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Introduction

Let V be a one-dimensional complex vector space with coordinate z and let V∗ be
its dual with coordinate w.
The Fourier-Laplace transform, denoted by L, is a functor between the bounded
derived category of DV-modules Db(DV) and the category Db(DV∗): it is de�ned as
an analogue of the integral transform with kernel associated to e−zw. In particu-
lar it gives an equivalence between the full triangulated subcategory Db

hol(DV) of
Db(DV) consisting of objects with holonomic cohomologies and Db

hol(DV∗).
If a is a singular point of M ∈ Db

hol(DV) then, after a rami�cation, M can be
asimptotically written on a sector Va as a �nite direct sum of exponential mod-
ules E f := DVe

f ⊗D OV(∗a) where DVe
f := DV/{P ∈ DV; Pef = 0 on Va and

f ∈ OV(∗a) is a meromorphic function with pole at a. The functions f in this
decomposition are called exponential factors of M . We say that such an f is ad-
missible if it is unbounded at a and, if a =∞, if it's not linear at ∞.
In this setting the stationary phase lemma states that the admissible exponential
factors of LM are obtained by applying the Legendre transform to the admissible
exponential factors of M .
Classically, the stationary phase formula is stated in terms of the so-called local
Fourier-Laplace transform for formal holonomic D-modules. This was introduced
in [3] (see also [8, 2]), by analogy with the l-adic case treated in [15]. An explicit
stationary phase formula was obtained in [16, 6] (see also [9]) for D-modules,
and in [7 , 1] for l-adic sheaves.
Consider now Eb

+(ICV∞) and Eb
+(ICV∞∗), the categories of enhanced indsheaves on

V∞ and on V∗∞ (V∞ is the bounded compacti�cation of V and V∗∞ of V∗, see Section
1.3). The enhanced Fourier-Sato transform, still denoted by L, is a functor from
Eb

+(ICV∞) into Eb
+(ICV∗∞): also this functor is de�ned as an analogue of the inte-

gral transform with kernel associated to e−zw, and it gives an equivalence between
the full triangulated subcategory Eb

R−c(ICV∞) of Eb
+(ICV∞) of R-constructible ind-

sheaves on V∞ and Eb
R−c(ICV∗∞).

We say that K ∈ Eb
R−c(ICV∞) has a normal form at a ∈ V∞ if, after a rami�-

cation, it can be written on a sector Va as a �nite direct sum of R-constructible
exponential indsheaves of the form ERef de�ned near a where ERef is associated
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6 Introduction

to the sheaf C{(z,t)∈V×R; t+Ref(z)≥0} with f a meromorphic function with pole at a.
It is possible to de�ne a functor SolEV∞ : Db(DV∞)op −→ Eb

+(ICV∞) which gives
an enhanced version of the Riemann-Hilbert corrispondence, i.e. a fully faithful
functor SolEV∞ : Db

hol(DV∞)op −→ Eb
R−c(ICV∞); in particular it is possible to re-

construct M from SolEV∞(M ) functorially. Moreover we have SolEV∗∞(LM ) '
LSolEV∞(M ).
This correspondence allows us to translate the stationary phase lemma in terms of
enhanced indsheaves. In this framework a microlocal proof of the lemma is given
in [4].
If instead of V∞ we decide to consider R∞ we have that for each a ∈ R∞ the
enhanced indsheaf K ∈ Eb

R−c(ICR∞) can be written as a �nite direct sum of
R-constructible exponential indsheaves of the form Ef and Ef+.f− de�ned near
a. The exponential indsheaves Ef and Ef+.f− are associated respectively to
the sheaf C{(x,t)∈R×R; t+f(x)≥0} and to the sheaf C{(x,t)∈R×R;−f+(x)≤t<−f−(x)} where
f, f+, f− : V u

a → R are analytic functions "with a good behaviour" (that we'll
explain in Section 2.4) de�ned near a and such that f−(x) ≤ f+(x) for any x ∈ V u

a .
Also in this case the functions f, f+, f− in the decomposition are called exponen-

tial factors of K at a. In this case the Riemann-Hilbert correspondence is not
available, so we'll focus only on the R-constructible exponential indsheaves.
In this setting we can rephrase the stationary phase lemma as follows: f is an
admissible exponential factor de�ned on V u

a in the decomposition of K at a if
and only if g is an admissible exponential factor de�ned on U v

b in the decomposi-
tion of LK at b, where (b, v, g) is given by the Legendre transform of (a, u, f), for
u, v ∈ {+,−}. In particular we have that, for x ∈ V u

a and y ∈ U v
b ,

g(y)− f(x) + xy = 0 for y = f ′(x) :

this is called the stationary phase formula.

In Chapter 1 we recall some basic notions about sheaves of k-modules, then we
de�ne the constructible sheaves and in particular the R-constructible sheaves on
bordered spaces; then we construct the category of indsheaves, which are ind-
objects with values in the category of sheaves with compact support.
In Chapter 2 we introduce the convolution functors: we focus mainly on the con-
volution product, which is an important functor that allows us to de�ne the cat-
egory of enhanced sheaves (they're basically sheaves with an extra variable that
satisfy some properties, explained in Section 2.1, involving the convolution prod-
uct). Then we de�ne the six Grothendieck operations for enhanced sheaves and
give the analogous notions of constructible enhanced sheaves, in particular on bor-
dered spaces. Later we de�ne the category of enhanced indsheaves and generalize
some of the notions given in the chapter.
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In Chapter 3 we recall brie�y some de�nitions regarding the D-modules, then we
present the solution functors and the enhanced version of the Riemann-Hilbert
correspondence: this explains the relation between D-modules and enhanced ind-
sheaves; anyway we don't study in depth the D-modules since we will focus only
on the enhanced indsheaves.
In Chapter 4 we de�ne the analogues of the Fourier-Laplace transform for D-
modules and for enhanced sheaves and indheaves: the latter one is called enhanced
Fourier-Sato transform. Then we describe some properties of the enhanced Fourier-
Sato transform and we compute the transform of an exponential enhanced sheaf
with explicit computations. In the end we show an interesting link between the
Fourier-Sato transform of an enhanced sheaf and its microsupport.
In the �rst section of Chapter 5 we summarize the notions and results in [4] re-
garding the stationary phase lemma in the one-dimensional complex case. In the
second section �rstly we translate the notions given previously for R and then we
compute explicitly the enhanced Fourier-Sato transform of another exponential
sheaf: the complex behaviour of the resulting enhanced sheaf leads us to focus
only on the enhanced indsheaves. After some considerations about enhanced R-
constructible indsheaves we give the statement of the stationary phase lemma in
the real case, and we prove it via direct computations.





Chapter 1

Sheaves and indsheaves

1.1 Sheaves and operations

Firstly, let us recall the notions that we will need later on, following the notations
in [14].
We say that a topological space is good if it is Hausdor�, locally compact, countable
at in�nity and has �nite �abby dimension.
Let k be a �eld. If M is a good topological space, we denote by Mod(kM) the
abelian category of sheaves of k-modules onM and by Db(kM) the bounded derived
category of Mod(kM). If A ⊂ M is a locally closed subset we denote by kA the
constant sheaf on A with stalk k extended by 0 on M \ A, and if F ∈ Db(kM) we
set FA := F ⊗ kA.
We have two internal operations:

· ⊗ · : Db(kM)× Db(kM)→ Db(kM),

RHom(· , ·) : Db(kM)op × Db(kM)→ Db(kM).

Let f : M → N be a morphism of good topological spaces. We have the following
functors:

Rf∗ : Db(kM)→ Db(kN),

Rf! : Db(kM)→ Db(kN),

f−1 : Db(kN)→ Db(kM),

f ! : Db(kN)→ Db(kM).

These functors together with · ⊗ · and RHom(· , ·) are called Grothendieck's six

operations.
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10 1. Sheaves and indsheaves

1.2 Constructible sheaves

Assume now that M is a real analytic manifold.

De�nition 1.2.1. Let Z be a subset ofM . We say that Z is subanalytic at x ∈M
if there exist an open neighborhood U of x and some compact manifolds X1

j , X
2
j

with morphisms f 1
j : X1

j →M , f 2
j : X2

j →M (1 ≤ j ≤ N), such that:

Z ∩ U = U ∩
N⋃
j=1

(f 1
j (X1

j ) \ f 2
j (X2

j )) .

If Z is subanalytic at each x ∈M then we say that Z is subanalytic in M .

De�nition 1.2.2. We say that F ∈ Db(kM) is R-constructible if there exists a
locally �nite covering M =

⋃
i∈IMi by subanalytic subsets such that for all j ∈ Z

and all i ∈ I both F |Mi
and Hj(F )|Mi

are locally constant of �nite rank. We
denote by Db

R−c(kM) the full subcategory of Db(kM) consisting of R-constructible
sheaves.

Example 1.2.3. If Z is a locally closed subanalytic subset of M , then the sheaf
kZ is R-constructible.

Proposition 1.2.4. Let f : M → N be a morphism of real analytic manifolds and

let F, F1, F2 ∈ Db
R−c(kM), G ∈ Db

R−c(kN). Then:

i. F1 ⊗ F2, RHom(F1, F2) ∈ Db
R−c(kM);

ii. f−1G, f !G ∈ Db
R−c(kM);

iii. Rf∗F ∈ Db
R−c(kN) if moreover f is proper on supp(F ).

Consider now a complex analytic manifold X.

De�nition 1.2.5. A subset S ⊂ X is called C-analytic if both S and S \ S are
complex analytic subsets.

De�nition 1.2.6. We say that F ∈ Db(kX) is C-constructible if there exists a
locally �nite covering X =

⋃
i∈I Xi by C-analytic subsets such that for all j ∈ Z

and all i ∈ I both F |Xi and Hj(F )|Xi are locally constant of �nite rank. We denote
by Db

C−c(kX) the full subcategory of Db(kX) consisting of C-constructible sheaves.

Remark. Notice that Db
C−c(kX) is a subcategory of Db

R−c(kXR) where XR the un-
derlying real analytic manifold of X.

Proposition 1.2.7. Let f : X → Y be a morphism of complex analytic manifolds

and let F, F1, F2 ∈ Db
C−c(kX), G ∈ Db

C−c(kY ). Then:
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i. F1 ⊗ F2, RHom(F1, F2) ∈ Db
C−c(kX);

ii. f−1G, f !G ∈ Db
C−c(kX);

iii. Rf∗F ∈ Db
C−c(kY ) if moreover f is proper on supp(F ).

1.3 Bordered spaces

De�nition 1.3.1. A bordered space M∞ = (M, M̌) is a pair of a good topological
space M̌ and an open subset M ⊂ M̌ .

Let M∞ = (M, M̌), N∞ = (N, Ň) be two bordered spaces. For a continuous
map f : M → N we denote by Γf ⊂M ×N its graph and by Γf the closure of Γf
in M̌ × Ň . We denote by q1, q2 the projections:

M̌
q1←− M̌ × Ň q2−→ Ň .

De�nition 1.3.2. A morphism of bordered spaces f : M∞ → N∞ is a continuous
map f : M → N such that q1|Γf : Γf → M̌ is proper. The composition of
two morphisms of bordered spaces is given by the composition of the underlying
continuous maps. If moreover q2|Γf : Γf → Ň is proper then we say that f is
semiproper.

Remark. The bordered spaces together with the morphisms of bordered spaces
form a category, in which the identity idM∞ is given by idM . Moreover the category
of good topological spaces embeds into the category of bordered spaces by the
identi�cation M = (M,M).

De�nition 1.3.3. A subanalytic bordered space M∞ is a bordered space M∞ =
(M, M̌) such that M̌ is a subanalytic space andM is an open subanalytic subset of
M̌ . A subset U ⊂M is subanalytic in M∞ if U is a subanalytic subset of M̌ . Let
N∞ = (N, Ň) be another subanalytic bordered space. A morphism of subanalytic

bordered spaces is a morphism f : M∞ → N∞ of bordered spaces whose graph is
subanalytic in M̌ × Ň .

Let M∞ be a subanalytic bordered space.

De�nition 1.3.4. We say that a sheaf on M is an R-constructible sheaf on M∞ if
it can be extended to an R-constructible sheaf on M̌ . We denote by ModR−c(kM∞)
the full subcategory of Mod(kM∞) consisting of R-constructible sheaves on M∞,
and by Db

R−c(kM∞) its bounded derived category.

De�nition 1.3.5. A complex bordered space X∞ = (X, X̌) is a pair of a complex
manifold X̌ and an open subset X ⊂ X̌ such that X̌ \ X is a complex analytic
subset of X̌.
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De�nition 1.3.6. A morphism of complex bordered spaces f : X∞ → Y∞ is a
complex analytic map f : X → Y such that Γf is a complex analytic subset of
X̌ × Y̌ and q1|Γf : Γf → X̌ is proper. If moreover q2|Γf : Γf → Y̌ is proper then
we say that f is semiproper.

1.4 Indsheaves

Let C be a category. We denote by C ∨ the category of functors from C op to Set
and by h the Yoneda embedding h : C → C ∨ given by X 7→ HomC ( · , X). We
denote by “ lim−→ ” the inductive limit in C ∨, i.e. if I is a small �ltrant category and
a : I → C is an inductive system then “ lim−→ ”a = lim−→(h ◦ a), and so “ lim−→ ”a : C 3
X 7→ lim−→

i∈I
HomC (X, a(i)) ∈ Set.

