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Abstract

Deep Neural Networks begin to be used in the last ten years in computer vision,
and now they are the state-of-the-art for object detection. The majority of the re-
searchers tackling the object detection problem have worked to improve the speed
and the accuracy of DNNs, at the expense of memory consumption. However, a
number of fields requires light networks capable to run on mobile and wearable de-
vices. The Activis project, led by Professor Nicola Bellotto and Ing. Jaycee Lock
from University of Lincoln, UK, works to provide a practical help for visual impaired
people, developing an Android application to navigate in indoor environments. The
need for an Object Detection model for this purpose is clear. In this thesis work are
proposed and analyzed the performances of two models: SSD-Lite with Mobilenet
V2 and Tiny-DSOD. They are two lightweight DNNs that promise to work in real-
time and with a good accuracy on mobile devices. It is also proposed a new test
dataset, called Office dataset, useful to test the two models in real-life indoor envi-
ronments and as support for related researches. The final solution is currently used
in the Activis project as object detector. The collaboration with the University of
Lincoln UK, has brought to the publication of the paper about Activis project (and
the proposed object detector) to the ICIAP 2019 conference.
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Chapter 1

Introduction

The increasing performance of object detection systems brings this topic to be studied by more
and more researchers in the last years [48] [84]. Nowadays it is possible to use object detection
for complex applications and always more frequently new scenarios begin to need these features.
Thanks to this, an increasing number of systems exploits object detection to improve the ef-
ficiency and to introduce automatism. As a fundamental part in computer vision and visual
understanding, object detection is among the key components for solving more complex or high
level vision tasks such as: segmentation, scene understanding, object tracking (Fig. 1.1a), im-
age captioning, event detection, and activity recognition. Object detection has a wide range
of applications in many areas of artificial intelligence and information technologies, including
robot vision, consumer electronics, security, autonomous driving (Fig. 1.1b), human computer
interactions, content based image retrieval, intelligent video surveillance (Fig. 1.1c), augmented
reality, agriculture robotics, and medical analysis. Here are reported some more examples of
uses to understand the spread of object detection around different environments. Face Detection
(Fig. 1.1d), one of the most frequent, it is a technology used from social networks to tag people
into pictures, but it can be found in smartphones to recognize the owner and unblock the device.
Video surveillance system (Fig. 1.1c) aims to recognize people, animals, and various objects and
it sends an alarm, if needed. Pedestrian detection, used in the increasing field of self-driving car
(Fig. 1.1a), is fundamental to recognize pedestrian and to avoid accidents. Tracking object (Fig.
1.1b ) is adopted in the industrial environment by various type of robots, in order to follow mov-
ing objects and track people in videos. Anomaly detection has the purpose of understanding rare
or anomalous events, like a falling person in a home environment. People Counting enumerates
people in a plaza or in a stadium and it generates statistics or intervenes in dangerous situations.

A new unexplored field is the possibility to use object detection for disabled people. Here, it
may have a wide range of uses. A point of interest might be helping disabled people with their
mobility. A focus about this task will be found at the end of this chapter.

1.1 Object Detection Summary

Object detection can be grouped into two types [22], [83]: detection of specific instances and
detection of specific categories. The first type aims to detect instances of a particular object
(such as Zach Galifianakis's face, with and without beard, Fig. 1.2a), whereas the goal of
the second type is to detect different instances of predefined object categories (for example
humans, cars, bicycles, and dogs) (Fig. 1.2b). Historically, most of the researchers in the
field of object detection has focused on the detection of a single category (such as faces and
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(a)

(b) (c)

(d)

Figure 1.1: Examples object detection uses: (a) self-driving car [77] (b) object tracking [5] (c)
video surveillance [78] (d) face detection [34].

pedestrians) or a few specific categories. Eventually, in the last years the research community has
started moving towards the challenging goal of building general purpose object detection systems
with the purpose to reach a performance similar to the human recognition. However in 2012,
Krizhevsky et al. [36] proposed a Deep Convolutional Neural Network (DCNN) called AlexNet
which achieved record for image classification accuracy in the Large Scale Visual Recognition
Challenge (ILSRVC) [64]. Since that time the research focus in many computer vision application
areas has been on deep learning methods. Many new approaches based on deep learning born
for generic object detection [19], [25], [18], [67], [63] and big progress has been achieved.

The second distinction in the object detection field is between General object detection and
Salient object detection (Fig. 1.3). Visual saliency detection, aims to highlight the most domi-
nant object regions in an image as illustrated in Fig. 1.3c. Numerous applications incorporate the
visual saliency to improve their performance, such as image cropping [41] and segmentation [42],
image retrieval [13] and object detection [20]. This type of object detection will not be explored,
as it is not useful for our purpose. Indeed, we are not trying to highlight the main elements of
a picture or to look at the most visible objects in it. The project purpose is to find one specific
object, that could be not salient in the image. The generic object detection (Fig. 1.3b) problem
itself is defined as follows: given an arbitrary image, determine whether there are any instances
of semantic objects from predefined categories and, if present, to return the spatial location and
extent. Object refers to a material thing that can be seen and touched. Generic object detection,
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(a) (b)

Figure 1.2: Different object detection types: (a) instances object detection [70] and (b) category
object detection [35].

differently from Object Detection in general, focus on approaches aimed at detecting a broad
range of natural categories, as opposed to object instances or specialized categories (e.g., faces,
pedestrians, or cars). Generic object detection has received significant attention, as demon-
strated by recent progress on object detection competitions such as the PASCAL VOC detection
challenge from 2006 to 2012 [11], [10], the ILSVRC large scale detection challenge since 2013 [64],
and the MS COCO large scale detection challenge since 2015 [47]. The striking improvement in
recent years is illustrated in Fig. 1.8.

1.1.1 Generic Object Detection

As said before, the generic object detection problem definition is related to determine where
objects are located in a given image (object localization) and which category each object belongs
to (object classification). The idea of locating an object results in the drawing of a bounding box
around the object, i.e., an axis-aligned rectangle tightly bounding the object [11], [64]. Other
possibilities are: a precise pixel-wise segmentation mask, or a closed boundary [65], [47], as
illustrated in Fig. 1.4. To our best knowledge, in the current literature, bounding boxes are more
widely used for evaluating generic object detection algorithms. While the classification results
in a confidence value in percentage, that represents the similarity of an object to its category.
We can divide the task of object detection in three stages: informative region selection, feature
extraction and classification. These three stage are not always distinguished in a object detection
system, but it is important to analyze their function to completely understand how the algorithm
works.

1. The Informative region selection, have the role to define what in the image is significant
and what not, in what area could be present an object and in which there is only the
background (or irrelevant objects). Because many objects can appear in different positions,
with different aspect ratio and different size in the image, it is necessary to scan the whole
image to find possible objects. The scanning is made by windows of different size and
aspect ratio (trying to detect different size and shape of objects). This strategy is called
multiscale sliding windows and it is the most exhaustive one. Indeed, it can find out all
possible positions of the objects. Due to the large number of generated windows, this
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Figure 1.3: (a) An image processed with algorithm of (b) generic object detection and (c) Salient
object detection. [37]

technique is computationally expensive and produces many redundant results. Viceversa,
using only a little number of windows, the algorithm misses many important regions.

2. Feature extraction: to recognize (classify) object category, the algorithms extract fea-
tures from images, that provide a robust representation of the objects. Each object could
be defined by its own set of features. SIFT [52], HOG [7], and Haar-like [45] features are
the famous computer vision algorithms that find in the objects the main features. With
the upcoming of Deep Learning they were substituted, but they are still used in some fields
like instances object detection. Since the different appearances, illumination condition and
backgrounds of objects, it is very difficult to create and use a robust and universal features
descriptor that match perfectly all types of objects.

3. Classification: the classifier is needed to differentiate a target object by all the other ones
and to give an informative representation to the class category. Usually, used algorithms
are: Support Vector Machine (SVM) [4], AdaBoost [16] and Deformable Part-based Model
(DPM) [14].

This architectures obtained state-of-the-art results in the PASCAL VOC object detection com-
petition [11], reaching real-time performance and a quite good hardware efficiency. However,
the performance fastly increases using ensemble systems (putting together the three stages) and
using little variants of this famous methods [19]. This fact is due to two main reasons:

1. Sliding windows strategy is redundant, inefficient and inaccurate.

2. There is a big drawback in creating manually the low-level descriptors and train the system
with that parameters.
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Figure 1.4: Recognition problems related to generic object detection. (a) Image level object clas-
sification, (b) bounding box level generic object detection, (c) pixel-wise semantic segmentation,
(d) instance level semantic segmentation. [48]

An even more significant improvement is achieved thanks to Deep Neural Network (DNNs),
precisely with the introduction of the Regions concept and with the CNN features (R-CNN) [41].
Deep learning begins to become famous fundamentally thanks to:

1. the emergence of the Imagenet [8] dataset, that with its large scale annotated training data,
exhibits its big learning capacity.

2. the increasing performance in parallel computing system, like the GPU clusters.

3. the design of new network structures and new training strategies, found the base for famous
algorithms such as: AlexNet [36], Overfeat [67], GoogLeNet [71], VGG [69] and ResNet [26].

4. The CNN are different from the traditional approaches and are able to learn a more complex
features, thanks to the deeper architecture of those systems.

5. Also, thanks to the more robust training algorithms, CNN have a large expressivity and it
is not necessary to design manually the features.

The ideal goal of generic object detection algorithm is to achieve high accuracy and high efficiency
(Fig. 1.5). As shown in Fig. 1.5, a detector with high accuracy it is able to localize and recognize
object in images: the object is correctly distinguished from an object of different category (high
distinctiveness) but it have to result very similar to an object of the same class (high robustness).
High efficiency is related to the performance of the algorithm in term of reaching the highest
speed (realtime performance) and using a low amount of memory and storage. It is possible to
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Figure 1.5: Summary of challenges in generic object detection [48].

see from the study of many algorithms [30] that, accuracy and efficiency is a trade-off not yet
resolved.

Accuracy challenges

As mentioned before, the Accuracy challenges is made by:

1. the big range of intraclass variation;

2. the big amount of object categories.

The intraclass variation is divided in two types: intrinsic factors and image conditions. The first
type is related to the fact that an object category can have elements with many type of different
shapes, colors, sizes, materials and more. This is the example of the Chair category (Fig. 1.6h),
in which very different types exist. Also humans could be difficult to analyze due to the fact
that they dress differently. Instead, the second type depends on different image conditions and
unconstrained environments, which can drastically change the appearance of the object. Many
could be the factor, such as different times, locations, weather conditions, cameras, backgrounds,
illuminations, viewpoints, and viewing distances. All these factors can produce variations in the
appearance of the object: illumination, pose, scale, occlusion, background clutter, shading, blur
and motion (examples illustrated in Fig. 1.6a-g). More challenges may be added by digitization
artifacts, noise corruption, poor resolution, and filtering distortions. Finally, the huge amount of
object category (104 - 105) requests an high discriminating power to the detector, to see difference
between classes of object that are very similar (1.6i)). That been said, current detectors focus
mainly on structured object categories, such as the 20, 200 and 91 object classes in PASCAL
VOC [11], ILSVRC [64] and MS COCO [47], respectively. Clearly, the number of object categories
under consideration in existing benchmark datasets is much smaller than that can be recognized
by humans.
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Figure 1.6: Changes in imaged appearance of the same class with variations in imaging conditions
(a-g). There is an astonishing variation in what is meant to be a single object class (h). In
contrast, the four images in (i) appear very similar, but instead are from four different object
classes. Images from ImageNet [64] and MS COCO [47]. [48]

Efficiency challenges

The exponentially increasing number of images arriving from the social and mobile world ask
for a efficient and scalable detector. The majority of images come from smartphone and social
media networks and both have limited computational power. In that cases an efficient detector
is crucial. Here the challenge is to locate and recognize objects that are present in a single image
at different scale. Moreover, the scalability is another challenge, because the increasing number
of different objects ask to a detector to be able to handle unseen objects, unknown situations
and rapidly increasing image data. Thinking about the ILSVRC [64] database, there is a limit
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to the possible manual annotations that are feasible to obtain. So, many times it is an algorithm
that annotate the images and it can produce weaknesses and mistakes.

Generic object detection framework with Deep Learning networks, could be divided into two
main categories: single-stage based methods (Fig. 1.7a) and two-stages based methods (Fig.
1.7b).

