
University of Padua

DEPARTMENT OF INFORMATION ENGINEERING

Master Degree in Computer Engineering

Master Degree Thesis

Orchestration of smart objects with
MQTT for the Internet of Things

Candidate:

Gianmarco Nalin
ID Number: 1033984 - IF

Thesis advisor:

Ch.mo Prof. Carlo Ferrari

Research supervisor:

Ing. Michele Stecca

Academic Year 2013 - 2014

“The only way to do great work is to love what you do.”
Steve Jobs

To Elena, the strongest woman I have ever met.

Abstract

At the beginning of Internet, users were only consumers of information, in what
it is called Web 1.0. Thanks to the integration with databases and content
management systems (CMS), the way users interact with the Web has changed.
People can become also creator of contents and, therefore, contribute to the
emerging Web 2.0.

In this scenario, many companies make available several web services to in-
teract with, permitting users and developers to create custom applications.

At the same time, devices permit users to remain connected everywhere and
anytime. Not only smartphones, tablets and PCs but also fridges, washing
machines and cars. These new connected devices can exchange information with
the real world in order to remotely act with them. This is the Internet of
Things (IoT), where objects and services coexist e cooperate.

The IoT is evolving as fast as companies and developers identify new oppor-
tunities of growth. This growth is possible if there exist protocols which enable
interoperability between different devices and networks. In this direction, IBM
has developed MQTT, a new protocol which facilitates devices integration and
management in constrained environment.

In this thesis, we will describe a platform which permits the creation of
composite services (a.k.a. mashups) that combine several web services and
physical devices to execute custom tasks.

In Chapter 1, we will introduce the Internet of Things describing some nowa-
days architectures. In Chapter 2 we will give a short description of the iCore
project, which is the work’s starting point. In Chapter 3, we will describe the
publish/subscribe paradigm as well as the MQTT protocol. In Chapter 4, we
will introduce a creation and execution composite services platform. Finally, we
will state results and future developments about the project.

Contents

1 An introduction to the Internet of Things 1
1.1 Semantic meaning of Internet of Things 1
1.2 Main Challenges for the IoT . 2
1.3 Constrained Application Protocol and Machine to Machine Com-

munications . 2
1.4 IoT applications . 3
1.5 The Web of Things . 4

1.5.1 RESTful Architectures . 5
1.6 Case study: Xively R© . 7

1.6.1 How it works . 9
1.6.2 Pricing . 11

2 The iCore Project 13
2.1 Service Creation Platform . 13
2.2 Service Execution Platform . 14

2.2.1 Service Proxy . 15
2.2.2 Orchestrator . 15

3 A publish-subscribe protocol: MQTT 19
3.1 Publish-Subscribe Systems . 20

3.1.1 The programming model 21
3.2 Message Queue Telemetry Transport 22

3.2.1 Message format . 23
3.2.2 Message flows . 25
3.2.3 MQTT Applications . 27

3.3 An MQTT implementation: Paho 29
3.4 Terracotta R© Universal Messaging: setting up a local environment 29

3.4.1 Terracotta Universal Messaging 30
3.4.2 Client Implementation with Paho MQTT 34

4 Integrating MQTT into the platform 37
4.1 Centralized SEP . 38

4.1.1 Example . 38
4.2 Distributed SEP . 44

4.2.1 Example . 45
4.3 Centralized and distributed implementation comparison 51

Conclusion and future developments 53

A Publisher Java Code 55

B Subscriber Java Code 57

Bibliography 59

Chapter 1

An introduction to the
Internet of Things

Nowadays, we have the ability to measure, sense and monitor everything in
the physical world. How can we use these information to increase business
productivity, improve human health and monitor environment situation? Can
we make them publicly available in order to enhance the knowledge? A Cisco
study [12] states that in 2020 there will be about 50 billion of connected physical
world devices, fueled by a 1000× increase in wireless broadband traffic. This is
a huge number of devices and their interoperability is a challenge these days: we
need protocols that make possible the communication between all these devices.

In the following sections, we will present an overview about what we intend
with Internet of Things (IoT) using practical examples followed by a case study
of a company whose core business is founded on IoT.

1.1 Semantic meaning of Internet of Things

Huang and Li in [2] analyze the semantic meaning of Internet of things: generally,
the nouns in phrase like “noun1 + of + noun2” are related in some way and
have an affiliation relation or an apposition relation. With the phrase Internet
of things, we have an exception: the relationship between the two nouns is not
the one described above but a more exact understanding is “the Internet related
to things”.

The main function of Internet is to interconnect, using cables, optical fiber or
microwaves, the computer terminals all around the world. The objects transmit-
ted in form of electric or optical signals cannot be things as material entities but
only the information as immaterial ones. So, the semantic meaning of Internet
of things is the “Internet relating to information of things”, where with the term
“relating to” we intend that the information produced by things flows rationally
on the Internet in order to be shared all around the world.

1

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 2

1.2 Main Challenges for the IoT

There are several challenges to which the IoT vision should overcome: contextual
(including policy) and technical applications are the main ones. In a world where
everything is interconnected, where data about local environment (and about
humans in direct or indirect way) are exchanged, privacy is fundamental and
it has to be guaranteed and protected. The individual’s trust to the IoT should
be complete and information about negative impact on individual or society has
to be safeguarded.

Standardization of technologies is also important because it will lead to
better interoperability with a reduction of the entry barriers. Nowadays, each
manufacturer produces and implements its own solution based on vertical in-
tegration of the entire system. The change from Intranet of Things to a more
complete Internet of Things is a fundamental requirement.

So, the key challenges areas are:

• Privacy, identity management, security and access control: who
can share and see with which credentials is a significant challenge.

• Standardization and interoperability: how can we guarantee that all
the technology platforms continue to act, as a unique and coherent plat-
form, where we do not to re-invent the wheel every time we have to develop
a new application or we have to add a new sensor to the system?

1.3 Constrained Application Protocol and Ma-
chine to Machine Communications

The term machine to machine (M2M) refers to technologies that allow wired
and wireless systems to communicate with other devices of the same type. M2M
does not refer to specific network, information and communication technologies.
It is particularly useful for business executives.

Modern M2M communication has expanded beyond the one-to-one connec-
tion and changed into a systems of networks that transmit data to personal
appliances. With the world adoption and expansion of IP networks, M2M com-
munication has begun to take place with the reduction of the amount of power
and time necessary for information to be collected and transmitted between ma-
chines. A possible protocol that allows M2M communication is the Constrained
Application Protocol.

Constrained Application Protocol (CoAP) is an application level (ISO/OSI
level 7) protocol which is suitable for very small and resource-limited devices.
The protocol stack is showed in Figure 1.1. It allows devices to communicate in-
teractively over the Internet. CoAP is ideal for small low power sensors, switches
and similar devices which have to be controlled over the standard Internet net-
work.

CoAP is designed to be a RESTful protocol that permits both synchronous
and asynchronous communication. It is specialized for Machine to Machine
and IoT applications and it permits an easy proxying to/from HTTP. The pro-
tocol is not designed neither to be a replacement for HTTP nor deeply separate
from the Web, but to be extremely merge with it.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 3

Application

CoAP Request/Response

CoAP Messages

UDP

Figure 1.1: CoAP position in the ISO/OSI architecture.

1.4 IoT applications

In this section, we present some of the possible applications of the Internet of
Things. As in [1], we can group everyday situations in several sets, showing how
IoT is becoming a technological revolution.

• SMART CITIES

Smart parking Monitoring of parking spaces available in the city;

Smart health Monitoring of health status of buildings, bridges or histor-
ical monuments;

Noise urban maps Sound monitoring in central zone in real time

Traffic congestion Monitoring of vehicles and pedestrian levels and op-
timize routes;

Waste management Detection of rubbish levels in containers and opti-
mize trash collection routes.

• SMART ENVIRONMENT

Forest fire detection Monitoring of combustion gases and fire over crit-
ical zones;

Air pollution Monitoring and control of CO2 emissions of factories and
farms.

• RETAIL

Supply chain control Monitoring of stock conditions and product track-
ing;

Near Field Communication (NFC) payments Payment processing for
public transport, gyms, coffee shops, etc.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 4

• INDUSTRIAL CONTROL

Machine to machine (M2M) applications Machines auto-diagnostic
and assets control.

• DOMOTIC AND HOME AUTOMATION

Energy and water use Monitoring and control of water and energy us-
age in order to save money and resources;

Remote control appliances Switching on and off remotely appliances
in order to avoid accidents.

• EHEALTH

Patients surveillance Monitoring and control patience condition in his
hospital room or in his own home;

Fall detection Assistance for older or disable people to make them living
independent.

1.5 The Web of Things

The creation of smart things and their interconnection through a network has
become a goal of many reasearch activities. Rather than creating a brand new
vertical architecture specific for this purpose, it has been proposed to make these
objects an integral part of the Web.

In this scenario, popular Web technologies such as HTML, JavaScript,
Ajax, PHP, ASP.NET, can be used to build applications that involve smart
things and users can leverage weel-known Web mechanisms, e.g. browsing,
searching, bookmarking, linking, to interact with and share these devices.

A first proposal came in [5] by Kindberg et al.: they proposed to link physical
objects with Web pages which contain information and services. By the use
of infrared reader or bar codes on objects, users can retrieve the URI of the
associated page with a simple interaction paradigm.

Another interaction model has been provided in [6] by Guinard et al. in
which they propose to incorporate real world smart objects into a standardized
Web service architecture, e.g. using SOAP (Simple Object Access Protocol),
WSDL (Web Services Description Language), UDDI (Universal Description
Discovery and Integration). In practice, such integration method is too heavy
and complex for objects with limited resources.

Recently, several ”Web of Things” projects have explored simple embedded
HTTP servers and Web 2.0 technologies. Thanks to TCP/HTTP cross-layer
optimisations, web servers, with advanced features (e.g. concurrent connections
or server push for event notification), can be implemented with only 8KB of
memory without the OS support. In this concept, smart things and their services
are completly integrated in the Web by reusing and adapting technologies used
for traditional Web contents. REST architecure well integrates and completes
this point of view providing a simple uniform interface and mechanisms for clients
to choose the best possible representations for interactions. In the next section,
we provide a brief introduction to REST architectures with some examples.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 5

1.5.1 RESTful Architectures

Introduction

REpresentational State Transfer (REST) is a type of software architecture
for distributed hypermedia systems. The term was introduced in 2000 by Roy
Fielding in his doctoral thesis. REST-style architectures conventionally consist
of clients and servers. Clients create requests to servers; servers process requests
and get back the appropriate responses. Requests and responses are built around
the transfer of resources representations. A resource can be any coherent and
meaningful concept that may be addressed. A representation of a resource is
a document that capture the current or intended state of that resource.

