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Summary

Despite the technological advance, which in the last ten years results in important

enhancements of the precision and safety of the devices that make possible the

realization of a wearable Artificial Pancreas (AP) for the treatment of type 1 diabetes

mellitus, occasional transient failures of the continuous glucose monitoring systems

- CGMs, or of the continuous subcutaneous insulin infusion systems - CSIIs, still

occur during the whole day and these can lead to severe problems and risks for the

safety of the patients.

In this thesis, it is developed a Fault Detection Method (FDM) like in Facchinetti

et.al [1], where the authors advance a strategy to detect various failures of the CGMs

and of the CSIIs, and to alarm when they occur.

The purpose is to extend the FDM from night to night and day, detecting both the

technological failures, and the possible human errors that can easily occur during

the AP utilization.

Every considered fault was simulated in many possible scenarios, so with different

amplitudes, with different durations, in different point of the day and of the night

and also during the events that are clearly critical for the trend of the glycemia, like

the meals.

Morover, an accurate statistical analysis of the results was performed.
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Chapter 1

Diabetes and DiAs Project

1.1 What diabetes is?

Diabetes is a chronic metabolic disorder in which the body cannot metabolize fats,

proteins and carbohydrates because of defects in insulin secretion. It is a pathology

that involves glucose regulation and can be divided in two main types: type 1, or

insulin dependent, and type 2 or insulin resistant.

Nowadays, more than 370 million people in the world have diabetes and it’s esti-

mated that the number of people with this disorder will increase to 438 million by

2030, [diabetescare.net]

1.1.1 The Glycemic Control

An average meal requires approximately 4 hours for complete absorption and gen-

erally we follow a three-meal-a-day pattern so that alternate periods of plenty and

fasting, [2]. To these two periods correspond: an absorptive state during which

ingested nutrients enter the blood from gastrointestinal tract and a post-absorptive

state during which the body’s own stores must supply energy. The latter, that is

needed by the cells to maintain their biological order which keeps them alive, comes

from the chemical bonds in food molecules that are broken down from the body into

fats, proteins and carbohydrates.

Glucose is one of the most important carbohydrates in nature and body’s major

energy source during the absorptive state. It’s a monosaccharide, C6H12O6, that

is the fuel of cellular respiration: much of the absorbed glucose enters cells and is

1
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CHAPTER 1. DIABETES AND DIAS PROJECT

catabolized to CO2 and H2O, providing energy for ATP formation. Furthermore

another large fraction of it, enters into the liver cells where it occurs a net uptake of

this carbohydrate that is stored as glycogen or transformed to α-glycerol phosphate

and fatty acids to synthesize triglycerides, Figure 1.1.

As this period ends, synthesis of glycogen, fat, and protein ceases and catabolism1

of all these substances begins to occur. Therefore becomes of fundamental impor-

tance that plasma glucose concentration is maintained into a normal range, about

100 mg/dL, because the brain utilizes only glucose as energy source and if the latter

decreases too much several alterations of neural activity can occur.

The events that mainly maintain the right concentration during this phase are the

gluconeogenesis, which consists of all the reactions that provide the formation of

new glucose and the cellular utilization of fat instead of glucose to obtain energy.

The gluconeogenesis, results in the generation of glucose from his non - carbohy-

drate precursors such as pyruvate, lactate, glycerol and amino acids. The firsts are

involved in a process called glycogenolysis that provides an amount of glucose which

can supply the body’s needs for several hours and other time comes from the lipolysis

that results in the catabolism of triglycerides in adipose tissue yielding glycerol and

fatty acids. These acids that circulate into the blood are taken up and metabolized

by almost all tissues, excluding the nervous system. In particular the liver produces

from these, 3 different biochemicals collectively called ketones or ketone bodies.

The ketones are released into the blood and provide an important energy source

during prolonged fasting.

These metabolic pathways are controlled by some endocrine factors, more precisely

by two pancreatic hormones. The pancreas is an organ placed behind the stomach

and that extends itself laterally from duodenum as shown in Figure 1.1. It mainly

has exocrine function which consists in secrete digestive enzymes classified according

to their target: lipases act on lipids, amylases break starches into sugars, proteases

operate on proteins.

Furthermore the 1% of pancreatic cells, called isles of Langherans, has endocrine

function and directly secretes three hormones into the blood: insulin, secreted by

β−cells, which removes glucose from blood and promotes his entrance into the cells,

glucagon, secreted by α − cells, which releases glucose from depositis of glycogen

1Set of degradative chemical reactions that breaks down complex molecules into smaller units
to release energy.
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1.1. WHAT DIABETES IS?

into the blood, somatostatin, secreted by δ − cells, which inhibits the secretion of

both insulin and glucagon.

Figure 1.1: Plasma Glucose and Insulin Secretion.
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Insulin is the most important controller of organic metabolism [2]. As shown in

Figure 1.1, it induces its effects by binding to specific receptors on the plasma

membranes of its target cells and so triggers signal transduction pathways that

influence the plasma membrane transport proteins of the target cell.

If plasma glucose concentration increases, the β − cells are activated and start

the secretion of insulin which induces cytoplasmic vesicles that contain a glucose

transporter, called GLUT − • depending by the cell target, merge themselves with

the plasma membrane and this results in a greater rate of glucose movement from

the extracellular fluid into the cells.

Stimulation and activation of pancreatic β−cells cells depends on changes in plasma

glucose concentration.

1.1.2 Type I Diabetes

Normally the body can balance the amount of insulin and glucose and thus regulate

the levels of the latter that typically are: fasting (before eating) (70−99)mg/dl and

140mg/dl or less two hours after a meal.

The complex regulation of blood glucose is not successful in diabetes, in particular

in the Type 1 that is an autoimmune condition, due to the almost total destruction

of pancreatic β − cells by T − cells.
The goal of diabetes treatment is to normalize the blood glucose levels with diet, ex-

ercise and medication. Generally the diabetologists give to all the patients, different

and specific blood sugar targets based on their particular medical situation.

Hyperglycemia

Hyperglycemia is defined as a condition in which an excessive amount of glucose

circulates in the blood plasma.

In people with diabetes, there are two different types:

1. Fasting hyperglycemia, which is a phenomenon that may be due to dysregula-

tion of some hormonal patterns resulting in an increase, about 130 mg/dl,

of hepatic glucose;

2. Postprandial hyperglycemia, which arrives to high values of blood glucose

(more than 180 mg/dl) and occurs after the meal;

4



1.2. THE ARTIFICIAL PANCREAS

Because of insulin deficiency, patients with T1DM often have elevated glucose con-

centrations in their blood.

As it has been said previously this important increase occurs because glucose fails

to enter into the cells, and at the same time the liver continuously makes glucose

by glycogenolysis and gluconeogenesis. The result of the insulin deficiency is that

lipolysis and ketone formation aren’t stopped, so the fatty acids increase and many

of them are then converted by the liver into ketones, which are released into the

blood. If the ketons in the blood are above 0.6 mmol/L, it occurs the so-called

ketoacidosis and appropriate interventions must be taken.

Hypoglycemia

Hypoglycemia is defined as an abnormally low plasma glucose concentration. These

very low values are due to some relative uncommon disorders such as a defect in one

or more glucose regulatory control or an excess of insulin.

This condition can carry on a different amount of symptoms that can start from

trembling, high heart rate, headache, state of confusion and more serious brain

effects, including convulsions and coma.

1.2 The Artificial Pancreas

The technological improvements and the ongoing studies on insulin therapy and

glucose monitoring have not yet led to a final therapy solution to the challenge

related to the loss of insulin secretion [3]. The result is the ever present risk of

long-term hyperglycaemia and not so uncommon hypoglycaemic events. A surgical

possibility for the re-establishing, close to physiological, of the blood glucose control

is the restoration of insulin secretion by pancreas or the islet transplantation: both

of these solutions are not without risks and of the outcome still uncertain.

An alternative solution was proposed about 30 years ago and took the name of

Artificial Pancreas (AP). This system for closed-loop control of blood glucose

in diabetic patients combines a glucose sensor, a pump of insulin and a control

algorithm which decides how to adjust both the intravenous infusions of glucose and

of insulin.

During the past decade a lot of enhancement were made, improvements involving

5
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the technology, with the growing miniaturization of the system components and the

robustness of the communication signals (Wireless - Bluetooth) among the different

devices and involving the algorithm in which it’s based the entire system. However,

medical supervision remains necessary.

One of the final purposes of the project is to help the patients and the medical -

engineering group that work on the Artificial Pancreas, warning with appropriate

alarms in case that some failures happen during the utilization, as it will be better

specified in the following; this thesis continue what Facchinetti et al. [1] started last

year, analyzing these problems with simulated data.

As mentioned above the Artificial Pancreas is composed by 3 essential elements

which are briefly described below.

1.2.1 The DiAs

In the early closed-loop control systems, the laptops were essential to run the control

algorithms. In addition the laptops were wired to the sensor receiver and insulin

pump [4]. Therefore, the utilization of this system was limited necessarily to the

hospital. During the last years, the increase in computing power of smaller devices

made possible, first the idea, then the realization, of a wearable AP. This step

was of great relevance for the entire project and right now the control algorithms

are implemented in JAVA (.apk package) by the Pavia and Virginia engineers, and

installed on a Galaxy Nexus Device. Here the Diabetes Assistant (DiAs) was born.

The Android operating system, running on these devices, was modified to satisfy

the demands of medical use and was approved by the FDA. Thus, the graphical user

interface was designed to be clear and intuitive for the patient which will be educated

soon to use it at home, in the final phase of the clinical trials called, AP@Home.

Note that the DiAs system has been used in 3 clinical trials finalized to test the

proper functioning of the state-of-art AP, to which i take part during the period of

the thesis. In Figure 1.2 a screen of the DiAs User Interface is shown.

More details on DiAs initialization, functioning and seafty protocols are reported in

Appendix A.
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1.2. THE ARTIFICIAL PANCREAS

Figure 1.2: DiAs Stopped Mode.

1.2.2 The Continuous Glucose Monitoring - CGM

The Continuous Glucose Monitoring, CGM, system is an electronic device that

measure physiological glucose levels. In Figure 1.3 it can be seen the Dexcom R©G4,

the device that was used in all the clinical trials cited before. As all others CGMs

produced until now, it’s made of a glucose sensor needle-type and based on the

glucose-oxidase technology, with which it measures glucose levels of the interstitial

fluid. It has a bluetooth transmitter which communicates the glucose readings both

with the Dexcom reciver and mostly with the DiAs.

Figure 1.3: CGM sensor and reciver, Dexcom G4.

Only in the last years the CGM systems allowed their reliable use in the project AP.

