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1 Introduction

Our Universe is governed by few fundamental forces: the strong interaction, the weak interaction,
the electromagnetic interaction, the Higgs-mediated interaction and the gravitational interaction.

The first four forces are described by a Quantum Field Theory called the Standard Model (SM)
and extensions of it.
A Quantum Field Theory (QFT) lagrangian is determined by the invariance group G of the theory;
by the spectrum of spin-0, spin-1

2 and spin-1 particles composing the matter content of the model
with their representations with respect to G and by the interactions respecting the symmetry G. In
particular [1], the Standard Model is based on the symmetry group

G = SU(3)color × SU(2)weak × U(1)hypercharge,

where the factor SU(3)color refers to the strong interaction and the sector SU(2)weak×U(1)hypercharge

takes into account the unified weak and electromagnetic interactions. The matter content of the
theory is composed by the Higgs scalar field (Φ); by three similarly organized generations of fermionic
particles (quarks and leptons), which are
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and by the gluons, the W± and the Z0 bosons and the photon. By means of the Higgs mechanism,
the Higgs field lets (almost all) these matter particles to gain a mass. The Standard Model is
requested to be a renormalizable theory: its lagrangian density LSM , whose schematic structure is

LSM =
∑
i

ciOi

(for the operators {Oi}i with associated coefficients {ci}i), has to be such that the mass dimensions
of Oi and ci (for any i) have to satisfy

[Oi] ≤ 4; [ci] ≥ 0.

Once all these ingredients are taken under consideration, the lagrangian (or the action) of the
Standard Model is entirely determined and its study can be pushed forward.

The gravitational interaction is described by General Relativity, instead. The crucial idea
General Relativity is based upon is that gravity is a manifestation of the spacetime geometry. As a
consequence, it does not influence the motion of a body as all the other interactions do: a body that
feels the gravitational interaction moves freely in a deformed spacetime. This brilliant intuition that
Einstein was able to make evident substantiates in the so called Equivalence Principle.
The geometric nature of gravity and its relation with the substance constituents of our Universe is
then expressed by the action

SGR =

∫
d4x
√
−g

[
−
M2
P

2
R+ Lrest of the world

]
,
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whereMP is the (reduced) Planck mas; gµν is the spacetime metric; R is the corresponding Ricci scalar
and Lrest of the world is the lagrangian density grouping the contributions from all the components of
Universe but the gravitational field. By making advantage of SGR the famous Einstein’s equations
can be deduced.
General Relativity is amazingly well tested by experiments [2–5]. For instance, Eat–Wash torsion
balance experiment is able to test the Weak Equivalence Principle with a precision of O(1013). Some
experiments involving an appropriately modified version of Dirac equation (to take into account
of possible violations of local Lorentz invariance) and based on measures of nuclear energy levels
allow to confirm the validity of the Einstein Equivalence Principle with O(1029) of precision; some
measurements of the gravitational red-shift effect performed with gravitational clocks test the
Einstein Equivalence Principle with a precision of O(104). By studying the system Earth-Moon in
the gravitational field of the Sun the Laser Lunar Ranging Experiment has managed to confirm the
Strong Equivalence Principle with a precision level of O(1013).

General Relativity is a classical (in the sense of non-quantum) theory. However, being convinced
that gravity has to be a fundamental force governing our Universe, for consistency with the other
fundamental interactions, gravity has to be quantic too and the way to quantize it has to be found.

Nowadays, String Theory is the only consistent model we can refer to and we can make calculations
and formulate predictions with in the attempt of getting some information on the construction of a
theory of quantum gravity.
One of the main ideas String Theory is based on is that the fundamental entities composing our
Universe are extended (rather than point-like) objects. When supersymmetry (which is basically a
symmetry that exchanges bosonic and fermionic degrees of freedom) enters the game, in order to
preserve Lorentz invariance, String Theory becomes consistent in ten (or eleven) dimensions. Since
we are sensitive to four dimensions only, there emerge six (or seven) extra dimensions. They are
associated to a manifold (denoted as internal manifold) and have to be “small" enough so that they
do not apparently affect any experimental result. This is in substance the idea lying behind the
compactification procedure. Because of the enormously rich variety of internal manifolds allowed by
String Theory the extra dimensions can be referred to and the influence that the properties of the
internal manifold actually exert on the four observable dimensions, an infinite number of potential
4-dimensional universes is obtained. Once fluxes are turned on in the compactification, this number
reduces to O(10600).

Animated by the belief that String Theory should be predictive regardless the previous estimate,
the question on how our Universe can be recognized and selected in this “jungle" of potential universes
spontaneously arises. Thinking that there is a way Nature has made such a choice by and being
interested in uncovering this mechanism, C. Vafa has introduced the distinction between the so
called Landscape and Swampland in String Theory [6].
The string Landscape can be defined as the set of those effective QFTs that admit a high-energy
completion in String Theory. Still, because of the richness of choices for the geometry of the internal
space, studying the Landscape by means of the compactification technique is hard. One can then
be led to the construction of consistent-looking 4-dimensional theories and to the deduction of the
relevant 4-dimensional physics they give rise to without caring about their possible origin from a
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compactification procedure. From this perspective String Theory would become useless. However,
the majority of seemingly consistent 4-dimensional theories can not be deduced as descendants of
String Theory. All those effective QFTs that appear consistent but are not completable in String
Theory at high energies are said to belong to the string Swampland.

Figure 1.1 [7]:
The figure schematically shows the set of apparently self-consistent effective QFTs. The subset that can arise
from String Theory is called the string Landscape; all the other theories are said to belong to the string
Swampland.

The concepts of string Landscape and Swampland can be extrapolated to Quantum Gravity
(QG). In this respect the quantum gravitational Landscape is made by all consistent-looking effective
QFTs that descend from Quantum Gravity and the quantum gravitational Swampland is composed
by all those seemingly consistent effective QFTs that do not admit a completion in Quantum Gravity.
Since the proper characteristics of the quantum theory of gravity relevant for our Universe are not
known and String Theory is not necessarily such a theory, the QG Landscape and Swampland
and the string Landscape and Swampland do not in principle coincide. We do not know how to
circumscribe the QG Landscape from the QG Swampland or, either said, we do not know what
are the (additional) properties that define a theory consistently accounting for the quantization of
gravity and are absent (instead) when gravity doesn’t play any role.

The attempt of getting (at least) some line-guide principle to uncover the characteristics of a
consistent theory of quantum gravity and the absence of an evident alternative way of proceeding
lead to identify, as far as practical purposes only are concerned, the QG Landscape and Swampland
with the string Landscape and Swampland. In this framework evidence for some criteria distilling
out the Landscape from the Swampland can be gained. These criteria are formulated as conjectural
statements and are motivated by examples coming from String Theory (as it could be easily guessed)
and by arguments arising from black hole physics.

Among the various Swampland conjectures the present work deals in particular with the so called
“Weak Gravity Conjecture" (WGC). It can be phrased as the claim that gravity acts as the weakest
force in any circumstance.
In its best known and understood version the WGC states that [7]
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A theory coupled to gravity with a U(1) gauge field should have a state with mass m and charge q
satisfying

m . gqMP , (1.1)

where g is the gauge coupling associated to the gauge field in the theory.

The previous inequality guarantees that the gravitational interaction between two identical (m,q)
particles set at a mutual distance r is beaten in strength by the electromagnetic force that is acting
between the two,

m2

r2
.
q2

r2

(in appropriate units). Coherently with what mentioned above, the WGC (1.1) expresses the weakness
of gravity with respect (for instance) to the electromagnetic interaction.

Since in our Universe two scalar fields (the Higgs field and the inflaton) seem to play a crucial
role and many scalar fields appear in theories going beyond the Standard Model or characterize
supergravity theories (traditionally thought as low-energy descendants of Superstring Theory),
finding out a formulation of the WGC when scalar fields are present is a dutiful interesting and
challenging task.

There are several versions of the Scalar WGC (SWGC) in the literature (e.g [7, 8]). In April
E. Gonzalo and L. Ibàñez published an article [9] where they presented a Strong version of the
SWGG (SSWGC), that depends on and constrains the scalar self-interactions described by the scalar
potential V (φ) of a theory with one scalar field.
The SSWGC proposed in [9] is

The potential V (φ) of a canonically normalized real scalar field φ in the theory (under consideration)
must satisfy for any value of the field the constraint

2
(
V ′′′
)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
P

(1.2)

(with the “ ′ " denoting the derivative with respect to φ).

Even recognizing that (1.2) could be an incredibly powerful tool potentially constraining the Standard
Model and many inflationary models, when studying Gonzalo and Ibàñez’s article, we have noticed
that (1.2) appears critical under various points of view. The first criticism consists in the fact that,
despite of pretending to be a general statement, Gonzalo and Ibàñez’s bound seems to be valid
around a state that minimizes the potential of the theory (or, either said, in the vicinity of a vacuum
state). If it wasn’t so, there would be no reason why terms like V V ′′′′′′ and V ′V ′′′′′ should not
appear. Another critical aspect of Gonzalo and Ibàñez’s claim is concerned with the coefficients
multiplying the terms appearing in (1.2): the Feynman graph derivation of the conjecture that
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the same authors briefly suggest in their article do not justify them. On top of that, even though
Gonzalo and Ibàñez’s conjecture should be inspired by the physical principle according to which
gravity has to act as the weakest force in any circumstance, in the attempt of deducing (1.2) in an
appropriate Quantum Field Theory context we have been able to conclude that the terms Gonzalo
and Ibàñez made correspondent to the scalar self-interactions are always beaten in strength by the
gravitational interaction term.
The main problem of such a proposal is its generality: the fact that the scalar field is arbitrary and
so massive (in principle) obliges the scalar force to decay with the distance (in the configuration
space) more rapidly than the gravitational force does.

Being conscious of the criticisms Gonzalo and Ibàñez’s statement exhibits, we would like to get
to a general and consistent statement that can replace (1.2). In order to do this we have considered
a model including gravity and two scalar fields one of which is strictly massless. The idea is then to
compare the strength of the gravitational interaction mediated by the (massless) graviton and the
strength of the scalar interaction associated to the massless scalar by regarding the massive scalar
field as a probe. The request that gravity has to be the weakest force translates into a bound on the
parameters of the theory that we have studied: this constraint is coherent (as we will motivate in
detail) with the SWGC that E. Palti presented in [8] and gives support to Palti’s approach to the
study of scalar version of the WGC.

More specifically, the content of the present thesis work is organized as follows.
In Section 2 the notions of Landscape and Swampland are defined by referring with particular care
to String Theory and Quantum Gravity; however, it is emphasized there that a Landscape and a
Swampland can be introduced also when dealing with any Effective Field Theory (EFT) and its
completion in a Quantum Field Theory (QFT) at higher energies.
The abstract concepts of Landscape and Swampland acquire consistency when it is possible to
circumscribe the Landscape within the Swampland: Section 3 is devoted to the description and the
analysis of some Swampland criteria. Among the various Swampland conjectures we have decided to
present the “No Global Symmetry Conjecture" (stating that any global symmetry characterizing a
low-energy theory that is completable in String Theory or Quantum Gravity at high energies has to
be gauged or broken); the “Weak Gravity Conjecture" (WGC) (that claims the weakness of gravity
with respect to all the other interactions); the “Swampland Distance Conjecture" (SDC) (dealing
with the finitness of the fields’ range in the fields’ space) and the “de Sitter Conjecture" (dSC) (that
is concerned with the late-time acceleration phase that our Universe is undergoing and the possible
absence of de Sitter vacua in String Theory).
By making advantage of such an overview of some relevant Swampland criteria, in Section 4 a
deepening on the Weak Gravity Conjecture is made. Following E. Palti [8], we first describe a version
of the WGC in the presence of multiple gauge and scalar fields and we present a proposal for the
WGC in the presence of gravity and scalar fields only. Then, by referring to the latter conjectural
statement, we emphasize the relation between the WGC and the SDC: this underlines that the
Swampland criteria are interconnected and somehow suggests the research of a general criterion all
the others are descendant of. After that, with the attempt of generalizing Palti’s SWGC we discuss
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the claim that E. Gonzalo and L. Ibàñez have made in [9]. Finally, we try to propose an alternative
to Gonzalo and Ibàñez’s statement by studying a theory including gravity and one massive and one
strictly massless scalar field. The former plays the role of a probe in testing the strength of the
scalar interaction mediated by the latter with respect to the strength of the gravitational interaction.
In Section 5 we present a way (in a particular case) to give scalar charge to a classical particle. It
is based on a specific modification (coherent with the models that have been studied in Section 4)
of the Polyakov action but different with respect to what the Liénard–Wiechert mechanism usually
prescribes. Once again, by requiring that gravity acts more weakly than the scalar force, we get a
bound supporting Palti’s approach to the study of the WGC.
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2 The Swampland and the Landscape

As already emphasized in the Introduction, String Theory is the consistent framework we can
refer to to try to get information on the construction of a consistent theory of quantum gravity.

The central idea behind String Theory is that the fundamental entities composing our Universe
are extended objects rather than point-like particles. When supersymmetry is taken into account,
String Theory works in ten (or eleven) dimensions. As a consequence, in substituting a theory of
4-dimensional point-like objects with a theory of extended objects, geometry and topology enter
the game as crucial protagonists: the extra dimensions String Theory requires (for consistency) are
associated to a rich variety of complicated manifolds. According to their structure, various string
configurations can emerge and, more importantly, depending on the choice of the internal geometry,
“different universes" are obtained. However, since we are sensitive to four dimensions only, all extra
dimensions have to effectively disappear in the sense that they can be considered so “small" that
they do not (apparently) influence experimental results.

The previous observations introduce the great problem of how String Theory is connected to
experiments and of how the string vacuum (if there is one) corresponding to the observed Universe
can be selected.

In this context a natural question is concerned with the attempt of understanding what kind of
effective Quantum Field Theories (QFTs) can be obtained by String Theory.
If any seemingly consistent QFT was coherent with String Theory, then constructing string vacua
(by referring to complicated geometries of the internal manifolds) would become quite non-relevant
or (at least) it would be postponed until so high energies are reached that the effective quantum
field description under consideration breaks down and the question on how gravity can be quantized
arises.
Despite this, there is evidence that not all consistent-looking QFTs can be completed in the UV in
String Theory. A distinction among the vast set of apparently good QFTs can indeed be made [6,7].
Any QFT that is constructed about one of the vacua of the rich vacuum structure of String Theory
and is consistent with String Theory is said to belong to the string Landscape. The string Landscape
is then defined as the large spectrum of effective QFTs that are consistent-looking and can be
completed in String Theory at high energies.
All around the stringy landscape of vacua, there is an even more vast region that is called the string
Swampland. The string Swampland is made by all those seemingly consistent QFTs that are actually
inconsistent, meaning that they can’t be UV completed within String Theory.

The distinction between a Landscape and a Swampland can be actually framed more generally
than we have just done. If in discussing the relation between String Theory and QFTs we have
introduced a string Landscape and a Swampland, we can proceed similarly in studying the link
among Effective Field Theories (EFTs) and QFTs. Indeed, it can be shown that not all apparently
consistent EFTs are properly UV completable in a QFT. Those consistent-looking theories admitting
a UV completion in a QFT are points in the so called QFT Landscape; instead, all EFTs that
are seemingly consistent but don’t admit a UV completion in a QFT are said to be in the QFT
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Swampland1.
For clarity, let us mention a simple example.
Consider a theory with a U(1) global symmetry that is spontaneously broken. As a consequence of
the spontaneous symmetry breaking, a Goldstone boson π appears in the spectrum of the theory.
The particle π is characterized by the shift symmetry

π −→ π + c (2.1)

(c being a constant) and so

∂π −→ ∂π. (2.2)

The lagrangian density of the weakly coupled theory (of π) at low energy is

L =
1

2
(∂π)2 +

a

Λ4
(∂π)4 + ..., (2.3)

where a is a non-running parameter and Λ is the cut-off energy scale of the effective theory.
Adopting the perspective of the EFT, any value of the parameter a (a > 0, a = 0, a < 0) is consistent
with the symmetries of the theory itself and is therefore allowed. However, only when a > 0, the
EFT (2.3) can be completed in the UV to a QFT.
To show this, let us adopt an approach based on interaction theory and amplitudes’ positivity [10].
Let us consider the scattering process ππ −→ ππ and denote as s and t two of the Maldestam
variables. By referring to the complexified s-plane (with t = 0) and assuming there is a mass gap

iIm(s)

Re(s)

a can be expressed as

a =
1

2π

∮
M(s, t = 0)

s3
ds, (2.4)

M(s, t = 0) being the scattering amplitude. The integral in (2.4) (taken over the deformable circle
in the previous graph) can be evaluated as the sum of (twice) the integral of M(s, t = 0) over the

1The concept of consistency we are referring to is connected to UV dynamics; we require unitarity and causality,
Lorentz invariance and a notion of locality.
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discontinuity and the integral ofM(s, t = 0) over the Wick circle. Since the former is positive definite
and the latter vanishes when the Wick circle is sent to infinity, a turns out to be positive [11].
We conclude that only those EFTs having a > 0 can be completed consistently in a QFT. The
circumstances a = 0 (corresponding to the free theory) and a < 0, even respecting the EFT’s
symmetries, do not result from a UV flow originating from some QFT.

Coming back to a general treatment, we can schematically depict what happens in relating QFTs
and EFTs as far the Swampland debate is concerned as

Figure 2.1:
The figure illustrates the notions of QFT Swampland and Landscape. Only some consistent-looking EFTs are
selected as IR descendants of higher-energy defined QFTs.

and, including the discussion (we are really interested in) about the UV completion of an effective
QFT in String Theory (or, more generally, in Quantum Gravity (QG)), the relevant reference picture
becomes

Figure 2.2:
The figure shows how the UV flow originating from String Theory isolates the string Landscape, distilling it
out from the string Swampland.

As briefly mentioned above, the notions of string Landscape and Swampland can be extrapolated
to Quantum Gravity. The abstract concept of the QG Swampland has no meaning unless we
understand how to distill out those effective theories that belong to the QG Landscape from those in
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the QG Swampland. But, because we don’t know the quantum theory of gravity and its characteristic
properties, we don’t actually know how to circumscribe the QG Landscape from the QG Swampland.

In the absence of other alternative evident ways of proceeding, we can try to get some information
on the construction of quantum gravity theories by formulating some conjectural criteria distinguishing
the QG Landscape from the QG Swampland as if they were the string Landscape and the string
Swampland. This identification (usually performed in the literature when dealing with the Swampland
program) is quite illegitimate, because it is not clear if String Theory can be a candidate theory
of quantum gravity relevant for our Universe. On the other hand, the adoption of this (hoping
temporary) line of thinking has allowed and allows to formulate various Swampland conjectures
that (with different levels of strength) impose constraints on the effective QFTs, which may be
experimentally tested.

As it can be easily guessed from the previous observations, String Theory is extensively used to
gain evidence for the formulation of Swampland statements. String vacua can be distinguished in
the so called string-derived vacua and the string-inspired ones. The first class is composed by the
best understood string vacua: they are characterized by a full string world-sheet description and by
relatively simple geometries for the extra dimensions and are usually supersymmetric. The second
category of vacua is instead composed by those vacua of String Theory that are better thought of
as constructions in a Quantum Field Theory framework and are motivated by the usual type of
structures that one finds in String Theory.

A Swampland criterion would be typically referred to some region in the string-derived and
string-inspired spectrum of vacua and proposed to be valid for all vacua with increasing rigour (as
far as their construction with respect to String Theory is concerned). The question of whether
a Swampland statement holds in String Theory or not hasn’t a sharp answer. If one insists in
accounting for the string-derived vacua only, then any conjecture may be satisfied by all the known
string vacua; however, there could be many other string vacua that can’t be rigorously constructed
violating the conjecture. Being conscious of this, such a debate can be faced by saying that String
Theory offers evidence for a given Swampland criterion with varying levels of strength.

Figure 2.3 [7]:
The figure schematically illustrates the spectrum of vacuum constructions in String Theory. The most
rigorously understood vacua, the string-derived ones, are presented on the left hand side, whereas the most
loosely connected vacua, the string-inspired ones, are on the right hand side. A Swampland conjecture can
be placed on the spectrum such that all known vacua of increasing rigour satisfy it. A conjecture placed to
the left hand side of the spectrum is said to have weaker evidence with respect to one that is placed on the
right hand side, because (in principle) less string vacua may satisfy it.
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Beside using String Theory as a reference setup, another approach to contribute to the Swampland
program is based on the use (justified by the expectation that some low-energy aspects of quantum
gravity are universal) of quantum gravity arguments directly in the low-energy effective theory.
In this framework the study of black hole physics places itself and motivates some Swampland
statements. Despite of having the advantage of broader generality with respect to referring to String
Theory constructions, this Swampland-testing proposal often lacks of details and concreteness (which
are typical of String Theory founded proposals).

The ideal approach to gain evidence for the Swampland criteria would be a direct derivation
from microscopic physics. Even though any physical model can’t be formulated (by definition)
with no assumptions, it may be that one could uncover some UV principle of String Theory (for
instance), which we have missed so far or hasn’t been appropriately appreciated, leading directly to
the Swampland conjectures. Finding out this underlying microscopic physics can be regarded as
the final actual purpose of the Swampland program and String Theory constructions and general
quantum gravity arguments can be considered as the experimental data supplied to try to develop
such a physical theory.

There are some signs that the Swampland program is pointing towards the right direction:
its approaches seem to be in tune and the Swampland criteria they give rise to appear to be
interconnected.

When dealing with a Swampland conjecture, one considers a set of effective QFTs that are
consistent up to a cut-off scale ΛQFT . After these theories have been coupled to gravity2, a new
energy scale ΛSwampland enters the game. It can be intended as the scale at which the coupled-to-
gravity QFT has to plan some (mild or more substantial) modifications so that it can be consistently
completed in a theory of quantum gravity at higher energies. In other words, the theory would
become inconsistent (after the coupling to gravity has been performed), if it wasn’t modified above
ΛSwampland.

Figure 2.4 [7]:
The figure presents a schematic interpretation of the energy scale ΛSwampland at which an effective QFT has
to be modified in order for it to be able to be completed into QG in the UV .

2The coupling of a given QFT to gravity is associated with a finite gravitational strength or, equivalently, with a
finite value of the Planck mass MP .
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Depending on the values of the parameters of the QFT under consideration, the scale ΛSwampland

can be above or below ΛQFT .
If ΛSwampland > ΛQFT , then the changes required at ΛSwampland do not affect the effective QFT.
If, on the contrary, ΛSwampland < ΛQFT , then the effective QFT with the original cut-off becomes
inconsistent because of the coupling to gravity.
Since ΛSwampland emerges as a consequence of the coupling to gravity, it usually diverges as MP is
sent +∞. However, it can happen that ΛSwampland � ΛQFT � MP and the extremal case where
ΛSwampland sets itself below any non-trivial energy scale in the effective theory may occur: these are
of course the more interesting circumstances.

Figure 2.5 [7]:
The figure shows various cut-off scales on effective QFTs. The first case (on the left hand side) corresponds
to a pure QFT with a cut-off ΛQFT . The second circumstance represents a QFT, coupled to gravity, that is
characterized by parameter values such that the new Swampland cut-off scale ΛSwampland lies above ΛQFT .
Varying the parameters one may reach the third case where ΛSwampland � ΛQFT : this leads to a strong
constraint on the effective QFT due to the presence of gravity. Finally, the fourth case (on the right hand
side) illustrates that, for certain parameter values’ ranges, it may happen that the QFT is inconsistent already
at the lowest non-trivial energy scale in the theory.

Having these general observations in mind, we will now turn to the analysis of some Swampland
criteria. Despite of the fact that we will usually provide evidence for them by making reference to
String Theory, which practically leads (together with black hole physics and aspects concerning the
holographic nature of gravity) the Swampland research field, the Swampland constraints should be
in principle understood as not necessarily and strictly related to String Theory. This way (and in
the temporary absence of strong evident alternatives) the Swampland program points towards the
attempt of getting information on the microscopic physics underlying all the Swampland statements
and definitely on the construction of the theory of quantum gravity relevant for our Universe.
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3 An overview on some Swampland criteria

As just presented, to give sense to the abstract definition of the Swampland one has to formulate
sensible criteria allowing its distinction from the Landscape. In this chapter we will describe some
Swampland conjectures focusing our attention on those that will play a relevant role in the following.
More precisely, we will discuss the absence of global symmetries in a quantum gravity theory (the
“No Global Symmetry Conjecture"), the weakness of gravity (the “Weak Gravity Conjecture"), the
finiteness of the fields’ range of the theory (the “Swampland Distance Conjecture") and we will
describe the “de Sitter Conjecture". These criteria will be motivated by low-energy quantum gravity
properties (and black hole physics based arguments, in particular) and by referring to examples in
String Theory. For a more detailed treatment and a review we refer the reader to [7].

3.1 The No Global Symmetry Conjecture

The absence of global symmetries in a theory of quantum gravity can be considered as a prototype
of a network of criteria distilling out the Landscape from the Swampland.
The No Global Symmetry Conjecture [12, 13] is stated as follows:

A theory, coupled to gravity, does not have exact global symmetries.

