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Abstract

Millimeter-wave (mm-Wave) radar has been widely used in numerous applications in recent
years, including drive-assistance system or short-range sensing due to its numerous advantages
over other sensing technologies. The mm-Wave radar can measure the micro-Doppler phe-
nomenon caused by moving objects in a scene, including people. The micro-Doppler effect
induced by hunan gait has been proved to be a weak biometric identifier, due to the unique
way of walking of each individual. In this work, we propose an open-set person identification
based on the obtained mm-Wave radar point-clouds which intend to distinguish a new, un-
known person from a known set of people. There are three main tasks studied: (1) extending
a deep learning classification model to better distinguish unknown subjects in an open-set sce-
nario; (2) applying Siamese Neural Network (SNN) for open-set identification to detect the
new person in the recognized group of people; (3) evaluating the proposed method on our
own measured data from a mm-Wave device on 20 subjects. We obtain useful experimental
results to guide future work in this area.
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1
INTRODUCTION

1.1 General Review

The application of milimeter-Wave (mm-Wave) radars to physical environment sensing is a
rapidly expanding research field and featured in many works [6] [7] [8]. These radars can in-
fer the position of surrounding barriers and individuals with high precision by producing an
interrogation signal and measuring variations in the received reflected waves. These systems
are an effective approach to monitor interior environments and infer important information
about people’s actions without gathering a visual image of the place, which may create privacy
concerns. Because of its extreme sensitivity to frequency shifts caused by the Doppler effect,
mm-Waves can be utilized to infer humanmovement patterns (gait) [9] [10], extracting charac-
teristics from the subjects’ micro-Doppler signatures (µD). Due to the significant randomness
of mm-Wave propagation, deep learning approaches are frequently used to extract representa-
tive features from these (µD) signatures. However, most of the works are only dealing with
single-target scenarios, i.e., with a single person walking in a indoor setup environment [11]
[12] [13], and have recently developed to multi-target identification [14].

In this thesis, we try to solve the open-set human (gait) identification problem [15] by using
point-clouds data instead of µD signatures. We focus on identifying one or several unknown
persons from a group of known subjects. We use sparse point-clouds collected from the radar
equipment that receives signal from the experimental targets, rather than receiving and process-
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ing raw data from the backscattered Milimeter-Wave (mm-Wave) signal. These point clouds,
which are obtained at the radar processing unit using detection algorithms, contain informa-
tion about the three-dimensional spatial coordinates of the reflecting points, their movement
velocity, and the reflected power. We use a Neural Network (NN) that is inspired by Point-
Net [16], which allows significant features to be extracted from sparse point-cloud data. We
then use different Loss functions and structures with theNN architecturementioned above as
the core feature extractor, to try to distinguish the unknown targets from a group of training
known targets.

The thesis is organized in the following manner. An introduction to mm-Wave radar, Edge
Computing device and Point cloud are offered in Chapter 2. From the Siamese Neural Net-
work (SNN), Contrastive Loss, Triplet Loss to other techniques, the primary algorithms used
to analyze the data are comprehensively examined inChapter 3. Themathematical description
and derivation of the SNN and the fundamentals of the loss functions used in the work take
up a considerable portion of this chapter. Chapter 4 delves into the details of the suggested so-
lution, taking you step by step through the many processing processes and design options. In
Chapter 5, the algorithms are evaluated, with their performance and efficacy presented using
variousmeasures. The study’s findings are presented inChapter 6, alongwith a brief discussion
of probable future advancements of this work.

1.2 State of the Art

Person identification using backscatteredmm-Wave radar signals has sparked great and growing
interest in recent years. There aremanyworks [11] [12] [13] [17] [18] [19] [20] featuringmicro-
Doppler (µD) signatures that employ this kind of raw data received directly from the radars,
to serve the classification problem using deep learning neural networks. This approach is both
reliable and precise but it also has several flaws such as: firstly, it is a complex matter to extract
the individual (µD) signatures frommultiple concurrent targets. Themajority of the solutions
mentioned above are only applicable to a specific single subject. Secondly, in order to acquire
highly accurate signatures, this approach requires large bandwidth to transfer the raw radar
signal to the processing device. That will prevent the application from being implemented on
low-cost devices.

Another approach is using point-clouds data generated by a low-costmm-WaveMulti-Input
Multi-Output (MIMO) radar system, instead of using µD signatures. Because the individual
traits that identify each person are more difficult to extract and more vulnerable to external
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disruptions, the identification task is made more difficult by the sparsity of radar point-cloud
data. In this work [1], the authors have created a system that can accurately monitor several
subjects based on their point clouds data. They have used a quick and unique domain-specific
deep learning classifier is used in conjunction with extended object tracking based on Kalman
filtering. In order to improve the identification robustness and eliminate erroneous identity
connections and trajectory swaps, they have integrated the tracking and identificationmodules
closely. They have conducted the experiment with more than 2 subjects that share the same
physical space, and performed the multiple subjects tracking. Their designed system is based
on commercial edge-computing devices, and low-cost mm-wave radars that operate on real-
time basis. Their proposed system can be summarized as the Figure 1.1. They have archived
positive results with accuracy of 98.56% and 97.96% of 2 and 3 subjects respectively when
they followed linear trajectories. And the accuracy scores were 98.56% and 97.88% when the
subjects moved freely. However, they have conducted the research with only 3 subjects.

Figure 1.1: Proposed system from [1]

In another work that is based on gait radar micro-Doppler signatures [2], the authors took
another approach. They extended the problem from just human identification to develop-
ing a recognition system that should be able to correctly recognize known identities as well
as reject unfamiliar identities, i.e. the open-set identification [15]. They have used a proba-
bilistic discriminant model based on a deep discriminative representation network (DDRN)
[2] to develop the approach. They have trained the DDRN with the cosine margin (CM)
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loss to map gait samples into an embedding space where learnt features from the same iden-
tity are significantly closer together and those from other identities are much farther away.
The class-inclusion probability (CIP) model associated with each known identity can then be
constructed in the learned embedding space using statistical Extreme Value Theory (EVT) to
bound each other’s support region, which can thenbe used to estimate the probe sample’s class-
belongingness probabilities. Finally, a threshold is set to assess if these probabilities belong to
one of the known identities or an unknown class. In their experiment, they have used a random
division of 20 identities into 10 knowns and 10 unknowns. The result was promising as shown
in the Figure 1.2.