The REST architectural style has six main constraints about architecture
while it leaves implementations of individual components free to design.

Client-Server: a uniform interface separates clients and servers. This sepa-
ration means that, for instance, clients don’t have to worry about data
storage, which remains internal to the servers (this improves the client
code portability); from the servers’ point of view, this concept means that
servers don’t have to worry about user interface or user state (this makes
the server simpler and more scalable). Clients and servers may be replaced
and developed independently as long as the interface between them is not
modified.

Stateless: communications between clients and server have to be stateless such
that each request must contain all necessary information to understand it
and it cannot take advantage of any stored content on the server. Session
state is kept entirely on the client.

Cacheable: in order to improve network efficiency responses to requests may
be client cached. Servers can explicitly label responses as cacheable or
non-cacheable.

Layered systems: the layered system style allows an architecture to be com-
posed of several hierarchical layers by constraining component behavior
such that each component can see only the public interface of the compo-
nent it is interacting with without knowing the specific implementation.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 6

Code on Demand: REST allows client functionality to be extended by down-
loading and executing code in form of applets or scripts. This simplifies
clients by reducing the number of features required to be pre-implemented
and allowing features to be downloaded after the system deployment.

Uniform interface: the interface between clients and servers simplifies and
separates the architectures, giving to each part the ability to evolve inde-
pendently.

RESTful Web APIs

Figure 1.2: REST API Design.

A RESTful web API (also called a RESTful web service) is a web API de-
veloped using HTTP and REST principles. As you can see in Figure 1.2, it is a
collection of resources with defined aspects:

• the base URI for the web API, such as http://firm.com/employees/;

• the Internet media type of the data supported by the web API: this is often
JSON but it could be any valid Internet media type;

• the set of operations supported by the web API using HTTP methods (e.g.
GET, POST, PUT, DELETE);

• the API must be hypertext driven.

In the following table we summarize the recommended return values of the pri-
mary HTTP methods in relation with the resource URIs.

Interface Guidelines

The uniform interface constrain described in the previous section is consider
fundamental to the design process of any REST service.

Identification of Resources: each resource is identified in requests, for in-
stance using URI in web-based REST systems. Also the resources are
conceptually separated from their representations that are get back to the
client; usual representations are HTML, XML, JSON.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 7

HTTP
Verb

Entire Collection
e.g. /employees/

Specific Item
e.g. /employees/id/

GET 200 (OK) - list of employees.
200 (OK) - single employee.
404 (Not Found) if ID is not
found or invalid.

PUT

404 (Not Found), unless you
want to update/replace every
resource in the entire collec-
tion.

200 (OK) or 204 (No

Content) - update em-
ployee information.
404 (Not Found) if ID is
not found or invalid.

POST

201 (Created) - Loca-
tion header with link to
/employees/id/ containing
the new ID

404 (Not Found) - Gener-
ally not used.

DELETE

404 (Not Found), unless you
want to delete the whole col-
lection - not often desider-
able.

200 (OK).
404 (Not Found), if ID is
not found or invalid.

Manipulation of resources through these representations: when a client
holds a representation of a resource, including any attached metadata, it
has enough information in order to modify or delete the resource on the
server, if it has permissions to do that.

Self-descriptive messages: Each message has enough information to describe
how to process it. In addition, responses explicitly indicate their cacheabil-
ity.

1.6 Case study: Xively R©

Xively is a company already known as Pachube first, and Cosm later, which
focuses its business in building a platform for the IoT.

It offers their services as a Platform as a Service (PaaS): it provides a web
environment where it is easy to develop and deploy custom applications that use
the Internet of Things.

It is also available a set of libraries (Java, PHP, C, Javascript, Objective-C
and many others) that make easy Xively integration on a very large number of
devices and fields.

In Figure 1.3, we show the Xively platform overview.
The provided services are conceptually simple:

Directory Services They make simple the indexing and searching of objects
and permissions on a possible very large number of devices and users.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 8

Figure 1.3: Xively platform overview.

Data Services They store data from the devices in order to get to users the
possibility to compute statistics on a time basis.

Business Services They simplify the work that has to be done in order to
deploy, register, activate and manage every single device.

Everything is hidden by an API level that makes easier the development of
applications and software that use Xively.

The key concepts are:

Product It is the highest level of abstraction in Xively: it describes the common
information of the same type of devices.

Device It describes a single and unique device. It is identified by an ID and
every data are exchange using the Feed

Feed It is the stream of information associated with every single device. It is
identified by a unique ID.

Channel It is the source of a single type of information. A channel could be
the temperature sensor of a device. Multiple channels could be associated
with a single device.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 9

1.6.1 How it works

In order to better understand how Xively works, we propose a practical example.
We used a developer account which has some limitations on the usage.

The first thing to do is adding a new development device. In Figure 1.4, we
show the screenshot of this procedure.

Figure 1.4: Xively platform: adding a new development device.

Once confirmed every information, we are brought to the management screen
as showed in Figure 1.5. In this section you can retrieve the Feed ID associated
with the device, the Activation Code for activate the device, add new API
keys and specific Channels for the device. As you can see in the same figure,
when a new device is created, Xively creates also an auto-generated API key
with the permission to do everything: you can generate other keys in order to
create a suitable permission scheme for the device.

The section presented above is dedicated to the development and debug of
device’s application. Once the application is mature and bug-free, you can easily
deploy the device in production environment. What if you have hundreds of
temperature sensors, should you add every single sensors one by one? The
answer is obviously no: Xively permits to insert a batch of devices, uploading a
CSV file which contains all the devices’ serial numbers. This procedure simplifies
enormously the initial activity of adding a lot of devices. This feature is showed
in Figure 1.6.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 10

Figure 1.5: Xively platform: device’s resume screen.

Figure 1.6: Xively platform: batch adding.

CHAPTER 1. AN INTRODUCTION TO THE INTERNET OF THINGS 11

1.6.2 Pricing

Xively gives to users three types of service, from an entry-level service to a top
one. The main differences among these three types consists in the hours of
available consulting support and the price of channels per transaction volume.
The service pricing table is showed in Table 1.1.

Starter Value Select

Priority
Support

12 hours 12 hours 12 hours

Consulting
Services

6 hours 20 hours 48 hours

Channel
Pricing

Low: $1.25
Average: $2.00
High: $3.25

Low: $0.99
Average: $1.55
High: $2.50

Low: $0.65
Average: $0.99
High: $1.25

Price 999$/year 4,900$/year 39,000$/year

Table 1.1: Xivley service pricing table.

Chapter 2

The iCore Project

iCore is a EU funded project which has two main objectives:

• abstracting the technological heterogeneity which comes from the huge
amount of heterogeneous objects, while maintaining the reliability ;

• considering the views of different users and stakeholders in order to ensure
proper application provision, business integrity and exploiting business
opportunities.

In order to run a mashup, we need a platform in which users can deploy these
composite services and execute them. Stecca and Maresca in [15] proposed a
platform, based on a Request/Response model, that supports the execution of
server-side/event-drive mashups. In the following sections, we will describe
the two main components of this platform, the service creation platform
(SCP) and the service execution platform (SEP): the former permits the
creation of mashups and the latter permits their execution.

2.1 Service Creation Platform

The creation of a mashup is made through a graphical interface in which cre-
ators can drag and drop blocks representing services and define the relationships
between them by drawing an edge from the emitting service to the receiving
one, as shown in Figure 3.1. Once the mashup is created, it is saved as an XML
file and stored in a repository. An example of the editor is shown in Figure 2.1.

13

CHAPTER 2. THE ICORE PROJECT 14

Figure 2.1: Graphical user interface for creating mashups.

2.2 Service Execution Platform

The service execution platform is the actual environment in which mashups live
and compute. It has to satisfy a set of requirements, such as:

• Scalability: the system has to support the simultaneous execution of
a possible large number of instances (also called sessions) on different
hardware size;

• Fault Tolerance: the system has to ensure that even if some components
fail, the session is able to continue its execution;

• Low latency and high throughput: The system has to serve as many
requests as possible, according to the hardware characteristics;

• Authentication, Authorization and Accounting (AAA): the system
has to guarantee the opportunity of managing users’ permissions, different
service levels (SL) and authorization;

• Management: the system has to permit a full control over the available
resources in order to allow to the platform administrator the application of
necessary maintenance operations (e.g. enforcing Service Level Agreement
rules).

CHAPTER 2. THE ICORE PROJECT 15

2.2.1 Service Proxy

Although the existing services use standard interfaces (e.g. RESTful API,
SOAP) to expose their resources, they do not expose interfaces compatible with
event-driven platform because of the different technologies and different data
formats (e.g. XML, JSON, YAML). In order to ensure the compatibility with
the system, Stecca and Maresca introduced a layer between the internal system
and the external world. They defined the concept of Service Proxy (SP): an
SP wraps an external resource and makes it compliant with the event driven
model previously explained. Given this concept, a different SP is needed for
each external resource we want to make available in this platform. SP trans-
lates input properties into specific external service format and parses the service
response to fulfill the output properties, as shown in Figure 2.2.

Service Proxy

External Resource
Request from

Orchestrator

Translation to external resource format

Parse from external resource format

Figure 2.2: How a SP interacts with external world.

In order to receive events from the orchestrator node (ON), SPs expose a
primitive called invokeAction through which the ON activate the SP function-
ality. Within a SP, we can identify two types of communication:

• Mashups level, which refers to the invokeAction/notifyEvent calls in
relation to the mashup logic;

• External resource level, which refers to the communication between the
wrapper SP and the external service.

As we said before, only one SP is needed for each external resources al-
though several instance of the same SP can be deploy for performance and
fault tolerance reasons.