For the success of the latter, there are in effect a lot of important factors that must

be considered about the utilization of these devices.

7
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As it can easily be imagined, is of fundamental relevance to obtain a precise estimate

of blood glucose level by the sensor, being one of the most important inputs of the

control algorithm. But this estimation is done with the glucose in the interstitial fluid

while the metabolic control is based on plasma glucose concentration. Thus, this

physiological difference must be considered when applying an AP. The most recent

of them, such as Dexcom G4, achieve about 10% mean absolute relative difference

between the two types of glucose, over the entire physiological range [4]. With the

currently available CGM systems, glucose sensing can be considered reliable on 5-7

day periods.

1.2.3 The continuous subcutaneous insulin infusion - CSII

The other key element to which the DiAs must be connected is what is commonly

called insulin pump.

This device is, more specifically, a Continuous Subcutaneous Insulin Infusion sys-

tem, CSII, which injects a sort of short acting insulin, delivered via a subcutaneous

needle and is connected to a reservoir of insulin by a catheter and a command mod-

ule.

During the clinical trials, the DiAs was paired with two different pumps, see Figure

1.4, the t:slim by Tandem [t:slim]. the ACCU-CHEK Combo by ROCHE [ACCU-

CHEK Combo].

(a) ACCU-CHEK Combo (b) Tandem

Figure 1.4: Continuous Subcutaneous Insulin Infusion.
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1.3. AIM OF THE THESIS

1.3 Aim of the thesis

The Artificial Pancreas is a complex system composed by different devices, which

can be occasionally affected by malfunctioning. For instance, the application of a

pressure on the CGM sensor produces on the CGM output a significant underesti-

mation of the glucose concentration, as well as the occlusion of the catheter of the

CSII pump produces an increase of the glucose concentration. Also human errors

are possible. For example, the diabetic patient using the AP system can accidentally

insert wrong information about the quantity of the meal that he/she is going to eat.

All these failures are critical for the calculation of the optimal insulin infusion by

the AP controller and, in some cases, dangerous for the safety of the patient.

The aim of this thesis is the development of a failure detection method able to detect

and classify such failures and generate failure alerts in real-time, and to test it in

an in-silico environment able to reproduce most of the critical failures that could

happen during in-vivo experiments.

Chapter 2 presents the description of the CGM and CSII failures and some of the

most critical human errors that can happen during the utilization of the Artificial

Pancreas.

Chapter 3 reports a briefly overview of the Kalman Filter, the “instrument” used

to implement the Failure Detection Method, and the way in which it is used for the

purpose of this thesis.

Chapter 4 illustrates the Fault Detection Method, presenting the model employed

for the detection, the need to use personalized models to achieve better performance

and the way in which the model is transformed into a Kalman predictor to generate

on-line retrospective predictions coupled with different alarm strategies.

In Chapter 5, the data-set used for the simulations and the method of analysis are

presented.

Finally in Chapter 6 it is shows the results obtained for each kind of simulated fault

with the corresponding statistical analysis.
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Chapter 2

An introduction to failures in AP

system

The Artificial Pancreas is a system composed by different devices (smartphone,

CGMs and CSIIs) and that expected an iterative utilization by the user (insertion

of information about the meals and on cases of hypo/hyper-treatment).

Despite the therapeutic advantages of using CSII and CGMs, their use has been

associated with different risks too. These could be due to some technical malfunc-

tioning of the devices, or to some movements of the patient which accidentally cause

an obstruction of the pump/sensor components or even to a pressure of the zone in

which the devices are operating.

All these situations can result in a more or less strange and dangerous behaviors of

the glycemic control.

Moreover, also the interventions of the users can lead to some errors that are then

fatal for the proper DiAs functioning.

In this chapter, some failures of the CGM system and of the CSII system are pre-

sented. Futhermore, it is introduced also one of the most common human error,

that is the wrong meal announcement.

The main difficulty of the identification of these faults, is that these may occur for

different reasons but appear for several time in the same mode on the CGM output

track, or they can verify themselves also some hours before that it can be possible

to see their effect on the CGM signal.

It’s possible to distinguish three important class of failures, (every detail on the

realization of the faults, will be described in the Chapter 5), grouping several cases:

11



CHAPTER 2. AN INTRODUCTION TO FAILURES IN AP SYSTEM

2.1 CGM sensor failures

The first class concerns the faults that occur on the CGM sensor. They are mainly

related to biomechanic issues of the sensor-tissue interface [5], which create a loss of

sensitivity within the sensor. The effect of such a loss is visible on the CGM time

series as an understimation of the current blood glucose concentration.

These events are common especially at nighttime, when the patient while sleeping

could apply a pressure on the sensor by rolling on it but also during the normal

daily activities. When this happens, the glucose diffusion in the region of sensor

application is altered causing a modification of the sensor sensitivity; moreover the

corresponding compression artifacts distort the signal acquired.

This fault can last for a very short time so that is lost only one sample and in this

case it is called spike. On the other hand it can last for quite some time so that is

lost more than one sample and the fault is called loss. Both belong to the class of

the compression artifacts and in Figure 2.1 and 2.2 can be seen two realizations of

example:
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(a) A CGM spike results at t = 1220.

Figure 2.1: It can be seen as the value of the spike is quite lower than the CGM
values nearby.
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(a) A CGM loss of sensitivity starts at t = 775.

Figure 2.2: In the plot a loss of sensitivity results in 12 samples that are clearly
underestimated by the sensor.

2.2 Meal and Meal-Bolus failures

The second class is about the errors of communications that could happen between

the DiAs and the other devices. In the specific, it was considered the:

• wrong communication of the meal to the DiAs by the users (human error);

• insulin meal bolus delivered by the pump but not communicated to the DiAs

(technological error);

Considering the first case. Up to this moment, patients use subcutaneous pumps for

deliver to themselves the insulin bolus before a meal. To calculate the bolus amount

they have to estimate the carbohydrates of their meal, CHO, and divide it for the

carbohydrates-to-insulin ratio, CR = CHO
I

, which is a fundamental patient-specific

value, that can vary from meal to meal and that is provided by the diabetologist.

Currently, the DiAs requires these two informations; the carbohydrates-to-insulin

ratios are saved into the “Insulin Profiles” section that must be compiled by the

bio-engineer or the doctor before to start any session, so this parameter can be

considered not affected by any error. Instead errors could happen in the meal an-

nouncement procedure, see Chapter 1 for details, during which the patient ha to

insert manually the CHO amount in the DiAs. Although this procedure is performed

13



CHAPTER 2. AN INTRODUCTION TO FAILURES IN AP SYSTEM

typically under the supervision of the work team, some problems or unexpected er-

rors could occur. For example an entry error due to different technical reasons, such

as a little confidence with the touch screen; a miscalculation or just a too much

hurry while inserting the data; the meal announcement is done correctly, but for

some other external reasons, the patient can’t eat his meal anymore (as in the case

in which falls the dish to the waiter or the patient feels unwell). In all these un-

fortunate, but possible, events the Artifical Pancreas will operate with wrong data

streams and so the subsequent release of insulin decided, would be either too high

or too low.

The Meal - Bolus Failure is a fault involving the insulin pump.

In some cases, again for different reasons, it could happen that after the meal an-

nouncement the system does not detect the arrival of the entire or partial insulin

bolus. In this scenario the patient received the right quantity of insulin, the one cal-

culated after the meal announcement and correctly delivered, but the DiAs doesn’t

know this and so it probably wrongly increases the basal, believing that not enough

insulin was given to the patient. This consequence is very dangerous beacause could

leads to a very low level of blood sugar and so to a relative quickly hypoglicemia for

the patient.

In Figure 2.3 can be seen two faulty events, the first one, (a), about the meal and

the second one, (b), about the meal-bolus:

14
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(a) A insulin bolus due to the meal at t = 2100 min which undergoes a decrease of
75%
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(b) A meal at t = 1320 min which undergoes a decrease of 50%

Figure 2.3: In the (a) and (b) plots the blue lines represent the insulin while the red
lines the meals. The two decreases are evident in both the cases.

2.3 CSII pump failures

The last class of fault relates to the pump failures. This is the most challenging

considered scenario, beacuse of the delay that occurs between the event and the effect

that it produces on the glucose concentration (due to delays in insulin absorption

and action). Here it is considered the case of absence of basal insulin delivery by the

15



CHAPTER 2. AN INTRODUCTION TO FAILURES IN AP SYSTEM

pump. In AP system, the insulin pump is controlled wireless by the Galaxy Nexus

device in which runs the control algorithm. A situation that could happen during

various activities of the patients throughout the day or also the night, is that the

connectivity between these two devices is lost and consecutively the insulin delivery

should be interrupted or reduced. This is a very challenging scenario, because the

effects of this reduction can be observed on the glucose concentration only tens of

minutes later the fault, the time it takes to wait the delay due to insulin absorption

and to the insulin action.

The basal failure can be critical both for the correct functioning of entire system,

which if it doesn’t know how much is the real amount of insulin delivery it wouldn’t

make the right estimate, and for the safety of the patient that can be a risk of

hyperglycemia and of ketoacidosis due to the lack of basal insulin for a long time.

Another unlucky possibility, is the one that can be seen in Figure 5.8. The basal

insulin is higher than what is expected and this situation can verify if there are

some technological issues, especially during the testing of new insulin pump that

can require different settings from others to work in the right way, or if the patient

informations that were inserted to the DiAs at the starting of the session were wrong.

In the following Figure 2.4 is shown how it’s difficult to see, without any help, the

decrease of the basal insulin that results for 5 hours, starting from t = 1520 min.
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Figure 2.4: The basal fault starts at t = 1520 and its duration is 5 hours. It was
decreased the basal value by 50%.
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Chapter 3

The Kalman Filter

The Kalman Filter is an optimal recursive data processing algorithm.

It is fundamentally a set of mathematical equations that are used to implement the

so called Kalman Predictor, an algorithm that processes all available measurements

at time t to perdict the t+1 value of the system output, taking into account the

noises, the statistical description of the model and the knowledge of the system and

of his dynamic.

It is optimal in the sense that among the linear estimators, it minimizes the variance

of the prediction error.

3.1 The Discrete Kalman Filter

Before to start any considerations on the filter and its implementation, it is im-

portant to discuss some property of the glucose-insulin system allows to effectively

applicability the Kalman Filter algorithm:

1. The glucose-insulin system, is not-linear. However, it is possible to obtain an

approximate linear description of it, sufficiently accurate for the purposes, as

will be demonstrated in the theis.