A strong motivation for this criterion comes from black hole physics.
Black holes are solutions of the Einstein’s equations of General Relativity. Under fairly general
conditions, once the mass M , the (gauge) charge Q and the angular momentum J of a black hole
have been fixed, the No Hair Theorem states that the solution of Einstein’s equations is uniquely
determined [14].
Let us suppose that global symmetries are admitted and consider the U(1) exact global symmetry
number of particle-antiparticle pairs. We can imagine to throw particles, which are charged under this
U(1) symmetry, in the black hole. Since the charge is global and there is no gauge field emanating
from it, the black hole’s horizon is insensitive to this global charge. As it can be shown in a
semiclassical framework, a black hole evaporates thanks to Hawking radiation [15,16]; however, there
is no preference for the emission of the global charge in the sense that there is nothing which breaks
the symmetry between positive and negative charges at the horizon. The number of antiparticles
that the black hole should emit does not correspond to the given number of particles that have
been thrown in: the number of particle-antiparticle pairs is characterized by an infinite uncertainty.
This indeterminateness unavoidably affects the measures of the black hole’s global charge that an
observer sitting outside the horizon is trying to make: its measures are infinitely uncertain and the
conserved U(1) global charge the black hole has been endowed with is violated.
Moreover, following the semiclassical derivation made by Bekenstein and Hawking, we can associate
to a black hole an entropy, which is related to its horizon’s area. Since the latter is finite, the black
hole’s entropy is finite. In spite of this, in the presence of a global charge, the fact that there is an
infinite uncertainty characterizing the determination of the black hole’s global charge is a signal for
the possibility to construct an infinite number of black hole states with a given mass and differing
(only) for their arbitrary global charge. The impossibility to measure the black hole’s global charge
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corresponds to an infinite entropy and at the end to an inconsistency. By requiring consistency we
have to conclude the absence of global symmetries in a quantum theory of gravity.

Following [17], we would like to show now that the incompatibility that we have just described
of ordinary global symmetries with quantum gravity applies also to the so defined generalized global
symmetries.
Ordinary global symmetries are described by a parameter λ; it generates a one-parameter family of
transformations on the (operatorial) fields of the theory, preserving the expectation values.
Nöther’s Theorem associates to this continuous global symmetry a conserved current by means of
which the charge (operator) can be defined. The charged objects are particles and the charged
operators are local 0-dimensional operators.
Generalized global symmetries are described by an arbitrary closed p-form symmetry parameter.
The Nöther conserved current corresponding to such a symmetry is a (p+ 1)-form. Charged objects
are higher-dimensional branes and charged observables are higher-dimensional objects defined on
p-cycles (rather than inserted at a point, which is a 0-cycle).

In order to simply appreciate the concept of generalized global symmetries let us consider pure
Einstein–Maxwell theory with a U(1) gauge filed Aµ with gauge coupling g,

S =

∫
d4x
√
−g
[
M2
P

2
R− 1

4g2
F 2

]
. (3.1)

The theory is invariant under local gauge transformations acting as

Aµ −→ Aµ + ∂µλ, (3.2)

where λ(x) is a scalar parameter. However, we can also consider the transformation

Aµ −→ Aµ + Λµ (3.3)

with

∂[νΛµ] = 0. (3.4)

If locally in spacetime these two transformations are indistinguishable, the difference is made by
taking into account global aspects of the space. For instance, by considering the spacetime to be
topologically R1,2 × S1, the Wilson loops e

∫
S1 Aµdxµ transform under (3.3) but not under (3.2).

The transformation (3.3) represents an additional symmetry of the theory: it is an example of 1-form
generalized global symmetry, whose parameter is the closed 1-form Λ.

Generalizing, let us consider a theory with a p-form gauge field Ap. In the absence of charged
objects the theory is characterized by the p-form global symmetry

Ap −→ Ap + Λp (3.5)

(with Λp a closed p-form, dΛp = 0) such that
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dFp+1 = 0, (3.6)

Fp+1 being the field strength Fp+1 = dAp.
The conserved Nöther current is j = Fp+1 and the charged operators are given by the exponential of
the generalized Wilson lines of the gauge potential on non-trivial p-cycles.
At infinitesimal level the symmetry acts on an operator OCp defined on the p-cycle Cp as

δOCp =

(∫
Cp

Λp

)
OCp (3.7)

and the correlators are invariant under such infinitesimal shifts.
As we will better detail, the existence of generalized global symmetries is expected to be

obstructed within a theory of quantum gravity. This incompatibility does not amount to the absence
of generalized global symmetries in an effective theory coming (for instance) from String Theory,
but it rather means that they have to be either gauged or broken in the UV theory the effective
theory is descendant of.

The gauging of a global symmetry consists on dropping the requirement that the parameter Λp

must be a closed form while maintaining the invariance property (3.5).
In the case of a 0-form (i.e ordinary) global symmetry this recipe amounts to promote the parameter
λ to a function of the spacetime coordinates λ(x) and to introduce an additional 1-form potential,
transforming with the exterior differential of λ(x). As far as generalized p-form global symmetries are
then concerned, their gauging prescribes the promotion of the closed p-form Λp (characteristic for the
transformation property of the p-form gauge field Ap) to an arbitrary p-form and the introduction of
a (p+ 1)-form potential (say, Ap+1), modifying the kinetic term to

1

2
|dAp − gAp+1|2 (3.8)

(where g is the gauge coupling) and making
Ap −→ Ap + Λp

Ap+1 −→ Ap+1 + dΛp
(3.9)

the gauge invariance properties of the theory 3.

3It is interesting to note that the gauging of a generalized global symmetry has consequences on the objects
(higher-dimensional branes, in general) that are charged under it. A charged (p− 1)-brane would couple electrically to
Ap by means of its p-dimensional world-volume Wp as∫

Wp

Ap.

This world-volume coupling is not invariant under (3.7). However, if Wp = ∂Wp+1, the operator∫
Wp

Ap − g
∫
Wp

Ap+1

is gauge invariant. So, (p− 1)-branes exist as boundary of a p-branes which are electrically coupled to Ap+1.
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Since generalized global symmetries can’t often be gauged [18], their breaking mechanisms have
to be studied.
As for ordinary global symmetries, (continuous and discrete) higher-form global symmetries can be
spontaneously or explicitly broken.

Following the Coleman, Mermin and Wagner’s analysis about the possibility of spontaneous
symmetry breaking in d dimensions, it is possible to show that p-form global symmetries (with
p > 0) are always spontaneously unbroken in d ≤ p+ 2 dimensions if continuous and in d ≤ p+ 1

dimensions if discrete [18]. These arguments are usually regarded as the realization of the so called
Coleman–Mermin–Wagner (CMW) Theorem, preventing spontaneous symmetry breaking in the
vacuum and in any thermal state in sufficiently low dimensions.
As it can be easily guessed, spontaneous symmetry breaking is not the general mechanism for global
symmetries to be broken and other breaking procedures have to be studied [17].

Rather than a generic treatment we will now consider a specific example and in its respect we
will try to analyze some breaking techniques. The following discussion will be also interesting as far
as the exploration of the role of generalized global symmetries within a theory of quantum gravity is
concerned: by making use of black hole physics arguments we will discover that generalized global
symmetries can be placed on the same footing as the ordinary ones.
Let us now consider a 4-dimensional theory including gravity and with a 2-form field B2. The
field B2 might come from dimensional reduction of a higher p-form field (with p > 2) or it can be
interpreted as the dual potential of an axion φ in four dimensions. If a potential dependence of the
kinetic term coefficient on other fields is ignored, the relevant part of the action is∫

1

2
|H3|2, (3.10)

where H3 = dB2. The system is characterized by the 2-form global symmetry

B2 −→ B2 + Λ2, (3.11)

Λ2 being an arbitrary closed 2-form. If the spacetime X4 has a non-contractible 2-cycle Σ, the
periods of B2, which are a higher-dimensional generalization of Wilson lines, can be defined,∫

Σ
B2. (3.12)

By taking into account the identifications provided by gauge transformations involving the closed
form Λ2 the periods of B2 take values in the quotient of cohomology groups4

H2(X4,R)

H2(X4,Z)
(3.13)

and the 2-form symmetry translates into a continuous shift symmetry of the periods of B2.

4The cohomology group Hp(X) is defined as the set of equivalence classes of closed p-forms that differ only by
exact forms on the topological space X.
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Even though the presence of a non-trivial 2-cycle is not so manifest, let us consider Schwarzschild
spacetime.
Using the S2 volume-form dΩ, we can introduce a 2-form B-field background

B = QdΩ. (3.14)

By writing then Λ2 as

Λ2 = λdΩ (3.15)

the symmetry characterizing the periods of B shifts Q by λ over the horizon S2.
For different values of the B-field a one-parameter family of Schwarzschild solutions is defined. Since
H3 = dB = 0 and there is no back-reaction, the metric is independent on the B-field value. This
setup is known as the Bowick–Giddings–Harvey–Horowitz–Strominger (BGHHS) black hole.
BGHHS black holes are indeed legitimate states of the theory and they can be put in evidence
directly through the wiggling and settling down of a string electrically coupled to the field B near
a Schwarzschild black hole; or by an Euclidean instanton producing a pair of black holes whose
horizons are connected by a 3-chain on the boundary of which a B-field (with H = 0 everywhere)
can be turned on.
In the literature (e.g [19,20]) the B-field was proposed as an example of global quantum hair for a
black hole. Despite of the No Hair Theorem, because the B-field is not a local observable (and in
any contractible region it can be simply gauged away) and being its curvature (at least) outside the
horizon H = 0, turning on the B-field does not in principle affect the properties of the black hole
such as its mass or the Hawking evaporation process it is subjected to. This means that, at least
classically, we can build black holes with a given mass and an arbitrary value of Q =

∫
S2 B.

By adopting an Euclidean perspective the black hole geometry is described by the metric

ds2 =
(

1− 2MBH

r

)
dτ2 +

1

1− 2MBH
r

dr2 + r2(sin2 θdθ2 + dφ2) (3.16)

and the topology of the solution is R2 × S2, where R2 is parameterized by the coordinates (τ ,r) (τ
being the periodic Euclidean time) and S2 is described by the angular variables (θ,φ).
By compactifying on S2, we get a 2-dimensional theory on R2 in which the 2-form symmetry of B2

becomes a continuous shift symmetry for the 2-dimensional axion φ =
∫
S2 B2.

Classically, the BGHHS charge Q corresponds to the vacuum expectation value of φ. It seems that
we have a continuous shift symmetry which is spontaneously broken. However, the CMW Theorem
prevents spontaneous symmetry breaking for our setup: an Euclidean-Schwarzschild black hole (and
so a thermal state at Hawking temperature) in d = 2 (≤ 4) dimensions. The CMW Theorem sets
the semiclassical charge Q to zero in the quantum theory such that for an observer outside the black
hole its charge Q becomes completely unobservable. As in the case of ordinary global symmetries,
the problems concerned with the black hole entropy and the measurability of the black hole’s global
charge arise once again.
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Having in mind the formulation of a consistent theory of quantum gravity, the conclusion we
have just reached encourages further investigation for an efficient mechanism by means of which
generalized global symmetries can be broken.
In the context of the 2-dimensional effective theory on R2 we have just dealt with we can try to
break the shift symmetry of the axion φ by introducing strings: they are the electrically charged
objects under the 2-form symmetry involving the field B2 in the 4-dimensional theory. However, in
two dimensions there are some IR effects that obstruct the symmetry violation. The idea is that
the electric field sourced by the strings decays so slowly that the effective action diverges unless the
total charge vanishes.
More precisely, let us suppose a string couples to the field B through the usual world-volume coupling,∫
W2

B2. When we compactify on S2, the dimensional reduction of the action (3.10) gives a canonical
kinetic term for φ and the lower-dimensional version of Gauss’s law is∫

∗dφ = Q, (3.17)

where Q is the net string charge wrapped on the 2-cycle. In two dimensions the theory suffers from
IR divergence: ∫

1

2
|dφ|2 ∼ Q2

∫
dr

r2
−→ +∞. (3.18)

The selection rule Q = 0 is imposed and (part of) the 2-form global symmetry of the original
4-dimensional theory remains unbroken.
This argument can be generalized and the pattern we have just described can be regarded as a
generic feature of any continuous shift symmetry in two dimensions and it is typical of any theory of
gravity or compactification of String Theory in two dimensions; and, imagining the theory is sensitive
upon compactifications, these considerations apply to global symmetries in higher dimensions too.

Since the introduction of electrically (or magnetically) charged objects under a p-form global
symmetry ((p− 1)-branes, for example) does not generically guarantee the breaking of the symmetry,
another approach consists in an explicit breaking procedure by coupling a (d− p− 1)-form to the
p-form gauge potential by its field strength.
In this respect and still considering the previous setup, the violation of the global shift symmetry of
the 2-dimensional axion φ may be achieved by means of explicit breaking terms in the lagrangian
(preserving the discrete axion periodicity) as ∫

φX2, (3.19)

where X2 is (for instance) X2 = NF2 with N ∈ Z and F2 = dA1 (A1 being an ordinary 1-form gauge
potential). By uplifting to four dimensions, the axion can be seen as coming from the field B2 and
the coupling can be regarded as descendant of a 4-dimensional Stuckelberg coupling BF . Due to
this coupling the 2-dimensional axion φ acquires a potential or the 2-form B2 and the U(1) gauge
boson are massive. This breaks the axionic continuous symmetry and indeed the 2-form symmetry.
This breaking procedure is explicit and valid at any point in spacetime.
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However, there are many String Theory compactification examples where the quadratic (Stuckel-
berg) coupling terms BF are absent. If no alternative breaking mechanism could be found, String
Theory would apparently suffer from global symmetry problems. But in [17] a more flexible and
efficient seemingly generic mechanism of generalized global symmetry breaking has been proposed.
It is based on the existence of ubiquitous cubic Chern–Simons terms: they explicitly break the
symmetry and, even when the fields’ vacuum expectations render them apparently harmless, the
symmetry breaking occurs via localized bubble configurations within which the symmetry is broken.
By referring to the usual 2-dimensional setup with a 0-form symmetry for an axion, the leading
observation is that we can break the axionic shift symmetry by slightly modifying the BF -coupling
procedure thanks to Chern–Simons terms ∫

G0φF2, (3.20)

where G0 is a new non-dynamical field strength (which can be intended as the 2-dimensional dual of
another gauge field strength G2). The values of G0 are quantized and the theory contains membranes
under which G0 shifts by the integer N [12]. The theory contains different phases that are identified
by the coupling NφF2 for different integer values of N and the electrically charged particles coupled
to G0 (domain walls) separate these phases. The current j = dφ associated to the axionic shift
symmetry is now such that

d ∗ j = G0F2. (3.21)

If G0 = N 6= 0, the symmetry is broken. However, when G0 = N = 0, the Chern–Simons terms
don’t seem to play any role, leaving the symmetry unbroken. But it is possible to show that taking
into account Chern–Simons terms amounts to the inclusion in the path integral of configurations
with a localized bubble where G0 = N 6= 0. Within the bubble the U(1) gauge field is in a Higgs
branch eating φ through the coupling NφF2. In the BGHHS system the triple term∫

G0B2 ∧ F2 (3.22)

in the action allows the nucleation of bubbles within which the gauge field is Higgsed. Inside the
bubbles the value of the field B is quantized and it is related to the black hole charge modulo G0.
Whereas outside the bubble B could freely fluctuate, in the bubble it acquires a definite value and
this breaks the symmetry.

Extrapolating, Chern–Simons terms (giving rise to symmetry breaking bubble configurations)
provide an efficient (without leading to an IR divergent action, for instance) and seemingly generic
mechanism accounting for generalized global symmetry violation [17].
Convinced that for any global symmetry in String Theory it is always possible to find phases
in which the symmetry is gauged or broken and there are always domain walls connecting these
phases, M. Montero, A. Uranga and I. Valenzuela have recently proposed the following conjecture [17]
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Consistent theories of quantum gravity suffer from a Cherm–Simons pandemic, id est every con-
sistent theory weakly coupled to gravity with higher p-form potentials should have the appropriate
Chern–Simons terms, so that, independently on the compactification procedure, no global symmetries
survive in two dimensions.

This rule is supported by lots of examples in String Theory.
Exempli causa, it is interesting to consider the case of Kaluza–Klein (KK) photons. They are
protagonists of U(1) effective theories coming from a compactification and emerge from continuous
isometries of the internal manifold. These gauge bosons give rise to 1-form global symmetries and
the presence of the breaking Chern–Simons terms is not a priori guaranteed. However, it can be
shown that KK photons always exhibit the required Chern–Simons terms. In the context of type IIA
theories [7], let us concentrate on a KK compactification on M5 × S1 (where M5 is a 5-dimensional
manifold) to four dimensions and on a KK photon arising by moving from five to four dimensions on
S1. By compactifying on M5 we get a scalar φ defined as the period of the Ramond–Ramond field
C5 on M5; and then, by requiring that a general axion compactified on a circle (say, with radius R)
with a periodic coordinate (say, z) admits periodic boundary conditions φ(z + 2πR) = φ(z) + 2πN5,
the compactification on S1 gives a Stuckelberg lagrangian characterized by the coupling

Ndφ ∧ ∗A (3.23)

(with N =
∫
S1 dφ). Integration by parts allows to recognize a BF coupling between the KK

photon A and the Ramond–Ramond field C2, dual of φ in four dimensions. Moving to the T-dual
frame, the Stuckelberg coupling is induced by a cubic Chern–Simons term that has the structure
B2 ∧ F3 ∧ F5 in the original 10-dimensional action and leading to G0B2 ∧ F3, where G0 =

∫
M5

F5 in
five dimensions. This is indeed a coupling between the field B2, which usually accompanies gravity
in string compactification, and the dual field to the axion.
The general idea is that (in the dual frame) the Chern–Simons terms in the 10-dimensional action
involving the field B (which gives rise to the KK photon A by dimensional reduction) provide
Chern–Simons terms involving A in the 4-dimensional effective theory. In the original frame, the
appropriate Chern–Simons term (manifesting itself in the form of a Stuckelberg coupling) comes
from Scherk–Schwarz compactification of some Ramond–Ramond field.

The Montero, Uranga and Valenzuela’s rule is strongly motivated by the leading principle
according to which Chern–Simons terms are ubiquitous in String Theory; so, they may really
represent a generic characteristic of consistent quantum theories of gravity.
As a consequence, those theories that do not contain the suitable Chern–Simons terms belong to the
Swampland.
So, if the conjecture is true, it can be regarded as a new criterion by which Landscape effective
theories are distinguished by the Swampland ones.

A remarkable theory which is claimed to be in the Swampland by [17] is pure Einstein gravity in
d ≥ 4 dimensions.

5This is the so called Scherk–Schwarz ansatz; for a motivation we refer the reader to [21].
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Since the conclusion could be easily generalized to d > 4, let us focus on 4-dimensional pure gravity.
By compactifying on a torus T 2 a 2-dimensional axion φKK appears: it is the Wilson line associated
to the U(1) gauge boson AKK that emerges in the compactification to three dimensions on a circle
S1, when the compactification to two dimensions on the other S1 is performed. The 0-form symmetry
for the scalar φKK would require some Chern–Simons term for its violation, but it is absent in the
theory, making it inconsistent (according to [17]).
Anyway this inconsistency can be cured by modifying the theory with the inclusion of a 4-dimensional
axion φ. This allows to perform compactifications assuming the Scherk–Schwarz ansatz φ(z + 2π) =

φ(z) + 2πn so that eiφ has charge n under the KK photon and the gauge invariant quantity in
the dimensionally reduced theory is dφ− nAKK . This provides a mass for AKK and, after further
compactification to two dimensions, to the axion φKK too. The axionic shift symmetry is so broken.
This argument can be reformulated in terms of the Chern–Simons rule. By introducing the 2-
dimensional dual η to the axion φ there is a cubic coupling nηFKK (with FKK = dAKK), where
n has to be regarded as a geometric background flux. Even when n = 0, bubbles circumscribing
regions with n 6= 0 break the global symmetry.

According to Montero, Uranga and Valenzuela’s criterion also N = 8 Supergravity is proposed to
be in the Swampland, the reason being that the theory contains a 2-form gauge field giving rise to a
2-form generalized global symmetry without the Chern–Simons terms required to break it.
This argument supports what M. B. Green, H. Ooguri and J. H. Schwarz stated in [22], claiming
N = 8 Supergravity can’t be reached as a suitable decoupling limit of toroidally compactified String
Theory.
However, Montero, Uranga and Valenzuela’s argument has to be better understood and contextualized.
To propose some hints in order to do this, let us briefly comment on the structure of N = 8 Supergravity
(ignoring fluxes, at first).
In four dimensions N = 8 Supergravity is characterized, as far as its field content is concerned, by a
spin-2 graviton gµν , which carries 2 on-shell bosonic degrees of freedom; eight gravitini ψα[A]

µ (with
A running from 1 to 8), which have spin-3

2 and correspond to 16 = 8× 2 on-shell fermionic degrees
of freedom; twenty-eight spin-1 vector fields A[AB]

µ , which contribute with 56 = 28× 2 units to the
on-shell bosonic degrees of freedom of the theory; fifty-six spinors χ[ABC], which have spin-1

2 and
participate to the on-shell fermionic degrees of freedom of the model with 112 = 56× 2 units and by
seventy spin-0 scalar fields Φ[ABCD], which carry 70 on-shell bosonic degrees of freedom.
The symmetry group of N = 8 Supergravity is the exceptional group E(7) whose dimension is 133.
It has various non-compact realizations and that for which the group generators are organized in
63 compact and 70 non-compact generators allows to retrieve the representation associated to the
scalar fields Φ[ABCD], whose coset manifold is E(7)/SU(8) [23, 24].
N = 8 Supergravity in eleven dimensions is based instead on the fields GMN , CMNP and Ψα

M (with α
denoting 32 spinorial components). GMN carries 44 on-shell bosonic degrees of freedom6; the bosonic
on-shell degrees of freedom corresponding to the 3-form CMNP are given by the combinatorial factor(

9(=11−2)
3

)
= 84 and ΨM is responsable for 128 = (9− 1)× 16 on-shell fermionic degrees of freedom

6The calculation is performed by using the vielbeins eNM , where, in D dimensions, M and N assume (respectively)
D−2 values (because of gauge transformations) and D values. By taking into account the local Lorentz transformations
the degrees of freedom associated to eNM (and GMN ) are then (D−2)D− D(D−1)

2
and they are 44 in D = 11 dimensions.
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(by accounting for γ-matrices and the 32 spinorial components).
Even though the field content of N = 8 Supergravity in eleven dimensions is different from that of
N = 8 Supergravity in four dimensions, the counting of the on-shell degrees of freedom results in
both cases in 128 bosonic and 128 fermionic freedoms.
Having introduced the fields participating to the definition of N = 8 supergravity theories in four and
eleven dimensions, we can try to reduce the 11-dimensional N = 8 Supergravity to four dimensions
by compactifying it on a 7-dimensional torus (S1)7, playing the role of (flat) internal manifold.
The field GMN produces gµν , gµI and gIJ ; the field CMNP gives rise to CµνI , CµIJ and CIJK and
the field Ψα

M gives rise to ψα̂,Aµ and ψα̂,AI , where µ, ν = 0, ..., 3; I, J,K = 1, ..., 7; α̂ = 1, .., 4 and
A = 1, ..., 8. In four dimensions we then retrieve a graviton (gµν), eight gravitini (ψ

α̂,A
µ ), twenty-eight

vectors (gµI and CµIJ) and fifty-six spinors (ψα̂,AI ); but the scalar field content of the dimensionally
reduced 11-dimensional N = 8 Supergravity (made by the sixty-three scalar fields gIJ and CIJK)
doesn’t seem to reproduce the scalar field content of the 4-dimensional N = 8 Supergravity. However,
when led to four dimensions by compactification, in the spectrum of the 11-dimensional N = 8

Supergravity seven tensor modes (CµνI) appear. By exploiting duality symmetries and the consequent
fact that any massless tensor is equivalent to a scalar7, the spectra of the 4-dimensional N = 8

Supergravity and of the 11-dimensional theory can be identified.
Since in the 4-dimensional N = 8 Supergravity there are no 2-forms, Montero, Uranga and Valenzuela’s
statement can’t be strictly referred to such a theory. It can be raised (at most) in considering
the dimensional reduction to four dimensions on the torus (S1)7 of the 11-dimensional N = 8

Supergravity (where seven 2-forms appear) and a particular choice of duality frame: that in which
the 2-forms are dualized to scalar fields. The 2-forms of the 11-dimensional N = 8 Supergravity
are indeed involved in cubic couplings through their strength tensors but they do not define the
coupling structure required in [17] (with B2 and the strength tensors of other fields). This poses the
question whether the absence of appropriate Chern–Simons terms makes (pure) N = 8 Supergravity
(intended, as precised before) fall in the Swampland8. Reasonably, a deep and comprehensive study
of this problem can’t prescind from the analysis of generic duality frames and of the gaugings N = 8

Supergravity can be subjected to [25]. It is possible that turning on fluxes (which we have ignored
so far), referring to a generic duality frame and gauging some isometries of the 11-dimensional N = 8

Supergravity may deform the theory so that the appropriate Chern–Simons terms are obtained and
break the non-desired generalized global symmetries.

7Having in mind the compactification to four dimensions, the lagrangian density of the 11-dimensional N = 8
Supergravity can be schematically written as

F4 ∧ ∗F4 + F4 ∧ F4 ∧ C3

in terms of the 4-form F4 and the 3-form C3 and denoting with “∗ " the Hodge star operation. We can decide to
confine the seven internal indices to the coupling term F4 ∧F4 ∧C3 in such a way that one of them is associated to the
first F4, three of them are made correspondent to the second F4 and the other three internal indices are associated to
the form C3. We then obtain a cubic coupling whose structure is εµνρσεI1I2I3I4I5I6I7FµνρI1FσI2I3I4CI5I6I7 . Let us
write FσI2I3I4 as FσI2I3I4 = ∂σCI2I3I4 and FµνρI1 in the form FµνρI1 = ∂µBνρI1 . Since there are no fluxes turned on,
the 2-form B2 always appears accompanied by a derivative. After having introduced H3 = dB2, we can modify the
reference lagrangian density by adding the topological term H3 ∧ dΦ (with Φ a 0-form), which is a boundary term. By
passing through the equations of motion of H3, Φ can be made correspondent to H3. This correspondence founds the
duality relation between a massless tensor and a scalar.