De�nition 1.4.1. An object F ∈ C ∨ is an ind-object if there exists a small �ltrant
category I and an inductive system a : I → C such that F ' “ lim−→

i∈I
”a. We denote

by Ind(C ) the full subcategory of C ∨ consisting of ind-objects.

Consider now a good topological spaceM and a �eld k. We denote by Modc(kM)
the full subcategory of Mod(kM) consisting of sheaves with compact support.

De�nition 1.4.2. An indsheaf is an object in Ind(Modc(kM)) =: I(kM) (or IkM
if there's no risk of confusion), i.e. is an ind-object in the category of sheaves with
compact support.

We have a natural embedding of the category of sheaves into the category of
indsheaves:

ι : Mod(kM) −→ I(kM)

F 7−→ “lim−→
U⊂M

”FU

with U relatively compact open subset of M . The functor ι is fully faithful and
admits an exact left adjoint:

α : I(kM) −→ Mod(kM)

“ lim−→
i∈I

”Fi 7−→ lim−→
i∈I

Fi . (1.1)

Moreover α admits an exact fully faithful left adjoint, denoted by β.
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Remark. Let F = “ lim−→
i

”Fi, G = “ lim−→
j

”Gj ∈ I(kM) with Fi, Gj ∈ Modc(kM). In

I(kM) there is an inner hom-functor Ihom(F,G) := lim←−
i

“ lim−→
j

”Hom(Fi, Gj). We

set Hom := α ◦ Ihom. We have also a tensor product, de�ned as F ⊗ G :=
“ lim−→

i,j

”Fi ⊗Gj.

De�nition 1.4.3. Let f : M → N be a morphism of good topological spaces,
F = “ lim−→

i

”Fi ∈ I(kM) and G = “ lim−→
i

”Gi ∈ I(kN) with Fi ∈ Modc(kM), Gi ∈

Modc(kN). We de�ne the functors f−1, f∗, f!! as:

f−1 : I(kN) −→ I(kM)

G 7−→ f−1G = “ lim−→
i

”“lim−→
U⊂M

”(f−1Gi)U ,

with U relatively compact in M ,

f∗ : I(kM) −→ I(kN)

F 7−→ f∗F = lim←−
K

“ lim−→
i

”f∗FiK

with K compact in M , and

f!! : I(kM) −→ I(kN)

F 7−→ f!!F = “ lim−→
i

”f∗Fi .

Notice that we denote the proper direct image of an indsheaf with f!! because
in general f!! ◦ ιM 6= ιN ◦ f!.
If we take the bounded derived categories of I(kM) and I(kN), respectively Db(IkM)
and Db(IkN), we can de�ne the derived functors ⊗, RIhom(· , ·), f−1, Rf∗, Rf!!.
Rf!! admits a right adjoint, denoted by f !: in this way we have obtained the six
Grothendieck operations for indsheaves.

Now let M∞ = (M, M̌) be a bordered space.

De�nition 1.4.4. We de�ne Db(IkM∞), the bounded derived category of ind-
sheaves on M∞, as Db(Ind(Modc(kM∞))) where Modc(kM∞) denotes the full sub-
category of Mod(kM∞) consisting of sheaves on M whose support is relatively
compact in M∞ (i. e. such that it is contained in a compact subset of M̌).

Remark. There is a natural equivalence of categories Db(IkM∞) ' Db(IkM̌)/Db(IkM̌\M)

and a quotient functor q : Db(IkM̌)→ Db(IkM∞). Moreover there is a natural exact
embedding Db(kM)� Db(IkM∞) wich has an exact left adjoint α.
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The functors · ⊗ ·, RIhom(· , ·) in Db(IkM) induce well-de�ned functors (which
we denote in the same way) in Db(IkM∞).

De�nition 1.4.5. Let f : M∞ → N∞ be a morphism of bordered spaces. For
F ∈ Db(IkM̌), G ∈ Db(IkŇ) we de�ne:

Rf∗F = Rq2∗RIhom(kΓf , q
!
1F ),

f−1G = Rq1!!(kΓf ⊗ q−1
2 G),

Rf!!F = Rq2!!(kΓf ⊗ q−1
1 F ),

f !G = Rq1∗RIhom(kΓf , q
!
2G).

These de�nitions induce well-de�ned functorsRf∗, Rf!! : Db(IkM∞)→ Db(IkN∞)
and f−1, f ! : Db(IkN∞) → Db(IkM∞) through the quotient functor q. Together
with · ⊗ ·, RIhom(· , ·) we have constructed the six Grothendieck operations for
Db(IkM∞).



Chapter 2

Enhanced sheaves and indsheaves

LetM be a good topological space and let µ, q1, q2 : M×R×R→M×R be de�ned
as µ(x, t1, t2) := (x, t1 + t2), q1(x, t1, t2) := (x, t1), q2(x, t1, t2) := (x, t2). We'll use
the notation k{t=0} (resp. k{t≥a}, k{t≤a}) to indicate kM×{0} (resp. kM×{t∈R: t≥a},
kM×{t∈R: t≤a}) in Db(kM×R).

2.1 Convolution and enhanced sheaves

De�nition 2.1.1. We de�ne the convolution functors in Db(kM×R) as

F1

+
⊗ F2 := Rµ!(q

−1
1 F1 ⊗ q−1

2 F2) ,

RHom+(F1, F2) := Rq1∗RHom(q−1
2 F1, µ

!F2) .

The functor ·
+
⊗ · is called convolution product in Db(kM×R).

Remark. The convolution product makes Db(kM×R) into a commutative tensor
category, with k{t=0} as unit object.

Remark. In general k{t≥a}
+
⊗ k{t≥b} ' k{t≥a+b}, in fact we have k{t≥a}

+
⊗ k{t≥b} '

Rµ!(k{(x, t1, t2)∈M×R×R; t1≥a, t2≥b})
ϕ−→ Rµ!(k{(x, t1, t2)∈M×R×R; t1≥a, t2≥b, t1+t2=a+b}) '

k{t≥a+b}.

Let's compute the �bers of k{t≥a}
+
⊗ k{t≥b} ' k{t≥a+b} in order to show that ϕ

is an isomorphism. We can regard M as the single-point space {?}; then, �xed

15



16 2. Enhanced sheaves and indsheaves

(?, t) ∈M × R, we have:

(k{t≥a}
+
⊗ k{t≥b})(?, t) = (Rµ!(q

−1
1 k{t≥a} ⊗ q−1

2 k{t≥b}))(?, t)

' RΓc(µ
−1(?, t); q−1

1 k{t≥a} ⊗ q−1
2 k{t≥b}|µ−1(?, t))

= RΓc({(?, t1, t2) : t1, t2 ∈ R, t1 + t2 = t}; q−1
1 k{t≥a} ⊗ q−1

2 k{t≥b}|µ−1(?, t))

' RΓc({(t1, t2) : t1, t2 ∈ R, t1 + t2 = t}; k{(t1, t2):t1,t2∈R, t1≥a, t2≥b}|{(t1, t2): t1,t2∈R,t1+t2=t})

=

{
0 if t < a+ b

k if t ≥ a+ b
,

so ϕ is an isomorphism.

t1

t2

t2 = b

t1 = a

t1 + t2 = t

t1 + t2 = a+ b

t1 ≥ a, t2 ≥ b

Moreover we have k{t≥a}
+
⊗ k{t≥0} ' k{t≥a}, k{t>a}

+
⊗ k{t≥0} ' 0, k{t>a}

+
⊗ k{t>0} '

k{t>a}[−1 ], k{t≤a}
+
⊗ k{t≥0} ' 0, k{t<a}

+
⊗ k{t≥0} ' k{t≥a}[−1 ] and k{t<a}

+
⊗ k{t>0} '

kM×R[−1 ].

De�nition 2.1.2. We de�ne the category of enhanced sheaves as the quotient
category Eb

+(kM) := Db(kM×R)/N, where N is the full subcategory of Db(kM×R)

de�ned as {F ∈ Db(kM×R) : F
+
⊗ k{t≥0} ' 0}.

Remark. The quotient functor Q : Db(kM×R)→ Eb
+(kM) induces an equivalence of

categories: {F ∈ Db(kM×R) : F
+
⊗ k{t≥0} ' F} ∼−→ Eb

+(kM). Moreover Q admits

fully faithful left and right adjoints de�ned respectively as LE(QF ) := k{t≥0}
+
⊗ F
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and RE(QF ) := RHom+(k{t≥0}, F ).
There is also a natural embedding ε : Db(kM)� Eb

+(kM), F 7→ Q(k{t≥0} ⊗ π−1F )
where π : M × R→M is the projection.
The natural t-structure of Db(kM×R) induces by LE a t-structure for Eb

+(kM), and
we denote by E0

+(kM) = {K ∈ Eb
+(kM);HjLE(K) = 0 for any j 6= 0} its heart.

2.2 Operations on enhanced sheaves

Consider a morphism of good topological spaces f : M → N and denote fR :=
f × idR : M × R→ N × R.

De�nition 2.2.1. Let F ∈ Db(kM×R) and G ∈ Db(kN×R). We de�ne the functors
on enhanced sheaves Ef∗, Ef!, Ef−1, Ef ! as Ef∗(QF ) := Q(RfR∗F ), Ef!(QF ) :=
Q(RfR!F ), Ef−1(QG) := Q(f−1

R G), Ef !(QG) := Q(f !
RG). Moreover we de�ne

·
+
⊗ · and RHom+(·, ·) for enhanced sheaves as the functors induced from the

ones of Db(kM×R). These functors are the six operations for enhanced sheaves.

There are some useful relations that hold also for the operations of enhanced
sheaves, e.g the analogue of the projection formula for usual sheaves. Let's prove
some of them:

Proposition 2.2.2. Let f : M → N be a morphism of good topological spaces and

K ∈ Eb(kM), L, L1, L2 ∈ Eb(kN). Then:

i. Ef−1L1

+
⊗ Ef−1L2 ' Ef−1(L1

+
⊗ L2);

ii. Ef!K
+
⊗ L ' Ef!(K

+
⊗ Ef−1L);

iii. RHom+(L, Ef∗K) ' Ef∗RHom+(Ef−1L, K);

iv. RHom+(Ef!K, L) ' Ef∗RHom+(K, Ef !L);

v. Ef !RHom+(L1, L2) ' RHom+(Ef−1LG1, Ef
!L2).

Proof. Consider the projections πM : M × R → M , πN : N × R → N and
the maps µ, q1, q2 : M × R × R → M × R de�ned above. De�ne analogously
µ′, q′1, q

′
2 : N×R×R→ N×R and put fR2 := f×idR×idR : M×R×R→ N×R×R.

We have the following Cartesian squares:

M × R× R M × R

M × R M

q1

µ πM

πM

,

M × R× R M × R

M × R M

q2

µ πM

πM

,

M × R× R M × R

M × R M

q1

q2 πM

πM

,
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and the same with N , µ′, q′1, q
′
2, πN instead of M , µ, q1, q2, πM , and:

M × R× R M × R

N × R× R N × R

µ

fR2 fR

µ′

,

M × R× R M × R

N × R× R N × R

q1

fR2 fR

q′1

,

M × R× R M × R

N × R× R N × R

q2

fR2 fR

q′2

.

Remember that in general for a Cartesian square of locally compact spaces with
continuous maps

X Y

X ′ Y ′

f

g g′

f ′

it holds Rf! ◦ g−1 ' g′−1 ◦Rf ′! and Rg∗ ◦ f ! ' f ′! ◦Rg′∗.
We will use also some known isomorphisms of sheaf functors (proofs can be found
in [14]).
Let F ∈ Db(kM×R), G, G1, G2 ∈ Db(kN×R) be such that K = QF and L =
QG, L1 = QG1, L2 = QG2.
i.

Ef−1(QG1)
+
⊗ Ef−1(QG2) = Qf−1

R G1

+
⊗Qf−1

R G2

= QRµ!(q
−1
1 f−1

R G1 ⊗ q−1
2 f−1

R G2)

' QRµ!(f
−1
R2 q

′−1
1 G1 ⊗ f−1

R2 q
′−1
2 G2)

' QRµ!f
−1
R2 (q′−1

1 G1 ⊗ q′−1
2 G2))

' Qf−1
R Rµ′!(q

′−1
1 G1 ⊗ q′−1

2 G2)

= Ef−1(QRµ′!(q
′−1
1 G1 ⊗ q′−1

2 G2))

= Ef−1(QG1

+
⊗QG2) ;

ii.

Ef!(QF )
+
⊗QG = QRfR!F

+
⊗QG

= QRµ′!(q
′−1
1 RfR!F ⊗ q′−1

2 G2)

' QRµ′!(RfR2!q
−1
1 F ⊗ q′−1

2 G2)

' QRµ′!RfR2!(q
−1
1 F ⊗Rf−1

R2 q
′−1
2 G2)

' QRµ′!RfR2!(q
−1
1 F ⊗ q−1

2 Rf−1
R G2)

' QRfR!Rµ!(q
−1
1 F ⊗ q−1

2 Rf−1
R G2)

= Ef!(QRµ!(q
−1
1 F ⊗Rf−1

R2 q
′−1
2 G2))

= Ef!(QF
+
⊗QRf−1

R G2))

= Ef!(QF
+
⊗ Ef−1(QG)) ;
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iii.