2. Such a model can accounts for some aleatory, with the inclusion of two terms,

vt for the model and wt for the measurement, corresponding to two white

noises.
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CHAPTER 3. THE KALMAN FILTER

3. The considered white noises, vt and wt, have a probability density fairly sym-

metrical and are unimodals.

The Kalman Filter requires a state-space model for describing the signal dynamic,

that combine deterministic-stochastic system. Considering now:{
xt+1 = Axt +But + vt with Cov(vt) = Q

yt = Cxt +Dut + wt with Cov(wt) = R
(3.1)

where xt+1 is the state vector at time t+1, yt is the estimate at time t, ut is the input

vector, vt ∼ N(0, Q) is the model noise which represents the disturbances entering

the system, where Q is its covariance matrix and wt ∼ N(0, R) is the measurement

noise which represents the uncertainty in the system observations, where R is its

covariance matrix. It’s noteworthy that the model is completely specified by the

matrices A,B,C,D,Q,R, the input and output vectors are measured while the noises

are unmeasurable but are assumed white and zero mean.

Futhermore, Q � 0 and R � 0. The two covariance martices realted to the noises

are definite positive, so it is guaranteed the invertibility of the matrix and the cor-

rectness of the algorithm.

In many concrete problems the model and measurement noises are often uncorrelated

but it may happen that they are, even minimally [6]. In this case their covariance

matrix is the following:

E

{[
vt

wt

] [
vT
s wT

s

]}
=

[
Q S

ST R

]
δ(t− s)

Now the noise can be rewritten introducing:

ṽt = vt − Ê[vt|wt] = vt − SR−1wt

where Ê[.|.] is a minimum variance linear estimator.

Thus the variance of this noise ṽt is:

Q̄ = Q− SR−1ST
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3.2. THE 2 STEPS ALGORITHM

and reconsidering the system model it can be written:

wt = yt − Cxt −Dut

Replacing vt: {
xt+1 = Fxt + SR−1yt + B̄ut + ṽt

yt = Cxt +Dut + wt

(3.2)

with:

F = A− SR−1C B̄ = B − SR−1D

It should be noted first that now the noises, wt and ṽt are no longer correlated thanks

to a new term that appears in the state equation: SR−1yt. This is a feedback from

the output to the state and is called output injection. Second, if the S matrix is null

it is obtained the previous system where the noises are already uncorrelated.

3.2 The 2 Steps Algorithm

The iterative algorithm which leads to the evaluation of the output consists of 2

steps:

1. Two equations of Predictions that predict the future state x̂t+1|t and the error

covariance matrix Pt+1|t;

2. Two equations of Measurement Update that correct the estimates just done,

obtaining x̂t|t and Pt|t;

The Prediction equations are used to compute at time t of the future state x̂t+1|t

and error covariance estimates at time t + 1, Pt+1|t. These estimates are corrected

with the upcoming measurement, by the second step of the algorithm, allowing to

obtain an improved a posterioroi estimate. That’s why the resulting algorithm can

be classificated as a predictor-corrector algorithm.

After each cycle the process is repeated with the previous a posteriori estimates used

this time to predict the new a priori estimates.
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CHAPTER 3. THE KALMAN FILTER

Prediction (Predict)
1) Predict the future state

2) Project the Error Covariance Matrix

Measurement Update (Correct)
1) Compute Kalman Gain

2) Update Estimate with Measurement 

3) Update Error Covariance Matrix

Initial Conditions

Figure 3.1: High Level Diagram of Kalman Filter Algorithm.

To better understand the elements of the algorithm [7], here are introduced the two

components:

• x̂t+1|t which is the state estimate at step t calculated with the knowledge of

the output measurements up to time t.

• x̂t|t which is a posteriori state estimate always calculated at step t but with

also the knowledge of the measureament at time t+ 1.

So it can be searched an equation that calculates the a posteriori estimate x̂t|t such

as a linear combination of the a priori estimate x̂t+1|t and of the weighted difference

between the actual measurament yk and the prediction of the measurament, given

by Cx̂t+1|t +Dut. It follows that x̂t|t = K(yk − Cx̂t+1|t −Dut).
yk − Cx̂t+1|t − Dut is called “innovation” and reflects the difference between the

state predicted and the measurament zk.

The K variable is called “Kalman Gain” and is calculated so as to minimize the

a posteriori estimate error covariance Pk, given by Pk = E[εkε
T
k ] where εk ≡ xt −

x̂t|t. A possible form, coming from the theory of the Kalman equations, is K =

Pt|t−1C
T (CPt|t−1C

T +R)−1.
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3.3. AN EXAMPLE OF EXPLANATION

It follows the pseudocode of the algorithm:

K0 ← P0C
T (CP0C

T +R0)
−1;

ε0 ← yt − Cx0 −Dut;
x̂t|t ← x0 +K0ε0;

Pt|t ← P0 −K0CP0;

ŷ1 = Cx̂t|t +Du1;

for t = 1 to Tfin − 1 do

Q̄ = Q− SR−1t ST ;

F = A− SR−1t C;

B̄ = [B − SR−1t D, SR−1t ];

x̂t+1|t ← Fx̂t|t + B̄[ut yt]
T ⇒ Time Update;

Pt+1|t ← FPt|tF
T + Q̄ ⇒ Time Update;

K = Pt+1|tC
T (CPt+1|tC

T +Rt+1)
−1;

ε = yt+1 − Cx̂t+1|t −Dut+1;

x̂t|t = x̂t+1|t +Kε ⇒ Measurement Update;

Pt|t = Pt+1|t −KCPt+1|t ⇒ Measurement Update;

ŷt+1 = Cx̂t|t +Dut+1;

end

Here are highlighted two aspects that will be fundamental for the implementation

of the Fault Detection Method that will be discussed of Chapter 4 :

1. Large values of Rt means that will be not used yt in the estimation and that:

F ≈ A, Q̄ ≈ Q, and B̄ ≈ B;

2. Large values of Rt+1 means that K ≈ 0 and therefore x̂t|t = x̂t+1|t and Pt|t =

Pt+1|t.

3.3 An example of explanation

To clearly explain and better understand the theory of Kalman Filter, it’s now

reported an easy example focused on the glucose-insulin system.

Supposed that are available the glucose measuraments and the insulin input just as

reported in the following Figure 3.2:
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Figure 3.2: Measurements and input.

After the identification of the matrices of the space-state system reported in 3.1

(this step will be discussed in detail in chapter 4), the calculation of the equations

can be strated. Figure 3.3 shows six cycles of the algorithm.

First of all, it’s initialized the state x0 to 0 and P0 as a large error covariance matrix

since the accuracy of the state estimate is very low. In fact the first subfigure First

Step shows that when it starts, the algorithm considers true the measurement but

his error covariance matrix has high value.

After this process, the algorithm predicts the future state, weighing the actual state

with the A matrix and update the error covariance matrix considering the old one

and the Q model covariance matrix.

Then it follws the calculation of the kalman gain, of the innovation and the adjust-

ment of prediction with the measurement information.

Thus, it can be calculated the final output, using this final result for the state. The

second subfigure Second Step shows how the prediction was higher then the final

filtering, that lowers the value because the mesaurement result lower then the pre-

diction.

As can be seen in the other subfigures, the measurement update is equal to the

prediction when the filter is operating and when there aren’t faults that occurred.

This is an aspect that will be discussed in Chapter4 when it will be discussed the

process used for the identification of the model and its validation.

In the final subfigure Final Result it can be seen in black the real measurements and

in green the entire prediction of the output using the Kalman Filter.
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3.3. AN EXAMPLE OF EXPLANATION

(a) First Step (b) Second Step

(c) Third Step (d) Fourth Step

(e) Fifth Step (f) Sixth Step

(g) Final Result

Figure 3.3: Prediction and Measurement Update.





Chapter 4

Fault Detection with Kalman

Filter

In Figure 4.1 it’s shown the block-scheme that describes the fundamental steps of

the Fault Detection Method.

Figure 4.1: Block Scheme of the FDM

First of all, two distinct modules can be identified.

The first one, called MODEL & PREDICTOR and located at the top of Figure
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4.1, consists of two blocks executed off-line. The block 1 identifies a patient-specific

linear model which describes the relationship between the system output, glucose

concentration measured by CGM, and the inputs, insulin injected by the CSII and

amount of carbohydrates ingested. The datails on the identification process are

reported in paragraph 4.1. In block 2, using the identified model, it’s derived the

Kalman Filter Predictor. The latter is then used in the second module of the block-

scheme, called ONLINE PREDICTION & ALERT. This module responsible

of the alerts generation, consists of two blocks and works on-line. In block 3, the

predictor is fed with the CGM measurements, the insulin delivered by CSII and the

meal data and it provides at any time t a retrospective prediction of the glucose

concentration, explained in paragraph 4.2. Finally in block 4, are produced the

alarms in 3 different ways which will be explored in paragraph 4.3.

The main purpose of this study is that to generate consistent on-line alarms when

the simulated failures are detected by the algorithm developed.

4.1 Personalized Models

One of the main problem of this study, concerns the identification of the model.

It is a very challenging step because of the great variability of the 100 subjects,

which forces to make an identification for each one.

Given the two inputs, corresponding to the injected insulin and to the meal, and

the output measurements, that is the CGM signal, it must be obtain the matrices

for the state-space model:{
xt+1 = Axt +But + vt with Cov(vt) = Q

yt = Cxt +Dut + wt with Cov(wt) = R
(4.1)

that describe the system.

To operate the identification, it was used N4SID, Numerical algorithms for Subspace

State Space System Identication, a method which estimates the state-space model

using a subspace method [8].

For the development of the code it was used Matlab R©(Version R2012b, The Math

Works, Inc, Natick, MA) and in particular for the identification of the unknown

matrices, it was used its function n4sid.

The identification was made on clean data that is on data without any transient

26



4.1. PERSONALIZED MODELS

failures and for each subject, it was performed one identification. To do this, 3 days

of data were used. Once obtained the matrices, it was carried out the validation to

complete the identification process, using the remaining 2.5 days.

The identification process is complicated by the close correlation between the two

inputs. In fact every time a meal occurs, at the same time a bolus of insulin appears.

For the identification algorithm, becomes really difficult to understand the differ-

ence between these two signals, that are both largely positive in correspondence of

a rising of the glycemia.

To confirm this, the impulse responses of the two inputs, after the N4SID identifi-

cation performed on these unprocessed data, were very oscillatory and a number of

times with the wrong signs. In fact, it is to be expected that the insulin impulse

response will be negative and the meal impulse response will be positive. Instead,

as can be seen in Figure 4.1 (a), the insulin input has the wrong sign.
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Figure 4.2: Impulsive responses of the identificated system: the (a) plot shows that
the first input (insulin) has a wrong sign when normal data are used for the identifi-
cation of the model. The impulsive response in (b), proves that their trasformation
is necessary.

