UNIVERSITA DEGLI STUDI DI PADOVA
DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA DELL'AUTOMAZIONE

Indoor localization using visual

information and passive landmarks

Relatore Laureando
Prof. Angelo Cenedese Marco Bergamin
Department of Information Engineering matr. 1063273

Correlatore
Prof. Vitor Santos

University of Aveiro

ANNO ACCADEMICO 2014/2015
30 NOVEMBRE 2015

Acknowledgement

The research work for this thesis was carried out at the Laboratory for Automation and
Robotics (LAR) in the Department of Mechanical Engineering of Aveiro (Portugal), dur-
ing a period of 5 months as an exchange student.

I would like to express my gratitude to Professor Vitor Santos, for welcoming me at the
Laboratory for Automation and Robotics and making possible my experience of study at
the University of Aveiro. His help has been invaluable both personally and academically.

Moreover I would like to thank Professor Angelo Cenedese for his advices and his help
during this work.

Ringraziamenti

Voglio cominciare ringraziando la mia famiglia e in modo particolare i miei genitori per
avermi dato tutto il supporto necessario a raggiungere questo traguardo.

Un altro grazie speciale va a tutti gli amici con cui ho condiviso questi anni di crescita
sia a livello professionale ma sopratutto a livello umano: senza di voi I’esperienza univer-
sitaria non sarebbe stata la stessa e io non sarei quello che sono ora. Sarebbe inutile fare
dei nomi perché finirei sicuramente per dimenticarmene qualcuno.

Keywords

Abstract

robot localization, extended kalman filter, robot operating sys-
tem, computer vision, sensors fusion.

Nowadays the level of automation in industry is constantly in-
creasing. We can easily find completely automated production
lines, but for the moment the interactions between machines
and human operators are limited to a small set of tasks. One
possible way of increasing the efficiency of a given plant is to
use intelligent robots instead of human resources for the trans-
portation of objects across different places in the same indus-
trial complex. Traditional AGVs (Automatically Guided Vehi-
cles) are now commonly used for these tasks, but most of them
follow strict paths marked by “wires” or special lines traced on
the floor. There are also other solutions based on laser and spe-
cial reflectors that allow triangulation of the robot inside the
plant. Nonetheless, the “floor-based” solutions have properties
that limit their usage, whereas laser /reflector solutions, besides
being expensive, require a rather elaborate procedure to set
up the layout changes. These restrictions open the way to ex-
plore and research new vision based solutions, especially if they
can be made easier to configure and more cost-effective at the
same time. The solution proposed aims to use simple markers,
namely simple Data Matrix codes, to obtain a “raw” pose es-
timation through trilateration. Then the results are combined
with heterogeneous data provided by odometry and (if present)
from an inertial measurement unit using an Extended Kalman
Filter. The advantages of this solution are that it is cheap,
flexible and robust: the markers are common sheet of paper
and they can therefore easily be printed and placed in the en-
vironment. Moreover the AGVs are not forced to follow a fixed
path and this make it possible to use sophisticated path plan-
ning algorithms. The obtained results are promising, but the
performance of this type of system depends on many factors:
detection algorithm, localization method, quality of the odom-
etry and efficiency of the sensor fusion algorithm. Despite these
problems, the tests have shown that even with a non fully opti-
mized algorithm, a precision of 0.2m can be reached, confirming
the validity of this technology.

Contents

Contents i
List of Figures iii
List of Tables \%
1 Introduction 1
1.1 Contex of the problem L. 1

1.2 Stateof theart 2

1.3 Proposed solution 5)

2 Overview 7
2.1 Development platform 7
2.1.1 ROS - Robot Operating System 7

2.1.2 Robotics System Toolbox 7

2.1.3 Libdmtx library 8

2.1.4 OpenCV library 8

2.1.5 Qt framework 8

2.2 Validation hardware platform 9
2.2.1 AtlasMV robot 9

2.2.2 Video capturing devices 9

3 Map characterization, information encoding and tools creation 11
3.1 Map characterization Lo 11
3.2 Imformation encodingo 12
3.3 Application: "Datamatrix generator" L. 14

4 Perception 17
4.1 Pinhole camera 17
4.1.1 Pinhole camera model 0L 17

4.1.2 Camera calibration 20

4.2 Data Matrix pose with respect to the camera frame 21
4.3 Data matrix pose with respect to the robot frame 23
4.4 TImplementation of the algorithm 25

5 Estimation of position and sensor fusion

5.1
5.2
5.3

Localization using trilateration and triangulation
AtlasMV modelling using a bicycle-like model
Sensor fusion using an Extended Kalman Filter
5.3.1 Extended Kalman Filter framework
5.3.2 Sensor fusion using visual and odometry information
5.3.3 Sensor fusion using visual, odometry and inertial information . . .
5.3.4 Model verification using Simulink

6 Implementation in MATLAB

6.1
6.2
6.3

First proposed algorithm L.
Second proposed algorithm
Connection between nodes L.

7 Experimental results

7.1
7.2

7.3

Test environment Lo
Simulations using Gazeboo
7.2.1 First simulation: “S” trajectory
7.2.2 Second simulation: “round trip”
7.2.3 Third simulation: straight trajectory
Test using the real robot L
7.3.1 First test: “S” trajectory
7.3.2 Second test: “S” trajectory - one camera,
7.3.3 Third test: straight trajectory

8 Conclusions

Bibliography

11

29
29
33
34
34
37
39
42

49
49
o1
95

57
57
29
29
61
62
64
65
66
67

69

71

List of Figures

1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9

6.1
6.2

7.1

... 1
Example of data matrix 5
From left to right: OpenCV, ROS, Qt, Libdmtx, MATLAB logos. 8

... 9
The map of LAR 11
Data package encodedo 13
Data matrix applicationo L 14
Set the scale factor.o 15
Add anew item. 15
Select an item. 16
Print and export an item. Lo 16
Pinhole camera diagram00 17
Pinhole model 18
Relation between y71 and 7L 19
Camera calibration process 20
Data matrix detection and reference frame Oy, 21
Correspondence between 2D corners e 3D corners 22

... 23
Extrinsic parameters calibration 24
Structure of the node datamatrix-pose-pub 25
Robot pose (x,y,0). 30
Intersection points P; and P, of the circumferences 31
Bicycle modelo 33
Vehicle Simulink block o 43
Path traveled 44
Orientation error 45
Position error 45
Sy identification 46
Real vs estimated speed s(-)o 46
EKF - Structure of the algorithm 50
Node graph 55
Data matrices positioned inside the LAR. 57

111

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

Gazebo simulator 58
Data matrices inside the LAR 58
Gazebo simulation 1: trajectory 59
Gazebo simulation 1: position error 60
Gazebo simulation 1: orientation error 60
Gazebo simulation 2: trajectory 61
Gazebo simulation 2: position error 62
Gazebo simulation 2: orientation error L. 62
Gazebo simulation 3: straight trajectory - screenshot 63
Gazebo simulation 3: straight trajectory 63
Gazebo simulation 3: straight trajectory - position error 64
Gazebo simulation 3: straight trajectory - orientation error 64
AtlasMV: “S” trajectory 65
AtlasMV: “S” trajectory - only frontal camera 66
LAR’s corridor 67
AtlasMV: straight trajectory 67

v

List of Tables

3.1

5.1
5.2
5.3
5.4

7.1
7.2
7.3

Data Matrix Formats 13
Extended Kalman Filter 1 parameters. 38
Extended Kalman Filter 2 parameters. 42
Gaussian noise parameters 43
Average mean €rror 47
Average mean error (Simulink-Gazebo) and standard error (Gazebo) . . . 61
Mean error and standard deviation 62
Mean error and standard deviation 63

vi

Chapter 1

Introduction

1.1 Contex of the problem

Nowadays, the level of automation in industry is constantly on the rise. We can easily
find completely automated production lines, but for the moment the interaction between
machines and human operators is limited to a small set of tasks. One possible way of
increasing the efficiency inside a given plant is to use smart robots to help human op-
erators to transport objects and materials across different places in the same industrial
complex. Traditional AGVs (Automatically Guided Vehicles) are now commonly used
for these tasks, and most of them follows strict paths marked by “wires” or special lines
traced on the floor (fig. 1.1a). There are also other solutions based on laser (fig. 1.1b)
and special reflectors to allow triangulation of the robot.

Nonetheless, the “floor-based” solutions have specificities that limit their usage, while
laser /reflector solutions are not only expensive, but also require a rather elaborate pro-
cedure in order to set up the layout changes. These restrictions open the way to research
and develop vision based solutions, especially if they can be made easier to configure and
simultaneously more cost-effective.

In real situations it is not always possible to predispose the environment to be fully
robot-friendly (for example by designing dedicated paths inside the complex), but we can
have some a priori information, such as the map of the environment. Magnetic stripes
are cheap solution but, as some companies have already noticed, they aren’t at all ideal
in many environments, since other vehicles and transporters can damage them in time.
For this reason as well as to keep productions costs low, using vision based technologies
becomes appealing, despite the expected higher complexity of the needed algorithms.

(a) Magnetic guided AGV (b) Laser guided AGV

Figure 1.1

1.2 State of the art

Nowadays, it is very common to find AGVs in many industry fields. It is interesting to
notice that many types of technologies can be used to allow the self-localization of these
specials robots, each one with its own advantages and disadvantages.

As it will be shown in subsection 1.2, using different approaches means using different
kinds of sensors. The problem of how to efficiently combine all the information provided
by a number of different (and in general heterogeneous) sensors is widely discussed in the
literature of the last years and it is usually referred as the problem of sensor fusion. A
common solution to this problem is using the Kalman Filter|1] or one of its declinations
(for instance the Eztended Kalman Filter|2] or the Unscented Kalman Filter|3|).

In the particular case of this thesis, the robot used to test the algorithms (AtlasMV

[4]) is a car-like robot, and this makes the problem of the sensor fusion not much dif-
ferent from the problem of outdoor localization of a common car with a GPS (Global
Positioning System)[5]; instead of the estimation of the position provided by a GPS, the
estimation of the position provided by visual information can be used.
Also, the estimation of the position obtained through vision algorithms and special mark-
ers can be obtained using trilateration and/or triangulation algorithms. Many authors
are working on this topic and the same problem can be solved using a variety of different
approaches. [6] has presented a method based on an Extended Kalman Filter with a
state-vector composed of the external angular measurements. [7| has presented a simple,
fast and new three object triangulation algorithm based on the power center of three cir-
cles. [8] has presented an algorithm for automatic selection of optimal landmarks which
can reduce the uncertainty by more than one order of magnitude.

This thesis must be considered as the continuation of a previous thesis work accom-
plished by Luis Carrao|9], where the library Libdmtx and the triangulation/trilateration
algorithm have been tested. Also, an extended analysis of the localization accuracy has
been accomplished.

Most common systems

This subsection gives a brief overview of which kind of systems are available on the
market. One of the most innovative systems available on the industry is the Kiva Sys-
tem[10]|11]: this system can coordinate hundreds of mobile robots in the same warehouse
and the robot’s navigation system involves a combination of dead reckoning and cam-
eras that look for fiducial markers, that are placed on the floor during system installation.