Figure 1.2: Confusion matrix on the test set with the maximum openness. Figure from [2]

In this work of thesis, we hope to combine the advantages of [1] to solve the open-set iden-
tification problem that mentioned in [2]. We will use more experimental subjects (up to 21
subjects), extracting their individual point-clouds data in a multiple-subjects setting and using
unsupervised deep learning approach with the aim to detect the unknown subjects who have
not appeared in the train set.
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2
OVERVIEWOF THE TECHNOLOGY

This chapter is divided in two sections, to introduce briefly about the technology used to collect
the data in this work.

2.1 Overview of the radar technology

2.1.1 Introduction to Radar

Radar is essentially a detection system that uses radio frequency (RF) waves to determine the
range, angle, or velocity of objects in the environment. Instead of passively receiving the signal,
radar is actually an active sensing system that emits theRF signals and then receives reflected sig-
nals from the objects. It sends outRF electromagneticwaves into the environment, usually in a
certain direction, and then receives the reflected signal from objects in the radiation region [3].
There are many types of radar that operate upon different frequency bands of the modulated
RF signals. Each frequency has different applications in real life. The major components of a
generic radar system can be depicted in the Fig 2.1 below. In summary, a radar device includes:

• Transmitter: The waveform to be transmitted is generated here.

• Antenna: The waveform is propagated into the transmission medium.

• Switch: At any one time, the switch ensures that the antenna is only used by the trans-
mitter or the receiver.
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• Receiver: Dependingon the typeof radar device, the receiver amplifies the received signal
and conducts mixing and demodulation.

• Signal Processor: The receiver’s output is fed into a signal processor, which analyzes the
data and performs target detection.

Figure 2.1: Radar components. Figure from [3]

2.1.2 Basics of Radar configuration and RadarWaveforms

Radar devices can be classified as many types based on different perspectives.

Radar Configuration

When considering antenna configuration, radar devices are divided into two types. It is noted
that the distance between the transmitter and receiver antennas, not whether they are the same
antenna or not, is what separates the two groups.

• Monostatic: the receiver and transmitter antennas are the same or very close to each
other.

• Bistatic/Multi-static: The transmitter and receiver antennas are far apart enough in space
to be considered independent devices. Multi-static radars acquire target reflections from
numerous angles by relocating multiple receiver antennas in the environment.
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Figure 2.2: Monostatic and Bistatic Radar. Figure from [4]

RadarWaveforms

When considering the waveform type, we have the pulsed and the continuous wave radar.

• Continuous Wave (CW) radar: the device is constantly transmitting when it is in use.
Because the transmitter and receiver must both function at the same time, this type of
radar is extremely susceptible to transmitter/receiver interference. As a result, bistatic
configurations are frequently chosen in CW radars. Its application are also usually con-
fined to close-range.

• Pulsed radar: The waveform has a temporal limit of T , which is referred to as the pulse
width. Pulse repetition interval (PRI) or TREP is the time interval between two consec-
utive pulses. The receiver uses the idle time between the end of one transmission and the
next to identify the reflected signal. The returning signal must be sampled with a sam-
pling period of at least T to complete the detection after transmitting a pulse; otherwise,
the returned waveformmay be missed.

The radar used in this work is aMulti-InputMulti-Output (MIMO) frequency-modulated
continuous wave (FMCW)milimetter-Wave radar.

2.1.3 Introduction to mm-Wave radar

The mm-Wave radar typically operates at 60-64 GHz or 76-81 GHz, with a wavelength of a
few millimeters. Because of its operating RF frequency band and its high sensitivity to the
frequency shifts caused by the Doppler effect, mm-Wave radar is primarily recommended for
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indoor applications and its use is rapidly expanding. Normally, the features extracted from the
subject’s micro-Doppler signature or µD, which contains time-frequency information about
the induced Doppler shift, is more used. In this work, however, instead of using the raw data
obtained from reflectedmm-Wave signal, we exploit sparse point-cloudswhich is acquired from
the radar device. We will summarize the fundamentals of the sensing technology used in this
work below [1].

• TheMulti-InputMulti-Output (MIMO) frequency-modulated continuouswave (FMCW)
mm-Wave radars is used to collect data in this work. It operates by sending out chirp sig-
nal sequences, linearly sweeping a bandwidthB = f1 − fo, and examining their copies
reflected back from the surroundings. fo and f1 are the frequencies of the transmitted
chirp signal. In T seconds, the transmitted chirp signal’s frequency is increased from
a base value fo to a maximum f1. T is defined as the chirp duration. The transmitted
signal is expressed as:
s(t) = exp

[
j2π

(
fo +

ζ
2
t
)
t
]
, 0 ≤ t ≤ T , where ζ = B/T

• The chirps are transmitted in sequences ofL chirps everyTrep seconds. One radar frame
is equal a full chirp sequence and is repeated with a period∆t seconds. A mixer at the
receiver combines the received signal and sent signals to produce the intermediate fre-
quency signal, which is a sinusoid whose instantaneous frequency is the difference be-
tween the transmitted sequence and the received signals. Each chirp is sampled with pe-
riod Tf (fast time sampling), yieldingM points, while period Trep (slow time sampling)
yields L samples, one per chirp from nearby chirps.

• The usage ofMIMOradar devices enables for the extra calculation of the angle-of-arrival
(AoA) of the reflections by computing the phase shifts between the reception antenna el-
ements due to their varied positions. This is known as spatial sampling, because it allows
the targets to be located in the space. The radar equipment employed in this study has a
virtual receiver array ofNTXNRX = 12 antennas, withNTX = 3 transmitter andNRX =
4 reception antennas. The transmitting elements are grouped in two spatial dimensions,
azimuth (AZ) and elevation (EL), and are utilized to transmit chirp sequences using a
time-division multiplexing (TDM) technique.

• The suggested system performs person tracking and identification in a sequential man-
ner, estimating the position and identity of persons as theymove freely in an interior set-
ting. In this setting, a low-costTexas Instruments IWR1843BOOSTmm-wave, frequency-
modulated continuous-wave, MIMO radar are used to collect the signals for the targets.
Real-timeprocessing functionof the system is handledby a commercial edge-computing
device (NVIDIA Jetson series), which is connected to the radar system.
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2.2 Point Cloud

Point cloud is an important type of geometric data structure. By using a chain of detection,
clustering, and tracking algorithms, a radar point cloud can provide information such as object
location, velocity, and trajectory. The point cloud data generated in our experiment carries the
information of movement velocity, the reflected power and the three-dimensional spatial coor-
dinates of the reflecting points. These point-clouds are attained by using detection algorithms
at the radar processing unit, so that the final data acquired is much smaller compared with the
full raw data from the radar in order to to keep the computation complexity low.
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3
ALGORITHMS

From a theoretical standpoint, this chapter discusses the algorithms and methods used in this
thesis. Section 3.1 presents the basic knowledge of Siamese Neural Network, in section 3.2 the
Contrastive Loss is described. Section 3.3 focuses on Triplet Loss. The supporting algorithm
T-distributed Stochastic Neighbor Embedding (t-SNE) to represent the output features is dis-
cussed in section 3.4. TheKalmanFiltering techniquewhich is used for tracking themovement
trajectory of each subject in space is introduced in section 3.6.