2.2.2 Orchestrator

The component that actually executes mashups according to defined constrains
is called orchestrator. This software executes mashups logic combining services
as defined in the SCP. As we said in the previous section, the orchestrator does
not communicate directly to the external services but it receives and forwards
events from and to SPs inside the Service Provider Domain (SPD). Figure 2.3
depicts the platform architecture and how the orchestrator works.

CHAPTER 2. THE ICORE PROJECT 16

Service Provider Domain

Orchestrator

SP1 SP2

External

Services

SPn

Figure 2.3: High level platform architecture.

In the platform, a single ON is needed but, for performance reasons, several
instances may coexist at the same time. When a new deployment request ar-
rives, each active ON retrieves from repository the XML representation of the
requested mashup. According to the XML, ON translates it to a Routing Table

that is used for managing the mashup logic during its execution. Each table en-
try is identified by the pair <senderSPId, eventId>, through which the ON
can get the information required for invocation of the next action or actions in
the mashup.

Regarding a single action, the required information for the correct forwarding
of the next action are:

• the identifier of the next action;

• the identifier of the next SP;

• the parameters assignment from output to input values.

Now we have a clear idea about which information is needed to correctly
execute the mashup. Next step is to define the algorithm through which a
composite service runs. When an event occurs on an ON, the steps to follow are
described in Algorithm 1:

CHAPTER 2. THE ICORE PROJECT 17

Algorithm 1 Next action(s) invocation algorithm.

1: NEXT ACTION(EventId, SenderSPId, SessionId, Properties)
2: MashupId ← SessionId.MashupId

3: RoutingTable ←getRoutingTable(MashupId)

4: entries ← RoutingTable.getEntries(<SenderSPId, EventId>)

5: for all entry ∈ entries do
6: Update Properties based on assignment fields.
7: entry.nextSP.invokeAction(ONEndPoint, ActionId, TargetSPId,

SessionId, UpdateProperties)

8: end for

As we can see in Algorithm 1, invoking next action, ON includes its endpoint
as a parameter: this is due to the possibility that many ONs exist on the plat-
form simultaneously and SP has to be able to notify the correct ON. Switching
between ONs supports load balancing, scalability and fault tolerance.

Another important feature of orchestration mechanism is that no state infor-
mation is stored during a mashup session: we refer to this property as stateless
orchestration.

The mechanism listed in Algorithm 1 is depicted in Figure 2.4.

SP1

SP3

SP2 SP1

ON1

ON2

SP5
SP4

Services Container Services Container

invokeAction invokeAction

notifyEvent

notifyEvent

Orchestrators Container

Figure 2.4: Run time execution model.

CHAPTER 2. THE ICORE PROJECT 18

The platform described in this section is suitable for mashups of web services
but with emerging of the Internet of Things, where thousands and thousands of
devices and smart objects can be mixed with web services, this platform does not
work as desired. The system architecture does not scale with the huge amount
of new entities which want to be integrate to the platform.

The solution to this problem comes from the distributed system literature and
it is called publish-subscribe architecture. These architectures guarantee
scaling property and asynchronous communications which are fundamental in
smart objects implementation and functionality (e.g. sensors).

The next chapter will introduce the publish-subscribe (P/S) architecture and
propose a lightweight and P/S compliant protocol which is designed to be used
in constrained applications such as the IoT ones.

Chapter 3

A publish-subscribe
protocol: MQTT

The Internet gives a huge amount of free services which carry out different jobs,
such as mail services, RSS feeds, Flickr R© flows, etc. We can combine all these
services into new custom composite services which enrich the benefits of every
single service. We name this combination of services as a mashup. Figure 3.1
shows an example of mashup.

Figure 3.1: An example of mashup.

The idea behind this concept is really simple: each service exposes a set of
actions it can execute and a set of events it can fire up. Using this paradigm,
we can build chains of services which receive data from a service and produce
information that can be used by another service. The above example has been
built for a park searching assistant installed into a car. In this composite service
we have six different services:

• Speed: the service reads the current car speed and fires an event when a
new speed value is available;

• GPS: the service retrieves a GPS location and fires an event when a new
location is available;

• Parking service: given a GPS location, the service gives the nearest
free parking station from that location and fires an event when a parking
station is available;

19

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 20

• Database service: given a set of information, the service saves these
information in a database and fires an event when data are correctly saved
into the database;

• Display: given a string, the service writes a string on the car’s display
and fires an event when the write process ends;

• Proximity: the service monitors the distance between a given GPS loca-
tion and the current location and fires an event when this distance is below
a defined threshold.

Platforms, which permits the creation of personalized mashups, already exist:
they provide graphical tools in order to build up composite services without any
particular programming skill. Such services includes Yahoo! Pipes1, JackBe
Presto Server2 and Apatar3.

After a brief recall of publish-subscribe systems, we will introduce MQTT
which are at the new platform fundamental components.

3.1 Publish-Subscribe Systems

The publish-subscribe paradigm is an event-based architecture in which pub-
lishers publish structured events to an event service (usually called broker) and
subscribers show their interest in a particular event through subscriptions; these
subscriptions can be custom patterns over the structured events.

These systems are used in several application domains, in particular those
related to a large-scale events airing. Examples include:

• financial information systems;

• applications with live feeds of real-time data (including RSS feeds);

• support for cooperative working where users need to be informed of events
of interest;

• support for ubiquitous computing, including the management of events em-
anating from ubiquitous infrastructure (i.e. location events);

• a broad set of monitoring applications, including network monitoring in
the Internet.

This type of system is a key component of Google’s infrastructure, i.e. in the
dissemination of events related to advertisements [4].

Publish-Subscribe systems have two main characteristics:

Heterogeneity In a scenario where event notifications are used as a communi-
cation media, components in a distributed system that were not design for
interoperability can be made to work together. The only required thing is
that the event-generating objects publish the events they offer, and that
other object can subscribe to event topics (i.e. communication channels)
and provide a suitable interface for receiving and dealing with event noti-
fications.

1http://pipes.yahoo.com
2http://www.jackbe.com
3http://www.apatarforge.org

http://pipes.yahoo.com
http://www.jackbe.com
http://www.apatarforge.org

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 21

Asynchronicity Event notifications are sent asynchronously by publishers to
all subscribers who are interested in them, in order to prevent the pub-
lishers needing to synchronize with subscribers. In other words, publishers
and subscribers have to be decoupled.

3.1.1 The programming model

As shown in Figure 3.2, the publish-subscribe model consists of a small set of
operations:

publish(e) A publisher can disseminate an event e using this primitive;

notify(e) A subscriber can receive an event e which represents a topic update
from the publish-subscribe system;

subscribe(t) A client can subscribe to a specific topic t using this primitive;

unsubscribe(t) A client can unsubscribe from a specific topic t using this
primitive;

advertise(t) A publisher can declare the nature of its future events associated
with a topic t ;

unadvertise(t) A publisher can revoke advertisements related to a specific
topic t.

Publish-Subscribe System

publish(e1)

publish(e2)

advertise(t2)

notify(e2)

notify(e1)

subscribe(t2)

subscribe(t1)

notify(e1)

Figure 3.2: The publish-subscribe paradigm

These operations are mediated by a publish-subscribe system (a.k.a. bro-
ker) which is responsible to dispatch the events from publishers to interested
subscribers.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 22

Centralized and distributed architecture implementations are available.
The simplest approach is the centralized one: in this case, every communication
(from publishers to broker or from broker to subscribers) takes place through a
series of point to point messages. During its working phase, the broker could be
a bottleneck if it is present in a single instance. To prevent these situations,
we can replace the broker with a network of brokers that cooperate to offer the
desired functionality and service level.

For further information, see [4].

3.2 Message Queue Telemetry Transport

Message Queue Telemetry Transport (MQTT) is a lightweight broker-based
publish-subscribe messaging protocol, developed and designed for constrained
devices and low bandwidth by IBM / Eurotech in 1999. Due to simplicity and
low overhead, this protocol is suitable for use in constrained environments, such
as:

• Expensive networks with low bandwidth and no reliability;

• Embedded in devices with limited processor and/or memory resources.

Some other features of this protocol are:

• It provides one-to-many message distribution and decoupling of applica-
tions;

• It is agnostic on the content of the payload;

• It is built over TCP/IP for basic network connectivity;

• It provides three different type of Quality of Service:

At most once: messages are delivered according to the best effort of
TCP/IP networks; Message loss and duplication can occur.

At least once: messages are assured to arrive but duplicates may occur.

Exactly once: messages are assured to arrive exactly once.

• It has a small transport overhead;

• It has a mechanism to notify of abnormal disconnection of a client using
the Last Will and the Testament features.

The protocol is openly published with a royalty-free license and a variety of
client libraries have been developed, in particular on popular hardware platforms
such as Arduino4.

4http://arduino.cc

http://arduino.cc

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 23

3.2.1 Message format

The message consists of three parts:

• a fixed header

• a variable header

• a payload.

The message format is depicted in Figure 3.3.

Fixed header

Variable header

47 0

Payload

Figure 3.3: Message format.

Fixed header

The fixed header contains information about the message type, QoS level,
some flags and the message length. Figure 3.4 shows the fixed header’s structure.

Message Type DUP Flag QoS Level RETAIN

Remaining Length

byte 1

byte 2

47 0

Figure 3.4: Fixed header’s bits structure.

Message type This field is used to define the message type. It is a 4 bits field
which possible value is listed in Table 3.1.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 24

Mnemonic Enumeration Description

Reserved 0 Reserved for future use

CONNECT 1 Client request to connect to broker

CONNACK 2 Connect acknowledgement

PUBLISH 3 Publish message

PUBACK 4 Publish message acknowledgement

PUBREC 5 Publish received (QoS = 2)

PUBREL 6 Publish release (QoS = 2)

PUBCOMP 7 Publish complete (QoS = 2)

SUBSCRIBE 8 Client subscribe request

SUBACK 9 Subscribe acknowledgement

UNSUBSCRIBE 10 Client unsubscribe request

UNSUBACK 11 Unsubscribe acknowledgement

PINGREQ 12 Ping request

PINGRESP 13 Ping response

DISCONNECT 14 Client disconnection request

Reserved 15 Reserved for future use

Table 3.1: Possible message types.