(a)

(b)

Figure 1.7: Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose
estimation steps. After object detection, the detected objects are cropped and then processed by
a separate network for pose estimation. This requires resampling the image at least three times:
once for region proposals, once for detection, and once for pose estimation. (b) The proposed
method, in contrast, requires no resampling of the image and instead relies on convolutions for
detecting the object and its pose in a single forward pass. This offers a large speed up because
the image is not resampled, and computation for detection and pose estimation is shared. [58]

The two-stages based methods use a “region proposal” approach: an external algorithm pro-
poses the region of interest, that are later classified to recognize objects. They can reach better
accuracy in respect to the other category, but they request more memory and more computa-
tional time. Related to this category are: R-CNN [19], SPP-net [25], Fast R-CNN [18], Faster
R-CNN [63], R-FCN [6], FPN [46] and Mask R-CNN [24], some of which are correlated with each
other (e.g. SPP-net modifies RCNN with a SPP layers).

The single-stage based methods instead apply different size of windows to the input image,
so they are able to check if the object appears in the windows. These methods yield better
trade-off between accuracy and speed. Usually they are faster and less accurate then the two-
stage methods. Sometimes they also use a backbone network as features extractor, that helps to
reach better accuracy. On the other side it increases the parameters of the network and cause
greater computational costs. This method mainly includes: MultiBox [9], YOLO [59], SSD [49],
YOLOv2 [60], YOLOv3 [62], and DSOD [68]. The correlations between these two pipelines are
bridged by the anchors introduced in Faster RCNN.

The best object detectors nowadays are based on Deep Learning technologies to achieves
the goal. Deep Convolutional Neural Networks (DCNN) have reached good results in the last
years. The general trend brings to the creation of complicated and heavy networks to increase
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the detection accuracy, such as Faster Region Convolutional Neural Network (Faster R-CNN)
[63], You Only Look Once (YOLO) [59] [60] [62], Single Shot Detection (SSD) [49] and all
their variants. Most of these networks recognize very well objects in images and videos (with
good accuracy), but they are high complexity models. These systems require a big amount
of operations to predict a result, which yields an increase of power consumption. Moreover, a
complex network brings to the use of many resources (in terms of computation and memory) or
to an high computational time.

As confirmed in section 4, these networks are not very useful for our goal, because this work
aims to use a smartphone as support (low performance device). To resolve the issue, networks
as Mobilenet come in aid. It first introduces the use of Depth-wise Separable Convolution,
that decreases the amount of operations for a single convolution and the complexity of the
network itself. Therefore, the network decreases its size and requires less memory, with a positive
impact on computational time, needed resources and energy-consumption. On the other side,
the accuracy decreases and this is the big cons of these systems: it is not possible to have high
accuracy with high speed and low amount of resources. The trade-off between accuracy and
speed have been deeply studied in [30].

Figure 1.8: Milestones of object detection and recognition.

Exist common measures to describe an object detection models. It is important to use the
same type of measures and with the same unit, to help the comparison between different models.
Typical used measures and also used in this thesis work are:

• mAP: the mean Average Precision is the most used measure to compute the accuracy of
a model. It is the mean of the Average Precision of each object categories. The Average
Precision is computed for each object using the precision and the recall of the same. Because
of that it is a good representation of the accuracy.

• FLOPS: the FLoating point Operations Per Second is the number of floating-point oper-
ations that an algorithm have to perform to terminate. This measures is more accurate
then the number of instructions per second.

• Params: the parameters are the coefficients of a network and they are chosen by the
network itself, during the training process. The number of parameters (Params) define the
complexity of the network: more parameters mean more complexity and more possibility
to learn better, but also more need of images example for training and more heavy network.

• MAdds: Multi-Adds id the number of multiply-accumulates needed to compute an infer-
ence on a single image and it is another common metric to measure the efficiency of the
model.
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• FPS: the Frame Per Second is the measure of time most used in object detection. It
represent the number of frame that the network is able to process in a second.

• CPU time: the CPU time is an alternative measure of time, but it focus on the time
needed to process a single frame.

1.2 The Activis Project

Inspired by the proposal Active Vision with Human in the Loop for People with Vision Impair-
ment [32] [51] [50], in collaboration with Google, Professor Nicola Bellotto and Doctor Jaycee
Lock form University of Lincoln, set a project to help blind people mobility in indoor environ-
ments. The goal of the task is to build an Android application easy to use, aiding to find objects
of interest and navigate in a before unseen indoor setting (Fig. 1.9). The smartphone provided
for the project is an Asus ZenFone AR with project TANGO. This smartphone is equipped with
a depth sensor and a 3D motion tracking sensor (Fig. 1.9). An issue for blind or visual impaired

Figure 1.9: Idea of smartphone analyzing the indoor environment. [32]

people is to move in an indoor environment that they have never seen before, to navigate avoid-
ing possible obstacles and to find objects around. The system proposed provides valuable help.
Consider a blind person looking for a chair in a new office or in a generic room (Fig. 1.10a and
1.10b). It is next to the door and he wants to know where the chair is located. The phone,
through the camera, can help in the localization of the chair and can drive the person to reach it.
This is particularly challenging due to the unpredictability of human motion and sensor uncer-
tainty. Because of that, to help the object detection, a statistics about objects location and the
relationships between them is generated. So, if the detector is not able to detect a specific object,
but it finds objects that are known to be close to the target one, it can advice the user to move
near them to better detect the target object from the new position. It is clear the importance of
using smartphones as support, instead of more complex or bigger devices. One purpose of the
project is to provide a user-friendly interface, as easy as possible to interact with. This project
could help blind people in a independent mobility in indoor location and could decrease the time
for many operations.

1.3 Thesis Goals

Followed by Professor Stefano Ghidoni and in collaboration with Professor Nicola Bellotto and
Doctor Jaycee Lock from University of Lincoln, UK (LCAS lab), for the development of the
Activis project [33], this thesis work provides a possible solution to identify objects in video
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Figure 1.10: The system in use during an experiment with a blindfolded participant [33].

frames from a low performance device. In this type of applications object detection has a primary
importance for the recognition and localization of item and possible obstacles in the room. The
features we are looking for our algorithm are:

• it have to work on an Android smartphone;

• it have to be able to recognize a group of twenty different objects;

• it have to be robust to anomalous movements of the user;

• it have to avoid as many errors of detection as possible.

We decide to focus on office room environments (Fig. 1.10a and 1.10b), but it is easy to find
possible uses in other type of room like public place, kitchen or bathroom and many other
users unexplored environments. We choose to compare the state-of-the-art networks for low
performance devices and some novel proposal of the last years. We are looking for the best
features needed to reach a compromise between speed and accuracy. Furthermore, because of
the novelty of this application field, the thesis work lays the foundation for future experiments,
providing instruments to evaluate new proposal networks and compare them with the state-of-
the-art. For these reasons we provide a new data-set of office images and three videos, to test the
networks performances. Indeed, a test made only on images, does not take care about the noise
introduced by the user movements, that can produce a blur on the video frames and create more
tricky cases. This is why it is important to test the application on videos too: the aim of the
thesis work is not only to find the best speed-accuracy trade-off, but also to find a robust system.
The remainder of the thesis is organized as follows: section 2 presents the state-of-the-art for
object detection and the related work made till now; section 3 describes the architecture of the
three models and explains the main difference between them; section 4 analyzes the results of
the test; section 5 will summarize the work and takes conclusions.
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Chapter 2

Related Work

This section will give a panorama about the most famous algorithms in the object detection
fields. Each of these algorithms are the best in its challenge type (accuracy, efficiency, speed)
or they are famous algorithms that founded the base for the nowadays state-of-the-art. It is
important to understand the mechanisms at the base of this networks and to discern its qualities
and weakness, to make right choice in future novel proposals. The chapter will describe the
two-stage based model, continue with the one-stage based ones and finally complete with some
light networks, that better fit the purpose of the thesis.

2.1 Two-staged based models
The most famous two-staged based network is RCNN (Fig. 2.1). Inspired by the good results
obtained with CNN networks, RCNN proposes a Region Proposal architecture for generic object
detection. It integrates AlexNet [36] with the region proposal method Selective Search [76]. This
method was the first to achieve high quality accuracy, but it has also notable drawback [25]:

1. Training is a multistage complex pipeline, which is slow and hard to optimize, because each
individual stage must be trained separately.

2. Numerous region proposals which provide only rough localization need to be externally
detected.

3. Training SVM classifiers and bounding box regression is expensive in both disk space and
time, since CNN features are extracted independently from each region proposal in each
image.

4. Testing is slow, since CNN features are extracted per object proposal in each testing image.

In the following years new networks were created based on RCNN. Each new proposal try to
increase performances or accuracy of the precedent ones, finding solutions to the new generated
bottlenecks. SPPNet [25] introduce the traditional spatial pyramid pooling (SPP) [21] [40], to
significantly speed up without sacrificing any detection quality. Fast RCNN [18] enables end-
to-end detector training by developing a streamlined training and introduce the idea of region
proposals with the Region of Interest (RoI). The Faster RCNN framework (Fig. 2.22) proposed by
Ren et al. [63] proposed an efficient and accurate Region Proposal Network (RPN) to generating
region proposals. They utilize a single network to accomplish the task of RPN for region proposal
and Fast RCNN for region classification. Faster-RCNN is able to reach a speed of 7 FPS with

13
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an accuracy of 73,2 mAP in the COCO dataset challenge. The last ones are RFCN (Region
based Fully Convolutional Network) [6], Mask RCNN [24] and Light Head RCNN [44], all based
on Faster-RCNN. They increased the speed in respect to Faster-RCNN, bringing to a better
trade-off between accuracy and performances.

Figure 2.1: High level diagrams of the RCNN frameworks [48].

Figure 2.2: High level diagrams of the Faster-RCNN frameworks [48].

2.2 Single-staged based models
Region based approaches are computationally expensive for low performance devices, because
they have limited memory, storage and computational power. Researchers have begun to develop
unified detection strategies, trying to reach better efficiency. Unified structures relies to architec-
ture that directly compute classification and detection from the images with a single forward on
the CNN network. It does not involve region proposal systems or post classification layers. This
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type of networks can be divided in two sub-networks, one dedicated to extract the features from
the input and one to classify and locate the objects. The former part is called backbone network,
while the latter one is usually called front-end network. This structure helps the generation of
object detector networks based on pre-existing classification networks. Indeed in many case the
development of the final architecture embed some layers of a classification model: usually are
deleted the final layers producing the classification output and only the features extractor layers
remain. Highlight the difference from the two-stage based methods, where classification and
detection are computed by two different networks. Instead the single-stage based methods (with
a backbone network), could use as base network a piece of a classification network (the features
extractor one), but finally compute classification and detection at one time in the lasts layers.
This is the case of all the following networks, that have their own backbone subnetwork.

YOLO (You Only Look Once), is nowaday the best object detection network, working
at real-time performances. Redmon et al. [59] proposed YOLO as unified detector, producing
a regression from image pixels to a spatially separated bounding boxes and an associated class
probabilities. The design of YOLO is illustrated in Fig. 2.3. YOLO doesn't use a generative stage
for region proposal, instead it directly predicts detections using a small set of candidate regions.
Unlike region-based approaches, e.g. Faster RCNN, that predict detections based on features
from local region, YOLO uses the features from entire image globally. In particular, YOLO
divides an image into a S×S grid. Each grid predicts C class probabilities, B bounding box
locations and confidences scores for those boxes. These predictions are encoded as an S×S×(5B
+ C) tensor. By throwing out the region proposal generation step entirely, YOLO is fast by
design, running in real time at 45 FPS and a fast and light version, i.e. Tiny YOLO [59],
running at 155 FPS and with a light architecture. Since YOLO sees the entire image when
making predictions, it implicitly encodes contextual information about object classes and is less
likely to predict false positives on background. YOLO makes more localization errors resulting
from the coarse division of bounding box location, scale and aspect ratio. As discussed in [59],
YOLO may fail to localize some objects, especially small ones, possibly because the grid division
is quite coarse, and because by construction each grid cell can only contain one object. YOLOv2
and YOLO9000 are the following updates by Redmon and Farhadi [60]. They are an improved
version of YOLO, in which the custom GoogLeNet [71] network is replaced with a simpler
DarkNet19 (19 layers), plus utilizing a number of strategies drawn from existing work, such
as batch normalization [78], removing the fully connected layers, and using good anchor boxes
learned with k-means and multiscale training. YOLOv2 achieved state-of-the-art on standard
detection tasks, like PASCAL VOC and MS COCO. In addition, Redmon and Farhadi [60]
introduced YOLO9000, which can detect over 9000 object categories in real time by proposing
a joint optimization method to train simultaneously on ImageNet and COCO with WordTree to
combine data from multiple sources. Finally the last version YOLOv3 [62] (released after SSD
publication) introduce the multiscale widows generation to produce more accurate result and
increase its speed substituting the backbone network with the new Darknet-53 having 53 layers.
The version 608 of YOLO reaches an accuracy of 60 mAP in the COCO challenge with a speed of
20 FPS. There exists more than one version of YOLO with different performances and accuracy
values as illustrated in Table 2.1. As said before, Yolo is the state-of-the-art in real-time object
detection, but the real-time performance are reached with high cost in terms of hardware, indeed
all the test and results are obtained with a Nvidia Titan X GPU.