3.1 Siamese Neural Network

Deepmodels are crucial inmakingpredictions for awide range of applications. However,many
machine learning techniques lack explainability, i.e., they are black boxmodels. SiameseNeural
Networks (SNN) are no different where there should be no suitable algorithms to explain it.
In short, the SNN ismade up of two ormore identical neural subnets that share the same set of
weights. Two ormore inputs are encoded and the output features are compared when training
a SNNwhich can be accomplished in a variety of ways. The similarity measures of the output
features will determine the similarity or dissimilarity between a pair of feature vectors [21]. It
employs a non-linear data embedding techniquewith the goal of grouping similar examples and
separating dissimilar examples. SNN has many real world applications such as image recogni-
tion and verification, novelty and anomaly detection, one-shot or few-shot learning. Bromley
andLeCunfirst used Siamese nets to solve signature verification as an imagematching problem
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in the early 1990s. [21]
Let {(xi, yi) , i = 1, . . . , n} be a dataset consisting of n feature vectors xi ∈ Rm of sizem

with labels yi ∈ {1,2, ...,C}. We construct a new training dataset:

S = {(xi,xj, zij) , (i, j) ∈ K} (3.1)

S consists of pairs of examples xi and xj with binary labels zij ∈ {0, 1}. If both feature
vectorsxi andxj are in the same class, then zij is assigned to be 1 and vice versa. Therefore, the
training set S can be divided into two subsets: a positive set with label zij = 1 and a negative set
with label zij = 0.

Suppose the outputs of the inputs xi and xj into the SNN are hi ∈ RD and hj ∈ RD

respectively. The SNN generate a map function f such that hi = f(xi) which tries to make
the Euclidean Distance (ED) between the two outputs d(hi, hj) as small (large) as possible.
The smaller (large) the distance, the more similar (dissimilar) the two feature vectors are.

Figure 3.1: A basic architecture of the SNN

There are many loss functions to train the SNN. In this thesis, we will present Contrastive
Loss (CL) and Triplet Loss (TL) in the following sections. There are many similarity measures
or similarity functions that quantifies the similarity between two objects. We will discuss the
two most-used ones which are Euclidean Distance and Cosine Similarity as below.
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3.1.1 Euclidean Distance

Cosine similarity and Euclidean distance are both methods for determining the proximity of
vectors in a vector space.

InRn, the ED between two vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is defined
as ∥x−y∥2, which is equivalent to the L2-norm ∥.∥2 or the differentx−y between two vectors.
It is computed as:

∥x− y∥2 =

√√√√ n∑
i=1

(xi − yi)
2 =

√
(x1 − y1)

2 + (x2 − y2)
2 + . . .+ (xn − yn)

2 (3.2)

A Euclidean vector space such as Rn is a vector space in which Euclidean distances can be
measured.

3.1.2 Cosine Similarity

Euclidean distances are represented by measuring distances with a ruler from a bird-eye view,
whereas angular distances are represented by measuring differences in rotations. Cosine sim-
ilarity is a measure of similarity that quantifies the cosine of the angle between two non-zero
vectors in an inner product space. We can calculate Cosine similarity between two vectors by
dividing their dot product by the product of theirmagnitudes. We suppose to have two vectors
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) as the above, then the Cosine similarity cos(θ)
of x and y is defined as:

cos(θ) =
x · y

∥x∥ · ∥y∥
(3.3)

Cosine similarity is a judgment of orientation and not magnitude. The value of two vectors
is within the range [−1, 1]. Two vectors with the same orientation have the cosine similarity
value of 1. If they are at 90° relative to each other, the similarity value is 0. And the similarity
of two diametrically opposed vectors is -1, regardless of their magnitude.

3.1.3 When to use Euclidean Distance or Cosine Similarity

The choice of the metric to employ is determined by the work at hand. Each work should be
applied with suitable metric to have a better result.
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• Several tasks such as preliminary data analysis benefit from both metrics. Because they
allow for extraction of various insights into the data’s structure. Other tasks such as text
classification function better with Euclidean distance. Several other tasks such as retriev-
ing the most comparable texts to a given document, work better with cosine similarity.

• In real life experiment, as is often the case in machine learning, we often understand all
of the techniques and the heuristics that go along with them by learning through trial
and error.

The way to speed up this process, though, is by holding in mind the visual images we pre-
sented here. If we do so, we’ll have an intuitive understanding of the underlying phenomenon
and simplify our efforts.

3.2 Contrastive Loss

Recently, a number of articles have exploited contrastive loss to demonstrate state-of-the-art
outcomeswith unsupervised learning. [22] [23] [24] follow the similiar patterns of using SNN
and contrastive loss. When dealing with the datasets that equip with class labels for the inputs,
a normal network and Categorical Cross-Entropy loss could be used. But the problem is we
do not always have nicely labeled data which is usally the case, then the Contrastive loss can
be used here. Contrastive loss compares the distance between a positive example and a similar
example of the same class to the distance between negative instances. To put it another way, if
positive samples are encoded to comparable representations and negative examples are encoded
to distinct representations, the loss is minimal. The Contrastive is briefly explained as follow
[25].

Firstly, the training set is divided to positive and negative pairs of training data points. An
anchor sample xa and a positive sample xp, which is similar to xa in the metric we want to
learn, make up a positive pairing. Similarly, a negative pair is composed of the anchor sample
xa and a negative sample xn, which is dissimilar to xa. For positive pairs, the goal is to learn
representations with a minimal distance d between them, and for negative pairs, a distance
bigger than some margin valuem. For positive pairs, contrastive loss forces a distance of 0; for
negative pairs, it forces a distance greater than a certainmargin. Let ra, rp and rn are the outputs
of the network of the corresponding input samples xa, xp and xn and distance function d, we
have:
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L =

{
d (ra, rp) if Positive Pair

max (0,m− d (ra, rn)) if Negative Pair
(3.4)

For positive pairings, the loss will be 0 only if the network creates representations for both
items in the pair with no distance between them, and the loss will grow as the distance between
them increases. Similarly, when the distance between the representations of the two pair ele-
ments is higher than the margin m, the loss for negative pairings is 0. The loss value will be
equal to m as most when the distance of ra and rn is 0. The loss is positive when that dis-
tance is not bigger thanm, the network will then have to update the weight to get more distant
representation.