DUP Flag This flag is set when client or server attempts to re-deliver a PUB-
LISH, PUBREL, SUBSCRIBE or UNSUBSCRIBE message. The flag is
used only on messages that have QoS > 0.

QoS level This flag is used to set the level of delivery assurance for PUBLISH
messages. The possible QoSs are listed in Table 3.2.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 25

QoS value Bit 2 Bit 1 Description

1 0 0 At most once (i.e. fire and forget)

2 0 1 At least once (i.e. acknowledged delivery)

3 1 0 Exactly once (i.e. assured delivery)

Reserved 1 1 Reserved for future use

Table 3.2: Possible QoS levels.

Retain This flag is used only on PUBLISH messages. If this flag is set, the
broker should hold the message after it has been delivered to the current
subscribers. When a new subscription is established on a topic, the last
retained messages should be sent to the subscriber with the RETAIN flag
set. If there is not retained messages, nothing happen.

Remaining length This byte represent the bytes remaining within the current
message, including the variable header and the payload.

Variable header

Some MQTT command messages contain a varible header which resides between
the fixed header and the payload, as shown in Figure 3.3. This header does not
count inside the Remaining length field value.

For further information about the prococol, see [11].

3.2.2 Message flows

As we have seen in the previous section, MQTT permits different levels of mes-
sage delivery according to corresponding Quality of Service.

The lower QoS is the so called at most once delivery: the message is de-
livered with the best effort delivering level of the underlying TCP/IP network.
In the protocol, there is not re-transmission concept. The message can either
arrive to the broker once or not at all. A time chart is described in Figure 3.5.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 26

Client Broker

PUBLISH

• QoS = 0

ACTION:

• Publish message to

subscribers

Figure 3.5: Communication flow with QoS level 0

The second QoS level is called at least once delivery: with respect to
the previous QoS, every message is uniquely identified by an ID and every cor-
rectly received message is confirmed by an acknowledge, using the PUBACK
primitive. If during the communication a failure is identified or the ACK is
not received after a specified period of time, the client sends again the message
with the DUP flag set in the fixed header. SUBSCRIBE and UNSUBSCRIBE
messages are sent with QoS level 1. Figure 3.6 shows a time diagram.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 27

Client Broker

PUBLISH

PUBACK

ACTION:
• Discard message

ACTION:
• Store message
• Publish message to
subscribers
• Delete message

• QoS = 1
• DUP = 0
• MessageID = x

Figure 3.6: Communication flow with QoS level 1

The third QoS level guarantees that duplicate messages are not delivered to
the receiving application. This level increases the network traffic but it could be
acceptable when applications require the correct receipt of the message due to
the importance of the message content. As in the previous level, messages are
uniquely identified by an ID. Figure 3.7 shows a time diagram.

3.2.3 MQTT Applications

In this section, we present the most significant solution examples of MQTT
protocol.

The first one regards medical assistance and it involves the St. Jude Med-
ical with its home pace-maker monitoring. The solution consists on home
monitoring appliance that publishes diagnostics to health care provider through
patient home connection. The main characteristics are:

• Enabled higher level of patient care, early diagnostic of problems, peace
of mind;

• Improved administrative efficiency and maintenance;

• Helped conform to standards and eased integration of data.

Another solution example comes from Consert, an energy management com-
pany. It built an intelligent utility network offering for smart energy. The main
characteristics are:

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 28

Client Broker

PUBLISH

PUBREL

PUBREC

PUBCOMP

ACTION:

• Store message

• QoS = 2

• DUP = 0

• MessageID = x

ACTION:

• Discard message

ACTION:

• Store message

or

ACTIONS:

• Store message ID

• Publish message to

subscribers

ACTIONS:

• Publish message to

subscribers

• Delete message

or

ACTION:

• Delete message ID

• MessageID = x

• MessageID = x

• MessageID = x

Figure 3.7: Communication flow with QoS level 2

• Enabled daily energy savings of 15-20%;

• Improved peak usage and avoided over charges;

• Helped optimize energy use.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 29

In the social networks era, Facebook [8] used MQTT in its personal messaging
app for mobile subscribers [14]. Facebook experiences some problem of long
latency when sending a message. The method they were using was reliable but
it was really slow. They were trying to build up a mechanism that maintains a
persistent connection to their servers. In order to do so without killing battery
life, Facebook development team used MQTT that they experimented in Beluga.
By maintaining an MQTT connection and routing messages through their chat
pipeline, Facebook was able to often achieve phone-to-phone delivery in hundreds
of milliseconds, rather than multiple seconds. The main characteristics are:

• Enabled reliable communications between individuals;

• Improved delivery times over high latency connections;

• Helped improve mobile battery life.

3.3 An MQTT implementation: Paho

Paho is a project which has been created to provide scalable open-source im-
plementations of open and starndard messaging protocols aimed at new and
existing M2M and IoT applications. Paho is a Maori word which means to
broadcast, make widely known, announce, disseminate, transmit5. Figure 3.8
shows the Paho project logo.

Figure 3.8: Paho project logo.

The project started with MQTT publish/subscribe client implementation
but, in the future, it will bring corresponding broker as established by the de-
velopers community.

For further information and future developments about this project, see [10].

3.4 Terracotta R© Universal Messaging: setting
up a local environment

In this section we are going to explain a brief tutorial about how to set up a
fully functional system with a broker, publishers and subscribers.

There are several MQTT broker implementations available on the Internet,
such as Mosquitto6, but in this tutorial we will use Terracotta Universal Mes-
saging7(Terracotta UM), developed by Software AG (SAG). Terracotta UM is

5http://www.maoridictionary.co.nz/search?keywords=paho
6http://mosquitto.org/
7http://terracotta.org/products/universal-messaging

http://www.maoridictionary.co.nz/search?keywords=paho
http://mosquitto.org/
http://terracotta.org/products/universal-messaging

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 30

an all-in-one solution for messaging standards, compatible with a considerable
number of messaging protocols (e.g. MQTT and JMS). SAG also provides dif-
ferent languages APIs such as Java, C++, .Net, Javascript and mobile (iOS and
Android), as shown in Figure 3.9.

Enterprise Clients

.NET C++ Java Python

Mobile Clients

iOS Android
Windows

Phone

Web Clients

JS Comet

HTML5

Web

Socket

Adobe

Flex
Silverlight Java

Messaging / Transport Options

Messaging APIs
Universal Messaging, JMS

Wire Protocols
Universal Messaging Sockets (+SSL) or HTTP/S,

 HTML5 Web Sockets & Comet, MQTT, ...

Transport Protocols
Unicast, Multicast, IPC (SHM)

Universal Messaging

High Throughput | Low Latency | Secure | Reliable

Figure 3.9: Terracotta Universal Messaging Architecture.

3.4.1 Terracotta Universal Messaging

The system deployment has been done on a Linux machine; Terracotta UM
requires a Java JDK installation. The first thing to do is download the broker
available on the SAG site and install it on your own PC. Once downloaded the
Linux version, it requires the permission of execution which can be set with the
following commands

root# cd <path to downloaded terracotta um bin>
root# chmod 777 ./universalmessaging_linux.bin

Now, the downloaded file has permission to execute, so you can start the
installation process through the command

root# sudo ./universalmessaging_linux.bin -i gui

Using the switch -i gui, you can see the process via a the OS graphical user
interface and not in the terminal console. Following the installation process,
you can choose location where Terracotta UM will be; in our case, the selected
location is /bin/terracotta.

Once Terracotta UM is installed, you can start the messaging server: to do
so, type this line in the terminal

root# cd /bin/terracotta/universalmessaging_<v_number>
/links/Server/nirvana

root# sudo ./Start Universal Messaging Realm Server

Typed these command, server boots and it will listen on the address
nhp://0.0.0.0:9000. The default protocol does not permit MQTT commu-
nication, so we have to add an interface which guarantees compatibility with
MQTT. In order to do this, we have to start the Terracotta UM Enterprise
Manager, using the commands:

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 31

root# cd /bin/terracotta/universalmessaging_<v_number>
/links/Administration/nirvana

root# sudo ./Universal Messaging Enterprise Manager

The Manager interface is shown in Figure 3.10.

Figure 3.10: Universal Messaging Enterprise Manager.

It provides a graphical representation of statistics about memory usage, mes-
saging and connections status. If you want to manage the MQTT broker, you
have to go to the nirvana section on the manager’s left side. The section is
shown in Figure 3.11.

Figure 3.11: Nirvana Manager Section

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 32

As we said before, the default interface is listening on Universal Messaging
HTTP Protocol (nhp) which is not compatible with MQTT. In order to make
it compatible, we will add new interface on the nirvana realm. Go to Comms
tab and then to Interfaces sub-tab. The presented interface is shown in Figure
3.12

Figure 3.12: New Interface Section.

The UM MQTT-compatible protocol is Universal Messaging Socket Pro-
tocol (nsp). Add a new interface, clicking on Add interface button and fill the
form in Figure 3.13 with the following parameters:

Interface Protocol NSP (Socket Protocol)

Interface Port 9001 (any port > 1024)

Interface Adapter 0.0.0.0 (localhost)

Figure 3.13: New interface parameters.

Once pressed the confirm button, start the interface by clicking on the related
button on the Status column.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 33

In order to add custom topics to which clients can subscribe to or publish in,
right-click the nirvana icon on the left sidebar and then to Add Channel. The
presented form is shown in Figure 3.14.

Figure 3.14: New channel form.

We fill it with the desired Channel Name (test/dev) and leaving blank the
others fields.

The created channel is added on the left sidebar, as shown in Figure 3.15,but
it does not have any read/write permissions.

Figure 3.15: New channel icon on the left sidebar.

In order to add permissions to the channel, select the dev channel, go to ACL
tab and click the Add button. The presented interface requires to add the user
and the host of the related permission with a specified syntax (user@host), as
shown in Figure 3.16. In our example, we do not set any particular user, so we
add the ACL which permits to every users on locahost to access this channel;
the specific string is *@localhost.

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 34

Figure 3.16: New channel permission form.

Once confirmed, a row appears in the ACL tab as shown in Figure 3.17. Click
Full section to allows users subscription, publishing, naming, ACL management
and purging.

Figure 3.17: List of channel’s permission.