SSD (Single Shot Detector) proposed by Liu et al. [49] try to preserve real-time speed
without sacrificing too much detection accuracy (Fig. 2.4). It is faster than YOLO v1 [174] and
has accuracy competitive with state-of-the-art region-based detectors, including Faster RCNN
[63]. SSD effectively combines ideas from RPN in Faster RCNN [63], YOLO [59] and multiscale
CONV features [23] to achieve fast detection speed while still obtain high detection quality. Like
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Figure 2.3: High level diagrams of the YOLO frameworks [48].

YOLO, SSD predicts a fixed number of bounding boxes and scores for the presence of object
class instances in these boxes, followed by anNo Maxima Suppression (NMS) step to produce the
final detection. The CNN network in SSD is fully convolutional, whose early layers are based on
a standard architecture, such as VGG [69] (truncated before any classification layers), which is
referred as the backbone network. Then several auxiliary CONV layers, progressively decreasing
in size, are added to the end of the base network. The information in the last layer with low
resolution may be too coarse spatially to allow precise localization. SSD uses shallower layers
with higher resolution for detecting small objects. For objects of different sizes, SSD performs
detection over multiple scales by operating on multiple CONV feature maps, each of which
predicts category scores and box offsets for bounding boxes of appropriate sizes. For a 300 ÃŮ
300 input, SSD achieves 41.2 mAP on the COCO challenge at 46 FPS on a Nvidia Titan X.

Figure 2.4: High level diagrams of the SSD frameworks [48].
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2.3 Light networks

Mobilenet [28] is the first work to introduce Depth-wise Separable convolution, that consists
in a Depthwise convolution followed by a Point-wise one (kernel 1×1) as illustrated in Fig. 2.5.
Computing the convolution in two steps decrease the numbers of operations needed. Mobilenet
is a classification network, but can be used as backbone for an object detection system. The
light features of the Depthwise convolution yield to reduce drastically the memory usage and
consequently the model obtains better speed performance with low resources devices. On the
other side, we are losing accuracy, because Depth-wise Separable convolution create a gap in
term of precision. In Tab. 2.1 we can see the performance of the described network in terms of
accuracy, computational speed and model size, to have a view of what we have just reported.
After Mobilenet, other researchers produced new models using Depth-wise Separable Convolution
and reducing the complexity. One good example is the following network.

Figure 2.5: The Depthwise Separable convolution, composed by a Depthwise convolution and a
Pointwise one [73].

Tiny-DSOD [43] try to obtaining a good balance between the used resources (FLOPs and
memory) and accuracy trade-off. The backbone part of the proposed framework is inspired by the
object detection work DSOD [68] and the depthwise separable convolution network structures.
DSOD [68] introduces several important principles to train object detection network from scratch
and adopt a deep supervision like structure from DenseNet [29]. Tiny-DSOD combines the
depthwise separable convolutions into the DenseNet structure, and introduces a novel depthwise
dense block (DDB) to replace dense blocks in DenseNet. This design promise to reduce the
computing resource requirements, but also bring to an efficient training. For the front-end part,
Tiny-DSOD use the feature-pyramid-network (FPN) [46] to produce semantic information from
low-resolution scale and from high resolution scale, combining later them to generate a more
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precise result. Again they use Depthwise convolution in the FPN structures to increase the
speed performance of the network and to decrease the use on memory (see Tab. 2.1).

Some others novel proposals are: LightFlow [85] that compare different frames in the video
to detect object only from the best pictures and Effnet [15] that based on Mobilenet introduces
a new Convolutional block to increase the computational speed and decrease the complexity of
the system.

Method COCO mAp FPS Params FLOPS(0.5:0.95 IoU) (Titan X)
Faster-RCNN 21.5 7 134.70M 181.12Bn
YOLOv3 - 320 51.5 45 - 38.95Bn
YOLOv3 - 608 57.9 20 - 140.69Bn
Tiny-YOLOv3 33.1 220 - 5.56Bn

SSD300 25.1 46 36.1M 31Bn
SSD512 28.8 19 36.1M 91Bn

SSDLite (Mobilenet V1) 22.2 >1000 1.3M 5.1Bn
SSDLite (Mobilenet V2) 22.1 >1000 4.3M 0.8Bn

Tiny-DSOD 23.2 >1000 1.15M 1.12Bn

Table 2.1: Comparison between state-of-the-art networks. TODO: add missing network (tiny-
yolo, other yolo version).



Chapter 3

Architecture

Before discuss about the networks chosen for the thesis comparison, it is important to highlights
because some models have been discarded from this analysis and instead because others ones
have been selected.

3.1 Discarded models
The networks discarded from this analysis are:

• Faster-RCNN [63] (and all the networks based on it [24] [44] [6]): it is a two-stage based
network, so as seen in the previous chapter 2, it is not able to reach real-time performances
with a Nvidia Titan X GPU. Consequently, it is not possible that it reaches real-time
performances in a mobile platform. The weight of this model, in terms of FLOPs, is of
181.12Bn and its speed is of 7FPS (Tab. 2.1). Furthermore, networks like YOLOv3 are
able to reach better performances in terms of speed, accuracy and weight.

• YOLOv3 [62]: it is the state-of-the-art in real-time objects detection. It reaches the best
accuracy of 60.6mAP , with a good speed (20FPS) (Tab. 2.1). Again the drawback of
this network is the weight. The YOLOv3-608 version have a weight, in term of FLOPs, of
140.69Bn. So, it is not possible to run this model in a mobile device and obtain real-time
performances.

• Tiny-YOLOv3 [43]: YOLOv3 has also a light version. It reaches a speed of 220FPS
(on a Nvidia Titan X), with a big drawback in terms of accuracy (33.1mAP ). Its weight
is really lower compared with its standard version, indeed it amount to 5.56Bn, thirty
times less than YOLOv3-608. Because of its low weight we decide to test Tiny-YOLO on
the smartphone provided for the thesis experiments. We would like to understand, what
speed the model was able to reach. We create a Tiny-YOLO network using the instruments
provided by OpenCV version 4 [3] and by YOLO framework [61]. YOLO provide two file
a .cfg file containing the configurations of the network and a .weights file containing the
weights of the network trained on COCO dataset. Using OpenCV (with C++ language), it
is possible to generate the network of Tiny-YOLOv3 from the .cfg file and put the weights
in the correspondent layers through the .weights file. Then using the NDK tool [1] provided
by Android, it is possible to integrate the C++ code in to the Android application. We
create a simple Android script to test the network on the smartphone. The results were not
thrilling: it finally reaches a speed of 2FPS. The test on videos was not good, because the
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network was able to recognize many object, but only if the smartphone stayed in a fixed
position. Otherwise, also slow movements (and the consequently blur) create problem for
the object recognition in the frames. This experiment demonstrate that the structure of
this network is not able to reach real-time performances on mobile device.

• LightFlow [85]: it is a video object detector light network for mobile device. It proposes
some interesting features and tries to resolve some common issue of the video detection.
Its main structure is made by three components:

– a light weight image object detector for sparse key frames;

– a very small network, Light Flow, designed for establishing correspondence across
frames;

– a flow-guided GRU module designed to effectively aggregate features on key frames
(for non-key frames, sparse feature propagation is performed).

It is a powerful network promising to reduce the detection errors generated by blurred
frames. This problem appears when the camera recording video is moving inconstantly
(like a smartphone in a human hand). The only counterpart of this network is the training
process. Indeed, it is needed a video dataset (like Imagenet vid [64]) to train the model.
The purpose of the thesis is to use the application for an office environment and nowadays
there not exist video datasets with this category of objects. This network is another possible
choice for future comparison works, but without a right dataset as support, it is impossible
to apply the model to our practical goal.

The two aforementioned networks are complete object detector systems, like Single Shot
Detection [49]. SSD and YOLO are both single-stage based network, and as said in chapter 2
they both use a backbone network. YOLOv3 use the Darknet-53 [62] and SSD use VGG16 [69].
It is possible to change the backbone network of both YOLO and SSD. But it is known by
experiments that, while SSD is more compatible with different types of backbones networks,
YOLO is created to work well and close to its original backbone network and substituting the
Darknet with another one, could hurt the performances in terms of accuracy and speed. In the
following paragraph it will be presented some of the discarded classification networks, that could
work well as SSD backbone networks.

• ShuffleNet [82] [53]: it is a light network introducing two new operations called Point-
wise Group convolution and Channel Shuffle. It promise reduce computation costs while
maintaining accuracy.

• Effnet [15]: it is a Mobilenet V1 based network. It proposes a new Depthwise Separable
convolution Block to resolve weaknesses of Mobilenet and ShuffleNet. It reaches a better
accuracy without increasing the network weight.

Both these models are possible solutions for the thesis project, but we decide to discard them
because, as illustrated in Tab. 2.1, Tiny-DSOD [43] promises to perform better in terms of
network weight and accuracy. They remain as possible candidates for a future comparison works.

3.2 Selected models

Finally, the choice for the object detection systems to compare and analyse, fall in these two
networks:
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• SSD Lite with Mobilenet V2 [66]: Mobilenet V2 is the state-of-the-art network for
real-time classification on mobile devices and it is well supported and studied from many
researchers in the last years. SSD is one of the best front-end part for object detection and
it is very adaptable with different backbone models. The features fusion of these two models
bring to an efficient object detector, promising to work well and with a good accuracy.

• Tiny-DSOD [43]: it is the best novel proposal that promise to perform better then SSD
Lite with Mobilenet V2 and then all the others networks in the environment.

3.3 Depthwise Separable convolution
There exist two types of Separable Convolution [79]:

• Spatial Separable Convolution;

• Depthwise Separable convolution.

But before describing these two convolutions, here an example of standard convolution to re-
member how it works.

3.3.1 Standard Convolution
Assume to have an input of 12 × 12 × 3 pixels, an RGB image of size 12 × 12 (width, height
and number of channels). Considering the width, height and depth of the image and applying a
5 × 5 × 3 convolutional kernel with no padding and stride 1, the convolution produce a output
of (12-5+1=8) 8× 8× 1 pixels. Substantially, each time the convolutional kernel take 5× 5× 3
pixels and produce one number from them. This means, that the total amount of multiplications
are 5 × 5 × 3 = 75 every time the kernel moves. If the desired result is to have an output of
8 × 8 × 256 pixels (with 256 channels), it is possible to apply two-hundreds and fifty-six times
the kernel of dimension 5× 5× 3 and stack the results together (as illustrated in Fig. 3.1).

Figure 3.1: Standard convolution applying one 256 kernels [79].

3.3.2 Spatial Separable Convolution
The Spatial Separable Convolution divides a kernel in two sub-kernels, using only the width and
the height dimensions (spatial ones) and not using the depth one. It is the case of the kernel
illustrated in Fig. 3.2, divided in the two sub-kernels. In a standard convolution twenty-five
operations are applied, while in the Spatial Separable one only five operations per kernel (ten
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in total). This technique is not applicable to all the kernels, but only to the ones divisible into
sub-kernels. Instead the Depthwise Separable convolution has the advantage to be applicable to
all kernels and that why it is more used.

(a)

(b)

Figure 3.2: Standard convolution (a) and Spatial convolution with the correspondents sub-kernels
(b) [79].

3.3.3 Depthwise Separable convolution
As illustrated in Fig. 3.3 and 3.4, the Depthwise Separable convolution is composed of operations
(with two different kernels):

1. a Depthwise convolution;

2. a Pointwise Convolution (kernel 1×1).

Depthwise convolution consists in a convolution that doesn't change the depth dimension.
So, using the previous example, it is possible to obtain this result applying three kernels of
dimensions 5×5×1 (Fig. 3.3). Each of the three kernels iterate on one channel of the input image
(only one not all), getting the scalar product of every twenty-five pixel groups and producing a
8× 8× 1 image. Stacking the three images (one per kernel) together generates a 8× 8× 3 image.

Figure 3.3: Depthwise convolution uses, 3 kernels to transform a 12× 12× 3 image in a 8× 8× 3
one [79].