The most commonly used systems are:

e magnetic stripe system,;

optical guided system;

inertial navigation system:;

laser guide system:;
e vision system.

Further information is provided in the following subsections.

Magnetic stripe system

The magnetic stripe system works thanks to electric current passing through a guide wire
installed along the travel route on or in the floor; the AGV travels along the magnetic
field produced by the current. This system is simple but any change on the route requires
to remove the old magnetic stripe and to install a new one. Moreover, especially if the
stripe is on the floor, constant maintenance is needed, since the stripe tends to deteriorate
in time because of mechanical stress, and any breakage of the wires makes it impossible
to detect the route.

Optical guided system

With the optical guided system, reflective tape made of aluminium or a similar material
is laid along the travel route, and the AGV determines its route by optically detecting
the tape. A common problem of this system is the difficulty to detect the tape when it
is dirty or damaged.

Inertial navigation system

An inertial sensor (gyro and accelerometer) mounted on the AGV is used to measure
the vehicle’s attitude angle and travel distance. The current position is calculated using
measurement data, and the AGV travels along the set route. Transponders embedded
in the floor are used to verify that the vehicle is following the correct path. This system
requires the installation of corrective markers along the paths because the error of inertial
systems tend to accumulate as an integral term.

Laser guide system

A laser beam from the AGV is reflected by reflectors mounted on walls and the current
position is determined by the angle (and sometimes the distance) of the reflected light,
and the vehicle uses this data to travel along the set route. The collected information is
compared to the map of the reflector layout stored in the AGV’s memory and using a
triangulation (or trilateration) algorithm the robot can calculate its position and follow
its route.

Vision guide system

Vision-guided AGVs work using cameras to record features along the route. A robot that
uses this system requires a map, in which the features have been previously recorded. It is
possible to use different combination of cameras, for instance stereo and omnidirectional.
The extraction of the features from an image requires a higher computational power in
comparison to the one needed for the other systems, but this system has the advantage
of not requiring any kind of landmarks, tape, wire or stripe.

1.3 Proposed solution

The proposed solution aims to use simple markers, namely
standard data matrix codes (see the example in figure
1.2), to obtain a “raw” pose estimation through trilatera-

tion and triangulation. The idea is to encode in each
data matrix the relative pose with respect to a previ-
ously defined reference frame. Then, knowing the length

of the edge of each data matrix and the calibration pa-
rameters of the camera, it is possible to calculate the rela-
tive pose of a given data matrix with respect to the camera
frame.

The relative pose gives important information such as the dis-

Figure 1.2: Exam-
ple of data matrix

tance between the camera and the marker, which is necessary for the trilateraion, and
the angle of arrival, necessary for the estimation of the orientation. The “raw” pose is
then fused with heterogeneous data provided by odometry and (if present) by an IMU
(Inertial Measurement Unit) using an Extended Kalman Filter. This filter provides an
estimation of the state of the AGV, which includes all information required to perform

the motion control: position, velocity and orientation.

The advantages of this solution are that it is cheap, flexible and robust: the markers
are printed on simple sheet of papers and they can therefor be easily placed inside the map
with a given acceptable margin of error. Note that this approach allows the possibility
to use sophisticated path planning algorithms, since the AGVs are not forced to follow a

fixed path.

Chapter 2

Overview

2.1 Development platform

During this work many tools have been used. This section presents a brief introduction
of the platform used, more details will be added in the following chapters.

2.1.1 ROS - Robot Operating System

ROS|12] is an open source framework used to build advanced robot applications. It was
originally developed in 2007 by the SAIL (Sanford Artificial Intelligence Laboratory) and
through the years it has become a de facto standard in the research field. Its appeal is
growing even in the industry, thanks to the ROS-Industrial consortium. ROS is designed
to be flexible, general-purpose and robust. It includes a constantly increasing number of
tools, libraries and interfaces that can be reused and improved by anyone.

One of the key features of this framework is the possibility to use virtually any pro-
gramming language. At this moment the main supported languages are C++, Java and
Python. A ROS program is typically subdivided in two or more “nodes” which are is in
fact a stand alone programs, able both to provide functionalities and to use functionalities
provided by others nodes. The communication between nodes is made possible thanks
to a standard common interface based on “messages”. The interface is implemented over
the TPC/IP protocol: this means that each message sent by a node is converted in a
series of TCP/IP packet received by other nodes, even if they run in different machines
connected to the same network.

2.1.2 Robotics System Toolbox

The new Robotics System Toolbox (RST)[13] has been introduced in MATLAB R2015a.
This new toolbox successfully uses the Java implementation of ROS, presented by Google
in 2011, in order to provide an interface between MATLAB-Simulink and ROS. This
toolbox allows the rapid prototyping of algorithms and their integration directly in the
ROS workspace, opening the possibility of using MATLAB and Simulink algorithms with
real (or simulated) ROS-compliant robots with minimal code changes.

The following chapters will show how MATLAB and RST were widely used in order to

7

perform simulations, to test algorithms before writing them in C++ and to analyse the
collected data.

2.1.3 Libdmtx library

Libdmtx[14] is an open source software for encoding and decoding Data Matrix. This
library is written in C, has a rather good performance level and a stability sufficient for
the purpose of this thesis. This library is also used by many ROS packages, fox example
cob-marker and visp-auto-tracker.

2.1.4 OpenCV library

OpenCV (Open Source Computer Vision)[15] is a cross-platform library mainly aimed at
real-time computer vision. The library is written in C (version 1.x) and C++ (version 2.x
and 3.x) and there are full interfaces in Python, Java, MATLAB and others languages.
It is also the primary vision package in ROS. As explained in the next pages, in this
thesis it has been used to handle the following operations:

e all geometrical transformations between different reference frames;
e the camera calibration;
e the calculation of the relative pose between data matrix and camera.

In addition to these features, a basic interface to usb cameras is provided.

2.1.5 Qt framework

Qt ("cute")[16] is a cross-platform application framework used mainly for developing
application software with graphical user interfaces (GUI). It is perfectly integrated in
ROS and it has been used to develop a utility which allows to:

e casily import maps (in a bitmap format);

e collocate and automatically generate data matrices containing their poses relative
to a fixed reference frame;

e save and open projects;
e print or export each data matrix in .png or .pdf.

This application will be presented in the next chapter.

So i3ROS [T Fnbamtx g\

C.)ApenCV
Figure 2.1: From left to right: OpenCV, ROS, Qt, Libdmtx, MATLAB logos.

2.2 Validation hardware platform

A real robot equipped with two cameras, one looking forward and one looking backward,
has been used in order to validate the developed algorithms and to collect data. The
collected information has been fundamental to understand which were the main sources
of uncertainty and problems.

2.2.1 AtlasMYV robot

The robot, named AtlasMV|4] (fig. 2.2a), has been developed by the University of Aveiro
in 2008 to participate in robotics competitions. AtlasMV is a car-like robot with a fully
functioning ROS interface. Through this interface, it is possible to control both speed
and steering angle and to read their relative estimations at a frequency of 30Hz. Also, it
is possible to get further information regarding the status of the robot.

2.2.2 Video capturing devices

Two Logitech® ¢310 cameras (fig. 2.2b) have been used for capturing visual information.
These cameras are capable of capturing images with a frequency up to 30hz (depending
on the exposure time) and at a resolution up to 1280x960 pixel. These cameras are not
oriented to computer vision, with a good tuning it was nevertheless possible to obtain
images with a sufficient quality even in non static situations.

(a) AtlasMV equipped with two cameras
(red cirle) (b) Logitech® ¢310 usb camera

Figure 2.2

10

Chapter 3

Map characterization, information
encoding and tools creation

3.1 Map characterization

The first problem that has been considered was how to properly prepare a given environ-
ment to allow the localization of a robot using visual information.

As a starting point it has been assumed that the map of the environment is known and
available as a bitmap image. Then, the following step has been to take an arbitrary frame
of the map as origin of the 2D Cartesian coordinate system, defined as map frame and
indicated with O,,,4p. In analogy to the coordinate system often used in computer vision
libraries (like OpenCV) the top-left corner of the image has been fixed as origin of the
coordinate system, with X axis pointing right and the Y axis pointing up.

The figure 3.1 shows a partial map of LAR!, where most of the tests with the AtlasMV
have been executed. The fig.3.1 shows the map frame at the top-left corner of the image
(the border of the image represented with a blue line).

’ xmap
Omap

Figure 3.1: The map of LAR

ILaboratory for Automation and Robotics - Department of Mechanical Engineering at the University
of Aveiro.

11

3.2 Information encoding

The second problem that has been considered was that of finding the best trade-off be-
tween the amount of information encoded in a data matrix and the dimension of the
symbol. This problem is related to the fact that the robot must be able to detect and
decode a given data matrix from a distance of at least 4/5 meters, otherwise the local-
ization system would be useless.

According to the last standard ECC 200[17][18], the symbol size can vary from 9x9
to 144x144; the table 3.1 resumes some interesting properties of the data matrices (not
all the format numbers are reported for brevity).

It is reasonable to approximate the 2D coordinate system previously defined with a
grid-based representation obtained by embedding the map into a discretized coordinate

system with a step of 0.1m (one order of magnitude smaller than the typical dimensions
of an AGV).

As reported in the table 3.1, the minimum symbol size is 10x10 (format number 0)
and in it 1 byte of information can be stored. A symbol with this size and printed on a
A4 sheet of paper can be easily decoded?, but 1 byte is not sufficient most in practical
cases: if the byte is equally divided (4 bits for the X axis and 4 for the Y axis) then it is
possible to represent only a map with a size of 1.6m x 1.6m.

The second option that was taken into consideration is the format number 1. With a
symbol size of 12x12, the format number 1 can store 3 bytes of data. Dividing the bytes
equally (12 bits for the X axis and 12 for the Y axis) it is possible to represent a map
with a size of 409.6m x 409.6m, that is more than enough for most applications.

In order to encode the orientation of a given data matrix as well as the format of the
sheet of paper (for example A4 and A5, or A4 and A3), it has been chosen the following
configuration:

e 10 bits for the X axis;

e 10 bits for the Y axis;

e 3 bits for the orientation (step of 45 degrees);
e 1 bit for the size (A4 and A5).

Using this method it is possible to represent a map with a size of 102.4m x 102.4m, the
orientation (8 possible angles) and 1 bit for the dimension of the sheet of paper (figure
3.2).

Saving 4 extra bits for the orientation and the size can be useful for future application.
In this thesis only the X and Y fields of the package have been used.

2In practical cases, if the image is not blurred and if the light condition is good, the decoding process
is possible even with a 640x480 resolution camera and from a distance up of 5 meters.

12

10bits 10bits |3bits k;L

A4

Ly Orientation
X

Figure 3.2: Data package encoded

It is important to notice that with the chosen coordinate system, the X value is always
positive, and the Y value is always negative. In order to save data, it has been chosen
to encode only the absolute value of Y. The minus sign is later reintroduced during the
decoding process.