RHom+(QG, Ef∗(QF )) = RHom+(QG, QRfR∗F )

= QRq′1∗(RHom(q′−1
2 G, µ′!RfR∗F ))

' QRq′1∗(RHom(q′−1
2 G, RfR2∗µ

!F ))

' QRq′1∗(RfR2∗RHom(Rf−1
R2 q

′−1
2 G, µ!F ))

' QRq′1∗RfR2∗RHom(q−1
2 Rf−1

R G, µ!F )

' QRfR∗Rq1∗RHom(q−1
2 Rf−1

R G, µ!F )

= Ef∗(QRq1∗RHom(q−1
2 Rf−1

R G, µ!F ))

= Ef∗(Rq1∗RHom(QRf−1
R G, QF ))

= Ef∗RHom+(Ef−1(QG), QF ) ;

iv.

RHom+(Ef!(QF ), QG) = RHom+(QRfR!F, QG))

= QRq′1∗(RHom(q′−1
2 RfR!F, µ

′!G))

' QRq′1∗(RHom(RfR2!q
−1
2 F, µ′!G))

' QRq′1∗(RfR2∗RHom(q−1
2 F, f !

R2µ′!G))

' QRq′1∗RfR2∗RHom(q−1
2 F, µ!f !

RG)

' QRfR∗Rq1∗RHom(q−1
2 F, µ!f !

RG)

= Ef∗(QRq1∗RHom(q−1
2 F, µ!f !

RG))

= Ef∗RHom+(QF, Qf !
RG)

= Ef∗RHom+(QF, Ef !(QG)) ;

v.

Ef !RHom+(QG1, QG2) = Ef !(QRq′1∗RHom(q′−1
2 G1, µ

′!G2))

= Qf !
RRq

′
1∗RHom(q′−1

2 G1, µ
′!G2)

' QRq1∗f
!
R2RHom(q′−1

2 G1, µ
′!G2)

' QRq1∗RHom(f−1
R2 q

′−1
2 G1, f

!
R2µ′!G2)

' QRq1∗RHom(q−1
2 f−1

R G1, µ
!f !

RG2)

= RHom+(Q(f−1
R G1), Q(f !

RG2))

= RHom+(Ef−1(QG1), Ef !(QG2)) .
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2.3 R-constructible enhanced sheaves

Denote by R∞ := (R,R) the bordered space in which R := R ∪ {+∞, −∞} is
the two-point compacti�cation of the real line. Notice that R∞ is isomorphic to
(R,P1(R)) where P1(R) = R ∪ {∞} is the real projective line.
Consider a subanalytic space M and a subanalytic bordered space M∞: then also
M∞ × R∞ is a subanalytic bordered space.

De�nition 2.3.1. We de�ne the category Eb
R−c(kM) (resp. Eb

R−c(kM∞)) of R-
constructible enhanced sheaves on M (resp. on M∞) as the full triangulated
subcategory of Db

R−c(kM×R∞) (resp. of Db
R−c(kM∞×R∞)) whose objects K satisfy

the condition K
+
⊗ k{t≥0}

∼−→ K. The heart of the t-structure of Eb
R−c(kM) is

denoted by E0
R−c(kM).

Remark. If f : M → N is a semiproper morphism of real analytic manifolds then
the six operations send R-constructible enhanced sheaves into R-constructible en-
hanced sheaves; in particular the convolution functors send R-constructible en-
hanced sheaves into R-constructible enhanced sheaves.

Remark. If X is a complex manifold then an R-constructible sheaf on X is de�ned
as an R-constructible sheaf on the underlying real analytic manifold XR.

2.4 Exponential enhanced sheaves

Let M be a good topological space.

De�nition 2.4.1. Let U ⊂ M be an open subset and let ϕ, ϕ+, ϕ− : U → R
be continuous functions with ϕ−(x) ≤ ϕ+(x) for any x ∈ U . The associated
exponential enhanced sheaves are de�ned by, respectively, EϕU |M := Qk{t+ϕ≥0} and

Eϕ
+.ϕ−

U |M := Qk{−ϕ+≤t<−ϕ−}, where {t+ϕ ≥ 0} denotes {(x, t) ∈ U×R; t+ϕ(x) ≥ 0}
and similarly for {−ϕ+ ≤ t < −ϕ−}. If U = M we write Eϕ and Eϕ

+.ϕ− .

Remark. Notice that LE(EϕU |M) ' k{t+ϕ≥0} and LE(Eϕ
+.ϕ−

U |M ) ' k{−ϕ+≤t<−ϕ−}, and

so EϕU |M , E
ϕ+.ϕ−

U |M ∈ E0
+(kM). Moreover the exact sequence in Db(kM×R)

0→ k{−ϕ+≤t<−ϕ−} → k{t+ϕ+≥0} → k{t+ϕ−≥0} → 0

induces the exact sequence in E0
+(kM)

0→ Eϕ
+.ϕ−

U |M → Eϕ
+

U |M → Eϕ
−

U |M → 0 .
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Remark. If we have ϕ, ψ : U → R then EϕU |M
+
⊗ EψU |M ' Eϕ+ψ

U |M . It can be proven

analogously to k{t≥a}
+
⊗ k{t≥b} ' k{t≥a+b}.

Let M∞ = (M, M̌) be a subanalytic bordered space.

De�nition 2.4.2. Let U be an open subanalytic subset of M∞. A function ϕ :
U → R is globally subanalytic if its graph is subanalytic in M∞ × R∞.

Remark. If ϕ, ϕ+, ϕ− : U → R are continuous globally subanalytic functions with
ϕ−(x) ≤ ϕ+(x) for any x ∈ U then EϕU |M∞ , E

ϕ+.ϕ−

U |M∞ ∈ E0
R−c(kM∞).

2.5 Enhanced indsheaves

Let M be a good topological space and let M∞ = (M, M̌) be a bordered space;
consider the morphisms µ, q1, q2 : M × R∞ × R∞ → M × R∞ and µ, q1, q2 :
M∞ × R∞ × R∞ →M∞ × R∞ induced by the ones de�ned above.

De�nition 2.5.1. We de�ne the convolution functors in Db(IkM∞×R∞) as F1

+
⊗

F2 := Rµ!!(q
−1
1 F1 ⊗ q−1

2 F2) and Ihom+(F1, F2) := Rq1∗RIhom(q−1
2 F1, µ

!F2).

We will keep the notations k{t=0}, k{t≥a}, k{t≤a} as above, withM∞×R∞ instead
of M × R where k{t=0}, k{t≥a}, k{t≤a} are regarded as objects of Db(IkM∞×R∞).

Remark. The convolution product makes Db(IkM∞×R∞) into a commutative tensor
category, with k{t=0} as unit object.

De�nition 2.5.2. We de�ne the category of enhanced indsheaves as the quotient
category Eb

+(IkM) := Db(IkM×R∞)/N (or Eb
+(IkM∞) := Db(IkM∞×R∞)/N), where

N is the full subcategory of Db(IkM×R∞) de�ned as {F ∈ Db(IkM×R∞) : F
+
⊗

k{t≥0} ' 0} (or the full subcategory of Db(IkM∞×R∞) de�ned as {F ∈ Db(IkM∞×R∞) :

F
+
⊗ k{t≥0} ' 0}).

Remark. The quotient functor Q : Db(IkM×R∞)→ Eb
+(IkM) induces an equivalence

of categories as for the enhanced sheaves:

{F ∈ Db(IkM×R∞) : F
+
⊗ k{t≥0} ' F} ∼−→ Eb

+(IkM∞).

Moreover Q admits fully faithful left and right adjoints LE and RE de�ned as for
the enhanced sheaves. The same holds with M∞ instead of M .
We have the natural embeddings Eb

+(kM) � Eb
+(IkM∞) and ε : Db(IkM∞) �

Eb
+(IkM∞) where ε is de�ned as for the enhanced sheaves.

We denote by E0
+(IkM) (or E0

+(IkM∞)) the heart of the natural t-structure of
Eb

+(IkM) (or of Eb
+(IkM∞)).
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De�nition 2.5.3. Let f : M → N be a morphism of good topological spaces
(or let f : M∞ → N∞ be a morphism of bordered spaces). We de�ne the six

operations for enhanced indsheaves as the functors ·
+
⊗ ·, Ihom+(·, ·), Ef∗, Ef!!,

Ef−1, Ef ! induced by the functors ·
+
⊗ ·, Ihom+(·, ·), RfR∞∗, RfR∞!!, f

−1
R∞ , f

!
R∞

for Db(IkM×R∞) (or for Db(IkM∞×R∞)).

Remark. If f : M → N is a morphism of good topological spaces andK ∈ Eb(IkM),
L, L1, L2 ∈ Eb(IkN) then the same isomorphisms as the ones in Proposition 2.2.2
hold by changing Ef! and RHom+(·, ·) with Ef!! and Ihom+(·, ·).

Consider the projection π : M∞×R∞ →M∞. We de�ne the outer hom functors

with values respectively in Db(IkM∞) and in Db(kM∞) as respectively:

IhomE(K1, K2) := Rπ∗RIhom(LEK1, R
EK2) ,

HomE(K1, K2) := αRIhomE(K1, K2)

where α is induced by the functor (1.1).
We de�ne also RHomE(K1, K2) := RΓ(M ; HomE(K1, K2)) ∈ Db(k).
Consider the projections p1 : M∞ × N∞ → M∞, p2 : M∞ × N∞ → N∞ and
let K ∈ Eb

+(IkM∞), L ∈ Eb
+(IkN∞). We de�ne their external tensor product as

K
+

� L := Ep−1
1 K

+
⊗ Ep−1

2 L.

We denote by kEM := Q(“ lim−→
c→+∞

”k{t≥c}) ∈ Eb
+(IkM) and by kEM∞ := Ej−1(kE

M̌
) ∈

Eb
+(IkM∞) where j : M∞ → M̌ is the natural morphism.

Lemma 2.5.4. The functor kEM∞
+
⊗ · is an exact functor.

De�nition 2.5.5. A stable object is an object K ∈ Eb
+(IkM) such that

K
'←− k{t≥0}

+
⊗K '−→ k{t≥a}

+
⊗K

for any a ≥ 0 or, equivalently, such that

k{t≥0}
+
⊗K ' kEM

+
⊗K .

Proposition 2.5.6. Let f : M → N be a continuous map of good topological

spaces and let K ∈ Eb
+(IkM), L ∈ Eb

+(IkN). Then:

i. Ef!!(k
E
M

+
⊗K) ' kEN

+
⊗ Ef!!K;
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ii. Ef−1(kEN
+
⊗ L) ' kEM

+
⊗ Ef−1L;

iii. Ef !(kEN
+
⊗ L) ' kEM

+
⊗ Ef !L.

Thus Ef!!, Ef
−1 and Ef ! send stable objects into stable objects.

Assume now that M∞ is a subanalytic bordered space and consider the pro-
jection π : M∞ × R∞ →M∞.

De�nition 2.5.7. We say that an object K ∈ Eb
+(IkM) (or K ∈ Eb

+(IkM∞)) is
R-constructible if for any relatively compact subanalytic open subset U ⊂ M (or
for any subanalytic open subset U ⊂ M relatively compact in M̌) there exists

F ∈ Db
R−c(kM×R∞) (or F ∈ Db

R−c(kM∞×R∞)) such that π−1kU ⊗ K ' kEM
+
⊗ QF

(or π−1kU ⊗K ' kEM∞
+
⊗QF ). We denote by Eb

R−c(IkM) (or Eb
R−c(IkM∞)) the full

subcategory of Eb
+(IkM) (or of Eb

+(IkM∞)) consisting of R-constructible objects.

Remark. There is another natural embedding e : Db
R−c(kM∞)� Eb

R−c(IkM∞), F 7→
kEM∞

+
⊗ ε(F ), and a canonical functor Eb

R−c(kM∞)→ Eb
R−c(IkM∞), K 7→ kEM∞

+
⊗K;

the latter is essentially surjective but not fully faithful.

Remark. Note that R-constructible objects in Eb
+(IkM) are stable. Moreover if

f : M → N is a semiproper morphism of real analytic manifolds then the six op-
erations send R-constructible enhanced indsheaves into R-constructible enhanced
indsheaves.

De�nition 2.5.8. Let U ⊂ M be an open subset and let ϕ, ϕ+, ϕ− : U → R
be continuous functions with ϕ−(x) ≤ ϕ+(x) for any x ∈ U . The associated

exponential enhanced indsheaves are de�ned by, respectively, EϕU |M∞ := kEM∞
+
⊗EϕU |M

and Eϕ
+.ϕ−

U |M∞ := kEM∞
+
⊗ Eϕ

+.ϕ−

U |M , where EϕU |M , E
ϕ+.ϕ−

U |M are regarded as objects of
Eb

+(IkM∞).

Lemma 2.5.9. Let ϕ+, ϕ− : U → R be continuous functions with ϕ−(x) ≤ ϕ+(x)

for any x ∈ U . Then Eϕ
+.ϕ−

U |M∞ ' 0 if and only if ϕ+ − ϕ− is bounded on K ∩ U for

any relatively compact subset K of M∞.

Remark. Since the functor kEM∞
+
⊗ · is exact, we have that EϕU |M∞ , E

ϕ+.ϕ−

U |M∞ ∈
E0

+(IkM). Moreover we have the short exact sequence in E0
+(IkM):

0→ Eϕ
+.ϕ−

U |M∞ → Eϕ
+

U |M∞ → Eϕ
−

U |M∞ → 0 .

In particular if ϕ : U → R is bounded with m = inf
x∈U

ϕ(x) then we have the short

exact sequence:
0→ Eϕ.mU |M∞ → EϕU |M∞ → EmU |M∞ → 0 .
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By using the lemma above we �nd Eϕ.mU |M∞ ' 0, hence EϕU |M∞ ' EmU |M∞ ' E0
U |M∞ ,

and E0
U |M∞ ' KE

U := KE
M∞

+
⊗Q(π−1kU).