This is a considerable problem and to try to solve it, it was proposed an input trans-

formations on the data which will be described briefly here. At each time t, it were

calculated the so called feedfoward insulin, iff , which was equal to the basal insulin

at time t, plus the meal divided bt the CR: iff = ib + m/CR. So now, subtract-

ing to the insulin the feedfoward insulin, it is get a new signal, called ∆Insulin,

∆i = i − iff which still has small peaks at the same times of the meals, but its
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evolution is very different from before, it can also have negative values and this help

the identification process. Also to the glucose signal was subtracted a basal glucose

parameter that was imposed equal to 120mg/dl as the normal glicemical target,

∆CGM = CGM − CGMbasal.

These transformations helped to identify the model, step clearly critical to the de-

velopment and analysis of Fault Detection Method.

Figure 4.1 (b) shows that the impulsive responses, after the trasformations applied

to the data, are definitively better than the one which is obtained from the normal

data even if there are still some oscillations. It is to note that if the matrices obtained

with the untrasformed data had been used, the model would not have distinguished

a meal from an insulin injection.

28



4.2. THE ON-LINE PREDICTIONS

4.2 The On-line Predictions

In block 3 the Kalman Predictor reviewd in the previous chapter and computed in

block 2, is used in real time for the calculation of a retrospective prediction, [1], it

was computed ∀ t and ∀ k ∈ [1, ..., P ]

ŷpred(t− P + k|t− P ) = CAk−1x̂t−P+1|t−P + C
k−1∑
i=1

Ai−1But−P+i +Dut−P+k (4.2)

where the input data (CSII and the meal) are used up to time t while the CGM data

acquired where used till time t−P , where P is the Prediction Horizon measured in

steps.

It is called retrospective prediction because all measurements collected from time

t-P+1 to t are not used.

More in detail, the Prediction Horizon PH = P · Tsamp is the term used to indicate

how much steps forward the prediction looks at.

For each predicted values, it is calculated in Block 3 an estimate of the convidence

interval as:

[ŷpred(t− P + k|t− P )−m · σŷk , ŷpred(t− P + k|t− P ) +m · σŷk ]

k = 1, ..., P
(4.3)

with:

σŷk =
√
CPt−P+k|t−PCT +R

σŷk is the standard deviation (SD) of the k-step ahead prediction value while m is an

important parameter that will be determinated equal to 3 with the ROC analysis, in

the first paragraph of Chapter 6. Moreover, the terms Pt−P+k|t−P is the covariance

matrix of the estimated state vector x̂(t− P + k|t− P ).

Different Prediction Horizons were considered during the detection of the different

fault.

In the first plot of Figure 4.2 is shown the 1-step prediction, P = 1 that is PH =
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5 min, used in the first two alarm startegies, that will be explained in the next

paragraphs.

In the other plots can be seen instead, the result on a single subject, using a PH

= 4 hours, the same one used in the third alarm strategy which will be defined in

4.3.3.

In plot (b), the first step of the algorithm is represented: since no a priori information

is available, P0 =∞ and hence the starting point is exactly on the measure, with a

very wide confidence interval. Moreover, it can be seen that the prediction, even if

very long, is able to predict very well the ups and downs of the glycemia, see plot

(c), (e) and (g). What happen when the algorithm has to predict the slop variations

is very interesting. As it is shown in plot (d) and (f) the prediction follow effectively

the signal.

Finally in plot (h), is shown the great prediction during the nighttime.
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4.3 The Alarm Startegy

Apparently, the various faults described previously can not be detected in the same

way. There are too many differences in the amplitude, the duration, and especially,

the time with which they act on the system. A spike, for example, is both less

serious and more easily detectable than a basal fault.

For this reason have been designed more alarm strategies who warn on different

events:

• Alarm CGM : that warns on the compression artifacts (spikes and losses);

• Alarm Meal and Meal-Bolus : that warns on failures involving a wrong “meal

announcement” or a wrong bolus of insulin in corresponding of a meal;

• Alarm Basal Failure: that warns if there are some problems on the delivering

of the basal insulin;

4.3.1 Alarm 1 - CGM

The Fault Detection Algorithm in these cases, works as follow (in Figure 4.8 the

scheme can help to follow these steps) :

At each time t the algorithm calculates the retrospective prediction ŷpred(t + 1|t)
and make a direct comparison with the measurement that it received. If the mea-

surement is into the bounds calculated in block 3, it is reasonable to think that

everything is working fine.

However, if the prediction is out from the calculated bounds a faulty sample is de-

tected.

If the sample is deemed faulty, the Rt+1 matrix is set with large values so that the

measurement isn’t used because:

ŷt+1 = Cx̂t|t +Dut+1 where x̂t|t = x̂t+1|t +Kε

where K = Pt+1|tC
T (CPt+1|tC

T +Rt+1)
−1

and so x̂t|t ≈ x̂t+1|t and ŷt+1 = Cx̂t+1|t +Dut+1
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and the sample is possibly a spike.

If at the next time the prediction re-enters in the confidence interval, the past sample

is classified as spike, see Figure 4.3.

If however, the next measurement is still out of bounds the counter increasing his

value and the samples are calssified as a loss, which could also be partial such as in

Figure 4.4.

Considering now the Figure 4.3 where the CGM signal has an evident spike at time

t = 1510min.

In cyan there is the final result of the entire prediction using the algorithm described

above. As can be seen in the first plot, which is the zoom of the faulty area,

the prediction is quite different by the wrong measurement that arrives from the

CGM. These two conflicting informations allow to recognize if something strange is

happening, and in this particular case the spike has been identified.
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Figure 4.3: Prediction of Spike Failure.

Similar considerations can be done for the losses. Figure 4.4 shows how the algorithm

doesn’t agree with the measurements that arrive from the simulated glucose sensor,

and it predicts a different dynamic of the CGM signal.
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Figure 4.4: Prediction of Loss Failure.
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4.3.2 Alarm 2 - Meal and Meal-Bolus

If the faults to be identified are the meal fail or the meal-bolus fail the Fault De-

tection Algorithm works in a different way. It always checks if the measurement

falls outside the confidence interval of the 1-step on-line prediction, but it alarms

only if this event happen for 3 consecutive times. Futhermore it must be that the

3 consecutive faulty samples, had all higher values or had all lower values than the

measurements, see the scheme in Figure 4.8.

These modifications always allows to detect quickly the faults but also to classify

the latter as caused by the meal event.

In Figure 4.5 and in Figure 4.6 can be seen the predictions of the algorithm respec-

tively for the meal fail and the meal-bolus fail.
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Figure 4.5: Prediction of Meal Failure.
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Figure 4.6: Prediction of meal-bolus failure.

4.3.3 Alarm 3 - Basal Failure

It is consider now the last type of simulated fault, the basal failure.

The insulin once injected, takes almost an hour before acting and to perceive its

effect. Therefore it is reasonable to think that if the detection method is very

accurate and moreover the amplitude of the fault is remarkable, it takes about two

hours to notice that something is wrong.

If these conditions are less pronounced, it could takes a longer time, so it has become

necessary to lengthen the predictive horizon, thus obtaining a lower reliability of the

prediction, see Figure 4.2. Futhermore, this time the alert is given when for each

k = 3, ..., 12, the CGM values fall outside the corresponding retrospective prediction

with its confidence intervals. This fault is definitely the biggest challenge to deal.

In Figure 4.7 (a) and (b) can be seen the predictions of the algorithm for the faults
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relative to a decrease of 50% and increase of 200% of the basal.
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Figure 4.7: Prediction of Basal Failure
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Figure 4.8: FDM
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Chapter 5

Assessment of the method

The physiological simulator of a diabetic patient, developed by the University of

Padova [9], allows to create different tracks with which it’s possible to simulate the

most various scenarios to test in a quickly and safety mode the new algorithms.

Simulations are becoming crucial in this field, and being possible to incorporate any

failures that affects the various devices, the robustness of the fault detection method

can be tested.

In this chapter the 5 data-set used for the simulations are presented and the method

of analysis on the different cases is shown.

5.1 Description of the data-set

The algorithm and analysis developed were done on in silico data obtained from the

UVA/Padova Type-1 diabetic simulator [9]. Various scenarios were created:

• 100 virtual subjects with CGM failures spikes of different amplitudes and

quantity;

• 100 virtual subjects with CGM failures compression artifacts of different am-

plitudes and durations;

• 100 virtual subjects with MEAL failures of different amplitudes;

• 100 virtual subjects with MEAL-BOLUS failures of different amplitudes;
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• 100 virtual subjects with BASAL PUMP failures of different amplitudes and

durations;

This simulator [9] was approved by the US Food and Drug Administartion as a sub-

stitute of animal testing, before starting the closed-loop clinical trials on humans.

For each subject created, 6 days of closed loop control with 3 meals per day were

simulated. The initial hour was midnight, the breakfasts, lunches and dinners oc-

curred at 07:30, 13:00, and 19:30, respectively with charbohydrates consuption of

50 g, 60 g and 80 g.

5.1.1 Compression Artifacts - Spikes and Losses

Can now be explained how the failures were created, starting from the compression

artifacts.

As was said in Chapter 2, can occur two realizations of this kind of failure which

substantially differ in duration: one is the Spike the other one is the Loss.

The spike is an single glucose reading recepted by the CGM with an error rather

greater than that normally. For simulating it, an anomalosly large measurement am-

plitude, A = −7.5, −10, −15, −20, −25, mg/dl, was added to the CGM

measure at a random time trand so that:

CGMFaulty(trand) = CGMnoFaulty(trand) + A

In Figure 5.1 a Spike is visible at t = 2650min with an amplitude of −25 mg/dl

and as can be seen, the value is not consistent with the past story and with the

inputs nearby. The method implemented in this thesis, has the purpose of detected

the spike and therefore to alarm in real time.
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Figure 5.1: Insertion of a spike at t=2650 min.

The transient loss of sensitivity of the sensor, or simply loss, corresponds to a

systematic underestimation of the glucose concentration for several consecutive sam-

ples. As for the spikes an anomalosly large measurement error of different amplitude,

A = −7.5, −10, −15, −20, −25 mg/dl, was added to the CGM measure

starting from a random time trand but in this case the error was propagated for some

different durations: D = 10, 20, 30, 60 min. It must be remembered that

the sampling time of the CGM is Tsamp = 5 min.

CGMFaulty(trand : trand +D) = CGMnoFaulty(trand : trand +D) + A

In Figure 5.2 a Loss starts at t = 1220min and ends at t = 1285 min with an

amplitude of −25 mg/dl. Again, the values aren’t consistent with the past story

and with the inputs so this is a fault that must be catched by the FDM.

