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Abstract

Considering theheterogeneousunderwater acoustic transmission context, detecting anddistin-
guishing vocalizations of cetaceans has been a challenging area of recent interest. A promising
venue to improve current detection systems is constituted by machine learning algorithms. In
particular, Convolutional Neural Networks (CNNs) are considered one of the most promis-
ing deep learning techniques, since they have already excelled in problems involving the auto-
matic processing of biological sounds. Human-annotated spectrograms can be used to teach
CNNs how to distinguish between information in the time-frequency domain, thus enabling
the detection and classification of marine mammal sounds. However, despite these promising
capabilities machine learning suffers from a lack of labeled data, which calls for the adoption
of transfer learning to create accurate models even when the availability of human taggers is
limited. In this thesis, we developed a dolphin whistle detection framework based on deep
learning models. In particular, we investigated the performance of large-scale pre-trained mod-
els (VGG16) and compared it with the performance of a vanilla Convolutional Neural Net-
work and several baselines (logistic regression and Support Vector Machines). The pre-trained
VGG16 model achieved the best detection performance, with an accuracy of 98,9% on a left-
out test dataset.
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1
Introduction

Analyzing and detecting dolphin vocalizations has piqued attention in recent years, posing a
challenge to maritime mammalogists and other scientists [1, 2, 3]. Whistle, squawk, chirp,
moan, burst pulses, and clicks are examples of vocalizations [4]. Whistles are the dolphins’
primary form of communication, and they play an important role in their daily lives [5, 6]. Re-
searchers hope to protect their populations and better understand their behaviors by analyzing
their vocalizations, and whistles [7, 8, 9]. Whistles are made in groups for a variety of reasons,
including play behaviors, conspecific rubbing and hostility [10], reunions of mother and her
calves [11], and identification [12]. Whistles have also been observed regularly during their so-
cial interactions bymammalogists [13], exposing a communication purpose. Dolphinwhistles
are frequently recorded below 20 kHz [14].

Researchers can obtain spectrograms from underwater sounds and manually detect and
identify the dolphin whistles. While this strategy has certain benefits, it also has some disad-
vantages. This method’s main merits are its simplicity and convenience of use, but it also has
some major drawbacks. Due to its reliance on the operator’s physical and psychological cir-
cumstances, this method can be unreliable and, extremely, requires a high amount of labor and
attention. Besides this method, artificial intelligence and machine learning based frameworks
can be used to detect and identify spectrograms automatically more efficiently and with higher
performance [15]. In terms of the amount of data to be inspected on a time basis, artificial
intelligence will be considerably faster than humans.

Artificial Intelligence (AI) is described as a program with cognitive abilities comparable to
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those of a person. One of the major concepts of artificial intelligence is to have computers
think like people and solve problems in the same manner we do. However, in addition to their
incredible successes, AI systems implemented as artificial neural networks have faced a sizeable
number of difficulties. Since the data needed to be handled inmammal species sound analysis is
very large, automation of the detectionprocess has high importance for efficiency. The research
workdescribed in this thesiswas carriedoutunder the supervisionofProfessorAlbertoTestolin
from the University of Padova. It aims to create an accurate and automatic dolphin whistle
detection pipeline to be used in marine mammal species sound analysis.
In our work, we used machine learning and deep learning algorithms to evaluate and com-

pare the efficiency of automatic detection methods with the spectrograms we created consid-
ering the 3 kHz – 20 kHz interval. Pre-trained VGG16 [16], a vanilla Convolutional Neural
Network (CNN) [17], and machine learning algorithms Logistic regression and Support Vec-
tor Machines (SVMs) were trained and compared. Data augmentation and cross-validation
techniques were also applied to see how much they affected the results. Here are our main
contributions in this work as follows:

• An accurate dolphin whistle detection from underwater audio recordings.

• Comprehensive comparisonof state-of-the-artmachine learning anddeep learningmeth-
ods.

• Comparison of the effects of data augmentation, transfer learning and cross-validation
in the training phase.

The structure of our work is as follows. chapter 2 discusses the related works involved in the
machine learning algorithms for marine mammal sound detection. chapter 3 describe com-
monly usedmachine learning and deep learning algorithms. chapter 4 represents the details of
the technologies used in the implementation of our project. chapter 5 represents the general
explanation of our problem and the details of the signals, the dataset we created, and the data
preprocessing techniques we used with the evaluationmetrics. chapter 6 and chapter 7, respec-
tively, discuss models and evaluations of their performance. Lastly, chapter 8 brings the report
to a close with additional interpretations and suggestions for further research.
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2
RelatedWork

Detecting dolphin sounds and making analyses on them has been a very interesting research
area lately, and various approaches have been developed. In this section, we will focus on differ-
ent approaches to dolphin sound detection. For example, in this work [18], the ridge detection
algorithm method was used on the obtained spectrograms. In this way, they acquired areas of
the image that have significant dark patches. Later on, the Hough transform [19] was applied
to the binarizedmaps obtained by theRidge algorithm [20] for detecting line forms. The active
contour algorithm has been applied to detect the shapes to seize the shape of these patterns in
addition to the Hough transform. Finally, the Random Forest classifier [21] was applied, and
97.7% accuracy was obtained. This study [22] is based on CNN and they used LeNet, LeNet
variants, andResNet-18 [23] architectures to detect dolphin echolocation clicks. Among their
experiments, ResNet-18 gave the best result with 97.44% accuracy. Also, in thiswork [24], they
are utilizing different types of deep neural network architectures, for example, convolutional
neural networks (CNN) and recurrent neural networks (RNN) [25] to detect the vocalizations
ofNorthAtlantic rightwhales. They also implementedhardnegativemining anddata augmen-
tation to improve deep neural network results. Here [3], they are proposing using pre-trained
AlexNet to detect and classify marine mammals using colored spectrograms using theWatkins
database. The detection and classification models have an accuracy of 99.96% and 97.42%, re-
spectively. In [26], different ResNet architectures are trained with and without max-pooling
in the first residual layer to detect killer whale sounds, and the results are compared. Accuracies
are distributed between 92% and 97%. In [27], a semantic segmentation approach is applied
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by manually masking and labeling the dolphin whistles. DeepLabv3+, which uses a structure
of encoder-decoder, a CNN model, is used. With an overall mean precision of 0.96, an accu-
racy of 0.89, and an F-score of 0.86, their semantic segmentation approach detects the whistle.
Here [28], the authors aimed to remove the noise from the background by applying denoising
on the raw sound in their work. All denoised sounds are converted into spectrograms with-
out overlapping between adjacent frames. LeNet5 architecture is used for both detection and
classification. Results reveal that the suggested strategy can get a 97% accurate detection rate
and a 95% correct classification rate. In this paper [29], Mel Frequency Cepstral Coefficients
(MFCCs) and Discrete Wavelet Transforms (DWTs) are applied for feature extraction from
North Atlantic Right Whale up-calls. Later on, SVM and KNNs were used. It was observed
that DWTs used in combination withMFCCs improved the results, and the up-call detection
rate was 92.27%. In this study [1], a dolphin whistle detection technique was created, and a
multi-layer perceptron neural network was suggested (MLPNN). The MLPNN parameters
are initially optimized using the chimp optimization method. The authors [2] suggested an
autoencoder built from convolutional and recurrent layers for usage with short windows of
acoustic dolphin sounds. Encoder-decoder models used in natural language processing served
as inspiration for their architecture. The authors of this article [30] describe a learning-based
technique for obtaining toothed whale whistles. To learn to anticipate whistle contours, their
method is done by using a small number of human andmachine-generated annotations, which
arewhistle contours or edges in image spectrograms. Each hidden layer in their network, which
consists of 10 convolutional layers, has 32 filters, and there are batch normalization layers be-
hind all convolutional layers on residual blocks.
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3
State-of-the-art

3.1 Machine learning Algorithms

3.1.1 Support VectorMachines

SVMs are linear models mostly applied to classification and regression problems. However,
they can be used on data that cannot be separated linearly by applying different kernels. If we
give an example over a linearly separable dataset on a two-dimensional plane, as can be seen
from Figure 3.1, the line we call hyperplane divides the data into two different classes. As can
be seen in this scenario, there is more than one hyperplane that can separate the data. SVM
calculates the distance between the line and the support vectors in order to find the line that
separates the data in the best andmost optimal way. The distance between the support vectors
and the hyperplane is called the margin. The hyperplane with the highest margin is considered
the most optimal hyperplane.