Pointwise Convolution the original convolution transformed a 12 × 12 × 3 image into a
8× 8× 256 image. Currently, the Depthwise convolution has transformed the 12× 12× 3 image
to a 8×8×3 image. Now, the number of channels have to increase in each image. The Pointwise
Convolution uses a 1× 1× 3 (for this example) kernel to iterate through every single point, for
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the whole depth dimension. So, the kernel iterates on the 8×8×3 image and produce an output
of dimension 8× 8× 1. Applying two-hundreds and fifty-six times the same kernel and stacking
together the results, produce the final output of 8× 8× 256.

(a) (a) (b) (b)

Figure 3.4: Pointwise convolution transform an image of 3 channels in an image of 1 channel (a)
and repeating the same procedure with 256 kernels produce an image of size 8× 8× 256 (b) [79].

It is easy to understand the advantages of Depthwise Separable convolution compared with
the standard one calculating the number of operations for both the convolutions. Taking again
the example as support, the standard convolution use a-hundred and fifty-six kernel of dimension
5× 5× 3 that move 8× 8 times. That correspond to a number of multiplications in amount of:
256 × 3 × 5 × 5 × 8 × 8 = 1228800 The Depthwise convolution use three kernels of dimension
5× 5× 1 that move 8× 8 times. That correspond to a number of multiplications in amount of:
3 × 5 × 5 × 8 × 8 = 4800 Instead, the Pointwise convolution use a-hundred and fifty-six kernels
of dimension 1 × 1 × 3 that move 8 × 8 times. That correspond to a number of multiplications
in amount of: 256× 1× 1× 3× 8× 8 = 49152 So adding them up together the results is a total
of: 53952 multiplications. 53952 is a lot less than 1228800. With less computations, the network
is able to process more in a shorter amount of time. Intuitively, the main difference between
the two convolutions is that, in the normal convolution, the image is transformed a-hundredand
fifty-six times. And every transformation uses up 5×5×3×8×8 = 4800 multiplications. In the
separable convolution, the image is really transformed only once in the Depthwise convolution.
Then, the transformed image is simply elongated to a-hundred and fifty-six channels. Without
having to transform the image over and over again, it is possible to save up computational power.

But there are disadvantages using Depthwise Separable convolution, because it reduces the
number of parameters in a convolution. If the network is already small, the final model might end
up with too few parameters and the network might fail to properly learn during training. If used
properly, however, it manages to enhance efficiency without significantly reducing effectiveness,
which makes it a quite popular choice.

3.4 Mobilenet V1
To deeply understand Mobilenet V2 model, first it is important to know well Mobilenet V1.
Mobilenet (V1) [28] [74] is the first model to introduce Dephtwise Separable covolution. It is a
classification network (not a detection one) and its reputation of light network grew up in the
mobile application field in the last years and became the base for others light models.

As illustrated in Tab. 3.1 is it composed by:

• fourteen convolutional blocks;

• three final layers;
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The default input image size for Mobilenet V1 (and V2) is 224 × 224 pixels, but there is also
the possibility to use as input size 300 × 300 pixels. This second size works better in the case
Mobilenet is used as backbone network of SSD (that have a defaults input size of 300 × 300
pixels). The first block is a standard convolution, while the following thirteen are a Depthwise

Input size: 224×224×3
Block Layer Filter, Stride Output size
block 1 conv 3×3, s2 112×112×32

block 2 conv dw 3×3, s1 112×112×32
conv 1×1, s1 112×112×64

block 3 conv dw 3×3, s2 56×56×64
conv 1×1, s1 56×56×128

block 4 conv dw 3×3, s1 56×56×128
conv 1×1, s1 56×56×128

block 5 conv dw 3×3, s2 28×28×128
conv 1×1, s1 28×28×256

block 6 conv dw 3×3, s1 28×28×256
conv 1×1, s1 28×28×256

block 7 conv dw 3×3, s2 14×14×128
conv 1×1, s1 14×14×512

block 8-12 conv dw 3×3, s1 14×14×512
conv 1×1, s1 14×14×512

block 13 conv dw 3×3, s2 7×7×512
conv 1×1, s1 7×7×1024

block 14 conv dw 3×3, s2 7×7×1024
conv 1×1, s1 7×7×1024

classification block
avg pool 7×7, s1 1×1×1024

FC 1024×1000, s1 1×1×1000
Softmax Classifier, s1 1×1×?

Table 3.1: Architecture of Mobilenet V1 [28].

Separable convolution with different convolutional kernels. Finally the last three layers present:

• an Average Pooling layer, to reduce variance, computation complexity and extract low level
features from neighbourhood pixels;

• the Fully Connected layer, to transform the last features map in a vector describing the
classification;

• the Softmax layer, to delete useless and bad classifications, giving in output only the best
ones.

In Fig. 3.5 it is possible to see how a single block works. Each convolution (standard or depthwise
ones) is followed by a batch normalization, that helps to normalize each output and by the ReLU6,
nowadays the best activation function thank to its non-linearity property. A block is formed by
a Depthwise convolution followed by a Pointwise ones (Fig. 3.5), that as reported previously
generate a Depthwise Separable convolution. This network is designed to be small and to work
well with the Depthwise Separable convolution. Indeed, as illustrated in Fig. 3.2, using the
standard convolution improves the accuracy only of 1 mAP, but it increases a lot the weight of
the network. In addition Mobilenet introduce two parameters to the network:



3.5. MOBILENET V2 25

Figure 3.5: Mobilenet V1 block composed by a standard convolution (on the left) followed by a
Depthwise Separable one (on the right) [28].

Model mAP MAdds Parameters
Mobilenet (Conv) 71.7 4866M 29.3M

Mobilenet (Conv dw) 70.6 569M 4.2M

Table 3.2: Comparison of Mobilenet V1 with and without Separable convolution, in terms of
accuracy on Imagenet Dataset [28].

• Width Multiplier α

• Resolution Multiplier ρ

The Width Multiplier control the input width of the layers, which makes M become αM,
where α is between 0 to 1, with typical settings of 1, 0.75, 0.5 and 0.25. It consequently reduce
the cost of the Depthwise Separable convolution: it impact with parameter α in the Depthwise
convolution and with parameter α2 in the Pointwise one. As shown in Tab. 3.3, decreasing α
from 1 to 0.25 the accuracy drop off smoothly.

Model (Width Multiplier) mAP MAdds Params
1.0 Mobilenet-224 70.6 569M 4.2M
0.75 Mobilenet-224 68.4 325M 2.6M
0.5 Mobilenet-224 63.7 149M 1.3M
0.25 Mobilenet-224 50.6 41M 0.5M

Table 3.3: Comparison of Mobilenet V1 at different α value on Imagenet dataset [28].

The Resolution Multiplier, control the input image resolution of the network through the
parameter ρ2, where ρ is between 0 to 1. It impact on the cost of the Separable convolution
quadratically (with parameter ρ2). Also in this case, the accuracy drops off smoothly across
resolution from 224 to 128 (as illustrated in Tab. 3.4).

3.5 Mobilenet V2
Mobilenet V2 [66] [27] is the update of Mobilenet V1. It introduce a new convolutional block
called "Inverted Bottleneck Residual Block" (Fig. 3.6). The two novelty of this block are:

• the bottleneck;



26 CHAPTER 3. ARCHITECTURE

Model (Width Multiplier) mAP MAdds Params
1.0 Mobilenet-224 70.6 569M 4.2M
1.0 Mobilenet-192 69.1 418M 4.2M
1.0 Mobilenet-160 67.2 290M 4.2M
1.0 Mobilenet-128 64.4 186M 4.2M

Table 3.4: Comparison of Mobilenet V1 at different ρ value on Imagenet dataset [28].

• the residual connection.

Figure 3.6: Mobilenet V2 "Bottleneck Residual block" [66].

The bottleneck block includes three convolutional layers this time. The last two are the
same of Mobilenet V1: a Depthwise convolution that filters the inputs, followed by a 1 × 1
Pointwise convolution layer. However, the 1 × 1 layer now has a different function. In V1 the
Pointwise convolution doubles or takes the same number of channels from the input image. In
V2 is the opposite: it decreases the number of channels. This layer is called Projection layer,
because it projects data with a high depth dimension (channels) into a tensor with a much lower
one. For example, suppose to have a tensor with 144 channels, the Projection layer will reduce
them to only 24 channels. This layer is also called a bottleneck layer because it reduces the
amount of data that flows through the network. The first layer of the block is the new entry. It
is again a 1 × 1 convolution and its purpose is to expand the number of channels of the input
before it arrives to the Depthwise convolution. Hence, this layer called Expansion layer, produce
an output depth dimension higher then the input ones. It is doing the opposite work of the
Projection layer. The decision of how much expand the input is left to the Expansion factor.
It is another hyper-parameters to choose during experiments to mitigate the trade-off between
speed and accuracy. The default expansion factor is 6. So, the input and the output of the
block are low-dimensional tensors, while the filtering step that happens inside block is done on
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a high-dimensional tensor. Think at the low-dimensional data flowing between the blocks, like
a compressed version of the real data. In order to run filters over this data, it is needed to
uncompress them first. The expansion layer acts as an decompressor that unzip the data, then
the Depthwise layer performs the filtering, and finally the Projection layer compresses the data
to make it small again. The trick that makes this all work is that the expansions and projections
are done using convolutional layers with learnable parameters, and the model is able to learn
how to best compress and decompress the data at each stage in the network.

The second novelty about MobileNet V2 is the residual connection of the block. It has
the function to help with the flow of gradients through the network. It make a sum operations
between the input (residual) and the output features maps of the block. The residual connection
is used only when the number of channels in input in the block is the same of the number of
channels in output. This fact happen in some layers, while in all the others the number of
channels increase (Tab. 3.5) and in these cases it is not possible to use the residual connection.
As Mobilenet V1, each convolutional layer is followed by a batch normalization and by the
activation function (again ReLU6). However, the output of the Projection layer does not have
an activation function applied to it. This choice because this layer produces low-dimensional
data and the authors of the Mobilenet V2 paper found that using a non-linearity function after
this layer, destroy useful information. As is usual for this kind of model, the number of channels
increases layer by layer, while the spatial dimension halved. But in this network the tensors
remain relatively small, thanks to the bottleneck layers (Mobilenet V1 for example have a much
larger tensor). Using low-dimensional tensors is the key to reduce the computations. Indeed,
if the tensor is smaller, then fewer multiplications are needed in the convolutional layers. Tab.

Input size: 224×224×3
Block Layer Stride Expansion Factor Output size
block 1 conv s2 - 112×112×32
block 2 bottleneck s1 1 112×112×16
block 3-4 bottleneck s2 6 56×56×24
block 5-7 bottleneck s2 6 28×28×32
block 8-11 bottleneck s2 6 14×14×64
block 12-14 bottleneck s1 6 14×14×96
block 14-16 bottleneck s2 6 7×7×160
block 17 bottleneck s1 6 7×7×320

classification block
conv pw s1 - 7×7×1280

avg poll 7×7 s1 - 1×1×1280
conv pw s1 - 1×1×?

Table 3.5: Mobilenet V2 architecture [66]: each line describes a sequence of 1 or more identical
(modulo stride) layers. All layers in the same sequence have the same number of output channels.
The first layer of each sequence use the stride reported and all others use stride 1. All spatial
convolutions use 3×3 kernels. The expansion factor is always applied to the input size.

3.6 report the performance in terms of accuracy and network weight, of Mobilenet V1 and V2.
Mobilenet V2 result a bit better in terms of accuracy, and there is an important improvement
for the model weight. Mobilenet V2 take all the functions, structure, and strategy of Mobilenet
V1. So, it use the same classification layers, it use Width and Resolution Multipliers and the
same default input size.
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Model mAP Params MAdds CPU time
Mobilenet V1 70.6 4.2M 575M 113 ms
Mobilenet V2 72.0 3.4M 300M 75 ms

Table 3.6: Performances in term of accuracy, weight and speed between the Mobilenet V1 and
Mobilenet V2 [66]

3.6 Single Shot Detection (SSD)
Single Shot Detection (SSD) [49] [75] [31] is an object detection network belongs to the single-
staged based networks. Its backbone network in the original paper is VGG16 [69], but it is
possible to adapt SSD with different backbones, to achieve different goals. The author provide
SSD with two possible input resolution: 300 × 300 pixels or 500 × 500 that correspond to the
input image resolution. Thank to its versatility and the good performances with low resolution
inputs, many researchers have used SSD in the last years, and also if the last version of YOLO
(version 3) reaches best performance in terms of speed and accuracy, it probably still be used
for a long time. As said in 2 SSD could be divided in two parts (Fig. 3.12):

• the backbone network (VGG16), that extract the features from the input;

• the front-end part that classify and localize the objects from the features provided.