Table 3.1: Data Matrix Formats

Format number Size Max binary capacity % of codeword.s for | correctable
error correction codewords
0 10x10 1 62.5 2-0
1 12x12 3 58.3 3-0
2 14x14 6 55.6 5-7
3 16x16 10 50 6-9
20 104x104 814 29.2 168-318
21 120x120 1048 28 204-390
22 132x132 1302 27.6 248-472
23 144x144 1556 28.5 310-590

Each codeword is represented in the data matrix by a square part of 8 modules,
corresponding to 8 bits. Depending on the symbol size, there is a portion of codewords
used to correct errors. The error-correction codes used are the Reed-Solomon codes[19].
For instance, the format number 2 has 58.3% of codewords dedicated to error correction
and up 3 codewords can be corrected.

13

3.3 Application: "Datamatrix generator"

In order to provide a simple tool for generating special data matrices, it has been devel-
oped an application using the Qt framework. As anticipated in the sub section 2.1.5, this
application covers all the processes of landmarks creation and is specifically dedicated to
the generation of datamatrix for indoor labeling and localization.

The figure 3.3 shows how the application looks like on its first run. Six areas have
been highlighted:

1.

Open or save projects (a project contains the map, the scale and the list of data
matrices);

. zoom in and out the map view;

add a new marker with a given position and a given orientation;
load a map from an image (png, jpg and other formats are supported);
print an item (the marker is converted to a data matrix during the printing process);

display all the data matrices added to the map in a dedicated table.

Datamatrix Generator

Orientation

NS

& Print Item

"

Figure 3.3: Data matrix application

14

By pressing the Load Map button, it is possible to select an image containing a map.
The following step is to enter the correct scale factor (figure 3.4).

Insert the map scale

1 pixel = _[em]:

[1:000) :
”E'anCEI = Wﬂﬁig_iK’ - [
T m——=—

Figure 3.4: Set the scale factor.

The figure 3.5 shows how the creation and the positioning of a given data matrix
works: each data matrix can be moved by using the drag and drop functionality or using
the Edit item window, which opens with a double-click on the item. Using the Edit item
window it is also possible to change the orientation or to delete a given item.

o T)
Open Save J X 1486
— v 782 g ID X Y. Orientatio
[__ Orientation | 180 = ! U128 |22 2Ly
= = 2|2 1486 782 180
Delete Item Cancel ok 1
7 us
Id: 1
Pos: x=112, y=55 [dm]
Or: 90 [deg]
Id: 2
Pos: x=148, y=78
Or: 180 [deg]
‘4 Zoom In 4 Zoom Out Add Marker | | 4 Load Map | Selected Item ID: & Print Item

Figure 3.5: Add a new item.

15

As last step it is possible to print an item listed on the table by clicking the Print
button.

Datamatrix Generator

|:| e D X Y Orientatic

I ot N ™ X
Dg T D

Id: 1
Pos: x=112, y=55 [dm]
Or: 90 [deg]

—1 lrn 1.

Pos: x=148, y=78 [dm]
Or: 180 [deg]

Open Save

$4Zoom In £4 Zoom Out & Add Marker 4 Load Map | Selected Item IO{ 2 2 Print Item

J

Figure 3.6: Select an item.

By clicking on the Print button, the data matrix will be automatically created and

shown on a new window; it is then possible to Ezport or Print it using the relative
buttons.

Data Matrix Preview
ID 2
X 149

Y 78
Orientation 180 .-
Output options
Unit mm 2

Resolution (DPI) 300

Page width 210
Page height 297

ID:2 x:149 y: 78 Or:180
Label font size 100

Output format PDF

L

Q| (| BExport | | ‘= Print

i

Figure 3.7: Print and export an item.

Note: the development of this software is still in progress. The GUI (Graphical User
Interface) must be considered as a draft and some interesting features are still missing.
For instance, it would be useful to have a support for CAD format files (such as dxf files).

Chapter 4

Perception

This chapter covers the topics relative to perception: from camera calibration to the
calculation of the relative pose of a camera according to a data matrix.

4.1 Pinhole camera

The pinhole camera model|20| describes the mathematical relationship between the coor-
dinates of a 3D point and its projection onto the image plane of an ideal pinhole camera
(figure 4.1). This model is only a first order approximation of how a modern camera
works and it does not take into account the effects introduced by the lens, the finite size
apertures and other non-ideal parameters of a real camera. This model is widely used in
computer vision applications because it is simple and because many of its limitations can
be compensated by the software after a calibration process.

4.1.1 Pinhole camera model

The pinhole camera model (the geometry is reported in figure 4.2) is composed of a 3D
orthogonal coordinate system, which is used to represent the coordinate of a point in
the 3D space with respect to the camera frame, and a 2D orthogonal coordinate system,
which represents the projection of that point onto a plane called image plane.

The origin O of the 3D orthogonal coordinate system is located where the aperture

Figure 4.1: Pinhole camera diagram

17

is located (or in the geometric center of the aperture in case of a real camera with finite
size aperture), the X3 axis is pointing in the viewing direction of the camera and it refers
to its optical axis (or principal axis). The X1 and X2 axes locate the principal plane.

The image plane is parallel to the axes X1 and X2 and it is located at a distance f
from the origin O in the negative direction of the X3 axis. The value f is referred to
as the focal length. The point R is placed at the intersection of the optical axis and the
image plane and it is called principal point (or image center).

A given point P at coordinate (z1,x2,r3) relative to the axes X1, X2, X3 projected
onto the image plane is defined as Q. The coordinate of the point Q relative to the 2D
coordinate system are expressed as (y1,ys).

X3
P
X2
X3
)
, X5
Y2 X
X1
Q R
Y1l
f
Image plane

Figure 4.2: Pinhole model

The relation between the 3D coordinates (z1,z2,x3) of point P and its image coordi-
nates (y1,42) given by point Q in the image plane is expressed by

() =5 () =

Note that the image in the image plane is rotate by 7. In order to produce an unrotated
image, it is useful to define a wvirtual plane so that it intersects the X3 axis at f instead
of —f. The resulting mapping from 3D to 2D coordinates is given by

@;) = Iig (2) . (4.2)

The relation 4.2 can’t provide the 3D coordinate of a point from its 2D projection but
only the ratios i—; and i—i (fig.4.3): which means that with a single camera it is impossible
to determine the 3D coordinate of a point.

Virtual
Plane

N

| X3

Figure 4.3: Relation between yTl and 7!

In the general case, in order to determine the position of a given point it is necessary
to use a stereo vision system and the epipolar geometry|21]. In the particular case that
has been considered, it has not been necessary to use more than one camera: knowing the
geometry of a data matrix, which is approximable to a square with a given edge length,
it is possible to calculate its pose with only one camera if at least three correspondences
between image points and objects points have been identified|22].

19

4.1.2 Camera calibration

The calibration process allows the identification of the intrinsic parameters and distortion
coefficients of the camera. Without this step it is impossible to obtain a good accuracy,
especially when the lens introduce a high distortion.

The intrinsic parameters are necessary for defining the camera matriz, that is

Sz So Oz f 0 0 fsz fSG Om
K=KKi=|0 s, O/l [0 f0ol=|0 s, O, (4.3)
0 0 1 0 0 1 0 0 1

where
e s, and s, are scale factors;
e sy is the skew factor;
e O, and O, are the offsets of the central point;
e f is the focal length.

Using the homogeneous coordinates, the camera matrix defines the relation

n T
Ayl =K |zo| , A#DO. (4.4)
1 T3

The distortion coefficients are used to compensate the radial and tangential distortion
introduced by lens. Figure 4.4 shows distorted chessboard (figure 4.4a) during the cali-
bration procedure and the undistorted chessboard after the calibration (figure 4.4b). The
software used for the calibration is the ROS package camera-calibration|23].

(a) A chessboard during the calibration (b) A chessboard after the calibration

Figure 4.4: Camera calibration process

20

4.2 Data Matrix pose with respect to the camera frame

In the previous chapter the pinhole model and the concept of camera calibration were
discussed. This section presents the approach used for obtaining the pose of a given Data
Matrix with respect to the camera frame, defined as O 4.

The library Libdmtx allows to obtain extra information regarding each detected data
matrix code, including the pixel coordinate of each corner. The figure 4.5a shows an
example of detection: the green circles indicate the corners detected by the library (the
red circle is simply the middle point between the top-left corner and the bottom-right).

Note that the data matrix does not have the top-right corner: Libdmtx, in fact,
calculates the coordinates of the corners of a square that fits the detected data matrix.

Let Ogpn be the reference frame attached to the data matrix (figure 4.5b) and let [
be the length of the data matrix edges. Then, the coordinates of the corners detected by
the Libdmtx library with respect to the reference frame Oy, are:

e top-left corner: C4™ := (—%,é,o);

e top-right corner: Cf™ := (£,1,0);

e bottom-left corner : Cdm := (—%, — %,0);
e bottom-right corner: Cfm .= (é,
Let the respective corners in the image coordinates be:
e top-left corner: C";

e top-right corner: Ci™:

e bottom-left corner : Czlmg :

e bottom-right corner: C’Z;ﬂg)

.
y

\ £

N n wW

1
L0y !
PRI 10 ongg :

L

(a) Example of data matrix detection (b) Frame Oy, attached to data matrix

Figure 4.5: Data matrix detection and reference frame Oy,

21

The OpenCV function solvePnP|24] was then used; this function allows to find the
data matrix pose using the 3D-2D correspondences of the previously defined corners
(figure 4.6).

The function requires the following inputs:

e a Vector containing the 2D coordinates (image points): [C’tilmg Ne/ENeES C’,’;Tg} :

e a Vector containing the 3D coordinates (object points): [Ca™, Cim Cidm, Cim];

e the calibration file of the camera containing the camera matriz and the distortion
coefficients.

The outputs of the function are:

e the rotation matrix RG";

e the translation vector T3%™;

that are the pose of the data matrix with respect to the camera frame TG = (RS, T5%™).

The function solvePnP includes three different algorithms for computing the pose.
The algorithm has been used is the iterative method based on Levenberg-Marquardt op-
timization [25][26].

The Levenberg-Marquardt optimization algorithm minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points image-
Points and the projected object points objectPoints.

Figure 4.6: Correspondence between 2D corners e 3D corners

22

4.3 Data matrix pose with respect to the robot frame

One of the aims of the localization algorithm was to use two or more cameras to scan a
wider area around the robot. In order to simplify the localization algorithm, it has been
necessary to calculate the pose of each data matrix with respect to a given reference frame.

The adopted approach makes the whole algorithm modular: the part of the algorithm
that estimates the position doesn’t have to be aware of how many cameras the robot
employs but only it needs to know the pose of each data matrix in relation to that given
reference frame.

The natural choice has been to define the robot frame O, attached at the geometric
center of the robot (fig. 4.7a) and to consider all the poses referred to this frame.

Let be

° TZﬁnj = <R§§nj, Tijnj) the pose of the data matrix j with respect to the camera i

frame;
o T/ = (R;’ Tg;) the pose of the camera ¢ with respect to the robot frame;
° Tgmj = < ij,Tng the pose of the data matrix j with respect to the robot frame.
The pose T, can be calculated using the following relations

T _ T Ci
dm]- - Rci 'RZ

dmj)

iy = RL T3 40 (4.5)

Note that the pose Tf must be calculated through a calibration process as detailed in
the following paragraph.