8Of course, nothing forbids to refer to compactifications on internal manifolds that are not (S1)7. In such cases the
situation may be different and Montero, Uranga and Valenzuela’s argument may be overcome.
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The question on the possible belonging of N = 8 Supergravity to the Swampland appears to us still
open. Further work is required to really get a definite and conclusive statement.

3.2 The Weak Gravity Conjecture

Another relevant and challenging criterion to try to chart the Swampland is the Weak Gravity

Conjecture (WGC).
In its most familiar and best understood formulation involving a U(1) gauge field it can be stated as
follows [26]:

Consider a theory, coupled to gravity, with a U(1) gauge symmetry (whose gauge coupling is g) in
four dimensions

S =

∫
d4x
√
−g
[
M2
P

2
R− 1

4g2
FµνF

µν + ...

]
. (3.24)

Electric WGC. There exists a particle in the theory with mass m and charge q satisfying the inequality

m ≤
√

2gqMP . (3.25)

Magnetic WGC. The cutoff scale Λ of the effective theory is bounded from above approximately by
the gauge coupling as

Λ . gMP . (3.26)

By making reference to black hole physics (in particular) we would like to motivate this statement.
Let us consider a black hole with mass M and charge Q under a U(1) gauge symmetry (in four
dimensions). The black hole (M ,Q) is meant to be the solution of the Einstein’s equations expressed
by

ds2 = −f(r)dt2 + f(r)−1 dr2 + r2(sin2 θdθ2 + dφ2) (3.27)

with

f(r) = 1− 2MBH

r
+

2g2Q2

r2
, (3.28)

where MBH is MBH = GNM (GN being the Newton’s constant); g is the gauge coupling constant
and coordinates (t,r,θ,φ) adapted to an observer at infinity are used.
Since f(r) is quadratic, there are two horizons located at

r± = MBH ±
√
M2
BH − 2g2Q2. (3.29)

To make the previous solution a black hole, the extremality bound

M2
BH ≥ 2g2Q2 (3.30)
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has to be satisfied. When the bound is saturated, the black hole is said to be extremal, meaning
it has the minimal mass to admit a horizon, once its charge Q has been fixed. A violation of the
extremality bound leads to a naked singularity; but naked singularities are thought not to be there
according to the Cosmic Censorship [27].
Let us suppose that the black hole (M ,Q) is extremal; indeed, M = Q in appropriate units (where
the reduced Planck mass MP has been set to 1). This black hole can loose mass thanks to Hawking
radiation and discharge through an analogous process made possible by the field around the horizon
that the black hole’s charge induces [15,16]. The two main discharging processes are the thermal one,
occurring when the black hole’s Hawking temperature is greater than the mass of the particles the
black hole is discharging in; and the Schwinger pair production one which is relevant for extremal or
near extremal black holes. While evaporating, the black hole emits particles with mass and charge
(mi,qi).

Figure 3.1 [7]:
The figure shows a black hole’s evaporation and discharge processes. A pair of charged particle and antiparticle
are produced in the electric field outside the black hole; for instance, the antiparticle crosses the black hole’s
horizon and the particle escapes.

For the black hole to remain a black hole while evaporating, step by step in the emission process the
mass of the black hole should be greater or equal to its charge. Moreover, the decay of the charged
black hole is constrained by energy and charge conservation (M ≥

∑
imi and Q =

∑
i qi) such that

M

Q
≥
∑

imi

Q
=

1

Q

∑
i

mi

qi
qi ≥

m

q

∣∣∣
min

. (3.31)

As a consequence of the relation (3.31), we can argue the existence of at least a particle whose
charge-to-mass ratio is greater or equal than that of the black hole. By exploiting then the extremality
condition (hence M = Q) we constrain further these particles to be such that gravity acts as the
weakest force on them (since m ≤ q).
The weakness of gravity with respect to the other interactions is really the physical principle behind
the WGC.
To further motivate the conjecture as a Swampland criterion, let us try to understand what happens
if we set the electromagnetic force to be weaker than the gravitational one for the particle(s) with
the largest charge-to-mass ratio in the theory.
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Attracting rather than repelling, such two WGC particles would form a bound state. Because of
energy and charge conservation, the energy of the bound state would be smaller than 2m and its
charge would be exactly 2q. Having a charge-to-mass ratio larger than the charge-to-mass ratio
of the particle(s) with the largest charge-to-mass ratio in the theory, the bound state just formed
couldn’t discharge emitting particles: it would be stable. By adding more and more particles, since
they attract each other, it would be possible to produce stable bound states with arbitrary charge.
These (m,q) particles’ bound states can be weakly coupled and are stable due to their charge. Even
though the comprehension of what goes wrong with them microscopically is still an open question,
it is sensible not to expect the existence of such bound states.
These observations provide sensible evidence for the Electric WGC.
Let us now come back to black holes and try to distinguish the cases in which they are charged
under a global or gauged U(1) symmetry.
As already mentioned, in the presence of a U(1) global symmetry we can in principle create an
infinite number of black hole states with an arbitrary global charge and the same finite mass. Instead,
as far as a U(1) gauge symmetry is concerned, the number of states below a given energy scale is
finite due to the extremality bound (which implies that any charge increase corresponds to a mass
increase for an otherwise naked singularity to be shielded). Once a mass scale Λ has been fixed, the
number of possible black holes NBH is

NBH =
Λ

gMP
. (3.32)

The entropy based argument presented in Subsection 3.1 against global symmetries no longer
works for gauge interactions: in fact, at least theoretically, it is possible to measure the black hole’s
charge thanks to the flux of the gauge field.
However, the relation (3.32) gives interesting constraints in the limit g → 0. In this case, NBH

diverges and it becomes impossible to determine the black hole’s charge, because there is no more
flux emanating from it. In other words, when the gauge coupling of a gauge symmetry is sent to
zero, the circumstance where a global symmetry is in the game is retrieved. This naturally inspires
the elaboration of a statement expressing how Quantum Gravity (QG) opposes to the continuous
flow (in the couplings’ space) towards the forbidden global symmetry limit. If we agree with the
argument against global symmetries in QG, we have to accept the black hole argument against the
vanishing gauge coupling limit of a gauge symmetry9.
Thanks to the above considerations the Magnetic WGC arises.

As it can be perceived by intuition from what has been presented so far, the Electric WGC
suggests the study of black holes’ discharge processes.
It is an open question whether the black holes’ discharge can be considered a good condition to
chart the Swampland and so if charged black holes must be able to decay or not. In this respect,
showing that stable charged black holes at a given energy scale (which can be, for instance, the scale

9Let us notice that making this argument quantitative is rather difficult. The infinite amount of time requested to
measure precisely the black hole’s charge (the sphere measuring the flux is at infinity) is an obstacle to the desired
quantification. For small gauge couplings the uncertainty on the black hole’s charge becomes larger and larger and so
the Bekenstein–Hawking entropy may be violated.
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that the Magnetic WGC fixes [7]) carry an intrinsic inconsistency would amount to a proof of the
Electric WGC.
When dealing with charged black holes, it is interesting to note that they may have a self-instability
and therefore no charged particle is requested in order for them to decay. In other words, it is
possible that a charged black hole discharges in smaller charged black holes.
For instance, a charged black hole (M ,Q) with horizon area A can bifurcate in two charged black
holes (M1,Q1) and (M2,Q2) with horizon areas A1 and A2 (respectively) if

M1 = M2 =
M

2
; Q1 = Q2 =

Q

2
(3.33)

and (consequently) A = A1 + A2, saturating the constraints A ≥ A1 + A2, M ≥ M1 + M2 and
Q = Q1 +Q2 and representing (in this particular case) a decay without the emission of gravitational
waves.
Such a cascade of a charged black hole’s bifurcations can be followed down towards the Planck scale
and problems such as those related to black hole entropy bounds arise.
Considering Einstein–Maxwell theory and including some other massive structure, the low-energy
effective theory receives corrections from higher derivative terms, which come out of the integration
on the massive structure itself. In this context, there are examples in which extremal black hole
solutions do not saturate any more the inequality (3.30) (or (3.25)). The possible success of the
efforts in showing that the higher derivative terms increase the charge-to-mass ratio of black holes
would amount to prove a formulation of the WGC where the state is a black hole and that can’t
be valid indeed in the regime in which the state is a particle. In some cases, the structure of the
higher derivative terms has been found to be coherent with the idea that the charge-to-mass ratio
of extremal black holes is raised above one. This has been recently shown by using arguments of
scattering amplitudes’ positivity in [10], where also a S-matrix proof of (a weak version of) the
WGC has been provided. Anyway, further work on this line of research is still needed.

These last observations (and [10] too) suggest one of the subtleties of the conjecture that we have
proposed at the beginning of this chapter. We have formulated it using the word particle meaning a
state whose mass is below the Planck scale; in spite of this, the conjecture may be referred to states
which are much heavier than MP ; they can be regarded as extended objects such as black holes10.
Another criticism of the statement under analysis is then that the action S ((3.24)) doesn’t fix the
gauge coupling by itself; the g normalization is given by choosing the gauge field normalization to
have canonical coupling to matter currents.
Finally, the meaning of the cutoff scale Λ (in (3.26)) is not really made clear by the proposed
criterion; as we will explain in the following dealing with the Swampland Distance Conjecture, Λ

can be interpreted as the mass scale of an infinite tower of states.
However, before doing this, let us skip to study a refinement of the WGC that will be useful for

later purposes.

10This is coherent with the fact that we are motivating a weak version of the WGC: rather than referring to
the lightest object in the theory, we are claiming that the conjecture is satisfied by those states with the smallest
mass-to-charge ratio. As it seems natural, more evidence favouring the weak version of the WGC rather than the
strong one can be provided [10,26]
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3.2.1 A refinement of the Weak Gravity Conjecture

Let us now study a Swampland criterion that is profoundly inspired by the Weak Gravity
Conjecture and can be considered a refinement of it; it is a stronger condition than the WGC itself
and requires additional assumptions.

The Weak Gravity Conjecture for dyons with θ-angle

Dyons are objects that carry both electric and magnetic charge; they can be considered funda-
mental particles of a given theory if the mutual locality condition is satisfied11; otherwise, they must
be described like an electric particle and a monopole soliton.
Let’s consider the action

S =

∫
d4xL =

∫
d4x
√
−g
[
M2
P

2
R+ IIJF

I
µνF

J,µν +RIJF
I
µν ∗ F J,µν

]
, (3.34)

where the index I (as well as J) runs over the (N) U(1) gauge fields with electric field strengths F Iµν ;
the “ ∗ " denotes the Hodge star operation

(
∗Fµν = 1

2εµνρσF
ρσ
)
and IIJ and RIJ are the (symmetric)

gauge kinetic matrix and the (symmetric) CP -violating θ-angle matrix.
If RIJ 6= 0, the magnetic field strengths can be introduced as [7]

GI,µν = RIJF
J
µν − IIJ ∗ F Jµν . (3.35)

The electric and magnetic charges of the particles in the theory are defined (by using a differential
form notation) in terms of fluxes passing through a sphere at infinity as

QI =
1

4π

∫
S∞
∗F I ; P I =

1

4π

∫
S∞
F I (3.36)

and can be grouped in the vector

Q =

(
P I

QI

)
.

In terms of the quantized charges

QZ =

(
pI

qI

)
∈ Z× Z

Q is given by

Q =

(
P I

QI

)
=

(
pI

(I−1Rp)I − (I−1q)I

)
. (3.37)

11For instance, two dyons (q,p) and (q′,p′), identified by their electric and magnetic charges, are said to be mutually
local if qp′ − q′p = 0
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The charge vector QZ transforms under the symplectic group Sp(2N,Z) such that [28]

QZ −→ Q′Z = SQZ (3.38)

where S ∈ Sp(2N,Z).
In order to construct invariant quantities under symplectic transformations a matrix U expressed

in terms of the gauge kinetic matrix and the CP -violating θ-angle matrix can be introduced [28]: it
is defined as

U =

(
I +RI−1R −RI−1

−I−1R I−1

)
.

The combination

Q2 = −1

2
QTZUQZ (3.39)

is then invariant under the action of the symplectic group Sp(2N,Z).
By making use of Q2 the Weak Gravity Conjecture for a theory whose particles are dyons

can be formulated as follows [8]:

A theory, coupled to gravity, with multiple U(1)s, with gauge kinetic matrix IIJ and CP -violating
θ-angle matrix RIJ (so with an action as (3.34)) should have a particle with mass m satisfying the
inequality

Q2M2
P ≥ m2. (3.40)

A first check of this statement comes from the observation that for an electrically charged particle
in the presence of a single U(1) gauge symmetry Q2 = 2g2q2 and the (4-dimensional) bound (3.25)
is restored.
Moreover, by interpreting (as it seems sensible to do) Q2 as the strength of the repulsion between two
dyonic particles and m2 as their attraction, the inequality (3.40) coherently expresses the weakness
of gravity. It is also interesting to note that dyonic black hole solutions referred to the action (3.34)
satisfy the extremality bound M2

BH ≥ Q2M2
P ; but, characterizing the particles such black holes

decay in is a complicated task.

3.3 The Swampland Distance Conjecture

Beside the Weak Gravity Conjecture, another relevant criterion the Landscape can be distilled
out by the Swampland through is the Swampland Distance Conjecture (SDC).
It can be formulated in the following way [29]:
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Consider a theory, coupled to gravity, with a moduli space Mφ which is parametrized by the expectation
values of some fields {φi}i which have no potential. Starting from any point P ∈ Mφ there exists
another point Q ∈ Mφ such that the geodesic distance between P and Q, denoted as d(P,Q), is
infinite. Moreover, there exists an infinite tower of states with an associated mass scale M such that

M(Q) ∼M(P )e−αd(P,Q), (3.41)

where α is some positive constant.

The structure of the moduli space Mφ appearing in the conjecture can be depicted as Figure
3.2 does.

Figure 3.2 [7]:
This figure illustrates schematically the structure of a string moduli space. The distance from any point P in
the bulk to any point Qi or Q′

i is infinite. Mlightest denotes the mass scale of the lightest tower of states in
the theory: it goes to zero at any point Q. The points Qi and Q′

i are related by duality and the light towers
of states are interchanged between them.

As it is explained below, support to this statement is given by referring to String Theory and
String Theory compactification.

It is known that the characterization of the geodesic motion of a point-like particle in an arbitrary
frame within a spacetime which is not necessarily flat is given by the Polyakov action

SP = −1

2

∫
γ
dτ
√
−γττ

[
γττ

dXµ

dτ
gµν(X)

dXν

dτ
+m2

]
, (3.42)

where Xµ are the spacetime coordinates; gµν(X) is the spacetime metric; γ is the τ parameterized
world-line of the particle (of mass m, including m = 0) we are studying the motion of and γττ is the
metric on its world-line.

The action (3.42) can be easily generalized to the description of the geodesic motion of extended
objects such as strings. A string sweeps out a world-sheet Σ which is parameterized by two coordinates
(σ, τ). Indeed,

Σ : (σ, τ) −→ Xµ(σ, τ) ∈ R1,D−1, (3.43)

being 0 ≤ σ ≤ 2π with σ = σ + 2π (as far as closed strings are concerned) and τ ∈ R.
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By denoting by (ξa)a=0,1 = (σ, τ) the string world-sheet coordinates, the string dynamics is described
by the Polyakov action

SP = −T
2

∫
Σ

d2ξ
√
−deth hab(ξ)∂aX

µ∂bX
νgµν , (3.44)

where hab is the metric on the string world-sheet and T is the string tension, T = 1
2πα′ (with α

′ the
square of the string length).
The action (3.44) defines a two-dimensional theory with scalar fields Xµ(ξ) parameterizing the
spacetime (called target-space) in which the string propagates.
By making use of (3.44)’s invariance under local diffeomorphisms ξa −→ ξ̃a(ξ) and Weyl transfor-
mations δXµ = 0 and hab −→ h̃ab = e2Λ(ξ)hab and so moving to the flat gauge; once the light-cone
coordinates (ξ± = τ ± σ) have been introduced, the quantization of the string can be performed
quite straightforwardly. The string spectrum can be characterized too: it consists of a tachyonic
mode; the massless symmetric tensor gij , called graviton; the Kalb–Ramond field Bij , which is an
antisymmetric traceless tensor; a massless scalar (called dilaton) Φ and massive oscillator string
modes. By requiring then the conservation of the target-space Lorentz invariance at quantum level
the quantum bosonic string appears to be consistent only in D = 26 dimensions ( [7]).
When supersymmetry enters the game, the tachyonic mode of the bosonic string disappears and the
number of dimensions a superstring is consistent upon is reduced to D = 10 ( [7]).
The fact that the bosonic string and the superstring live in D = 26 and in D = 10 dimensions
(respectively) is inconsistent with the observed Universe. To solve this contradiction it can be
thought that the additional (or extra) dimensions are compact and small such that they can’t be
perceived. This is the basic principle behind string compactifications.

Let us consider a (D = d + 1)-dimensional spacetime and a compactification on a circle: the
spatial direction Xd is taken to be compact on the shape of a circle. By working in Planck units
Md
P = 1 (and so by making masses and lengths adimensional), the Xd periodicity can be fixed by

Xd ' Xd + 1. (3.45)

We are interested in studying the effective theory in the d non-compact dimensions. The metric on
the D-dimensional spacetime can be written as a product metric as

ds2 = GMN dXMdXN = e2αφgµν dXµdXν + e2βφ(dXd)2 (3.46)

whitM,N = 0, ..., d and µ, ν = 0, ..., d−1. The metric contains a parameter φ which can be regarded
as a d-dimensional scalar field. The constants α and β are such that

β = −(d− 2)α; α =
√

2

(
d− 1

d− 2

) 1
2

(3.47)

to make (the Ricci sector of) the D-dimensional action∫
dDX

√
−G e−2ΦRD, (3.48)
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in which Φ is the dilaton and RD is the Ricci scalar in D dimensions, to (dimensionally) reduce to

∫
ddX
√
−g
[
Rd − 1

2
∂µφ∂

µφ

]
, (3.49)

where φ is canonically normalized. The circumference of the circle Xd is constricted on is given by

2πR =

∫ 1

0

√
Gdd dXd = eβφ. (3.50)

It turns out that the radius R is a dynamical field in d dimensions. It is therefore interesting to
study the behaviour of the d-dimensional theory under variations of the size of the compactification
circle, which amount to variations of the field φ’s expectation value.
Let us consider now a massless D-dimensional scalar field Ψ and decompose it as

Ψ(XM ) =

+∞∑
n=−∞

ψn(Xµ) e2πinXd
, (3.51)

by exploiting the fact that the Xd periodicity translates into the periodicity of Ψ along Xd. The
mode ψ0 is called zero-mode, whereas the {ψn}n are named as the Kaluza–Klein (KK) modes.
By assuming (for simplicity) gµν = ηµν

12; by noting the quantization of the momentum along Xd

− i ∂

∂Xd
Ψ = 2πnΨ (3.52)

(with n ∈ Z) and by passing through the equation of motion for Ψ

∂M∂MΨ = 0, (3.53)

the mass of the KK modes can be extracted

M2
n =

( n
R

)2
(

1

2πR

) 2
d−2

. (3.54)

The d-dimensional theory has a massive tower of states with increasing mass, called the KK tower.
If gaining evidence on the KK tower of states has involved field theory considerations, it is interesting
to move to String Theory and to the analysis of strings on a circle of radius R. Having in mind the
string quantization and the adoption of light-cone coordinates, the spacetime coordinates XM can
be decomposed in right and left movers along the string

XM = XM
L (ξ+) +XM

R (ξ−) (3.55)

with (in principle) independent momenta pML and pMR .
In the string frame, where part of the reference action is of the kind of (3.48) with a common function
of the dilaton multiplying the Ricci sector (and the matter one too), we then impose

12ηµν is the flat metric; by convention the signature ηµν = diag(−1,+1, ...,+1) is adopted in this chapter.
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Xµ
(s)(σ + 2π, τ) = Xµ

(s)(σ, τ) (3.56)

for the non-compact directions and

Xd
(s)(σ + 2π, τ) = Xd

(s)(σ, τ) + ω2πR (3.57)

(with ω ∈ Z) for the circle a winding string is wrapping around.
By exploiting the relations

pµL = pµR;
α′

2
(pdL − pdR) = ωR (3.58)

the spectrum of the string in such a background can be built. In the Einstein frame, where the
metric is scaled such that there is no dilaton function multiplying the Ricci scalar (and the matter
action) in a reference action starting as (3.48), the spectrum is

M2
n,ω =

(
1

2πR

) 2
d−2 ( n

R

)2
+ (2πR)

2
d−2

(
ωR

α′

)2

(3.59)

with Md
P = 1. There, not only the KK tower can be recognized but also another tower of states

manifests itself: this is the winding modes’ tower.
Having characterized the spectrum of states of the d-dimensional theory, we would like to study how
it changes under variations of the expectation value of the field φ.
The expectation values of φ sweep out a space Mφ which, in the special example we are treating,
has an infinite real dimension.
Energy scales can be associated to the two towers of states that the theory exhibits, the tower of the
Kaluza–Klein modes and the winding modes’ tower. In particular, we have

MKK ∼ eαφ; Mω ∼ e−αφ, (3.60)

α being a O(1) parameter.
After having introduced ∆φ = φf − φi, we can state that for any ∆φ there exists an infinite tower of
states with mass scale M that becomes light at an exponential rate in ∆φ:

M(φi + ∆φ) = M(φi)e
−α|∆φ|. (3.61)

In the attempt of understanding such behaviour as deeply connected to String Theory it is worth
noting that the KK tower and the winding modes’ one are strictly related. There is a Z2 symmetry,
called T-duality, which interchanges them. This is manifest in the string frame when substituting R
with α′

R and viceversa. The dual KK tower and the winding modes’ tower of states are such that the
product of their mass scales is independent on φ and, whatever being the sign of ∆φ, one of the two
towers becomes lighter and lighter proceeding towards infinite distances in the parameter space Mφ.
When |∆φ| −→ +∞, an infinite number of states becomes massless and therefore the d-dimensional
effective description of such a locus of Mφ breaks down.
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Figure 3.3 [7]:
The figure shows in a log-plot the mass scales for the towers of Kaluza–Klein and winding modes as functions
of the field φ’s expectation value. Because of T-duality the figure is symmetric.

Extrapolating, within the study of the spectrum of an effective theory coming from String Theory,
it is quite natural to expect many towers of states which are mutually dual. Because of such a
duality, when moving in the moduli space of the theory, the product of the mass scales of two dual
towers is constant and one of them should become light in any direction. This implies that an
Effective Field Theory with a cutoff scale Λ below the mass scale of an infinite tower of states could
have only a finite range of validity in the parameter space.
These arguments can be well regarded as a motivation to the formulation of the SDC we have
proposed at the beginning of the chapter.
However, it is worth noting that statement is strongly influenced by String Theory and, as a
consequence, it may not be applied in more general circumstances: for instance, the existence of
points at infinite distance in the parameter space is not as immediate as it could seem.

We would like to reformulate the previous version of the SDC ((3.41)) trying to generalizing it.
In order for this purpose to be achieved the starting point is a more detailed discussion concerning
the moduli space Mφ.
Let us consider the action

S =

∫
ddX
√
−g
[
Rd − gij∂φi∂φj + ...

]
, (3.62)

where the expectation values of the fields {φi}i=1,...,dimRMφ
(with no potential) are coordinates of

the moduli space Mφ, whose metric is gij .
A point P ∈Mφ is fixed by specifying the expectation vales of the fields {φi}i.
The geodesic distance between two such points P and Q is defined as

d(P,Q) =

∫
γ
ds

(
∂φi

∂s
gij
∂φj

∂s

) 1
2

, (3.63)

being γ the shortest geodesic connecting P and Q and ds the line element along γ.
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In the first formulation of the SDC that we have given it is stated that for any point P ∈Mφ there
exists a point Q ∈Mφ at infinite distance. This is the case for a moduli space such as Mφ = R (as
already observed); but if Mφ = S1 (for example) the conjecture does not apply; and this occurs even
though periodic moduli are allowed in Quantum Gravity. To solve this apparent contradiction the
idea is that periodic scalar fields have to be thought of as part of a larger parameter space: they are
not the only fields defining the moduli space of the theory.
Having in mind String Theory compactification on a circle, we have been led to (3.61). However this
relation can’t be expected to hold generically in the moduli space of a theory of quantum gravity.
For instance, if we consider a periodic direction φ̂ in the moduli space, the mass scale M is a periodic
function of φ̂, M(φ̂+ 2π) = M(φ̂); so, for any point P there is a point Q such that d(P,Q) > 0 and
M(Q) ≥M(P ).
In spite of the complicated geometry that can characterize the moduli space, its basic structure can
be depicted as Figure 3.2 schematically does.
On such a background the SDC has to be intended as a statement about what happens in the
asymptotic regions of the parameter space Mφ. The construction of the conjecture is therefore
animated by the question on what the magnitude of d(P,Q) should be in order for the exponential
behaviour of a tower of states’ mass scale to be a good approximation for any starting point P .
In principle, this would also lead to a bound on the value of α: if α � 1, it is possible to have
d(P,Q) � 1 (in Planck units) without a relevant change in the tower mass scale. Although, no
precise statements which constrain α have been formulated yet and α is considered to be of O(1).