Let r0 and r1 are the outputs or the pair elements representations, y is the binary label that is
equal to 1 for a positive pair and 0 for negative pair. We have the formula for the Constrastive
loss:

L (r0, r1, y) = y ∥r0 − r1∥+ (1− y)max (0,m− ∥r0 − r1∥) (3.5)

3.3 Triplet Loss

The Triplet loss [26] utilizes a setup where triplets of training data samples are used, instead
of pairs. The triplets are formed by an anchor sample xa, a positive sample xp and a negative
sample xn. The objective of Triplet loss is similar with Constrastive loss discussed above. The
network will be optimized so that the distance between the anchor sample and the negative
sample network ouputs d (ra, rn) is bigger than anmarginm and also greater than the distance
between the distance between the anchor and positive representations d (ra, rp).

With the same notions above, the formula of the Triplet loss can be written as [26] [27]:

L (ra, rp, rn) = max (0,m+ d (ra, rp)− d (ra, rn)) (3.6)

There are three situations of this Triplet loss:

• Easy Triplets: d (ra, rp) > d (ra, rp) + m. This situation orcurs when the negative
sample is already sufficiently away from the anchor sample in comparison to the positive
sample. The loss value is 0 and the network parameters are not updated.

• Hard Triplets: d (ra, rp) < d (ra, rp). The negative sample is closer to the anchor sam-
ple than the positive sample. The loss value is positive and greater than the marginm
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Figure 3.2: An example of Triplet loss

• Semi Hard Triplets: d (ra, rp) < d (ra, rn) < d (ra, rp) + m. The negative sample is
more away from the anchor than the positive sample but the distance is not greater than
the marginm. So that the loss value is positive and smaller thanm.

The figure below illustrates three situations of Triplet loss.
When training on triplets, a model can use either online of offline triplet mining.

• Offline triplet mining: The triplets are manually generated then fit to the network.

• Online triplet mining: In this approach, the training set is divided into batched. The
triplets are generated using all samples in the batch and the loss is calculated on it. In
this case, the triplets can be randomized so that we can increase the chance to find the
triplets with high losses which in turn will reduce the training time.

3.4 T-distributedStochasticNeighborEmbedding (t-
SNE)

Since we have a number of features in the outputs in the embedding, so in order to represent
the feature in a 2-dimensional or 3-dimensional space, we use two common techniques to re-
duce the dimensionality of a dataset while maintaining the most important information in the
dataset. These two techniques areT-distributed StochasticNeighbor Embedding (t-SNE) [28]
and Principal Component Analysis (PCA), which will be discussed in the following sections.
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Figure 3.3: The demonstration of three situation of the Triplet loss
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Theobjective of dimensionality reductionofdata is topreserve asmuchof thehigh-dimensional
data’s significant information as possible in the low-dimensional version. It also help to easily
visualize the features and enhance interpret-ability of the data in the lower dimension. One cru-
cial thing of dimensionality reduction is minimizing information and structure loss as much
as possible. t-SNE and PCA are two unsupervised dimensionality reduction techniques which
are often used to visualize high-dimensional data in a lower-dimensional environment. The
algorithm of t-SNE can be stated in three stages [29]:

• Creating a joint probability distribution that illustrates the data points’ similarities.

• Making a dataset of points in the target dimension and computing their joint probability
distribution.

• Gradient descent then is used to alter the dataset in low-dimensional space. The joint
probability distribution representing it is as close to the one in high-dimensional space
as possible.

For the first stage, we calculate the Euclidean distances of each point from all other points.
After that, we convert these distances into conditional probabilities that explain the similarity
between every point pair. Let xi and xj are two point. Then the conditional probability pj|i
of xj to be next to xi can be written as:

pj|i =
exp

(
−∥xi − xj∥2 /2σ2

i

)∑
k ̸=i exp

(
−∥xi − xk∥2 /2σ2

i

) (3.7)

We have σi is the standard deviation of a Gaussian centered at xi, which is the conditional
probability pj|i of point xi to have xj as its neighbor. Because we may need to cope with clus-
ters of differing densities, we divide by the total of all the other points placed at the Gaussian
centered at xi. In reality, the density of each cluster is often different from each other. As a
result, if we solely use a Gaussian to calculate the similarities between each pair of points, the
results may not reflect the real similarity.

As you can see the density of the orange cluster is lower than the density of the blue cluster.
Therefore, if we calculate the similarities of each two points by a Gaussian only, we will see
lower similarities between the orange points compared to the blue ones. In our final output we
won’t mind that some clusters had different densities, we will just want to see them as clusters,
and therefore we do this normalization. At the end, we only want to perceive them as clusters,
so we conduct this normalization.
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In the second stage, we generate a collection of points and calculate a joint probability distri-
bution for them in a low-dimensional space. A randomdataset of pointswith the same amount
of data points as the original dataset. The new dataset is built with K features, where K is the
target dimension which often has value of 2 or 3 for the visualization. Then, in stead of Gaus-
sian distribution, we create the joint probability distribution using the t-distribution. We have
the following formula as the joint probability distribution with q is the probability and y is the
points.

qij =

(
1 + ∥yi − yj∥2

)−1∑
k ̸=l

(
1 + ∥yk − yl∥2

)−1 (3.8)

The choice of the t-distribution over the Gaussian distribution is due to the t-heavy dis-
tribution’s tails property. This feature causes moderate distances between locations in high-
dimensional space to become extreme distances in low-dimensional space, preventing overlap-
ping in the lower dimension.