Figure 3.7: Architectures of SSD [49].

Cause in this thesis project we are not going to use SSD its original version, we will only
describe the front-end part and its features, without touching the VGG16 network. Furthermore,
we are going to use the SSD version with input resolution of 300× 300, because a lighter input
bring to lighter computation. Two are the main features of SSD:

1. multi-scale features;

2. default boxes.

Multi-scale features, is a technique using multiple layers to detect objects independently.
In the backbone network the spatial dimension of the data gradually decrease (as common in
this type of model) (Fig. 3.7), and also the resolution of the features map decrease with it.
The front-end part use multiple features maps (arriving from the lasts layers of the backbone
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network) to produce a predictions. It take different features maps to detect objects of different
sizes. For example, it uses a feature map of dimension 4× 4 to detect objects of large scale and
a 8×8 feature maps to detect smaller objects (as illustrated in the Fig. 3.8). Multi-scale feature

Figure 3.8: Different features maps scale to detect different scale object [49].

maps improve accuracy significantly. In Tab. 3.7 is reported the accuracy using different number
of feature map layers.

Prediction source layer from: mAP
# Boxesuse bounding boxes?

38×38 19×19 10×10 5×5 3×3 1×1 Yes No
X X X X X X 74.3 63.4 8732
X X X 70.7 69.2 9864

X 62.4 64 8664

Table 3.7: SSD performance using different numbers of feature maps [49].

Defaults boxes The default bounding boxes are the equivalent to anchors in the more
famous Faster R-CNN. It is possible to see, from the statistics of some database like KITTI [55],
that the boundary boxes shapes are not arbitrary. Cars have have similar shapes each others
and pedestrians have an approximate aspect ratio of 0.41. So, the boundary shape could be
divided in cluster that are represented by default bounding box. So, instead of making random
guesses to locate objects, it is possible to start the guesses based on those default boxes. A
certain bounding box shape could work well for a certain object, but not for another one (Fig.
3.9a). So, it is important to cover a wide range of different shapes (Fig. 3.9b) Computing the
default boxes in the algorithm, increase the complexity of the network and the time for training.
So, SSD boxes are computed manually and pre-selected in a way to cover as most objects as
possible. The algorithm use a fixed number of bounding boxes per layer (4 or 6) and produce
one prediction from each box. Each features map share the same bounding boxes, but different
layers can have different bonding boxes and in a different amounts. SSD for the bounding box
predictions, instead of using global coordinates for the box location, uses the relative ones to the
default bounding boxes (∆cx, ∆cy, w, h).

Matching Strategies SSD predictions are classified as positive matches or negative matches.
It uses only the positive matches to compute the localization cost (the mismatch between the
true bounding box and the predicted one). SSD use the Intercept over Union (IoU) technique.
It is the ration between the intersected area over the joined area of the two regions. In this case
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(a) (b)

Figure 3.9: Different shape of labels for different objects: vertical shape for people and horizontal
for cars [49].

the two regions are the default bounding box area (not the predicted boundary box one) and
the true area. If the corresponding default bounding box has an IoU greater than 0.5 with the
ground truth, the match is positive. For example, suppose to have three default bounding boxes.
Only the first and the second one have an IoU greater then 0.5 (positive matches). Starting from
the default bounding boxes it is possible to compute the localization cost of the correspondent
predicted bounding boxes. This technique encourage to predict bounding box shapes close to
the default one.

Figure 3.10: SSD different bounding box shape applied to the same cell of the grid [49].

Loss Function The loss function used by SSD is:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (3.1)

It consists in two terms: confidence loss (Lconf) and localization loss (Lloc), where N is the
matched (positive) default boxes. SSD only penalizes predictions from positive matches. Lloc is
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the smooth L1 loss between the predicted box and the ground-truth box parameters, i.e. it is
the mismatch between them. The definition of the smooth L1 loss is:

L1,smooth =

{
0.5x2 |x| < 1

|x| − 0.5 otherwise
(3.2)

and the formula of the Lloc is:

Lloc(x, l, g) =
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xkijsmoothL1(lmi − ĝmj )

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcy − dcyi )/dhi

ĝwj = log(
gwj
dwi

) ĝhj = log(
ghj
dhi

)

where: l is the predicted box, g is the ground-truth box, cx and cy are the offsets for the center
point, and w and h are the width and height of the bounding box.

The confidence loss is the softmax loss over multiple classes confidences. It represent the loss
a class prediction. For every positive match, it penalizes the loss according to the confidence
score of the corresponding class. For negative matches, it penalizes the loss according to the
confidence score of the class "0" (no object detected or background class).

Lconf (x, c) = −
N∑

i∈Pos

xpij log(ĉpi )−
∑

i∈Neg

log(ĉ0i )

ĉpi =
exp(cpi )∑
p exp(c

p
i )

where: c is the confidences over multiple classes, xijp is an indicator for matching i-th default
box to the j-th ground truth box of category p.

Because the network is doing much more predictions than the real number of object in the
image, there are more negative matches than positive matches. These imbalanced can produce
bad results during training and the model learn better to recognize background instead of objects.
To solve the issue SSD picks the negatives with the top loss and makes sure the ratio between
the picked negatives and positives is at most 3:1. This leads to a faster and more stable training.

3.7 Single Shot Detection Lite (SSD Lite)
SSD Lite is lite version of the standard SSD. It uses as backbone network Mobilenet v2 and
introduce the Depthwise Separable convolution also in the front-end part. SSD Lite take most
of the setting and features from its father SSD. So, most of the previously described structures
and techniques are still valid. All SSD convolution are substituted with Depthwise Separable
convolution of the same stride and padding. As it is possible to see from Fig. 3.7, from Mobilenet
v2 are discarded the last three layers (the ones needed to produce the classification) while remain
the body composed by the bottleneck blocks. The connection between the two part is descripted
in the following paragraph. As said in the previous section, SSD need a group of features maps
to perform the multi-scale features detection. SSD Lite use a batch of six features maps (as in
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SSD). The first two features maps are chosen from Mobilenet V2. They are the output of the
block 13 and output of the last block (block 17). We choose these two layers because they are
the proposed one from Mobilenet V2 [66] author. From the second features map (output of block
17) are generated four more features maps passing through four convolutional layers. The four
features maps will be the remaining input for the multi.scale features detection. The six final
features amps are:

• Features map 1: coming from block13, before be processed from for the multi-scale
detection, it is normalized using an L2 normalization. The features map dimension is:
19× 19× 1576.

• Features map 2: coming from block17 and has size of 10× 10× 1280.

• features map 3: it is generated applying a Depthwise Separable convolution to the fea-
tures map from block13. Its dimensions are: 5× 5× 512.

• Features map 4: with the same pipeline used for feature map 3, it is generated processing
the same. The dimension are 3× 3× 256.

• Features map 5: it is generated, again in the same manner as the previous, and it has
dimension 2× 2× 256.

• Features map 6: finally, it generated from features map 5 and it is the last one. Its
dimension is 1× 1× 128.

The settings used by the detection layers are the same of the original SSD, to highlight:

• Mobilenet V2 uses an input size of 300 × 300 pixels, with the Resolution and the Width
multipliers equal to 1.

• the number of default boxes for each features map, respectively of: 4, 6, 6, 6, 4, 4.

• the scales of each defaults bounding box that are: 0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05.
This scales are computed to fit well with the OpenImage v4 Dataset [39], that is later
described.

Figure 3.11: SSD-Lite architecture.

To give a better understanding of how this network works, in the following paragraph is reported
the inference pipeline of an image of size 300× 300. A single prediction is an array containing:
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• the confidence predicted for each class (if the number of object class is 17, we have 18
classes, because we add also the nothing class)

• the bounding box coordinates of the best confidence (4 numbers).

So, if the number of class objects are seventeen, the prediction produce an array of size: 17 +
1 + 4 = 22 elements. An inference procedure except:

1. The input image pass through the features extractor (Mobilenet V2) and produce the first
two features map.

2. Following, the features map produced by the last block of the Mobilenet V2, pass through
four more convolutional blocks to produce four more features map.

3. At each of these six features maps, is applied a grid. At the center of each cell of the grid
we apply a number of predefined bounding box (four for features maps 1, 2 and 6 and six
for features maps 3, 4 and 5), and from each bounding box we produced one prediction.

4. All the predictions are finally combined and analyzed: prediction of the same class are
compared and in case grouped, prediction of different class in the same location are
checked. Other operations are computed to arrive to a final set of predictions (No-Maximal-
Suppression is performed to delete double bounding box or false ones).

3.8 DenseNet
To better understand DSOD and Tiny-DSOD, it is reported a brew summary about DenseNet.
DenseNet in turn is based on ResNet [26] that first use a more deep convolutional network to
reach better accuracy. As illustrated in Fig. 3.12, the most important elements of DenseNet are:

• the Dense Block;

• the Transaction Layer.

Figure 3.12: DenseNet schema, with Dense Blocks followed by Transition layers (Convolution
and Pooling) [29].

The Dense Block is a group of convolutional layers deeply connected together. Indeed, as
it is possible to see from Fig. 3.13, each layer take in input more then only one features map.
The features maps are concatenated together and thanks to this the network can be thinner and
compact. This bring to a more deep network, able to learn complex features and to increase the
accuracy, but also to an efficient network in terms of memory and performance.

The Transaction Layer connects together the different Dense Block. It is made by a 1×1
convolution followed by 2 × 2 average pooling between two contiguous Dense blocks. Feature
map sizes are the same in input and output in the Dense block, so that they can be concatenated
together easily. DenseNet have several advantages:
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Figure 3.13: DenseNet Dense Block schema.

• it partially resolve the vanishing-gradient problem;

• strengthen feature propagation, encourage feature reuse;

• substantially reduce the number of network parameters.

3.9 DSOD

Deeply Supervised Object Detector (DSOD) [68] [80], an alternative of the original Single Shot
MultiBox Detector (SSD), attempts to reach a better trade-off between speed and accuracy then
SSD. DSOD use SSD as framework, it is a single-stage based model not using a region proposal
system, and use as backbone network DenseNet [29].

Taking the advantage of DenseNet [29], DSOD introduce some new elements to increase the
performance and the stability of the network. The main novelties are:

• Deep Supervision (DP) is a strategy to tackle the issue of the vanishing gradient. In
many deep networks, can succeed that the flow of the gradient arrive to a point, where
the variation start to be more and more small. So, the gradient doesn't move from the
local value and doesn't provide an useful update. The cause is related to the maths under
the calculation of the gradient (the partial derivatives). Basically they are a multiplication
operations, and if two number with value less then one are multiplied together the results
is a number minor of the previous two (e.g. 0.9× 0.8 = 0.72). So, the gradient can became
enough small that the model cannot learn anything more. The idea of DS is to bring the
loss function, typically attached to the top part of the network, closer to different layers of
the same. This allows each layer to use a less âĂĲdilutedâĂİ gradient to learn.

• Transition without Pooling, is a strategy that plans to connect the Dense Block with-
out using the 2 × 2 average pooling (as succeed in DenseNet). So, it remain the Batch
Normalization layer followed by a 1 × 1 convolution. This technique permits to increase
the depth of the network without adding new layers in the Dense Block. This was not
possible in DenseNet where, it cannot increase the number of Dense Block without changes
the output size.
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Figure 3.14: Comparison of SSD schema on the left and DSOD schema on the right [68].

• Stem block is used to modify the original DenseNet architecture. Instead of a using
a 7 × 7 convolution layer with stride 2 followed by a 3 × 3 MaxPooling operation with
stride 2, DSOD uses a stack of 3 × 3 convolution layers followed by a 2 × 2 MaxPooling.
The first convolution layer has stride 2 whereas the others use stride 1. This to minimise
information loss from the input image, because smaller filter sizes and strides tend to
preserve information.

• Dense Prediction Structure help to improve the detection accuracy. It concatenates
one-to-one the features map in output from the previous layer, with the down-sampled high-
resolution features map arriving in output from the actual layer. This strategy works well
because the high-resolution features map preserve spatial information, while the features
map of the previous layer have useful information for classification. It is possible to see
the difference in respect to SSD plain approach from the Fig. 3.14. The down-sampling
operation is done using a 2×2 max pooling layer with stride 2 followed by a 1×1 convolution
layer with stride 1.