Trying to summarize all these refining arguments in a single statement we can propose the
following refined version of the Swampland Distance Conjecture [30, 31]:

Consider a theory, coupled to gravity, with a moduli space Mφ which is parametrized by the expectation
values of some fields that have no potential. Let the geodesic distance between any point P ∈ Mφ

and another point Q ∈Mφ be denoted by d(P,Q). There exists an infinite tower of states with mass
scale M such that

M(Q) < M(P )e
−αd(P,Q)

MP (3.64)

if d(P,Q) &MP . Moreover, the previous statement holds not only for moduli but also for fields with
a potential, where the moduli space is replaced by the field space of the effective theory.

Before concluding this section, let us note that the first part of the conjecture is related to the
original one but different because of the sharp sign characterizing (3.64). With respect to (3.61) the
mass scale M is allowed to decay faster than exponentially in d(P,Q). Another distinction is made
by the tight condition on d(P,Q): the exponential behaviour sets in at 1-2MP , whereas it is not
really a good approximation at distances of (say) 10MP . As a consequence, before the exponential
decrease the behaviour has to be such that the mass scale doesn’t increase too much. As an aside
remark, let us observe that this actually poses an implicit constraint on α.
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The second part of the conjecture is instead different from its original formulation because it
accounts for the possibility that the fields are subjected to a potential. The construction of a field
distance conjecture for fields with a potential has as a crucial prerequisite the formulation of a precise
statement on finite distances. In fact, it is not clear if an asymptotic point at infinite distance exists
within the effective theory and it can be shown that the cutoff Λ of the effective theory bounds the
fields {φi}i to be such that V (φ)

1
4 < Λ.

3.4 The de Sitter Conjecture

At the beginning of 20th century the first steps for the construction of a scientific theory describing
the Universe and its properties were accomplished. Since there were no well-structured empirical
basis to found these theories upon, some leading principles were adopted.
Having in mind that it is possible to reduce the degrees of freedom of a system by exploiting
symmetries, the Cosmological Principle was formulated to model the Universe, its kinematics and
its dynamics. It states that

Any comoving observer observes the Universe around itself at (cosmic) time fixed (in its reference
frame) to be isotropic and homogeneous on average.

An observer is said to be comoving if it moves integrally with the source of the geometry of the
Universe. Practically, a comoving observer is one that measures the Cosmic Microwave Background
(CMB) to be isotropic at per million level (and so apart from the intrinsic anisotropies)13. The cosmic
time is the proper time of comoving observers. The properties of average isotropy and homogeneity
are referred to the mass-energy distribution on great scales, when observing the Universe with small
spatial resolution. The hypothesis of isotropy is confirmed (at an appropriate precision level) by
experiments revealing CMB or the abundance of elements such as Helium or measuring the isotropy
in the statistic properties in the scattering of galaxies. On the contrary, because of our limited
ability in the direct exploration of the Universe, the hypothesis of homogeneity can’t be tested
experimentally on large scales and has to be posed. To understand the hypothesis of homogeneity in
the part of the Universe we have in principle access to a principle of General Relativity can be used:
it claims that isotropy around any (comoving) observer at time fixed is equivalent to homogeneity.

The Cosmological Principle is an abstract statement that is not actually realistic, but it is really
helpful in writing down the equations governing the dynamics of the Universe itself.

The Universe is composed by a four-dimensional spacetime with a maximally symmetric three-
dimensional space. Spatial rotations and translations surviving as invariance properties, the cosmo-
logical spacetime symmetry group has six generators. With respect to Minkowski spacetime, because

13Around the end of the ′60s and the beginning of the ′70s a dipole anisotropy of CMB (whose mean temperature is
2.725K) was measured: CMB is “hotter" along a direction and “colder" in the opposite one, at per mill level. The
Earth is not a comoving reference frame with respect to the average mass-energy distribution of the Universe; and
even taking into account the motion of the Earth around the Sun, of the Sun referred to the center of mass of our
Galaxy and of the Milky Way with respect to the Local Group of Galaxies, a residual dipole anisotropy remains: it
can be interpreted as the result of the Doppler Effect due to the velocity of the Local Group relative to an observer
moving with CMB. This velocity is estimated to be 600Km/s.
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the Universe is expanding and there is a privileged reference frame (that of comoving observers)
due to the presence of cosmic matter and energy, time translation invariance and Lorentz boost
invariance are lost as symmetries.
Coherently with the Cosmological Principle the geometric properties of the Universe are described
thanks to the so called Robertson–Walker’s metric that can be expressed as

ds2 = c2dt2 − a(t)2

[
dr2

1− kr2
+ r2dΩ2

]
, (3.65)

whit dΩ2 = sin2 θdθ2 + dφ2, (t,r,θ,φ) being the coordinates adapted to a comoving observer. The
coordinate r is adimensional and k is an adimensional constant that can take three values: −1, 0

or +1. They correspond to the three equivalence classes of (would be) geometries of the Universe:
k = −1 stands for the infinite set of open and negative curvature spaces; k = 0 denotes the case
of a spatially flat universe and k = +1 groups the infinite class of close and positive curvature
spaces. The factor a(t) (which has the dimensions of a length) allows to describe the expansion or
the contraction of the Universe and is named scale factor.

After having chosen (3.65) as spacetime metric, Einstein’s equations

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (3.66)

(where gµν is the metric, Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is strength energy
tensor) result in the so called Friedman’s equations

ȧ2

a2
=

8πG

3
ρ− kc2

a2

ä

a
= −4πG

3

(
ρ+ 3

P

c2

)
ρ̇ = −3

ȧ

a

(
ρ+

P

c2

)
(3.67)

(denoting with the “ · " the derivative with respect to the cosmic time)14.
In (3.67) ρ and P are the energy density and the isotropic pressure of the constituents of substance
of the Universe. They can be modelled as perfect fluids characterized by the equation of state

P = wρc2, (3.68)

w being a constant depending on the constituent.
By evaluating the first of the equations in (3.67) ignoring the spatial curvature term, a critical

energy density

ρc(t) =
3H(t)2

8πG
(3.69)

(where H(t) = ȧ
a is the Hubble parameter) can be defined. With ρc the measurable quantity

Ω(t) =
ρ(t)

ρc(t)
(3.70)

14a is different from 0 at any time after the Big Bang, if the Big Bang occurred.
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can be introduced: Ω(t) is the density parameter at cosmic time t. The Planck Mission managed to
estimate the deviation from 1 of the total density parameter of the Universe “today" (at t0). It is

Ωtot(t0)− 1 = −0.001± 0.002. (3.71)

When Friedman’s equations were written down first, scientists thought that the Universe was made
of ordinary matter. Then, after the surprising observation and analysis of the rotational curves of
spiral galaxies (at the beginning of the ′70s), the existence of another constituent, called dark matter
(DM), was proposed (and confirmed later on by solid evidence coming, for example, from the study
of nucleosynthesis processes and the formation of clusters of galaxies).
By consistency between theory and experiments, Ωmatter(t0) can be fixed to be Ωmatter(t0) ∼ 0.0515

and ΩDM (t0) can be set to be ΩDM (t0) ∼ 0.25. If one accounts for these components of substance
only, the trustful experimental result (3.71) can’t be reproduced.
The inclusion of radiation (CMB) and massive neutrinos which contribute with Ωradiation(t0) ∼ 10−5

and Ωneutrinos(t0) ∼ 10−4 (respectively) to the evaluation of the energetic budget of the Universe
doesn’t solve the problem.

The analysis of the anisotropies of CMB seem then to suggest the existence of another constituent
of the Universe: it is named dark energy (DE).
As for dark matter, we don’t know what dark energy really is. A way to interpret dark energy was
unwillingly given by Einstein.
At the beginning of the 20th century the scientific community was debating on the staticity of the
Universe: the majority of scientists (and Einstein too) thought that the Universe was static and
only a few were convinced that the Universe had to be dynamic.
If the Universe is composed by matter (as it was originally believed), a static universe can’t be
regarded as a solution of Einstein’s equations. This can be easily seen by requiring P = 0 (for
matter) and ȧ = ä = 0 in (3.67).
Having noticed that and afraid of the fact the static universe couldn’t be a solution of his equations,
Einstein decided to modify them. He proposed

Gµν − Λgµν =
8πG

c4
Tµν , (3.72)

where Λ is the so called cosmological constant.
Einstein introduced the cosmological constant as a modification of the Universe spacetime geometry.
By moving Λgµν to the right hand side of (3.72), the cosmological constant term can be intended (a
posteriori) as an ingredient participating to the definition of the substance content of the Universe.
In this respect, the original strength energy tensor Tµν = diag(ρ,−P,−P,−P ) has to be substituted
with T̃µν = diag(ρ̃,−P̃ ,−P̃ ,−P̃ )16, where

ρ̃ = ρ+
Λc2

8πG
; P̃ = P − Λc4

8πG
. (3.73)

15In order for the abundance of elements (such as He4, Li3, H3 or H2) in the Universe to be as observations state,
the theory of nucleosynthesis imposes that 0.011 < Ωmatter(t0) h2 < 0.025, where h is a constant giving H(t0) as
H(t0) = 100h(km/s)/Mpc.

16This, in the convention ηµν = diag(+1,−1,−1,−1).
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If one repeats the calculation that has led to (3.67) from Einstein’s equations with Tµν for the
modified strength energy tensor T̃µν , Friedman’s equations

ȧ2

a2
=

8πG

3
ρ̃− kc2

a2

ä

a
= −4πG

3

(
ρ̃+ 3

P̃

c2

)
˙̃ρ = −3

ȧ

a

(
ρ̃+

P̃

c2

)
(3.74)

are obtained. They are the analogue of (3.67) but with the replacements ρ −→ ρ̃ and P −→ P̃ .
Convinced that a static universe should exist, Einstein required P = 0 (for matter) and ρ̇ = ȧ = ä = 0

and found the desired static solution corresponding to a closed universe with the cosmological constant
given in terms of the scale factor as Λ = 1

a2
. But Friedman noticed soon that this solution was

unstable and Einstein claimed that the introduction of the cosmological constant was the greatest
mistake of his life.

As already mentioned, even though Einstein’s idea of the cosmological constant was profoundly
wrong, the cosmological constant can be regarded as a constituent of the Universe. More precisely,
dark energy can be described as a cosmological constant participating to the energy budget of the
Universe today with ΩDE(t0) ∼ 0.70 (as the study of the CMB’s anisotropies and the analysis of
how galaxies group together indirectly suggest).

The recent cosmological observation of the CMB and the experimental data relative to the spectra
of Supernovae of Type IA allow to conclude that our Universe is entering a phase of accelerated
expansion [32–34]17. Since an ordinary matter or dark matter distributions give rise to an attractive
gravitational field, in order to have

ä > 0 (3.75)

the second Friedman’s equation requires an exotic substance, whose isotropic pressure is (sufficiently)
negative

P < −1

3
ρc2. (3.76)

Dark energy in the form of the cosmological constant plays this role: in fact, it satisfies

PDE = wDEρDEc
2 = −ρDEc2 (3.77)

(as it can be deduced from (3.73)).
In the presence of the cosmological constant only and so imposing P = ρ = 0, the relevant

Friedman’s equations (3.74) become

ȧ2

a2
=

Λc2

3
− kc2

a2

ä

a
= −Λc2

3
. (3.78)

If, for simplicity, the spatial curvature term is ignored, one obtains

a(t) = eHt, (3.79)
17To have successful nucleosynthesis in the radiation-dominated era and an appropriate ambience for the formation

of cosmic structures during the matter-dominated epoch, the present acceleration of the Universe has started during a
recent past.
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where

H =

(
Λc2

3

) 1
2

= constant. (3.80)

This is the de Sitter solution of Einstein’s equations when the cosmological constant dominates and
the spatial curvature is negligible.

When DE is regarded as vacuum energy18, a great problem emerges.
As precised above, experimental observations set the DE energy density to be roughly

ρexpDE ∼ 0.7ρc0 ∼ 0.7
(
3× 10−3eV

)4 ∼ 10−11eV4, (3.81)

where ρc0 is the critical energy density today.
As the estimate (3.81) suggests, ρDE is tiny with respect to the typical energy scales of Particle
Physics (ignoring neutrinos’ mass scales).
By introducing then a cut-off scale at MP for instance (so that quantum gravity effects modifying
the behaviour of the theory in the UV can be ignored) the theoretical expectation for the DE energy
density is

ρthDE ∼M4
P ∼

(
1019GeV

)4
= 10112eV4. (3.82)

It can be easily seen that ρthDE is more less 123 orders of magnitude greater ρexpDE . This incredible
discrepancy between what theoretical predictions and experimental results suggest is known as the
Cosmological Constant Problem [33, 37,38].
Even accounting for supersymmetry and its breaking in the real world, a discrepancy of between 50

and 60 orders of magnitude is left.
The Cosmological Constant Problem remains (in a milder form) also when exploring the possibility
DE is not due to vacuum energy.

As already observed in the Introduction, String Theory predicts (once fluxes are turned on)
O(10600) vacua. In order to face the apparently lack of predictive value String Theory seems to be
characterized by, three approaches are viable.
One possibility is to not caring that there are O(10600) vacua: independently on how we have reached
it, we are in a vacuum and we can simply try to describe and understand what happens in its own
vicinity.
Another approach consists in thinking that there is actually a mechanism that operates a selection
among the O(10600) universes String Theory gives rise to: by studying the Swampland program we
can endeavour to gain comprehension on how such a mechanism works and on how our Universe has
been selected.
The third possibility founds itself on the observation that not all the stringy O(10600) vacua are
compatible with “life" in the form we know: there are some conditions that have to be satisfied in

18It is worth noting that, (also) because dark energy can’t be observed directly, its actual composition is still
unknown. Despite of being considered as a cosmological constant, there are other possible DE candidates [35, 36].
They are all characterized by negative pressure and are able to drive the accelerated expansion of the Universe.
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order for observers to exist and only a few universes respect such constraints. This approach is based
on the so called Anthropic Principle: among the “jungle" of possible vacua originating from String
Theory, the only ones we should care of are those that we can in principle inhabit [37, 38].

An attempt to deal with the Cosmological Constant Problem consists in making reference to
the Anthropic Principle as it has just been stated. The Landscape selected by the Anthropic
Principle provides a very large (but discrete!) number of vacua where the cosmological constant
can take a value that is as small as anthropic arguments tell us it should be. More precisely, the
idea behind the anthropic selection solution to the Cosmological Constant Problem is that a scalar
field “sitting" on the profile of a scalar potential (induced, for instance, by a compactification of the
underlying higher dimensional theory) gives rise to an expanding universe with a certain value of
the cosmological constant; because of its fluctuations, the scalar field may be subjected to a phase
transition that brings it to a new local minimum configuration (where the potential’s value is less
than it was previously): this determines other subuniverses (vacuum bubbles) that are characterized
by a different value of the cosmological constant (and so on). By waiting sufficiently long, the
majority of the regions of the Universe (at least those we are in causal contact with) are characterized
by the present value of the cosmological constant. In this framework a de Sitter vacuum of String
Theory is meant to be a vacuum that is a local minimum of an appropriate scalar potential whose
value at the minimum itself is positive.
The present acceleration epoch that our Universe is undergoing may be due to a positive cosmological
constant.

It seems very difficult to construct de Sitter vacua in String Theory and this may be due to
the fact that the starting theory is supersymmetric whereas de Sitter space is not or because de
Sitter vacua require the stabilization of all the moduli in the theory but there are no well-understood
mechanisms to do so [7].
The attitude in facing these difficulties might be to consider them as just technical problems or as a
substantial obstruction to the construction of de Sitter vacua in String Theory19.
In the first case, before the technical difficulties would be overcome, only reasonable proposals on how
de Sitter vacua can be constructed within Sting Theory (as the KKLT ones [7]) can be formulated.
If (instead) the second circumstance realizes, de Sitter vacua fall in the Swampland.
The possibility that String Theory doesn’t admit de Sitter vacua seems to be in contrast with the
experimental results that show that the Universe is entering a late-time acceleration phase. However,
as inflation, which was a primordial phase of accelerated expansion that our Universe has passed
through, is likely led by a scalar field rolling down a potential [39]20, it is reasonable to think that
such a mechanism may allow to describe also the expansion of the Universe “today". This scenario

19As aside comment, it is important to notice that there is no evidence for de Sitter spcetime in the physical
Universe. Then, if a de Sitter spacetime condition would ever be reached in the future because of the decaying with
increasing a of the energy density of all the substance components of the Universe but DE (as vacuum energy) whose
energy density is constant, this could happen only asymptotically. So, the fact that de Sitter vacua are or are not
admitted by String Theory may be actually considered a relatively crucial problem.

20The New Inflation model proposed by A. Guth was characterized by the so called “graceful exit" problem, according
to which the phase transition to the true vacuum was never complete in a sizeable part of the actual volume of the
Universe [42]. To get out of this puzzle A. D. Linde introduces an inflationary model where a scalar field slowly rolls
down its potential: this ensures that there is sufficient time available for the phase transition throughout the actual
volume of the Universe.
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is known as Dynamical Dark Energy (DDE) or quintessence [40, 41]. By adopting the perspective of
DDE or quintessence models to explain the present cosmological acceleration epoch, de Sitter vacua
may fall in the Swampland and no contradiction with cosmological observations can arise.
Having in mind a DDE scenario and recovering the anthropic selection solution to the Cosmological
Constant Problem (which is not lost, if de Sitter vacua are in the Swampland), we can than think
that String Theory may allow for a landscape of potentials which have flat enough regions to lead to
the accelerated expansion of the Universe and that anthropic arguments can limit the magnitude of
the potential in those regions.

The idea that String Theory does not allow for de Sitter vacua has recently gained impetus thanks
to a proposal for a constraint that potentials that are in the Landscape have to obey. Animated by
examples coming from String Theory, the de Sitter Conjecture (dSC) states that [43]

The scalar potential of a theory coupled to gravity must satisfy a bound on its derivative with respect
to the scalar fields

|OV | ≥ C

MP
V, (3.83)

where |OV | is the norm of the vector of derivatives of V with respect to the scalar fields in the theory
and C is a constant of O(1).

Even though the conjecture doesn’t fix the value of the constant C, the experimental data concerned
with the present acceleration of the Universe pose C < 0.6.

The de Sitter Conjecture in the form that we have just proposed is incoherent with the Standard
Model. As [44] shows, the top of the Higgs potential would violate (3.83):

|OV |
V
∼ 10−55

MP
. (3.84)

In order to avoid the possible counter-examples coming from the Standard Model and extensions
of it [45] a refinement of (3.83) has to be found. The Refined de Sitter Conjecture is [43]:

The scalar potential of a theory coupled to quantum gravity satisfy either

|OV | ≥ C

MP
V (3.85)

or

min (OiOjV ) ≤ − C ′

M2
P

V, (3.86)

where C and C ′ are positive constants of O(1) and min (OiOjV ) is the minimum eigenvalue of the
Hessian of V (in an orthonormal frame).
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Regardless the violation of (3.83), the top of the Higgs potential satisfies the Refined de Sitter
Conjecture and (3.86). In particular:

min (OiOjV )

V
∼ −1035

M2
P

. (3.87)

Similarly, for QCD axions and QCD phase transitions there could be violations of the original de
Sitter Conjecture [46,47]; as before, they are prevented thanks to the Refined de Sitter Conjecture.

It is also worth noting that for an axion-like particle, whose potential has as leading contribution

V ∼ − cos
φ

f
(3.88)

with

min (OiOjV )

V
≤ − 1

f2
, (3.89)

the Refined de Sitter Conjecture is satisfied whenever f ≤MP . This result is coherent with what
the WGC for axions prescribes [7, 48,49].

Having fixed the ground for the conjecture, let us study some properties of de Sitter space and
explore the connection between the de Sitter Conjecture and the distance criteria.
A d-dimensional de Sitter space (dSd) can be described as a hypersurface of a (d+ 1)-dimensional
Minkowski space (Md+1)21

−X2
0 +X2

1 + ...+X2
d = R2, (3.90)

where R is the radius of de Sitter space. The radius R is related to the cosmological constant Λ as

Λ =
(d− 2)(d− 1)

2R2
. (3.91)

In global coordinates the line element of dSd is

ds2 = −dt2 +R2 cosh2 t

R
dΩ2

d−1 (3.92)

(Ωd−1 representing the angular coordinates of a unit Euclidean (d− 1)-sphere). De Sitter space can
be thought of as a sphere whose radius evolves in time starting from infinite size and then becoming
infinitely large again after having reached the size R.
In static coordinates (when the metric doesn’t depend on time and the mixed time and space metric
elements are zero) dSd’s line element is

ds2 = −
(

1− r2

R2

)
dt2 +

(
1− r2

R2

)−1

dr2 + r2dΩ2
d−2 : (3.93)

21This, in the convention ηµν = diag(−1,+1, ...,+1).
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de Sitter space has a horizon at radius R. It is the casual patch available to a given observer so that
it can’t test distances greater than R. To this horizon one can associate a temperature22,

TdS =
1

2πR
(3.94)

and, consequently, an entropy SdS , which is

SdS =
2M2

P

T 2
dS

= 8π2R2M2
P = 4π2 (d− 1)(d− 2)

Λ
M2
P (3.95)

for d = 4 [50].
Even though we are not dealing with black holes, by asymptotically defining de Sitter microstates as
those reproducing de Sitter space in the future, de Sitter entropy can be interpreted as the logarithm
of the dimension of the Hilbert space H associated to those microstates [50–54]

SdS = log dimH. (3.96)

Actually, it is not clear how to define this Hilbert space: there are many aspects of de Sitter space
that are difficult to make precise because of the absence of a spatial infinity to define asymptotics.
For instance, there is no S-matrix on de Sitter space and defining String Theory on such a space is not
an easy task. There is no a notion of energy conservation and de Sitter space is not supersymmetric.

Coherently with the (would be) definition of de Sitter vacua in String Theory as minima of a
scalar potential derived from a compactification procedure, de Sitter vacua in a quantum gravitational
context are at least meta-stable. Moreover, it can be argued that, rather than being meta-stable, de
Sitter space is actually unstable. This instability leads to a justification of the Refined de Sitter
Conjecture [55–58].

The Refined de Sitter Conjecture is connected to the SDC and follows from an interpretation of
(3.64) in terms of duality at parametrically large distances in field space [45].

22By passing through the partition function for a quantum statistical mechanical system with infinite degrees of
freedom

Z = Tre−βH =

∫
Dq e−

∫ β
0 L(q)dτ

(with L(q) = 1
2
q̇2 + V (q) and q(0) = q(β), β being related to the temperature T as β = 1

kBT
), that is

Z =

∫
Dφe−

∫
dτ

∫
d3xL(φ) ;

by imposing appropriate boundary conditions and by interpreting τ as a time coordinate, Z can be written as a path
integral

Z =

∫
Dφe−

i
~S(φ),

where S(φ) is the action S(φ) =
∫
d4xL(φ). By moving to Euclidean spacetime it is possible to state the following

correspondence: a Quantum Field Theory in Euclidean spacetime in the presence of a temperature corresponds to
a statistical system where the temperature is related to the periodicity of time. The Euclidean time coordinate is
associated to a singular circle and a conical singularity manifests. The cyclicity of the singular time coordinate can be
made correspondent to a temperature.
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The idea is that, at large distances in field space, towers of states become light, so increasing
the number of states in the theory and the dimension of the Hilbert space. The corresponding
interpretation of (3.96) suggests that the entropy should increase with the field distance. More
precisely, at parametrically large distances in field space the exponentially large number of light
states dominates the Hilbert space and determines a monotone increase in the entropy. Since the de
Sitter entropy is inversely proportional to the cosmological constant ((3.95)), the latter decreases
moving to large distances in field space. This reasoning suggests that the cosmological constant is
not actually a constant but a scalar potential that has a non-vanishing derivative. The exponential
nature of the mass scale of the towers of states protagonists of the distance criteria can be mapped in
a property of the potential according to which its derivative should be proportional to itself. Relying
on a semiclassical notion of entropy for de Sitter space, this reproduces the first condition of the
Refined de Sitter Conjecture.
After having assigned an entropy to a field rolling down a potential, it can be shown that a finite
de Sitter temperature induces a positive mass (of the order of the potential) to the scalar field, at
horizon scales. The second derivative of the potential may be negative and still no instability would
manifest, unless its magnitude is greater than the potential. In this case an instability enters the
game at horizon scales and spoils the entropic interpretation of the horizon. This motivates the
second condition of the Refined de Sitter Conjecture.
The relation between the Swampland distance conjectures and the de Sitter Conjecture is explicit at
parametrically large distances in field space. Since in String Theory all the coupling constants are
field dependent and the weak coupling condition is at large distance in field space, the argument
presented above is valid in any parametrically controlled regime in String Theory.

Besides of being connected with the distance criteria, another important aspect of the de Sitter
conjecture is that it has the purpose of linking microscopic and quantum aspects of de Sitter space
with properties of scalar potentials of effective field theories arising from String Theory. Even
though String Theory may not admit de Sitter vacua, this forms a framework where the attempt
of constructing de Sitter vacua in String Theory may find a basis of developing. In this line of
research the KKLT proposal sets itself. It is based on the idea of uplifting a KKLT vacuum to a de
Sitter vacuum by using the positive energy due to D-terms and (commonly) anti-D3 branes [59, 60].
However, the question whether the KKLT scenario leads to true de Sitter vacua of String Theory
remains nowadays subjective and controversial.