Zc1 _I_cl
cb Zcb’\
T

TCl .ol:l Xc1
Z I X

I cb oL,

;
ol Xy ch
(a) Robot frame O, (b) Relation between reference frames

Figure 4.7

23

Extrinsic camera parameters

The calculation of the pose Ty, has required to develop a specific calibration process since
only the pose of Tfjm]_ is computed and the direct calculation of the pose T7, (especially
the orientation) is not easy in practice.

The calibration process uses a chessboard situated in a known position with respect to
the robot frame O,.. The pose of the chessboard with respect to the camera i frame T :=
(R, To) has been calculated using the built-in OpenCV function findChessboardCorners
(in order to get the corners coordinates) and then again the function solvePnP.

The relations that were used are the following:

Rl =Rn, - (RG)™, (4.6)

Cq

T =T, — R, Ty =T, R (R T . (4.7)
Let O, be the coordinate system of the camera that looks forward and O,, the coordinate
system of the camera that looks backward. The figure 4.7b shows the relation between
the reference frames O,, O., and O,

In the example shown in figure 4.8, the chessboard has been positioned in a specific point
such that the resulting pose T, (measured with a measuring tape) was

1.54 cosm —sinm 0
T =1 0 | [meters], R, = |sinm cosm 0] . (4.8)
0.75 0 0 1

The calibration has been executed using a C++ program developed for this task and the
pose T has been calculated using the relations 4.6 and 4.7 and the OpenCV function
composeRT[24].

Figure 4.8: Extrinsic parameters calibration

24

4.4 Implementation of the algorithm

The algorithm described in this chapter has been implemented as a single ROS node
called datamatriz-pose-pub. This node includes the following components:

e an interface to the cameras, using OpenCV’s APIs;

e a data matrix detector, using Libdmtx;

Cq

dm.» for each camera 7 and each data matrix j, using solvePnP;
J

e the computation of T

r

e the computation of Tdmj, using composeRT.

The figure 4.9 is a schematic of the internal architecture of this node.

Node: datamatrix_pose pub

time-based
L | trigger
USB CAM 1 USB CAM 2
— frame 2 frame camera
g N S L | calibration
< libdmtx + < libdmtx + files
=1 | cv::solvePnp 1| cv::solvePnP
vector vector
<dataMatrixData> <dataMatrixData>
N4 A\
extrinsic
parameters
cv::composeRT
DatamatrixPoseSet

ROS Topic:
datamatrix_pose

Figure 4.9: Structure of the node datamatrix-pose-pub

The frames are captured using the same target, timestamped for both cameras. This
has been necessary for two reasons:

e to keep track of the acquisition timestamp (this information is important because
the delay introduced by the datamatrix detection process must be taken into ac-
count);

e to avoid errors introduced when the localization algorithm attempts to estimate
the position of the robot using a couple of data matrices detected in two different
frames with different timestamps.

The frame is elaborated by the Libdmtx library and the pose of each detected data
matrix is calculated using the proper calibration file and the OpenCV function solvePnP.

25

The output of this procedure is a vector of dataMatrizData, which is a special struct

defined as

struct dataMatrixDataf{
/* Encoded Information */
unsigned char byte0O, bytel, byte2;

/* Dmtx region information */

float topleftx; float toplefty;

float toprightx; float toprighty;
float bottomleftx; float bottomlefty;
float bottomrightx; float bottomrighty;

/* Datamatrix Encoded Information */
int x, y, theta, size;

/* ROI (rectangle) */
float roiX;

float roiV;

float roiWidth;

float roiHeight;

/* Datamatrix Center */
float centerX;
float centeryY;

/* Datamatrix Pose */
dataMatrixPose dmPose;

I
and the type dataMatrizPose is another struct defined as

struct dataMatrixPose{

float tx; float ty; float tz; // translation
float rx; float ry; float rz; // rotation

}s

which contains the pose Tffmj.

The procedure can be distributed to be implemented on multiple cases: the cameras

can grab and elaborate frames simultaneously on two different CPUs and the resulting
elaboration process is twice as fast.
Reducing the elaboration time has been a critical step: if the elaboration takes too much
time (for instance 250ms) the poses of the data matrices detected will be, in fact, re-
ferred to a data matrix detected 250ms in the past. Considering a speed of 2m/s and an
elaboration time of 250ms, the resulting error is 0.5m.

26

The vectors relative to each elaboration thread are finally processed sequentially using
the function composeRT and the extrinsic parameters of each camera. The resulting
output is a data structure called DataMatrizPoseSet, which is a custom ROS message
with the following structure

Header header
float64 acq_timestamp
datamatrix_detection/DatamatrixPose[] dmpose

where header is a ROS data type used for managing the messages, acg-timestamp is the
acquisition timestamp and dmpose is a vector of DatamatrizPose, which is a custom ROS
message defined as

float64 dm_msg_x

float64 dm_msg_y

float64 dm_msg_or

float64 dm_msg_size
geometry_msgs/PoseWithCovariance pose

The message DatamatrizPoseSet is finally published on the ROS topic datamatriz-
pose at a frequency between 10Hz and 15Hz. This frequency has been determined by
the computational power of CPU used, an Intel® Core™ i3-2310m (dual-core processor
with a frequency up to 2,1GHz).

The messages published on this topic are read by the ROS node named atlasmuv-ekf,
which is presented in the chapter 5.

27

28

Chapter 5

Estimation of position and sensor
fusion

This chapter covers the part of the thesis regarding position estimation and sensor fusion
of the moving robot.
The covered topics are:

e localization using trilateration and triangulation techniques;
e AtlasMV modelling using a bicycle-like model;
e sensor fusion using an Extended Kalman Filter;

e model verification using Simulink.

5.1 Localization using trilateration and triangulation

In the context of this problem, the robot should be able to estimate its own position in
the environment every time at least two data matrices are detected by its own camera

system.
Let be:

e raw-robot-pose, the pose of the robot obtained using only the visual information at
a given time t;

e ckf-robot-pose, the filtered pose of the robot obtained using the Extended Kalman
Filter.

This section presents how raw-robot-pose is calculated.

As seen in the previous chapter, the datamatriz-pose-pub node provides a vector con-
taining the poses of the j — th data matrix with respect to the robot frame, Tg,, : the
poses are referred to the 3D coordinate frame of the robot, O,. On the contrary, the
estimated position is referred to the coordinate system of the map, O,,4p.

Assuming that the robot is moving on a plane domain and hence the axes z, and y,
of the robot frame O, are parallel to the axes @4, and y,q, of the map frame O,,,qp, it is

29

possible to simply ignore the z, axis and to keep on working on a 2D coordinate system.
In this context, the robot pose with respect to the map frame O,,,, can be determined
using the coordinates (z,y,)(fig. 5.1), where x and y are the coordinates with respect to
the axes Zymap and Yimap, and 6 is the orientation (rotation angle with respect to the z axis).

Let dm; be the j — th detected data matrix. The localization algorithm uses the
following information extracted from the dataMatrizData structure:

e 2" and y5"°, the encoded pose of the data matrix with respect to the map frame;

° Tg’i? = (xj,;), 2D translation vector extracted from Ty, = (x5, 95, %);

To keep the notation light, the vector T, = will indicate both TG, ~and Tgi?.

If dm; and dmsy are two detected data matrices, it is possible to define the distance
and the angle with respect to the robot frame using the relations:

dj == /x5 +y:, a; =arctan3 (&> , Jj=12 (5.1)
L

where arctan 3 (-) is an arctan (-) function defined in [0, 27].

Let C; and Cs be the circumferences with center in (x{", y{"¢) and (25", y5"¢), and with
radius d; and ds, respectively. The robot position (x,y) is in one of the intersection points
P, and P, (fig. 5.2) of the circumferences (the cases with one or zero intersections are
simply ignored by the algorithm).

It is easy to ascertain which position is the correct one, namely through a simple com-

parison between the measured angles «; and the angles obtained using the coordinates
ENnc
J

and y$"¢, with 7 = 1,2.

points P; and P5 and the coordinates x F

N

O-ma p

d map

Figure 5.1: Robot pose (z,y,0).

30

Py

Figure 5.2: Intersection points P; and P5 of the circumferences

Finally, the orientation 6 can be calculated using a single data matrix dm,;, the esti-
mated position (z,y), o; and Ty, :

¢; = arctan 3 (yj - y) —aqj. (5.2)

LEJ'—LU

If n >= 2 is the number of detected data matrices, the estimation of the orientation 6
can be improved using the mean angle:

(5.3)

f = arctan 3 <M))

> he1 €08 (0;)

In order to use Extended Kalman Filter it is necessary to know the error associated
to the pose estimation.

It was possible to identify three main sources of uncertainties:
e the discretization error 7" in the encoded coordinates (a:j"c, y;f’"c);
e a proportional error u;? in the distance d;;
e an error uf in the estimation of the angle «;.

The uncertainties have been modelled with the Gaussian distributions:

o uf" ~ N(0,0.1%), standard deviation equal to the map resolution;

e uf ~ N(0,(0.05d;)%), standard deviation equal to the distance d; multiplied by the
coefficient 0.05;

o u¥ ~ N(0,(35)?%), standard deviation of 5 degrees.

31

It has been assumed by hypothesis that the uncertainties are uncorrelated.

Let

x
yl =p Sl j=1,..n (5.4)
0 j

be the function that calculates the estimation of the pose.
The resulting error has been calculated numerically using the first order propagation of
uncertainty formula:

]:
., j=1,...,n (5.5)

Let
[x
e= |e, | =u| |y (5.6)
€p 0

be the error vector associated to the estimation of the pose. The measurement obtained
at the time t can be written as

(1) e(t) 0 0
vo(t) = |y()| , cov(yu(t) -y, ()= 0 et) 0 |, (5.7)
o(t) 0 0 ep(t)

where the subscript v stands for vision.

32

5.2 AtlasMYV modelling using a bicycle-like model

The robot has been modelled using a simple bicycle-like model. This model provides a
basic kinematics, which is sufficient for filtering and estimation purposes.

According to chapter 3, the robot lies in the map with a Cartesian coordinate system and
its pose is defined by (z,y,0).

The discrete-time state-space description of its kinematics can be expressed using the
following relation:

2(ths1) x(ty) + At s(ty) cos(0(ty))
Y(trsr) | = | y(te) + At s(te) sin(0(ty)) (5.8)
O(tri1) O(ty) + At s(ty) 2nlelie))

where:

e [is the wheelbase length;

¥ (ty) is the steering angle;

s(tx) is the speed,;

o At =ty — t; is the sample time;

tr € Z is the time index.

This model is used as starting base to design the Extended Kalman Filter. Note that s(t)
and 1 (t) are measurements provided by the ROS node atlasmv, which will be described
in section 6.

Figure 5.3: Bicycle model

33

5.3 Sensor fusion using an Extended Kalman Filter

This section introduces the problem of how to obtain sensor fusion using an Extended
Kalman Filter. The goal is to obtain a filtered pose, namely ekf-robot-pose, which can be
used by a client node for controlling and path planning purposes.

The topics of this section are:

e introduction to the Extended Kalman Filter framework;
e sensor fusion using visual and odometry information;

e sensor fusion using visual, odometry and inertial information;

5.3.1 Extended Kalman Filter framework

At first it is necessary to recall the equations of the Extended Kalman Filter framework.
The notation used in sections 5.3.2 and 5.3.3 follows the notation introduced in this
section.