In reality, datasets are much more complex and often cannot be separated linearly. As a
solution to this situation, SVM has two solutions, and these are the Soft Margin and Kernel
Tricks methods.
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Figure 3.1: Support vector machines visualization

Soft Margin: The soft margin method means tolerating a few misclassified samples while try-
ing to locate the hyperplane to separate the dataset. How much tolerance we apply is an im-
portant hyperparameter for SVM. In the Sklearn library used with the Python programming
language, this parameter is represented as a penalty term and is symbolized as ”C”. A high
C value indicates you’ll get more training points right, which means the penalty when SVM
makes a mistake will be higher, and SVMwill generate more complicated decision boundaries
in order to fit all the points.

Kernel Trick: Applying a kernel function to inputs in the original lower-dimensional space is
knownas a kernel trick. The innerproduct of the transformedvectors in thehigher-dimensional
space is returned by this function as shown in Figure 3.2. If we show it in a formal way; let’s
say our data x, z ∈ X, and a map φ : X → RN, then the formula is represented Equation 3.1.

k(x, z) = ⟨φ(x),φ(z)⟩ (3.1)
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Figure 3.2: Kernel trick visualization

Polynomial Kernel: The polynomial kernel is a transformer that generates new features by
combining all existing features in a polynomial way. For example, let’s say that the feature vec-
tor we have is X = [−2,−1, 0, 1, 2]with their labels [1, 1, 0, 1, 1]. As can be seen in Figure 3.3,
it represents a dataset that cannot be separated linearly. Let’s square the vector X, which is X2.
This time, the new vector we have will be [4, 1, 0, 1, 4]. In this way, the polynomial kernel can
create a nonlinear decision boundary and separate the data.
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Figure 3.3: Example of polynomial kernel implementation

Radial Basis Function (RBF) kernel: The radial basis function is a kernel that measures the
distance between all other data points and a specific data point which is the center to gener-
ate new features. Generally, the most used radial basis function is the Gaussian Radial Basis
Function which is represented as Equation 3.2.

φ(x, center) = exp(−γ∥x− center∥2) (3.2)

γ is the gamma value that determines how new features affect the decision boundary. The
higher the gamma, the greater the impact of the features on the decision boundary. If we go
over the same examples again, let X = [−2,−1, 0, 1, 2] and label = [1, 1, 0, 1, 1]. Let’s choose
the point (−1.0) as the center point and get the gamma value of 0.1. When we put the values
into the Gaussian RBF kernel, the results will be as seen in Figure 3.4.
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Figure 3.4: Example of radial basis function implementation

3.1.2 Logistic Regression

Logistic regression produces a dependent variable output by using independent variables as in
linear regression, this output is our prediction result. Unlike linear regression, while the inputs
can be categorical and numeric, the output is always categorical such as yes or no, passed or
failed, etc., since it is a binary classification problem.

Given that the output of logistic regression is a probability between 0 and 1, the explication
of the weights or coefficients is different from that of the weights in linear regression. The
likelihood is not linearly governed by the weights anymore. The logistic function converts the
weighted sum into a probability. The logistic regressionmodel uses the sigmoid function Equa-
tion 3.3 as it is defined below to constrain the outcome of a linear equation between 0 and 1
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instead of fitting a line or a hyperplane.

sigmoid(x) =
1

1+ e−x (3.3)

3.2 Deep Neural Networks

Deep neural networks aremodels derived from artificial neural networks. Each node in the hid-
den layer of artificial neural networks plays a role in determining the importance of each input
to define the output. In order to benefit more from this situation, more than one hidden layer
has been used, and the increase in the number of hidden layers has revealed the concept of deep
neural networks, as can be seen in Figure 3.5.

Figure 3.5: Deep neural networks visualization

Deep neural networks bring with them the importance of hyperparameter tuning. The pa-
rameters that vary depending on the problem and data set are called hyperparameters, and they
are left to the individual who built the model. Hyperparameters are used when learning a neu-
ral network, but they are not part of the final model, like weights/coefficients and biases. Here
are some typical hyperparameter examples:

• The rate of separation of the dataset as a train and test,

• Learning rate for optimization algorithms such as gradient descent,

• Which optimization algorithm to choose such as gradient descent, stochastic gradient
descent, AdaGrad, or Adam,

• Which cost or loss function that the model will employ,
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• Number of hidden layers,

• Number of nodes/units in hidden layers,

• Dropout rate,

• Number of epochs which is the number of iterations in training,

• Kernel or filter size in convolutional layers,

• Batch size,

• Pooling size,

• Stride size in convolution layers and pooling layers.

3.2.1 Fully ConnectedNeural Network

Fully ConnectedNeuralNetworksmean that each node of each layer is connected to the other.
In Figure 3.6,We can see the reasonwhy layers are referred to as Fully Connected in some cases.
They canbe calledFullyConnected layers orDense layers. Each inputof the input vector affects
each output of the output vector since they are all connected to each other. On the other hand,
not all weights have an impact on all outputs. The connections of the first neuron in the layer
are shown by the red lines. This neuron’s weights just have an impact on output A; they have
no bearing on outputs B or C.

Figure 3.6: Fully connection explanation
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A group of dependent non-linear functions makes up neural networks. A neuron is the
building block of each distinct function. The neurons inside fully connected neural networks
process the input vector linearly using a weights matrix. The output is then subjected to a non-
linear transformation by applying a non-linear activation function f. WhereW represents the
weights matrix and x is the input vector, a dot product between them happens. w0 represents
the bias that can be included in activation function f can be seen in Equation 3.4.

yjk(x) = f

(
nH∑
i=1

wjk + wj0

)
(3.4)

A Fully Connected Neural Network layer with input size of 5 and output size of 3 can be
visualized as shown in Figure 3.7 as an example. The activation function f receives as input the
dot product between the layer’s input and the weights matrix of this layer and returns us the
output. These weights will be learned by the model with the help of optimization algorithms
such as gradient descent during the training of the model. The weights matrix is a 5x3 matrix,
while the input is a 1x5 vector. We obtain the 1x3 output vector by using the dot product and
a non-linear transformation using an activation function f.

Figure 3.7: Weighted sum representation

3.2.2 Convolutional Neural Network

A convolutional neural network is a subclass of neural networks that are particularly adept at
handling input with a grid-like architecture, like an image. A convolution, like a typical neural
network, is a linear operation that includes multiplying a set of weights with the input. The
multiplication is done between an array of input and a two-dimensional array ofweights, called
a filter or a kernel, as seen in Figure 3.8, because of approach was created for two-dimensional
input. Despite the fact that CNN is created for two two-dimensional operations, it may also
be utilized to process one and three-dimensional data. CNN employs technology similar to a
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multilayer perceptron that is optimized for limited computational requirements. A layer for
input, a layer for output, and a hidden layer, together with several convolutional layers, pool-
ing layers, fully connected layers, and normalization layers, make up a CNN’s layers.