So far we have presented the de Sitter Conjecture and some motivations for it; to conclude this
section, it is interesting to briefly analyze the cosmological implications of the conjecture itself.
The observation that our Universe is entering a phase of late-time acceleration suggests that the
scalar potential of the Universe should have a positive value, V > 0. The de Sitter Conjecture implies
that it can’t be at a minimum (where |OV | = 0). So, the Universe is rolling down a potential slowly
enough that the potential energy dominates over the kinetic one and the accelerated expansion can
take place. As already mentioned, this scenario is called DDE or quintessence and it is illustrated in
the following figure.
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Figure 3.4 [7]:
The figure shows the scalar potential of the Universe along a particular scalar direction denoted by φ. The
current state of the Universe is indicated with the black dot. The possibility on the left hand side corresponds
to a cosmological constant driving the present day accelerated expansion; it violates the de Sitter Conjecture.
The potential on the right hand side represents a DDE scenario where the accelerated expansion is driven by
a rolling scalar field; it is compatible with the de Sitter Conjecture.

A prediction of the quintessence models is that DE equation of state has to vary in time. If DE is
described as a fluid with

PDE = wDEρDEc
2, (3.97)

for a scalar field rolling down a potential

wDE =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (3.98)

The cosmological constant scenario takes pace in the limit wDE → −1. Current observations of DE
equation of state parameter wDE bound its possible deviation from a cosmological constant. These
bounds constrain the constant C in the de Sitter Conjecture to be C < 0.6 [61].
The de Sitter Conjecture interacts also with inflationary models, because the parameter C is strictly
related to the slow-roll parameter during inflation. The constraints from inflation (and from the non
observation of tensor modes, in particular) set C < 0.09 [61]. This is somehow in tension with the
conjecture, but this depends on how sharply the condition C ∼ O(1) is interpreted.
The de Sitter Conjecture implies that the Universe “today" must correspond to a scalar field that
is rolling (down) to larger and larger expectation values. It is possible that this would lead to
an effective negative cosmological constant causing a phase transition in the Universe or to an
expectation value of the scalar field that is so large that the light states of the SDC start to affect
the Universe with a possible consequent phase transition.

In exploring the cosmological implications of the de sitter Conjecture it is also worth mentioning
the study of its relation with the distance criteria in favouring multi-field inflation [62] and the
analysis of the interactions of the de Sitter Conjecture with tensor modes in inflation [63,64], with
warm inflation [65–69] and with eternal inflation [70,71].

As one can guess, this is a rich and florid field of research where still a lot has to be done and
understood.

45



46



4 The Weak Gravity Conjecture in the presence of scalar fields

In Section 3 we have presented the WGC in its best known version, that is for a theory coupled
to gravity with a U(1) gauge symmetry.

In many theories Beyond Standard Model (BSM) various scalar fields appear and Supergravity
Theories, traditionally regarded as effective descendants of Superstring Theory, are characterized by
a lot of scalar fields too. In any effective theory that descends from Great Unification Theories or
String Theory scalar fields play a relevant role: the parameters appearing in the effective lagrangians
are not actually parameters but vacuum expectation values of some scalar field defined at (very)
high energies; its massive fluctuations can’t be excited at (sufficiently) low energy and this fixes the
field at its vacuum expectation value.

It is interesting and challenging to find the version of the WGC when (also) scalar fields are
present. This will be the topic of the paragraph we are undertaking the discussion of.
We will first describe a proposal for the scalar WGC stated by E. Palti in [8]. Then, we will analyze
the strong version of the WGC proposed by E. Gonzalo and L. Ibàñez in [9], putting in evidence its
inconsistency with the physical principle underlying the WGC itself (and some other criticisms).
We will finally consider a theory including gravity and (at least) two scalar fields, one of which is
strictly massless. We will do this with the purpose of finding (if there is one) a general formulation
for the scalar WGC. For the model under investigation, we will get a constraint on the parameters
of the scalar potential that is coherent (as sufficient condition) with Palti’s conjecture and seems not
to be altered by quantum 1-loop corrections.

4.1 The Weak Gravity Conjecture with scalar and gauge fields

So far, we have formulated the WGC by referring to theories including gravity and gauge fields.
We can generalize our analysis (modifying, for instance, (3.34)) by adding scalar fields.
Since the WGC can be tied to black hole physics, we can try to gain intuition on the desired
generalization by exploiting the properties of N = 2 supergravity theories and considering black hole
solutions in this context.

Let us consider the model with action

S =

∫
d4x
√
−g
[
M2
P

2
R− gi̄(z)∂µzi∂µz ̄ + IIJ(z)F IµνF

J,µν +RIJ(z)F Iµν ∗ F J,µν
]
, (4.1)

where {zi}i (with i = 1, ..., nV , nV being the number of vector multiplets) are complex scalar (or
pseudo-scalar) fields, zi = bi + iti, and gij is the field space metric. The metric gij , the kinetic
function IIJ and the CP -violating matrix RIJ are allowed to depend on the fields {zi}i.

The geometric structure of the field space is determined by the periods {XI , FI} which are
related by a symplectic matrix N = (NIJ)IJ such as FI = NIJX

J . The matrix N defines also the
matrices I and R: IIJ = Im(NIJ) and RIJ = Re(NIJ).

The Kähler potential for the scalar field space metric can be written in terms of the periods
{XI ,FI} and takes the form

K = − ln i
(
X
I
FI −XIF I

)
. (4.2)
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As we did in discussing the WGC for dyons with a θ-angle, it is useful to introduce the matrix

U =

(
I +RI−1R −RI−1

−I−1R I−1

)
and the relations

Q2 = −1

2
QTUQ (4.3)

and

(Q,Q′) = −1

2
QTUQ′, (4.4)

Q =
(
pI

qI

)
and Q′ =

(p′i
q′I

)
representing two vectors of symplectic quantized charges (which are arbitrary

constants).
The central charge can be introduced as the symplectic product between the vectors V =

(
eK/2XI

eK/2FI

)
and Q =

(
pI

qI

)
as

Z = 〈V,Q〉 = V TΩQ = eK/2
(
qIX

I − pIFI
)
, (4.5)

Ω being the symplectic matrix

Ω =

(
0N 1N
−1N 0N

)
∈ Sp(2N,R)

(where N is the number of gauge fields in the theory) [72].
In [72] an identity involving Q2 and the central charge Z was pointed out. It is

Q2M2
P = |Z|2 + gi̄DiZD̄ZM

2
P , (4.6)

whit Diψ
j = ∂iψ

j + Γjikψ
k + p

2(∂iK)ψj , ψ being an object with Kähler weight p (Z has Kähler
weight 1).
It is worth noting that, after having introduced Vi = DiV and expressed (4.6) in terms of symplectic
products as

Q2M2
P = |〈V,Q〉|2 + gi̄〈Vi, Q〉〈V ̄, Q〉M2

P ,

the invariance of Q2 under symplectic transformations is manifest.
As we will appreciate soon, the relation (4.6) will play an important role in our discussion.

We are interested in the black hole solutions of (4.1).
Black holes in N = 2 supersymmetric theories (in the presence of gravity, gauge fields and scalar
fields) exhibit a phenomenon that is called the Attractor Mechanism [73]. We expect that the total
number of microstates corresponding to an extremal black hole is determined by the quantized
charges that the black hole carries and so it does not vary continuously. If the counting of microstates
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agrees with Bekenstein–Hawking interpretation of black holes’ entropy, regarding it as the horizon
area, the total number of microstates is expressed by the charges alone. This suggests that the scalar
moduli fields that determine the horizon area have to take fixed values at the horizon and such
values depend only on the charges and are independent of the asymptotic values for the moduli23.

Lat us consider a N = 2 supersymmetric extremal black hole solution with quantized charges
(qI , p

I) (related to their non-quantized partners as in (3.37)). Its mass MBH is expressed in terms of
the central charge when the scalar fields’ values are taken at spatial infinity,

MBH = |Z|∞ . (4.7)

By substituting this definition into (4.6) we obtain

Q2M2
P = M2

BH + gi̄DiZD̄Z. (4.8)

The Attractor Mechanism fixes the values of the scalar fields on the horizon of an extremal black
hole in terms of the black hole’s charges as DiZ = 0. Therefore, there are two types of extremal
black holes, those for which the scalar field values at infinity differ from the values on the horizon so
that there is a scalar field spatial gradient and those for which the values at infinity are equal to
the values at the horizon so that there is a constant spatial profile. In these two circumstances the
extremal black hole mass is maximized with respect to its charge at infinity.
The identity (4.8) can be rewritten as

Q2M2
P = M2

BH + 4gi̄∂iMBH∂ ̄MBHM
2
P (4.9)

(where MBH is thought of as a function of the fields {zi}i, rather than in the vacuum) in the form
of an extremality condition (valid at infinity)24.

To generalize (3.25) or (3.40) we can follow the logic of the existence of at least a particle such
that the black hole is able to decay.
Since N=2 extremal black holes are BPS states, they can only decay to other BPS states. The last
term in (4.8) is positive definite. So, in order for these black holes to decay we can impose the
existence of a particle with mass m such that Q2M2

P ≥ m2. If the last term in (4.8) is non-vanishing,
the previous inequality becomes a strict relation. Furthermore, because the particle the black hole
decays in has to be a BPS state itself, its mass is given by the central charge and

Q2M2
P = m2 + 4gi̄∂im∂ ̄mM

2
P (4.10)

holds.

23It is worth noting that this intuitive argument for the Attractor Mechanism doesn’t rely on supersymmetry and
has pushed forward the search for a non-supersymmetric version of the Attractor Mechanism itself.

24Since (as just mentioned) the scalar fields may have a spatially varying profile, we need to specify that the
extremality condition (4.8) holds at infinity and, indeed, if on the extremal horizon the scalar fields are fixed to their
attractor values, they are solutions of ∂iMBH = 0.
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By extrapolating (4.10) for more general (and possibly non-supersymmetric) cases we can
state [7, 8]

A theory with scalar fields {zi}i, which have no potential, with general action (4.1) should have a
particle with mass m(z) (depending on the scalar fields, in general) satisfying the bound

Q2M2
P ≥ m2 + 4gi̄∂zim∂zjmM

2
P (4.11)

whit Q2 = −1
2Q

TUQ (as already defined).

The last term in the previous inequality represents the scalar force mediated by the scalar fields
{zi}i, which is induced by a cubic coupling of these fields with two WGC states.
The physics underlying (4.11) can be phrased as the statement that the (repulsive) U(1) gauge force
between two WGC states25 acts at least as strongly as the (attractive) gravitational and scalar forces
combined. As already observed, when dealing with BPS states, the inequality (4.11) becomes an
equality expressing a no force condition.

A suggestive intuition on the possibility of extending this result to a non-supersymmetric context
is given by the fact that for any extremal black hole it is possible to define a black hole scalar
potential as VBH = Q2. If this potential can be written as [74]

VBH = Q2 = W2 + 4gi̄∂iW∂ ̄W (4.12)

(where W is a real function of the complex scalar fields in the theory, named “fake superpotential"),
then the black hole mass is

MBH = |W|∞ (4.13)

and on the horizon the fields solve ∂iW = 0.
This observation suggests that (4.8) is tied to extremality rather than to supersymmetry.

The relation (4.9) could generally hold but, because of the difficulties in describing the black
hole discharge in terms of the particles the black hole decays in (the dependence of MBH on the
scalar fields may be different from that of m), it does not imply (4.11). Despite this, the analogy of
(4.9) with (4.10) suggests the existence of a relation between them.
More precisely, the requirement for the black hole to decay can be stated as the existence of a
particle (m,q) with charge-to-mass ratio greater than that of the black hole. So, from (4.9),

Q2M2
P

M2
BH

= 1 + 4gi̄∂i lnMBH∂ ̄ lnMBHM
2
P ≤

q2M2
P

m2
(4.14)

25The gauge force contribution given by Q2 is more complicated than in (3.25), the reason being it is a general
expression that is valid for dyonic objects in the presence of a non-vanishing θ-angle matrix RIJ .
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and the particle is required to be super-extremal.
The expression (4.11) would ask for a replacement of MBH with m in (4.14). It is natural that the
charge-to-mass relation for the particle (m,q) depends on m rather than on MBH . Moreover, by
changing the values of the scalar fields at infinity MBH changes and, in order for the black hole to
maintain a decay channel, m has to change too. Even though in a non-supersymmetric context it is
difficult to formulate a precise general motivation for (4.11) (rather than (4.14)) using black hole
decay only, it seems quite reasonable to think that (4.11) and (4.14) are indeed related.
To further support (4.11), it is worth noting that (4.11) is almost uniquely fixed by requiring really
basic principles: invariance under scalar fields reparameterizations and electromagnetic duality.

Before proceeding, in order to better clarify the principle underlying (4.11) and its structure, we
can consider a (toy) model in which a canonically normalized massless scalar field φ interacts with a
WGC scalar field H, whose mass is m0, through

L ⊃ (2m0µφ+m2
0)|H|2 = m2|H|2, (4.15)

where µ is the (adimensional) interaction strength between H and φ; the expectation value for φ
has been set to zero and m defines the (general or effective) mass term for H.
Then,

∂φm
2 = 2m∂φm = 2m0µ (4.16)

and by evaluating this relation at the vacuum we recognize µ to be the derivative of m with respect
to φ in the vacuum26

µ = 〈∂φm〉. (4.17)

The three-point coupling φ|H|2 gives rise to a long-range Coulomb attractive force mediated by φ
(which is a spin-0 field) acting on two H states. In modulus, this force is given by

Fscalar =
µ2

4πr2
(4.18)

and is involved, together with the electromagnetic and gravitational force, in expressing the interac-
tions between two WGC particles.

26The same result can be achieved in the cases in which H is a fermionic field or φ is a pseudo-scalar [75].

51



Figure 4.1 [7]:
This figure illustrates the long-range forces acting on a pair of WGC particles and the corresponding Feynman
diagrams. The repulsive electromagnetic force is mediated by the gauge field Aµ and its strength is given by
Q2; the attractive gravitational force is mediated by the exchange of the graviton hµν and it acts with strength
m2 and the attractive scalar force is mediated by φ and its strength is expressed by µ2. The conjecture (4.11)
requires the repulsive force to be stronger or (at most) equal in strength than the total attractive force.

Coming back to the general discussion, let us observe that the WGC can be understood (as we
have mainly emphasized so far) by referring to black hole decayf processes or as the statement that
gravity is the weakest force, forbidding gravitationally bound states of the WGC states to exist.
The potential presence of stable WGC bound states would be problematic, as it was argued in [26,76].
Since the scalar forces act attractively between equal charged particles and the field space metric gi̄
is positive definite, the sum over all scalar forces contributes positively on the side of gravity. Asking
for the absence of WGC bound states amounts to require that the gauge field repulsion overcomes
the gravitational and scalar attractions.
In the light of the previous observations the WGC when gauge and scalar fields are present can be
stated more generally as

Consider a theory coupled to gravity with gauge kinetic matrix IIJ , θ-angle mixing matrix RIJ and
massless scalar fields {zi}i (with field space metric gi̄). Then, there must exist a particle with mass
m satisfying

Q2M2
P ≥ m2 + gi̄µiµ̄M

2
P (4.19)

where µi is the non-relativistic coupling of the WGC state with zi. If the mass m is regarded as a
function of the scalars {zi}i, then µi = ∂im.

An interesting question is whether (4.19) holds over all the scalar field space or only on certain
regions.
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In a N = 2 setting, the BPS nature of the states an extremal black hole decays in seems to
suggest that the saturated inequality (4.19) is valid at all loci of the scalar field space. A quite
natural guess is that (4.19) holds over all field space, but this does not mean that a decay channel
for an extremal black hole is available at all points in field space.
By thinking of gravitationally bound states one can say that the particle with the largest charge-to-
mass ratio should not form any bound state, because it is stable. As one moves around field space,
it could happen that a different particle becomes that with the largest charge-to-mass ratio in the
theory. Since the original particle can decay to the new one, gravitationally bound states of the
former are allowed. Therefore, we can conclude that at any point in field space there is one state
that satisfies (4.19) but it may not be the same state over all field space.
In our following analysis we will assume that (4.19) holds for at least one state at any locus in the
scalar field space and we will be conscious of the fact that, having in mind black holes’ decay, it may
be valid only at specific loci of field space.

The analysis we have proposed so far applies to massless gauge fields and massless scalar fields.
It would be interesting to understand how (4.19) should be modified in the presence of massive
mediators. Nowadays we don’t have any conclusive and precise statement on the way to do this
and we can only propose some qualitative and intuitive observations trying to shed light on such
research [8].
The classical long-range analysis we are founding our discussion upon relies (at best) on taking the
mass of the force mediators much smaller than that of the WGC state. So, as long as the mediators’
mass is sufficiently smaller than the mass of the WGC state, it should not modify the mass of the
WGC state itself or its coupling to scalar fields. Despite of being expected (4.19) to hold even when
the force mediators are massive with a mass that is well below that of WGC state, it is unclear if,
for instance, the analysis of bound states supports this conclusion or not.
To better detail this discussion let us first consider the case of massive gauge fields. At sufficiently
large distances the intensity of the gravitational interaction would always overcome that associated
to the massive force carrier and, as a consequence, bound states would form. The length scale of
these states will be like the inverse mass of the mediator. By giving a small mass to the force carrier
and by assuming (4.19) to be satisfied, bound states would appear but at very large distances27 and
they may be less problematic from a Quantum Gravity perspective.
If then the scalar fields gain a mass, we could imagine to violate (4.19) without forming bound states
at length scales that are larger than the inverse mass of the scalar mediators. But, bound states
at arbitrary small distances could form. These bound states are only classically bound (through a
barrier) and it is uncertain if they are problematic or not.
As already observed, it is a difficult task to have a conclusive statement on if and how (4.19) gets
modified when the gauge and scalar fields have a mass. It could be interesting to investigate this
further (also with the attempt of understanding the IR aspects of (4.19)).

Another interesting question is whether gravity acts more weakly than the scalar forces themselves.
This will be the topic of the next subsection.

27When discussing the violation of (4.19) (or (4.11)), we have referred to bound states whose length scale can be
arbitrary small.
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4.2 The Weak Gravity Conjecture with scalar fields

Having in mind the previous paragraph, we would like now to study the relative magnitude
of the scalar and gravitational forces. We will start establishing some relations among the forces
acting on the WGC states in the context of N = 2 Supergravity; then, trying to uncover the relevant
physics, we will propose some generalizations.

The relation (4.6) (Q2M2
P = |Z|2 + gi̄DiZD̄ZM

2
P ) can be regarded as an equation capturing

the self-interactions of a WGC state. When dealing with different sates, one can replace (4.6) with

(Q,Q′)Re

(
ZZ
′

|ZZ ′|

)
− 1

2

(
qIp
′I − q′IpI

)
Im

(
ZZ
′

|ZZ ′|

)
= |Z||Z ′|+Re

(
4gi̄∂i|Z ′|∂ ̄|Z|

)
, (4.20)

where the contributions of the gauge forces and of the non-mutual locality of the states appear in the
left hand side and the gravitational and scalar force terms define the right hand side of (4.20) [8].
Let us consider mutually local states28.
If the gauge force between such states vanishes and so (Q,Q′) = 0, then the scalar force cancels the
gravitational one. In other words, for states with vanishing vector interactions the scalar forces act
repulsively.

As, led by the obstruction in the existence of gravitationally bound states, we have generalized
the N = 2 results, we can apply the same logic to investigate the relative magnitude of the scalar
and gravitational forces when the gauge interactions are absent.
The absence of stable gravitationally bound states requires that the scalar forces act more strongly
than gravity.
If we consider the theory (4.1) and two WGC states of masses m and m′ that are mutually local
and have vanishing gauge interactions, then the scalar forces must act repulsively and at least as
strongly as gravity [8]

− gi̄∂zim∂zjm′M2
P ≥ mm′. (4.21)

In other words, by making reference (at first) to a N = 2 context and by taking mutually local states
(because the N = 2 formalism makes sense in this case); when the gauge forces are not exerted29,
(4.20) gives rise to (4.21).

Let us remark that this generalization is less clear than that leading to (4.19) from (4.6). One
important difference is that we are requiring the presence of (at least) a scalar field rather than
study the implications of the (possible) presence of massless scalar fields. Since the scalar fields can
be massive, we would have to be able to know how the mass of the scalar field affects the setup.
The relation (4.21) seems to guarantee that if a bound state exists than its typical length scale is
fixed by the inverse mass of the scalar field. This reproduces the discussion on the implications for
the WGC when the gauge fields have a mass.

28Two states (qI ,pI) and (q′I ,p′I), identified by their electric and magnetic charges, are said to be mutually local if
qIp
′I − q′IpI = 0.

29If one purely electric and one purely magnetic state are considered, the gauge force between them vanishes.
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Having stated (4.21) as a possible (and not univocal [8]) generalization of (4.20), it is interesting to
deepen the relation between the magnitudes of the scalar and gravitational forces for the interaction
of a WGC state with itself.
The relevant N = 2 relation is [72]

Q2(F ) = |Z|2 − gi̄DiZD̄Z, (4.22)

where Q2(F ) = Q2(NIJ −→ FIJ) with FIJ = ∂IFJ and FI = ∂IF , F being a prepotential.
If (4.6) can be interpreted as a bound on the sum of the scalar and gravitational forces, (4.22) gives
information on their relative magnitude.
The matrix IIJ(F ) = IIJ(NIJ −→ FIJ) has nV strictly positive eigenvalues and one strictly negative
eigenvalue. There is a basis where nV WGC states have the scalar force acting more strongly than
gravity and one WGC state on which gravity acts more strongly than the scalar force (because the
graviphoton has no scalar superpartners).
We can then state that [8]

For the theory (4.1), for each scalar field, there is a WGC state with mass m (depending on the
scalar fields) on which gravity acts as the weakest force and so satisfying the bound

gi̄∂zim∂zjmM
2
P > m2. (4.23)

In the N = 2 case the spectrum of states is such that all the states satisfy (4.23) but an electric
and a magnetic one. The idea is that there is at most one state that can violate a non-strict inequality
version of (4.23) and, if it does, (4.23) becomes a strict inequality for all the other states.
The generality of (4.23) away from a N = 2 framework can’t be directly deduced by thinking about
the absence of bound states: the scalar and gravitational forces act both attractively. According to
E. Palti [8], (4.23) may be deduced from (4.21), but it is not clear how to do so.

From now on we will refer to (4.21) or more generally to (4.23) as the Scalar Weak Gravity

Conjecture (SWGC). It should hold as a statement about the scalar interaction of the WGC
states associated to gauge fields (Gauge SWGC) or it should hold completely generally even in the
absence of gauge fields (General SWGC). In the latter case the SWGC configures itself as the more
general statement that gravity is really the weakest force and it can be phrased as the following claim:

For each scalar field there is a state on which gravity acts more weakly than the other interactions.

As already emphasized, the justification of this conjecture by obstructing the existence of
gravitationally bound states is rather uncertain. Since there is no gauge symmetry to make reference
to, it is not clear what could give stability to such states. One possible solution could be that of
associating a charge (at least approximately conserved) to scalar fields. Anyway, in the absence of a
solid argument for the (in)stability of bound states coupled to scalar fields only, the evidence for the
General SWGC remains weak.
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Before proceeding with the analysis of (4.23), it may be worth noting another identity relative to
a N = 2 setting (and generalizable perhaps in a non-supersymmetric context)30 [8]

gi̄DiD̄|Z|2 = nV |Z|2 + gi̄DiZD̄Z. (4.24)

This equation can be interpreted as a relation between the four-point coupling, the mass and the
three-point coupling of the WGC states interacting with scalar fields. Following the usual way of
proceeding, it would be interesting to find a plausible generalization of (4.24) (as we have done for
(4.6) and (4.20)).

Turning back to the conjecture (4.23), a stronger version of this statement can be proposed
by demanding it should hold for any scalar field. In an appropriate modified version, this request
implies that the state satisfying the bound (4.23) needs not to be a particle: it can be an extended
object. If it is the case, the derivative of the mass in expressing the strength of the scalar force is
then substituted with a coupling strength related to the tension.
In this respect, it may be useful to mention a version of the WGC for a p-form which has been
formulated in [26].

Let C(p)
µ1,...,µp be an antisymmetric tensor of rank p, transforming as δC(p)

µ1,...,µp = ∂µ1λ
(p−1)
µ2,...,µp.