These are the basic steps to do in order to set up the Terracotta UM server.
In the next section we will present a simple implementation of two clients, one
will work as publisher and another one will work as subscriber.

3.4.2 Client Implementation with Paho MQTT

In this section we will provide a simple implementation of a publisher and a
subscriber which can exchange messages each other. During this example we will
keep separate the publisher and the subscriber functionalities to better explain
how they work. Nevertheless, a client can be both publisher and subscriber at
the same time.

Publisher

Since the publisher is a MQTT entity, it has to have a MqttClient in order to ex-
change information with the broker. To do so, we instantiate a new MqttClient

in line 22 of Appendix A

MqttClient publisher = new MqttClient(TCPAddress, clientId);

where TCPAddress and clientId are the broker’s address and the unique client
identifier across the system, respectively.

We connect the client to the broker using the instance method

publisher.connect();

which can accept an object containing connection configuration options but,in
this example, we will use default configuration values.

Now, we are connected to the broker and we can publish on topics. To do
so, we retrieve from the publisher object a MqttTopic

MqttTopic t = publisher.getTopic(topic);

through which we can send messages to the specific topic.
Sending information are wrapped by a class that provides several methods to

work with. The message quality of service level can be set using the MqttMessage
method

CHAPTER 3. A PUBLISH-SUBSCRIBE PROTOCOL: MQTT 35

message.setQoS(QoS);

Messages can be sent using the topic previously get and invoking on it the
publish method

MqttDeliveryToken token = t.publish(message);

which returns a MqttDeliveryToken containing communication information.
Both synchronous and asynchronous waiting can be possible: the synchronous
waiting can be done using the MqttDeliveryToken,returned by the publish

method, and invoking on it the method

token.waitForCompletion(timeout);

which accept a timeout parameter that represents the maximum amount of time
MQTT client will wait for publishing completion.

The complete publisher implementation can be found in Appendix A.

Subscriber

The MQTT subscriber is quite simple to the publisher with the exception that
subscriber needs callbacks for managing MQTT events, i.e. arrival of a new
message, connection loosing and delivery completion. There are two ways to
attach these callbacks to client:

• create a new class that implements the MqttCallback interface;

• implements MqttCallback interface on the same subscriber class.

In this example we chose to create a new class which implements the interface.
SubscriberCallbacks contains three methods that have to be override in order
to make the class compliant to the interface. These three methods are:

• messageArrived: it shows the arrived message on the standard output;

• deliveryComplete: it shows the token information associated with the
delivery;

• connectionLost: it prints several information about the exception which
causes the connection lost.

Once implemented the class, we can attach it to the subscriber through the
code

SubscriberCallbacks callbacks =
new SubscriberCallbacks(clientId);

subscriber.setCallback(callbacks);

The complete publisher implementation can be found in Appendix B.

Chapter 4

Integrating MQTT into the
platform

Since the platform described in Chapter 2 implements a Request/Response (R/R)
architecture, integrating MQTT into it means inserting a new player into the
system: the broker.

With respect to the R/R paradigm, where ON communicates directly with
SP, in a publish/subscribe (P/S) architecture, each communication is mediated
by the broker, as described in Figure 4.1.

SP1

SP3

SP2 SP1

ON1

ON2

SP5
SP4

Services Container Services Container

Orchestrators Container

P/S

Broker

Figure 4.1: System architecture with P/S broker.

37

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 38

It has decided to include a P/S system, and in particular MQTT, in the
project in order to integrate into the platform, not only web services but also
physical devices which can exchange information from (e.g. sensors) and to
(e.g. actuator) the real world.

In the following sections, we will describe two different integration of P/S
paradigm to the platform illustrated in [15]: a centralized and a distributed
implementation.

4.1 Centralized SEP

In the centralized implementation, all the concepts presented in [15] has been
kept: the ON is the only that knows mashups logic, SPs execute in the way
described in 2.2.

The information carried by the session message, from ON to SP, are al-
most the same as the ones described in 2.2: ActionId, TargetSPId,SessionId,
MashUpId and InParameters.

• ActionId: the action identifier we want to invoke on receiver SP;

• TargetSPId: this parameter is used to manage the case in which a mashup
contains multiple instances of a single SP (e.g. <SP ID>.0 or <SP ID>.1);

• SessionId: the identifier of a particular execution of a mashup;

• MashUpId: the mashup identifier;

• InParameters: the container that holds the input parameters related to a
specific SP;

• OutParameters: the container that holds all the output parameters pro-
duced by SPs.

Communications between SPs and ON take place through the P/S concept
of topic. Each SP can receive messages subscribing itself to a specific topic
which has the form /<SP ID>/execute, where <SP ID> is the SP identifier (e.g.
/GMail/execute can be the topic for a mail SP). Once received the messaged,
each SP has to dispatch the invoking action using the information carried by the
session message.

On the other hand, ON can receive information from SP subscribing to
/ON/notify: each SP, at the end of action execution, will publish on it in order
to notify ON.

4.1.1 Example

In order to better explain how the platform works, we get to the reader a practical
example and we will describe every step in the mashup execution. Figure 4.2
represents a simple composition of SPs.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 39

SP1.0 SP2.0 SP3.0

START END

SP1.0/start
SP1.0/t1 SP2.0/t3

SP3.0/t5

Figure 4.2: An example of mashup.

SPs can exchange output parameters between them, i.e. output parameters
of a SP can be input parameters of another one: in SCP, the mashup creator
can define these connections placing a placeholder as parameter value (e.g.
SPMail.0.in.body = ${LightSensor.0.out.intensity} will set the mail’s
body to intensity value outputted by the light sensor).

Deployment

The deployment phase of a mashup consists of retrieving its XML representation
stored in the repository, generate the routing table and keep it in memory. The
table generated for mashup in Figure 4.2 is described in Table 4.1:

Publisher Subscriber Topic Parameters

START SP1.0 SP1.0/start

SP1.0 SP2.0 SP1.0/t1
"SP1.0.in.prop1" : 0.5,

"SP1.0.in.prop2" : "sword"

SP2.0 SP3.0 SP2.0/t3

"SP2.0.in.prop1" :

"${SP1.0.out.prop1}",
"SP2.0.in.prop2" : 4

SP3.0 END SP3.0/t5

"SP3.0.in.prop1" :

"${SP1.0.out.prop3}",
"SP3.0.in.prop2" :

"${SP2.0.out.prop2}

Table 4.1: Routing table for mashup in Figure 4.2.

Execution

Execution steps are depicted in Figure 4.3.
Since the ON manages the entire mashup execution, when the ON receives a

SP’s session message, it looks up the routing table, it retrieves the SP (possibly
SPs) that has to be execute afterwards, modifying the session message.

1. START SP creates the session message in Listing 1 and publishes it to
/ON/notify:

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 40

Listing 1 Initial session message JSON representation.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "start",

5 "TargetSPId" : "START",

6 }

2. The only SP that has to be started is SP1.0, so, ON modifies the session
message, which is described in Listing 2:

Listing 2 Session message JSON representation sent to SP1.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t1",

5 "TargetSPId" : "SP1.0",

6 "InParameters" : {

7 "SP1.0.in.prop1" : 0.5,

8 "SP1.0.in.prop2" : "sword"

9 }

10 }

This message is published to /SP1/execute.

3. When SP1 ends, the result of its execution is appended to the current
session message, published to /ON/notify and received by the ON. The
published session message is described in Listing 3:

Listing 3 Session message JSON representation modified by SP1.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t1",

5 "TargetSPId" : "SP1.0",

6 "InParameters" : {

7 "SP1.0.in.prop1" : 0.5,

8 "SP1.0.in.prop2" : "sword"

9 }

10 "OutParameters" : {

11 "SP1.0.out.prop1" : 1.25,

12 "SP1.0.out.prop3" : "joke"

13 }

14 }

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 41

4. Once the ON receives the session message in Listing 3, it looks up in the
routing table for finding what to do. From Table 4.1, using TargetSPId

as key, ON retrieves that SP2.0 is the next SP to invoke. ON checks
the parameters container and finds that it contains a placeholder (i.e.
${SP1.0.out.prop1}): with this placeholder, it goes to OutParameters

field of the current session message and retrieves the value (e.g. 1.25).
Afterwards, the session message published to /SP2/execute is listed in
Listing 4:

Listing 4 Session message JSON representation published to SP2.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t3",

5 "TargetSPId" : "SP2.0",

6 "InParameters" : {

7 "SP2.0.in.prop1" : 1.25,

8 "SP2.0.in.prop2" : 4

9 }

10 "OutParameters" : {

11 "SP1.0.out.prop1" : 1.25,

12 "SP1.0.out.prop3" : "joke"

13 }

14 }

5. Once again, SP2 appends to the OutParameters its execution results and
published session message is listed in Listing 5:

Listing 5 Session message JSON representation published to ON by SP2.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t3",

5 "TargetSPId" : "SP2.0",

6 "InParameters" : {

7 "SP2.0.in.prop1" : 1.25,

8 "SP2.0.in.prop2" : 4

9 }

10 "OutParameters" : {

11 "SP1.0.out.prop1" : 1.25,

12 "SP1.0.out.prop3" : "joke",

13 "SP2.0.out.prop2" : 3.1415

14 }

15 }

6. ON receives this session message and applies the same rule used before, it

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 42

produces the new session message, which will be published to /SP3/execute,
in Listing 6:

Listing 6 Session message JSON representation published to SP3.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t5",

5 "TargetSPId" : "SP3.0",

6 "InParameters" : {

7 "SP3.0.in.prop1" : "joke",

8 "SP3.0.in.prop2" : 3.1415

9 }

10 "OutParameters" : {

11 "SP1.0.out.prop1" : 1.25,

12 "SP1.0.out.prop3" : "joke",

13 "SP2.0.out.prop2" : 3.1415

14 }

15 }

7. SP3 executes and appends its results to the OutParameters. The result-
ing session message (which will be published on /ON/notify) is listed in
Listing 7:

Listing 7 Session message JSON representation published to ON by SP3.