Figure 3.8: Convolution representation

Convolution is a widely used method in the field of computer vision, and different filters
have been designed to facilitate the analysis of images. By applying these filters to the image, a
feature map is obtained from it. The examples for these filters can be seen at Figure 3.9

Figure 3.9: Different filter examples

In convolutional neural networks, numbers inside the filters represent the weights, and they
are learned during the training with the help of optimization algorithms. This means that the
neural network learns what kind of features it should extract from the image.

13



3.2.3 FullyConnectedNeuralNetworkandConvolutionalNeu-
ral Network Comparison

Convolutional layer employs fewer different parameters than the Fully Connected layer since
it forces input values to share the parameters, which is the primary distinction between the two
layers. Every output is produced based on every input in the Fully Connected layer, which
employs a linear procedure. The size of the small version of input which is subject to the filter’s
size determines the size of the output of the convolution layers, and the weights are distributed
across all of the pixels. In other words, by using the nearby pixels as an input and the identical
coefficients for all pixels, the output is created. The linear operation is done using the nearby
pixels of the pixel where the filter center is located in the convolution. The adjacent pixels have
a significant association already. We make the assumption that the nearby pixels serve as the
primary proxies for the central pixel when employing the convolutional layer.

To summarize, Convolutions are not densely connected, which means that not all input
nodes have an impact on all of the output nodes. Convolutional layers have more learning
flexibility, which is very helpful when dealing with inputs that have high dimensionality like
images. These benefits are what enable convolutional layers to learn features in the data, such
as shapes like lines, curves, etc., in image data, which is a well-known attribute of the network.
As a result of our prior understanding of our data and the information contained within it, we
employ a convolutional layer to both lighten the burden on our model and to precisely point
out the data that would be valuable for it to learn from while keeping it far from unnecessary
data.

3.2.4 Pooling

A two-dimensional filter is slid over each channel of the feature map during the pooling opera-
tion, and the features contained within the area bounded by the filter are aggregated. After the
convolutional layer, a new layer called a pooling layer is introduced. Particularly, following the
implementation of a nonlinearity, such as ReLu, Tanh, Sigmoid, etc., to the feature maps pro-
duced by a convolutional layer. Each feature map is processed separately by the pooling layer,
which produces a new set of the same amount of down-sampled feature maps. This implies
that the size of each feature map will always be decreased by the pooling layer. Pooling is done
by applying a filter. The size of the filter is less than the feature map. A shortened version of
the features found in the input is produced by utilizing a pooling layer to obtain down-sampled
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feature maps. The model’s invariance to local translation refers to this ability that is added by
pooling. Average Pooling andMaxPooling are twooften used functions in the pooling process.

Average Pooling: For each region on the feature map, determine the average value.

Max Pooling: Determine the highest value for each feature map region.

3.2.5 Optimization Algorithms

Wemust alter each epoch’s weights andminimize the loss functionwhile training the deep neu-
ral network. An optimizer is a function or algorithm that alters the characteristics of a neural
network, such as its weights/coefficients and learning rate. Consequently, it aids in the reduc-
tion of total loss and the improvement of accuracy. Because a deep neural network typically
has millions of parameters, finding the proper weights for the model is a difficult issue. It is
necessary that the selection of an appropriate optimization algorithm for the training of the
neural networks.

Gradient Descent

A gradient gives us the steepest direction to reach the local minimum. First, start with initial
weights, and calculates their loss. It starts searching for weights that can give lower loss values
than the current loss. For this purpose, it moves for lower weights and updates these weights.
The process continues until it obtains the local minimum or global minimum. There are 3
kind of gradient descent algorithms Figure 3.10.
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Figure 3.10: Batch ‐ mini batch ‐ stochastic gradient descent comparison

Batch Gradient Descent

It finds the gradient of the loss function depending on the weights (W) for the entire training
dataset, where J is the loss function, and η is the learning rate which is the size of the steps to
reach a local minimumor global minimum, J

W is a gradient showing the direction in which the
valueW should be pushed in order to lower J Equation 3.5.

W = W− η
∂J(y, ŷ)
∂W

(3.5)
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Stochastic gradient descent

Stochastic gradient descent (SGD) [31] update weights for each training sample x(i) with its
label y(i) Equation 3.6.

W = W− η
∂J(y(i), ŷ(i); x(i))

∂W
(3.6)

On big datasets, stochastic gradient descent converges quicker than gradient descent because
updates are more frequent. Furthermore, because the data is frequently repetitive, the stochas-
tic estimate of the gradient is usually precise without utilizing the entire dataset.

Mini-Batch Gradient Descent

For everymini-batch of n training samples, mini-batch gradient descentmakes an update. This
method reduces the variance ofweight updates, resulting inmore consistent convergence Equa-
tion 3.7.

W = W− η
∂J(y(i:i+n), ŷ(i:i+n); x(i:i+n))

∂W
(3.7)

Momentum

Instead of relying solely on the gradient of the current step to drive the search, momentum
considers the gradient of previous steps as well.
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Figure 3.11: SGD with momentum and SGD without momentum comparison

As seen in Figure 3.11, momentum is a technique that aids in the speeding of SGD in the
desired direction while also reducing fluctuations. It achieves this by adding a fraction of the
previous time step’s update vector to the current update vector Equation 3.8.

W = W− η ∗mt (3.8)

mt = β ∗mt−1 + (1− β) ∗ (dWt) (3.9)

Where, dW = ∂J
∂W and β represents a parameter for the decaying average of parameters.

Adagrad

The Adaptive Gradient algorithm [32], often known as Adagrad, is a variant of the gradient
descent optimization process. It adjusts the learning rate for each feature based on the prob-
lem’s predicted geometry; in particular, it assigns greater learning rates to uncommon features,
ensuring that parameter changes are based on significance rather than frequency. TheAdagrad
weight updating formula is Equation 3.10:

Wt+1 = Wt − η ∗ dWt (3.10)

At each iteration, αt indicates different learning rates for each weight, where ε is a small pos-
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itive number to prevent dividing by zero error as can be seen in Equation 3.11

η′t =
n√
αt + ε

(3.11)

αt is represented as, where dW is derivative of loss with respect to weight which means that
the amount of change in the loss value according to the weight value is as in the Equation 3.12

αt =
t∑

i=1

dW2
t,i (3.12)

One of the main drawbacks of the Adagrad is αt may grow high as the number of iterations
grows, causing η′t to decline at a larger rate. As a result, the old weight will be nearly equal to
the new weight, resulting in slow convergence.

RMSprop

RMSprop, or rootmean square prop, is an adaptive learning approach for improvingAdaGrad.
It uses the decaying average of parameters in each parameter’s step size adaption instead of the
cumulative sum of squared gradients, as AdaGrad provides Equation 3.13.