Let t € R be the t continuous-time variable. The reference model is

X(t) = Fx(t) + (1) (5.9
y(te) = h(x(tr)) + w(ts) (5.10)
where:
e x(t) is the n dimensional state;
o f(
o I

) is the process function;

-) is the observing function;

x(ty) = X0 is the initial state;

{&€(t)} is the continuous-time n-dimensional process noise, with zero mean and
covariance matrix Q = Q7 > 0;

{w(ty);k = 0,1,...} is the continuous-time and m-dimensional observation noise,
with zero mean and variance R > 0;

{€®)}, {w(tr)} and x(¢o) are uncorrelated;

f,h,Q, R are, in general, time-varying;
e t,,k=0,1,... is the sample time, in general aperiodic.

Let be x(t) the reference state trajectory, the Jacobian matrices are:

F(R(t)) = % N (5.11)
HX()) = % — (5.12)

The algorithm works in two steps: prediction and update.

34

Prediction step

Assuming that the dynamic of the robot is slow with respect to the sampling time, it is

possible to calculate the a priori state using the Euler discretization:

A

X(k +1k) == fr(x(k[F)),
in the interval [ty, tx, 1], where:
Fr(X(k|k)) = X(k|k) + (tn — t) f(X(KIE)) .
The a priori variance is:
P(k + 1|k) = ®(k|k)P(k|k)®" + Q(k),
where:)
L

d(k|k) = == .
(klk) 0 |x=x(k|k)

Update step

The a posteriori state is:

x(k+1k+1)=x(k+1k)+ L(k+1)[y(k+1) — h(x(k + 1]k))] ,

where the gain L(k + 1) is calculated using:
Ak+1) = H(k +1|k)P(k + 1|k)H(k + 1|k)T + R(k),

Lk+1)=P(k+1|k)H(k+ 1|k) Ak + 1),

where

~

H(k +1|k) == H (X(te11]tr)) -

The a posteriori variance is:

P(k+1|k+1) = [— L(k + 1)H(k + 1|/k)]P(k 4+ 1|k)[I — L(k 4+ 1) H (k + 1|k)]”
+ L(k+ 1)RL(k + 1)".

Initial values

The initial values of the filter are:
x(0| = 1) = E[x(to)] P(0] = 1) = Var(x(to)) -

35

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Innovation for angular quantities

The third state variable that will be defined in the following section is the orientation
0 € [0,27], which is an angular quantity. The equation 5.17 needs to be modified in order
to avoid unexpected behaviours.
Let

Ik+1):=y(k+1) — h(x(k+1]k)) (5.23)
be the innovation vector and let i3(k 4 1) be the third component of this vector.
Let y3(k + 1) and hg(x(k + 1|k)) be the third component of y(k + 1) and h(x(k + 1|k),
respectively. For instance, if y3(k + 1) = 0.1 and hs(x(k + 1|k)) = 6.2, the respective
innovation is i3(k 4+ 1) = —6.1: this makes the filter unstable.

The innovation i3(k + 1) must be calculated using

sin(ys(k + 1) — hg(x(k + 1|k'))))

cos(ys(k + 1) — ha(x(k + 1|k))) (5:24)

is(k + 1) = atan2 (

where atan2(-) is the four-quadrant inverse tangent defined in [—7, 7.
After this correction the third state variable must be remapped into the interval [0, 27|
using the function atan3(-).

36

5.3.2 Sensor fusion using visual and odometry information

This section introduces a model for the sensor fusion using the pose calculated by the
node datamatriz-pose-pub, as discussed in the chapter 4 and using the the speed s(-)
and the steering angle v (-) published by the atlasmv-base node on the topic atlasmuv-
base/AtlasmuStatus®.

Model 1: equations
Let

)
)
) (5.25)
)

be the state vector.
The f(-) function is defined as:

Fx(t)) = | s(t) tan(w(t))7 | (5.26)

where the components 1, 2, 3 are the continuous equivalent of the 5.8 and the components
4 and 5 are set to zero because the acceleration §(-) and the steering angular velocity
w() are not measurable without an IMU. The dynamic of the components 4 and 5 is
determined by the process noise.

Since we have two different sources of information, there are also two observation
functions:

ho(x(t)) = [y(@) |+ ha(x(t)) =
o(t)

where subscript v is for vision and a is for AtlasMV.

(t) [S(t)] | 5

The Jacobian matrices are defined as:

10000
() = [0 10 0 o) A =g 0 g Y 62
00100
and the sampled state equation is defined as:
x(ty) + s(tx) Aty cos(6(tx))
R y(ty) + s(ty) Aty sin(0(ty))
Jo (teltn)) = | 0(tr) + s(te) Aty tan(i(t)) 7 | (5.29)
0
0

'More details about this node are discussed in chapter 6.

37

where Aty := ty,1 — tx. The remaining matrices are:

1 0 —s(tp)Atsin(0(ty)) T cos(0(ty)) 0
) 0 1 s(tg)At cos(6(ty)) Tsin(0(ty)) 0
O(ty|t) = |0 0O 1 Sttan(v(ty)) §hs(ty) sec(v(ty))?| , (5.30)
0 0 0 1 0
0 0 0 0 1
Q(ty) = (k;At)* I+
(s(tr) At ky)? 0 0 0 0
0 (s(tr) At ky)? 0 0 0
0 0 (s(tp)At ky)? 0 0 (5.31)
0 0 0 (At Gpaz)? 0
0 0 0 0 (At g)?

where

At = tmeasure — tek:fState >0

is the difference between the measurement timestamp and the EKF state timestamp.
Finally, the covariance matrices associated to the observation functions are:

0 epsi

Rt =| 0 eft) 0 ,Ra(tk):[es 0}, (5.32)

where e, (t;), e,(tr) and eg(tx) are the error variance relative to the measure y,(t;), es is
the error variance relative to the measure of speed and ey is the error variance relative
to the measure of steering angle.

Note that Q(t;) uses the maximum acceleration and the maximum steering angle speed
to regulate the covariance matrix. The matrix (k;At)%I5 is used in order to keep the
matrix positive even when the speed is zero ([5 is the identity matrix of order 5).

The numerical values of the parameters are reported in the table 5.2. The coefficients ks,

Table 5.1: Extended Kalman Filter 1 parameters

Parameter Value
l 0.497 [m]
ks 0.2[]
k; 0.5[]
Uz 4 [=]
wmaw 1.5 [%]
Es (0.2)* [(m/s)°]
ey (57/180)? [rad?]

k;, es, ey have been found experimentally using the real robot.

38

This model has been implemented in MATLAB and used with the robot (both with real
one and with a robot that was simulated using Gazebo). Its implementation is thoroughly
described in the chapter 6.

5.3.3 Sensor fusion using visual, odometry and inertial informa-
tion

This section introduces a model for the sensor fusion in which an IMU (inertial measurements
unit) is also used. An additional sensor can be very useful both to increase the redun-
dancy of the system and to increase the accuracy of the pose estimation.

Moreover, the redundancy of information opens to the possibility of identifying some pa-
rameters of the model. For instance, the model proposed in this section can identify and
correct a proportional error in the speed measurement.

Since the IMU wasn’t available, this model hasn’t been used with the real robot. Its
validity was nonetheless studied and clearly proven through simulations.

Model 2: equations

In order to simplify the analysis, the discrete-time model have reported assumes that the
variables are sampled at a fixed sample time 7.
Let

(5.33)

be the state vector, where:

e a(k) is the acceleration along z, axis;

e w(k) is the angular velocity around z, axis;

e s,(k) is the time-varying coefficient relative to a multiplicative error in speed mea-
surement.

39

The state equation is defined as:

(k) + (s()T + a(k TT cos 0(k)]
y(k) + (s(t) T+a % sin 0(k)
R)+ T (s(k) tanw + Tw(k)(1 - «)
fe(x(k)) = (: (5.34)
1/)(’{?)
a(k)
w(k)
i sq(F) i

where a € (0,1) is used to calculate a weighted mean between the orientation obtained
using the steering angle and the speed:

Ok + 1) = 0(k) + Ts(k) tanzﬁ(k)% |

and the orientation calculated using angular velocity provided by the IMU:
O(k+1)=0(k)+Tw(k).

The observation function is:

h(x(k)) = [(k) y(k) 6(k) s(k)sy(k) o(k) a(k) w(k)]", (5.35)

where the s(k)s,(k) is used to model the fact that the measured speed is the real speed
s(k) multiplied by a gain s,(k).

Assuming that the speed is estimated using an encoder attached to a wheel, this model
can explain and correct those errors which are due to a wrong estimation of the wheel

diameter, which can be caused, for example, by the variable tire pressure.

The Jacobian matrices is defined as:

100 0 000 0
010 0 000 0
001 0 000 0

H(x(t)) = [0 0 0 s,(k) 0 0 0 s(k) (5.36)
000 0 100 0
000 0 010 0
000 0 001 0|

The remaining matrices are:

Q(k) =
[(0.1A¢)? 0 0 0 0 0 0 0]
0 (0.1A¢)? 0 0 0 0 0 0
0 0 (0.1At)? 0 0 0 0 0
0 0 0 (20000 At)? 0 0 0 0
0 0 0 0 (10¢)mag AL)2 0 0o o’
0 0 0 0 0 (10At)? 0 0
0 0 0 0 0 0 (20At)% 0
0 0 0 0 0 0 0 0]
(5.37)
1 0 —(s(k)At+a(k)At*)sinf(k) At cosf(k) 0 At? cos 0(k) 0 0
0 1 (s(k)At+ a(k)At?) cos (k) A%tsin{)(k) T 0 e Atzsi(l)ne(k) N 10 | 8
(k[8 8 (1) Ttanlw(k)a Fras(/)(Sew() N H(ofa) o (5.38)
00 0 1 0 0 0
00 0 0 0 0 0 0
R(k) = diag{es, ey, eq, €5, €y, €0, 60} , At =1t — 1. (5.39)

Note 1 Q(k) has a less complex structure in comparison to the previous case, in order
to underline the impact of the IMU.

Note 2 The variance of the error associated to the process s,(-) is zero because it has
been assumed that it is a constant, though not exactly known value, and that is ideally
equal to 1. Otherwise, if s,4(-) is not constant but slowly variable, the associated variance
can be a small but non-zero value (for example s,(-) = 107%). In order to initialize
correctly the filter, the state variable s,(0) must be set to 1 with an associated variance
grater then zero.

The numerical values of the parameters are reported in the table 5.2.

41

Table 5.2: Extended Kalman Filter 2 parameters

Parameter Value
z 0.497 [m]
Umazx 4 [Sm?]
wmax 1.5 [%]
o 0.1]]
e (0.2)* [(m/s)?]
ey (57/180)? [rad?]
€ (0.2)% [m?]
‘) 047 (]
e (157 /180) [rad?
€a 0.001 [(m/s*)?]
€w 0.001 [(rad/s)?]