In Tab. 3.8 is reported the architecture of DSOD.
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Input size: 300×300×3
Block Layer Filter, Stride Output size

Steam

block 1 conv 3×3, s2 150×150×64
block 2 conv 3×3, s1 150×150×64
block 3 conv 3×3, s1 150×150×128
block 4 max pool 2×2, s2 75×75×128

dense block 1 block 5 conv 1×1, s1 × 6 75×75×416conv 3×3, s1

transition block 1 block 6 conv 1×1, s1 75×75×416
max pool 2×2, s2 38×38×416

dense block 2 block 7 conv 1×1, s1 × 8 38×38×800conv 3×3, s1

transition block 2 block 8 conv 1×1, s1 38×38×800
max pool 2×2, s2 19×19×800

dense block 3 block 9 conv 1×1, s1 × 8 19×19×1184conv 3×3, s1
transition block 3 block 10 conv 1×1, s1 19×19×1184

dense block 4 block 11 conv 1×1, s1 × 8 19×19×1568conv 3×3, s1
transition block 4 block 12 conv 1×1, s1 19×19×1568

DSOD prediction layers

Table 3.8: Architecture of DSOD.

3.10 Tiny-DSOD
Tiny-DSOD [43] is an object detection network based on DSOD. It promises good performances
in mobile devices and try to maintain a good trade-off between speed and accuracy. The main
novelty proposed by Tiny-DSOD are:

• the Depthwise Dense Block (DDB) based backbone;

• the feature-pyramid-network (D-FPN) based front-end.

The Depthwise Dense Block (DDB) is an efficient network structure to combine Depthwise
Separable convolution with densely connected networks (DenseNet). Tiny-DSOD provide two
different DDB. As shown in Fig. 3.15, it is easy to understand that the first version (Fig. 3.15a)
is based on the Inverted Residual Bottleneck proposed by Mobilenet V2 [66]. It first expands
the input by a factor w (using 1× 1 convolution), generating a features map of n× w, where n
is the number of channel (depth dimension) of the input, and w is an hyper-parameter that can
control the capacity of the network. Then the Depthwise convolution is applied, and the features
map is projected to g channels (using another 1× 1 convolution), where the g is the growth rate
of the block. Finally the input and output features maps are concatenated together (not added
as in the Mobilenet V2 model). This block has two hyper-parameters w and g.

The paper author find out two important weaknesses in this block:

• the complexity of a series of L blocks is O(L3g2). So, the computation increase rapidly
with L, and if a small g is used, it will hurt the accuracy of the results.

• there is a redundancy when two Dense Block are concatenated, because there is a Pointwise
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Figure 3.15: Tiny-DSOD Depthwise dense blocks (DDB). In the rectangle, "S" means the stride of
convolution, and "C" means the number of output channels. Numbers under the concatenating
node (green C with circle) means the number of output channels after concatenation. (a) is
stacked DDB-a parameterized by growth rate g and expand ratio w. (b) is stacked DDB-b
parameterized by growth rate g [43].

convolution at the end of the first block and another one at the beginning of the following
block.

To overcome these weaknesses the author provides a second Dense block (Fig. 3.15b). The input
features map is first compressed to g channels and then the Depthwise convolution is performed.
The generated output is concatenated to the input without the Pointwise convolution. The
overall complexity becames O(L2g2). Also the experiments made in the paper verify that this
block perform better then the previous one. The final architecture of the backbone network is
shown in Tab. 3.9.

Input size: 300×300×3
Block Layer Filter, Stride Output size

Steam

block 1 conv 3×3, s2 150×150×64
block 2 conv 1×1, s1 150×150×64
block 3 conv dw 3×3, s1 150×150×64
block 4 conv 1×1, s1 150×150×128
block 5 conv dw 3×3, s1 150×150×128
block 6 max pool 2×2, s2 75×75×128

Dense stage 0 block 7 DDB(32)×4 75×75×256

Transition layer 0 block 8 conv 1×1, s1 38×38×128block 9 max pool 2×2, s2
Dense stage 1 block 10 DDB(48)×6 38×38×416

Transition layer 1 block 11 conv 1×1, s1 19×19×128block 12 max pool 2×2, s2
Dense stage 2 block 13 DDB(64)×6 19×19×512

Transition layer 2 block 14 conv 1×1, s1 19×19×256
Dense stage 3 block 15 DDB(80)×6 19×19×736

Transition layer 3 block 16 conv 1×1, s1 19×19×64

Table 3.9: Tiny-DSOD backbone architecture.

The feature-pyramid-network (D-FPN) is a lightweight version of FPN [46], that fuse
semantic information from neighborhood scales to speed up object detection and to overcome
the weakness of SSD and DSOD fornt-end part, in terms of accuracy in the predictions. As
shown in Fig. 3.16, the front-end predictor D-FPN consist in a down-sampling path and a
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reverse up-sampling one. The reverse-path (up-sampling) has been demonstrated being very
helpful for small object detection in many works [17], [46], [81]. But majority of this works
use deconvolution to up-sample the features maps, and this technique increase the complexity
of the model. To overcome this issue the paper propose a cost-efficient solution: as illustrated
in Fig. 3.16, the features map is up-sampled using a Bilinear interpolation layer followed by a
Depthwise convolution. The resulted feature maps are merged with the same-sized feature maps
in the bottom layer via element-wise addition.

Figure 3.16: D-FPN structure: the left part is the over structure of D-FPN, while the right part
further depicts the details of the up-sampling (top-right) and down-sampling (bottom right)
modules in D-FPN. Note both sampling are by factor 2, "S" is the stride of convolution, and
"C" is the number of output channels [43].

Because Tiny-DSOD use the SSD framework for the detection, they have in common the
last layers of the network. They also use the same defaults box and same multi-scale features
parameters. What really change are the six features maps used for the multi-scale detection and
their generation. As it is possible to see from the schema at Fig. 3.16 each final feature map
is the sum of two element, one arriving from the up-sampling and one from the down-sampling.
The six features maps in input for the multi-scale detection are:

• Features map 1: it come from the down-sample of the features map generated from
block19 (it is the only one not coming from a sum operation). The features map dimension
is: 1× 1× 1024.

• Features map 2: it is the sum of the features maps coming from the up-sampled featuremap1
and block19. The features map dimension is: 3× 3× 512.

• features map 3: it is the sum of the features maps coming from the up-sampled featuremap2
and block18. The features map dimension is: 5× 5× 256.

• Features map 4: it is the sum of the features maps coming from the up-sampled featuremap3
and block17. The features map dimension is: 10× 10× 128.

• Features map 5: it is the sum of the features maps coming from the up-sampled featuremap4
and transitionlayer3 (block16 of the backbone network). The features map dimension is:
19× 19× 128.

• Features map 6: it the sum of features maps coming from transitionlayer1 (block12 of
the backbone network) and the up-sampled featuremap5. The features map dimension is:
38× 38× 128.
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Obviously, the inference pipeline is the same of the SSD one.
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Chapter 4

Experiments

In this section we are first going to show the API library and tools, used for the experiments.
Following we present the datasets used for the tests and the tests them-self. Finally we will show
the results obtained.

4.1 Setup

4.1.1 Tensorflow Lite

Tensorflow Lite [72] [54] is TensorFlow's lightweight solution for mobile and embedded devices.
It permits to run machine-learned models on mobile devices with low latency. We decide to
integrate our networks in the Android application using this framework, because it brings many
advantages. It is presently supported on Android and iOS via a C++ API, and it has also a
Java Wrapper for Android Developers. Additionally, on Android devices that support it, the
interpreter can also use the Android Neural Networks API for hardware acceleration, otherwise
by default it uses the CPU for the execution. TensorFlow Lite includes a runtime on which you
can run pre-existing models, and a suite of tools that you can use to prepare your models for
mobile and embedded devices. It is not yet designed for training models. Instead, you can train
the model on a higher powered machine, and then convert that model in .TFLITE format, which
is finally loaded into a mobile interpreter. TensorFlow Lite is presently in developer preview, so
it may not support all operations in all TensorFlow models. Despite this, it works with common
Image Classification models, including Inception and MobileNet [57]. As illustrated in Fig. 4.1,
the pipeline to produce a .TFLITE file is:

1. train the network using conventional strategies and frameworks of Tensorflow;

2. export the inference network and its weights in a checkpoint files; checkpoint is made by dif-
ferent files: .ckpt.data, .ckpt.meta and ckpt.index, that contain the model, its configuration
and its weight.

3. freeze the exported model in a .pb file, using the script proposed by Tensorflow [72] or
produce a personal script following the Tensorflow guideline; the freezing function permits
to unify the model structure and its configuration (also the weights) in the .pb file;

4. convert the freezed network (.pb file) in a .TFLITE file, using the Tensorflow tool;

41
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5. import the .TFLITE file in the Android application and using the Neural Network API
Library to integrate it in the code.

There are two possible .TFLITE files to use:

• standard TFLITE file;

• quantized TFLITE file: post-training quantization is a conversion technique that can re-
duce model size while also improving CPU and hardware accelerator latency, with little
degradation in model accuracy. It is possible to perform this technique using an already-
trained float TensorFlow model, in the conversion process from .pb file to .TFLITE format.

We chose to use the quantized TFLITE file for our experiments, because it permits to perform
with an higher FPS, without visible drawback in accuracy.

Figure 4.1: Tensorflow Lite pipeline to import a trained model in an Android application.

We decide to use Tensorflow lite in this thesis project, because:

• it fully supports Mobilenet, and has a basic API guide;

• it is the easiest way to import a network in an Android application;

• it performs well in term of efficiency and network optimization for light devices.

4.1.2 Keras

Keras is a high-level neural networks API, written in Python and capable to run on top of
TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.

We choose Keras as main API because it has a wide range of function, useful for our project
as:
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• it allows easy and fast prototyping (through user friendliness, modularity, and extensibil-
ity);

• the library integrates the Mobilenet V1 and V2 networks;

• it is compatible with Tensorflow (in 2018 Keras belong to Tensorflow APIs) and many tools
are provided to convert networks and weights from Keras to Tensorflow and viceversa;

• it runs seamlessly on CPU and GPU.

• it has an efficient optimization of the training process;

• it has a good documentations and an active community working on it.

4.1.3 Hardware
The hardware provided for the project consists in:

• an Asus ZenFone AR 4.2 equipped with: 4GB of RAM, 64-bit CPU Qualcomm Snap-
dragon Quad-Core 821 2.35 GHz, optimized for Tango, Adreno 530 GPU, 23 megapixel
camera, and Android 8 installed. The whole specific are provided at [2];

• a desktop Computer with: GPU Nvidia Geforce GTX 1050ti 4GB, 16GB RAM, i7-4770
CPU 3.40GHz. Installed there is Linux 18 operative system;

• a GPU cluster with the possibility to use a Nvidia Geforce GTX 1080ti 12GB.

Figure 4.2: Asus Zenfone AR [2].

As said in chapter 1, the Asus ZenFone AR is equipped with a depth sensor. Finally, we
dont't use this sensor for the object detection task. Indeed, all the networks we are analyzing,
don't use depth images or they are not able to take information from them. Probably, the depth
map will be useful for the navigation purpose, that is not part of this thesis work.
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4.2 Software Structure
The code produced for the project development is written in Python 3.6, using the Keras API
library and Tensorflow version 1.12. We are not using the last released Tensorflow 1.13, because
of its incompatibility with some tools provided from the Object Detection section of Tensorflow.
The code base is taken from a Github repository of Pierluigi Ferrari [12], who has developed
SSD algorithm in Keras. He produces also some useful tools to make tests and inferences on the
network. He follows the SSD paper to write the code and uses the test rules of Pascal VOC 2012
challenges (that could be considerate functional also for our purpose). Deeply modifying the code
of SSD300, we obtain the two algorithms needed: SSD-Lite with Mobilenet V2 and Tiny-DSOD.
The two algorithms follow the respective paper guidelines and parameters, trying to be as close
as possible to the original models. More tools and scripts have been created and provided to
help in training and testing, and also in the selection of useful images from dataset. The two
networks share the majority of the code, beginning from the last layers of SSD300 used by both
models to classify and localize objects from the features maps provided by each algorithm. We
decide to write the two algorithms from scratch, instead of using some code proposed in the web,
for three main reasons:

• to deeply understand these two algorithms, it is important to write down each of its part,
otherwise it is impossible to completely understand the models and produce useful modi-
fications;

• it is important to have the code in Keras or Tensorflow frameworks, because they are the
only way to later export the models in Tensorflow Lite. E.g. Tiny-DSOD is provided in
Caffe framework.

• to have the possibility to test the algorithms, without be affected by the framework or the
language choice. We decide to share as much as possible code between the two models.

For the training process, of both the models, this parameters have been chosen: the number
of epochs for the training are 120, with 943 iteration each and a batch size of 24 (maximum
permitted from the GPU).