Wt+1 = Wt − η′ ∗ dW (3.13)

Where, η′ = η√
vt+ε and vt represented as Equation 3.14:

vt = β ∗ vt−1 + (1− β) ∗ (dWt)
2 (3.14)

Adam

Anothermethod for calculating adaptive learning rates for eachparameter isAdaptiveMoment
Estimation (Adam) [33]. Adam combines the best features of the Adagrad and RMSprop
methods. Adam preserves an exponentially decaying average of past gradients comparable to
momentum, in addition to the exponentially decaying average of the square of past gradients
vt like RMSprop. Adam computes the decaying averages of past gradientsmt and past squared
gradients vt respectively as here Equation 3.9 and Equation 3.14. The authors of Adam remark
thatmt and vt are biased to zero, specifically in the first time steps and when the decay rates are
low because they are begun as vectors of zeros. The authors overcame these biases by comput-
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ing first and secondmoment estimations. The authors overcome these biases issues by applying
the following Equation 3.15 and Equation 3.16:

m̂t =
mt

1− βt1
(3.15) v̂t =

vt
1− βt2

(3.16)

The following Equation 3.17 is the update rule:

Wt+1 = Wt −
η√
v̂t + ε

∗mt (3.17)

3.2.6 Activation Functions

An artificial neural network can learn complex patterns in the data with the help of an activa-
tion function. The activation process ultimately chooses what signals should be sent to the
following neuron. It receives the output signal from the neuron before it and transforms it
into a form that could be used as the input for the neuron after it. The ability of an activation
function to add non-linearity to the neural network is its most crucial characteristic. Addition-
ally, they assist in limiting the value of the neuron’s output to a predetermined level. This is
significant since the activation function’s input consists of the product ofW and x then plus
b, whereW is weight, x is the input data, and b is the bias. In the case of deep neural networks,
which include millions of parameters, this number, if not constrained to a specific limit, can
reach very high magnitudes, and computational problems can cause because of this issue.

The output signal transforms into a simple linear function if the activation function is not
used. Only polynomials of one degree are linear functions. Without an activation function, a
neural networkwill behave like a linear regressionwith constrained learning capacity. However,
we also want our neural network to learn nonlinear scenarios. Because we’ll teach our neural
network using complicated real-world data, including images, videos, texts, and audio. This
allows multilayer deep neural networks to extract useful characteristics from the data. Nonlin-
ear functions are those that have more than one degree. To accomplish this, artificial neural
networks are intended to work with different types of functions. This calls for their ability to
compute and learn any given function. Stronger learning of networks is possible due to thenon-
linear activation functions. The backpropagation [25] methods are used in the artificial neural
network to calculate the error values associated with the weights. The optimization technique
must be chosen, such as stochastic gradient descent, and the loss must be reduced.

Linear: The weighted sum of the input is not altered by this function; it merely returns the
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value that was passed to it as shown in Figure 3.12. It undoubtedly enables the connection of
many neurons. But the value of its derivative is constant. Because the function’s derivative is a
constant and has no connection to the input x, using backpropagation is not possible.

Figure 3.12: Linear activation function visualization

ReLu: TheReLUorRectifiedLinearUnit function [34] is a very commonactivation function
used in the hidden layers of artificial neural networks. ReLU takes values in the range of [0,+)

Equation 3.18. In an artificial neural network with many neurons and hidden layers, sigmoid
and tanh cause almost all neurons to fire or activate in the same way. This means that all sig-
nals will be sent to the following neurons. As a result, these activations are labor-intensive and
necessitate extensive processing. Some activations can be diluted for a more efficient computa-
tional intensity. It is possible to achieve this state with the ReLU activation function. Getting
0 values on the negative axis also means that the network will run faster. Since the amount of
computation is less than the sigmoid and hyperbolic tangent functions, it is preferred in multi-
layer networks. However, since the derivative of the 0 regions is 0, learning does not take place
in this region can be seen in Figure 3.13. This is one of the disadvantages of ReLu.

f(x) = max(0, x) (3.18)
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Figure 3.13: ReLu activation function visualization

Softmax: It has a structure very similar to the sigmoid function. It performs quite well when
used as a classifier, just like Sigmoid. Softmax [35] can be used in binary classification as in
Sigmoid, as well as in multiclass classification problems. It determines the probability of the
input belonging to a certain class by generating values in the range of 0 − 1 as represented by
the Equation 3.19.

σ(x)i =
exi∑K
j=1 exj

(3.19)

3.2.7 Cross Validation

Cross-validation is a statistical method to improve the ability ofmachine learningmodels. The
cross-validation technique is used especially when there is a limited amount of data to improve
results. In applied machine learning, the cross-validation technique is commonly used to re-
duce bias and prevent overfitting. When amachine learning model learns the noise of the data,
overfitting occurs, as shown in Figure 3.14. Overfitting, as the term suggests, arises when a
model or algorithm fits the data too much. A model that has been overfitted produces good
accuracy on training data but subpar outcomes on new data.
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Figure 3.14: Overfitting and underfitting issues visualization

Cross-validation is generally applied as follows:

• Shuffle the dataset,

• Divide the dataset into k subgroups,

• For each subgroup;

– Treat one of the subgroups as the test dataset to validate the model,
– Treat the rest of the subgroups as the training dataset,
– Fit the model on the training dataset, then evaluate it on the test dataset,
– Keep learned knowledge and use it in the next subgroup,

• Summarize the performance of the model using each evaluation score.

3.3 Transfer Learning

Inmachine learningproblems, transfer learning refers to the reuse of a previously trainedmodel
on a new problem Figure 3.15. Transfer learning applies what it is learned from a previous
assignment to improve the accuracy of new task predictions. Transfer learning can yield much
higher performance than training with a small amount of data when applied to a new task. It
can save time and resources by utilizing pre-trained models rather than having to train models
from scratch to perform similar tasks. It can also help you overcome a lack of labeled training
data. The following is a list of items that can be used to summarize the reasons for using transfer
learning:
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• To avoid having to train several machine learning models from scratch to fulfill similar
tasks, to save resources and time.

• A broader approach to problem solving that uses a variety of algorithms to address new
problems.

• Using pre-trainedmodels, an organization or an individual can overcome the limitation
of labeled training data.

• As a cost-effective way to save in areas of machine learning where large quantities of re-
sources are required, such as image classification or natural language processing.

• Each newmodel no longer requires a big collection of labeled training data.

• Increasing machine learning development and implementation efficiency.

• Models can be trained in simulations rather than in real-world settings.

Figure 3.15: Transfer learning representation
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3.3.1 VGG16

The VGG16 [16] convolutional neural network model was utilized to win the 2014 ILSVR
ImageNet [36] competition. ImageNet contains about 1.2 million images for training with
1000 classes. It is the smallest depth model built into Keras applications. Keras Applications
are deep neural network models that come with weights that have already been trained. Pre-
diction, feature extraction, and fine-tuning are all possible by using these models. On the Ima-
geNet validation dataset, all of the models in Keras applications have a top-5 accuracy of more
than 89%. VGG16 has a 90.1% accuracy rating in the top five. Instead of a huge number of
hyper-parameters, VGG16 concentrated on having 3x3 filter convolution layers with stride 1
and used the same padding and max-pooling layer of 2x2 filter with stride 2. Throughout the
architecture, it maintains this convolution and max-pooling layer structure. Finally, it has two
fully connected layers (dense layer) for output, followed by softmax. The 16 in VGG16 alludes
to the fact that it comprises 16 layers, each of which has weights, as can be seen in Figure 3.16.