43



CHAPTER 5. ASSESSMENT OF THE METHOD

0 500 1000 1500 2000 2500 3000
0

50

100
IN

S
U

LI
N

 [U
/h

]

Time [min]

Validating Set − Normal Data

 

 

0 500 1000 1500 2000 2500 3000
0

200

400

C
G

M
 [m

g/
dl

]

INSULIN
MEAL
CGM

1150 1200 1250 1300 1350
50

100

150

200

Time [min]

C
G

M
 [m

g/
dl

]

Fault − Loss

 

 
Faulty Measurement
No Faulty Measurement

0 500 1000 1500 2000 2500 3000
−5

0

5

IN
S

U
LI

N
 [U

/h
]

Time [min]

Validating Set − Transformed Data

0 500 1000 1500 2000 2500 3000
−100

0

100

C
G

M
 [m

g/
dl

]

Figure 5.2: Insertion of a loss starting at t=1220 min

5.1.2 Meal Failure

To simulate this type of fault, it was decided to increase or decrease the amplitude

of a random meal by a certain percentage. The values of the considered relative am-

plitudes used for the simulations were changed to: E = −100%, −75%, −50%,

−25%, +25%, +50%, +75%, +100%:

MealFaulty(trandMeal) = MealnoFaulty(trandMeal)(1 +
E

100
)

Figure 5.3 shows a miss announcement, E = −100%:

Instead Figure 5.4 shows an announcement greater of the 100%, E = +100%:
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Figure 5.3: Miss meal announcement (-100%) at t=2760 min.
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Figure 5.4: Wrong meal announcement (+100%) at t=2400 min.
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5.1.3 Meal-Bolus Failure

The meal-bolus failure is a fault involving the insulin pump.

In Figure 5.5 there is one of the simulated cases for this kind of fault. At time

t = 2100min the insulin delivered, about 80 U/h, i.e. 80
12
≈ 6.6U , (the black line)

doesn’t appear to the system that believed to has received only about 40 U/h (the

red line).
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Figure 5.5: Communication error on meal-bolus (-100%) at t=2100 min.

In Figure 5.6 there is another case. In this scenario the AP received an higher

information on the quantity of insulin delivered. At time t = 960 min the insulin

was about 60 U/h (black line) but for some reason, it results to the system that the

insulin delivered was about 150 U/h (red line). With this information the DiAs

estimates in a wrong way the future profile, giving in particular less insulin than it

should.
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Also to simulate this type of fault, it was decided to increase or decrease the am-

plitude of a random insulin bolus by a certain percentage. The values of the con-

sidered relative amplitudes used for the simulations were still changed to: E =

−100%, −75%, −50%, −25%, +25%, +50%, +75%, +100%:

InsulinFaulty(trandBolus) = InsulinnoFaulty(trandBolus)(1 +
E

100
)
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Figure 5.6: Wrong meal-bolus amount (+100%) at t=960 min.
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5.1.4 Basal Failures

To simulate this fault, it was decided to decrease or increase the amplitude of a

random portion of basal insulin (making attention to don’t include any bolus) by a

certain percentage. Thus, in addition to the increase or decrease of the amplitudes,

different durations were used too: E = −100%, −50%, +50%, +100, D =

1, 2, 3, 4, 6 hours.

InsulinFaulty(trand : trand +D) = InsulinnoFaulty(trand : trand +D)(1 +
E

100
)

In Figure 5.7, it can be seen one of the possible cases which were described above.
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Figure 5.7: Decrease of the basal insulin (-50%) for 6 hours.

Another unlucky possibility, is the one that can be seen in Figure 5.8. The basal

insulin is higher than what is expected and this situation can verify if there are

some technological issues, especially during the testing of new insulin pump that

can require different settings from others to work in the right way, or if the patient

informations that were inserted to the DiAs at the starting of the session were wrong.
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Figure 5.8: Increase of the basal insulin (+200%) for 6 hours.
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5.2 Statistical Analysis

One of the main aims of this study is to define how effective is the method in

detecting faults, how many times it returns false alarms and how many times it

doesn’t notice the presence of the fault.

In order to quantify the results obtained, suitable indices must be introduced to

take into account different statistical aspects. Moreover these indices must be drawn

from appropriate observation intervals; thus, becomes essential to define how long

the signals must be observed before to classify a portion of their.

5.2.1 Compression Artifacts - Spikes and Losses

First of all, consider the compression artifacts and assume that for this class of

faults, the length of the observation interval is as long as the fault length.

Thus for example, for a single spike the length of the observation interval is 1 sample

instead for a loss with a duration of 1 hour, the length of observation interval is 12

samples.

Considering now the CGM signal and the classifier described above, there are 4

possible outcomes:

1. True Positive (TP): if the samples are faulty and they are identified by the

algorithm as faulty (Positive Outcome);

2. True Negative (TN): if the samples are not faulty and they are not identified

by the algorithm as faulty (Negative Outcome);

3. False Negative (FN): if the samples are faulty and they are not identified

by the algorithm as faulty (Negative Outcome);

4. False Positive (FP): if the samples are not faulty but they are identified by

the algorithm as faulty (Positive Outcome).

An easy example that illustrates the previous definitions for the spike fault, is re-

ported in the following table:

Note that, with regard to the loss fault, it makes sense to consider as TP also a partial

detection, so if at least one of the faulty samples within the range of observation, is

detected as faulty it can be said that the algorithm identified the loss.
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0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1
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Figure 5.9: I row: real signal; II row: outcome of the algorithm; III row: associ-
ated index.

In Figure 5.10 it’s reported a two-by-two confusion matrix from which can be derived

many important and common indices, useful for the subsequent analysis:

REALITY

fault no fault

D
E

C
IS

IO
N

fa
ul

t

TP FP

no
fa

ul
t

FN TN

Figure 5.10: Table describing the relationships among terms.

The True Positive index and the True Negative index located in the diagonal, rapre-

sent the correct decision made by the alghoritm; instead, in the other diagonal, the

True Negative index and the False Negative index represent the errors committed.

Considering the first column of the matrix, can be derived the total number of faulty

samples that were present in the signal as:

Number of Events = TP + FN (5.1)

Considering the first and second rows of the matrix, two indeces can be derived

respectively accounting for the percentage of alarms that are properly identified as

fault and the percentage of no-alarms corresponding to when correctly nothing is

reported:
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PPV = TP
TP+FP

Positive Predictive Value

NPV = TN
TN+FN

Negative Predictive Value

(5.2)

Considering the first and second columns of the matrix, two indeces can be derived

respectively relating the algorithm ability to rightly identify a sample when it’s

faulty and to rightly identify a sample when it’s not faulty.

TPR = TP
TP+FN

Sensitivity

TNR = TN
TN+FP

Specificity

(5.3)

Finally an index that relates to the proportion of true results compared to all clas-

sifications:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.4)

5.2.2 Meal and Meal-Bolus Failures

Consider now the meal failure and the meal-bolus failure. Because of the slower

dynamics than the previous faults, it is necessary to wait more time to see some

changes in the CGM track. For this reason the observation interval was stretched

to 4 hours and the following indices were re-defined as:

1. True Positive (TP): if into the observation interval, there is a faulty sam-

ple and it is identify by the algorithm although with some delay (Positive

Outcome);

2. True Negative (TN): if all the samples into the observation interval are

not faulty and they are not identified by the algorithm as faulty (Negative

Outcome);

3. False Negative (FN): if into the observation interval, there is a faulty sample

and it’s not identify by the algorithm as faulty (Negative Outcome);

4. False Positive (FP): if into the observation interval, the samples are not

faulty but they are identified by the algorithm as faulty (Positive Outcome).
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Figure 5.11: Redefinition of the indeces: TN,FN,FP,TP.

To aid understanding, the above definitions are summarized in Figure 5.11:

Once obtained these the 4 indices as well redefined, the others coming from the

confusion matrix can be calculated as described previously.

5.2.3 Basal Failure

The last definitions of TP, TN, FN, and FP that were used for the meal and meal -

bolus failures can be also used for the basal failure. At difference with the previous

case, however, the observation interval that was imposed equal to 6 hours, because

of the slowest dynamic previously described.
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Chapter 6

Results with Simulated Data

6.1 The choise of the amplitude of the confidence

interval: the ROC analysis

A receiver operating characteristics (ROC) curve is a technique [10] for visualizing,

organizing and selecting classifiers based on their performance.

This method allows obtaining a particular chart, called ROC graph, which is two-

dimensional and has on the X − axis the False Positive Rate, FPR = 100 −
Specificity, and on the Y − axis the True Positive Rate, TPR = Sensitivity. Thus,

each point of the ROC curve represents a sensitivity/specificity pair corresponding

to a particular decision threshold.

In case of the Failure Detection Method, the technique depicts relative tradeoffs

between TP and FP in function of the parameter m, which represents the number

of SD considered for the confidence interval, (see equation ?? of Chapter 4).

The aim of the analysis is to identify the value of m that allows getting the best

performance, taking into account the trade off given by succeeding in detecting cor-

rectly the failures and not producing an excessive amount of false alarms.

There are some important points to highlight in the ROC space:

• the lower left point (0, 0) represents the strategy of never issuing a positive

classification, so there are not FP but also not TP;

• the upper right point (100, 100) represents the strategy of always issuing a

positive classification, so there are a lot of TP but also a lot of FP;
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• the upper left point (0, 100), representing 100% of sensitivity (there are not

FN) and 100% of specificity (there are not FP), which is the perfect classifi-

cation;

• the points on the diagonal x = y, are usually defined as random guesses [10].

This means that if a classifier randomly guesses the positive class the 70% of

the time, it can be expected to get the 70% of positives (P = TP + FN) correct

but at the same time, its false positive rate will increase to 70%, yielding (70

; 70) in the ROC space.

Thus, to get a satisfactory result, the value of the parameter m that is closer to the

upper left point, must be chosen.

The candidate values for m, starts from 2 with a step of 0.1 up to 4.

For the choice of the optimal m value, three different scenarios of failures on CGM

signals were used:

• Scenario 1: only 1 spike for each subject;

• Scenario 2: 5 random spikes for each subject;

• Scenario 3: only 1 loss for each subject;

For each of the scenarios reported, different amplitudes of the compression artifacts

were considered, spanning from 5mg/dl to 25mg/dl.

The Table 6.1 shows the results for Scenario 1. Focusing on it would seem that

m = 2.1 might be the best choice, beacuse it corresponds to the higher number of

best pairs sensitivity/specificity compared to the other values.

Refering now on Table 6.2, it seems that a value slightly higher for m, such as

m = 2.4, would be the right choice for the Scenario 2.