1 {

2 "SessionId" : <Random_ID>

3 "MashUpId" : "MS1"

4 "ActionId" : "t5",

5 "TargetSPId" : "SP3.0",

6 "InParameters" : {

7 "SP3.0.in.prop1" : "joke",

8 "SP3.0.in.prop2" : 3.1415

9 }

10 "OutParameters" : {

11 "SP1.0.out.prop1" : 1.25,

12 "SP1.0.out.prop3" : "joke",

13 "SP2.0.out.prop2" : 3.1415,

14 "SP3.0.out.prop2" : "goo.gl/Bf51X4"

15 }

16 }

8. ON receives the session message sended by SP3 and it checks what is going
to do. SP3 is the last block in the composite service and therefore ON
publishes to END/execute the session message just received. This event
ends the mashup execution.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 43

S
P
1

1
:

p
u
b
l
i
s
h
(
/
O
N
/
n
o
t
i
f
y
)

3
:

p
u
b
l
i
s
h
(
/
O
N
/
n
o
t
i
f
y
)

5
:

p
u
b
l
i
s
h
(
/
O
N
/
n
o
t
i
f
y
)

7
:

p
u
b
l
i
s
h
(
/
O
N
/
n
o
t
i
f
y
)

2
:

p
u
b
l
i
s
h
(
/
S
P
1
/
e
x
e
c
u
t
e
)

4
:

p
u
b
l
i
s
h
(
/
S
P
2
/
e
x
e
c
u
t
e
)

6
:

p
u
b
l
i
s
h
(
/
S
P
3
/
e
x
e
c
u
t
e
)

8
:

p
u
b
l
i
s
h
(
/
E
N
D
/
e
x
e
c
u
t
e
)

S
T
A
R
T

S
P
2

S
P
3

E
N
D

B
R
O
K
E
R

O
N

Figure 4.3: Centralized SEP communication diagram.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 44

4.2 Distributed SEP

The distributed SEP differs from the centralized one for several reasons. The
mashup execution is not managed by a central node but every SP is responsible
for a part of the SPs chain.

The orchestrator node is replaced by a new entities that we called deploy-
ment manager (DM). Starting from the same table structure in Table 4.1, DM
creates special messages, called deployment messages which are sent to the
SP during the deployment phase. Since the mashup logic is distributed on the
SPs, there is the need to identify multiple deployed mashups and to manage
multiple instances of the same SP in a mashup. To do so, we have introduced a
token which identifies uniquely each edge in the mashup graph representation.

Different topics are associated to each SP: each SP has as many topics as the
actions available, moreover, it has some administration topics through which
SP can be notified of deployment or undeployment events.

The next two sections explain in a detailed way how deployment and execu-
tion phases work.

Deployment

As said in the introduction of distrubuted SEP, we introduced a new message
called deployment message. The deployment message is based on the same
routing table structure described in Table 4.1.

A deployment message contains:

• Mashup Id: this field identifies mashup which the deployment message
belongs to;

• SP Counter: this field is used to distinguish multiple repetitions of the
same SP in a mashup;

• Subscription Topic: this is the topic to which SP has to subscribe in
order create the chain;

• Publishing Topic: this is the topic on which SP has to publish in order
to create the chain. This represents also the action that will be executed
on the SP;

• Subscription Token: this is the random token that SP has to receive
from the previous SP;

• Publishing Token: this is the random token that SP has to send to the
next SP;

• In Parameters: this is a collection of SP input parameters used by the
service. This collection can contain parameters whose values are place-
holders.

In this scenario, a SP can receive multiple deployment messages, one message
for each SP instance in the mashup.

Once DM published these messages on the SP’s administration topics, each
SP maintains a special data structure that facilitate deployed mashup admin-
istration. A SP uses two maps in order to maintain and manage the users’
requests during the mashup execution:

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 45

• Mashups Map: this map contains one element for each deployed mashup
on the platform. A map element is composed by a key and a value; it has
the Mashup Id as a key and a list of subscription tokens as value. Since
a single SP can be added multiple times in a mashup, therefore it can be
located in different places inside the composite service, the list represents
all instances of the same SP that are in the mashup;

• Tokens Map: this map contains one element for every single SP instance
in the mashup. It has the subscription token as key and a object repre-
senting the action configuration information required for the SP execution.

When a new deployment message arrives, SP updates its maps, i.e. it adds
the mashup id to the mashups map, if it does not exists, and adds the subscription
token to the correspondent list. Once updated the mashups map, SP adds the
action’s information object to tokens map using subscription token as key; the
information object will contain publishing topic, publishing token, subscription
topic, SP counter, in parameters and action type. Then, it subscribes itself to
the subscription topic defined in the just received deployment message.

In addition to general SPs, the platform needs two special SP: a START SP
which assigns a session id and starts a mashup execution, and a END SP which
collects all the final SP results.

After the deployment phase, all the mashup execution is managed by each
SP and there is no need of any external entity operation.

Execution

During the execution of a mashup, SP receives from a topic and publishes on
another one. All the information about a specific mashup execution is stored
in a session message and it travels along the composite service saving all the
output values. A session message contains:

• Mashup Id: this field identifies which mashup is running;

• Session Id: this field identifies uniquely a mashup execution;

• Token: this field identifies uniquely a connection between two SP;

• Out Parameters: this container holds all the SP’s results, from the be-
ginning to the end.

Throughout the execution, every SP will modify the token session property
with the token that next SP expects and add to the out parameters the SP
execution result. An example will better explain how this mechanism works.

4.2.1 Example

The SP configuration is the same proposed in Section 4.1.1.

Deployment

The communication diagram is depicted in Figure 4.4.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 46

1. Starting from the routing table in Table 4.1, DM assigns different random
tokens to each connection. In case of multiple listeners on the same topic,
the publishing token will be the same for specific connections. Table 4.2
summarizes the tokens associated with each connection.

Publisher Subscriber Topic Token

START SP1.0 SP1.0/start T1

SP1.0 SP2.0 SP1.0/t1 T2

SP2.0 SP3.0 SP2.0/t3 T3

SP3.0 END SP3.0/t5 T4

Table 4.2: Communication links tokens.

The deployment process will produce the following deployment messages:

Listing 8 START SP deployment message.

1 {

2 "MashUpId" : "MS1",

3 "PublishingTopic" : "SP1/start",

4 "PublishingToken" : T1,

5 "StartingSP" : "SP1"

6 }

Listing 9 SP1 deployment message.

1 {

2 "MashUpId" : "MS1",

3 "SPCounter" : 0,

4 "PublishingTopic" : "SP1/t1",

5 "PublishingToken" : T2,

6 "SubscribingTopic" : "SP1/start",

7 "SubscribingToken" : T1

8 }

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 47

Listing 10 SP2 deployment message.

1 {

2 "MashUpId" : "MS1",

3 "SPCounter" : 0,

4 "PublishingTopic" : "SP2/t3",

5 "PublishingToken" : T3,

6 "SubscribingTopic" : "SP1/t1",

7 "SubscribingToken" : T2

8 }

Listing 11 SP3 deployment message.

1 {

2 "MashUpId" : "MS1",

3 "SPCounter" : 0,

4 "PublishingTopic" : "SP3/t5",

5 "PublishingToken" : T4,

6 "SubscribingTopic" : "SP2/t3",

7 "SubscribingToken" : T3

8 }

Listing 12 END SP deployment message.

1 {

2 "MashUpId" : "MS1",

3 "SubscribingTopic" : "SP3/t5",

4 "SubscribingToken" : T4

5 }

Messages in Listings 8, 9, 10, 11 and 12 will be published on /START/deploy,
/SP1/deploy, /SP2/deploy, /SP3/deploy and /END/deploy, respectively.

Once received by SPs, each one will update its own data structures in
order to deploy the mashup on the platform. We presents how the SP1

deployment process works because the others are the same.

SP1 receives deployment message in Listing 9: since mashup id MS1 does
not exist in the structure, it adds to the mashups map a new element with
key "MS1" and value a list with one element, i.e. subscription topic T1 (if
another deployment messege were to get for the same mashup, the related
subscription token will be added to the existing list). T1 will be added to
tokens map as key of a new element and its value will be setted with a new
object that contains all the information listed in Section 4.2.

The START and END SPs are a bit different from the others SP: START SP
only publishes on topics and END SP only subscribes to topics. Therefore,
the data structures maintained by them are easier than the SPs’ ones:

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 48

START SP has only a map that maintains an object that contains list of
first-to-execute SPs and the publishing token, associated to the mashup id
key. On the other hand, the END SP maintains a map that associates to
the mashup id, an object that contains a list of subscription tokens.

Execution

2. Mashup execution starts from START SP: it knows which SPs have to be
first executed. In our example, the SP that has to be started is SP1,
therefore, START SP creates the session message listed in Listings 13 and
it publishes this message on /SP1/start.

Listing 13 Initial session message.

1 {

2 "MashUpId" : "MS1",

3 "SessionId" : <sessionId1>,

4 "CommunicationToken" : T1

5 }

3. When SP1 recevies the session message, using MashupId and CommunicationToken,
it retrieves the action to be invoked and the information for session mes-
sage forwarding. SP1 executes, it modifies the session message as listed in
Listing 14 and it publishes it on SP1/t1.

Listing 14 Session message forwarded by SP1.

1 {

2 "MashUpId" : "MS1",

3 "SessionId" : <sessionId1>,

4 "CommunicationToken" : T2,

5 "OutParameters" : {

6 "SP1.0.out.prop1" : 1.25,

7 "SP1.0.out.prop3" : "joke"

8 }

9 }

4. The same procedure takes place when SP2 receives the session message
from SP1. Using the MashupId and the CommunicationToken, it gets the
action and, given that the input parameters contain placeholders, SP2 will
substitute the actual parameters values from the session message. There-
fore, it modifies the session message as in 15 and it publishes on /SP2/t3.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 49

Listing 15 Session message forwarded by SP2.

1 {

2 "MashUpId" : "MS1",

3 "SessionId" : <sessionId1>,

4 "CommunicationToken" : T3,

5 "OutParameters" : {

6 "SP1.0.out.prop1" : 1.25,

7 "SP1.0.out.prop3" : "joke",

8 "SP2.0.out.prop2" : 3.1415

9 }

10 }

5. SP3 receives the session message and it invokes the action. Since the input
parameters contain placeholders, SP3 will fetch the actual values form the
session message, specifically from the OutParameters. Then it modifies
the session message as in Listing 16 and it publishes on /SP3/t5.