Figure 3.16: VGG16 architecture

3.4 RegularizationMethods

3.4.1 Data Augmentation

Data augmentation refers to a set of approaches for generating new training samples from exist-
ing ones by applying random oscillations and fluctuations while maintaining the data’s labels.
Making modest modifications to data or utilizing deep learning models to produce additional
data points are examples of this. When using data augmentation, the goal is to improve the
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model’s generalization. Thenetworkmay learnmore robust characteristics since it is constantly
exposed to new, slightly tweaked copies of the input data Figure 3.17. Data augmentation is
not used during testing and instead evaluates the trained network on the raw testing data. In
most circumstances, it is noticed that a gain in testing accuracy is at the expense of a tiny drop
in training accuracy. Machine learningmodels can benefit fromdata augmentation to improve
their performance and outcomes. A machine learning model works better and more correctly
when the dataset is rich and sufficient.

Data collection and labeling can be a very time-consuming problem and expensive for ma-
chine learning models. Organizations or individuals can lower these costs via transforming
datasets utilizing data augmentation approaches. Cleaning data is one of the phases of creating
a data model, and it is required for highly accurate models. Therefore, if data cleaning limits
the representativeness of the sample training data to the real-world data, the model will be un-
able to make accurate predictions for real-world data. We can make machine learning models
more robust via data augmentation approaches, which form variances that the model can be
encountered in the actual world. The following are examples of traditional image processing
activities for data augmentation:

• Rotating,

• Rescaling,

• Vertical and horizontal flip,

• Padding,

• Translation,

• Cropping,

• Zooming,

• Adding noise,

• Erasing,

• Color modifications such as darkening and brightening,

• Grayscaling.
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Figure 3.17: Data augmentation example via dolphin whistle spectrogram

The following are some of the advantages of data augmentation:

• Improving the accuracy of the model prediction.

• Increasing the capacity of the model to generalize.

• Creating data heterogeneity and reducing overfitting of the model.

• Lowering the cost of data collection and labeling.

• Assisting in settlement of concerns of class imbalance in classification.

• Allowing for the prediction of unusual conditions.

• Preventing issues with data privacy.

3.4.2 Dropout

A regularization technique called dropout which generalizes the training of a deep neural net-
work with various architectures. A certain proportion of layer outputs are dropped out or
ignored in a random way during the training as seen in Figure 3.18. This means that the layer
appears to have different nodes and connections to the previous layers. Dropout has the ef-
fect of making training noisy, pushing nodes within a layer to assume more or less responsi-
ble for the inputs based on probabilities which are genuinely beneficial to prevent overfitting
problems. As a result of the dropout method’s ability to simulate numerous networks, these
networks have nodes that are generally more robust to inputs.
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Figure 3.18: Dropout visualization
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4
Tools

4.1 Keras

Keras is a Python-based application programming interface (API) for deep neural networks.
This open-source neural network framework is built on top of TensorFlow and can be used to
experiment with deep neural networks quickly. Keras emphasizes modularity, usability, and
extensibility. In the middle of 2017, Keras was adopted and integrated into TensorFlow. The
tf.keras module gives users access to it. The Keras library, on the other hand, can continue to
function independently. Over Keras executing low-level tensor operations efficiently on the
CPU, GPU, or TPU is possible, and the gradient of differentiable functions can be computed.
It allows dividing computations to a large number of devices, such as several GPUs in a clus-
ter. Also, It is possible to export programs to servers, browsers, mobile devices, and embedded
devices.

4.2 TensorFlow

TensorFlow is a Google-developed open-source deep learning framework that was unveiled in
2015. It is well-known for its documentation and training assistance, as well as its flexible pro-
duction and deployment choices and support for a variety of platforms, including web apps,
mobile apps, and IoT devices. TensorFlow is a framework that is a rapidly-growing introduc-
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tion into the field of machine learning, with complete community resources, frameworks, and
tools that make developing and deploying machine learning products easier. TensorFlow has
also integrated Keras.

4.3 TensorFlow - Keras Comparison

Keras is a neural network library that works on top of TensorFlow. TensorFlow is an open-
source end-to-end platform and library for different machine learning tasks. Both offer high-
level APIs for quickly creating and trainingmodels, while Keras ismuchmore user friendly due
to its Python integration.

Because Keras is a library inside TensorFlow’s framework, a deep neural network model can
be created using the Keras interface, which is easier to implement, and then dropped into Ten-
sorFlow when a feature that Keras lacks or a particular TensorFlow feature is required. As a
result, TensorFlow code can be directly integrated into the Keras training process.

When dealing with massive datasets and object identification, researchers resort to Tensor-
Flow for its high functionality and performance. Linux, macOS, Windows, and Android are
all supported by TensorFlow. Google Brain created the framework, which is now used for
Google’s research and development purposes.

4.4 Keras Image Data Generator

Keras ImageDataGenerator takes the raw data as input, transforms it at random, and returns
an output consequent containing solely the recently changed data. It does not add more data
to the original dataset. The Keras image data generator is also used for data augmentation,
with the goal of improving the model’s generalization, and it allows to use in the realm of real-
time data augmentation to generate batches. When we utilize the image data generator, we
can iterate through the data in batches. In data augmentation, operations, including rotations,
translations, scale adjustments, and horizontal-vertical flips, are performed at random using an
image data generator.

4.5 Optuna

Optuna is a software framework for hyperparameter optimization that was created specifically
for machine learning pipelines. Users of Optuna can employ methods for sampling hyperpa-
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rameters and removing unsuccessful trials. Comparing this to more conventional techniques
like GridSearch, it substantially speeds up optimization time and performance. Additionally,
it enables users to visualize optimization histories to comprehend the model better. Optuna
chooses which hyperparameter values to evaluate next based on a historical record of trials.
Using the historical information of the previously finished trials, Optuna repeats this process.
More specifically, it uses the Tree-structured Parzen Estimator, a Bayesian optimization algo-
rithm.
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5
Problem Formulation

We aim to develop an efficient model that performs automatic dolphin whistle detection. For
this purpose, spectrograms containing dolphin whistles and spectrograms that do not contain
not dolphin whistles were obtained by using the 243 underwater records we have, and a train-
ing/testing dataset was created. Our problem is to detect the spectrograms containing the dol-
phinwhistle by scanning the audiofilewith afixedwindowof the specified length,which shows
that our problem is a binary classification problem. Spectrograms without dolphin whistles
represent negative class and are labeled 0, while those with dolphin whistles represent positive
class and are labeled 1. In this direction, our deep learning and machine learning models were
trained and tested with the data set we created.

5.1 Supervised Learning

The algorithm’s learning phase is completed given a dataset containing some observations and
their labels/classes. For instance, images of animals might be observed, with labels indicating
the animal’s names, such as cat, dog, bird, etc. Regression and classification cases are two types
of supervised models.

Regression: Regression is a statistical process to estimate the relationships between a depen-
dent variable Y, which is called output, and one or more independent variables X, which are
called features. In regression problems, the output variable is a continuous value such as finan-
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cial forecasting, stock price prediction, sales, and promotions forecasting, etc.

Classification: When the output of the algorithm is a category, the problem is called a clas-
sification problem. As in our problem, ”there is a dolphin whistle” and ”there is no dolphin
whistle” are examples of these categorical outputs.

5.1.1 Binary Classification

Binary classification is a problem that classifies the components of a set into two bunches called
classes/labels. For binary classification issues, medical testing to decide if a malady exists or not,
deciding whether an email is spam mail or not spam mail, and finding whether a user visiting
an online store buys or does not buy a product can be given as examples. Our problem is also
a binary classification problem. Our aim is to build up a highly accurate model that automat-
ically detects whether spectrograms created from sounds recorded from underwater contain
dolphin whistles or not contain. For this purpose, we used and experienced different methods,
such as support vector machines, logistic regressions, and convolutional neural networks.