A d-dimensional theory with a p-form field, whose kinetic term is 1
2g2p

∣∣F p+1
∣∣2 (where gp is the analogue

of the gauge coupling for a p-form; F (p+1)
µ1,...,µp+1 = ∂µ1C

(p)
µ2,...,µp+1 ; and

∣∣F p+1
∣∣2 = 1

(p+1)!Fµ1,...,µp+1F
µ1,...,µp+1),

should have a (p− 1)-dimensional object (the p-form field is eventually coupled to by an integration
over the world-volume of the object) with (quantized) charge qp and tension Tp satisfying

p(d− p− 2)

d− 2
T 2
p ≤ q2

pg
2
p

(
Md
P

)d−2
. (4.25)

The previous statement applies to p-form fields and (p− 1)-dimensional objects charged under
them when p > 0. If, instead, p = 0 the conjecture fails and an alternative way to treat this
circumstance has to be found: the p = 0 case enters the game in the models of natural inflation
where periodic axions, which are 0-form fields, are counted as inflaton candidates [48,49].
As far as axions are concerned, instantons are the charged objects and the role of the gauge coupling
is played by the inverse of the axion decay constant. Following [48], the instantons correct the scalar
potential of an axion φ by terms of the form

V (φ) ∼ e−SE
[
1− cos

(
φ

f

)]
, (4.26)

where the suppression of the correction is controlled by the Euclidean action SE . It is the analogue of
the mass in (3.25) and so determines whether the charged particle is heavy enough to be integrated

30The factor nV appears because the WGC states only couple to one combination of gauge fields but to all the
moduli: nV comes with the coupling to the moduli {ti}i. This can be seen if one restricts to electric charges so that
the WGC state couples to one linear combination of axions and by calculating the relation for the axions bi and the
moduli ti separately.
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out in the low-energy effective theory. A natural guess for a generalization of the WGC to axions is
indeed

SE .
MP

f
; (4.27)

for an axion with decay constant f at least one instanton should exist satisfying the previous bound.
When the axion decay constant is taken to be larger than the Planck mass, the instantons satisfying
the bound (4.27) give consistent corrections to the scalar potential (4.26); as a consequence, by
requiring (also) perturbative control, the inflaton is generically prevented to perform trans-Planckian
trips in its field space. This represents an obstacle in constructing large-field inflationary models
with a single axion [77]. Since the bound (4.27) seems to be a well-motivated generalization of
the WGC (as it is shown in [49] by an explicit calculation involving gravitational instantons), by
trying to support large-field inflationary models, various possible loopholes (usually referred to
multiple axion models) can be advocated. For instance, one proposal consists in thinking that the
instantons satisfying the WGC bound might not be those with the smallest action; these instantons
would be suppressed and other instantons that do not satisfy the WGC bound would give the
dominant contribution allowing for super-Planckian field variations [78]. Another possibility is that
of exploiting a discrete gauge symmetry which in the presence of N axions prevents the existence
of some instantons so that the true bound on SE is larger than (4.27) [49]. A further potential
solution (seemingly better realizable in a consistent String Theory framework) proposes that, in
certain models, instantonic corrections may be accompanied by extra suppression factors such that
they can be suppressed in the scalar potential even though their Euclidean action is small; in such
models, the WGC might be satisfied and super-Planckian field ranges can be obtained [79].
It is not clear whether super-Planckian field trips are allowed by the WGC or not; a deeper
theoretical understanding is needed and future cosmological observations leading to a measure of
the tensor-to-scalar ratio of primordial fluctuations would certainly be crucial.

Coming now back to the Palti’s strong version of the WGC (and to the statement on 0-forms, in
particular) and anticipating something we will better precise, it is worth noting that the possibility
that the state the scalar fields couple to is an extended object matches nicely with what the
Swampland Distance Conjecture (SDC) may prescribe. The SDC seems to be related to (4.23) and
this can be interpreted as a first hint for a relation between the former and (more generally) the
Weak Gravity Conjecture.

A proposal for accounting quantum corrections to the WGC in the presence of
scalar fields

Before deepening the relation between the WGC and the SDC, a relevant observation on the
former has to be mentioned.

The arguments we have described so far in presenting (4.19) and (4.23) are somehow classical in
nature: we have dealt with scalar fields that are not subjected to any potential. However, since the
scalar fields couple (at least) with the WGC particle, once quantum corrections are added they will
in general acquire a potential (as the Coleman–Weinberg mechanism prescribes). In other words,
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any statement involving scalar fields with no potential has to be considered as a tree-level argument
which has to be corrected at loop-level.
The exception to this rule is given by circumstances where N = 2 supersymmetry is present: the
scalar fields’ expectation values form a true moduli space; if there is no potential at classical level,
no potential arises at loops.
As just mentioned, in the absence of extended supersymmetry, it is expected that all scalar fields
acquire a potential; but, unfortunately, it is not clear how to generalize (4.19), for instance. If we
apply (4.19) to the case of one real scalar field φ with gauge coupling µ = 〈∂φm〉, indeed

Q2M2
P ≥ m2 + µ2M2

P ; (4.28)

by giving the scalar a mass mφ (� m) and by placing two WGC particles (whose interaction is
mediated by φ) at a distance set by m−1 (where a classical force analysis can be more less performed),
the replacement

µ2 −→ µ2 + O

(
µ2mφ

m

)
(4.29)

is suggested. This proposal is motivated by thinking of a Yukawa-type force for the scalar (which
becomes irrelevant at distances much larger of the inverse mass of the scalar itself) as means to
quantify the magnitude of the quantum corrections to (4.19) (and (4.23) too) [75].

Anyway, a general recipe hasn’t been found yet.

4.3 Relations between the Weak Gravity Conjecture and the Swampland Dis-
tance Conjecture

Having studied the SDC and the WGC in the various forms it can present itself, it is remarkable
to evidence the existing relations between the two.

For instance, the scalar version of the WGC is quite straightforwardly related to the SDC [30].
Applying (4.23) to the case of a single real scalar field φ which is canonically normalized, the bound

|∂φm| > m (4.30)

is found.
If we ask for varying φ but maintaining (4.30), any power-law behaviourm ∼ φn wouldn’t be coherent
with the inequality (4.30) for sufficiently large φ; whereas the exponential scenariom ∼ e−αφ would be
consistent. We therefore recover the exponential behaviour that is typical of the distance conjectures.
Reversing the reasoning is also allowed.
In words, we can say that the sine qua non condition for gravity to be the weakest force acting
on a particle is that the latter must have a mass that decreases exponentially even for large scalar
expectation values.
It is interesting to note that the Magnetic WGC is strictly related to the distance conjectures
too [30,80,81].
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The Magnetic WGC mass scale Λ ∼ gMP can be associated to an infinite tower of states and
this tower can be identified with the tower of states of the distance conjectures. The previous
identification suggests that the gauge couplings are functions of the scalar fields: the gauge coupling
g depends exponentially on the canonically normalized field φ as

g ∼ e−φ; (4.31)

this is precisely what happens in String Theory, where special extended objects are protagonists.
To further motivate the relations between the WGC and the SDC let us consider a situation where

a scalar field has an expectation value that spatially changes. If we restrict the spatial variations
to a region of size R and consider the variation ∆φ from one side of the region to the other, when
keeping R fixed and trying to increase ∆φ, an obstruction is eventually reached: the energy in the
scalar spatial gradient will have an associated Schwarzschild radius larger than R and the system
undergoes gravitational collapse. This argument leads to a gravitational censorship for large field
variations which can be related to the SDC.
To make this link more explicit the argument can be refined. Let us consider gravity in a Newtonian
regime. For a general potential it can be shown that a scalar field may undergo super-Planckian
spatial variations within the Newtonian regime, but the maximum variation ∆φ is obtained from a
logaritmic spatial profile φ ∼ log r, where r is the radial coordinate. Since φ ∼ log r and therefore
∂rφ ∼ 1

r ∼ e
−φ, the energy density ρ stored in the field varies at least exponentially.

Localized sources that are charged under a U(1) gauge symmetry induce a potential for the scalar
field; in the case the gauge coupling depends on the scalar field φ, a scalar spatial gradient which can
support super-Planckian variations is developed. Since, away from the source, the gauge coupling
has similar magnitude of the scalar field energy density coming from the kinetic terms, if the latter
increases exponentially, the cutoff scale of the theory, set by the Magnetic WGC to be Λ ∼ gMP ,
has to be subjected to an exponential increase too and has to stay above the energy density. This
implies the relation (4.31), motivating the SDC from the WGC again [7].

4.4 Gonzalo and Ibàñez’s conjecture

In Section 3 we have presented the most studied and understood version of the WGC: that
involving a U(1) gauge boson coupled to gravity. The conjecture states the existence of at least
a particle with mass m and charge q such that m . gqMP in the theory. As we have seen, this
Swampland criterion is motivated by black hole physics based arguments or by explicit examples in
String Theory.
In the attempt of understanding which is the physical principle deus ex machina of the WGC (as we
know) two options manifest: either the WGC is strictly related to black holes and their stability or
it is a statement concerning the weakness of gravity with respect to the other interactions.

By insisting in considering gravity as the weakest force in any circumstance, E. Gonzalo e L.
Ibàñez have formulated a version of the Scalar Weak Gravity Conjecture (SWGC) corresponding
to the requirement that the self-interactions of a scalar must be stronger than the gravitational
interactions it feels. This statement is proposed to be true for any scalar in the theory (and not only
for states playing the role of WGC particles) and for all the values of the scalar itself.
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Following [9], let us consider a real (for simplicity) particle H with (effective) mass m that is
coupled to a light real scalar field φ thanks to a trilinear coupling whose strength is proportional to
µ = ∂φm. In the limit mφ → 0, Palti’s SWGC (4.23) is rewritten in [9] as

(∂φm)2 >
m2

M2
P

. (4.32)

Since it will be convenient to motivate their new conjecture, in Gonzalo and Ibàñez’s perspective let
us set the mass m2(φ) of the WGC particle H to be the second derivative with respect to the field
H of the potential V (φ,H) = 1

2(m2
0 + 2m0µφ)H2, m2(φ) = V ′′. With this identification (4.32) can

be written as [9]31

(
V ′′′
)2
>

4 (V ′′)2

M2
P

. (4.33)

In a similar philosophy to the WGC for U(1) gauge interactions, the particle H plays the role of the
WGC particle and it is there to guarantee that there is at least a state with scalar self-interactions
stronger than gravity. Palti’s bound doesn’t apply to any scalar field, but only to WGC scalars
interacting with a scalar φ and whose mass depends on φ. The conjecture doesn’t apply to the field
φ itself.
By insisting in finding a constraint that is valid for any scalar field, Gonzalo and Ibàñez have noted
that Palti’s claim in the form of (4.33) is in tension with (4.27). Once it is applied to an axion
φ subjected to the potential V ∼ − cos φf (where f is, as usual, the axion decay constant), (4.33)

results in |f | < MP
2

∣∣∣tan φ
f

∣∣∣ and, since this inequality has to be satisfied for any value of φ and so
also for φ = 0, the just noted tension between (4.33) and (4.27) emerges.

With the attempt of generalizing Palti’s results and (also) correcting the previous inconsis-
tency, Gonzalo and Ibàñez formulate a Strong version of the Scalar Weak Gravity Conjecture

(SSWGC). It can be stated as follows [9]:

The potential V (φ) of a canonically normalized real scalar field φ in the theory (under consideration)
must satisfy for any value of the field the constraint

2
(
V ′′′
)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
P

(4.34)

(with the “ ′ " denoting the derivative with respect to φ).

Coherently with the physical principle the conjecture is animated by, the inequality (4.34) requires
that the strength of the scalar force must always be stronger than that of the gravitational interaction.

Gonzalo and Ibàñez’s claim appears really attractive because of its generality: it is proposed to
be true for any scalar field and any value of the scalar field.
We can, for instance, apply the bound to axions and to their periodic potential (appearing in

31In [9] the factor 4 lacks: or it was simply forgotten or confusion in intending the derivatives with respect to H
and φ was made.
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String Theory whenever an axion-like scalar couples to a non-Abelian gauge group) and see if the
inconsistency of (4.33) (appropriately intended) with (4.27) is solved.
By subjecting to (4.34) the leading contribution to the axion potential instantons give rise to, we
get

1

f6

[
2 sin2 φ

f
+ cos2 φ

f

]
≥ 1

M2
P f

4
cos2 φ

f
(4.35)

and by dividing both sides of the inequality by cos2 φ
f , we then obtain

f2 ≤
[
1 + 2 tan2 φ

f

]
M2
P . (4.36)

Since we require the conjecture to be valid for any value of the field φ, we deduce

f ≤MP . (4.37)

Thanks to the addition of the quartic coupling term in (4.34) with respect to (4.33), we find that
Gonzalo and Ibàñez’s conjecture agrees with (4.27) (when perturbative control is required, SE ≥ 1),
differently from what happens for (4.33) itself. This can be regarded as a test for Gonzalo and
Ibàñez’s bound.

If Gonzalo and Ibàñez’s SSWGC would be true, it would have relevant implications for Cosmology
and Particle Physics.
As clarifying examples, let us consider how (4.34) constrains some inflationary models and the
Standard Model.

Inflation

Among polynomial potentials, the linear case is the only one that allows for trans-Planckian
excursions according to (4.34). In the models of chaotic inflation [82] those based on linear potentials
are singled out as the class that can lead to sufficient inflation: correspondingly to the tensor-to-scalar
ratio r ∼ 0.07, they give 50÷ 60 e-folds of inflation. Instead of considering purely linear potentials,
one can deal with potentials that behave linearly for |φ| > MP . Such potentials appear in String
Theory when studying monodromy inflation [83–87]. One type of potential in this category is

Vmi(b) = A

[
1 +B

(
b

MP

)2
] 1

2

, (4.38)

where b is a type IIB monodromic axion field.
To check Gonzalo and Ibàñez’s conjecture we can introduce the combination

χ = 2
(
V ′′′
)2 − V ′′V ′′′′ − ( V ′′

MP

)2

: (4.39)

(4.34) is satisfied whenever χ ≥ 0.
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In Figure 4.2 the behaviour of Vmi(b) and χ with respect to b
MP

is represented for A = 1 and
some values of B (in appropriate units).
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Figure 4.2:
This figure illustrates the behaviour of Vmi(b) and that of χ with respect to b

MP
(for b ≥ 0) in the cases A = 1

and B = 1, 0.5, 0.2. Gonzalo and Ibàñez’s conjecture is satisfied if χ ≥ 0.
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When dealing with inflationary models two parameters, usually denoted as ε and η, can be
introduced: they are defined in terms of the inflationary potential V and its derivatives as

ε =

(
V ′

V

)2

M2
P

and

η =
V ′′

V
M2
P .

The condition for “getting out" of inflation realizes when ε and η are of O(1).
Testing the agreement of an inflationary model with Gonzalo and Ibàñez’s conjecture amounts to
compare the value of the inflaton corresponding to the exit from inflation and its value at which the
combination χ becomes negative. Going from larger to smaller values of φ, if one gets out of inflation
before χ starts to be negative, no tension between the inflationary model that one is considering
and Gonzalo and Ibàñez’s bound arises; if, instead, the getting out of inflation follows the becoming
negative of χ, by assuming that Gonzalo and Ibàñez’s inequality is a true Swampland criterion, the
inflationary model has to be modified.

In the case of Vmi(b) (for b ≥ 0), when (for instance) A = 1 and B = 1, ε(A=1,B=1)
mi = η

(A=1,B=1)
mi =

1 (in Planck units) for b = 0. The corresponding χ(A=1,B=1)
mi is negative for b

MP
& 2.11, as Figure

4.2 shows. So, the inflationary model referred to the potential (4.38) (with A = B = 1) is in tension
with Gonzalo and Ibàñez’s bound. A similar analysis can be made when A and B are chosen to be
A = 1 and B = 0.5 or B = 0.2.
We conclude that the potential (4.38) violates Gonzalo and Ibàñez’s conjecture at the per-mil level
above b ' 2MP . But, because we do not have control on the theory at such precision, we can state
that the monodromic inflationary model based on Vmi(b) passes the test.

We can then consider monomial potentials of the form

Vm(φ) = φa (4.40)

for a ≥ 0. The condition χ ≥ 0 translates into (a−2)(a−1)M2
P−φ2 ≥ 0 for a 6= 0, 1. When 0 < a < 1

the potential is characterized by tiny violations of (4.34) in the region φ <
√

(a− 1)(a− 2)MP .
For a > 2 there are still violations of the bound and they are trans-Planckian when a > 2.7. For
1 < a ≤ 2 (4.34) is violated at all points in field space. The cases a = 0 and a = 1 are those for
which Gonzalo and Ibàñez’s conjecture is satisfied at any locus in field space.

The recent cosmological observations support the idea that, after having fixed the initial condition
as chaotic inflation prescribes, the Starobinsky inflationary model is that better reproducing the
experimental data. It is based on the potential

VS(φ) = Λ

(
1− e−

√
2
3

φ
MP

)2

, (4.41)

where φ is the inflaton and Λ is the typical energy scale of inflation [88,89].
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Figure 4.3:
This figure represents the behaviour of VS(φ) and that of χ with respect to φ

MP
(for φ ≥ 0). Gonzalo and

Ibàñez’s bound is satisfied if χ ≥ 0.

By imposing εS = ηS = 1 (in Planck units) for the Starobinsky model (4.41), we get that the getting
out of inflation occurs around φ

MP
= 1. As Figure 4.3 shows, the combination χS is negative for

φ
MP
& 1.83. Therefore, VS(φ) is not consistent with the constraint (4.34).

To gain consistency with Gonzalo and Ibàñez’s conjecture the Starobinky’s inflationary model in its
original formulation needs to be modified at trans-Planckian distances. The possible addition of a
perturbation may render it consistent.

The Standard Model and its 3-dimensional compactification

Let us consider the SM and compactify it on a circle of radius R, which is given by R = e
φ√

2M3d
P

in terms of the quantum fluctuation field φ (with canonically normalized kinetic term).
If we concentrate in the deep infrared region where R � 1

me−
, the 3-dimensional 1-loop effective

potential is given (in terms of R) by [90]

V (R) =
2πr3Λ4

R2
− 4

(
r3

720πR6

)
+
∑

νe,νµ,ντ

r3VC(R,mνi), (4.42)

where r is a given reference scale to measure R (it can be fixed to 1 GeV) and

VC(R,mνi) =
nνim

2
νi

8π4R4

∞∑
j=0

K2(2πmνijR

j2
, (4.43)
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being nνi the helicities for each neutrino (nνi = 2 for Majorana neutrinos and nνi = 4 for Dirac
neutrinos) and K2,j the modified Bessel functions of the second kind. The first term of (4.42) comes
from the 4-dimensional cosmological constant term Λ4 after dimensional reduction and going to the
3-dimensional Einstein frame. The second term corresponds to the 1-loop Casimir energy of the
massless photon and graviton; since they are characterized by two helicity degrees of freedom each,
a factor 4 appears. The last term represents the contribution to the Casimir energy of the three
neutrinos compactified with periodic boundary conditions. All other possible contributions from
higher thresholds are exponentially suppressed by factors of the order e−

m
mν .

If the neutrinos are of Majorana type, the potential (4.42) exhibits AdS local minima. In fact,
the lightest neutrino contributes positively to the potential with two degrees of freedom; this is not
sufficient to compensate the negative terms associated to the photon and the graviton, corresponding
to four degrees of freedom. If, instead, the lightest neutrino is a Dirac neutrino, it participates
with four degrees of freedom to the value of the potential and this is enough to compensate the
contributions from the four massless degrees of freedom of the photon and the graviton. In this
last circumstance the potential monotonously decreases with R and no AdS minima develop. By
imposing that AdS non-supersymmetric minima are in the Swampland [91] we can obtain constraints
on the neutrino masses and on the 4-dimensional cosmological constant [92].
In particular, we deduce that the lightest neutrino is a Dirac neutrino and its mass ismν1 ≤ 7.7×10−3

eV in normal hierarchy and mν3 ≤ 2.5× 10−3eV for the inverted hierarchy.
As we have discussed above, quantum gravity may ensure the absence of bound states that are
protected from decay by their charge or by the particle being the lightest in the theory. In the SM
neutrinos are the lightest massive particles and they could form a tower of stable bound states. At
long distances the only force neutrinos feel is gravity and, therefore, in empty space they would form
bound states. However, this might not be the case when a cosmological constant is present. In the
weak gravity regime the cosmological constant can be modelled as a repulsive linear force so that
the gravitational interaction between two neutrinos at distance d is

F (ν)
gr = mν

(
−mν

d2
+

Λ4d

3

)
(4.44)

(mν being the mass of the lightest neutrino) up to the scale d ∼ m−1
ν . For neutrinos not to form

stable bound states we require [75]

Λ4 > m4
ν . (4.45)

The bound Λ4 > m4
ν can be regarded as a condition on how small the cosmological constant should

be or as a constraint on how heavy neutrinos could be. Following the latter interpretation, it can be
translated into a bound on the electroweak scale and, as a consequence, on the Higgs v.e.v . An
upper bound on the neutrino masses implies an upper bound on the Higgs v.e.v .

Gonzalo and Ibàñez’s conjecture (extended to three dimensions) allows to get similar (and not
identical) constraints on the SM. Gonzalo and Ibàñez’s perspective is attractive, because the AdS
Swampland condition can be applied when the AdS minima are absolutely stable and this is always
difficult to prove.
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To verify if the effective potential (4.42) of the SM compactified on a circle satisfies (4.34) it is
convenient to define

χ̃

M2
P

= 2

(
V ′′′

V ′′

)2

− V ′′′′

V ′′
(4.46)

and test the condition χ̃
M2
P
≥ 1.

By taking the derivatives with respect to φ and calculating them analytically by using the standard
formulas for the Bessel functions K2,j , we get that (4.34) is violated unless the lightest Dirac neutrino
mass is mν1 < 1.5×10−3eV in normal neutrino hierarchy or the lightest Dirac neutrino mass satisfies
mν3 > 1.6× 10−3eV for the inverted hierarchy [9].

Figure 4.4 [9]:
This figure represents the bounds on the lightest neutrino mass for normal hierarchy when the SM is
compactified on a circle of radius R and its 3-dimensional 1-loop effective potential is tested with Gonzalo
and Ibàñez’s conjecture.

By combining the results in [92,93], we conclude that, if the AdS Swampland condition and Gonzalo
and Ibàñez’s conjecture are true, then the SM with inverted hierarchy would be in the Swampland.
Normal hierarchy is another non-trivial prediction that Gonzalo and Ibàñez’s bound allows to make.

The just proposed discussion suggests Gonzalo and Ibàñez’s SSWGC can be in principle an
incredibly powerful tool. It gives constraints on models (such as inflationary models or the Standard
Model) our Universe is described by and so it really seems to point towards the formulation of a
consistent theory of quantum gravity that would be able to select, among a “jungle" of possible
vacua, the state corresponding to our Universe.

In spite of being so, we will now evidence various criticisms of Gonzalo and Ibàñez’s conjecture
(4.34) that make us think that their statement is not appropriately formulated.
When looking at (4.34), one poses the natural question on how the coefficients of the terms appearing
in the inequality have been derived.
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Following the diagrammatic approach Gonzalo and Ibàñez briefly suggest in their article, the
coefficients that they propose can’t be found.
As the authors stated during the String Phenomenology Conference that took place at CERN in
June (L. Ibàñez, On Towers and Scalars, String Phenomenology 2019 (June 24th-28th 2019, CERN),
http://indico.cern.ch>event), the particular choice of the numerical coefficients appearing in the
conjecture is justified by saturating the inequality (4.34). More precisely, let us consider the extremal
condition of (4.34) for a single scalar. The scalar interactions equal the gravitational one and the
constraint may be written as a differential equation on the field dependent mass m2(φ),

2
(
(m2)′

)2 −m2
(
m2
)′′ − m4

M2
P

= 0. (4.47)

The extremal solution for m2 (by expressing φ in units of MP ) is

m2(φ) =
Aeφ

Be2φ + 1
, (4.48)

where B ≥ 0 (and A > 0, as a choice). By defining R = e
φ
2 (with kinetic metric 2(dR/R)2) (4.48)

can be more suggestively rewritten as

m2(φ) =
m2

0

1/(NR)2 + (R/M)2
= m2

0

(NM)2

M2
M,N

, (4.49)

being

M2
M,N = N2R2 +

M2

R2
. (4.50)

The quantity MM,N looks like the spectrum of a string compactification on a circle with the duality
invariance

R←→ 1

R
; M ←→ N. (4.51)

For large and small R one obtains that

m2
φ→+∞ −→ m2

0M
2e−φ; m2

φ→−∞ −→ m2
0N

2eφ. (4.52)

If N and M are integers, this is the structure of towers of winding and momenta modes becoming
light as |φ| → +∞. Gonzalo and Ibàñez’s interpretation of this result is that these towers are the
WGC scalars that are required so that gravity keeps on being the weakest force when |φ| goes to
infinity. If φ is identified with a modulus, the statement of the distance conjectures is precisely
retrieved.
Even though Gonzalo and Ibàñez’s choice of the coefficients allows coherence with the SDC and
points towards the weaving of a network of Swampland criteria, this a posteriori justification for
them seems a rather weak motivation.
In spite of pretending to be a general statement, another criticism (actually preventing such generality)
appears at first sight when considering Gonzalo and Ibàñez’s conjecture.
In the form (4.34) is written down, we would expect the appearance of at least two other terms
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that are lacking though. In principle, there is no reason why a general statement should not include
terms such as V ′V ′′′′′ and V V ′′′′′′.
The absence of these two further contributions to the inequality (4.34) can be understood by thinking
that the conjecture applies in the vacuum for, say, 〈φ〉 = 0 (where V ′ = 0 and one can rid of the
cosmological “constant term" including V ) and in its vicinity.
Extending the validity of the conjecture “outside" the vacuum is an absolutely non-trivial task.
Because it is not clear to us how to formulate a statement “outside" the vacuum, in the following
(when referring to (4.34) or to our attempts in correcting it) we will set the discussion around the
vacuum.