Remark. If ϕ, ϕ+, ϕ− : U → R are continuous globally subanalytic functions with
ϕ−(x) ≤ ϕ+(x) for any x ∈ U then EϕU |M∞ , E

ϕ+.ϕ−

U |M∞ ∈ E0
R−c(IkM∞).



Chapter 3

Riemann-Hilbert correspondence

3.1 D-modules

Let X be a complex manifold. We denote by:

• dX the complex dimension of X,

• OX the sheaf of holomorphic functions on X,

• ΘX the sheaf of vector �elds on X,

• DX the sheaf of di�erential operators on X,

• ΩX the invertible OX-module of di�erential forms of degree dX ,

• Mod(DX) and Mod(Dop
X ) respectively the abelian category of left DX-modules

and the one of right DX-modules,

• Db(DX) the bounded derived category of Mod(DX),

• ⊗D, RHomDX (· , ·)Df ∗, Df∗, Df! the operations Db(DX), given a morphism
of complex manifolds f : X → Y .

Remark. There is an equivalence of categories

r : Mod(DX) −→ Mod(Dop
X )

M 7−→M r := ΩX ⊗
OX

M ,

so it is enough to study left DX-modules.

25
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A DX-module M is coherent if it is locally �nitely generated (i. e. locally there
exists n ∈ N such that there is an exact sequence Dn

X → M → 0) and for every
open subset U ⊂ X all its locally �nitely generated DX |U -submodules are locally
�nitely presented (i.e. locally there exist n1, n2 ∈ N such that there is an exact
sequence Dn1

X → Dn2
X → M → 0). We denote by Db

coh(DX) the full triangulated
subcategory of Db(DX) consisting of objects with coherent cohomologies. It is pos-
sible to associate to a coherent DX-module M its characteristic variety char(M ),
which is a closed conic involutive (in particular such that dimC(char(M )) ≥ dX)
subset of the cotangent bundle T ∗X. If moreover dimC(char(M )) = dX we say
that M is holonomic.
We denote by Db

hol(DX) the full triangulated subcategory of Db
coh(DX) consisting of

objects with holonomic cohomologies. We denote by Db
rh(DX) the full triangulated

subcategory of Db
hol(DX) consisting of objects with regular holonomic cohomolo-

gies; if X is one-dimensional then an object M ∈ Db
hol(DX) has regular cohomolo-

gies if they consist on Fuchsian di�erential operators, i.e. di�erential operators in
which every singular point (including the point at in�nity) is a regular singularity.

3.2 Solution functors

De�nition 3.2.1. Let X be a complex analytic manifold and Y ⊂ X be a complex
analytic hypersurface. We denote by OX(∗Y ) the sheaf of meromorphic functions
with poles at Y . For M ∈ Db(DX) we de�ne M (∗Y ) := M ⊗D OX(∗Y ). Let
U = X \ Y ; for f ∈ OX(∗Y ) we set DXe

f := DX/{P ∈ DX ; Pef = 0 on U} and
E f
U |X := DXe

f (∗Y ); E f
U |X is called exponential module with exponent f . These are

holonomic DX-modules.

De�nition 3.2.2. Let X∞ = (X, X̌) be a complex bordered space and let Z =
X̌ \ X. We de�ne the triangolated category Db

hol(DX∞) as the full triangulated
subcategory of Db

hol(DX̌) consisting of objects M such that M (∗Z) 'M .

Remark. The operations for DX-modules can be extended for DX∞-modules. If
f : X∞ → Y∞ is a semiproper morphism of complex bordered spaces then the
operations send holonomic D-modules into holonomic D-modules.

De�nition 3.2.3. The solution functor is de�ned as

SolX : Db(DX)op −→ Db(CX)

M 7−→ RHomDX (M , OX) .

Remark. Notice that if M = DX
DXP

with P ∈ DX then in Db(CX) we have the distin-

guished triangle SolX(M ) −→ OX
P ·−→ OX

+1−→. In particular H0SolX(M ) '
{u ∈ OX ;Pu = 0} and H1SolX(M ) ' OX

POX
.
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De�nition 3.2.4. The enhanced solution functor is de�ned as

SolEX : Db(DX)op −→ Eb
+(ICX)

M 7−→ RHomDX (M , OE
X) ,

(here we don't recall the de�nition of OE
X).

Theorem 3.2.5. Let Y ⊂ X be a complex analytic hypersurface, U = X \ Y and

f ∈ OX(∗Y ). Then
SolEX(E f

U |X) ' ERef
U |X .

3.3 Riemann-Hilbert correspondence

Theorem 3.3.1 (Classical Riemann-Hilbert correspondence). The solution func-

tor gives an equivalence of categories:

SolX : Db
rh(DX)op

∼−→ Db
C−c(CX) .

Theorem 3.3.2 (Enhanced Riemann-Hilbert correspondence). The enhanced so-

lution functor gives a fully faithful functor:

SolEX : Db
hol(DX)op −→ Eb

R−c(ICX) ;

in particular it is possible to reconstruct M from SolEX(M ) functorially.

The two correspondences are compatible, in fact we have the following quasi-
commutative diagram:

Db
rh(DX)op Db

C−c(CX) Db
rh(DX)op

Db
hol(DX)op Eb

R−c(ICX) Db(DX)op

∼
SolX

id

∼

e

SolEX

canonical embedding

.





Chapter 4

Fourier transforms

4.1 Integral transforms

Consider the following morphisms of complex manifolds:

S

X Y .

p q

De�nition 4.1.1. Let L ∈ Db(DS). The integral transform with kernel L for
DX-modules is the functor

· D◦ L : Db(DX) −→ Db(DY )

M 7−→M
D◦ L := Dq∗(Dp

∗M
D
⊗L ) .

De�nition 4.1.2. Let L ∈ Eb
+(IkS). The integral transform with kernel L for

enhanced indsheaves is the functor

· E◦ L : Eb
+(IkX) −→ Eb

+(IkY )

K 7−→ F
E◦ L := Eq!!(Ep

−1K
+
⊗ L) .

Notice that we can de�ne the functor in the above de�nition analogously for
the enhanced sheaves by changing L ∈ Eb

+(IkS) with L ∈ Eb
+(kS) and Eq!! with

Eq!.

29
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Consider the commutative diagram of complex manifolds

S

X × Y

X Y

p q

r

p′ q′

where r := (p, q).

Proposition 4.1.3. If L ∈ Eb
+(IkS) and K ∈ Eb

+(IkX) then K
E◦ L ' K

E◦ Er!!L.

Proof. We have K
E◦ L = Eq!!(Ep

−1K
+
⊗ L) ' Eq′!!Er!!(Er

−1Ep′−1K
+
⊗ L) '

Eq′!!(Ep
′−1K

+
⊗ Er!!L) = K

E◦ Er!!L.

Let Z be another complex manifold. Consider the following diagram with
cartesian square:

X × Y × Z

X × Y � Y × Z

X Y Z .

r′
q′

p q r
s

Proposition 4.1.4. Let L ∈ Eb
+(IkX×Y ), L̃ ∈ Eb

+(IkY×Z) and set L
+◦ L̃ := Er′−1

+
⊗

Eq′−1L̃ ∈ Eb
+(IkX×Y×Z). If K ∈ Eb

+(IkX) then (K
E◦ L)

E◦ L̃ ' K
E◦ (L

+◦ L̃).

Proof. We have:

(K
E◦ L)

E◦ L̃ = Eq!!(Ep
−1K

+
⊗ L)

E◦ L̃ = Es!!(Er
−1Eq!!(Ep

−1K
+
⊗ L)

+
⊗ L̃)

' Es!!(Eq
′
!!Er

′−1(Ep−1K
+
⊗ L)

+
⊗ L̃)

' Es!!(Eq
′
!!(Er

′−1Ep−1K
+
⊗ Er′−1L)

+
⊗ L̃)

' Es!!Eq
′
!!(Er

′−1Ep−1K
+
⊗ Er′−1L

+
⊗ Eq′−1L̃)

' E(s ◦ q′)!!(E(p ◦ r′)−1K
+
⊗ (L

+◦ L̃)) = K
E◦ (L

+◦ L̃) .
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4.2 Fourier-Laplace transform

Let V be a one-dimensional complex vector space with coordinate z and let V∗
be its dual with coordinate w. Let P := V ∪ {∞} and P∗ := V∗ ∪ {∞} be their
associated projective lines: then we have the bordered spaces V∞ := (V,P) and
V∗∞ := (V∗,P∗). Consider the morphisms

V∞ × V∗∞

V∞ V∗∞

p q

induced by the projections (z, w) 7→ z and (z, w) 7→ w.

De�nition 4.2.1. Let L := E −zwV×V∗|V∞×V∗∞
, L a := E zw

V×V∗|V∞×V∗∞
∈ Db(DV∞×V∗∞).

The Fourier-Laplace transform for D-modules is the functor

L : Db(DV∞) −→ Db(DV∗∞)

M 7−→M
D◦ L = Dq∗(E

−zw
V×V∗|V∞×V∗∞

D
⊗Dp∗M ) .

It admits a quasi-inverse, de�ned as:

L: Db(DV∗∞) −→ Db(DV∞)

N 7−→ L a D◦ N = Dp∗(E
zw
V×V∗|V∞×V∗∞

D
⊗Dq∗N ) .

Remark. The Fourier-Laplace transform and its quasi-inverse interchange Db
hol(DV∞)

and Db
hol(DV∗∞).

4.3 Enhanced Fourier-Sato transform

Consider again the two bordered spaces V∞ := (V,P) and V∗∞ := (V∗,P∗) de�ned
before and the morphisms

V∞ × V∗∞

V∞ V∗∞

p q

induced by the projections (z, w) 7→ z and (z, w) 7→ w.
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De�nition 4.3.1. Let L := E−zwV×V∗|V∞×V∗∞
[1], La := EzwV×V∗|V∞×V∗∞ [1] ∈ Eb

+(kV∞×V∗∞).
The enhanced Fourier-Sato transform for enhanced sheaves is the functor

L : Eb
+(kV∞) −→ Eb

+(kV∗∞)

K 7−→ K
E◦ L = Eq!(E

−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Ep−1K) .

It admits a quasi-inverse, de�ned as:

L: Eb
+(kV∗∞) −→ Eb

+(kV∞)

P 7−→ La
E◦ P = Ep!(E

zw
V×V∗|V∞×V∗∞ [1]

+
⊗ Eq−1P ) .

If L := E−zwV×V∗|V∞×V∗∞
[1], La := EzwV×V∗|V∞×V∗∞ [1] ∈ Eb

+(IkV∞×V∗∞) then we de�ne
analogously the enhanced Fourier-Sato transform with kernel L for enhanced ind-
sheaves and its quasi-inverse by replacing Ep! and Eq! with Ep!! and Eq!!.

Let's show that L and Lare quasi-inverse of each other. Recall that that V∗∗∞ '
V∞ and let z̃ be its coordinate. Consider the diagram with cartesian square

V∞ × V∗∞ × V∞

V∞ × V∗∞ � V∗∞ × V∞

V∞ V∗∞ V∞ .

q12 q23

q1 q2 q2
q3

where the maps are induced by the projections (z, w, z̃)
q127−→ (z, w), (z, w, z̃)

q237−→
(w, z̃), (z, w)

q17−→ z, (w, z̃)
q27−→ w and (w, z̃)

q37−→ z̃.
Let E−zwV×V∗|V∞×V∗∞

[1] ∈ Eb
+(IkV∞×V∗∞), Ewz̃V∗×V|V∗∞×V∞ [1] ∈ Eb

+(IkV∗∞×V∞). If K ∈

Eb
+(IkV∞) then (K

E◦ E−zwV×V∗|V∞×V∗∞
[1])

E◦ Ewz̃V∗×V|V∗∞×V∞ [1] ' K
E◦ (E−zwV×V∗|V∞×V∗∞

[1]
+◦

Ewz̃V∗×V|V∗∞×V∞ [1]), thanks to Proposition 4.1.4.
Consider now the commutative diagram

V∞ × V∗∞ × V∞

V∞ × V∞

V∞ V∞

q1◦q12 q2◦q23

q13

q1 q3
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where q13 is induced by the projection (z, w, z̃) 7→ (z, z̃). ThenK
E◦(E−zwV×V∗|V∞×V∗∞

[1]
+◦

Ewz̃V∗×V|V∗∞×V∞ [1]) ' K
E◦Eq13!!(E−zwV×V∗|V∞×V∗∞

[1]
+◦Ewz̃V∗×V|V∗∞×V∞ [1]), thanks to Propo-

sition 4.1.3.
Now consider the following:

Proposition 4.3.2. We have:

Eq13!!(E−zwV×V∗|V∞×V∗∞
[1]

+◦ Ewz̃V∗×V|V∗∞×V∞ [1]) ' kEV∞×V∞
+
⊗Qk{(z,z̃,t)∈V×V×R; z=z̃, t≥0} .