However in the case of this study, it is more important to identify the most dangerous

faults, which are definitely those with the higher amplitudes.

So considering also the Tables 6.3, which refers to Scenario 3, it can be seen that in

case of higher amplitudes, i.e. 20 and 25mg/dL, the best choice for the parameter

is m = 3.

Even considering the Euclidean distance from the point of perfect classification and

the best pair sensitivity/specificity for each amplitude, see Tables 6.4, it results that
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until 8mg/dL, the best choice would be m = 2.1. Again moving to larger amplitudes,

which are most significant for the aim of fault detection, the most appropriate value

is m = 3.

Finally, in Figures 6.1, 6.2 and 6.3 can be seen the resulting ROC graph respectively

of the Scenario 1, 2 and 3. It is to note that the scale is not uniform, but the

plots are the zooms of interest areas. Each point corresponds to a hypothesized

value of m and can be seen how all the points starting from 2.1 till 3.2 have similar

sensitivity/specificity pair. Nevertheless, m = 3 has in all the three scenarios, the

best sensitivity values.

On the basis of these considerations and on the really positive results which were

obtained in detections of the most relevant failures, m = 3 was choosen.

Of note, m=3, guarantees good performance also in case of low fault amplitudes.
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Figure 6.1: Zoom of ROC graph for Scenario 1. The amplitudes of the spike are:
5, 6, 7, 8, 9, 10mg/dL .

Figure 6.2: Zoom of ROC graph for Scenario 2. The amplitudes of the spikes are:
5, 6, 7, 8, 9, 10mg/dL amplitude.
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CHAPTER 6. RESULTS WITH SIMULATED DATA

Figure 6.3: Zoom of ROC graph for data-set with with 1 loss of
5, 6, 7, 8, 9, 10, 15, 20, 25mg/dL amplitude.
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CHAPTER 6. RESULTS WITH SIMULATED DATA

6.2 The Result Analysis

As anticipated in the previous chapter, the length of the observation interval is crit-

ical for a correct detection of the failures. As a consequence this parameter has been

set to different values for different type of failures.

To be more specific, it is used a direct comparison when the compression artifacts

were analyzed, an observation interval of 30 minutes for the meal failure, of 4 hours

for the meal-bolus failure and of 6 hours for the basal failure.

These decisions come from the considerations reported in Chapter 2, on the dynamic

effects of the differents kind of faults.

It follows the pseudo-code for the calculation of the indices explained in chapter 5,

in particular the TN, FN, FP, TP with which it can be then calculated all the others:

if ′MealFail′ then
intsamp = 5; ⇒ 30min

else if ′BolusMealFail′ then
intsamp = 47; ⇒ 4hours

else if ′BasalFail′ then
intsamp = 71; ⇒ 6hours

else
if ′Spike′ then

intsamp = 1; ⇒ 5min
else

intsamp = d; ⇒ D = [d1, ..., dN ], loss duration
end

end
indStart ← FirstIndRealFault;
indEnd ← indStart + intsamp;
while indEnd < length(T ime) do

if V ectFDM(indStart : indEnd) == 0 ∧ V ectRealFault(indStart : indEnd) == 0 then
TN = TN + 1;

else if V ectFDM(indStart : indEnd) == 0 ∧ any(V ectRealFault(indStart : indEnd)) == 1 then
FN = FN + 1;

else if V ectRealFault(indStart : indEnd) == 0 ∧ any(V ectFDM(indStart : indEnd)) == 1 then
FP = FP + 1;

else
TP = TP + 1;

end
indStart ← indEnd + 1;
indEnd ← indEnd + intsamp + 1;

end
indStart ← FirstIndRealFault − intsamp − 1;
indEnd ← FirstIndRealFault − 1;
while indEnd < length(T ime) do

...
indEnd ← indStart − 1;
indStart ← indEnd − intsamp;

end

It is important to note that for each type of failure, the observation interval starts
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6.2. THE RESULT ANALYSIS

exactly from the first index of the real fault. For example, if the basal failure starts

at time t1 and ends at time t2, the observation interval starts at time t1 till time

t1 + 6hours.

In that way, the observation interval is perfectly synchronized with the fault and

each detection can be accurately evaluated during the analysis.

6.2.1 Compression Artifacts - Spikes and Losses

The results reported in this subsection, are relative to 5 different failure scenarios

affecting the CGM signal: scenario 1 corresponds to the presence of a spike, scenario

2 to the presence of a 10 minutes loss, scenario 3 to the presence of a 20 minutes

loss, scenario 4 to the presence of a 30 minutes loss, scenario 5 to the presence of a

60 minutes loss.

For each scenario, different amplitudes of these failures were considered: A =

−7.5,−10,−15,−20,−25mg/dl. Moreover, has always been first tested the algo-

rithm on clean data (without any faults), thus identify the amount of false alarms

due to noise.

For each scenario, it is shown a Figure in which the method is applied on a represen-

tative patient, taken to the pool of the 100 simulated. The fault amplitude used in

each case is was −25mg/dl. It’s to note that in all the following Figures the glucose

signal is re-scaled to the basal, imposed to 120mg/dl.

In the Figures 6.4, 6.5, 6.6, 6.7, 6.8:

• the blue bars are the True Negative (TN);

• the red bars are the False Negative (FN);

• the yellow bars are the False Positive (FP);

• the green bars are the True Positive (TP);

The summary of the results, mainly in terms of TP, FP, TN, FN, Sensitivity and

Specifcity, on the whole simulated population is reported in the Tables 6.5, 6.6, 6.7,

6.8, 6.9.
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Figure 6.4: Spike at t=1195 min correctly detected by the FDM.

A = 0 -7.5 -10 -15 -20 -25

True Negative 28111.00 28100.00 28091.00 28121.00 28100.00 28200.00
False Negative 0.00 38.00 16.00 13.00 15.00 14.00
False Positive 620.00 644.00 647.00 616.00 634.00 609.00
True Positive 0.00 62.00 84.00 87.00 85.00 86.00
PPV [%] 0.00 8.78 11.49 12.38 11.82 12.37
NPV [%] 100.00 99.86 99.94 99.95 99.95 99.95

Sensitivity [%] NaN 62.00 84.00 87.00 85.00 86.00
Specificity [%] 97.79 97.76 97.75 97.86 97.79 97.89
Accuracy [%] 97.79 97.64 97.70 97.82 97.75 97.84

N EVENTS 0 100.00 100.00 100.00 100.00 100.00

Table 6.5: Result analysis on Scenario 1 - CGM spike.
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6.2. THE RESULT ANALYSIS

Figure 6.5: 10 minutes of CGM loss of sensitivity, correctly detected by the FDM.

D = 0 D = 10 min
A = 0 -7.5 -10 -15 -20 -25

TN 56783 18560 18559 18541 18559 18555
FN 0.00 36.00 14.00 10.00 11.00 9.00
FP 917.00 543.00 535.00 528.00 535.00 533.00
TP 0.00 63.00 85.00 90.00 89.00 91.00
PPV 0.00 10.40 13.71 14.56 14.26 14.58
NPV 100.00 99.81 99.92 99.95 99.94 99.95

Sensitivity [%] NaN 63.64 85.86 90.00 89.00 91.00
Specificity [%] 98.41 97.16 97.20 97.23 97.20 97.21
Accuracy [%] 98.41 96.98 97.14 97.19 97.16 97.18
N EVENTS 0.00 99.00 99.00 100.00 100.00 100.00

Table 6.6: Result analysis on Scenario 2 - CGM 10 minutes loss of sensitivity.
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Figure 6.6: 20 minutes of CGM loss of sensitivity, correctly detected by the FDM.

D = 20 min
A = -7.5 -10 -15 -20 -25

TN 10925 10947 10923 10989 10967
FN 34.00 13.00 3.00 7.00 7.00
FP 456.00 449.00 446.00 430.00 426.00
TP 66.00 87.00 97.00 93.00 93.00
PPV 12.64 16.23 17.86 17.78 17.92
NPV 99.69 99.88 99.97 99.94 99.94

Sensitivity [%] 66.00 87.00 97.00 93.00 93.00
Specificity [%] 95.99 96.06 96.08 96.23 96.26
Accuracy [%] 95.73 95.98 96.09 96.21 96.23
N EVENTS 100.00 100.00 100.00 100.00 100.00

Table 6.7: Result analysis on Scenario 3 - CGM 20 minutes loss of sensitivity.
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Figure 6.7: 30 minutes of CGM loss of sensitivity, correctly detected by the FDM.

D = 30 min
A = -7.5 -10 -15 -20 -25

TN 7676 7693 7724 7748 7739
FN 29.00 19.00 7.00 4.00 7.00
FP 409.00 406.00 399.00 375.00 391.00
TP 71.00 81.00 93.00 96.00 93.00
PPV 14.79 16.63 18.90 20.38 19.21
NPV 99.62 99.75 99.91 99.95 99.91

Sensitivity [%] 71.00 81.00 93.00 96.00 93.00
Specificity [%] 94.94 94.99 95.09 95.38 95.19
Accuracy [%] 94.65 94.82 95.06 95.39 95.16
N EVENTS 100.00 100.00 100.00 100.00 100.00

Table 6.8: Result analysis on Scenario 4 - CGM 30 minutes loss of sensitivity.
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Figure 6.8: 1 hour of CGM loss of sensitivity, correctly detected by the FDM.

D = 60 min
A = -7.5 -10 -15 -20 -25

TN 3968 3946 3923 3914 3902
FN 32.00 17.00 8.00 15.00 6.00
FP 354.00 370.00 410.00 418.00 414.00
TP 68.00 83.00 92.00 85.00 94.00
PPV 16.11 18.32 18.33 16.90 18.50
NPV 99.20 99.57 99.80 99.62 99.85
Sensitivity [%] 68.00 83.00 92.00 85.00 94.00
Specificity [%] 91.81 91.43 90.54 90.35 90.41
Accuracy [%] 91.27 91.24 90.57 90.23 90.49
N EVENTS 100.00 100.00 100.00 100.00 100.00

Table 6.9: Result analysis on Scenario 5 - CGM 1 hour loss of sensitivity.
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As visible from these results, the performance of this method in detecting of the

compression artifacts are really positive.

In Figure 6.4, the spike appears at t = 1195min and it can be seen how in this

case the fault it’s well detected by the algorithm. The prediction is quite different

from the measurement that arrived, so the method directly compering these two

informations, correctly alarm on the presence of the spike.