4.3 Datasets
In this thesis work we are going to use two different datasets:

• OpenImage V4 Dataset selection [39]: to train and test the proposed models.

• Office Dataset: specifically created for this project and used to test the models.

4.3.1 Train Dataset
OpenImage V4 [39] [38] is a dataset of 9M images annotated with image-level labels, object
bounding boxes, object segmentation masks, and visual relationships (Fig. 4.3). It contains
a total of 16M bounding boxes for 600 object classes on 1.9M images, making it the largest
existing dataset with object location annotations. The boxes have been largely manually drawn
by professional annotators to ensure accuracy and consistency. The images are very diverse and
often contain complex scenes with several objects (8.3 per image on average).

Having a large number of object categories, and specially, objects from office environment, it
is a good dataset to train our models. We take only the images containing the objects useful for
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(a) (b)

Figure 4.3: Examples of bounding box (a) and segmentation (b) in OpenImage V4 dataset. [38]

our training and the related labels. In Tab. 4.1 are reported the seventeen objects that represent
an office environment in our project. They statistically are common objects in an office room
and they are also possible objects that an impaired person would like to look for. As reported
in 1, the project plans to detect objects, but can also navigate the user close to the possible
position where the object may be located. Suppose to look for a PC monitor, the user is now
located close to the door. The object detection network doesn't find any PC monitor for the
moment, but it recognizes a desk. The application will advice the user to move in-front-of the
desk, to see if it is able to find the PC monitor from the new position. This extra help, given by
the application, is made thanks to a statistics generated on the OpenImage V4 dataset, where
the positional relations are computed between different objects. This is not part of the thesis,
but part of the project, and that to justify the presence of objects apparently useless, but that
can be useful for the application to find other close items. In Tab. 4.1 it is possible to see also
the number of objects for each single item (used for the training process) and the complexity of
each object defined in a scale from 1 (easy) to 3 (very complex). It is important to know what
objects are considered complex to detect and why. This rank is given without testing previously
the models on these objects, but it will explains the behaviour of the detectors. Difficult object
examples are:

• chairs, backpack, that are considered complex for their variance. Indeed, they have
different shapes, colors and sizes. This bring to an undefined standard model for a chair
and to an hard detection.

• mouse, mug, light-switch are considered complex for their size. Indeed they have a
little size and they are difficult to be detected from far points of view.

Each object category has different numbers of training images. This fact could be useful, to
understand which threshold, the network can use to learn well. We take a maximum number of
10.000 objects per category, to limit the dataset size. Not all the objects reach this threshold,
and finally, we obtain a dataset with an amount of objects equal to 96742 in 43301 pictures. The
selected images are equally divided in three groups:

• 24762 images for the training set (∼ 60%);
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• 9035 images for the validation set (∼ 20%);

• 9504 images for the test set (∼ 20%).

Using a script the objects are divided equally and homogeneously in the three sets (following the
written percentage).

OpenImage V4 has also extra information about the appearance of the objects:

• occluded indicates that the object is occluded by another object in the image;

• truncated indicates that the object extends beyond the boundary of the image;

• group indicates that the box spans a group of objects (more than 5 instances which are
heavily occluding each other and are physically touching) (e.g., a bed of flowers or a crowd
of people);

• depicted indicates that the object is a depiction (e.g., a cartoon or drawing of the object,
not a real physical instance);

• inside indicates a picture taken from the inside of the object (e.g., a car interior or inside
of a building).

We decide to discard all the pictures that present objects with: truncation, occlusion, depiction
or inside other objects. We do that because doing a pre-test on a training set with all the images
and with a training set without the "complex" images, it highlighted the best accuracy of the
second training set. Indeed, training the models with too complex images, can bring the detector
to not define a good representation for an objects or to define a wrong one. It could be useful to
have complex pictures in the training set, because it helps to detect objects in complex positions
or partially visible. But it is important to control the number of "complex" image, to don't have
too much of them, otherwise they hurt the training.

4.3.2 Test Dataset

There are two Test datasets because there are two aspects to take care of. First, it is important
to understand if the training is gone well, and for this motif we use a selection of images from
the OpenImage V4 dataset (as previously said the 20% of the selected images). Indeed, it comes
from the same images distribution of the Train and Validation set, and thanks to this, it is
possible to understand the weaknesses and the strengths of the networks in term of lean ability.
Instead, using a test set coming from a different distribution, helps to understand how robust
is the model. Additionally, it also highlights if the model learns the representation of a certain
item, or learns it only for the specific distribution. Furthermore, using a real environment as
Test set, the test returns a better response of how well the model works in the real-life. The
Office Dataset is created on purpose for this project. Indeed, the pictures are taken from a real
office of the University of Lincoln and it contains all the seventeen objects we are looking for
(Fig. 4.1). The dataset is composed by pictures where only one object is labeled in each image.
All the pictures are captured from the same environment, with the objects fixed in the same
position. What change is the user point of view.

We take pictures from three different points of view (Fig. 4.4):

1. door position, when the user opens the door and looks inside the room office;

2. guest position, when the user sits down on the chair in front of the desk;
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Object # Images Complexity
Backpack 1314 2
Book 10000 2

Bookcase 5708 1
Chair 10000 3
Desk 10000 1
Door 10000 1

Keyboard 4757 1
Lamp 3849 2
Laptop 10000 1

Light switch 114 3
Monitor 6384 1
Mouse 841 1
Mug 2403 1
Plant 10000 1

Telephone 316 2
Whiteboard 1056 1
Window 10000 1

Table 4.1: Selected object categories from OpenImage V4 dataset, with the number of images
per object and the complexity each one.

Figure 4.4: Schema of the office setting, created to generate the Office dataset.

3. owner position, when the user sits down on the chair behind the desk.

Then for each position we take pictures using three different heights, representing the typical
positions in which a user hold the smart-phone (a person of mean height of 175cm). The three
heights are:
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1. pelvis height, when user holds approximately the smartphone at the height of the pelvis;

2. chest height, when user holds approximately the smartphone at the height of the chest;

3. head height, when user holds approximately the smartphone at the height of the head.

Finally for each position and for each height, we take the pictures in three different inclinations
of the smartphone:

1. 45°(right of the user), when the user holds the smartphone with a rotation of 45°on the
right;

2. portrait (0°), when the user holds the smartphone in portrait mode, without rotation;

3. -45°(left of the user), when the user holds the smartphone with a rotation of 45°on the
left.

We decide not to take pictures in the panorama mode, because it is uncommon or uncomfortable
position to hold the smartphone when a person is using it. The only case where a user holds
the smartphone in panorama mode, is when he takes pictures, and it is not our case. The total
amount of captured pictures is:

3 positions× 3heights× 3 inclinations× 17 objects = 459 pictures (27 per object)

In Fig. 4.5 there are some picture examples from the Office Test set.

(a) (b) (c)

Figure 4.5: Three pictures taken from the Office Test set. The three images are centered on the
desk object, respectively from: door position (a), guest position (b), and owner position (c).

The Office dataset has also the goal to provide a support for future experiments. Thanks to
its setting other researchers can use it, to compare more algorithms for the same purpose.
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4.3.3 Video Test Dataset
The Video Test set is composed by nine different videos, taken from three different office rooms:

• little office 4.6a of size 10m2 (it is the one from which we take the Test Dataset pictures);

• medium office 4.6b of size (50m2) (it doesn't contain all the trained objects);

• big office 4.6c of size 300m2 (it doesn't contain all the trained objects).

(a) (b) (c)

Figure 4.6: Three office room of different dimensions: (a) little office of size 10m2, (b) medium
office of size 50m2, and (c) big office of size 300m2.

We choose three different room dimensions, to better understand if the models are able to
recognize objects and from what distance. It is important that a good algorithm is able to
recognize evident and big object from long distance, to later navigates the user near them to
find little or less evident objects. In each of the three rooms, three different videos are recorded
at three different speeds. The speed is intended as the velocity of the movements that the user
produces, while he is walking in the room. The different speeds are:

• slow speed, the walk and the movements of the user are slow, so the images are not too
much blurred and the scene change gradually;

• medium speed, the walk of the user and the movements are a bit faster that the previous
videos, so the frames start to blur and sometimes the scene change drastically;

• high speed, the user walk and movements are fast, many frames of the video are blurred
and frequently the scene change drastically;

Changing the speed of the videos help in understanding how robust the models are with blurred
frames and to see if the computational time of each frame is low enough.

We decide to record these nine videos, because it is important to understand how a model
works in real-life. The videos don't provide a scientific test (the frame of the video are not
labeled), but only a visual feedback that returns an idea about weaknesses and strengths of the
networks.
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4.4 Test pipeline
The test pipeline plans to:

1. test the SSD-Lite on the selection OpenImage V4 Test set, to obtain the accuracy in the
detection of each object.

2. test the SSD-Lite on the Office Test set, to obtain the accuracy in the detection of each
object.

3. test the SSD-Lite on the selection Video Office Testset, to obtain a visual feedback of how
the model is working.

4. test the Tiny-DSOD on the selection OpenImage V4 Test set, to obtain the accuracy in
the detection of each object.

5. test the Tiny-DSOD on the Office Test set, to obtain the accuracy in the detection of
each object.

6. test the Tiny-DSOD on the selection Video Office Testset, to obtain a visual feedback of
how the model is working.

These tests provide a good support to understand well what is the best algorithm for our
project. We highlight again that we are looking for an algorithm with the following features:

• it have to work in real-time performances (≥ 20FPS);

• it have to be robust to anomalous movements of the user and to blurred frames;

• it have to avoid as many detection errors as possible: it is better to found zero objects
instead a wrong one.

4.5 Results
As it is possible to see from the results on Tab. 4.2, the training of these two networks bring
to low accuracy performance. But before give a final judgement, we will report why they reach
these values, deeply analyzing each network and the results for each object.

The mean accuracy reveal that the best models with this training setting is SSD-Lite. Indeed,
it reaches an higher mean accuracy (16.2 mAP) and also in the single objects, it quite always has
better results. The only anomalous case is the Monitor detection, where SSD-Lite has a really
bad accuracy. To well understand the value reached, we first remember (as reported in Tab. 4.3)
that the accuracy of these algorithms in the COCO dataset is respectively: 22.1 mAP for SSD-
Lite and 23.2 mAP for Tiny-DSOD. COCO dataset have a big amount of images (330K images)
and a high number of object categories (80 object categories). Another possible comparison is
the Pascal VOC 2012 dataset, where both the models reach really good results: SSD-Lite 68.0
mAP and Tiny-DSOD 72.1 mAP, and where the number of images is lower then COCO (11530
images) and the number of object categories is only 20. This is to say that really different results
can be obtained using different training and test sets.

It is clear that Tiny-DSOD doesn't learn a lot from this training. Its mean accuracy is very
low and the accuracy per object reveals that it learns to recognize really few of them: more then
half have less then 10 AP accuracy, and five of them have less then 1 AP accuracy. Analysing
some of the predictions (Fig. 4.7b) and 4.7d), it is possible to see, that Tiny-DSOD produce
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Object
AP AP

SSD-Lite Tiny-DSOD
OpenImage Office OpenImage Office

Backpack 15.5 0.0 3.2 0.0
Book 9.1 0.0 0.6 0.0

Bookcase 31.4 43.7 14.9 22.6
Chair 1.0 0.0 0.1 0.0
Desk 11.1 3.1 9.8 5.1
Door 17.0 18.2 9.7 8.4

Keyboard 18.5 0.2 3.3 0.0
Lamp 12.9 0 4.6 0.0
Laptop 22.4 19.6 10.0 11.1

Light-switch 0.0 0.0 0.0 0.0
Monitor 2.4 11.4 5.1 5.6
Mouse 15.3 0.0 4.5 0.0
Mug 28.8 0.0 5.4 0.0
Plant 24.3 60.3 16.4 32.7

Telephone 0.0 0.0 0.0 0.0
Whiteboard 64.7 7.3 19.3 3.9
Window 0.3 0.0 0.8 0.0
MEAN 16.2 9.6 6.3 5.3

Table 4.2: Results in terms of accuracy of SSD-Lite and Tiny-DSOD, both on OpenImage and
Office test set.