Proof. We have:

Eq13!!(E−zwV×V∗|V∞×V∗∞
[1]

+◦ Ewz̃V∗×V|V∗∞×V∞ [1]) =

= Eq13!!((k
E
V∞×V∗∞

+
⊗ E−zwV×V∗|V∞×V∗∞

)[1]
+◦ (kEV∗∞×V∞

+
⊗ Ewz̃V∗×V|V∗∞×V∞)[1])

= Eq13!!(Eq
−1
12 (kEV∞×V∗∞

+
⊗ E−zwV×V∗|V∞×V∗∞

)[1]
+
⊗ Eq−1

23 (kEV∗∞×V∞
+
⊗ Ewz̃V∗×V|V∗∞×V∞)[1])

' Eq13!!(k
E
V∞×V∗∞×V∞

+
⊗ (Eq−1

12 E
−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Eq−1

23 E
wz̃
V∗×V|V∗∞×V∞ [1]))

' kEV∞×V∞
+
⊗ Eq13!(Eq

−1
12 E

−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Eq−1

23 E
wz̃
V∗×V|V∗∞×V∞ [1]) ,

so let's study Eq13!(Eq
−1
12 E

−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Eq−1

23 E
wz̃
V∗×V|V∗∞×V∞

[1]).
We have:

Eq13!(Eq
−1
12 E

−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Eq−1

23 E
wz̃
V∗×V|V∗∞×V∞ [1])

' Eq13!(E
(z̃−z)w
V×V∗×V|V∞×V∗∞×V∞

[1])

' QRq13!(k{t+(z̃−z)w≥0})

and QRq13!(k{t+(z̃−z)w≥0})→ Qk{(z,z̃,t)∈V×V×R; z=z̃, t≥0} which is induced by the pro-
jection q13 : V× V∗ × V→ V× V.
Fix (z, z̃, t) ∈ V×V×R: (Rq13!(k{t+(z̃−z)w≥0}))(z,z̃,t) ' RΓc(w ∈ V∗; k{t+(z̃−z)w≥0})
which is isomorphic to 0 if z̃ 6= z, and, if z̃ = z, is isomorphic to k{(z,t)∈V×R; t≥0} '
k{(z,z̃,t)∈V×V×R; z=z̃, t≥0}.

Finally let ∆V∞ := {(z, z̃) ∈ V∞ × V∞; z = z̃} and consider the commutative
diagram

∆V∞

V∞

V∞ V∞

q̃ q̃

q̃

idV∞
idV∞
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where q̃ is the projection (z, z) 7→ z. Then:

K
E◦ (kEV∞×V∞

+
⊗Qk{(z,z̃,t)∈V×V×R; z=z̃, t≥0})

' K
E◦ Eq̃!!(k

E
V∞×V∞

+
⊗Qk{(z,z̃,t)∈V×V×R; z=z̃, t≥0})

' K
E◦ (kEV∞

+
⊗ Eq̃!(Qk{(z,z̃,t)∈V×V×R; z=z̃, t≥0}))

' K
E◦ (kEV∞

+
⊗Qk{(z,t)∈V×R; t≥0})

' K
E◦ E0

V|V∞ ' K .

Hence L(LK) ' K.

Remark. The maps p and q are semiproper and L, La are R-constructible (ind)sheaves,
hence the functors L and Lsend enhanced R-constructible (ind)sheaves into en-
hanced R-constructible (ind)sheaves.

Remark. Let K ∈ Eb
+(IkV∞) and let F ∈ Eb

+(kV∞) be such that K ' kEV∞
+
⊗F . We

have

LK ' L(kEV∞
+
⊗ F ) = Eq!!(E−zwV×V∗|V∞×V∗∞

[1]
+
⊗ Ep−1(kEV∞

+
⊗ F ))

' Eq!!((k
E
V∞×V∗∞

+
⊗ E−zwV×V∗|V∞×V∗∞

[1])
+
⊗ (Ep−1kEV∞

+
⊗ Ep−1F ))

' Eq!!((k
E
V∞×V∗∞

+
⊗ (E−zwV×V∗|V∞×V∗∞

[1]
+
⊗ Ep−1F ))

' kEV∗∞
+
⊗ Eq!(E

−zw
V×V∗|V∞×V∗∞

[1]
+
⊗ Ep−1F ) = kEV∗∞

+
⊗ LF .

Let a ∈ V and let τa : V∞ → V∞ be the morphism induced by the translation
τa(z) = z + a.

Lemma 4.3.3. If K ∈ Eb
+(IkV∞) then L(Eτ−1

a K) ' EReaw
V∗|V∗∞

+
⊗ LK.

Recall that SolEV∞×V∗∞ is a fully faithful functor and SolEV∞×V∗∞(E ±zwV×V∗|V∞×V∗∞
) '

E±zwV×V∗|V∞×V∗∞
. If k = C we have the following:

Proposition 4.3.4. Let M ∈ Db
hol(DV∞), N ∈ Db

hol(DV∗∞). Then

SolEV∗∞(LM ) ' LSolEV∞(M ) , SolEV∞( LN ) ' LSolEV∗∞(N ) .

Remark. If we consider R∞, with coordinate x, instead of V∞ then R∗∞, with
coordinate y, is isomorphic to R∞. If we take L := E−xyR×R∗|R∞×R∗∞

[1] or L :=

E−xyR×R∗|R∞×R∗∞
[1] and La := ExyR×R∗|R∞×R∗∞ [1] or La := ExyR×R∗|R∞×R∗∞ [1] then the

de�nitions and results concerning only enhanced sheaves and indsheaves given
above are still valid.
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Example 4.3.5. Consider EfR|R∞ ∈ Eb
+(kR∞) with f(x) = x3

3
, that we'll denote

with Ef .
Let's compute the enhanced Fourier-Sato transform of Ef :

LEf = Eq!(E
−xy[1]

+
⊗ Ep−1Ef ) ' Eq!(E

x3/3−xy)

' Eq!(Qk{(x, y, t)∈R×R×R; t+x3/3−xy≥0}) .

Fix (y, t) ∈ R× R; then:

(LEf )(y, t) ' RΓc(q
−1
R (y, t); k{(x, y, t)∈R×R×R; t+x3/3−xy≥0}|q−1

R (y, t))

' RΓc({x ∈ R}; k{x∈R; t+x3/3−xy≥0}) .

If x3/3 − xy hasn't any local maxima and minima then (LEf )(y, t) = 0, and this
happens when x2 − y ≥ 0 for every x ∈ R, i.e. for y ≤ 0 (see Figure 4.1).

Figure 4.1: Example of t = −f(x) + xy for y = −1

Assume y > 0: in this case there is one local maximum M and one local minimum
m respectively at xM = g̃M

′(y) and at xm = g̃m
′(y) where g̃M

′ and g̃m
′ are the

inverse functions of f ′(x) respectively for x near xM and for x near xm (see Figure
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Figure 4.2: Example of t = −f(x) + xy for y = 1

4.2).
So:

(LEf )(y, t) =


0 if t < −(f(g̃M

′(y))− g̃M ′(y)y)

k if −(f(g̃M
′(y))− g̃M ′(y)y) ≤ t < −(f(g̃m

′(y))− g̃m′(y)y)

0 if t ≥ −(f(g̃m
′(y))− g̃m′(y)y)

.

Notice that (f(g̃∗
′(y)) − g̃∗

′(y)y)′ = −g̃∗′, hence we can take the primitive g∗ of
−g̃∗′ that satis�es f(g̃∗

′(y))− g̃∗′(y)y = g∗ for ∗ = M, m; let's compute g∗.
The derivative of f(x) is f ′(x) = x2: for x ≥ 0 it has inverse x = g̃′m(y) = y1/2 and
for x ≤ 0 it has inverse x = g̃′M(y) = −y1/2, so, for x ≥ 0, we �nd x = gm(y) =
−3

2
y3/2 and, for x ≤ 0, x = gM(y) = 3

2
y3/2. Hence LEf ' EgM.gm (see Figure 4.3).

Remark. Consider EfR|R∞ ∈ Eb
+(kR∞) with f smooth. If we apply two times the

enhanced Fourier-Sato transform to EfR|R∞ we �nd L(LEfR|R∞) ' Ef
a

R|R∞ ∈ Eb
+(kR∞)

where a : R → R is the antipodal map (in this case it's x 7→ −x) and fa :=
f ◦ a. In fact we have just seen that the functions de�ning LEfR|R∞ are obtained
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Figure 4.3: Fibers of LEf ' EgM.gm

by integrating −g̃′ where x = g̃′(y) is the inverse of y = f ′(x). Let's use the same
procedure to �nd the functions de�ning L(LEfR|R∞): the derivative of g(y) is −g̃′(y),
hence the inverse of x = −g̃′(y) is y = f ′(−x) and so the primitive h(x) of −f ′(−x)
such that h(x) = g(f ′(−x))− xf ′(−x) for y = f ′(−x) is h(x) = f(−x) = fa.

4.4 Microsupport and enhanced Fourier-Sato trans-

form

Let X be a manifold and let F ∈ Db(kX). Assume that X is open in a vector space
E and let p = (x0, ξ0) ∈ T ∗X and let F ∈ Db(kX).

De�nition 4.4.1. Themicrosupport of F , denoted by SS(F ), is the subset of T ∗X
de�ned in this way: p /∈ SS(F ) if and only if there exists an open neighborhood
U of p such that for any x1 ∈ X and any real function ϕ of class C 1 de�ned in a
neighborhood of x1 with ϕ(x1) = 0 , dϕ(x1) ∈ U , we have (RΓ{x;ϕ(x)≥0}(F ))x1 = 0.

Proposition 4.4.2. Let ϕ : X → R a function of class C1 such that dϕ 6= 0 on

the set {x; ϕ(x) = 0}. Then:

SS(k{x∈X;ϕ(x)≥0}) = {(x; λdϕ(x)); λϕ(x) = 0, λ ≥ 0, ϕ(x) ≥ 0} .

Assume now that M is a real analytic manifold. Denote by (x, t;x∗, t∗) ∈
T ∗(M × R) the homogeneous symplectic coordinates of the cotangent bundle of
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M × R. Consider the map

T ∗(M × R) ⊃ {t∗ > 0} γ−→ T ∗M

(x, t;x∗, t∗) 7−→ (x;x∗/t∗)
.

De�nition 4.4.3. LetK ∈ Eb
+(kM). We de�ne SSE(K) := γ(SS(F ) ∩ {t∗ > 0}) ⊂

T ∗M where F ∈ Db(kM×R) is such that Q(F ) ' K. The de�nition of SSE(K)
does not depend on the choice of F . We call SSE(K) the enhanced microsupport

of K.

Notice that SSE(ε(F )) = SS(F ) for F ∈ Db(kM).
If instead of M we consider a complex manifold X and K ∈ Eb

+(kX) then SSE(K)
is de�ned as above as a subset of T ∗(XR) where XR denotes the underlying real
analytic manifold of X.
Consider now a one-dimensional vector space V and let (z, t, w, s;x∗, t∗, w∗, s∗) be
the coordinates of T ∗(V×R×V∗×R). Consider the subsets of T ∗(V×R×V∗×R)

ΛL := {s∗ > 0} ∩ SS(k{s−t−Re(zw)≥0}) ,

Λ L:= {t∗ > 0} ∩ SS(k{t−s+Re(zw)≥0}) .

Notice that

ΛL = {s− t− Re(zw) = 0, z∗ = wt∗, w∗ = zt∗, s∗ = −t∗, s∗ > 0}.

Let Λa
L be the image of ΛL by the map

a : T ∗(V× R× V∗ × R) −→ T ∗(V× R× V∗ × R)

(z, t, w, s;x∗, t∗, w∗, s∗) 7−→ (z, t, w, s;−x∗,−t∗, w∗, s∗) ;

we have that Λa
L is the graph of the map

χ̃ : T ∗(V× R) ∩ {t∗ > 0} −→ T ∗(V∗ × R) ∩ {s∗ > 0}
(z, t;x∗, t∗) 7−→ (z∗/t∗, t+ Re(zz∗/t∗);−zt∗, t∗) .

The map χ̃ induces a morphism χ : T ∗V → T ∗V∗ de�ned as the composition
γ ◦ χ̃ ◦ γ−1:

T ∗V γ−1

−→ T ∗(V× R) ∩ {t∗ > 0} χ̃−→ T ∗(V∗ × R) ∩ {s∗ > 0} γ−→ T ∗V∗

(z, z∗) 7−→ (z, t, z∗t∗, t∗) 7−→ (z∗/t∗, t+ Re(zz∗/t∗);−zt∗, t∗) 7−→ (z∗,−z) .

With analogous considerations for Λ Lwe can de�ne another morphism χ−1 :
T ∗V∗ → T ∗V given by (w,w∗) 7→ (−w∗, w).
There is an important link between the two morphisms χ, χ−1 and the enhanced
Fourier-Sato transform L and its quasi-inverse L:

Theorem 4.4.4. Let K ∈ Eb
+(kV) and P ∈ Eb

+(kV∗). Then:

SSE(LK) = χ(SSE(K)), SSE( LP ) = χ−1(SSE(P )) .



Chapter 5

Stationary phase lemma

5.1 Stationary phase lemma in the complex case

Let M be a smooth manifold of dimension n ≥ 1, and let a ∈ M . The total real

blow-up of M along a is the map of smooth manifolds ωtot
a : M̃ tot

a →M de�ned in
local coordinates (x1, . . . , xn) with a = (0, . . . , 0) as follows:

M̃ tot
a := {(ρ, ξ) ∈ R× Rn; |ξ| = 1},

ωtot
a : M̃ tot

a →M, (ρ, ξ) 7→ ρξ.