Focusing on the entire scenario 1, Table 6.5 shows how the specificity is always very

high, over 97%. Moreover the sensitivity is about 85% for each spike amplitude

excluding the case of 7.5mg/dl, in which the spike is small and can be confused

with the noise on this signal. These two results evidence that the method identifies

hardly as a spike a sample that is not (a few FP), as well as are limited the cases in

which the spikes are confused with the CGM noise and dynamic (a few FN). While

in all the other cases it detects the spikes correctly when they occur.

Considering now the losses the situation improves even more.

Figures 6.5 and 6.6, show two small losses respectively of 10 and 20 minutes. The

first one starts at t = 1555min and ends at t = 1560min, while the second one starts

at t = 815min and ends at t = 830min.

In both the cases can be seen how the predictions are clearly different from the

measurements, and also how the latter are not consistent with the CGM dynamics

and the inputs nearby. Also these two faults are correctly detected by the method.

Figure 6.7, shows a longer loss of 30 minutes that starts at t = 1715min and ends

at t = 1740min, perfectly detected.

Finally in Figure 6.8, it is shown the longest simulated loss (1 hour). It starts at

t = 1470min and ends at t = 1525min. The algorithm detected the fault very

quickly, and can be seen how it proceeds with its predictions for 6 steps and than

it turns off. Thus, it is re-initialized, and again it detects that something is wrong

because the new starting point is on the final phase of the loss. After others 6 sam-

ples, it turn off again and finally it is rightly re-initialized.

In all the cases reported on the Tables 6.6, 6.7, 6.8 and 6.9, the specificity wanders

on percentages of about 95%, in some cases even 97%. In addition the sensitivity

remains high for all the amplitudes and durations. The fact that for a period of 60

minutes the latter decreases to about 91% is due to the fact that the observation

interval it’s rather large (12 samples), thus the weight of the FP in the final results

is more relevant.
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Actually the presence of FP, i.e. samples that are not faulty but are recognized as

faulty by the algorithm, is an issue that can not be hidden and which must be en-

hanced in the future. However, it must also keep in mind that the ultimate analysis

were done without interruption (night and day) for 2.5 days, for each subject. Com-

paring these results with those relative to night-only scenario obtained in the article

of Facchinetti et al. [1], it can be seen that performances are essentially comparable.

It can be concluded, therefore, that the prediction and the alarm strategy imple-

mented in relation to compression artifacts, were found to be adequate for the de-

tection and satisfactory.

6.2.2 Meal and Meal-Bolus Failures

In this subsection are reported the results concerning 4 different failure scenarios,

relative to the meal event: scenario 1 and scenario 2 involving respectively, the

percentage decrease and the percentage increase of the meal amount, while scenario

3 and 4 are respectively about the percentage decrease and the percentage increase

of the insulin bolus due to meal event.

For each scenario, the following fault percentages were considered: E = −100%,

−75%,−50%,−25%,+25%,+50%,+75%,+100%. As in the previous cases, it has

been tested the algorithm on clean data to identify the amount of false alarms due

to noise.

For each scenario two Figures of a representative patient are shown. The fault

amplitudes used in each case were −100%,−50% and +50%,+100%.

The meaning of the bars in Figures 6.9, 6.10, 6.11 and 6.12 is the same of the

previous Figures and the summery of the results, mainly in terms of TP, FP, TN,

FN, Sensitivity and Specifcity, on the whole simulated population is reported in the

Tables 6.10, 6.11, 6.12, 6.13.
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(a) The dinner announcement was reduced by 50%

(b) The dinner announcement was reduced by 100%

Figure 6.9: 50% (a) and 100% (b) decrease of the meal amplitude announcement,
correctly detected by the FDM.
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(a) The breakfast announcement was increased by 50%

(b) The lunch announcement was increased by 100%

Figure 6.10: 50% (a) and 100% (b) increase of the meal amplitude announcement,
correctly detected by the FDM.
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E = -100 % -75 % -50 % -25 % 0 %
True Negative 906.00 906.00 910.00 903.00 977.00
False Negative 0.00 0.00 1.00 15.00 0.00
False Positive 194.00 194.00 190.00 197.00 223.00
True Positive 100.00 100.00 99.00 85.00 0.00
PPV [%] 34.01 34.01 34.26 30.14 0.00
NPV [%] 100.00 100.00 99.89 98.37 100.00
Sensitivity [%] 100.00 100.00 99.00 85.00 NaN
Specificity [%] 82.36 82.36 82.73 82.09 81.42
Accuracy [%] 83.83 83.83 84.08 82.33 81.42
N EVENTS 100.00 100.00 100.00 100.00 0

Table 6.10: Result Analysis on Scenario 1 - decrease of the meal amplitude an-
nouncement.

E = +25 % +50 % +75 % +100 %
True Negative 917.00 925.00 912.00 932.00
False Negative 47.00 11.00 5.00 2.00
False Positive 183.00 175.00 188.00 168.00
True Positive 53.00 89.00 95.00 98.00
PPV [%] 22.46 33.71 33.57 36.84
NPV [%] 95.12 98.82 99.45 99.79
Sensitivity [%] 53.00 89.00 95.00 98.00
Specificity [%] 83.36 84.09 82.91 84.73
Accuracy [%] 80.83 84.50 83.92 85.83
N EVENTS 100.00 100.00 100.00 100.00

Table 6.11: Result Analysis on Scenario 2 - increase of the meal amplitude an-
nouncement.
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(a) The insulin bolus of the lunch was reduced by 50%

(b) The insulin bolus of the breakfast was reduced by 100%

Figure 6.11: 50% (a) and 100% (b) decrease of the meal-bolus amplitude, correctly
detected by the FDM.
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(a) The insulin bolus of the lunch was increased by 50%

(b) The insulin bolus of the breakfast was increased by 100%

Figure 6.12: 50% (a) and 100% (b) increase of the meal-bolus amplitude, correctly
detected by the FDM.
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E = -100 % -75 % -50 % -25 % 0 %
True Negative 917.00 919.00 908.00 922.00 977.00
False Negative 5.00 7.00 22.00 47.00 0.00
False Positive 183.00 181.00 192.00 178.00 223.00
True Positive 95.00 93.00 78.00 53.00 0.00
PPV [%] 34.17 33.94 28.89 22.94 0.00
NPV [%] 99.46 99.24 97.63 95.15 100.00
Sensitivity [%] 95.00 93.00 78.00 53.00 NaN
Specificity [%] 83.36 83.55 82.55 83.82 81.42
Accuracy [%] 84.33 84.33 82.17 81.25 81.42
N EVENTS 100.00 100.00 100.00 100.00 0

Table 6.12: Result Analysis on Scenario 3 - decrease of the meal-bolus amplitude.

E = +25 % +50 % +75 % +100 %
True Negative 904.00 904.00 928.00 931.00
False Negative 20.00 7.00 3.00 3.00
False Positive 196.00 196.00 172.00 169.00
True Positive 80.00 93.00 97.00 97.00
PPV [%] 28.99 32.18 36.06 36.47
NPV [%] 97.84 99.23 99.68 99.68
Sensitivity [%] 80.00 93.00 97.00 97.00
Specificity [%] 82.18 82.18 84.36 84.64
Accuracy [%] 82.00 83.08 85.42 85.67
N EVENTS 100.00 100.00 100.00 100.00

Table 6.13: Result Analysis on Scenario 4 - increase of the meal-bolus amplitude.

Both the meal failures and the meal-bolus failures, gave very satisfactory outcomes.

In Figure 6.9 (a) and (b), the meals that suffered the decrease are the dinners, both

well identify by the algorithm. The method worms satisfactorly also in both cases

of Figure 6.10 (a) and (b) of scenario 2, where the meals that suffered the increase

are the breakfast and the lunch.

It can be seen also by these Figures that, after the detection of the fail as TP, some

FP appear as result of the algorithm necessity of assessment after the failure.

In Figure 6.11 (a) and (b), the insulin bolus that suffered the decrease are respec-

tively, the lunch and the breakfast like the two showed in Figure 6.12 (a) and (b)

of scenario 2, where the bolus-meal values were increased. In all these simulated
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situations, the algorithm detected in a really positive way all the faults.

The considerations on the results can certainly start from the sensitivity row of the

Tables 6.11, 6.10, regarding the meal faults. In fact, the method is able to correctly

identify these failures in the 90% of the cases when the amplitude of the meal in

modulus is equal |E| ≥ 50%. In particular, if the amplitude is strictly greater than

50%, |E| > 50%, the failures are correctly detected in the 95% of the cases.

With regard at the sensitivity, in Tables 6.13 and 6.12, it can be seen that the

preformance in case of meal-bolus faults are slightly worse, but generally positive

and satisfactory. In fact when the amplitude is strictly greater than 50% the failures

are correctly detected in the 93% of the cases and, when lower, the percentage falls

to 80%.

Therefore, this new method is effective in detecting these kind of faults and at the

same time its specificity is good. Looking at the specificity row of the all the 4

previous Tables, for all the amplitude that were considered. This percentage is

always grater than 80% and this is an effect of the limited number of False Positive

generated.

Note that it would have been possible increasing the performances in terms of correct

detection (TP), but this would have increased the number of FP.

Here a conservative and robust implementation was chosen, focused on reducing the

numbers of false alarms. Finally, another proof of the robustness of this method in

detecting these two kind of failures, are the accuracy values. As it can be seen from

the Tables below, it is always higher than 80%, a suitable percentage in correctly

classifying a sample.
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6.2.3 Basal Failures

The last fault studied, is the insulin basal failure.

In Figure 6.13, 6.14 and 6.15 it can be seen the result of the detection in one

representative subject, in all the simulated scenarios that involve this kind of failure:

its duration in scenario 1 is 1 hour, in scenario 2 is 2 hours, in scenario 3 is 3 hours,

in scenario 4 is 4 hours, in scenario 5 is 6 hours.

For each scenario, the following fault percentages were considered: E = −100%,

−75%,−50%,−25%,+25%,+50%,+75%,+100% and as usual the algorithm has

been tested on clean data to identify the amount of false alarms due to noise.

In the following Figures the fault amplitudes reported are −100%,−50% and

+50%,+100%.

The meaning of the bars is still the same given in the previous subsection and

the summary of the results, mainly in terms of TP, FP, TN, FN, Sensitivity and

Specifcity, on the whole simulated population is reported in the Tables 6.14, 6.15,

6.16, 6.17, 6.18.

Figure 6.13: 1 hour basal failure starts at t=1970 min. The FDM was unable to
detect it.
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(a) The 2 hours of basal failure were detected by the FDM.

(b) The 3 hours of basal failure were not detected by the FDM.

Figure 6.14: In (a) occur 2 hours of basal failure; in (b) occur 3 hours of basal
failure.
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(a) The 4 hours of basal failure were detected by the FDM.

