeg2dec-0.4.0b.tar.gz
cd mpeg2dec-0.4.0/
./configure --enable-shared --disable-static
make
make install

72 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.16 cdparanoia
Name cdparanoia
Description CDDA Support for Linux
Version IIIalpha9.8-548
Homepage hhttp://xiph.org/paranoia/
Source tar.gz
Binary Linux, Windows, PS3

A.1.17 libpng
Name libpng
Description PNG file reader
Version 1.0.13
Homepage http://www.libpng.org/
Source http://xiph.org/paranoia/down.html
Binary no
Licence GNU GENERAL PUBLIC LICENCE Version 2

Build Instructions:

building
tar xzf libpng-1.2.19.tar.gz
cd libpng-1.2.19
./configure
make

installing to $DESTDIR
cp libpng12.so* $DESTDIR/lib
cp libpng.so* $DESTDIR/lib
cp png.h $DESTDIR/include

A.1.18 asoundlib
Name asoundlib
Description ALSA headers and library
Version 1.0.9a
Homepage http://www.alsa-project.org
Binary no
Licence GNU Lesser General Public License Version 2.1

Chapter A. Libraries for the installation of NMM 73

A.1.19 Xlib

Name Xlib
Description X11 headers and libraries
Binary no

A.1.20 libjpeg

Name libjpeg
Description JPEG support
Version 6.2.0-738
Homepage http://www.ijg.org/
Source http://www.ijg.org/files/
Binary PS3

A.1.21 ImageMagick

Name ImageMagick
Description Imaging Support
Version 6.4.0.4 (as provided with OpenSuSE 11.0)
Homepage http://www.imagemagick.org
Source tar.bz2
Binary Linux

Build Instructions:

tar xvfz ImageMagick-6.3.5-5.tar.gz
cd ImageMagick-6.3.5/
./configure
make
make install

74 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.22 ImageMagick for Windows
Name ImageMagick for Windows
Description Imaging Support
Version 6.4.6
Homepage http://www.imagemagick.org
Source ImageMagick-windows.zip
Binary Windows
Licence http://www.imagemagick.org/script/license.php

Build Instructions:

1) Run Visual Studio 2005
2) Open Solution ImageMagick-6.4.7/VisualMagick/configure/configure.sln
3) Click "Finish" in Conversion Wizard
4) Build Solution
5) Run Solution (CTRL+F5)
6) Press Next...Next...Finish in VisualMagick configuration tool
7) Open solution VisualMagick/VisualDynamicMT.sln
8) Click "Finish" in Conversion Wizard
9) Build Solution

A.1.23 mplayer
Name mplayer
Description Parts of the implementation of DirectXDisplayNode is based on MPlayer
Version unkown
Homepage http://www.mplayerhq.hu/
Source Included in nmm/plugins/display/DirectX/DirectXDisplayNode.hpp and .cpp
Binary Will be built from nmm/plugins/display/DirectX/DirectXDisplayNode.hpp and .cpp
Licence GPL

A.1.24 vlc
Name vlc
Description Parts of the implementation of DirectXDisplayNode is based on vlc
Version unkown
Homepage http://www.videolan.org/
Source Included in nmm/plugins/display/DirectX/DirectXDisplayNode.hpp and .cpp
Binary Will be built from nmm/plugins/display/DirectX/DirectXDisplayNode.hpp and .cpp
Licence GPL

Chapter A. Libraries for the installation of NMM 75

A.1.25 transcode

Name transcode
Description Parts of the C implementation of deinterlacing algorithm in YUVDeInterlaceNode
Version unkown
Homepage http://www.transcoding.org
Source Included in nmm/plugins/video/filter/yv12 deinterlace.h and .c
Binary Will be built from nmm/plugins/video/filter/yv12 deinterlace.h and .c
Licence GPL

A.1.26 ogmtools

Name ogmtools
Description Parts of the implementation of OGMDemuxNode is taken from the ogmtools package
Version unkown
Homepage http://www.bunkus.org/videotools/ogmtools/
Source nmm/plugins/av/ogm/ogmstreams.h
Binary Will be built from sources in nmm/plugins/av/ogm
Licence GPL

A.1.27 libxml++

Name libxml++
Description Some optional plug-ins and features of NMM use a modified version of libxml++,

which is provided along with NMM.
Version unkown
Homepage http://libxmlplusplus.sourceforge.net/
Source nmm/utils/xml
Binary Will be built from sources in nmm/utils/xml
Licence LGPL

76 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

A.1.28 libx264
Name libx264
Description H264 video encoder
Version x264-snapshot-20090401-2245
Homepage http://www.videolan.org/developers/x264.html
Source tar.bz2
Binary Linux
Licence GPL

Build Instructions:

NOTE: Use tcshell (use of bash causes problems with
./configure and make of libx264)

tar xjvf x264-snapshot-20090401-2245.tar.bz2
cd x264-snapshot-20090401-2245
./configure --enable-shared --disable-asm
make
make install