Having evidenced two first-sight criticisms of Gonzalo and Ibàñez’s bound, we will dedicate the
remain part of this paragraph to try to investigate its meaning and content. In order to do so, as
briefly suggested in [9], we will use a Quantum Field Theory approach.
Let us consider the theory of a real scalar field φ subjected to an arbitrary potential V (φ) and
including gravity; its action is

S =

∫
d4x
√
−g

[
−
M2
P

2
R+

1

2
gµν∂

µφ∂νφ− V (φ)

]
. (4.53)

In the weak gravitational field limit and having in mind Minkowski spacetime as background, the
spacetime metric gµν can be expanded as [94]

gµν = ηµν +
2

MP
hµν , (4.54)

where ηµν = diag(+1,−1,−1,−1) is the Minkowski metric and hµν represents the quantum fluctuation
of the gravitational field.
Since we would like to perform interaction theory, it is convenient to appropriately express the

√
−g

factor, involving the determinant of the metric gµν .
By factorizing ηµλ in expressing gµν , we have that

√
−g =

√
−det gµν is equal to

√
−g =

[
−det (ηµλ) det

(
δλν +

2

MP
hλν

)] 1
2

=

[
e
tr
(

ln
(
δλν+ 2

MP
hλν

))] 1
2

=

=

+∞∑
i=0

1

i!

1

2

+∞∑
j=1

(−1)j+1

j

(
2

MP
hλλ + ...

)ji.
(4.55)

By moving to the momentum space, the Feynman rules for the scalar and the graviton’s propagators
and for the interaction vertices can be deduced [94].
The propagator for the scalar field φ is given by

p
=

i

p2 − V ′′
∣∣
φ=0

, (4.56)

where V ′′
∣∣
φ=0

= m2(> 0).
The propagator for the graviton gµν is
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q

µν ρσ

=
i

q2

1

2
[ηµρηνσ + ηµσηνρ − ηµνηρσ] . (4.57)

Being interested in a tree-level analysis, the interaction vertices that are relevant for our purposes
are32

p3p1

p2

= −iV ′′′
∣∣
φ=0

1

3!
; (4.58)

p1

p2

p3

p4

= −iV ′′′′
∣∣
φ=0

1

4!
(4.59)

and

qp1

p2
µν

=
i

MP

[
p1,µp2,ν + p1,νp2,µ − ηµν

(
p1p2 − V

′′∣∣
φ=0

)] 1

2!
. (4.60)

In writing the Feynman rules for the vertices we have referred to the conventions of [95, 96]. For
instance, each vertex has an associated symmetry factor which prevents the over-counting of the
possibilities a diagram can be constructed by when external lines are going to be attached to the
fixed vertices’ legs.

Let us now study the tree-level interactions that have the field φ as protagonist.
When two φ fields in the initial state interact giving rise to two φ particles in the final state thanks
to a φ mediator, three diagrams (corresponding to the channels s, t and u) have to be considered.

32It is worth noting that, apart from the omitted δ-functions expressing the conservation of the momenta at the
vertices, the Feynman rules involving only the scalar field φ are independent of the momenta themselves.
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They are

M(1)
s =

p1

p2

p3

p4

q

(4.61)

M
(1)
t =

p2 p4

p1 p3

−q (4.62)

and

M(1)
u =

p2 p3

p1 p4

−q (4.63)

By taking into account the way the external fields on both sides of the diagram can be glued to the
legs of each corresponding vertex, Feynman rules give

iM(1)
s =

(
−iV ′′′

∣∣
φ=0

3!

)2
i

(p1 + p2)2 − V ′′
∣∣
φ=0

× (3!)2 = −i

(
V
′′′∣∣

φ=0

)2

(p1 + p2)2 − V ′′
∣∣
φ=0

; (4.64)
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iM
(1)
t = −i

(
V
′′′∣∣

φ=0

)2

(p1 − p3)2 − V ′′
∣∣
φ=0

= −i

(
V
′′′∣∣

φ=0

)2

q2 − V ′′
∣∣
φ=0

(4.65)

and

iM(1)
u = −i

(
V
′′′∣∣

φ=0

)2

(p1 − p4)2 − V ′′
∣∣
φ=0

. (4.66)

Let us refer to the non-relativistic limit (where pi0 ' m + ~pi
2

2m for i = 1, ..., 4) and use the static
approximation (for which the energy q0 exchanged during the scattering is taken to be 0).
Furthermore, let us make reference to the rest frame (“ ′ ") of the system (1,2). There, ~p′1 + ~p′2 = ~0

and (as a consequence) p′1
0 = p′2

0; moreover, because of four-momentum conservation, ~p′3 + ~p′4 = ~0

(= ~p′1 + ~p′2) and so p′3
0 = p′4

0 = p′1
0 = p′2

0.
By exploiting (also) external particles’ on-shellness, the amplitudes M(1)

s , M(1)
t and M

(1)
u become

M(1)
s = −

(
V
′′′∣∣

φ=0

)2

4m2

(
1 +

~p′1
2

m2

)
−m2

' −

(
V
′′′∣∣

φ=0

)2

3m2
= constant; (4.67)

M
(1)
t = +

(
V
′′′∣∣

φ=0

)2

~q′
2

+m2
(4.68)

and

M(1)
u = −

(
V
′′′∣∣

φ=0

)2

~q′
2
− 4~p′1

2
−m2

= +

(
V
′′′∣∣

φ=0

)2

2~p′1
2

(1 + cos θ) +m2
(4.69)

(either by using the Maldestam relation s + t + u = 4m2 '
(

4m2 + 4~p′1
2)
− ~q′

2
+ u or by simply

making use of the rest frame relations among three-momenta and denoting as θ the angle between
~p′1 and ~p′3).
Another contribution to the scalar interactions is represented by the self-interaction diagram

M(2) =

p1

p2

p3

p4

(4.70)

and thanks to Feynman rules the amplitude

M(2) =
−V ′′′′

∣∣
φ=0

4!
× 4! = −V ′′′′

∣∣
φ=0

= constant (4.71)

71



is obtained. The factor 4! is justified (as usual) by counting the possibilities in representing the
diagram by connecting the external fields with the vertex legs.

The gravitational interaction between two φ states is described by diagrams where a graviton
acts as mediator. By distinguishing the three possible channels these graphs are

M(3)
s =

−qp1

p2

q p3

p4
µν ρσ

(4.72)

M
(3)
t =

q

p2 p4

−q

p1 p3

ρσ

µν

(4.73)

and

M(3)
u =

q

p2 p3

−q

p1 p4

ρσ

µν

(4.74)

According to Feynman rules, we find

iM(3)
s = −i 2

M2
P (p1 + p2)2

[
(p1p3)(p2p4) + (p1p4)(p2p3)− (p1p2)(p3p4)−m2(p1p2)+

−m2(p3p4)− 2m4)
]

;

(4.75)
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iM
(3)
t = −i 2

M2
P (p1 − p3)2

[
(p1p2)(p3p4) + (p1p4)(p2p3)− (p1p3)(p2p4) +m2(p1p3)+

+m2(p2p4)− 2m4)
] (4.76)

(with p1 − p3 = q) and

iM(3)
u = −i 2

M2
P (p1 − p4)2

[
(p1p2)(p3p4) + (p1p3)(p2p4)− (p1p4)(p2p3) +m2(p1p4)+

+m2(p2p3)− 2m4)
]
.

(4.77)

In the non-relativistic limit; in the static approximation and by referring (as before) to the (1,2) rest
frame, the amplitudes take the leading order forms

M(3)
s = +

3m2

2M2
P

(
1 +

~p′1
2

m2

) ' +
3m2

2M2
P

= constant; (4.78)

M
(3)
t = +

2m4

M2
P
~q′

2 = +
m4

M2
P
~p′1

2
(1− cos θ)

(4.79)

and

M(3)
u = − 2m4

M2
P

(
~q′

2
− 4~p′1

2) = +
m4

M2
P
~p′1

2
(1 + cos θ)

(4.80)

(either by using the Maldestam relation or by simply making use of the rest frame relations among
three-momenta and denoting as θ the angle between ~p′1 and ~p′3).

Let us focus on the limit33

|~q′| −→ 0, (4.81)

that is let us consider a scattering condition characterized by small exchanged energies and large
interaction distances.
In this circumstance, only the t-channels M

(1)
t and M

(3)
t may diverge, ~p′1

2
being some given non-

vanishing number. But, because the field φ is massive (m > 0), M(1)
t doesn’t diverge either in the

interesting limit |~q′| −→ 0.

33This limit can be also regarded as a non-deflection limit: in the center of mass frame, θ −→ 0 and the scattering
is of s-wave type.
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More precisely, by moving from the momentum space to the configuration space (where the in-
teraction distance is called |~x|) through Fourier transform operations (denoted by a “ ˜ ") we find
that

˜
M

(1)
s ∝ δ(3)(~x); M̃(2) ∝ δ(3)(~x);

˜
M

(3)
s ∝ δ(3)(~x), (4.82)

because the Fourier transform of a constant is proportional to the Dirac δ-function; then

˜
M

(1)
t ∝

e−m|~x|

|~x|
; (4.83)

and

˜
M

(1)
u ∝

ei
√

4 ~p′1
2
+m2|~x|

|~x|
;

˜
M

(3)
u ∝

e2i| ~p′1||~x|

|~x|
, (4.84)

the Fourier transform of 1
~q′

2±a2
(with a a real number) being the Yukawa-type term e−a|~x|

|~x| and eia|~x|
|~x|

respectively; and finally

˜
M

(3)
t ∝

1

|~x|
, (4.85)

since the Fourier transform of 1
~q′

2 has the Coulomb-type behaviour 1
|~x| .

The relations (4.82), (4.83), (4.84) and (4.85) allow to conclude that, because all the scalar scattering
terms are either contact interaction terms or terms with a decaying behaviour bounded between (say)
− 1
|~x| and + 1

|~x| or exponentially suppressed Yukawa-like interactions, they can’t beat the gravitational
force in the large distance regime: in its Coulomb-type t-channel gravity decays much less rapidly
than the scalar force does.
Being so, we claim that Gonzalo and Ibàñez’s conjecture requires a condition that is in contrast
with its Quantum Field Theory derivation (which the same authors suggest in their article).
Even though Gonzalo and Ibàñez’s bound is inspired by the physical principle that gravity has to
be the weakest force in any circumstance, we have found that, in the well-understood regime of
large distances, gravity acts more strongly than the scalar force. The reason behind this result is
the freedom in choosing an arbitrary field φ: because in principle it is massive, the scalar t-channel
(in particular) can’t ever compete with the gravitational t-channel as it could do if the scalar force
mediator was massless.

To overcome the tension we have just pointed out we can try to study models with many scalar
fields among which one is strictly massless and see what are the constraints that the request that
gravity has to be the weakest force imposes on the parameters of such theories. This will be the
topic of the next paragraph.
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4.5 Some models to try to get a general statement

As we have just emphasized, the fact that the field φ is arbitrary and so (a priori) massive makes
Gonzalo and Ibàñez’s conjecture “contradictory". We would like to amend (4.34) and try to get (if
there is one) a general statement.
In the same spirit of Palti’s proposals for a scalar version of the WGC ( [8]), we will consider a model
including gravity and involving two scalar fields, namely φ and H, with φ that is taken to be strictly
massless. The idea behind the analysis we are approaching to is to compare the interaction strengths
of the force mediated by the massless scalar φ and the gravitational force, taking H as a testing
particle. By imposing the scalar force has always to beat gravity we will deduce some constraints on
the parameters of the theory.

Let us consider the action

S =

∫
d4x
√
−gL =

∫
d4x
√
−g

[
−
M2
P

2
R+

1

2
gµν∂

µφ∂νφ+
1

2
gµν∂

µH∂νH − V (φ,H)

]
, (4.86)

where

V (φ,H) =
1

2
m2H2 +

1

2
µφH2 +

1

4
λφ2H2. (4.87)

We will study the theory (4.86) in a weak gravitational regime, where the spacetime metric gµν can
be expanded as

gµν = ηµν +
2

MP
hµν (4.88)

(ηµν = diag(+1,−1,−1,−1) being the Minkowski metric); and around a (supposed) minimum of the
potential V (φ,H), for which ∂φV = 0 = ∂HV and, say, 〈φ〉 = 0 and 〈H〉 = 0.
Since we want the scalar field φ to be strictly massless, we have to prevent it from acquiring even
an effective mass (when, in case, integrating over H). This request translates into the conditions
∂2
φV = 0 and ∂φ∂HV = 0 and so determines the form of the potential (4.87)34.

By moving to the momentum space the relevant Feynman rules for the scalars and the graviton’s
propagators and for the interaction vertices can be deduced [94–96].
From 1

2ηµν∂
µφ∂νφ, the propagator for the scalar field φ is derived

p
=

i

p2
; (4.89)

from 1
2ηµν∂

µH∂νH − 1
2m

2H2, the propagator for the scalar H results in

p
=

i

p2 −m2
(4.90)

34From now on, with a small abuse of notation, we will denote as φ and H the quantum fluctuations of the same
named fields around their vacuum expectation values.
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and, from 1
2∂µhνλ∂

µhνλ − 1
4∂µh

ν
ν∂

µhλλ, the graviton propagator is

q

µν ρσ
=

i

q2

1

2
[ηµρηνσ + ηµσηνρ − ηµνηρσ] . (4.91)

The interaction vertices that will be relevant for the following discussion are

pk1

k2

= −iµ 1

2
, (4.92)

from −1
2µφH

2;

p1

p2

k3

k4

= −iλ 1

4
, (4.93)

from −1
4λφ

2H2 35 and

qk1

k2
µν

=
i

MP

[
k1,µk2,ν + k1,νk2,µ − ηµν

(
k1k2 −m2

)] 1

2
, (4.94)

from 1
MP

[
hµν∂µH∂νH − 1

2h
µ
µ∂νH∂

νH + 1
2h

µ
µm2H2

]
.

Let us start analyzing the tree-level interactions that have the scalar field H as protagonist.
When two H particles interact (in the initial state) and give rise to other two H particles (in the
final state) thanks to the mediator φ, the following diagrams have to be considered:

35The previous scalar Feynman rules are independent of the momenta of the scalar fields, because the couplings
that determine them don’t involve derivatives.
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M(1)
s =

p1

p2

p3

p4

q

(4.95)

M
(1)
t =

p2 p4

p1 p3

−q (4.96)

and

M(1)
u =

p2 p3

p1 p4

−q (4.97)

Feynman rules give

iM(1)
s =

(
−iµ

2

)2 i

(p1 + p2)2
× (2)2 = −i µ2

(p1 + p2)2
; (4.98)

iM
(1)
t = −i µ2

(p1 − p3)2
(4.99)

(with p1 − p3 = q) and

iM(1)
u = −i µ2

(p1 − p4)2
(4.100)

(by taking into account the ways the external legs can be attached to the vertex lines).
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By considering the non-relativistic limit (where pi0 ' m + ~pi
2

2m for i = 1, ..., 4) and the static
approximation (for which the energy q0 exchanged during the scattering is negligible and is taken to
be 0) and by choosing as reference frame the center of mass frame (“ ′ ") of the system (1,2), the
scattering amplitudes M(1)

s , M(1)
t and M

(1)
u for the on-shell H particles become

M(1)
s = − µ2

4m2

(
1 +

~p′1
2

m2

) ' − µ2

4m2
= constant; (4.101)

M
(1)
t = +

µ2

~q′
2 = +

µ2

2~p′1
2

(1− cos θ)
(4.102)

and

M(1)
u = − µ2

~q′
2
− 4~p′1

2 = +
µ2

2~p′1
2

(1 + cos θ)
(4.103)

(either by using the Maldestam relation s + t + u = 4m2 '
(

4m2 + 4~p′1
2)
− ~q′

2
+ u or by simply

making use of the rest frame relations among three-momenta and denoting as θ the angle between
~p′1 and ~p′3).

The gravitational interaction between two H states is described by diagrams where a graviton is
exchanged.
The s-channel diagram is

M(3)
s =

−qp1

p2

q p3

p4
µν ρσ

(4.104)

the t-channel graph can be depicted as

M
(3)
t =

q

p2 p4

−q

p1 p3

ρσ

µν

(4.105)
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and the u-channel diagram is

M(3)
u =

q

p2 p3

−q

p1 p4

ρσ

µν

(4.106)

Feynman rules give iM(3)
s , iM(3)

t and iM(3)
u . Their expressions are the same as in (4.75), (4.76) and

(4.77) (with the only caveat that here not φ but H particles are involved). For completeness, let us
repeat the results when adopting the non-relativistic limit and the static approximation and making
reference to the center of mass frame of the particles 1 and 2:

M(3)
s = +

3m2

2M2
P

(
1 +

~p′1
2

m2

) ' 3m2

2M2
P

= constant; (4.107)

M
(3)
t = +

2m4

M2
P
~q′

2 = +
m4

M2
P
~p′1

2
(1− cos θ)

; (4.108)

M(3)
u = − 2m4

M2
P

(
~q′

2
− 4~p′1

2) = +
m4

M2
P
~p′1

2
(1 + cos θ)

(4.109)

(either by using the Maldestam relation or by simply making use of the rest frame relations among
three-momenta and denoting as θ the angle between ~p′1 and ~p′3).

In the interesting limit

|~q′| −→ 0 (4.110)

the only diagrams that (diverging) can give relevant contributions are M
(1)
t and M

(3)
t .

Since both graphs behave as 1
~q′

2 (or as 1
|~x| in the configuration space, |~x| being the interaction

distance), the comparison between the scalar and the gravitational interaction strengths is given by
looking at the coefficients M(1)

t and M
(3)
t are expressed by.

Animated by the physical principle gravity has to be the weakest force in any circumstance, we
deduce a constraint on the parameters of the potential V (φ,H). It is

(
∂φ∂

2
HV
∣∣
φ=0=H

)2
≥

2
(
∂2
HV
∣∣
H=0

)2
M2
P

, (4.111)
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that is

µ2

m2
≥ 2m4

M2
P

. (4.112)

By recovering Palti’s notation [7] (and so by substituting m2
0 to m2 and µ2m2

0, where µ is now
adimensional, to µ2), we find

µ2 ≥ 2m2
0

M2
P

. (4.113)

This is a more strict but coherent result (as sufficient condition) with respect to that proposed by
Palti in [7, 8].

The analysis we have dealt with so far ignores loop effects. We will now enrich the discussion by
taking into account the 1-loop scalar contribution to the scattering of two H particles, dictated by
the lagrangian term −1

4λφ
2H2. In considering the possible quantum corrections to the statement

(4.113) we won’t include the loop gravitational contributions: because they would appear with a
suppression factor at least of O( 1

M4
P

), they can be reasonably regarded (at first approximation) as
negligible terms.
Using the Feynman rules (4.89) and (4.93), let us calculate the diagrams

M(1),1−loop
s =

p1

p2

p3

p4

k − p1 − p2

k

(4.114)

M
(1),1−loop
t =

p2 p4

p1 p3

k − p1 + p3 k (4.115)

and

80



M(1),1−loop
u =

p2 p3

p1 p4

k − p1 + p4 k (4.116)

As an example of calculation let us consider the t-channel graph M
(1),1−loop
t .

According to Feynman rules and by using dimensional regularization in D = 4 − ε dimensions,
M

(1),1−loop
t can be expressed as36

iM
(1),1−loop
t =

1

2
(−iλ)2

∫
dDk

(2π)D
i

k2

i

(k − p1 + p3)2 =
λ2

2

∫
dDk

(2π)D
1

k2 (k − q)2 ; (4.117)

by exploiting now Feynman parameterization technique, the previous integral becomes

iM
(1),1−loop
t =

λ2

2

∫ 1

0
dx

∫
dDk

(2π)D
1

[k2(1− x) + (k − q)2x]2
=

=
λ2

2

∫ 1

0
dx

∫
dDk

(2π)D
1

[(k − xq)2 + q2x(1− x)]2

(4.118)

and, by implementing the substitution k −→ k + xq, it results to be

iM
(1),1−loop
t =

λ2

2

∫ 1

0
dx

∫
dDk

(2π)D
1

[k2 + q2x(1− x)]2
. (4.119)

By moving then to the Euclidean space we find

iM
(1),1−loop
t =

iλ2

2

∫ 1

0
dx

∫
dDkE
(2π)D

1[
k2
E + q2

Ex(1− x)
]2 . (4.120)

So [97]

M
(1),1−loop
t =

1

2

(
λ

4π

)2(4πρ2

q2
E

) ε
2

Γ
[ ε

2

] ∫ 1

0
dx

1

(x(1− x))
ε
2

, (4.121)

where ρ is the dimensional regulator for λ and Γ[z] is the Euler Γ-function.
36The factor 1

2
at the beginning of the (4.117) takes into account the identity of internal lines.
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Being

∫ 1

0
dx

1

(x(1− x))
ε
2

=
Γ
[
1− ε

2

]2
Γ [2− ε]

; (4.122)

by defining ψ(n) = Γ′[n]
Γ[n] (for n ∈ Z) and expanding the Euler Γ-functions Γ

[
ε
2

]
, Γ
[
1− ε

2

]2 and

Γ [2− ε] in powers of ε, M(1),1−loop
t turns out to be

M
(1),1−loop
t =

(
λ

4π

)2(4πρ2

q2
E

) ε
2
[

1

ε
+

1

2
γE + ψ(2) +O(ε)

]
(4.123)

(with γE = −ψ(1) = 0.5772... and ψ(2) = 1− γE = 0.4228...). In the interesting limit ε→ 0 (4.123)
results in

M
(1),1−loop
t =

(
λ

4π

)2 [1

ε
+

1

2
γE + ψ(2)

]
(4.124)

and exhibits a divergent part going as 1
ε and a finite part.

The amplitudes M(1),1−loop
s and M

(1),1−loop
t can be evaluated by following exactly the same procedure

and their final expressions match (4.124).
By summing over the three channel contributions, at the end we obtain

M(1),1−loop = M(1),1−loop
s + M

(1),1−loop
t + M(1),1−loop

u =

(
λ

4π

)2 [3

ε
+ 3

(
1

2
γE + ψ(2)

)]
=

=

(
λ

4π

)2 [3

ε
+ 3− 3

2
γE

]
.

(4.125)

Since M(1),1−loop has a divergent part

M(1),1−loop∣∣
DIV

=

(
λ

4π

)2 3

ε
(4.126)

to get rid of this divergence a renormalization procedure is required.
Let us consider the action

S =

∫
d4x
√
−g

[
−
M2
P

2
R+

1

2
gµν∂

µφ∂νφ+
1

2
gµν∂

µH∂νH − 1

2
m2H2 − 1

2
µφH2+

−1

4
λφ2H2

] (4.127)

and study its renormalization by adopting as regularization procedure the dimensional one (and so
moving to D = 4− ε dimensions). In doing so, we will ignore all the gravitational contributions to
the renormalization itself: this approximation is legitimate by the fact that the loop gravitational
amplitudes are suppressed by the inverse and (at least) fourth power of the Planck mass MP .
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The (relevant) renormalized lagrangian density LR can be written as

LR = −1

2
φ0�φ0 −

1

2
H0�H0 −

1

2
m2

0H
2
0 −

1

2
µ0φ0H

2
0 −

1

4
λ0φ

2
0H

2
0 (4.128)

and it satisfies
[∫

dDxLR
]

= 0. The renormalized quantities LR depends on are defined in terms of
the original ones in the following way:

φ0 = Z
1
2
φ φ; H0 = Z

1
2
HH (4.129)

and

m2
0 = m2 + δm2; µ0 = ZµZ

− 1
2

φ Z−1
H ρ

ε
2µ; λ0 = ZλZ

−1
φ Z−1

H σελ, (4.130)

where ρ and σ are two dimensional regulators allowing to correctly express the mass dimensions of
the parameters µ0 and λ0. With appropriately defined Zφ, ZH , δm2, Zµ and Zλ, the correlation
functions referred to LR (rather than L) are finite.
Before proceeding, let us recall the relevant Feynman rules:

p

=
i

p2
;

p

=
i

p2 −m2
;

pk1

k2

= −iµ
2
ρ
ε
2

and

p1

p2

k3

k4

= −iλ
4
σε.