5.3.4 Model verification using Simulink

This subsection presents a simulation used to prove the effectiveness of the model pre-
sented in the previous section.
The simulator is based on a realistic car-like model with equation:

] J:Etg s((t)) cos?((t?
yt)| s(t)sin O(t
a@ |s(t) alt) (5.40)
o(t) s(t) tan(uy (1)) 7
The acceleration has equation:
a(t) = <Pl;T—g) — ACy (t)Q) % (5.41)

where
e A =0.5m is the frontal area of the car;
e C; = 0.3 is the drag coefficient;
e m = 100kg is the mass;
e [= 1m is the wheelbase length;
e ur(t) € [—1,1] is the throttle position;

e uy(t) € [—0.3,0.3] is the steering angle;

P = 150W is the engine power.

42

The Simulink model is contained in the following block: The throttle position and the

Vehicle Model

Figure 5.4: Vehicle Simulink block

steering angle are driven by two random signals in order to obtain a random path.
The inputs and outputs are used to simulate the sensors:

e z(-), y(-) and 0(-) are used to simulate the pose calculated using visual information;

e s(-) and the steering angle are used to simulate the information provided by At-
lasMV;

e ds (5(+)) and w(-) are used to simulate the IMU.

A Gaussian additive noise has been added to each signal, and all the signals have been
sampled at the same frequency f;, = 30H 2.
The table 5.3 resumes the noise characteristics.

Table 5.3: Gaussian noise parameters

signal | mean | variance
z(+) 0 0.4
y(+) 0 0.4?
0(-) 0 (157/180)2
s() 0 0.022
5(+) 0 0.001
v() | 0 | (57/180)
w(+) 0 0.001

43

Simulations

The simulation parameters are as follows:

the initial condition of the simulated robot have been set to zero (z(0) = y(0) =
8(0) = s(0) = ¢(0) = 0) and the coeflicient s, (constant) is equal to 1.2;

the initial values of the EKF have been set to zero, each variable with a variance
0.1, except for s,, which is initialized to 1 with a variance of 0.15%

the simulation time is 15s;

the model with IMU corresponds to the model introduced in section 5.3.3 and the
model without IMU corresponds to the model introduced in section 5.3.2;

Where applicable, the model without IMU uses the same parameters as the model
with IMU, and it reads the real speed (not the real speed multiplied by 1.2).

The figure 5.5 shows the random path followed by the robot. The blue line represents
the real trajectory, and the green and black line the estimated trajectory without and

with

IMU, respectively.

Note that, as expected, the trajectory estimated using the IMU is less noisy.

Path traveled

Estimated position without IMU
Estimated position with IMU
Real position

7 L L L L L L L I
6 10 12 14
x [m]

Figure 5.5: Path traveled

44

The figures 5.6 and 5.7 show the errors relative to the pose estimation (orientation
and position).

Orientation error

{

14—
Measurements
Model without IMU
1.2 Mode! with IMU
-
-g 0.8 —
L.
>
o \ |
0.6
0.4 ! ‘\‘ ‘ l H‘ h
02l u ARl
“‘ ‘ \ I\l i \
fl

=
=

VA TVATS S NAYVA YA\ S [N v I

0 50 100 150 350 400 450 500

200 250 300
sampling step [1 step = 0.033s]

Figure 5.6: Orientation error

Position error (x and y)

1.6 —
Measurements
14l Model without IMU
' Model with IMU
1.2
—_ 1
E
—
8 0.8
_
9]
0.6
0.4
N ‘\WMM JV\
° L L 1 | | L L 1 | |
0 50 100 150 200 250 300 350 400 450 500

sampling step [1 step = 0.033s]

Figure 5.7: Position error

45

The figures 5.8 and 5.9 show how the model with IMU can properly identify the pa-
rameter s, and can also correct the speed estimation in less than 200 steps (about 6.6s).

Speed [m/s]

0.6

0.4

0.2

1.6

1.4

1.2

Sg identification

Estimated sg

50 100 150 200 250 300 350
Sample step [1 step = 0.033s]

Figure 5.8: S, identification

Estimated vs Real Speed

Estimated speed
Real speed

1 L L 1 L L L

50 100 150 200 250 300 350
Sample step [1 step = 0.033s]

Figure 5.9: Real vs estimated speed s(-)

46

450

Table 5.4 shows a quantitative comparison between the EKF with and without IMU.
The EKF works fine in both the cases, but an additional improvement can be obtained

using an IMU.

Table 5.4: Average mean error

- Measurements | EKF w-o IMU | EKF with IMU Gain
position [m] 0.531 0.138 0.084 +63.2%
orientation [rad] 0.288 0.043 0.030 +39.7%

Final consideration about the IMU

Adding an IMU is probably the best method to increase the efficiency of the EKF. The
reason is that the EKF works with the hypothesis of Gaussian error with zero mean, but
in fact odometry information and expecially vision information are affected by system-
atics errors with a completely different statistical distribution, which compromises the
performance of the filter.

The proposal would be to add an IMU and then to overstimate the errors associated
to the remaining sources of infomation (vision and odometry). This problem could and
should be studied in a future, as a separated work.

47

48

Chapter 6

Implementation in MATLAB

During the creation of an Extended Kalman Filter for ROS, it has been necessary to deal
with a problem connected to ROS and its implementation: ROS is not a real-time sys-
tem and the messages are exchanged between nodes using the TCP /IP protocol. For this
reason, the non deterministic behaviour of ROS causes some uncertainty. Furthermore,
the elaboration of visual information introduces a non-negligible delay. These problems
have been solved using a time-varying Extended Kalman Filter.

The EKF has been implemented in MATLAB and connected to ROS using the Robotics
System Toolbox™ (RST) introduced in MATLAB r2015a.

During the practical implementation of the filter two main problems have been high-
lighted:

1. the measurements from the nodes atlasmv and datamatriz-pose-pub are aperiodic
and can be received Out-of-Order;

2. MATLAB doesn’t provide any native mechanism for regulating the access to the
variables, like mutex (mutual exclusion)[27| does in C++. The multi-thread pro-
gramming is also limited.

These problems have been partially solved using an algorithm specifically designed for
MATLAB.

6.1 First proposed algorithm

The first proposed algorithm is the algorithm represented in fig. 6.1. This algorithm is
subdivided in three different execution threads:

1. a first thread for the buffer management, for it to receive new measurements and
store them ordered by timestamp;

2. a second thread for updating the state x(¢x|tx) when the contents of the buffer
changes;

3. a third thread that publishes the predicted pose of the robot ekf-robot-pose on a
specific ROS topic at a fixed publishing frequency f, (for example f, = 30Hz) and
using the last estimated state, as calculated by the second thread.

49

‘ Yu () ya(-) asynchronous Out-of-Order inputs

1 | ordered buffer
Y (tk:) asynchronous In-Order inputs

2 | ekf update loop

)A((tk ‘tk) asynchronous state

3 ekf prediction loop

synchronous output state
X(ts ’tk) calculated at a fixed frequency

Figure 6.1: EKF - Structure of the algorithm

The timestamp ¢, in fig. 6.1 must satisfy the following conditions:

1

S’

where £, is the timestamp of the last received measurement.

Note that the use of two mutex (one to exchange data between thread 1 and 2, and the

other one exchange data between thread 2 and 3) is required to preserve the consistency
of the information.

ts > g, ts+1:ts+

This algorithm provides the prediction of the robot pose at a given fixed frequency

(useful for controlling purposes) and at the same time it can solve the problems related to
the long elaboration time of the visual information and, in general, to the non determin-
istic behaviour of ROS. It hasn’t been possible to develop this algorithm using MATLAB
because of its lack of native multithread programming.
Nonetheless, the possibility of developing the algorithm in C++ using the library ecl-
linear-algebra|28| officially included in ROS has been studied, but this option has been
abandoned for time reason and because it is difficult to monitor the behaviour of the
algorithm without the tools included in MATLAB.

20

6.2 Second proposed algorithm

The second algorithm has been redesigned taking into account the limitations of MATLAB.
The buffer has been removed, and the second and third threads have been merged into a
single thread.

The resulting pseudo code is:

1 initializeR0OS(Q)

2 initializeEKF()

3 while 1 {

4 if newDatamatrixVectorAvailable() == TRUE {

5 msg = getNewDatamatrixVector ()

6 rawRobotPose = poseMsg2rawPoseEst (msg)

7 rawRobotPose = forwardEulerCorrection(rawRobotPose)
8 publishRaw(rawRobotPose)

9 ekfState = ekfUpdate(rawRobotPose)

10 }

11 if newAtlasMsgAvailable() == TRUE {

12 pose = getNewAtlasMsg()

13 ekfState = ekfUpdate(pose)

14}

15 currentTime = getCurrentTime ()

16 prediction = ekfPrediction(ekfState,currentTime)

17 publishOnRos (prediction)
18 sleep(20ms)
19 }

This code runs on MATLAB and it can be seen as a single execution thread .

In fact, the RST hides a low-level layer based on the Java implementation of ROS, which uses
multiple threads to manage the connections between ROS nodes.

o1

Explanation of the code
ROS initialization

The first line of code
1 initializeR0S()

creates the node atlasmv-ekf and initializes the connections. The correspondent MATLAB
code is

% node creation

roscorelp = ’127.0.0.17;

nodeName = ’atlasmv_ekf’;
rosinit(roscorelp, ’NodeName’ ,nodeName) ;

% subscribers
dmPoseTopicName = ’/datamatrix_pose_pub/datamatrix_pose’;
dmPoseSet_sub = rossubscriber(dmPoseTopicName, ’BufferSize’, 1);

atlasmvStatusTopicName = ’/atlasmv/base/status’;
atlasStatus_sub = rossubscriber(atlasmvStatusTopicName,
’atlasmv_base/AtlasmvStatus’,’BufferSize’, 1);

% publishers
poseEkf_pub = rospublisher(strcat(nodeName,’/ekf_robot_pose’),

’geometry_msgs/PoseWithCovarianceStamped’);

poseRaw_pub = rospublisher(strcat(nodeName,’/raw_robot_pose’),
’geometry_msgs/PoseWithCovarianceStamped’);

This section of code is divided in three parts:
1. node creation and its connection to the roscore node;

2. connection to the subscribed topics datamatriz-pose-pub/datamatriz-pose and atlasmo-
base/AtlasmuvStatus;

3. initialization of the topics atlasmuv-ekf/ekf-robot-pose and atlasmu-ekf/raw-robot-
pose.

Note 1 In the case here examined, the roscore node has address 127.0.0.1 because it has
been executed in the same machine. This node provides basics ROS functionalities and
it must always be the first node to be launched.

Note 2 The parameter BufferSize is setted to 1 because only the last message published
on the relative topic has to be processed by the algorithm.

92

EKF initalization
The variable ekfState is a structure with the following fields:
1. wheelbase length [[m];
2. maximum velocity v [m/s];
3. maximum acceleration @, [m/s%;
4. maximum steering angle V., [rad];
5. maximum steering angle speed ¥me0 [rad/s);
6. state vector state Vec [[m][m][rad)[m/s][rad]]";
7. covariance matrix covMatriz [unit of measurement derivable from stateVec|;

8. timestamp of associated to the data structure timeStamp [sl;

where parameters 1 to 5 are characteristics of the robot. Parameters 6 and 7 represent
the state of the filter.