For the thrid stage, we change the data to lower dimensional space in order to visualize it.
We have the Kullback-Leiber [30] divergence between two distributions is the measure how
different they are from each other. For distribution P and Q, the Kullback-Leiber divergence
is defined as:

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(3.9)

The smaller theKullback-Leiber divergence is, themore similar two distributions are to each
other. When two distribution are identical, Kullback-Leiber divergence is equal zero. Thus,
we have the Kullback-Leiber divergence as our target function with the cost function that the
gradient descent attempts to minimize is:

C = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

(3.10)

KL is the Kullback-Leiber divergence of the distribution P andQ. P is the distribution from
the higher dimension space and Q is the distribution from the low-dimensional space.
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3.5 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimenionality reduction method aiming to reduce
the diemnsionality of large datasets. It transforms a large collection of varialbles into a smaller
onewhile retaining themajority of the information of the original dataset. Naturally, reducing
the number of variables in a data set reduces accuracy; nevertheless, the answer to dimensional-
ity reduction is to exchange some accuracy for simplicity. Smaller datasets are simpler for data
visualization and exploration as well asmore computing cost effective formachine learning and
deep learning algorithms. The main purpose of PCA, in summary, is to reduce the number of
features of the dataset, while retaining as much information as possible. The method of PCA
can be followed by several steps.

• Step 1: The first step is standardization. The purpose is to normalize the range of con-
tinuous variables so that they all contribute equally to the analysis. If the ranges of initial
variables differ significantly, the variables with wider ranges will prevail than those with
smaller ranges resulting in biased results. Each value of each variable can be calculated
by removing the mean and dividing by the standard deviation.

z =
value − mean

standard deviation
(3.11)

• Step 2: This step is to understand how correlated each variable with each other. If the
variables are highly connected, they might carry duplicated information. We compute
covariance matrix in order to find these connections. The covariance matrix is a p ×
p symmetric matrix containing the covariances associated with all possible pairs of the
initial variables as entries. p is the number of dimensions. The covariance matrix for a
3-dimensional data set with three variables x, y, and z is a 3 × 3matrix as the following
example.

 Cov(x, x) Cov(x, y) Cov(x, z)
Cov(y, x) Cov(y, y) Cov(y, z)
Cov(z, x) Cov(z, y) Cov(z, z)

 (3.12)

The covariancematrix entries are symmetric with respect to themain diagonal, meaning
the upper and lower triangular parts are equal.

• Step 3: In this step, we compute the eigenvectors and eigenvalues of the covariance ma-
trix calculated above in order to identify the principal components. Principal compo-
nents are fresh variables which are created by combining or mixing the initial variables
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in a linear way. The new created variables are uncorrelated. The majority of the in-
formation of the initial variables is compressed into the first components. Thus, the
n-dimensional data will provide you with corresponding n primary components. But
the maximum possible information will be put into the first component and so on. By
discarding the components with low information and considering the remaining com-
ponents as your new variables, we can reduce dimensionality without losing much in-
formation. However, the principal components are more difficult to interpret because
they are just the linear combinations of the initial variables and have no real meaning.
The first principal component contains the largest possible variance in the data set. The
second principal component will take the maximum remaining information and so on.
The number of principal components is equal to the number of variables of the data.
In order to attain principal components, we actually have to obtain eigenvectors and its
eigenvalues. The covariance matrix’s eigenvectors are the axes’ directions with the great-
est variance with the most information. We call them principal components. Eigenval-
ues are the coefficient attached to eigenvectors which give the amount of information in
each principal component. Therefore, by ranking eigenvectors by their eigenvalues, we
get the order of principal component from the most to the less significance.

• Step 4: In this step, we optimize the result for the last step. We decide whether to keep
all principal component of discard those with insignificant eigenvalues. The remaining
ones are formed as a matrix of vectors that called Feature Vector. To put it simple, the
feature vector is a matrix with the eigenvectors of the components that we decide to
keep as columns. Thus, from n dimensions as the original, we decide to keep only p
eigenvectors or p dimensions. At the end, it is up to us to decide whether we want to
keep all the dimensions or dispose of the ones with lesser information in order to reduce
dimension.

• Step 5: In this step, we use the feature vector, which is constructed by the eigenvectors
and eigenvalues above, to readjust the original axes of the data to the ones defined by
the principal components. The following equation simply explain how we do it. The
transpose of the feature vector multiplies with the transpose of original dataset to form
the final one.

FinalDataSet = FeatureVector T ∗ StandardizedOriginalDataSet T (3.13)
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Variable Definition Structure Category
x state variable n× 1 column vector Output
P state covariance matrix n× nmatrix Output
z measurement m× 1 column vector Input
A state transition matrix n× nmatrix SystemModel
H state-to-measurement matrix m× nmatrix SystemModel
R measurement covariance matrix m×mmatrix Input
Q process noise covariance matrix n× nmatrix SystemModel

Table 3.1: Kalman Filter algorithm reference terms

3.6 Kalman Filtering (KF) technique

The signal received by the radar is processed in order to detect the object. The points generated
by the subjects are separated from clutter and noise using density-based clusteringmethod. Af-
ter that, the Kalman Filtering (KF) techniques are applied to each cluster centroid in order
to follow the the movement trajectory of each subject in space. We will briefly introduce the
fundamentals of KF in this section.

Kalman filtering is an algorithm that estimates a joint probability distribution over the vari-
ables for each timeframe using a series of measurements observed over time, which has long
been considered the best solution for many tracking and data prediction tasks. It has been
widely reported in the investigation of visual motion. Filtering is used to retrieve only the in-
formation needed from a signal while discarding everything else. A cost or loss function can
be used to determine how well a filter fulfills this duty. In fact, we can describe the filter’s
purpose as the minimization of this loss function. The filter is built as a mean squared error
minimiser, but an alternative derivation that shows how the filter links tomaximum likelihood
statistics is also presented. It is also a recursive filter that uses a sequence of noisy observations
to estimate the internal state of a linear dynamic system. The Kalman Filter’s true strength is
not in smoothing measurements. It is the ability to estimate system parameters that cannot be
accurately measured or observed. The algorithm of Kalman filter can be summarized as the
following diagram [5]
The variables utilized in the algorithm are listed in the table 3.1. There is a structural type

and category for each variable listed.
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Figure 3.4: Kalman Filter algorithm diagram. Figure from [5]
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4
PROPOSED SOLUTION

This chapter briefly introduce the radar signal and data processing as well as describes the pro-
posed classification process using SNN.

4.1 Radar Signal andData Processing

The radar signal and data processingmethod used in this thesis is similar to what has been used
in this paper [1]. We will introduce concisely step by step as follows.