Listing 16 Session message forwarded by SP3.

1 {

2 "MashUpId" : "MS1",

3 "SessionId" : <sessionId1>,

4 "CommunicationToken" : T4,

5 "OutParameters" : {

6 "SP1.0.out.prop1" : 1.25,

7 "SP1.0.out.prop3" : "joke",

8 "SP2.0.out.prop2" : 3.1415,

9 "SP3.0.out.prop2" : "goo.gl/Bf51X4"

10 }

11 }

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 50

S
P
1

2
:

p
u
b
l
i
s
h
(
/
S
P
1
/
s
t
a
r
t
)

3
:

p
u
b
l
i
s
h
(
/
S
P
1
/
t
1
)

4
:

p
u
b
l
i
s
h
(
/
S
P
2
/
t
3
)

5
:

p
u
b
l
i
s
h
(
/
S
P
3
/
t
5
)

1
:

p
u
b
l
i
s
h
(
/
S
T
A
R
T
/
d
e
p
l
o
y
)

p
u
b
l
i
s
h
(
/
S
P
1
/
d
e
p
l
o
y
)

p
u
b
l
i
s
h
(
/
S
P
2
/
d
e
p
l
o
y
)

p
u
b
l
i
s
h
(
/
S
P
3
/
d
e
p
l
o
y
)

p
u
b
l
i
s
h
(
/
E
N
D
/
d
e
p
l
o
y
)

S
T
A
R
T

S
P
2

S
P
3

E
N
D

B
R
O
K
E
R

D
M

Figure 4.4: Distributed SEP communication diagram.

CHAPTER 4. INTEGRATING MQTT INTO THE PLATFORM 51

Centralized Distributed

SP λ requests/s λ requests/s

ON n× λ requests/s n/a

Broker 2× n× λ requests/s n× λ requests/s

Table 4.3: Loading comparison of centralized and distributed implementation.

4.3 Centralized and distributed implementation
comparison

Each proposed solution has some pros and some cons. The distributed SEP has
the main advantage that it scales properly with the number of possible services
and devices. If a single SP can not be sufficient due to a large amount of requests,
clusters of SPs can be created in order to supply a better service level. The
run-time bottleneck, that in the centralized version was the orchestrator, in this
implementation does not exist.

On the other hand, centralized SEP makes easy the accounting of resources
in a pay-per-use manner.

Comparisons can be made on the load each SP could be subject to during its
working life cycle. Suppose to have the composite service in Figure 4.2, which
has three different SPs (i.e. SP1, SP2 and SP3) and two edges SPs (i.e. START

and END).
If the system is loaded by λ requests/s, in the centralized version each SP

will manage λ requests/s (in the hypothesis that a single instance exists in the
mashup, otherwise m× λ, where m is the number of instances of a single SP in
the mashup) but the orchestrator node will be loaded by n×λ requests/s (where
n is the number of SPs in the requested mashup). The broker should manage
a requests rate of 2 × n × λ requests/s, due to the request-response invocation
mechanism.

In the distributed version, the SP loading is the same as before but the broker
loading reduces to n×λ requests/s, since every SP talks directly to the following
SP (possibly, SPs). Table 4.3 summarizes the results.

Another characteristic that can be compared is the number of topics cre-
ated in the two versions. In the centralized one, one topic for each SP is cre-
ated (i.e. <SP ID>/execute) in addition to the orchestrator node topic (i.e.
ON/notify). Therefore, the total number of topics that the broker has to man-
age is n+ 1, where n is the number of SP available in the platform.

In the distributed version, a topic for each available action in the SP is created
plus the administration topics, so, supposing that each SP has m actions, and
that n SPs are available in the platform, the broker has to manage (m+ 3)× n
topics.

Conclusion and future
developments

In the first part of this work, we introduced the Internet of Things, a study
about the semantic meaning of it and the Web of Things, a specialization of
IoT. We have seen that some companies built their core businesses on creating
platforms that support the emerging Internet of Things, such as Xively.

The platform presented in [15] by Stecca and Maresca has been the starting
point of the project developed in this thesis.

Enabling devices to be part of this platform has been the focus objective.
Not only web services but also smart object which can be combined to create
custom services that perform personalized actions.

As we have seen in Chapter 2, the platform proposed in [15] does not scale
as desired and, in order to support both devices and web services into it, we
rearranged the platform in a publish-subscribe way. Two solutions were been
proposed, both of them were P/S enabled.

The first one was a translation from the request-response to the publish-
subscribe paradigm: the concepts introduced in [15] were been maintained and
adapted to the new architecture, as described in Section 4.1.

The second solution was much more innovative: we removed the orches-
trator node and introduced the deployment manager. We distributed the
mashup knowledge into each service proxy, splitting the composite service logic.
The deployment manager is responsible to distribute the mashup logic knowl-
edge among service proxies, in order to guarantee the correct functionality of
the entire composite service.

The implemented platform will be integrated into the iCore project in the
future, when more performance tests will be attempted.

As part of an evolving project, the application scenarios are continuously
changing but the most important concern smart home, smart city, smart
meeting and smart business.

Another important future development will be the creation of a Software
Development Kit (SDK) in order to enable third party developers to create
custom service proxies and, therefore, enlarge the service proxies available to the
platform.

53

Appendix A

Publisher Java Code

1 package mqtt.paho.example1;
2

3 import org.eclipse.paho.client.mqttv3.MqttClient;
4 import org.eclipse.paho.client.mqttv3.MqttException;
5 import org.eclipse.paho.client.mqttv3.MqttTopic;
6 import org.eclipse.paho.client.mqttv3.MqttMessage;
7 import org.eclipse.paho.client.mqttv3.MqttDeliveryToken;
8 import java.util.Scanner;
9

10 public class MQTTPublisher {
11

12 public static String TCPAddress = "tcp://127.0.0.1:9001";
13 public static String topic = "test/dev";
14 public static String payload = "";
15 public static int QoS = 2;
16 public static int timeout = 10000;
17 public static String clientId = "publisher_1";
18

19 public static void main(String[] args) {
20 try {
21

22 MqttClient publisher = new MqttClient(TCPAddress, clientId);
23

24 Scanner reader = new Scanner(System.in);
25 System.out.println("Write messages...");
26 System.out.print("# ");
27 payload = reader.nextLine();
28 publisher.connect();
29 while (!payload.equalsIgnoreCase("$quit")) {
30 MqttTopic t = publisher.getTopic(topic);
31 MqttMessage message = new MqttMessage(payload.getBytes());
32 message.setQos(QoS);
33

34 MqttDeliveryToken token = t.publish(message);

55

APPENDIX A. PUBLISHER JAVA CODE 56

35 System.out.println(" Delivery token \""
36 + token.hashCode());
37 System.out.flush();
38 token.waitForCompletion(timeout);
39 System.out.println(" RECEIVED: "
40 + token.isComplete());
41

42

43 System.out.print("# ");
44 payload = reader.nextLine();
45 }
46 publisher.disconnect();
47

48 } catch (MqttException e) {
49 e.printStackTrace();
50 }
51 }
52 }

Appendix B

Subscriber Java Code

1 import org.eclipse.paho.client.mqttv3.*;
2

3 public class SubscriberCallbacks implements MqttCallback {
4 private String instanceData = "";
5

6 public SubscriberCallbacks(String instance) {
7 this.instanceData = instance;
8 }
9

10 @Override
11 public void messageArrived(String topic, MqttMessage message) {
12 System.out.println("Message arrived: " + message.toString());
13 System.out.println("Topic: " + topic.toString());
14 System.out.println("Instance: " + instanceData);
15 }
16

17 @Override
18 public void connectionLost(Throwable cause) {
19 System.out.println("Connection lost on isntance " + instanceData +
20 "with cause " + cause.getMessage());
21 System.out.println("Reason code: " + ((MqttException) cause)
22 .getReasonCode());
23 System.out.println("Cause: " + ((MqttException) cause).getCause());
24 cause.printStackTrace();
25 }
26

27 @Override
28 public void deliveryComplete(IMqttDeliveryToken token) {
29 try {
30 System.out.println("Delivery token \"" + token.hashCode() +
31 "\" received by instance " + instanceData);
32 } catch (Exception e) {
33 e.printStackTrace();
34 }

57

APPENDIX B. SUBSCRIBER JAVA CODE 58

35 }
36

37 }
38

39 import org.eclipse.paho.client.mqttv3.*;
40 import java.util.Scanner;
41

42 public class MQTTSubscriber {
43 public static String TCPAddress = "tcp://localhost:9999";
44 public static String topic = "test/dev";
45 public static int QoS = 1;
46 public static int timeout = 10000;
47 public static String clientId = "subscriber_1";
48 public static void main(String[] args) {
49 try {
50 MqttClient subscriber = new MqttClient(TCPAddress, clientId);
51 SubscriberCallbacks callbacks = new SubscriberCallbacks(clientId);
52 subscriber.setCallback(callbacks);
53

54 MqttConnectOptions options = new MqttConnectOptions();
55 options.setCleanSession(false);
56 options.setKeepAliveInterval(20);
57

58 System.out.println("Subscribing to topic \"" + topic +
59 "for instance " + subscriber.getClientId() + "with QoS = " + QoS);
60 subscriber.connect(options);
61

62 subscriber.subscribe(topic);
63 System.out.println("Press q to QUIT.");
64 Scanner scanner = new Scanner(System.in);
65 for (String input = ""; !input.equalsIgnoreCase("q");
66 input = scanner.nextLine());
67

68 subscriber.disconnect();
69 System.out.println("Disconnected!");
70

71 } catch (Exception e) {
72 e.printStackTrace();
73 }
74

75 }
76 }

Bibliography

[1] N. Kroes, G. Santucci, P. Friess et alii, The Internet of Things - New Hori-
zons, Halifax UK, 2012

[2] Yinghui Huang and Guanyu Li, Descriptive Models for Internet of Things,
International Conference on Intelligent Control and Information Processing,
2010

[3] Louise Coetzee and Johan Eksteen, The Internet of Things - Promise for
the Future? An Introduction, IST-Africa Conference Proceedings, 2011

[4] R. Coulouris, J. Dollimore, T. Kindberg and G. Blair, Distributed Systems
- Concept and Design, Fifth Edition, Addison-Wesley, 2012