(b) The 6 hours of basal failure were not detected by the FDM.

Figure 6.15: In (a) occur 4 hours of basal failure; in (b) occur 6 hours of basal
failure.
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D = 1 hour
A = -100 % -50 % 0 % 50 % 100%

TN 597.00 601.00 684.00 603.00 592.00
FN 82.00 79.00 0.00 82.00 87.00
FP 33.00 29.00 30.00 32.00 30.00
TP 18.00 21.00 0.00 18.00 13.00
PPV 14.88 18.10 0.00 15.65 10.92
NPV 87.92 88.38 100.00 88.03 87.19
Sensitivity [%] 18.00 21.00 NaN 18.00 13.00
Specificity [%] 94.76 95.39 95.79 94.96 95.17
Accuracy [%] 84.25 85.21 95.80 84.49 83.80
N EVENTS 100.00 100.00 0.00 100.00 100.00

Table 6.14: Result Analysis on Scenario 1 - 1 hour with basal amplitude reduction
of 50%.

D = 2 hour
A = -100 % -50 % 0 % 50 % 100%

TN 590.00 595.00 684.00 599.00 596.00
FN 73.00 84.00 0.00 87.00 84.00
FP 30.00 31.00 28.00 30.00 31.00
TP 27.00 16.00 0.00 13.00 16.00
PPV 19.85 13.33 0.00 11.40 13.45
NPV 88.99 87.63 100.00 87.32 87.65
Sensitivity [%] 27.00 16.00 NaN 13.00 16.00
Specificity [%] 95.16 95.04 96.06 95.23 95.05
Accuracy [%] 85.69 84.16 96.07 83.95 84.18
N EVENTS 100.00 100.00 0.00 100.00 100.00

Table 6.15: Result Analysis on Scenario 2 - 2 hours with basal amplitude reduction
of 50%.
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D = 3 hours
A = -100 % -50 % 0 % 50 % 100%

TN 592.00 597.00 684.00 585.00 593.00
FN 60.00 79.00 0.00 69.00 63.00
FP 31.00 28.00 0.00 33.00 30.00
TP 40.00 21.00 0.00 31.00 37.00
PPV 21.32 16.67 0.00 8.73 17.32
NPV 89.29 88.18 100.00 86.80 88.38
Sensitivity [%] 29.00 20.00 NaN 11.00 22.00
Specificity [%] 84.69 85.65 85.50 83.57 84.96
Accuracy [%] 77.72 77.42 85.50 74.50 77.07
N EVENTS 100.00 100.00 0.00 100.00 100.00

Table 6.16: Result Analysis on Scenario 3 - 3 hours with basal amplitude reduction
of 50%.

D = 4 hours
A = -100 % -50 % 0 % 50 % 100%

TN 590.00 602.00 684.00 592.00 591.00
FN 43.00 63.00 0.00 65.00 48.00
FP 29.00 29.00 0.00 31.00 31.00
TP 57.00 37.00 0.00 35.00 52.00
PPV 23.40 21.77 0.00 17.97 20.44
NPV 89.80 89.19 100.00 88.49 89.14
Sensitivity [%] 33.00 27.00 NaN 23.00 28.00
Specificity [%] 84.53 86.12 85.50 84.94 84.43
Accuracy [%] 78.07 78.72 85.50 77.16 77.38
N EVENTS 100.00 100.00 0.00 100.00 100.00

Table 6.17: Result Analysis on Scenario 4 - 4 hours with basal amplitude reduction
of 50%.
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D = 6 hours
A = -100 % -50 % 0 % 50 % 100%

TN 567.00 583.00 684.00 583.00 571.00
FN 68.00 85.00 0.00 84.00 75.00
FP 132.00 115.00 116.00 116.00 127.00
TP 32.00 15.00 0.00 16.00 25.00
PPV 19.51 11.54 0.00 12.12 16.45
NPV 89.29 87.28 100.00 87.41 88.39
Sensitivity [%] 32.00 15.00 NaN 16.00 25.00
Specificity [%] 81.12 83.52 85.50 83.40 81.81
Accuracy [%] 74.97 74.94 85.50 74.97 74.69
N EVENTS 100.00 100.00 0.00 100.00 100.00

Table 6.18: Result Analysis on Scenario 5 - 6 hours with basal amplitude reduction
of 50%.

In Figure 6.13, the basal failure starts at 1970min and lasts 1 hour till 2025min.

The algorithm doesn’t succeed in the identification of the fault and also causes 3

false alarms. In Figure 6.14 (a) and 6.15 (a), the duration of the fault is longest,

respectively 2 and 4 hours, and the algorithm detects them, but it also generates

two FP.

In the other two cases rapresented in Figure 6.14 (b) and 6.15 (b), the method fails

to detect the faults; moreover it still generates false alarms.

As already mentioned above, this is certainly the most challenging scenario because

of the difficulties due to the identification of suitable models which succeed in pre-

dicting the glycemia for many steps ahead. The latter are undoubtedly needed to

success in take into account the effect of some basal perturbations on the CGM

traces.

It is for this reason, with a reasoning similar to that used for the other failures, that

the strategy used to alarm should be robust and conservative, i. e. it is preferable

to detect only in few cases the fault (low TP) and not to generate a lot of FP.

Considering the Tables 6.14, 6.15, 6.16, 6.17 and 6.18 and looking at Sensitivity

row, it can be seen how the strategy developed for the detection, doesn’t work as

satisfactory as in the previous scenarios. The algorithm detected the fault only the

20% of the times. As anticipated, the problem could stay in the identification of an

inadegaute model for such a scope.

On the other hand, adapting the method developed with the third alarm strategy
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described in the previous chapter, the percentages of the specificity are about 90%:

so also this time the number of False Positive is controlled.
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Future Developments

The way ahead for the development of a robust fault detection method is still long,

but the job that was done in the last year, lays the foundation for important im-

provements.

The results presented in this thesis demonstrated that the FDM results very effec-

tive with all the failures associated with the CGM sensor and with the meal event,

expecially in what concerns them detection. The latter was also very positive re-

garding the basal failures.

Focusing on the results concerning the false alarm that were obtained, the method

is able to contain them under the 20% with the exception of the basal fault that,

as was largely discussed during the thesis, still need some improvements especially

on the model identification. This result is much perspective, considering both the

data set used, which presented a large variability inter-individual, and the continue

detection for 2.5 full days.

It will start now, a study on the development of the FDM using real data.

The method will be re-adapted for this new challenge, because the real data are

more difficult to analyze than those simulated and present some new problems.

Once that will be obtained satisfactory and safe results on real data, the next step

will be the development a new module of Fault Detection on the Artificial Pancreas,

that will ensure greater patient safety and with contemporary improvements of all

the other parts and modules of the system, it will provide an utilization of the AP

as an alternative to traditional therapy for the treatment of diabetes millitus Type

I.

87





Chapter 8

Appendix A

8.1 Initialization of the DiAs

The DiAs can operate in two modes called open loop and colsed loop. Both

to be activated, need some informations that must be entered by the team work

concerning:

• Some generical subject information (see Figure 8.1(a));

• The Correction Factor profile that consists of a series of time entered each

of which is associated with a value for the correction factor in mg/dl/U (see

Figure 8.1(b));

• The Carbohydrate to Insulin Ratio profile that consists of a series of segments

entered each of which is associated with a value for the carbohydrate to insulin

ratio in g/U (see Figure 8.1(c));

• The Basal profile consists of a series of segments entered each of which is

associated with a value for the basal insulin delivery rate in U/hour (see Figure

8.1(d));

89



CHAPTER 8. APPENDIX A

(a) Subject Information (b) Correction Factor profile

(c) Carbohydrate to Insulin Ratio pro-
file

(d) Basal profile

Figure 8.1: DiAs Initialization.

8.2 Open Loop Mode

The open loop therapy is the same one taken normally by the patient. The only

difference is that the DiAs controls the pump, with which the basal insulin (setted

in the Basal Profile tab), the meal bolus and if necessary some correction bolus

requested by the patient, are delivered.

Futhermore the DiAs, being also connected to the CGM system, displays at the

center of the screen the last CGM measurement like the CGM reciver.

During the course of the open loop, the patient has to insert a few informations such

as, before the meal, the amount of carbohydrates that will be eaten or, if happen,

eventually hypo-treatment.

This mode is useful to compere the standard therapy with the colsed loop therapy

and so to try to understand how and where the system must be improved and when

it works better than the standard therapy.

The main screen of the DiAs during the Open Loop mode is reported in Figure 8.2.
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Figure 8.2: DiAs Open Loop Mode.

8.3 Closed Loop Mode

With the closed loop therapy, the algorithms developed for the glycemic control take

the command of the entire system.

In all early AP, the closed-loop control algorithms belonged to the class of propotional-

integral-derivative, PID, controllers which calculated the insulin bolus in a straight-

forward way. Their utilization was limited in subcutaneous systems because of

unavoidable time lags in subcutaneous glucose sensing and insulin action, [11], so

another control approach was developed: it is the model-predictive-control, MPC,

which avoid the PID limitations by using a mathematical model of the metabolic

system of the person being controlled, [11], and that showed a great ability to keep

glucose control in a safe near-normal range.

In the closed-loop mode, the DiAs still required some user inputs to inform the

control algorithm that a particular event is happening. Usually, this is necessary

before meals and whenever the system signaled imminent risk for hypoglycemia or

hyperglycemia. To alert about the latter risks, located at either side of the main

screen there are two traffic light symbols, see Figure 8.3. If the red hypoglycemia

light turns on, it indicates that the system believes that this condition is imminent

or already underway and an alarm will start to sound. Until now the protocols de-

veloped says that in this case, the patient must check his blood sugar and must be

treat with about 15g of carbohydrate, ≈ 3 sugar sachets, immediately. Otherwise if

the lights are green or yellow, the algorithms are properly working.

If instead, the red hyperglycemia light turns on, it indicates that the system believes

that this other condition can’t be avoided and also in this case a control intervention
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is required.

Figure 8.3: DiAs Closed Loop Mode.

In 2010, the European Commission launching the AP@Home project, which involves

7 universities and 5 companies throughout Europe, [11]. The project is arriving

almost at the end; during the 2013 were concluded all the scheduled outpatient

trials in Padova (Italy), Montpellier (France) and Amsterdam (Netherlands) and is

being organized right now, the final phase in which the patients will use the AP

system during all the day for 3 mounths with the supervision of the work-team,

performed in telemedicine.
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Figure 8.4: An AP@HOME protocol in cases of hypoglycemia
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CHAPTER 8. APPENDIX A
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Figure 8.5: An AP@HOME protocol in cases of hyperglycemia
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