When the initialization step is finished, the function
2 initializeEKF()

waits for a message from datamatriz-pose-pub/datamatriz-pose and tries to calculate the
robot pose (z,y,0). The filter is initialized with the first valid pose (x,y,6) that was
calculated. This approach requires that at least two data matrices are visible during
the node initialization, otherwise the filter can’t be initialized and the main loop doesn’t
starts.

EKF loop

At line 3, the EKF starts to work.

The code

4 if newDatamatrixVectorAvailable() == TRUE {

5 msg = getNewDatamatrixVector ()

6 rawRobotPose = poseMsg2rawPoseEst (msg)

7 rawRobotPose = forwardEulerCorrection(rawRobotPose)
8 publishRaw(rawRobotPose)

9 ekfState = ekfUpdate(rawRobotPose)

10 }

checks if a new vector of data matrices has been published on the topic datamatriz-pose-
pub/datamatriz-pose. If it has been received, the message is processed by the function:

6 rawRobotPose = poseMsg2rawPoseEst (msg)

93

which implements the algorithm presented in section 5.1. If three or more data matrices
have been detected, the function selects only two of them at random. It does so in
order to make the error associated to the measure as less systematic and more random
as possible.

The input message is the vector of datamatrizData, which is the structure defined in
section 4.4. The output is a structure containing the measurement, the relative covariance
matrix defined in (5.7) and the acquisition timestamp t,.,.

The function
7 rawRobotPose = forwardEulerCorrection(rawRobotPose)

applies the forward Euler method in order to reduce the effect of the systematic error due
to the high elaboration time of visual information. The “raw” robot pose is published on
the ROS topic atlasmu-ekf/raw-robot-pose.

Let tex state be the timestamp of the EKF state and ¢cyprent the current time. Considering
the (5.7), the correction applied to y,(facq) is

x(tcurrent) x<tacq) (tcurrent - tacq)s(tekatate) COS 9<tekf5'tate)
y(tcurrem&) - y(tacq> + (tcurrent - tacq)5<tekf5'tate> sin e(tekatate) . (61)
e(tcurrent) 9<tacq> (tcurrent - tacq)s<tekf5’mte) tan w(tekatate)%

To keep in account the fact that this correction increases the uncertainty associated with
the measure, the covariance matrix has been multiplied by a scale factor proportional to

(tcurrent - tacq)-
The resulting covariance matrix is

Cov (YU(tcurrent) : yrUT(tcurTent)) - (1 + tcurrent - tacq)cov (YU(tzch) : y@T<tacq)) . (62)

Finally, the timestamp associated to the measure changes from t,.; to tcyrprens. This
approach has revealed itself to be good in practical cases, because it actually reduces
systematics errors.

The line of code
8 ekfState = ekfUpdate(rawRobotPose)

calls the function ekfUpdate, which updates the status using the received measurement.

The following instructions

11 if newAtlasMsgAvailable() == TRUE {

12 pose = getNewAtlasMsg()
13 ekfState = ekfUpdate(pose)
14}

check if a new status message has been published on the /atlasmv/base/status topic. If a
new message has been received, the speed and the steering angle are used to update the
EKF status.

o4

In computer science, this particular activity is called polling.
In this case there are two buffers:

e one containing the messages published on the datamatriz-pose-pub/datamatriz-pose
topic;

e one containing the messages published on the /atlasmv/base/status topic.

Polling is the process which involves checking of one or more “client programs”. In this
case the RST can be considered the client program, which is repeatedly called in order
to check if the buffers have received new messages. This method is not efficient, but it
represents the only choice in all those cases where the multithread programming isn’t
possible.

The last code section

15 currentTime = getCurrentTime ()

16 prediction = ekfPrediction(ekfState,currentTime)
17 publishOnRos (prediction)

18 sleep(20ms)

is dedicated to the prediction of the robot status. The prediction is based on the actual
time of the system (currentTime) and on the last calculated state (ekfState). Finally, the
EKF prediction is published on the ROS topic atlasmuv-ekf/ekf-robot-pose.

6.3 Connection between nodes

This sections presents a final overview of how the ROS nodes are connected and which
messages they exchange.

atlasmv_ekF
datamatrix_pose_pub
[atlasmv_ekf/raw_robot_pose
/datamatrix_pose_pub/datamatrix_pose | atlasmv_dataviewer
T [atlasmv_ekf
tlasmv_ekf/ekf_robot_pose|-#C /atlasmv_dataviewer
w—] T
[atlasmv/base/status

Figure 6.2: Node graph

The figure 6.2 shows four different nodes:
e datamatriz-pose-pub - used to detect the data matrices and to calculate the poses
T,
J

e atlasmv - used to control the robot and to read odometry information;

e atlasmu-ekf - used to estimated the pose using to output of the node datamatriz-
pose-pub;

95

o atlasmu-dataviewer - used to collect and visualize data.

The nodes datamatriz-pose-pub and atlasmuv-ekf have already been discussed respectively
in chapter 4 and in chapter 6.

The node atlasmv has been developed by the Laboratory for Automation and Robotics
of the University of Aveiro. This node provides a ROS interface for the robot.

A message containing the status of the robot is published on a topic called atlasmuv-base-
status.

This particular message is called AtlasmvStatus and it has the following structure:

Header header
float64 brake
float64 dir

float64 speed
float64 x

float64 y

float64 orientation
float64 distance_traveled
int32 turnright
int32 turnleft
int32 headlights
int32 taillights
int32 reverselights
int32 cross_sensor
int32 vert_sign
int32 errors

When the node atlasmuv-ekf receives this type of message, it extracts the timestamp (from
the Header), the speed s(-) and the steering angle dir ¥(-).
Header is a standard ROS message with the following structure:

uint32 seq
time stamp
string frame_id

where seq is a sequential number, stamp is the timestamp and frame-id is an optional
string.

Finally, the node atlasmv-dataviewer is created using MATLAB and it is used only to
collect and analyse data.

o6

Chapter 7

Experimental results

This chapter presents the experimental results obtained using AtlasMV and its simu-
lated version in Gazebo. Using the real robot, only qualitative considerations could be
expressed, since it wasn’t possible to measure the real position of the robot.

On the contrary, through Gazebo it was possible to perform a quantitative analysis:
the robot pose can be obtained reading the messages published by Gazebo on the topic
/ackermann-vehicle/gazebo/model-states, which contains a vector of poses, one pose for
each object included in the simulated world.

7.1 Test environment

Figure 7.1 shows 21 data matrices generated and positioned inside the LAR. In order to
recreate a similar scenario, the same data matrices have been included in the simulator.

SR

Figure 7.1: Data matrices positioned inside the LAR.

o7

The figure 7.2 shows the simulated robot, the data matrices and the simulated cam-
eras outputs (front and rear cameras).
For hardware limitations', cameras output have been limited to a VGA resolution (640x480
pixels) at 5 frames per second. A Gaussian noise with standard deviation 0.01 has been
added to the generated frames.

Figure 7.2: Gazebo simulator

The tests with the real robot have been executed at a resolution of 1280x960 pixels
and at 10 frames per second. The exposure time has been manually set to 8 — 11ms
(depending on light conditions). The detection algorithm doesn’t work if the image is
blurred, because it is based on a corner detector (which is a gradient-based function).
The low exposure time produces images with a low contrast but also with a low blur
effect: many tests have been executed in order to find the best Libdmtz parameters.

mirny L\L

W -

Figure 7.3: Data matrices inside the LAR

IThe processor Intel® Core™ i3-2310m wasn’t able to run the nodes and the simulator using two
virtual cameras at resolution of 1280x960 pixels.

o8

7.2 Simulations using Gazebo

7.2.1 First simulation: “S” trajectory

In the first simulation, the robot was driven manually using an Xbox™ 360 controller.
The figure 7.4 shows the path travelled by the robot. There is a small offset between real
position (blu dots) and estimated position (black dots) (the measurements are indicated
with the red crosses). Considering that this simulation was running in real time, this
problem can be caused by the low MATLAB performance, which introduces a considerable
delay on data processing.

Path
T T I I I
—¢ e Estimated pose using the EKFH
I-.J X T + Real pose (Gazebo)
A X Raw measurements
<% ® Data matrix
af'%
o o |
!
: A
‘ A%
£ "
gl ® > |
L % ® -
Start Point .
b, 9
8 Rt E— x : 2 -
L e —© —

Figure 7.4: Gazebo simulation 1: trajectory

The figures 7.5 and 7.6 show a comparison between real and estimated position and
between real and estimated orientation. It has been used the EKF without IMU intro-
duced in chapter 6.

It is very interesting to note that the mean errors associated to this simulation are
very similar to the errors (table 5.4, reported below) obtained using the Simulink model
presented in section 5.3.4.

The table 7.1 shows a comparison between the mean error obtained with Simulink and
the one obtained with Gazebo.

29

0.6 Position error (x and y combined)

Position error
— — — Mean error

0.5F

©
i

error [m]
(@]
w

o
N

0.1

0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400
sampling step [1 step = 0.05s]

Figure 7.5: Gazebo simulation 1: position error

Orientation error

Orientation error
02k — — — Mean error

error [rad]

_04 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400
sampling step [1 step = 0.05s]

Figure 7.6: Gazebo simulation 1: orientation error

In general, this level of precision can be considered acceptable for many real life appli-
cations (the standard error is smaller than the robot dimension). A better performance

60

Table 7.1: Average mean error (Simulink-Gazebo) and standard error (Gazebo)

Simulink Mean error

Gazebo mean error

Gazebo Str.Dev

position [m)]

0.138

0.183

0.121

orientation [rad]

0.043

—0.061

0.091

could probably be obtained using a high optimized EKF, such as the one proposed in

section 6.1.

Note that also in this case the relative poses T7;, and T7, have been calculated using the
same procedure used with the real robot. This choice has been made in order to keep the

results as more realistic as possible.

7.2.2 Second simulation:

This simulation is similar to the first, except that the robot comes back to the starting
point. Figure 7.7 shows the path followed by the robot. Note that, often, the estimated

“round trip”

position and the real position are almost the same.

y [m]

?

X v

Estimated pose using the EKF
Real pose (Gazebo)
Raw measurements
Data matrix

[

T

8 10

x [m]

Figure 7.7: Gazebo simulation 2: trajectory

Figure 7.8 and 7.9 show the respective errors.

Finally, table 7.2 confirms the results reported in table 7.1.

61

0.6 - Position error (x and y combined)

Position error
— — — Mean error

0.5

error [m]

0 1 1 1 1
0 200 400 600 800 1000

sampling step [1 step = 0.05s]

Figure 7.8: Gazebo simulation 2: position error

0.3 Orientation error

Orientation error

02k — — — Mean error

0.1

-0.1

error [rad]

-0.2

-0.3

-0.4

-0.5 1 1 1 1 1
0 200 400 600 800 1000

sampling step [1 step = 0.05s]

Figure 7.9: Gazebo simulation 2: orientation error

Table 7.2: Mean error and standard deviation

Standard deviation

Mean error

position [m]

0.130

0.177

orientation [rad]

0.120

—0.081

7.2.3 Third simulation: straight trajectory

The third simulation shows the robot following a straight trajectory. Four data matrices
have been positioned, as shown in figure 7.10.