Let us analyze first the two-point functions for φ and H and then the three-point and four-point
vertex functions.
At order 0, from the quadratic φ-sector of the renormalized action, the two-point function for φ is

Γ
(2),0
φ = p2 + (Zφ − 1) p2 = S

(2),0
φ + ∆S

(2),0
φ . (4.131)
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At 1-loop, the topologically non-equivalent diagrams that contribute (once the external legs have
been fixed) are

Γ
(2),1−loop
φ,A =

p p

k

(4.132)

and

Γ
(2),1−loop
φ,B =

p p

k − p

k

(4.133)

The first graph turns out to be

iΓ
(2),1−loop
φ,A = −iλσε

∫
dDk

(2π)D
i

k2 −m2
= −iλσε

∫
dDkE
(2π)D

1

k2
E +m2

=

= −i λm
2

(4π)2
Γ
[
−1 +

ε

2

](4πσ2

m2

) ε
2

;

(4.134)

in the limit ε→ 0, one finds

Γ
(2),1−loop
φ,A = − λm2

(4π)2
Γ
[
−1 +

ε

2

]
(4.135)

and isolates

Γ
(2),1−loop
φ,A

∣∣
DIV

=
λm2

8π2ε
. (4.136)

For the second 1-loop contribution to the two-point function for φ, Feynman rules give37

iΓ
(2),1−loop
φ,B =

1

2
(−iµ)2ρε

∫
dDk

(2π)D
i

(k − p)2 −m2

i

k2 −m2
. (4.137)

By using Feynman parameterization (similarly to what we did in (4.118)); by operating the shift
k → k + xp and moving to the Euclidean space, one gets

37The factor 1
2
takes into account the identity of the internal loop lines.
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iΓ
(2),1−loop
φ,B = i

µ2

2
ρε
∫ 1

0
dx

∫
dDkE
(2π)D

1[
k2
E +M2

]2 (4.138)

(having called p2
Ex(1− x) +m2 = M2). In the limit ε→ 0 one deduces

iΓ
(2),1−loop
φ,B =

i

2

( µ
4π

)2
Γ
[ ε

2

] ∫ 1

0
dx

(
4πρ2

M2

) ε
2

−→ i

2

( µ
4π

)2
Γ
[ ε

2

]
(4.139)

and can extract Γ
(2),1−loop
φ,B ’s divergent part: it is

Γ
(2),1−loop
φ,B

∣∣
DIV

=
µ2

16π2ε
. (4.140)

In the minimal subtraction scheme the requirement is then

i∆S
(2),0
φ + iΓ

(2),1−loop
φ,A

∣∣
DIV

+ iΓ
(2),1−loop
φ,B

∣∣
DIV

= 0, (4.141)

that is

(Zφ − 1) p2 +
λm2

8π2ε
+

µ2

16π2ε
= 0. (4.142)

This renormalization condition suggests that the field φ acquires a mass at loop-level. We can add a
mass term for φ in L and introduce the corresponding counter-term δm2

φ.
After having modified the definition of ∆S

(2),0
φ in (4.131) as

∆S
(2),0
φ = (Zφ − 1) (p2 −m2

φ)− Zφδm2
φ, (4.143)

(4.141) results in

(Zφ − 1) (p2 −m2
φ)− Zφδm2

φ +
λm2

8π2ε
+

µ2

16π2ε
= 0. (4.144)

By replacing the dimensional coupling µ with µ∗m (where, as µ in (4.113), µ∗ is adimensional and
m is the typical mass scale for the theory (4.127)) (4.144) gives

Zφ = 1 (4.145)

and

δm2
φ =

2λ+ µ∗2

16π2ε
m2. (4.146)

Since the field φ has to be massless, its physical mass has to be zero: in symbols,

m2
0,φ = m2

φ + δm2
φ = 0 (4.147)

(or, equivalently, mφ
2 = −2λ+µ∗2

16π2ε
m2).
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At order 0, the H-quadratic terms of the renormalized action determine the two-point function for
the field H; it is

Γ
(2),0
H = (p2 −m2) + (ZH − 1) (p2 −m2)− ZHδm2 = S

(2),0
H + ∆S

(2),0
H . (4.148)

At 1-loop, the topologically non-equivalent diagrams that correct Γ
(2),0
H (once the external legs have

been fixed) are

Γ
(2),1−loop
H,A =

p p

k

(4.149)

and

Γ
(2),1−loop
H,B =

p pk − p

k

(4.150)

When evaluated by taking into account the introduction of a bare mass term for φ, the Feynman
graph (4.149) is

iΓ
(2),1−loop
H,A = −iλσε

∫
dDk

(2π)D
i

k2 −m2
φ

; (4.151)

and by following exactly the same procedure used for (4.132) one obtains that

Γ
(2),1−loop
H,A

∣∣
DIV

=
λm2

φ

8π2ε
. (4.152)

The contribution (4.150) to the H two-point function

iΓ
(2),1−loop
H,B = (−iµ)2ρε

∫
dDk

(2π)D
i

(k − p)2 −m2
φ

i

k2 −m2
(4.153)

can be calculated as (4.133) (intending now M2 as M2 = p2
Ex(1− x) +m2(1− x) +m2

φx). Since we
are referring to four dimensions, its divergent part is

Γ
(2),1−loop
H,B

∣∣
DIV

=
µ2

8π2ε
. (4.154)
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In the minimal subtraction scheme the requirement to get rid of divergences consists in

i∆S
(2),0
H + iΓ

(2),1−loop
H,A

∣∣
DIV

+ iΓ
(2),1−loop
H,B

∣∣
DIV

= 0, (4.155)

that is

(ZH − 1) (p2 −m2)− ZHδm2 +
λm2

φ

8π2ε
+

µ2

8π2ε
= 0. (4.156)

Therefore,

ZH = 1 (4.157)

and, by exploiting (4.147) to express m2
φ and keeping only the O(1

ε ) term38,

δm2 ' µ2

8π2ε
=
µ∗2m2

8π2ε
. (4.158)

Having considered the two-point functions for the scalar fields φ and H, let us now move to the
analysis of the three-point and four-point vertex functions.
The 1-loop correction to the 0-order three-point function

Γ(3),0
µ = −µρ

ε
2 − (Zµ − 1)µρ

ε
2 (4.159)

is expressed thanks to the diagram

Γ(3),1−loop
µ =

p1 p2

p3

k

k + p1 k − p2

(4.160)

that is

iΓ(3),1−loop
µ = (−iµρ

ε
2 )3

∫
dDk

(2π)D
i

k2 −m2
φ

i

(k − p2)2 −m2

i

(k + p1)2 −m2
. (4.161)

The graph (4.160) is superficially convergent in four dimensions and, being a 1-loop diagram, it does
not have sub-divergences. Standing then to Weimberg’s theorem ( [95,96]), Γ

(3),1−loop
µ is finite.

Therefore, the renormalization condition results in

Zµ = 1. (4.162)

38The terms of O( 1
ε2

) behave as typically 2-loop divergent terms do.
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Finally, the 0-order four-point function (deduced from the quartic sector of (4.127) in the fields)

Γ(4),0 = −λσε − (Zλ − 1)λσε (4.163)

is corrected at 1-loop by

Γ
(4),1−loop
A =

p1 p2

p4 p3

k + p1 k − p2

k

k + p1 + p4

(4.164)

and

Γ
(4),1−loop
B =

p1 p2

p4 p3

k

k + p1 k − p2

(4.165)

For the diagrams (4.164) and (4.165) Feynman rules give

iΓ
(4),1−loop
A = (−iµρ

ε
2 )4

∫
dDk

(2π)D
i

k2 −m2
φ

i

(k − p2)2 −m2

i

(k + p1 + p4)2 −m2
·

· i

(k + p1)2 −m2

(4.166)

and

iΓ
(4),1−loop
B = (−iµρ

ε
2 )2(−iλσε)

∫
dDk

(2π)D
i

k2 −m2
φ

i

(k − p2)2 −m2

i

(k + p1)2 −m2
, (4.167)

respectively. Weimberg’s theorem ensures that (4.164) and (4.165) are finite, because they superficially
converge in four dimensions and are 1-loop graphs.
The renormalization condition turns out to be equivalent to

Zλ = 1. (4.168)
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Summarizing, the renormalization procedure we have have just dealt with gives

Zφ = ZH = Zµ = Zλ = 1; δm2 ' µ2

8π2ε
, (4.169)

implying that the couplings µ and λ do not run with an appropriately defined energy scale as,
instead, m (and µ∗) does.
The running of m and µ∗ is described by their β-functions.
Having in mind m = µ

µ∗ , the β-function for m can be defined as

βm = ρ
∂

∂ρ
m2(m2

0, ρ, ε)
∣∣
m2

0(m2,ρ,ε)
ε→ 0 (4.170)

and explicitly is39

βm =
µ2

8π2
> 0. (4.171)

By introducing

µ∗0 =
µ0

m0
' µ∗ρ

ε
2

[
1− µ∗2

16π2ε

]
, (4.172)

the β-function for µ∗ is

βµ∗ = ρ
∂

∂ρ
µ∗(µ∗0, ρ, ε)

∣∣
µ∗0(µ∗,ρ,ε)

ε→ 0 (4.173)

and it turns out to be

βµ∗ = − µ∗3

16π2
< 0. (4.174)

Let us now come back to the diagrams (4.114), (4.115) and (4.116) (whose divergent parts can
be properly taken into account by the renormalization procedure). These graphs give a 1-loop
contribution to the scalar interaction between two H particles that sums up to the classical term,
corresponding to the diagram (4.96). Since (4.102) and the finite part of (4.125) agree as far their
sign is concerned, the 1-loop term increases the scalar force strength. But, the mass being running
with the interaction energy (m2 = m2(E)), one may ask whether there could exist an energy scale
at which the gravitational interaction equals in strength the scalar force and so if there could be
solutions of

39To a mass parameter m the anomalous dimension γm is usually associated (rather than the β-function): it is
defined as

γm =
1

2
ρ
∂

∂ρ
lnm2(m2

0, ρ, ε)
∣∣
m2

0(m
2,ρ,ε)

ε→ 0

and, for the theory we are considering, it is

γm =
µ2

16π2m2
> 0

.
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µ(E0)2

E2
+ ~C

λ(E0)

16π2
=

2m2(E)

M2
PE

2
, (4.175)

where C is a numerical positive constant of O(1) and E0 is a reference energy scale.
Since (as it is possible to deduce from (4.171)) m2 grows logarithmically (and so tremendously
slowly) with the energy E, (4.175) can’t be (reasonably) satisfied.
Requiring that the scalar force is stronger than the gravitational one at tree-level is indeed enough:
quantum (1-loop) corrections don’t seem to alter the significant result (4.111) (or (4.113)).
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5 Giving scalar charge to a classical particle

We would like to understand how (if there is a practicable way to do so) a classical particle can
acquire a scalar charge.

As it is known, the geodesic motion of a point-like massive or massless particle in a generic
spacetime is described by means of the isomorphism and reparameterization invariant Polyakov
action

SP = −1

2

∫
dτ
√
−γττ

[
γττ

dxµ(τ)

dτ
gµν(x)

dxν(τ)

dτ
+m2

]
, (5.1)

where {xµ}µ=0,...,3 are the (adimensional) coordinates chosen to parameterize the spacetime (whose
metric is gµν(x)) the particle lives in; τ is the variable that parameterizes the world-line γ =

(x0(τ), ~x(τ)) of the particle (γττ being the metric along it) and m is the mass of the particle.
The action SP expresses the interaction of the free particle with the spacetime metric and such a
coupling explicitly manifests in the world-line γ, whose parameter is tied to the line-element ds2 as
ds2 = dxµgµνdxν = γττdτ2.

The action SP can be modified by adding other terms that account for the interaction of the
particle with something else. For instance, the particle is made interact with an external U(1) gauge
field Aµ(x) through the action

SA = qA

∫
dxµAµ(x), (5.2)

where qA is the charge of the particle with respect to Aµ. The action SP + SA describes the motion
in a curved spacetime of a particle, charged (say) under the electromagnetic field Aµ(x).

Because of the role it can play as far as the main results of our thesis are concerned, we would
like to couple the particle to a scalar field (rather than to a gauge field).
Following the same logic we have just presented, the only possible extension of SP we could imagine
is given by the term

Sφ = qφ

∫
dxµ∂µφ(x), (5.3)

φ being the scalar field of interest. However, because the integration is meant to be taken over all
spacetime (in the absence of a boundary), Sφ is identically 0 and it seems that the particle can’t get
any scalar charge.
Despite this, an alternative procedure to make the particle interact with the scalar field φ appears
to us to be reasonably viable.
The particle’s mass m in SP is usually regarded as an intrinsic and fixed property of the particle
itself, but it could be interpreted as an effective mass depending on φ. The idea we are going
to develop now is that the particle interacts with φ (and so gets charged under it) thanks to the
dependence of its mass on the scalar field.
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Let us consider the action

S = −1

2

∫
dτ
√
−γττ

[
γττ

dxµ(τ)

dτ
gµν(x)

dxν(τ)

dτ
+m2(φ)

]
+

∫
d4x
√
−g 1

2
∂µφ(x)gµν(x)∂νφ(x),

(5.4)

where, inspired by Palti’s model (4.15), we can set m2(φ) = m2
0 + 2µφ(x(τ)). S describes the motion

of a particle along the world-line γ = (x0(τ), ~x(τ)) in a curved spacetime (with metric gµν) in the
presence of a scalar field φ(x).
We choose to refer to Minkowski spacetime,

gµν = ηµν = diag(−1,+1,+1,+1) (5.5)

and consider the non-relativistic limit.
By varying the action (5.4) with respect to the field φ we can get (thanks to its equation of motion)
the field φ the particle moving along γ gives rise to.
Being the reference frame we observe the motion of the particle from that we reveal the field φ

through, we set x0 = x0(τ). The equation of motion of φ is then

�φ δ(x0 − x0(τ)) = −eτµ δ(4)(x− x(τ)) (5.6)

with eτ =
√
−γττ .

In order to solve the previous equation we move from configuration space to momentum space by
adopting the convention

F̂ (k) =
1

(2π)2

∫
d4k e−ikxF (x) =

1

(2π)
1
2

∫
dk0e+ik0x0 1

(2π)
3
2

∫
d~k e−i

~k·~xF (x0, ~x). (5.7)

Coherently with the non-relativistic limit we are referring to, we require the static approximation
too and so impose k0 = 0. Then, for ~k2 6= 0, we have to deal with

φ̂ =
eτµ

(2π)
3
2

e−i
~k·~x(τ)

~k2
. (5.8)

The anti-Fourier transform of φ̂ is given by

φ =
1

(2π)
3
2

∫
d~k e+i~k·~x eτµ

(2π)
3
2

e−i
~k·~x(τ)

~k2
. (5.9)

By passing to spherical coordinates (d~k = ρ2dρ d cos θdα), φ is expressed as

φ =
eτµ

(2π)3

∫ 2π

0
dα

∫ +∞

0
dρρ2

∫ +1

−1
d cos θ

eiρ|~x−~x(τ)| cos θ

ρ2
=
eτµ

2π2

∫ +∞

0
dρ

sin ρ|~x− ~x(τ)|
ρ|~x− ~x(τ)|

(5.10)

and
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φ =
eτµ

2π2

1

|~x− ~x(τ)|

∫ +∞

0
dy

sin y

y
(5.11)

(once the substitution y = ρ|~x− ~x(τ)| has been performed). Since
∫ +∞

0 dy sin y
y = π

2 , φ turns out to
be

φ =

√
−γττ µ

4π|~x− ~x(τ)|
= φ(|~x− ~x(τ)|). (5.12)

In the non-relativistic limit and in the static approximation a particle in ~x(τ) at x0 and whose mass
depends linearly on a scalar field φ gives rise to a Coulomb-type behaving φ in ~x.

Having found the explicit φ-field solution, let us study the way the motion of another identical
particle with associated world-line γ′ = (x0(λ), ~x(λ)) is influenced by the field φ(|~x(λ)− ~x(τ)|) (for
~x(τ) fixed).
Let us consider the action

S′ = −1

2

∫
dλ

[
−e−1

λ

dxµ(λ)

dλ
ηµν

dxν(λ)

dλ
+ eλm

2(φ)

]
+

∫
d4x

1

2
∂µφ(x)ηµν∂

νφ(x), (5.13)

where m2(φ) = m2
0 + 2µφ(x(λ)) and eλ =

√
−γλλ.

By varying the action S′ with respect to the spacetime coordinates xµ(λ) we get the equations of
motion for the particle in Minkowski spacetime and in the presence of the scalar field φ(|~x(λ)−~x(τ)|).
The variation of (5.13) is

δS′ = −1

2

∫
dλ

[
2e−1
λ

d2xµ
dλ2

+ 2eλµ ∂µφ−
δe−1
λ

δλ

δλ

δxµ
dxν

dλ

dxν
dλ

+
δeλ
δλ

δλ

δxµ
(m2

0 + 2µφ)

]
δxµ (5.14)

(after having made advantage of an integration by parts and ignored the boundary term). By
imposing

δS′ = 0 (5.15)

we deduce the equations

2e−1
λ

d2xµ
dλ2

+ 2eλµ ∂µφ−
de−1

λ

dλ

dλ

dxµ
dxν

dλ

dxν
dλ

+
deλ
dλ

dλ

dxµ
(m2

0 + 2µφ) = 0 (5.16)

that, once multiplied by eλ, become

2
d2xµ
dλ2

+ 2e2
λµ ∂µφ+ e−1

λ

deλ
dλ

dλ

dxµ
dxν

dλ

dxν
dλ

+
1

2

de2
λ

dλ

dλ

dxµ
(m2

0 + 2µφ) = 0 (5.17)

or

2
d2xµ
dλ2

− 2γλλµ ∂µφ+
1√
−γλλ

d
√
−γλλ
dλ

dλ

dxµ
dxν

dλ

dxν
dλ
− 1

2

dγλλ
dλ

dλ

dxµ
(m2

0 + 2µφ) = 0. (5.18)
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In the possible case γλλ doesn’t depend on λ (that is if λ is an affine parameter) the particle’s
equations of motion reduce to

d2xµ
dλ2

− γλλµ ∂µφ = 0. (5.19)

By distinguishing the time and the spatial components and by making use of ηµν we have


d2x0

dλ2
= 0

d2xi

dλ2
− γλλµ ∂iφ = 0;

from which 
x0(λ) = aλ+ b

d2xi

dλ2
+
γλλ
√
−γττ µ2

4π

xi(λ)− xi(τ)

|~x(λ)− ~x(τ)|3
= 0

(with a and b some constant parameters); or


x0(λ) = aλ+ b

r3 d2ri

dλ2
+
γλλ
√
−γττ µ2

4π
ri = 0,

where

ri(λ, τ) = xi(λ)− xi(τ)

and

r = |~x(λ)− ~x(τ)|.

Let us consider two classical particles such as those participating to the previous discussion and
set them at a distance r = |~x(λ)− ~x(τ)| (with ~x(λ) and ~x(τ) fixed). These particles interact through
the exchange of the scalar field φ and the graviton. Differently from what we have done so far,
by regarding the spacetime coordinates as dimensional, the scalar and the gravitational forces are
expressed (as far as their strengths are concerned) by

Fscalar =

√
−γττµ2

4πm2
0r

2
(5.20)

and

Fgr =
GNm

2
0

r2
(5.21)
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(GN being the Newton’s constant). Once GN has been written in terms of the (reduced) Planck
mass as

GN =
1

8πM2
P

(in natural units), the request that the scalar force acts more strongly than gravity translates into
the bound

µ2

m2
0

≥ m2
0

2
√
−γττM2

P

. (5.22)

By recovering Palti’s notation [7] (and so substituting µ with µm0, where µ is now adimensional)
(5.22) becomes

µ2 ≥ m0
2

2
√
−γττM2

P

. (5.23)

The inequality (5.23) mimics the structure of Palti’s SWGC (4.23) (when one scalar modulus only is
present). In particular, if the parameter τ can be considered as proper time, we get the constraint

µ2 ≥ m0
2

2M2
P

, (5.24)

that is coherent (as necessary condition) with Palti’s bound.
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6 Conclusions

Animated by the desire of finding the way quantum gravity constrains physics and convinced
that String Theory is predictive, we have presented the Swampland program. Even though it is
actually an abuse, in order to try to get some information on the properties of a consistent theory of
quantum gravity, we have identified the QG Landscape and Swampland with the string Landscape
and Swampland. The abstract notion of Swampland becomes relevant if it is possible to distill it out
from that of Landscape: String Theory examples and black hole physics arguments are used as a
sort of experimental tools to gain conjectural evidence for the Swampland criteria and construct a
network among them. In this framework we have presented some of the main Swampland conjectures
such as the the “No Global Symmetry Conjecture", the “Weak Gravity Conjecture" (WGC), the
“Swampland Distance Conjecture" (SDC) and the “de Sitter Conjecture" (dSC).

We have concentrated our attention on the WGC and, after having presented its best understood
version (in the presence of a single U(1) gauge field), we have moved to the analysis of its refinements
and extensions.
Following E. Palti [8], we have tried to extend the WGC in the presence of scalar fields. We have
placed ourselves in a N = 2 supersymmetric context and we have made use of the structure of
N = 2 black holes to generalize the WGC when multiple gauge fields (with arbitrary gauge kinetic
functions) and scalar fields (with an arbitrary scalar field space metric) are in the game. By taking
as an assumption that the WGC particles should not form a tower of stable gravitationally bound
states and by requiring the decay of extremal black holes (exhibiting certain properties that are
typical in the N = 2 supersymmetric framework), the desired generalization emerges: it can be
phrased as the statement that there should be at least a state on which the gauge force acts more
strongly than the gravitational and the scalar forces combined.
Having described such an extension of the WGC, we have posed the question whether the scalar
force acts more strongly than the gravitational force by itself. By exploiting a crucial N = 2 identity
(which can be intended as a bound on the relative magnitude of the scalar and the gravitational
interactions), we have given evidence to a Scalar version of the WGC (SWGC). In its general form it
can be regarded as the claim that for every scalar field there must exist a state on which gravity acts
more weakly than the scalar interaction. This amounts to impose that gravity is the weakest force.
The General SWGC is motivated by forbidding gravitationally bound states, but in the absence of a
gauge symmetry it is not clear how their stability would be ensured. To gain a more solid motivation
for the conjecture further work has to be done.
In [9] E. Gonzalo and L. Ibàñez claimed that Palti’s SWGC is not compatible with the WGC for
axions. In the attempt of correcting and generalizing Palti’s statement they proposed a new bound.
Because of its general structure (Gonzalo and Ibàñez’s conjecture is stated to be valid for any scalar
field and any value it assumes) the Strong Scalar WGC (SSWGC) presented in [9] is really attractive,
giving (for instance) interesting constraints on the Standard Model and on inflationary models.
Despite this, our study of Gonzalo and Ibàñez’s proposal has made evident its various criticisms.
Even though claimed as a general statement, Gonzalo and Ibàñez’s bound is valid around a vacuum
state: its validity far away from such a vacuum would require additional terms that are absent. The
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investigation of the extension of Gonzalo and Ibàñez’s conjecture away from the vacuum asks for
further work. Moreover, the derivation of the SSWGC by making use of a Quantum Field Theory
approach does not reproduce the coefficients the various terms are accompanied by in the conjecture
and, on top of that, it allows to conclude that the scalar force is actually weaker in strength than the
gravitational interaction. In spite of being apparently animated by the physical principle according
to which gravity is the weakest force, Gonzalo and Ibàñez’s claim seems to be in tension with such a
principle. The motivation behind this incoherence is the fact that the scalar field taking part to the
conjecture is arbitrary and so a priori massive.

In the same spirit of Palti, we have tried to overcome the criticisms characterizing the SSWGC
and possibly get to a general statement. In order to do this we have considered a model including
gravity and two scalar fields and we have required that one of these scalars is strictly massless (in
the sense that it does have neither its own mass nor acquire an effective mass). The comparison
between the gravitational force (whose carrier is the graviton) and the scalar interaction (whose
mediator is the massless scalar) by taking the massive scalar as a probe and the request that gravity
acts more weakly than the scalar force lead to a constraint on the parameters of the theory that is
coherent (as sufficient condition) with Palti’s SWGC.
Having in mind the Polyakov action and the Lienard–Wiechert mechanism, we have also investigated
a proposal to couple a classical particle to a scalar field. In a case that mimics what Palti did in
a toy model to motivate his SWGC [7], we have promoted the mass parameter appearing in the
Polyakov action (usually intended as a fixed property of the particle) to an effective function of the
scalar field the particle couples to. The scalar field solution we have deduced in the non-relativistic
limit and in the static approximation and the request that the scalar force that a classical particle
feels is stronger than the gravitational one allow to retrieve a condition that is coherent (as necessary
condition) with Palti’s bound.

Having not succeeded in finding a general statement for the scalar WGC and somehow feeling
that Palti’s approach to the study of the WGC in the presence of scalar fields points towards the
right direction, we would like (hopefully soon) to proceed forward.
In [8] an intriguing N = 2 relation is proposed:

gi̄DiD̄|Z|2 = nV |Z|2 + gi̄DiZD̄Z̄. (6.1)

This equation can be interpreted as a relation between the four-point coupling, the mass and the
three-point coupling of the WGC states interacting with scalar fields. By specifying the previous
relation to black holes and to the analysis of their decay and by making the hypothesis that there
should be a state satisfying a corresponding (in)equality, we think that a constraint involving
four-point couplings (and overcoming Gonzalo and Ibàñez’s proposal) can be obtained. In the end,
we think that a generalization of the scalar versions of the WGC that have been described in this
thesis may be evidenced by considering (6.1) as a starting point.

As final comment, let us notice that this thesis has briefly suggested another topic it would be
interesting to develop further: according to [17], N = 8 Supergravity should belong to the Swampland.
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However, the claim in [17] depends on the choice of a specific duality frame in which all 2-forms
have been dualized to scalar fields.
We think that a more accurate investigation should be done for generic duality frames and also
considering the gauging procedure, which can affect the result.

For the moment we stop here and we leave a deeper study on all these lines of research for a
hoping future work.
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Errata Corrige

From (4.123) that is

M
(1),1−loop
t =
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4π

)2(4πρ2

q2
E

) ε
2
[

1

ε
+

1

2
γE + ψ(2) +O(ε)

]
,

we actually obtain
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2
ln
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)]
,

instead of (4.124).
Then, because the amplitudes M(1),1−loop

s and M
(1),1−loop
u can be evaluated by following the same

procedure adopted for M(1),1−loop
t , we find

M(1),1−loop =
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2
ln
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4πρ2

q2
E

)]
,

instead of (4.125).
After having renormalized the theory and by considering (sufficiently) low energies (coherently
with the non-relativistic limit and the static approximation we are referring to), the finite part of
M(1),1−loop gives a positive contribution to the scalar interaction between two H particles, that sums
up to the positive-signed classical term (4.102). But, the mass being running with the interaction
energy (m2 = m2(E)), we may ask whether there could exist an energy scale at which the gravita-
tional interaction equals in strength the scalar force and so if there could be solutions of

µ(E0)2

E2
+ ~

λ(E0)2

16π2

(
3− 3

2
γE +

3

2
ln

(
4πρ2

E2

))
=

2m4(E)

M2
PE

2
,

instead of (4.175). Since (as it is possible to deduce from (4.171)) m2 changes logarithmically with
the energy E, it seems that the previous corrected equation can’t be (reasonably) satisfied.
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