4.1.1 mm-Wave Radar Signal Processing

The frequency-modulated continuous wave (FMCW) estimates the distance and the radial ve-
locity of the target with respect to the device by emitting sinusoidal waves with frequency that
is linearly increased over time. Then the frequency shift of the reflected signal is measured at
the receiver. By calculating the phase shifts caused by the different positions of the receiver
antenna elements, the multiple-input multiple-output (MIMO) radar devices used in the ex-
periment also measure the angle-of arrival (AoA) of the reflections. This is known as spatial
sampling that helps to localizing the targets in the physical space.

• The first step of radar signal processing is to extract the range and Doppler information.
A mixer at the receiver combines the received signal (RX) with the transmitted signal
to produce the intermediate frequency (IF) signal. The IF signal can be expressed as a
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function with respect to the sampling indices along the fast and slow time. Samples of
the IF signal can be organized into amatrix that contains all of the information provided
by a single antenna over a given time period. Applying a bi-dimensional discrete Fourier
transform (DFT) along the fast and slow time dimensions, followed by taking the square
magnitudeof eachobtained complex value, yields the range andvelocity of each reflector,
resulting the radar range-Doppler map (RD). The main reflecting points are identified
using the RD maps and the cell-averaging constant false alarm rate (CA-CFAR) algo-
rithm. A processing step is also required to remove the reflections from static objects,
which is carried out by using a moving target indication (MTI) high pass filter. This fil-
ter will remove reflections with Doppler frequency values near zero. The final result of
the process is a sparse RDmap with a determined number of detected reflecting points.
Several desired quantities can be identified for each detected point.

• The second step is to estimateAzimuth and Elevation angles. The spatial diversity of the
receiver array which presents a different phase shift can be used to estimate the azimuth
and elevation angles of targets. The final output is a vector that contains the informa-
tion of each single detected reflecting point. Each vector has five components including
the Cartesian coordinates, the velocity and the reflected power of the detected reflecting
point.

4.1.2 Data Processing

Normally, the common approach to people movement tracking from radar point-clouds in-
cludes 2 parts.

• Detection: Separating the points generated by the subjects from clutter and noise using
density-based clustering method.

• Tracking: To follow the movement trajectory of each subject in space, Kalman Filtering
(KF) techniques are applied to each cluster centroid.

Because the experiment is performed in a room that has many other static objects, the re-
ceived signals contains not only the target but also other matters. Thus, we have to group the
points detected byCA-CFAR into several clusters, a density-based clustering algorithm is used,
DBSCAN in this case. Each cluster will represent a different subject in the environment. The
density-based clustering algorithm has been critical in determining nonlinear shape structures
based on density. The input samples are grouped by their local density. By doing that, we can
classify which cluster is the target. We use Density-Based Spatial Clustering of Applications
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with Noise (DBSCAN) [31], which is most widely used density based algorithm and has been
used in many works. DBSCAN is used in this case because it is a unsupervised learning algo-
rithm that we do not need to know the number of clusters in advance. The method also has a
lowprocessing complexity due to its noise rejection quality, which, alongwith its density-based
clustering technique, allows for reliable and automatic separation of reflections from different
individuals. It is beneficial in real life situation where the received signals of the subjects may
be spoiled by environmental noise, signal blockage or imperfect clutter cancellation. The al-
gorithm is also low in computational complexity which will benefit limited hardware resource.
DBSCAN sequentially samples all data points and grows the cluster until the specified density
connection criteria are no longermet. DBSCANtakes two input parameters ε andmpts, which
are a radius surrounding each point and the minimal number of additional points that must
be inside that radius to meet a density condition respectively. DBSCAN takes the coordinates
of points in the horizontal plane (x− y) as input and produces a list of discovered clusters and
a set of points classed as noise. The subject’s position is determined by the centroid of each
cluster, which is then sent into a KF tracking algorithm.

In this tracking phase, we employ a converted-measurements Kalman filter (CM-KF). This
filter will not only estimates the position of the targets in Cartesian coordinates, but also esti-
mates the subject’s extension in the horizontal plane (x − y). It allows the object to be con-
sidered as an extended object rather than an ideal point-shaped reflector. The KF is briefly
introduced in the section 3.6 above.

4.1.3 Architecture

This section introduces the neural network architecture used to extracting the features (tempo-
ral convolution point-cloud network). This architecture was well-presented in this paper [1].
We will briefly introduce it in this section.

The reason we use this neural network architecture in this work is because this network can
extract useful features froma temporal sequence of point clouds generatedby the detection and
tracking steps. The network is included with two two different blocks, termed point-cloud
block (PC) and temporal convolution block (TC). To extract a feature vector, a PC block is
applied to each every time step. To understand the temporal patterns in the series of feature
vectors, causal dilated convolutions are used.

• Point-cloud Block: combinedwith a number ofK of identical feature extraction blocks
which are applied to the standardized input point-clouds, Zi, i = 1, . . . , K . Each of
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Figure 4.1: Architecture of the temporal convolution point‐cloud network (TCPCN) for subject identification. Figure from
[1]

the block is the cascade of a multi-layer perceptron (MLP) [32] followed by a global av-
erage pooling operation denoted as the function fW (·), whereW is a set of weights to
be learned. The structure of the function fW (·) is inspired by the popular PointNet
[16]. Both PointNet and the PC block use only functions that are invariant to the or-
dering of the input points by sharing theMLPweights and utilizing appropriate pooling
algorithms. Because point clouds that differ only in how the points are ordered would
provide the same output, this ensures resilience and generality.

• TemporalConvolution (TC)Block: The sequenceof feature vectorsO1:K = {fW (Zi)}i=1:K ,
each of dimension 192 is input to the TC block, applying a function hU (·) along the
temporal dimension, where U is another set of weights (like W ). hU (·) has temporal
convolutions, which are a form of convolutional neural network (CNN) layer [32] [33]
in which the input is convolved with a uni-dimensional filter with learnt weights to rec-
ognize temporal patterns. We use three temporal convolution layers in the proposed
TCPC network, each with filters of dimension 3 with dilation rates of 1, 2, and 4, re-
spectively. The applied filters are repeated along the input’s feature vector components,
yielding 32, 64, and 128 feature maps at each layer.