The real blow-up of M at a is the closed subset M̃a := {(ρ, ξ) ∈ R≥0×Rn; |ξ| = 1}
of M̃ tot

a . Set ωa := ωtot
a |M̃a

and SaM := ω−1
a (a) ' Sn−1, the sphere of tangent

directions at a; we have the commutative diagram:

SaM M̃a

M \ {a}

M

ı̃a

ωa

̃a

ja

Let θ ∈ SaM and V ⊂ M . We say that V is a sectorial neighborhood of θ if
V ⊂ M \ {a} and SaM ∪ ̃a(V ) is a neighborhood of θ in M̃a (this is equivalent
to ask V = ̃−1

a (U) for some neighborhood U of θ in M̃a). If V is a sectorial
neighborhood of θ we write θ∈̇V .
We say that a statement P (θ) on θ ∈ SaM holds for generic θ if it holds for θ
outside a �nite subset of SaM .

39
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Lemma 5.1.1. Let M be a real analytic smooth surface and let K ∈ Eb
R−c(kM).

Then, for generic θ ∈ SaM , there exists a subanalytic open subset V ⊂ M such

that θ∈̇V and

π−1kV ⊗K '
⊕
i∈I

EfiV |M [di]⊕
⊕
j∈J

E
f+j .f

−
j

V |M [dj]

with I, J �nite sets, di, dj ∈ Z and fi, f
+
j , f

−
j : V → R analytic and globally

subanalytic functions such that f−j (x) > f+
j (x) for any x ∈ V .

A similar statement holds for K ∈ Eb
R−c(IkM) by replacing E with E.

Now let X be a smooth complex analytic curve and let a ∈ X. Consider

SaX X̃a

X \ {a}

X

ı̃a

ωa

̃a

ja

where X̃a denotes the real blow-up of the smooth real analytic surface underlying
X. In this case SaX ' S1, the circle of tangent directions at a; a local coordinate za
at a is a holomorphic function de�ned on a neighborhood of a such that za(a) = 0
and (dza)(a) 6= 0.

De�nition 5.1.2. Let θ ∈ SaX and U 3̇θ. We say that f ∈ OX(U) admits

a Puiseux expansion at θ if there exist p ∈ Z>0, a local coordinate za at a,
an open subset V ⊂ U with θ∈̇V and a determination of z1/p

a on V such that
f(x) = h(z

1/p
a (x)) for x ∈ V for some section h ∈ OC(∗0) in a neighborhood of 0.

We denote by PX̃a
the subsheaf of ̃a∗j−1

a OX whose sections on Ω ⊂ X̃a are
holomorphic functions on ̃−1

a Ω admitting a Puiseux expansion for each point of
Ω∩SaX. The sheaf PSaX := ı̃−1

a PX̃a
is called the sheaf of Puiseux germs on SaX;

if we need more precision we will write (a, θ, f) instead of f ∈ PSaX .
Let λ ∈ Q; we denote by P

≤λ
SaX

the subsheaf of PSaX whose sections locally belong

to
⋃

p∈Z≥1

z−λa C{z1/p
a } for a local coordinate za at a and a determination of z1/p

a at θ.

We setPSaX := PSaX/P
≤0
SaX

and we denote by [f ] the image of f ∈ PSaX inPSaX .

De�nition 5.1.3. Let θ ∈ SaX and Φ ∈ PSaX,θ. We say that Φ is well separated
if for any f, h ∈ Φ:
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i. [f ] = 0 implies f = 0;

ii. [f ] = [h] implies f = h.

De�nition 5.1.4. A multiplicity at a ∈ X is a morphism of sheaves of sets N :
PSaX → (Z≥0)SaX such that N>0

θ := N−1
θ (Z>0) ⊂ PSaX,θ is well separated and

�nite for some θ ∈ SaX.
A multiplicity class at a ∈ X is a morphism of sheaves of sets N : PSaX →
(Z≥0)SaX such that N

>0

θ := N
−1

θ (Z>0) ∈ PSaX,θ is �nite for some θ ∈ SaX.
A Puiseux germ f ∈ N>0

θ is called an exponential factor of N at θ and the positive
integer N(f) is called multiplicity of f . Moreover for f ∈ PSaX we set N(f) :=
N([f ]).
IfN is a multiplicity then we denote byN its class, de�ned by settingN(f) = N(h)
if there exists h ∈ N>0

θ such that [f ] = [h], and N(f) = 0 otherwise.

De�nition 5.1.5. Let K ∈ Eb
R−c(kX). We say that K has a normal form at

a ∈ X if there exists a multiplicity at a, N : PSaX → (Z≥0)SaX , such that for any
θ ∈ SaX there exists an open sectorial neighborhood Vθ3̇θ such that

π−1kVθ ⊗K '
⊕
f∈N>0

θ

(ERef
Vθ|X)N(f) .

Let K ∈ Eb
R−c(IkX). We say that K has a normal form at a ∈ X if there exists a

multiplicity at a, N : PSaX → (Z≥0)SaX , such that for any θ ∈ SaX there exists
an open sectorial neighborhood Vθ3̇θ such that

π−1kVθ ⊗K '
⊕
f∈N>0

θ

(ERef
Vθ|X)N(f) .

The multiplicity N and its class N are uniquely determined by K. We call N the
multiplicity class of K.

Remark. Let X = V∞ = (V,P) where V is an one-dimensional complex vector
space, with coordinate z, and P = V ∪ {∞}, and consider M ∈ Db

hol(DV∞). Let
a ∈ P be a singular point of M : if a ∈ V then take as a local coordinate za = z−a
and if a = ∞ then take z∞ = z−1. Then, after a rami�cation, M decomposes on
a sector Va as a �nite direct sum of exponential modules E f

Va|V∞ where f admits
a Puiseux expansion at θ ∈ SaP. We call (a, θ, f) an exponential factor of M .
If k = C then the enhanced solution functor SolEV∞ gives an important link
between the exponential factors of M and exponential factors in the normal form
of SolEV∞(M ) = K ∈ Eb

R−c(ICV∞), since SolEV∞(E f
Va|V∞) ' ERef

Va|V∞ .
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De�nition 5.1.6. Let (a, θ, f) be a Puiseux germ on X. The multiplicity test

functor at (a, θ, f) is de�ned as

G(a,θ,f) : Eb
+(IkX) −→ Db(k)

K 7−→ lim−→
V,c,δ,ε

RHomE(E
(Ref+c).(Ref−δ|za|−ε)
V |X , K)

where za is a local coordinate at a, V runs over the open sectorial neighborhoods
of θ, c→ +∞ and δ, ε→ 0+.

Proposition 5.1.7. Let (a, θ, f) be a Puiseux germ on X. Let K ∈ Eb
R−c(IkX)

have normal form at a with multiplicity class N . Then G(a,θ,f)K ' kN(f).

Consider now V∞ = (V,P) where V is an one-dimensional complex vector
space, with coordinate z, and P = V ∪ {∞}.
De�nition 5.1.8. Let (a, θ, f) be a Puiseux germ in PSaP. We say that it is:

i. unbounded if orda(f) > 0;

ii. linear if a =∞ and f(z)− bz ∈ P
≤0
S∞P for some b ∈ V, b 6= 0;

iii. admissible if it is unbounded and not linear.

De�nition 5.1.9. Let (a, θ, f) be an admissible Puiseux germ on P. We de�ne
the Legendre transform L(a, θ, f) := (b, η, g) of (a, θ, f), which is an admissible
Puiseux germ on P∗, in this way:
1) derive w = f(z) with z near θ;
2) take b ∈ P∗ and η ∈ SbP∗ such that w = f ′(z)→ η for z → θ;
3) take the inverse z = ϕ(w) of w = f ′(z) for z near θ;
4) take the primitive g(w) of −ϕ(w) which satis�es

zw − f(z) + g(w) = 0 for w = f ′(z) . (5.1)

This procedure gives (b, η, g) = L(a, θ, f). The equation (5.1) is called stationary

phase formula.

Theorem 5.1.10 (Stationary phase lemma). Let (a, θ, f) be an admissible Puiseux

germ on P and let (b, η, g) = L(a, θ, f). Let K ∈ Eb
R−c(IkV∞) have normal form at

a. Then, for generic η, we have

G(b,η,g)(
LK) ' G(a,θ,f)(K) .

Let k = C and SolEV∞(M ) ' K for M ∈ Db
hol(DV∞). Then SolEV∗∞(LM ) '

LK, and in particular the stationary phase lemma stated for D-modules becomes
a corollary of the theorem above:

Corollary 5.1.11. Let (a, θ, f) be an admissible Puiseux germ on P and let M ∈
Db
hol(DV∞). Then (a, θ, f) is an exponential factor of M if and only if L(a, θ, f) is

an exponential factor of LM .
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5.2 Stationary phase lemma in the real case

Let V∞ = R∞ = (R, R) where R := R ∪ {−∞,+∞}: in this case V∞ × V∗∞ '
R∞ × R∞ 3 (x, y); in this section we will focus only on the study of enhanced
(ind)sheaves, since the Riemann-Hilbert correspondence is not available.
Notice that since for each a ∈ R we have SaR ' {+,−} (and S+∞R ' {−},
S−∞R ' {+}) a sectorial neighborhood of a ∈ R is simply the union of the two dis-
joint open subsets V +

a := ((a, a+ε), [a, a+ε)) and V −a := ((a−ε, a), (a−ε, a]) for
ε > 0, and a sectorial neighborhood of ±∞ is either V+∞ := ((M, +∞), (M, +∞])
or V−∞ := ((−∞, −M), [−∞, −M)) for some M ∈ R, M � 1.
Recall also that in this case it is possible to obtain exponential sheaves of the form
Eg1.g2 after applying the enhanced Fourier-Sato transform to exponential sheaves
of the form Ef (see Example 4.3.5).
Let K ∈ E0

R−c(CR∞): Lemma 5.1.1 holds also for R∞, hence for a ∈ R, we have
the decomposition

π−1kV ±a ⊗K '
⊕
i∈I±

Efi
V ±a |R∞

⊕
⊕
j∈J±

E
f+j .f

−
j

V ±a |R∞

with I±, J± �nite sets and fi, f
+
j , f

−
j : V ±a → R analytic and globally subanalytic

functions such that f−j (x) < f+
j (x) for any x ∈ V ±a .

For a = ±∞, we have the decomposition

π−1kV±∞ ⊗K '
⊕
i∈I±

EfiV±∞|R∞ ⊕
⊕
j∈J±

E
f+j .f

−
j

V±∞|R∞

with I±, J± �nite sets and fi, f
+
j , f

−
j : V±∞ → R analytic and globally subanalytic

functions such that f−j (x) > f+
j (x) for any x ∈ V±∞. IfK ∈ E0

R−c(ICR∞) it holds an
analogous result with E instead of E. We call the functions in these decompositions
exponential factors of K at a.
Notice that in this setting the notion of admissible Puiseux germ can be translated
in this way: assume that the exponential sheaf (or indsheaf) EfVa|R∞ (or EfVa|R∞)
appears in the decomposition of K ∈ Eb

R−c(CR∞) (or of K ∈ Eb
R−c(ICR∞)) at a.

We say that the exponential factor f is admissible if:

• ordaf > 0;

• f(x) 6= bx+ c for every b, c ∈ R if a =∞.

Assume now that the exponential sheaf (or indsheaf) Ef1.f2Va|R∞ (or Ef1.f2Va|R∞) appears
in the decomposition of K ∈ Eb

R−c(CR∞) (or of K ∈ Eb
R−c(ICR∞)) at a. We say

that the exponential factors f1, f2 are admissible if:
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• ordaf1, ordaf2 > 0;

• f1(x), f2(x) 6= bx+ c for every b, c ∈ R if a =∞;

• f1 − f2 is unbounded on Va.

De�nition 5.2.1. Let K ∈ E0
R−c(CR∞) (or K ∈ Eb

R−c(ICR∞)), let f be an admissi-
ble exponential factor de�ned on V u

a where u ∈ SaR = {+,−} in the decomposition
of K at a and consider the triplet (a, u, f). The Legendre transform of (a, u, f),
denoted by L(a, u, f), is the triplet (b, v, g) where v ∈ SbR

∗ ' SbR = {+,−},
obtained in this way:
1) derive y = f(x) with x in V u

a ;
2) take b ∈ R and v ∈ SbR such that y = f ′(x)→ b in U v

b for x→ a in V u
a ;

3) take the inverse x = ϕ(y) of y = f ′(x) for x in V u
a ;

4) take the primitive g(y) of −ϕ(y) which satis�es, for x ∈ V u
a and y ∈ U v

b ,

g(y)− f(x) + xy = 0 for y = f ′(x) . (5.2)

This procedure gives (b, v, g) = L(a, θ, f) where g is admissible. The equation (5.2)
is the stationary phase formula in the real case.

Remark. Notice that if f is not admissible then we can't apply the Legendre
transform to (a, u, f) since y = f ′(x) is not invertible.
Moreover the Legendre transform admits an inverse obtained by changing x with
y and y with −x.

Let's start with the following explicit example, recalling that we will use

R∞ × R∞

R∞ R∞

p q

where p, q are induced by the projections (that we denote in the same way) (x, y) 7→
x and (x, y) 7→ y.

Example 5.2.2. Let's describe in detail the case of Ef with f(x) = x4

4
− x2

2
.

The Fourier transform of Ef is LEf = Eq!(E
−xy[1]

+
⊗Ep−1Ef ) ' Eq!(E

x4/4−x2/2−xy) '
Eq!(QC{(x, y, t)∈R×R×R; t+x4/4−x2/2−xy≥0}). It has �ber at (y, t) given by

(LEf )(y, t) ' RΓc(q
−1
R (y, t); C{(x, y, t)∈R×R×R; t+x4/4−x2/2−xy≥0}|q−1

R (y, t)) '

RΓc({x ∈ R}; C{x∈R; t+x4/4−x2/2−xy≥0}) .
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Recall that f(x)−xy = g(y) with x = g̃′(y), where g̃′(y) is the inverse of y = f ′(x)
near x and g(y) is the function obtained by integrating −g̃′(y).
Let's denote by g′1(y), g′2(y), g′3(y) the functions obtained by changing the sign of
the inverses of y = x3 + x respectively in x < −1/

√
3, −1/

√
3 < x < 1/

√
3 and

x > 1/
√

3 (see Figure 5.1).