A.1.29 DVB API 5.1
Name DVB API 5.1
Description Linux DVB API
Version 5.1
Homepage http://www.linuxtv.org/
Headers Not provided (part of the Linux kernel headers)
Binary not provided (part of the Linux kernel)
Licence GPL

A.1.30 ulxmlrpcpp
Name ulxmlrpcpp
Version 1.7.4
Homepage http://ulxmlrpcpp.sourceforge.net
Binary Linux
Licence GNU LIBRARY GENERAL PUBLIC LICENSE Version 2

Chapter A. Libraries for the installation of NMM 77

Note: You have to use --prefix option to specify install location.
Option $DESTDIR does not work.

tar xfj ulxmlrpcpp-1.7.4-src.tar.bz2
cd ulxmlrpcpp-1.7.4
./configure --with-openssl --prefix=$HOME/ulxmlrpcpp_install
make install

A.1.31 openssl
Name openssl
Version as provided with SuSE 11.0
Homepage http://www.openssl.org
Binary provided with SuSE 11.0

A.1.32 expat
Name expat
Description The Expat XML Parser
Version as provided with SuSE 11.0
Homepage http://expat.sourceforge.net/
Binary provided with SuSE 11.0

Bibliography

[1] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti. Scream and gunshot
detection and localization for audio-surveillance systems. In Advanced Video and Signal
Based Surveillance, 2007. AVSS 2007. IEEE Conference on, pages 21 –26, sep. 2007.

[2] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti. Scream and gunshot
detection in noisy environments. Dipartimento di Elettronica e Informazione - Politecnico
di Milano.

[3] Marco Cristani, Manuele Bicego, and Vittorio Murino. Audio-visual event recognition in
surveillance video sequences. In Multimedia, IEEE Transactions on, volume 9, pages 257
–267, feb. 2007.

[4] J.-L. Rouas, J. Louradour, and S. Ambellouis. Audio events detection in public transport
vehicle. In Intelligent Transportation Systems Conference, 2006. ITSC ’06. IEEE, pages
733 –738, sep. 2006.

[5] C. Clavel, T. Ehrette, and G. Richard. Events detection for an audio-based surveillance
system. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on,
pages 1306 –1309, jul. 2005.

[6] A. Dufaux, L. Besacier, M. Ansorge, and F. Pellandini. Automatic sound detection and
recognition for noisy environment. In European Signal Processing Conference (EU-
SIPCO), Tampere, Finlande, sep. 2000.

[7] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa. Computational audi-
tory scene recognition. In Acoustics, Speech, and Signal Processing, 2002. Proceedings.
(ICASSP ’02). IEEE International Conference on, volume 2, pages 1941 –1944, 2002.

[8] G. Tzanetakis and P. Cook. Musical genre classification of audio signals. In Speech and
Audio Processing, IEEE Transactions on, volume 10, pages 293 – 302, jul. 2002.

[9] Rui Cai, Lie Lu, Hong-Jiang Zhang, and Lian-Hong Cai. Highlight sound effects detection
in audio stream. In Multimedia and Expo, 2003. ICME ’03. Proceedings. 2003 Interna-
tional Conference on, volume 3, pages III – 37–40 vol.3, jul. 2003.

79

80 GMM CLASSIFICATION OF ENVIRONMENTAL SOUNDS FOR SURVEILLANCE APPLICATIONS

[10] Hoiem D, Yan Ke, and R. Sukthankar. Solar: sound object localization and retrieval in
complex audio environments. In Acoustics, Speech, and Signal Processing, 2005. Proceed-
ings. (ICASSP ’05). IEEE International Conference on, volume 5, pages v/429 – v/432 Vol.
5, mar. 2005.

[11] P.K. Atrey, N.C. Maddage, and M.S. Kankanhalli. Audio based event detection for mul-
timedia surveillance. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, volume 5, pages V –V, may. 2006.

[12] James F. Kaiser. On a simple algorithm to calculate the ‘energy’ of a signal. In Proceedings
ICASSP90, pages 381–384, 1990.

[13] Geoffroy Peeters. A large set of audio features for sound description (similarity and classi-
fication) in the cuidado project. April 2004.

[14] Stanley Smith Stevens, John Volkman, and Edwin Newman. A scale for the measurement
of the psychological magnitude of pitch. In Journal of the Acoustical Society of America,
volume 8 (3), page 185190, 1937.

[15] Douglas O’Shaughnessy. Speech communication: human and machine. Addison-Wesley
p. 150, 1987.

[16] Jacob Benesty, M. M. Sondhi, and Yiteng Huang. Springer Handbook of Speech Process-
ing. Springer, 2008.

[17] Lie Lu, Hong-Jiang Zhang, and Hao Jiang. Content analysis for audio classification and
segmentation. In Speech and Audio Processing, IEEE Transactions on, volume 10, pages
504 – 516, oct. 2002.

[18] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley India
Pvt. Ltd., second edition, 2007.

[19] The Freesound Project. http://www.freesound.org/.

[20] ChartDirector. http://www.advsofteng.com/.

[21] Motama. Nmm site - http://www.motama.com/nmm.html.