• The TCPCN’s last layer is a temporal convolution layer, which converts the extracted
temporal characteristics intoQ feature maps, each of which corresponds to one of the
output classes. To integrate the information from each feature map into a single vector
of dimensionQ, it does a normal convolution with a kernel size of 3 and then a global
average pooling.
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4.2 Prepare Data

Before being transmitted to the NN classifier, the point cloud sequence Zt
k−K+1:k, where t

is the track, k is the time step and K is the length, produced from each CM-KF track is pre-
processed. By subtracting their mean value and dividing by their empirical standard deviation,
the points’ characteristics are standardized. Furthermore, because the TCPCN is a feed for-
ward neural network that processes fixed size input vectors, the point cloudsmust have a prede-
termined number of points before being delivered to it. The maximum number of points for
a single time step is picked as nmax = 100. The value of nmax was determined by evaluating
the distribution of the number of detected points for various human subjects and determining
an appropriate value empirically. nmax = 100 is sufficient to cover all users in practically every
frame in the experiment.

4.3 TrainmodelwithSNNandtrywithseverallosses

4.3.1 Contrastive Loss

A siamese network’s goal is to distinguish between image pairs rather than classify them. Con-
trastive loss is essentially ameasure of howwell the siamese network distinguishes between pairs
of input samples. The distinction is subtle but significant. We will create pairs of samples and
label the pairs to feed into two sisters network. Asmentioned in section 3.1, the formula of the
Constrastive Loss is:

L (r0, r1, y) = y ∥r0 − r1∥+ (1− y)max (0,m− ∥r0 − r1∥) (4.1)

Or we can rewrite it to a simpler form.

L = Y ∗D2 + (1− Y )∗max(margin−D, 0)2 (4.2)

• Y is the label. Y is equal 1 if the two samples in the pair in the same class. Y is equal 0 if
they are in different classes.

• D represents the Euclidean distance between the sister network embeddings’ outputs.

• The max function will take the max value of 0 and the margin minus the distance.

The dataset after loading is then precessed by:
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Figure 4.2: Siamese networks with Contrastive loss

• Data augmentation by shuffle the point cloud sequence as well as randomly remove
timestep, row or column of the point cloud sequence.

• Constructing the sample pairs. For each point cloud sequence sample, we randomly
select one sample in the same class and one sample in a different to create 2 pairs, one
positive and one negative.

• To constructing the sister network architecture, we refer the temporal convolution point-
cloud network (TCPCN) in this paper [1]. The networkwill act as the feature extractors.

• Each point cloud sequence in the pair will be processed by the feature extractor, yielding
a vector that quantifies each sample.

• We then compute the euclidean distance between our two vectors using the vectors gen-
erated by the sister networks. This distance serves as the output from the Siamese net-
work. The smaller the distance is, the higher chance two samples belong to the same
subject. The larger the distance is, the lower chance two samples in the same subject.

4.3.2 Triplet Loss

The algorithm of the Triplet loss can be visualized in the Figure 4.2. Basically, it minimizes
the distance between the anchor and a positive sample, in which both of them belong to the
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same class. It also maximizes the distance between the anchor and a negative sample from a
different class. For each training sample. The feature representations of inputs belonging to
various classes are separated using the triplet loss. This is accomplished by selecting triplets of
input samples from the training set, two of which are from the same class, resulting in feature
vectorsva andvp, and one from a different class, resulting in feature vectorvn. The triplet loss
function can be written by:

Ltri (va,vp,vn) = max
{
∥va − vp∥22 − ∥va − vn∥22 + µ, 0

}
µ is a margin hyperparameter, set to 1.

Figure 4.3: Triplet Loss visualization

4.3.3 Contrastive Loss combinedwith Triplet Loss

In this algorithm,we combine between theContrastiveLoss andTriplet Loss into the structure.
For each branch, we use the same TCPCN as the section 4.3.1. The Triplet Loss is applied for
each branch as the loss function in order to extract the features. The output of each branch is
a vector contained the learned features. The euclidean distance is used to compute the distance
between our two vectors.
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Figure 4.4: Combine Triplet Loss and Contrastive Loss
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5
EXPERIMENTALRESULTS

This chapter provides a detailed summary of the results obtained with the proposed method.
The

5.1 Dataset Description

The dataset used in the experiment includes total of 21 targets noted from 1 to 21. We use the
subject from 1 to 16 for the train and validation dataset. The left from 17 to 21 is the subjects
who have not appeared in the training set, which is used for the test set. A training dataset
of mmWave radar point-clouds from 16 targets was employed in the implementation. It was
collected in a variety of interior environments in order to improve the NN’s generalization
capabilities. The Point-cloud data are organized as lists of python dictionaries, each of which
corresponds to 1 timestep. Each dictionary contains a point cloudwithNpoints, the following
keys are present:

• elements: array of dimension (N, 2), contains (x, y) coordinates in m

• z_coord: array of dimensionN , contains the z coordinates in m

• dopplers: array of dimensionN , contains the velocities inm/s

• powers: array of dimensionN , contains the received powers in dB
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5.2 Training

When training, state-of-the-art siamese networks typically use either contrastive loss or triplet
loss— these loss functions are better suited for siamese networks and tend to improve accuracy.
To train themodel, we use different loss functions and combination. The based network is the
one that has been mentioned above, which is used to extract features from the point cloud.

5.2.1 Contrastive Loss

To see if the features extracted from different targets can be clustered well by the model, we
use t-SNE, which is discussed in the section 3.4, to plot the features of each subject in training,
validation and test set.

Figure 5.1: The loss plot of SNN with Contrastive loss in 100 epochs

We select 500 random samples from each target fromknown andunknown class in test set to
feed to the trainedmodel. We thenplot the histogramdistributionof the distance between each
randompairs. As we can see an example from the Fig.5.3, the histogram shows the distribution
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Figure 5.2: t‐SNE plotting for validation and test set for model trained with Contrastive loss

of the distance between two samples from the same class and two samples from different class.
We randomly select 500 pairs for the calculation. The anchor target is the one that did not
appear in the training set. We compare the anchor target with targets from known classes. The
example here is the target 21.

5.2.2 Triplet Loss

5.2.3 Contrastive Loss combinedwith Triplet Loss

5.3 Performance Evaluation

Several comments on the results can be derived from the plots above.

• Contrastive Loss: The validation loss is converging. However, the loss value has stopped
decreasing significantly. It somehow shows that the training loss remains flat regardless
of training. It is a sign of underfitting, indicating that model was unable to learn the
training dataset. The t-SNE plot shows that the targets are not clustered well. We select
500 random samples for each target to compute t-SNE. We can see that the features of
each target are randomly distributed. As a result, we can see in the Figure 5.3 a d 5.4, the
model cannot show the distance in feature vectors between subject 21 and other known
subjects in any case.