[5] T. Kindberg., J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B. Serra and
M. Spasojevic, People, Places, Things: Web Presence for the Real World,
Mobile Networks and Applications 7, 365–376, 2002

[6] D. Guinard, V. Trifa and E. Wilde, A Resource Oriented Architecture for
the Web of Things, Proceedings of IoT 2010, IEEE International Conference
on the Internet of Things. Tokyo, Japan, 2010

[7] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess and D. Savio, Interacting
with the SOA-Based Internet of Things: Discovery, Query, Selection, and
On-Demand Provisioning of Web Services, IEEE Transactions on Services
Computing, Vol. 3, No. 3, 2010

[8] Building Facebook Messenger
https://www.facebook.com/notes/facebook-engineering/

building-facebook-messenger/10150259350998920

[9] MQTT official website
http://www.mqtt.org

[10] Paho project wiki page
http://wiki.eclipse.org/Paho

[11] MQ Telemetry Transport (MQTT) V3.1 Protocol Specification
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/

MQTT_V3.1_Protocol_Specific.pdf

59

https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920
http://www.mqtt.org
http://wiki.eclipse.org/Paho
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf

BIBLIOGRAPHY 60

[12] Dave Evans, The Internet of Things - How the Next Evolution of the
Internet Is Changing Everything, April 2011
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_

0411FINAL.pdf

[13] Zach Shelby, Introduction to Resource-Oriented Applications in Constrained
Networks, Smart Object Tutorial, IETF-80 Prague
http://www.iab.org/wp-content/IAB-uploads/2011/04/Shelby.pdf

[14] Dave Locke, Introduction to MQTT, May 2013
https://www.oasis-open.org/committees/download.php/49205/

MQTT-OASIS-Webinar.pdf

[15] M. Stecca and M. Maresca, An Execution Platform for Event Driven
Mashups, Proceeding iiWAS ’09, Proceedings of the 11th International Con-
ference on Information Integration and Web-based Applications & Services,
pages 33-40, ACM, 2009

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.iab.org/wp-content/IAB-uploads/2011/04/Shelby.pdf
https://www.oasis-open.org/committees/download.php/49205/MQTT-OASIS-Webinar.pdf
https://www.oasis-open.org/committees/download.php/49205/MQTT-OASIS-Webinar.pdf

List of Figures

1.1 CoAP position in the ISO/OSI architecture. 3
1.2 REST API Design. 6
1.3 Xively platform overview. 8
1.4 Xively platform: adding a new development device. 9
1.5 Xively platform: device’s resume screen. 10
1.6 Xively platform: batch adding. 10

2.1 Graphical user interface for creating mashups. 14
2.2 How a SP interacts with external world. 15
2.3 High level platform architecture. 16
2.4 Run time execution model. 17

3.1 An example of mashup. 19
3.2 The publish-subscribe paradigm 21
3.3 Message format. 23
3.4 Fixed header’s bits structure. 23
3.5 Communication flow with QoS level 0 26
3.6 Communication flow with QoS level 1 27
3.7 Communication flow with QoS level 2 28
3.8 Paho project logo. 29
3.9 Terracotta Universal Messaging Architecture. 30
3.10 Universal Messaging Enterprise Manager. 31
3.11 Nirvana Manager Section . 31
3.12 New Interface Section. 32
3.13 New interface parameters. 32
3.14 New channel form. 33
3.15 New channel icon on the left sidebar. 33
3.16 New channel permission form. 34
3.17 List of channel’s permission. 34

4.1 System architecture with P/S broker. 37
4.2 An example of mashup. 39
4.3 Centralized SEP communication diagram. 43
4.4 Distributed SEP communication diagram. 50

61

List of Tables

1.1 Xivley service pricing table. 11

3.1 Possible message types. 24
3.2 Possible QoS levels. 25

4.1 Routing table for mashup in Figure 4.2. 39
4.2 Communication links tokens. 46
4.3 Loading comparison of centralized and distributed implementation. 51

63

Ringraziamenti

Desidero innanzitutto ringraziare il prof. Carlo Ferrari per l’attenzione
dimostrata nei miei confronti, ed insieme a lui, l’Ing. Michele Stecca per
avermi seguito e consigliato durante questo lavoro di tesi.

Alla mia famiglia, per tutti i sacrifici fatti per permettermi di arrivare dove
sono. Grazie.

Ad Elena, per la pazienza portata durante questo periodo, per i giochi e gli
scherzi insieme, per le scritte e i disegni sul quaderno, per il calendario
countdown, per tutti i consigli di impaginazione, per la cena prima dei fiori,
per gli abbracci nei momenti di panico, per i baci e gli sguardi di intesa...
semplicemente perchè ci sei. Grazie!

A Esterino e Carmela, per i consigli di stile e avermi offerto rifugio i giorni
prima della discussione. Grazie.

A Ramo, sei stata la prima persona che mi ha aperto la porta di Via Gorizia.
Ricordo ancora il tuo ”Ciaooo, Ramona!” mentre portavo su la mia valigia con
il morto dentro. Con te in casa ci si poteva solo che divertire! Mi mancherai!

A Chiara, la mia bolzanina preferita. La regina del surgelato... Eri quasi
riuscita a convertirmi con la caponata di Picard. Mi hai coccolato con il
barattolo da quattro tonnellate di leibekuchen rendendomi l’uomo più felice
della terra! Te lo dissi già dopo il tuo esame di stato, mi mancherai ma sono
sicuro che rimarremo in contatto.

A Luigi, ci hai portato in casa una strage di donne! I nostri saluti mattutini
passeranno agli annali.

Ad Albe Z., mi hai iniziato alla buona festa padovana. Abbiamo condiviso
molti Gioved̀ı traumatici ma questo non ci ha fermato! Le partite a PES
erano sempre un grande evento, per non parlare poi del poker del marted̀ı!

A Daniele, per le chiacchierate davanti ad uno spritz. Il service ci sta dando
grosse soddisfazioni. Andiamo avanti cos̀ı!

A Paola, la donna dall’accento misto. Lo sai che sebbene ti prenda sempre in
giro, in fondo, ti voglio bene!

A Giulia, la donna con lo spirito di bambina. Avevo già capito tutto a Torino
con l’uva! Continua cos̀ı...

A Simone, esimio collega. Per tutti gli sfoghi che ti sei dovuto sopportare ma
soprattutto per essere stato l̀ı ad ascoltarmi.

A Federica, la vagabonda della compagnia. Ti auguro il meglio per il tuo
futuro.

A Daniel, il preparatore di pop corn pazzo. Continua ad istruirmi sulle
ultime news calcistiche!!

Ad Angelo, il DJ che tutti i service ci invidiano! Come metti tu le canzoni,
non le mette nessuno!! A parte gli scherzi, sei un ottimo collega...
Continuiamo cos̀ı!

A Frasca, entità astratta, visibile in poche occasioni. Nonostante questo,
ogni volta che ci vediamo è come se ci sentissimo ogni giorno.

Ad Albino e Stefania, per avermi accolto in casa vostra come un figlio.
Grazie!

A Mosky, il ragazzo super-impegnato. Spero di non aver impostato un livello
troppo alto per il tuo finale di carriera universitaria! Sono sicuro che ne
uscirai nel migliore dei modi.

A Sofy, mi diverto un sacco quando vengo a vederti giocare a calcetto. Spero
di riuscire ancora a farlo!

A Lory, il presidente che ogni lega di fantacalcio vorrebbe avere. Gli eventi
Apple sono più divertenti se visti in tua compagnia. AMAZING!

A Berg, mi stai alle calcagna in classifica. Sarà una sfida all’ultimo goal!

A Giuggio, per tutti i progetti che non ho mai avuto il tempo di seguire.
Prometto che almeno uno lo facciamo!!

A Debbi, per l’interessamento mostrato nei miei confronti. Buon percorso!

A Bedo, fidato compagno di gruppo durante i corsi che ci hanno reso un po’
più imprenditori. Tieni a portata di mano la tua reflex che ci sono un sacco di
eventi da fotografare.

A Baruz, per avermi sempre spinto a tenere un monologo sullo
skeumorphismo. Potrei usarlo nei colloqui di lavoro!

A Ale, egregio compagno di avventure durante Computer Networks
Managemet. Quando ci ricapiterà un esame cos̀ı?

A Cecca, fantastico tanguero e supporto morale durante le lezioni di tango.
Però, in fin dei conti, mi sono piaciute!

A Biss, mi hai aiutato un sacco durante il progetto di Dati 3D, sopportando
mie uscite a caso sulle registrazioni. Alla fine, comunque, anche tu hai vinto
contro il Comau!

A Fabio B., con la tua beccanea ho riso un sacco. Ti auguro ogni bene per il
tuo futuro.

A Fabio G., principale esperto della filmografia di Maccio Capatonda.
Trascorrere le pause ripassando tutti i trailer era sicuramente divertente.

A Filippo, con te le risate sono assicurate. Ti auguro di concludere la tua
esperienza al DEI nel migliore dei modi.

Al Signor P., per avermi fatto compagnia durante le sessioni di
programmazione pazza e disperata.

A tutti quelli che, in qualunque modo, hanno fatto parte di questo viaggio
durato cinque anni.

	An introduction to the Internet of Things
	Semantic meaning of Internet of Things
	Main Challenges for the IoT
	Constrained Application Protocol and Machine to Machine Communications
	IoT applications
	The Web of Things
	RESTful Architectures

	Case study: Xively®
	How it works
	Pricing

	The iCore Project
	Service Creation Platform
	Service Execution Platform
	Service Proxy
	Orchestrator

	A publish-subscribe protocol: MQTT
	Publish-Subscribe Systems
	The programming model

	Message Queue Telemetry Transport
	Message format
	Message flows
	MQTT Applications

	An MQTT implementation: Paho
	Terracotta® Universal Messaging: setting up a local environment
	Terracotta Universal Messaging
	Client Implementation with Paho MQTT

	Integrating MQTT into the platform
	Centralized SEP
	Example

	Distributed SEP
	Example

	Centralized and distributed implementation comparison

	Conclusion and future developments
	Publisher Java Code
	Subscriber Java Code
	Bibliography