62

Figure 7.10: Gazebo simulation 3: straight trajectory - screenshot

Figure 7.11 shows the real position (blue dots) and the estimated one (black dots).
As reported in table 7.3, the offset (mean error) is about 0.11m and its standard devia-
tion is about 0.06m: this means that there is a small systematic error. This systematic
error is probably related to the vision algorithm; it should therefore be furtherly investi-
gated. Nonetheless, this level of accuracy seems acceptable. Figures 7.12 and 7.13 show
respectively the position and the orientation errors.

-13
-13.2—
-13.4

-13.6—

-14.21
-14.4(
-14.6/-

-14.8—

- | |
15 12 13 12

y [m]
g
[
i
!
|
I
|
|

Path
dm;

!dm3

e Estimated pose using the EKF
® Real pose (Gazebo)
7/ Raw measurements

Figure 7.11: Gazebo simulation 3: straight trajectory

Table 7.3: Mean error and standard deviation

- Standard deviation | Mean error
position [m)] 0.061 0.111
orientation [rad] 0.019 —0.063

63

Position error (x and y combined)

Position error
— — — Mean error

!

0.25

0.2
£
5 0.15
c
(]

0.1

0.05

0 1 1 1 1 1 1
0 100 200 300 400 500 600

sampling step [1 step = 0.05s]

Figure 7.12: Gazebo simulation 3: straight trajectory - position error

Orientation error
-0.03

Orientation error

-0.04 — — — Mean error

-0.05

-0.06

-0.07

-0.08

error [rad]

-0.09

-0.1

-0.11

_0-12 1 1 1 1 1 1
0 100 200 300 400 500 600

sampling step [1 step = 0.05s]

Figure 7.13: Gazebo simulation 3: straight trajectory - orientation error

7.3 Test using the real robot

The following tests show the behaviour of the localization system using the AtlasMV
robot. Unfortunately it has not been possible to compare the estimated pose with the
real pose for the lack of ground truth, but this tests remain important because they show
a behaviour very similar to the one obtained in the simulator.

64

7.3.1 First test: “S” trajectory

This simulation shows a “S” trajectory similar to the one obtained using Gazebo.

Path
T T T T T L} L] ! ! Y
¥ W eTITT _
Estimated pose using the EKF
* Raw measurements
. 0% @ Data matrix
L] % li
2, X
*
ol [Bty -

—|

x [m]

Figure 7.14: AtlasMV: “S” trajectory

The figure 7.14 shows the trajectory obtained using the AtlasMV robot with two
enabled cameras. The trajectory results less smooth if compared to the one obtained
with Gazebo, and this for two reasons:

e difficulties in positioning the data matrices correctly;

e the speed estimation provided by AtlasMV is not accurate since the encoder is
attached to the engine rotor and not to the wheel(s). Also, the differential introduces
an additional error proportional to the steering angle.

Despite these problems, the result seems promising.

65

7.3.2 Second test: “S” trajectory - one camera

This second test is similar to the first one: the only difference is that the rear camera
was disabled.

Path
T T T T 1 I T
Estimated pose using the EKF
2 F X% X Raw measurements .
Q = ® Data matrix
L ¢
4 F -
—5F ¢ -
E
>
6k P 2
-7 F . -
-8+ -
9t Ti 2
10 12 14 16 18
X [m]

Figure 7.15: AtlasMV: “S” trajectory - only frontal camera

The trajectory presents discontinuities, probably caused by the lower number of data
matrices detected as well as the poor odometry, which introduces and error that grows
over time.

66

7.3.3 Third test: straight trajectory

In analogy to the third simulation, this third test shows the AtlasMV following a straight
trajectory. The figure 7.16 shows the corridor with four data matrices.

Figure 7.16: LAR’s corridor

The figure 7.17 shows the estimated position. This test shows results very similar to
those obtained using Gazebo; probably thanks to the fact that only four data matrices
(although positioned accurately) have been used.

Path
-11 T T T T T T T T
-11.5 - Estimated pose using the EKF|
12k X Raw measurements i
® Data matrix
-12.5 E
®)
_ -13 x
X X
E 135 TR X i
> x X x X x Xog X XK R R
X
-14 + .
-14.5)) g
-15 -
-15.5 E
-16 1 | 1 | 1 | 1 |
7 8 9 10 11 12 13 14 15 16

x [m]

Figure 7.17: AtlasMV: straight trajectory

67

The tests with the real robot have confirmed that the localization system works as
expected.

The results does not seems as good as the results obtained with Gazebo, but this can
be easily explained keeping in consideration the following facts:

e every data matrix has been manually positioned with a given error;
e the map used was only an approximation of the real map;
e the odometry system was poor (encoders attached to the motors).

In this particular case, the main source of errors was determined by the measure of speed
provided by the robot (as already mentioned, the differential causes an error proportional
to the steering angle of the robot). Similar results to the ones obtained using Gazebo can
be obtained using a robot with a more accurate odometry system.

68

Chapter 8

Conclusions

The aim of this thesis was to implement an indoor localization system using visual infor-
mation and passive markers. The obtained results are promising, but the performance of
this type of system depends on many factors: detection algorithm, localization method,
quality of the odometry and efficiency of the sensor fusion algorithm.

In chapter 3 the problem was discussed of how to encode efficiently the required in-
formation. Moreover, a graphic tool has been developed in order the create the required
markers. The encoding system was well dimensioned for this application: the resolution
of 0.1m was resulted sufficient (in practice it is difficult to position a data matrix with
an error smaller than 0.1m).

Chapter 4 has described the perception algorithm based on the open source library
Libdmtx, which was in general slow and not always stable. Despite these limitations, it
was accurate enough for this kind of application and it didn’t represent a bottleneck.
The most delicate part of the operation has revealed itself to be the calibration: a bad
calibration adds a systematic error to every single measurement.

Chapter 5 deals with the EKF as well as with the problem of sensor fusion. In order
to reduce the errors and also to eventually identify and correct systematic errors, the use
of an inertial sensor was suggested. Since the systematic errors are the main problem of
this technology, it would be advisable to further study this solution.

Chapter 6 deals with the implementation of the EKF and the problems connected
to its MATLAB implementation and its integration in ROS. The EKF has a big impact
on the final accuracy of the localization system and its further optimization should be
considered in future works.

In Chapter 7 have been introduced the experimental results obtained using the sim-
ulator Gazebo and the robot AtlasMV. These tests show that the localization algorithm
can reach a precision smaller than 0.2m, which is acceptable for indoor autonomous nav-
igation. On the other hand, the tests with the real robot show that the performance can
degrade quickly if the system is not well calibrated, if the data matrices are not positioned
exactly in the right position and if the robot odometry is not accurate.

69

An interesting continuation of this thesis would be to optimize the EKF, as suggested
in section 6.1. Also, it is crucial to tackle the problems caused by systematic errors. The
best way to deal with this problem could be to add an inertial unit.

70

Bibliography

[1] R. E. Kalman, “A new approach to linear filtering and prediction problems,” ASME
Journal of Basic Engineering, 1960.

[2] C.Suliman, C. Cruceru, and F. Moldoveanu, “Mobile robot position estimation using
the kalman filter,” Scientific Bulletin of the "Petru Maior" University of Tirgu-
Mures, vol. 6, 2009.

[3] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear
systems,” 1997, pp. 182-193.

[4] LAR - University of Aveiro. (2015) Atlas project. [Online]. Available:
http://atlas.web.ua.pt/

[5] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe, “Gps/imu data
fusion using multisensor kalman filtering: Introduction of contextual aspects,”
Inf. Fusion, vol. 7, mo. 2, pp. 221-230, Jun. 2006. [Online|]. Available:
http://dx.doi.org/10.1016 /j.inffus.2004.07.002

[6] J. M. Font-Llagunes and J. A. Batlle, “Consistent triangulation for mo-
bile robot localization using discontinuous angular measurements,” Robot.
Auton. Syst., vol. 57, mo. 9, pp. 931-942 Sep. 2009. [Online|. Available:
http://dx.doi.org/10.1016/j.robot.2009.06.001

[7] V. Pierlot and M. Van Droogenbroeck, “A new three object triangulation algorithm
for mobile robot positioning,” Trans. Rob., vol. 30, no. 3, pp. 566-577, Jun. 2014.
[Online|. Available: http://dx.doi.org/10.1109/TR0O.2013.2294061

[8] C. B. Madsen and C. S. Andersen, “Optimal landmark selection for triangulation of
robot position,” Journal of Robotics and Autonomous Systems, vol. 13, pp. 277-292,
1998.

[9] L. Carrao, “Sistema de visdo pare guiamento de agv em ambiente industrial,” Mas-
ter’s thesis, 2014.

[10] R. D’Andrea, “Guest editorial: A revolution in the warehouse: a retrospective
on kiva systems and the grand challenges ahead.” IFEE T. Automation
Science and Engineering, vol. 9, no. 4, pp. 638639, 2012. [Online|. Available:
http://dblp.uni-trier.de/db/journals/tase/tase9.html# DAndreal2

[11] J. J. Enright, P. R. Wurman, and N. R. Ma, “Optimization and coordinated auton-
omy in mobile fulfillment systems.”

71

[12] Willow Garage, University of Stanford. (2015) Ros: Robot operating system.
[Online|. Available: http://www.ros.org/

[13] MATLAB. (2015) Robotics system toolbox. [Online]. Available:
http://it.mathworks.com /products,/robotics/

[14] M. Laughton. (2015) Libdmtx website. [Online|. Available:
http://libdmtx.sourceforge.net/

[15] G. Bradski, “Opencv library,” Dr. Dobb’s Journal of Software Tools, 2000.
[16] MATLAB. (2015) Qt framework. [Online|. Available: http://www.qt.io/

[17] ISO, “Data matrix,” International Organization for Standardization, Geneva,
Switzerland, ISO 16022:2000, 2000.

[18] ——, “Data matrix bar code symbology specification,” International Organization
for Standardization, Geneva, Switzerland, ISO 16022:2006, 2006.

[19] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields,” Journal
of the Society for Industrial and Applied Mathematics, vol. 8 mno. 2, pp. 300-304,
1960. [Online|. Available: http://dx.doi.org/10.1137/0108018

[20] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice Hall
Professional Technical Reference, 2002.

[21] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed.
Cambridge University Press, ISBN: 0521540518, 2004.

[22] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 25, no. 8, pp. 930-943, Aug. 2003. [Online|. Available:
http://dx.doi.org/10.1109/TPAMI.2003.1217599

[23] G. Bowman and P. Mihelich. (2015) Camera calibration - ros package. [Online].
Available: http://wiki.ros.org/camera_calibration/

[24] A. Bradski, Learning OpenCYV, [Computer Vision with OpenCV Library ; software
that sees/, 1st ed. O‘Reilly Media, 2008.

[25] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares,” The Quarterly of Applied Mathematics, vol. 2, pp. 164-168, 1944.

[26] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp. 431-441,
1963. [Online|. Available: http://dx.doi.org/10.1137/0111030

[27] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle River, NJ,
USA: Prentice Hall Press, 2007.

[28] D. Stonier. (2015) Ecl linear algebra - ros package. [Online|. Available:
http://wiki.ros.org/ecl linear algebra

72