• Triplet Loss: We can see that the loss plot in Figure 5.5 shows the overfitting of themodel.
The model has learned the training dataset too well, including statistical noise and ran-
domfluctuations. Overfitting has the drawback ofmaking amodel less able to generalize
to new data as it gets more specialized to training data, resulting in an increase in gener-
alization error. This can be shown in the Figure 5.6 where ther train set t-SNE is clearly
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clustered, but the validation set t-SNE is somehow not clustered well depending on the
target. In Figure 5.7 and 5.8, we can see that for some specific subjects, the model can
distinguish themwith the unknown subject 21. The data here is taken from the test set,
where the model has not learnt from subject 21. We use cosine similarity to measure the
similarity of two feature vectors in this case.

• Combination of Contrastive loss and Triplet loss: When combining the COntrastive
Loss and Triplet Loss as the loss function of the model, specializing the loss weight of
each loss in final loss combination, we expect a better result that the combination loss
will help to reduce the underfitting and overfitting of two models above. However, the
result obtained is not as expected. As we can see from the loss plot, the validation loss
converges acceptably, with little sign of overfitting. Butwhenwe plot the t-SNE features,
we can see that the model could not cluster the subjects in both validation and test set.
As a result, the histogram plots show the same story with the first model trained with
Contrastive loss.

Because themodel trainedwithTriplet loss shows themost positive result among threemod-
els, we will further discuss about its result.

Since we only take 500 random samples to represent each target in the similarity measure-
ment between targets, so that it hardly generalize the whole characteristics of the targets. If the
sample size is increase, the result would tend to bemore generalized. We consider the similarity
distribution histograms, if the clearly separation between two histograms is observed, we note
it as classifed - 1, else: unclassified - 0. The Tale 5.2 show the predicted similarity between 5
unknown targets (from 17 to 21) and 16 known targets (from 0 to 15). We can see that as for
some subjects, the separation is clear between unknown and known (subject: 10, 11, 12, 14).
These 4 subjects have a clear separationwith all 5 unknowns subjects. Thus, themodel is some-
how bias with these 4 subjects that results in overfitting. The Table 5.1 shows the predicted
separation result of 5 unknown targets versus 16 known targets. We also calculate the True
Positive Rate and False Negative Rate of these predictions. As of these results, we can say that
the model has been failed on detect the new unknown subjects among the group of known
subjects.
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Target Predict 1 Predict 0 TPR = TP/(TP + FN) FNR = FN/(TP + FN)
17 9 7 0.5625 0.4375
18 7 9 0.4375 0.5625
19 10 6 0.625 0.375
20 8 8 0.5 0.5
21 10 6 0.625 0.375

Table 5.1: The predicted separation result of unknown targets

Target 17 18 19 20 21
0 0 1 1 0 0
1 0 1 1 0 0
2 0 0 1 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 1 0 1 0 1
6 0 0 0 0 1
7 1 0 1 1 1
8 1 0 1 1 1
9 0 0 0 0 0
10 1 1 1 1 1
11 1 1 1 1 1
12 1 1 1 1 1
13 1 1 0 1 1
14 1 1 1 1 1
15 1 0 0 1 1

Table 5.2: The similarity between unknown targets and known targets.
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Figure 5.3: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and the
targets from 0 to 7, using 500 random samples ‐ Contrastive Loss
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Figure 5.4: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and the
targets from 8 to 15, using 500 random samples ‐ Contrastive Loss
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Figure 5.5: The loss plot of Triplet loss in 100 epochs
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Figure 5.6: t‐SNE plotting for train, validation and test set for model trained with Triplet loss
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Figure 5.7: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and the
targets from 0 to 7, using 500 random samples ‐ Triplet Loss
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Figure 5.8: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and the
targets from 8 to 15, using 500 random samples ‐ Triplet Loss
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Figure 5.9: The loss plot of combined losses

Figure 5.10: t‐SNE plotting for validation and test set for model trained with combination of Contrastive loss and Triplet
Loss
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Figure 5.11: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and
the targets from 8 to 15, using 500 random samples ‐ Combine Contrastive Loss and Triplet Loss
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Figure 5.12: Histogram plotting of the distribution of the distance between the sample input of unknown targets 21 and
the targets from 8 to 15, using 500 random samples ‐ Combine Contrastive Loss and Triplet Loss
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6
CONCLUSIONS AND FUTURE

WORKS

6.1 Conclusions

The goal of this thesis was to identify one or more unknown people from a group of known
subjects by exploiting signal data from a mm-Wave radar. We present an open-set person iden-
tification framework based on mm-Wave radar point-clouds, with the goal of distinguishing
a new, unknown person from a known collection of people. The tasks in this work can be
summarized as the following:

• The data used in the work was collected from different rooms to ensure the randomness.
The raw data was the signal data of several mm-Wave radars that are from total of 21
targets with 16 known targets for training and 5 targets for testing.

• Instead of gathering and processing the raw data acquired from the backscattered mm-
wave signal, we instead employ sparse point-clouds collected immediately from the radar
device to keep the computing complexity low. On range-Doppler maps, the CA-CFAR
technique is used to detect the primary reflecting sites, which involves applying a dy-
namic threshold to each RD value based on the power of nearby training data. The
points detected by CA-CFAR are divided into numerous clusters using a density-based
clustering technique, each of which corresponds to a different object in the environ-
ment. We then use aCM-KF, in amulti-target tracking (MTT) architecture, to estimate
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the location, velocity, and extension of the subjects by processing the data output by the
preceding phase.

• Feature extraction with TCPCN: a deep NN classifier is applied to a temporal series of
K successive point-clouds associated with each trajectory. We use TCPCN for this task
which is inspiredby the standardPointNet architecture for 3Dpoint-cloud classification
and segmentation.

• Using different loss functions: We use the TCPCN combined with different loss func-
tions choice such as Contrastive loss, Triplet Loss, and a combination between two of
them.

6.2 FutureWorks

The results shows large room for future improvement. Here is a rundown of some potential
developments.

• The triplet loss, on the other hand, focusesmostly on acquiring accurate ordering on the
training set. It still has a poor capacity to generalize from the training set to the testing
set, resulting in poor performance. So that we can try to train the model with more
powerfull loss function such as Quadruplet loss [34], which, when compared to the
triplet loss, can result in a model output with a bigger inter-class variation and a smaller
intra-class variation.

• Improve on the current training by using cosine similarity as the measure of similarity
between two feature vectors instead of using Euclidean distance in Contrastive Loss. Pa-
rameters tuning for the network anddata augmentation to reduce overfittingwhen train-
ing the network with Triplet loss.
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