5.2 Dataset and Preprocessing

The dataset was created by generating spectrograms using 243 records, each 5 minutes long,
provided by the University of Haifa. Each window is 0.8 seconds long. Spectrograms were
obtained by shifting the window on the record for 0.4 seconds, as seen in Figure 5.1. With this
method, it is aimed that 1 window can fully cover 1 signal. While recording the spectrograms,
the low and high frequencies were cut, and the spectrogram creationwas completed in this way.
Low frequency limit is determined as 3 kHz, high frequency limit is determined as 20 kHz.
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Figure 5.1: Windowing process of recordings taken from the underwater

5.2.1 Signals and Features

The audio recordings were recorded during the month of June 2021. All sound recordings are
5 minutes long and have 2 channels. Each audio file is formatted in the flac file type. Flac file
format allows you to store data without data loss. 1 second of each record, which is 5 minutes
long, contains 96000 samples.

5.2.2 Data Preprocessing

First of all, outliers in the signal lengthswere calculated using the information of dolphin voices
that were previously tagged in seconds and frequency ranges to determine the window size in
order to create the spectrograms. The calculationwasmade using 795 tagged data. In the analy-
sis, signals longer than approximately 0.78 secondswere determined as highoutliers, and signals
shorter than approximately 0.14 seconds were determined as low outliers. This calculationwas
made with the help of the Tukey method [37].
The method finds the outliers based on the quartiles of the data. Firstly, the first quartile,

secondquartile, which is themedian value, and the third quartile of the data are calculated. The
first quartile, or Q1, represents 1/4 of the data, the second quartile, or Q2, represents 1/2 of
the data, and the third quartile, or Q3, represents 3/4 of the data. Next, the calculation of the
interquartile range IQR follows. According to themethod, the outliers are values that aremore
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than 1.5 times the interquartile range IQR from the quartiles, as shown in the Equation 5.1.

IQR = Q3 − Q1

HighOutlier = Q3 + 1.5IQR

LowOutlier = Q1 − 1.5IQR

(5.1)

As a result of the calculations, the window size was determined as 0.8 seconds to cover dol-
phin sounds. Audio files consist of 2 channels, and before spectrograms are created, the average
of 2 channels is taken, and in this way, it is aimed at reducing noise Figure 5.2.

Figure 5.2: Visualization of different channels of the recordings taken underwater

Spectrograms of the dolphin whistles are created via using MATLAB’s spectrogram func-
tion from the digital signal processing toolbox. The spectrogram function calculates the short-
time Fourier transformof a signal, and it returns complex numbers, which include bothmagni-
tude and phase information. Since each created spectrogram represents a 0.8 seconds window,
76800 elements from the signal are used in each spectrogram. As the window, the Blackman
function with 2048 points and periodic sampling method is used. The number of overlaps is
determined as 20% of the Blackman window length which is 410. FFT length is used as 2048,
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while the sampling frequency is determined to be 96000 Hz.
The output of the spectrogram function is used to visualize the spectrograms in the imagesc

function of the digital signal processing toolbox. Before visualizing, the frequency output of
the spectrogram function is converted to kHz from Hz. Also, the power spectrum density is
converted into dB to be used in the imagesc function. Later time instants returning from spec-
trogram function are used with the frequency output and converted power spectrum density
to create images with imagesc function. y-axis limits of the imagesc function are set between 3
and 20 kHz since the dolphin whistles are often existing between this interval. Gray colormap
is used while visualizing.

5.2.3 Dataset Details

The training dataset contains 4198 spectrograms. Half of them are positive samples containing
dolphin sounds, and the other half are negative samples that do not contain dolphin sounds.
To test the training results, a non-balanced test data set containing 300 positive samples and
4700 negative samples was used. Here, it is desired to observe the results of the models on the
non-balanced data. The spectrograms used for training and testingwere collected from the 243
records each of them 5 minutes long reserved for it.

5.3 EvaluationMetrics

Metrics for evaluation are used to assess howwell a statistical or machine learning model is per-
forming. Everymachine learningworkflowhas evaluationmetrics as a component. The ability
of evaluationmetrics to distinguish between different model outcomes is a crucial feature. It is
crucial to evaluate the correspondingmodel using a variety of evaluationmetrics. This is due to
the fact that amodel may performwell when using ameasurement from one evaluationmetric
but poorly when using a different measurement from a different evaluation metric. In order
to make sure the model is working properly and ideally, evaluation metrics are essential.

5.3.1 Loss Functions

The loss function determines how far the algorithm’s current output is from what is desired.
This is a technique for assessing how well the algorithm fits the data. There are 2 different
categories, one of them is for classification, which is for discrete values, and the other one is for
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regression, which is for continuous values. In short, a loss function evaluates how inaccurate
the model is in estimating the relationship between input and output.
Cross-entropy: The purpose of this function, which derives from information theory, is to
compare two averages of the distribution’s amount of data. The difference between two prob-
ability distribution functions is calculated using the cross-entropy. Binary and multiclass clas-
sification issues can be solved using cross-entropy.
Binary cross-entropy: Binary cross-entropy canbe used for binary classification. Equation 5.2
is the equation of binary cross-entropy.

−(ylog(p) + (1− y)log(1− p)) (5.2)

Categorical cross-entropy: This function canbeused for bothbinary andmulticlass classifica-
tion. Labels have to be encoded as categorical such as one-hot encoding, as shown in Figure 5.3.
Equation of categorical cross-entropy can be seen in Equation 5.3

−
M∑
c=1

yo,clog(po,c) (5.3)

WhereM represents the number of classes, y is the binary indicator and, p is the predicted
probability observation o of class c.

Figure 5.3: Example one hot encoding implementation

Sparse cross-entropy: This loss function can be used for binary and multiclass classification
problems. The labels have to be an integer number between 0 and n depending on the number
of classes.
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Log-Loss: The binary version of cross-entropy utilized in classification tasks is this function.
It evaluates the efficiency of a classification model, the result of which is a probability with a
range of 0 to 1.

Mean Absolute Error (MAE): L1 regularization referred to as mean absolute error, is em-
ployed in regression tasks. It computes the ratio of the number of outputs divided by the ab-
solute difference between the current output and the expected output. Unlike Mean Square
Error, which is vulnerable to outliers,MeanAbsoluteError is focusedon absolute values. MAE
equation can be seen as Equation 5.4:

1
m

m∑
i=1

∣∣y(i) − ŷi
∣∣ (5.4)

Wherem represents the number of samples, y is the true label and ŷ is the predicted label.

Mean Square Error (MSE): This procedure, also referred to as L2 regularization, is employed
in regression problems. It describes the degree to which a regression line resembles a set of data
points. It determines the output number divided by the square of the difference between the
present output and the expected output, as can be seen in Equation 5.5. However, because it
uses the square difference, Mean Square Error loss is more susceptible to outliers.

1
m

m∑
i=1

(y(i) − ŷi)2 (5.5)

5.3.2 ConfusionMatrices

A table known as a confusion matrix is frequently used to explain how well a classification
model performs on a set of test data when the true labels are known. It is a highly well-liked
tool for tackling classification problems. Both binary classification andmulticlass classification
tasks can benefit from it. The confusion matrix for a binary classification task is shown in
Figure 5.4.
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Figure 5.4: Confusion matrix example

From Figure 5.4, we can understand several things;

• There are two possible predicted classes: “cat” and “dog”.

• The classifier made a total of 200 amount of predictions (e.g., 200 animals were being
tested for their animal type).