Method mAP FPS Params FLOPSCOCO OID Office
SSD-Lite 22.1 16.2 9.6 ∼ 20 4.30M 0.8B

Tiny-DSOD 23.2 6.3 5.3 ∼ 20 0.95M 1.12B

Table 4.3: Results in tearms of mean accuracy (mAP), speed (FPS), and weight (Params and
FLOPS) of SSd-Lite and Tiny-DSOD.

many wrong bounding boxes with high confidence. This prove the inconsistency of the results.
We later confirm these performances also from the video analysis. Instead, SSD-Lite reaches a
low, but acceptable, mean accuracy value. It is not able to recognize all the objects, but as it is
possible to see from the predictions (Fig. 4.7a and 4.7c), it produces only few correct detection
with a nice confidence. Obviously, it also produces sometimes wrong predictions. Also SSD-Lite
has four objects with accuracy less then 1 AP, but more then half of the objects have an accuracy
greater then 10 AP. A good threshold of confidence for SSD-Lite is of 70%. Using this threshold
the majority of the wrong predictions are discarded and the majority of the right ones are taken.
The main reasons, because of the low accuracy in the OpenImage dataset, are reported in the
following list, for both SSD-Lite and Tiny-DSOD:

• the number of images for the training of some object categories are not enough. They are
the case of the Light-switch, the Mouse and the Telephone categories (accuracy less then
1 AP), where the low number of training images (Tab. 4.1) doesn't permit to learn the
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objects representations.

• The complexity of some objects, like the Chair, bring to the impossibility to learn their rep-
resentations. Too many different image examples bring to an inconsistency in the learning
of the object.

• The OpenImage dataset contains many complex scenes, that sometimes can bring to a
difficult detection or to a difficult learn of the object representation. It is the case of little
size objects (in the images where they cover a little area in respect to the total one of the
image) or of the Book that can be found in different positions and many times grouped
together.

• The total number of training images is not enough for the complexity of the networks. A
complex network need more examples and a longer training to perform well. The high
number of hyper-parameters to train asks for a huge amount of example images.

• The accuracy measures the correctness of the predictions, and also the precision of the
location. So, a low accuracy is not necessarily an indicator of the impossibility to detect a
certain object. Suppose that the model detects an object, but with a medium confidence
(50% confidence). In this case it is important to look also at the accuracy of the wrong
predictions. If they have all big gap with the correct predictions, adjusting the threshold,
it is possible to discard them without discard the correct ones.

Tiny-DSOD is more affected from these weaknesses. As shown in Tab. 4.4 its number of pa-
rameters (Params) is very low and, because of that, it has less learning ability then SSD-Lite
(that have four times its parameters). This is probably the main reason of the gap between the
two models. Tiny-DSOD needs a longer training and with a major number of image examples.
Instead, looking at the Office Test set results, we can see they are worse then the OpenImage
ones. Apart the previously said motifs, in this case there are some new elements to highlight:

• the Office test set comes from a different distribution compared to the training set. Ob-
viously, this fact decreases the accuracy, because it is more probable that the objects, the
algorithms have to predict, are really different from the ones it learns from.

• There is a group of objects (as Mouse, Light-switch, and keyboard), that are always of
little size in the test images. That because these objects never be in foreground and as
close as needed to the camera.

• The dataset has only one labeled object per image. This mean that sometimes, the models
predict a correct object that is not labeled and it doesn't count as a positive match.

• In many scenes, objects are truncated or occluded from other objects.

Both SSD-Lite and Tiy-DSOD reach a speed (∼ 20FPS) close to the real-time one. As it is
possible to see from the Video Test, it is a sufficient speed to detect objects, if the user is not
moving too fast. In the case of SSD-Lite, the results in the nine videos are:

• slow speed videos, the model is able to recognize with a good confidence few objects;

• medium and high speed videos, the model has difficulties to detect most of the objects,
sometimes produce wrong predictions and sometimes right ones;

• little office videos, the model begin to recognize, from the door point of view, only some
few big objects;
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• medium and big office videos, the model need to enter in the room to move close to
the objects to detect them.

From the videos it is possible to say that, SSD-Lite is able to detect: Desk, Door, Laptop,
and Whiteboard, if the user movements are slow and the objects are close enough. Sometime
it recognizes also: Bookcase, Keyboard, Monitor, and Window objects. Instead, Tiny-DSOD
produces too many wrong predictions with high confidence and this make useless the Video test.

(a) (b)

(c) (d)

Figure 4.7: Prediction examples of SSD-Lite (a)(c) and Tiny-DSOD (b)(d) on OpenImage test
set (a)(b) and Office test set (c)(d). A confidence threshold of 50% is used in these predictions.

To overcome some of these weaknesses (mainly the low amount of training images), we pro-
posed another experiments reported in the following section.
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4.5.1 SSD-Lite (fine tune)

We may think that an higher amount of object categories could affect the models, bringing to
worse results in term of accuracy. That because the model has to learn the representations of
more objects. This is true, but not at all. If we compare the detection of a model able to detect
only one category with a model able to detect ten different category, the previous statement is
right. The real difference between them is that the two models will have networks of different
complexity. To detect only one object we can use a simple network, instead, to detect ten
different objects we have to use a more complex model. The algorithms we are analyzing has the
purpose to detect a indefinite number of object categories, so they are really complex networks.
That why an high number of categories doesn't perform worse in respect to a network with less
object categories. From this idea and because both the previous models show the need of more
training images, we decide to use the Fine Tuning technique. This technique is used to perform
a more powerful training, its pipeline is:

1. first the network is trained on a big training set, like the Imagenet dataset, whit all the
object categories and all the images.

2. The produced weights are used again as initial value for a new training. This new training
is made only with the object categories we need and we can use the dataset we prefer.

3. New final weights are produced and they are able to detect the selected objects.

Thanks to this technique, it is possible to use in the second training a number of images lower
then the needed for a normal one (the number depends on the network and on the number of
categories). Many famous models provide the so called Pre-trained Weights of their networks,
that are trained on famous datasets like: COCO, Pascal VOC, or Imagenet. So, it is easy and
faster to re-train the network for the object categories needed. Furthermore, this technique
permits to deeply train all the layers of the network. Indeed, as succeeded in our case, many
times there are not enough images of the selected objects to train the network from scratch. The
fine tuning permits to train all the network layers (before the classification and localization ones)
with a big amount of images and later train the last layers (the classification and localization
layers) with the images containing only the specific object categories.

We decided to use the fine training also for our networks. Unfortunately the pre-trained
weights of Tiny-DSOD are not provided by the authors, so we are not able to perform this
experiment for this network. Instead, it is possible to find the pre-trained weights of SSD-Lite
with Mobilenet V2 on [56]. Using the same network setting and taking the weights pre-trained
on Imagenet dataset, we perform the training on the same selection of images from OpenImage
dataset. The obtained results follow in Tab. 4.4.

As shown in the sixth column of Tab. 4.4 the mean accuracy on OpenImage Test set is
doubled. It is not possible to say the same for the mean accuracy of the Office Test set, but
the improvements are really evident from the Video test. The new model starts to detect more
objects with a good confidence. The predictions are now more frequently correct and with less
mistakes (Fig. 4.8a and 4.8b). It is not able to detect all the objects in all the frames, but the
improvements are visible. There are again some wrong predictions (few ones) and many missed
ones. The model works well when the objects are big in the frame (close to the camera or big
objects). Also in the video at medium speed, it detects big and close objects, while in the fast
speed videos, it has again difficulties. Again a good confidence threshold results to be 70%.

Obviously, not all the weaknesses of the previous training are now resolved. Indeed, from the
Office test set results, it is possible to see that the different distribution of the test images already
affects the test, not permitting to reach an higher mean accuracy. In some cases it also perform
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Object
SSD-Lite Tiny-DSOD SSD-Lite (ft)

AP AP AP
OpenImage Office OpenImage Office OpenImage Office

Backpack 15.5 0.0 3.2 0.0 43.3 14.8
Book 9.1 0.0 0.6 0.0 0.6 0.0

Bookcase 31.4 43.7 14.9 22.6 39.4 9.9
Chair 1.0 0.0 0.1 0.0 1.2 0.0
Desk 11.1 3.1 9.8 5.1 27.9 1.7
Door 17.0 18.2 9.7 8.4 25.0 3.7

Keyboard 18.5 0.2 3.3 0.0 36.5 12.3
Lamp 12.9 0 4.6 0.0 22.82 0.0
Laptop 22.4 19.6 10.0 11.1 43.8 26.1

Light-switch 0.0 0.0 0.0 7.0 77.7 0.0
Monitor 2.4 11.4 5.1 5.6 35.6 4.9
Mouse 15.3 0.0 4.5 0.0 39.7 0.0
Mug 28.8 0.0 5.4 0.0 59.9 0.0
Plant 24.3 60.3 16.4 32.7 24.0 33.3

Telephone 0.0 0.0 0.0 0.0 11.4 0.0
Whiteboard 64.7 7.3 19.3 3.9 68.8 41.1
Window 0.3 0.0 0.8 0.0 2.5 22.2
MEAN 16.2 9.6 6.3 5.3 32.9 9.7

Table 4.4: Results in terms of accuracy of SSD-Lite, Tiny-DSOD, and SSD-Lite fine tuned, each
one on OpenImage and Office test set.

(a) (b)

Figure 4.8: Prediction examples of SSD-Lite fine tuned on OpenImage test set (a) and Office
test set (b). A confidence threshold of 50% is used in these predictions.

worse then the previous model (Bookcase and Door). It remains also the problem related to little
objects and to objects with a low number of images in the Training set. Nonetheless, the network
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starts to recognize objects that previously are not detected and in general the predictions are
now more homogeneous between a wide range of objects.

In Tab. 4.5 is shown the final performances in terms of accuracy, weight and speed of the
three models.

Method mAP FPS Params FLOPSOID Office
SSD-Lite 16.2 9.6 ∼ 20 4.30M 0.8B

Tiny-DSOD 6.3 5.3 ∼ 20 0.95M 1.12B
SSD-Lite (fine tuned) 32.9 9.7 ∼ 20 4.30M 0.8B

Table 4.5: Results in tearms of mean accuracy (mAP), speed (FPS), and weight (Params and
FLOPS) of SSd-Lite fine tuned and Tiny-DSOD.
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Conclusions

We have seen in chapter 1 the importance of Object Detection systems in the modern scenario,
where they have reached good performances and provide solutions for many issues. They are
fundamental and currently used in many research fields and in many work environments. New
applications request for light neural networks, that can work on low power devices such as
Smartphones and different type of wearables. One example is the Activis Project, that asks for
a system able to help visually impaired people to navigate in indoor environments. For this
purpose it is fundamental the use of an object detector able to identify the surrounding space.
In chapter 3 we propose two possible models able to work on mobile devices and that promise
good accuracy:

• SSD-Lite that use Mobilenet V2 [66] as backbone, famous light classification network that
is the state-of-the-art for real-time classification on low power devices;

• Tiny-DSOD a novelty proposal by [43] based on DSOD framework, that promises to perform
better then SSD-Lite in terms of accuracy and weight.

In chapter 4 we present a new dataset to test the proposed models, called Office dataset. It is
made of 459 pictures, captured from a real office room at University of Lincoln, UK. It contains
17 object categories, where each item is captured from different points of view. This dataset
provides useful test set for our project and for future researchers that would like to approach
it. For the training process we use images coming from the OpenImage V4 dataset [38], that
provides a big amount of images and of object categories useful to train the two networks. In
addition we created a Video Test set for the same purpose. The video test set does not provide a
scientific measure of accuracy, but only a visual feedback, useful to understand how the network
is working and to find its weaknesses. The setup chosen includes the use of Tensorflow Lite, Keras
and Python 3.6 as code language. The results are computed testing the networks, with an Asus
Zenfone AR smartphone, on the Office dataset and on the OpenImage Test set (created from a
selection of images of OpenImage V4 dataset). The results highlight the better performances of
the SSD-Lite network, but also the lack of images for the training process. Indeed, the complexity
of the network doesn't permit to generate good weights, with a low amount of training images,
and consequently it doesn't learn well the objects representation. For this reason we train the
SSD-Lite with the fine-tuning technique. We use pre-trained weights on Imagenet dataset and we
retrain the network using the object categories images. This solution results to be the best one,
obtaining an accuracy on the OpenImage Test set of 32.9 mAP and an accuracy on the Office Test
set of 9.7 mAP. The network reaches a speed of ∼20 FPS, that is enough to perform a real-time
detection. The SSD-Lite has many weaknesses, the major given by the training process. It does

57
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not learn to detect all the 17 objects and sometimes provides wrong predictions. Nonetheless,
this model constitutes the basis for future updates, new experiments, and new model proposals,
that can increase the performances and bring to better solutions in this field.

The SSD-Lite network, produced in this thesis work, is currently used in the development of
the Activis project followed by Ing. Jaycee Lock and Professor Nicola Bellotto. This collaboration
between the University of Padua, IT, and the University of Lincoln UK, has produces a paper [33]
accepted and published at the ICIAP 2019 conference.
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