Figure 5.1: Functions g′1, g
′
2, g

′
3

Let's integrate g′2(y) in order to get a function g2(y) which passes by (0, 0) and
consequently integrate g′1(y) and g′3(y) such as they connect to g2(y): with this
procedure we obtain the functions de�ning LEf such that g∗(y) = f(x)−xy where
x = −g′∗(y) for ∗ = 1, 2, 3 (see Figure 5.2).
If y ≤ − 2

3
√

3
or y ≥ 2

3
√

3
then h′y(x) = x3 − x − y has only one zero (respectively

in x = −g′1(y) or in x = −g′3(y)), and in particular hy(x) has only one stationary
point which is a global minimum, so (respectively with ∗ = 1 or with ∗ = 3) we
have

(LEf )(y, t) =

{
0 if t < −g∗(y)

C[−1] if t ≥ −g∗(y)
.

If instead − 2
3
√

3
< y < 2

3
√

3
then hy(x) has three stationary points, two minima

and a maximum (the two minima are in x1 = −g′1(y) and in x3 = −g′3(y), and the

maximum is in x2 = −g′2(y); for y S 0 we have hy(x1) S hy(x3)).
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Figure 5.2: Functions g1, g2, g3

If y ≤ 0

(LEf )(y, t) =


0 if t < −g2(y)

C if −g2(y) ≤ t < −g3(y)

0 if −g3(y) ≤ t < −g1(y)

C[−1] if t ≥ −g1(y)

and if y ≥ 0

(LEf )(y, t) =


0 if t < −g2(y)

C if −g2(y) ≤ t < −g1(y)

0 if −g1(y) ≤ t < −g3(y)

C[−1] if t ≥ −g3(y)

(see �gure 5.3).

Notice that LEf has a complex behaviour for − 2
3
√

3
< y < 2

3
√

3
: by focusing

on R-constructible enhanced indsheaves we will need only to study their singular
points, which are �nite in number.
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Figure 5.3: Fibers of LEf

We say that a point a ∈ R∞ is a regular point of K ∈ Eb
R−c(IkR∞) if there exists

an open neighborhood U of a such that K|U is isomorphic to a �nite direct sum
of constant enhanced indseaves. We say that K is regular on U if every a ∈ U is
a regular point of K. A point a ∈ R∞ is a singular point of K if there exists an
open neighborhood U of a such that K is regular on U \ {a} and not on U .
Let K ∈ E0

R−c(ICR∞) have singular points only at ±∞ and consider its decompo-
sition at ±∞; we have the following short exact sequence:

0 −→ K|V−∞∪V+∞ −→ K −→ K|R∞\(V−∞∪V+∞) −→ 0 . (5.3)

Since K|R ' (CE
R )N with N ∈ N then K|R∞\(V−∞∪V−∞) ' e(C[a,b])

N for some

a, b ∈ R, a < 0, b > 0, and K|V±∞ =
⊕

i∈I± E
fi
V±∞|R∞ ⊕

⊕
j∈J± E

f+j .f
−
j

V±∞|R∞ with
N = |I+|+ |J+| = |I−|+ |J−|. If we apply the enhanced Fourier-Sato transform to
this short exact sequence we get

0 −→
⊕
i∈I−

(LEfiV−∞|R∞)⊕
⊕
j∈J−

(LEf
+
j .f

−
j

V−∞|R∞)⊕
⊕
i∈I+

(LEfiV+∞|R∞)⊕
⊕
j∈J+

(LEf
+
j .f

−
j

V+∞|R∞) −→

−→ LK −→ (Le(C[a,b]))
N −→ 0 ,
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thus LK is a combinations of the LEfiV±∞|R∞ ,
LEf

+
j .f

−
j

V±∞|R∞ and Le(C[a,b]).

We have Le(C[a,b]) = L(CE
R∞

+
⊗Q(C{t≥0}⊗π−1C[a,b]) ' CE

R∞

+
⊗ LQ(C{t≥0}⊗π−1C[a,b])

' CE
R∞

+
⊗ LQC{(x,t)∈R×R: t≥0, a≤x≤b}. We have

LQC{(x,t)∈R×R: t≥0, a≤x≤b} = Eq!(E
−xy[1]

+
⊗QC{(x,t)∈R×R: t≥0, a≤x≤b})

' Eq!(QC{(x,y,t)∈R×R×R: t−xy≥0, a≤x≤b}) .

The projection (x, y, t) 7→ (y, t) induces a morphism

C{(x,y,t)∈R×R×R: t−xy≥0, a≤x≤b} → C{(y,t)∈R×R: t−ay≥0 for y≥0, t−by≥0 for y≤0}

hence Eq!(QC{(x,y,t)∈R×R×R: t−xy≥0, a≤x≤b})→ Eg where g : R→ R is de�ned as

g(y) =

{
−ay if y ≥ 0

−by if y ≤ 0
.

Let (y, t) ∈ R× R be �xed: (Eq!(QC{(x,y,t)∈R×R×R: t−xy≥0, a≤x≤b}))(y,t) '
RΓc({x ∈ R}; C{x∈R; t−xy≥0, a≤x≤b}); if y ≥ 0 then

RΓc({x ∈ R}; C{x∈R; t−xy≥0, a≤x≤b}) =

{
0 if t < ay

C if t ≥ ay

and if y ≤ 0 then

RΓc({x ∈ R}; C{x∈R; t−xy≥0, a≤x≤b}) =

{
0 if t < by

C if t ≥ by

so Eq!(QC{(x,y,t)∈R×R×R: t−xy≥0, a≤x≤b}) ' Eg.
Let f1, f2 : (b,+∞)→ R be the two exponential factors of Ef1.f2V+∞|R∞ in the decom-
position at +∞ of K. Recall that we have the following short exact sequence:

0 −→ Ef1.f2V+∞|R∞ −→ Ef1V+∞|R∞ −→ Ef2V+∞|R∞ −→ 0 (5.4)

Since the enhanced Fourier-Sato transform is an exact functor, we get the short
exact sequence

0 −→ LEf1.f2V+∞|R∞ −→
LEf1V+∞|R∞ −→

LEf2V+∞|R∞ −→ 0

hence we can study f1 and f2 separately.
In conclusion in order to compute the admissible exponential factors in LK we can
focus only the exponential sheaves of the form LEfV±∞|R∞ ,

LEf1V±∞|R∞ and LEf2V±∞|R∞
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given by the admissible exponential factors f and f1, f2 with f1 ≥ f2 that appear
in the decomposition of K, thanks to the short exact sequences (5.3) and (5.4)

and the fact that LK ' CE
R∞

+
⊗ LF for F ∈ E0

R−c(CR∞) such that K ' CE
R∞

+
⊗ F ;

anyway we have to keep in mind that in the decomposition of LK there will be
also some exponential indsheaves given by non admissible exponential factors.

If now we assume that K ∈ E0
R−c(ICR∞) has only one singular point at a ∈ R

then with the same considerations as above we can prove that in order to compute
the exponential factors in LK we can study only the exponential sheaves of the
form LEf

V ±a |R∞
, LEf1

V ±a |R∞
and LEf2

V ±a |R∞
given by the exponential factors f and f1, f2

with f1 ≥ f2 that appear in the decomposition of K. Again in the decomposi-
tion of LK we will �nd also some exponential indsheaves given by non admissible
exponential factors.

Theorem 5.2.3. Consider the decomposition at a of K ∈ E0
R−c(ICR∞). The Leg-

endre transform establishes a 1-1 correspondence from the admissible exponential

factors of K at a de�ned on V u
a to the admissible exponential factors of LK at b

de�ned on U v
b , where L(a, u, f) = (b, v, g).

Proof. We'll study only the behaviour in V+∞ and in V −a with a ∈ R since
L(LEfR|R∞) ' Ef

a

R|R∞ ∈ E0
R−c(kR∞). We will consider the exponential sheaves EfV+∞|R∞ ,

Ef1V+∞|R∞ , E
f2
V+∞|R∞ and Ef

V −a |R∞
, Ef1

V −a |R∞
, Ef2

V −a |R∞
with a ∈ R, as explained before.

Let a = +∞ and assume that ord+∞f > 1, ord+∞f1 > 1, ord+∞f2 > 1 and V+∞ =
((c,+∞), (c,+∞]) where c is chosen in order to have f ′′(x), f ′′1 (x), f ′′2 (x) 6= 0 for
any x ∈ (c,+∞).
i) Let EfV+∞|R∞ be in the decomposition of K at +∞ with lim

x→+∞
f(x) = +∞. We

have LEfV+∞|R∞ ' Eq!(Q(C{(x,y,t)∈R×R×R: t+f(x)−xy≥0, c<x})); if we �x (y, t) ∈ R × R
then (LEfV+∞|R∞)(y,t) ' RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x}). If −f(x) + xy hasn't
any stationary points for every x > c then

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x}) =

{
0 if t < −f(c) + cy

C[−1] if t ≥ −f(c) + cy
;

we are in this situation when f ′(x)− y > 0 for every x > c since f(x) is increasing
in (c,+∞), so for y ≤ f ′(c).
Assume now that y > f ′(c): in this case f(x)−xy has global minimum at x = g̃′(y)
where g̃′(y) is the inverse of y = f ′(x), and so

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x}) =

{
0 if t < −f(g̃′(y)) + g̃′(y)y

C[−1] if t ≥ −f(g̃′(y)) + g̃′(y)y
.
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Recall that f(g̃′(y)) − g̃′(y)y = g(y) where g(y) is the integral of −g̃′(y): let's
compute it.
Notice that f is increasing and convex in (c,+∞) since lim

x→+∞
f(x) = +∞ and

ord+∞f > 1, hence f ′ is positive and increasing in (c,+∞) with lim
x→+∞

f ′(x) = +∞
and ord+∞f

′ > 0. Let x = g̃′(y) be the inverse of y = f ′(x) for x > c:
then lim

y→+∞
g̃′(y) = +∞ and ord+∞g̃

′ > 0. In particular g̃′ is increasing and

positive in (f ′(c),+∞), so −g̃′ is decreasing and negative in (f ′(c),+∞), and
lim

y→+∞
−g̃′(y) = −∞.

Let g(y) be a primitive of−g̃′(y) in (f ′(c),+∞): then g is decreasing with lim
y→+∞

g(y) =

−∞ and ord+∞g > 1. Notice that these computations are exactly what one
needs to do to �nd the Legendre transform of (+∞,−, f), and so L(+∞,−, f) =
(+∞,−, g).
In this way we have found that LEfV+∞|R∞ ' Eh[−1] with h : R→ R de�ned as

h(y) =

{
f(c)− cy if y ≤ f ′(c)

g(y) if y > f ′(c)
.

Notice that f(c) − cy is not admissible, hence we'll consider only g in the de-
composition of LK: in fact g is admissible and moreover it has ord+∞g > 1 and
lim

y→+∞
g(y) = −∞.

ii) Let EfV+∞|R∞ be in the decomposition of K at +∞ with lim
x→+∞

f(x) = −∞. We

have again LEfV+∞|R∞ ' Eq!(Q(C{(x,y,t)∈R×R×R: t+f(x)−xy≥0, c<x})); if we �x (y, t) ∈
R × R then (LEfV+∞|R∞)(y,t) ' RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x}). If −f(x) +

xy hasn't any stationary points for every x > c this time we have RΓc({x ∈
R}; C{x∈R; t+f(x)−xy≥0, c<x}) = 0 for every t. We are in this situation when f ′(x)−
y < 0 for every x > c since f(x) is decreasing in (c,+∞), so for y ≤ f ′(c).
Assume now that y > f ′(c): in this case f(x)−xy has global minimum at x = g̃′(y)
where g̃′(y) is the inverse of y = f ′(x), and so

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x}) =


0 if t < −g(y)

C if −g(y) ≤ t < −f(c) + cy

0 if t ≥ −f(c) + cy

.

Let's compute g(y).
Notice that f is decreasing and concave in (c,+∞) since lim

x→+∞
f(x) = −∞ and

ord+∞f > 1, hence f ′ is negative and decreasing in (c,+∞) with lim
x→+∞

f ′(x) = −∞
and ord+∞f

′ > 0. Let x = g̃′(y) be the inverse of y = f ′(x) for x > c:
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then lim
y→−∞

g̃′(y) = +∞ and ord+∞g̃
′ > 0. In particular g̃′ is decreasing and

positive in (−∞, f ′(c)), so −g̃′ is increasing and negative in (−∞, f ′(c)), and
lim

y→−∞
−g̃′(y) = −∞.

Let g(y) be a primitive of−g̃′(y) in (−∞, f ′(c)): then g is decreasing with lim
y→−∞

g(y) =

+∞ and ord+∞g > 1.
In this way we have found that LEfV+∞|R∞ ' Eg.h(−∞,f ′(c))|R∞ with h : (−∞, f ′(c))→ R
de�ned as h(y) = f(c)−cy. Notice that h(y) is not admissible, hence we'll consider
again only g in the decomposition of LK: g is admissible and it has ord+∞g > 1
and lim

y→−∞
g(y) = +∞.

iii) Let Ef1.f2V+∞|R∞ be in the decomposition of K at +∞ with lim
x→+∞

f1(x) = +∞ and

lim
x→+∞

f2(x) = −∞. In this case we'll study separately Ef1V+∞|R∞ and Ef2V+∞|R∞ .