• Out of those 200 cases, the classifier predicted “dog” 90 times and “cat” 110 times.

• In reality, 100 animals in the sample are dogs, and 100 animals are cats.

In a two-class situation, such as the one we investigate in this work, we frequently seek to dis-
tinguish between observations with a certain outcome and regular observations. For example,
a disease state or event that was not a disease state or event. We can designate the event row as
“positive” and the row with no event as “negative”. This gives us:

• “true positive (TP)” for correctly predicted event values.

• “false positive (FP)” for incorrectly predicted event values.

• “true negative (TN)” for correctly predicted no-event values.

• “false negative (FN)” for incorrectly predicted no-event values.

The accuracy for the confusion matrix in Figure 5.4 is 85% which is calculated with the
Equation 5.6.

Accuracy =
True Positive+ True Negative

Total Sample
(5.6)

40



5.3.3 Receiver Operator Characteristic Curves

A measurement tool for binary classification issues is the Receiver Operator Characteristic
(ROC) curve. It is a probability curve that, in essence, separates the ”signal” from the ”noise” by
plotting the True Positive Rate (TPR) versus the False Positive Rate (FPR) at different thresh-
old values.

True PositiveRate (TPR): It is also known as ”Sensitivity” or ”Recall”. TPR is the probability
that an actual positive will be predicted positive. It is calculated as Equation 5.7.

TPR =
TP

TP+ FN
(5.7)

False Positive Rate (FPR): It’s the probability that a false alarm will be raised which means
a positive outcome will be given when the true value is negative. It is the probability that a
false alarm will happen, meaning that a positive result will be reported when a negative value
actually exists. It is calculated as Equation 5.8

FPR =
FP

TN+ FP
(5.8)

The capacity of a classifier to differentiate between classes ismeasured by theAreaUnder the
Curve (AUC), which is used as a summary of the ROC curve. The model performs better at
differentiating between the positive and negative classes the bigger the Area Under the Curve.
AUC = 1 indicates that the classifier can accurately distinguish between all Positive and Nega-
tive class points. The classifier would be predicting all Negatives as Positives and all Positives
as Negatives, if the AUC had been 0. The classifier cannot discriminate between Positive and
Negative class points when AUC=0.5. This indicates that the classifier is either forecasting a
random class or a constant class for each data point. There is a good possibility that the clas-
sifier will be able to tell the difference between the Positive class values and the Negative class
values when the AUC is 0.5<AUC<1. This is the case because more True positives and True
negatives can be detected by the classifier than False positives and False negatives. The ROC
curve is presented in Figure 5.5 with TPR versus FPR, with TPR on the y-axis and FPR on the
x-axis.
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Figure 5.5: Roc curve example
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6
Detection methods

6.1 Machine learningModels

After we created the spectrograms and created our dataset, spectrograms that we called nega-
tive without dolphin whistles were labeled 0, and spectrograms that included dolphin whistles
were labeled as positive 1. The training results were completed using 4 different architectures.
These architectures are pre-trained model VGG16 [16], vanilla CNN, SVM, and Logistic re-
gression. In the training of our models, k-fold cross-validation was applied, and the number of
folds was determined as 8. The K fold cross-validation method is made using the StratifiedK-
Fold method of the scikit-learn library for the Python programming language. This method
ensures that each validation set contains an equal number of classes of data. That is, each vali-
dation set is balanced in terms of the label. Models were also trained using an equal amount of
validation sets without applying the cross-validation technique. Only real-time data augmen-
tation has been applied to the training dataset. In this way, it is aimed to improve the results.
The results were obtained for SVM and Logistic regression without cross-validation and with
cross-validation. For VGG16 and vanilla CNN, as seen in Figure 6.1, cross-validated and non-
applied versions, as well as data augmented and non-data-augmented versions, were trained for
comparison. To have a fair comparison, the data are always separated at the same randomness
using the same seed parameter, and the training without cross-validation was also performed
using the first fold validation set out of 8 folds as the validation set. Data augmentation was
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performed using ImageDataGenerator from theTensorFlowKeras library, and only horizontal
flip and vertical flipmethodswere applied. The early stopmethod is used in both deep learning
models, and patience is set to 15. The maximum number of epochs is 100, and the batch size
is 32 in both models.

Figure 6.1: Neural networks architectures

The spectrograms have been resized to 224x244 because the size of the input tensor accepted
by VGG16 is 224x224x3. 3 represents the RGB channel. The spectrograms we created are
grayscale images, which are 2D arrays. However, since the size of the input tensor accepted
by VGG16 is 224x224x3, the 2D image array was converted to 3D. This process was carried
out by duplicating the same image array. Before the training, the preprocess_input function
of VGG16, which was built in Tensorflow, was applied to the data set. This function converts
images from RGB to BGR and makes the data zero-centered with respect to the ImageNet
[36] dataset. After our data is zero-centered with the help of this function, the training is done.
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The top part of VGG16 was deleted, 2 fully connected layers were added, and the number of
nodes included in the layers was 50 and 20, respectively. ReLu activation function [34] is used
in these layers. The output layer is Softmax. The Adam [33] optimization algorithm was used
with a learning rate of 0.00001. Binary cross-entropy is implemented as a loss function, and
the trainable parameter is set to True.

We wanted to create a CNNmodel with several layers and compare it with the pre-trained
model VGG16. For ourCNNand othermachine learningmodels, the trainingwas carried out
by resizing the images as 224x224with the aimofmaking a logical and fair comparison. In addi-
tion, before the training, all data pixels were normalized by dividing by 255. Our CNNmodel
includes 2 convolution layers. Between these two layers, there are max pooling and dropout
layers, respectively. After the last convolution layer, the max-pooling layer is applied, followed
by 2 fully connected layers with the ReLU activation function. These two fully connected
layers contain 32 and 16 nodes, respectively. As in VGG16, Softmax is used in the last layer.
In the Convolution layers, 16 and 32 kernels are used, respectively, and the kernel size is (7,7)
and (5,5). The stride value was determined as 2 in max-pooling layers and convolution layers,
and the linear activation function was used as the activation function. The dropout rate of
the dropout layer is set to 0.2. The Adam optimization algorithm was used with a learning
rate of 0.0001. As a loss function, binary cross-entropy has been applied as in VGG16. These
hyperparameters are tuned using Optuna, a hyperparameter optimization framework.

L2Regularization techniquewas used for the penalty parameter in Logistic Regression, and
the value of the C parameter was determined as 10. For SVM, while the C parameter is used as
10 as in Logistic Regression, RBF is chosen as the kernel function. These selections weremade
using the GridSearchCVmethod in scikit-learn.

6.2 Processing pipeline

Firstly, the dataset was created by collecting positive and negative samples from 243 records.
Positives represent spectrograms that contain dolphin sounds, and negatives represent spectro-
grams that do not contain dolphin sounds. The length of the spectrogramwindows in seconds
is determined as 0.8 seconds. This window length was determined after the lengths of the dol-
phin signals were analyzed. The analysis was made with the Tukey method. When we ignore
the outlier data found as a result of the analysis, the longest signal was calculated as approxi-
mately 0.78 seconds. For this reason, the window length is set as 0.8 seconds to fit 1 signal into
a window. Spectrograms were recorded with 0.8-second windows, shifted for 0.4 seconds on
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the record, and positive/negative sampleswere collected. Determining thewindow-shift time is
to reduce the number ofwindows containing the same signals while at the same time providing
the environment where 1 window can fully cover 1 signal. Secondly, The spectrograms created
were used to feed VGG16, a pre-trained network on ImageNet, vanilla CNN, Logistic regres-
sion, and SVM algorithms. While the results obtained with VGG16 gave remarkably good
results, efficient results were not obtained with vanilla CNN, SVM, and Logistic Regression.
Here Figure 6.2 is the demonstration of the dolphin whistle detection pipeline we created.