Thanks to i) we know that in LEf1V+∞|R∞ we have the function g1(y) : (f ′1(c),+∞)→
R which is admissible and has ord+∞g1 > 1 and lim

y→+∞
g1(y) = −∞. By applying

ii) to Ef2V+∞|R∞ we �nd in LEf2V+∞|R∞ the function g2(y) : (−∞, f ′2(c))→ R, admissi-
ble, with ord−∞g2 > 1 and lim

y→−∞
g2(y) = +∞.

Hence in LK there are the two admissible exponential factors g1 and g2, respec-
tively at +∞ and at −∞.
iv) Let Ef1.f2V+∞|R∞ be in the decomposition of K at +∞ with lim

x→+∞
f1(x) = +∞ and

lim
x→+∞

f2(x) = +∞. Again we'll study separately Ef1V+∞|R∞ and Ef2V+∞|R∞ .

Using the results in i) for both Ef1V+∞|R∞ and Ef2V+∞|R∞ we �nd that in LEf1V+∞|R∞
there's the function g1(y) : (f ′1(c),+∞) → R, admissible, with ord+∞g1 > 1 and
lim

y→+∞
g1(y) = −∞, and in LEf2V+∞|R∞ there's the function g2(y) : (f ′2(c),+∞)→ R,

admissible, with ord+∞g2 > 1 and lim
y→+∞

g2(y) = −∞. In particular ord+∞f1 ≥
ord+∞f2 because f1 ≥ f2 with f1, f2 both positive and f1 − f2 is unbounded at
+∞, so ord+∞g1 ≤ ord+∞g2 hence g1 ≥ g2 since they're both negative. Moreover
g1 − g2 is unbounded at +∞, thus (g1, g2) is also admissible.
Recall that in LK there are also some exponential sheaves given by non admissible
functions which may interfere with g1 and g2, so we can't assume the presence of
Eg1.g2U+∞|R∞ in the decomposition of LK at +∞, therefore we have to consider g1 and
g2 separately.
v) Let Ef1.f2V+∞|R∞ be in the decomposition of K at +∞ with lim

x→+∞
f1(x) = −∞ and

lim
x→+∞

f2(x) = −∞. Also here we'll study separately Ef1V+∞|R∞ and Ef2V+∞|R∞ .

Using the results in ii) for Ef1V+∞|R∞ and Ef2V+∞|R∞ we �nd that in LEf1V+∞|R∞ there's the
function g1(y) : (−∞, f ′1(c))→ R, admissible, with ord−∞g1 > 1 and lim

y→−∞
g1(y) =
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+∞, and in LEf2V+∞|R∞ there's the function g2(y) : (−∞, f ′2(c)) → R, admissible,
with ord+∞g2 > 1 and lim

y→−∞
g2(y) = +∞. This time ord+∞f1 ≤ ord+∞f2 be-

cause f1 ≥ f2 with f1, f2 both negative and f1 − f2 is unbounded at +∞, so
ord−∞g1 ≥ ord−∞g2 hence g1 ≥ g2 since they're both positive. Moreover g1− g2 is
unbounded at −∞, thus (g1, g2) is also admissible.
Hence in LEf1.f2V+∞|R∞ there is the pair of admissible exponential factors (g1, g2). Also
in this case we can't assume to have Eg1.g2U−∞|R∞ in the decomposition of LK at −∞,
so we have to consider g1 and g2 separately.

Assume now that a = 0.
Assume that V −0 = ((c, 0), (c, 0]) where c is chosen in order to have f ′′(x), f ′′1 (x),
f ′′2 (x) 6= 0 for any x ∈ (c, 0).
i) Let Ef

V −0 |R∞
be in the decomposition of K at 0 with lim

x→0−
f(x) = +∞. We have

LEf
V −0 |R∞

' Eq!(Q(C{(x,y,t)∈R×R×R: t+f(x)−xy≥0, c<x<0})); if we �x (y, t) ∈ R× R then

(LEf
V −0 |R∞

)(y,t) ' RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x<0}). If −f(x) + xy hasn't any

stationary points for every c < x < 0 then

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x<0}) =

{
0 if t < −f(c) + cy

C[−1] if t ≥ −f(c) + cy
;

we are in this situation when f ′(x) − y > 0 for every c < x < 0 since f(x) is
increasing in (c, 0), so for y ≤ f ′(c).
Assume now that y > f ′(c): in this case f(x)−xy has global minimum at x = g̃′(y)
where g̃′(y) is the inverse of y = f ′(x), and so

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x<0}) =

{
0 if t < −f(g̃′(y)) + g̃′(y)y

C[−1] if t ≥ −f(g̃′(y)) + g̃′(y)y
.

Let's compute g(y) = f(g̃′(y))− g̃′(y)y.
Notice that f is increasing and convex in (c, 0) since lim

x→0−
f(x) = +∞, hence f ′

is positive and increasing in (c, 0) with lim
x→0−

f ′(x) = +∞ and ord0f
′ ≥ 1. Let

x = g̃′(y) be the inverse of y = f ′(x) for c < x < 0: then lim
y→+∞

g̃′(y) = 0−. In

particular g̃′ is increasing and negative in (f ′(c),+∞), so −g̃′ is decreasing and
positive in (f ′(c),+∞), and lim

y→+∞
−g̃′(y) = 0+.

Let g(y) be a primitive of −g̃′(y) in (f ′(c),+∞): g is increasing with lim
y→+∞

g(y) =

+∞ and 0 < ord+∞g < 1.
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Hence LEf
V −0 |R∞

' Eh[−1] with h : R→ R de�ned as

h(y) =

{
f(c)− cy if y ≤ f ′(c)

g(y) if y > f ′(c)
.

Notice that f(c)− cy is not admissible, hence we'll consider only g in the decom-
position of LK: in fact g is admissible with 0 < ord+∞g < 1 and lim

y→+∞
g(y) = +∞.

ii) Let Ef
V −0 |R∞

be in the decomposition of K at 0 with lim
x→0−

f(x) = −∞. We have

again LEf
V −0 |R∞

' Eq!(Q(C{(x,y,t)∈R×R×R: t+f(x)−xy≥0, c<x<0})); if we �x (y, t) ∈ R×R
then (LEf

V −0 |R∞
)(y,t) ' RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x<0}). If −f(x) + xy

hasn't any stationary points for every c < x < 0 this time we have RΓc({x ∈
R}; C{x∈R; t+f(x)−xy≥0, c<x<0}) = 0 for every t. We are in this situation when
f ′(x)−y < 0 for every c < x < 0 since f(x) is decreasing in (c, 0), so for y ≤ f ′(c).
Assume now that y > f ′(c): in this case f(x)−xy has global minimum at x = g̃′(y)
where g̃′(y) is the inverse of y = f ′(x), and so

RΓc({x ∈ R}; C{x∈R; t+f(x)−xy≥0, c<x<0}) =


0 if t < −g(y)

C if −g(y) ≤ t < −f(c) + cy

0 if t ≥ −f(c) + cy

.

Let's compute g(y).
Notice that f is decreasing and concave in (c, 0) since lim

x→0−
f(x) = −∞, hence f ′

is negative and decreasing in (c, 0) with lim
x→0−

f ′(x) = −∞ and ord0f
′ ≥ 1. Let

x = g̃′(y) be the inverse of y = f ′(x) for c < x < 0: then lim
y→−∞

g̃′(y) = 0−. In

particular g̃′ is decreasing and negative in (−∞, f ′(c)), so −g̃′ is increasing and
positive in (−∞, f ′(c)), and lim

y→−∞
−g̃′(y) = 0+.

Let g(y) be a primitive of−g̃′(y) in (−∞, f ′(c)): then g is increasing with lim
y→−∞

g(y) =

−∞ and 0 < ord−∞g < 1.
So LEf

V −0 |R∞
' Eg.h(−∞,f ′(c))|R∞ with h : (−∞, f ′(c))→ R de�ned as h(y) = f(c)− cy.

Notice that h(y) is not admissible, hence we'll consider again only g in the decom-
position of LK: g is admissible and it has 0 < ord−∞g < 1 and lim

y→−∞
g(y) = −∞.

iii) Let Ef1.f2
V −0 |R∞

be in the decomposition of K at 0. With the same considerations

made in the case a = +∞ and using the results i) and ii) of the case a = 0 it is
possible to prove that in the decomposition of LK at ±∞ there are the admissible
exponential factors g1, g2 where g1, g2 are given by the Legendre transform of
(0,−, f1) and (0,−, f2).
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Assume that a ∈ R, a > 0.
Assume that V −a = ((c, a), (c, a]) where c is chosen in order to have f ′′(x), f ′′1 (x), f ′′2 (x) 6=
0 for any x ∈ (c, a).
Let τ−a : R∞ → R∞ be the morphism induced by the translation τ−a(x) = x− a.
Then we have Ef

V −a |R∞
' Eτ−1

−a (Ef̂
V −0 |R∞

) where f̂ := f ◦ τ−a. Notice that f̂ has the

same limit for x→ 0− as the one of f for x→ a−. Then, thanks to Lemma 4.3.3,

we have LEf
V −a |R∞

' E−ayR|R∞

+
⊗ LEf̂

V −0 |R∞
.

i) Assume that Ef
V −a |R∞

is in the decomposition of K at a with lim
x→a−

f(x) =

lim
x→0−

f̂(x) = +∞. Then in the decomposition at +∞ of LEf̂
V −0 |R∞

we obtain the

admissible exponential factor ĝ(y) : (f̂ ′(c),+∞) → R with lim
y→+∞

ĝ(y) = +∞ and

0 < ord+∞ĝ < 1; hence in the decomposition at +∞ of LK there is the exponen-
tial factor g(y) = ĝ(y) − ay: it has lim

x→+∞
g(y) = −∞ and ord+∞g = 1, and it's

admissible because ĝ(y) is not constant.
ii) Assume that Ef

V −a |R∞
is in the decomposition of K at a with lim

x→a−
f(x) =

lim
x→0−

f̂(x) = −∞. Analogously we �nd that in the decomposition at −∞ of
LK there is the exponential factor g(y) = ĝ(y) − ay with lim

x→−∞
g(y) = +∞ and

ord−∞g = 1, which is admissible because ĝ(y) is not constant.
iii) Let Ef1.f2

V −a |R∞
be in the decomposition of K at a. Then in the decomposition of

LK at ±∞ there are the admissible exponential factors g1, g2 obtained applying
i) or ii) or both i) and ii) to f1 and f2.

Assume that a ∈ R, a < 0.
Assume that V −a = ((c, a), (c, a]) where c is chosen in order to have f ′′(x), f ′′1 (x),
f ′′2 (x) 6= 0 for any x ∈ (c, a).
Let τa : R∞ → R∞ be the morphism induced by the translation τa(x) = x + a.

Then again LEf
V −a |R∞

' EayR|R∞
+
⊗ LEf̂

V −0 |R∞
, where f̂ := f ◦ τa.

With the same considerations as above we �nd that the admissible exponential
factor f with lim

x→a−
f(x) = +∞ corresponds to the admissible exponential factor g

in the decomposition of LK at +∞ with lim
y→+∞

g(y) = +∞ and ord+∞g = 1, which

is admissible, and that the admissible exponential factor f with lim
x→a−

f(x) = −∞
corresponds to the admissible exponential factor g in the decomposition of LK at
−∞ with lim

y→−∞
g(y) = −∞ and ord−∞g = 1, admissible.



5.2 Stationary phase lemma in the real case 55

Consider now LK instead of K and assume that in the decomposition of LK at b
there is the exponential indsheaf EgUvb |R∞ given by the admissible exponential factor

g where v ∈ {+,−}. Notice that L(LK) ' K and L( L(b, v, g)) ' (b, v, g). Hence,
by the same computations as above, (a, u, f) = L(b, v, g) where f is an admissible
exponential factor of K.
Similar considerations hold if we assume that in the decomposition of LK at b there
is the exponential indsheaf Eg1.g2Uvb |R∞

given by the admissible exponential factors g1,
g2.
Hence we have a 1-1 correspondence between the admissible exponential factors
of K at a and the admissible exponential factors of LK at b, where L(a, u, f) =
(b, v, g).

Let's summarize the correspondence between (a,−, f) of K and L(a,−, f) =
(b, v, g) of LK in the following table:

K LK

a u f b v g

+∞ − f(x) −→
x→+∞

+∞, +∞ − g(y) −→
y→+∞

−∞,
ord+∞f > 1 ord+∞g > 1

+∞ − f(x) −→
x→+∞

−∞, −∞ + g(y) −→
y→−∞

+∞,
ord+∞f > 1 ord−∞g > 1

0 − f(x) −→
x→0−

+∞ +∞ − g(y) −→
y→+∞

+∞,
0 < ord+∞g < 1

0 − f(x) −→
x→0−

−∞ −∞ + g(y) −→
y→−∞

−∞,
0 < ord−∞g < 1

In particular if a ∈ R, a > 0 then g(y) = ĝ(y)−ay where ĝ is given by the Legendre
transform of (0, u, f̂) with f̂ = f ◦ τ−a and if a ∈ R, a < 0 then g(y) = ĝ(y) + ay
where ĝ is given by the Legendre transform of (0, u, f̂) with f̂ = f ◦ τa.
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