Figure 6.2: Processing pipeline representation
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7
Experimental Results

Spectrograms of the dolphin whistles are created using MATLAB. Our work was developed
in the environment of NVIDIA GeForce GTX 950M graphics card, Intel Core i7-6700 HQ
processor, and 8 GB of RAM using TensorFlow 2.8. Saving of spectrograms was done using
MATLAB software, and about 2-3 spectrograms per second can be saved with the above hard-
ware. The labeling section by separating the spectrograms as positive and negative is done using
Python, and the image separation amount per second is about 15-20 images. ThePython script
also outputs a CSV file that returns the initial and finish points of the windows that contain
dolphin whistles and their confidence, as can be seen in Figure 7.1.
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Figure 7.1: Examples of our model’s output

From our training results, we found that VGG16 [16] gave better results with a clear differ-
ence in the test dataset, which contains 300 positive and 4700 negative samples. We observed
that the cross-validation technique would generally affect the results better. While applying
data augmentation improved the results with VGG16, it was not very effective in vanilla CNN
training. As we can see in Table 7.1 and Figure 7.2, the VGG16 trained by cross-validation and
data augmentation gives the best results.

Table 7.1: Results of our deep learning models

Method Cross Validation Augmentation
Val Loss

(avg for folds)
Val Accuracy
(avg for folds)

Test Loss
(avg for folds)

Test Accuracy
(avg for folds)

Model Size (KB)

Fine-Tuned VGG16 Yes Yes 0,0091 0,9971 0,0758 0,989 187.280
Fine-Tuned VGG16 Yes No 0,011 0,9969 0,084 0,9882 187.280
Fine-Tuned VGG16 No Yes 0,0302 0,9866 0,0667 0,9824 187.280
Fine-Tuned VGG16 No No 0,1033 0,9714 0,1694 0,9496 187.280

Vanilla CNN Yes Yes 0,216 0,9176 0,9545 0,6872 2572
Vanilla CNN Yes No 0,1634 0,9445 0,8898 0,6992 2572
Vanilla CNN No Yes 0,4998 0,7561 0,7325 0,6546 2572
Vanilla CNN No No 0,4908 0,7599 0,6948 0,6694 2572
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InCNN,on theother hand,while the cross-validation andnon-data augmented versiongave
the highest accuracy, a decrease in the detection rate of positive samples according to the cross-
validation and data augmentation applied versions was noticed as can be seen in Figure 7.2.

Figure 7.2: Confusion matrices

As we can see in the Roc curve plots of deep learning models in Figure 7.3, the AUC area
of pre-trained VGG16 is quite large compared to the AUC area of vanilla CNN. This means
that the predictions made with VGG16 have a better probability of predicting true positive
and true negative. Our outcomes show us that the application of transfer learning can bring
a remarkable improvement in our prediction results. Again, if we look at the AUC areas for
VGG16, we can say that the real-time data augmentation implementation increases the AUC
area compared to the unimplemented version. While we can clearly see the contribution of
cross-validation to the model in confusion matrixes, we cannot see a clear distinction in ROC
curves. This shows that usingmore than one evolutionmetric allows us to evaluate ourmodels
in a better way. For vanilla CNN, we found that among the cross-validated trained versions,
the untreated version of real-time augmentation had a slightly larger AUC area. However, we
observed that among the versions without cross-validation, the AUC area of the augmented
version was larger. We can see that the cross-validated versions have a larger AUC area than the
non-applied versions. Contrary to the VGG16 ROC curve results, by examining the vanilla
CNNROC results, we can observe that cross-validation obviously improves the results.
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Figure 7.3: ROC curve results of our deep learning models
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In addition to the neural networkmodels, SVMandLogistic regression results can be seen in
Table 7.2. These two algorithms are trained with and without cross-validation. As can be seen
from the results, although applying cross-validation slightly improved the results of Logistic
Regression, sufficient results could not be obtained. We can see that, in SVM, applying cross
validation did add any improvements to the results.

Table 7.2: Results of machine learning models

Method Cross Validation
Val Accuracy
(avg for folds)

Test Accuracy
(avg for folds)

Model Size (KB)

Logistic Reg. Yes 0,4857 0,5052 393
Logistic Reg. No 0,4704 0,4822 393

SVM Yes 0,4647 0,4854 1.439.890
SVM No 0,4647 0,4854 1.439.890

The ROC curve results of logistic regression in Figure 7.4 show us that this algorithm does
not give sufficient results for our problem. Although cross-validation slightly improves the
results, the AUC is still very close to 50%. This shows us that the model predicts the classes
randomly, which means there is not enough learning. If we observe the results of SVM, even
if cross-validation is applied, sufficient learning has not occurred. As in logistic regression, the
AUC is very close to 50%.
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Figure 7.4: ROC curve results for SVM and Logistic regression
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8
Conclusion

The primary communication way of the dolphins and an integral part of their existence are
whistles. By monitoring and analyzing their sounds, researchers want to secure their popula-
tions and gain a better understanding of their habits. Due to the importance of this situation,
in this research, a deep learning based dolphin whistle detection framework is proposed for ac-
curately detecting dolphinwhistles. The complete framework consists of creating spectrogram
images from audios that are recorded underwater with the proposedmethod, applying prepro-
cessing to them, and detecting the whistles in certain windows with the corresponding models
we trained/fine-tuned. Alongwith the dolphinwhistle detection framework, this research con-
tains a comprehensive comparison of the effectiveness of using certainmethods during training
(data augmentation and cross-validation) together with the comparison of deep learning mod-
els, bothfine-tuned (VGG16) and trained fromscratch (vanillaCNN), againstmore traditional
machine learning algorithms (Logistic Regression, SVM).

Our experimental results show that deep learningmodels aremore effective compared to tra-
ditional machine learning algorithms in this task, and that using cross-validation together with
data augmentation is a good strategy to mitigate overfitting and improve model performance.
The best fine-tuned VGG16 model achieved a 98.9% accuracy on the test set.

In the future, we think that the proposed framework could be adapted for the study of other
underwater mammal species and their different type of sounds. Moreover, the number of data
collected due to hardware and time limitations was 4198 patterns for training and 5000 for
testing. Our study focused solely on the detection of dolphin whistles, and our dataset was pre-
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pared accordingly. But besides dolphin whistles, there are other types of dolphin sounds, such
as echolocation clicks and burst pulses. Our model can only detect dolphin whistles, however
by collecting more samples our method might be adapted to different classification problems,
for example to identify other types of dolphin sounds. Also, we are planning to expand the
scope of our work with the help of marine biologists who work on marine mammal species,
in order to examine which dolphin sounds belong to which dolphin species. In this direction,
our goal for our future work is to collect more samples from recordings taken from different re-
gions and to develop ourmodel in a way that detects and classifies different dolphin sounds. In
addition, it is aimed to increase the accuracy of ourmodel by increasing the number of samples
belonging to each dolphin sound type which means obtaining a larger dataset. Furthermore,
besides the models we used in our research, we aim to benchmark our approach against other
popular algorithmic methods used for dolphin whistle detection, such as PAMGuard [38].
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