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Abstract

A robot is a machine that can replace human beings in both physical activity and decision

making phase during task execution. The success of a generic robot activity requires the

execution of a specific movement, starting from defined instructions. In order to do this

three main aspects must be considered. Modelling, which is the derivation of a mathemat-

ical models describing the I/O relationship that characterizes the robot components. The

control system that guarantees the correct execution of the desired motion. Finally the

planning of the movement which is the goal of this study, i.e. how to allow the robot to

autonomously plan its movement. In particular this thesis focuses its study on the path

planning problem.

The term path planning refers to the procedure that provides a geometric collision free

route that enables the robot to execute the desired task without colliding with the objects

around it.

The purpose of this work is to implement, analyze and compare two different path

planning algorithms in three different static environments which include: avoiding a single

major obstacle, solving a navigation problem and finally going through narrow passages.

In particular this project studies the sampling based path planners, a family of path

planning algorithms which represents the connectivity of the free space with different

data structures, like trees (RRT). Two different bidirectional RRTs and many sampling

strategies were proposed and investigated, in order to understand reasons of failure and

success of the implementations.

From the measurements made it was possible to observe that the construction of a

simple tree without a large number of nodes and the use of a combination of different

sampling strategies speed up the planner’s search for a valid path.

In conclusion all tests were done on a thin long rod which has the capability to au-

tonomously plan it movement and no robots are taken into account. So in the future it

might be interesting to connect a robotic arm to the rod in order to understand if working

with inverse kinematics could bring advantages with large payloads.

This thesis has been developed at ‘Euclid Labs S.r.l’ in Treviso, which designs and

develops hi-tech solutions for robotics and industrial automation.
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Chapter 1

Path planning techniques

1.1 Introduction

Nowadays robotics applications are infinite. Robots are in every aspect of the life, such as

autonomous car, surveillance operations, agricultural robots, planetary and space explo-

ration missions, Unmanned Autonomous Vehicle (UAV), and robotic manipulators. These

are only some of the numerous examples and many times it is difficult to realize that we

are working with one of them, given how much they are present among us.

It is possible to differentiate robots in: robots under control of an operator, robots

set to do some specific job/movement and others that work autonomously with total

independence on the operator, interacting by themselves with the environment.

Always more often the last two typologies are required in industrial applications. A

robot is a machine that can replace human beings in the execution of a task, as regards

both physical activity and decision making.

The success of a generic activity requires the execution of a specific movement pre-

scribed to the robot. The correct execution of such motion is guaranteed by the control

system which should provide the robot’s actuators with the commands consistent with the

desired motion. Motion control demands an accurate analysis of the characteristics of the

mechanical structure, actuators, and sensors. The goal of such analysis is the derivation

of the mathematical models describing the input/output relationship characterizing the

robot components. Modeling a robotic manipulator is therefore a necessary premise for

finding motion control strategies.

So it is possible to say that there exist three main topics in robotics, all strictly

necessary for robot realization: modelling, planning and control.

Fig. 1.1: Robotic arms in an assembly line.

One of the most interesting issue is how to teach the robot how to move, i.e. the

planning issue. The challenge of this new generation of engineers is to build a “brain”

1



2 Path planning techniques

within a robot. For this reason path planning is a very important aspect. Allow the

robot to have the ability to independently plan its movements based on the environment

in which it lives is a not trivial problem.

The term path planning refers to the procedure that provides a geometric collision free

route that enables the robot to execute the desired task without colliding with the objects

around it. Path planning is the first step in dealing with motion planning problem and in

presence of obstacles it is the most delicate step. Many studies have been conducted on

this hard topic, but no one of these managed to have success in all situations.

The aim of this thesis is to analyze, implement and compare two different path planners

in three different static environments. The reasons of failure are going to be investigated

and some possible improvements are going to be proposed. Creating a “general” path

generator, which manages to work properly in multiple situations, is still a complex and

attractive problem today. Especially when there are manipulators that have to move large

and heavy payloads, the problem becomes even more difficult, due to collisions of the

payload. This work is intended to be a preliminary study to discover a new approach to

manage the handling of large payloads.

The structure of this thesis is the following:

in this Chapter the theoretical background, used in the project, is reported. It is ex-

plained the problem definition, a classification of different types of path planners and

some important instruments to be considered for their realization. However all methods

and materials adopted are explained and developed in Chapter 2. It is possible to see the

algorithms used and their implementations, the space representation employed and finally

the sampling strategies applied. All tests and measurements are shown and discussed in

Chapter 3, where three different environments were selected to test the algorithms and

the sampling strategies in terms of trees’ size, computational time and final path length.

A recap of the most relevant results and possible future improvements are presented in

the Conclusion chapter.

1.2 Motion Planning Problem Definition

Robotic systems are expected to perform tasks in a workspace that is often populated by

physical objects, which represent an obstacle to their motion. What it is desired it is to

endow the robot with the capability of autonomously planning its motion, starting from

a high-level description of the task provided by the user and a geometric characterization

of the workspace. However, developing automatic methods for motion planning is a very

difficult endeavour. Replicate the spatial reasoning, which humans do instinctively, it is

very complex. This is why path planning is still an open problem. To fix the ideas, the

Canonical problem of motion planning is reported, referring to [1]:

Consider a robot B, which may consist of a single rigid body (mobile robot) or of a

kinematic chain whose base is either fixed (standard manipulator) or mobile (mobile robot

with trailers or mobile manipulator). The robot moves in a Euclidean space W = RN , with

N = 2 or 3, called workspace. Let O1, ...,Op be the obstacles, i.e., fixed rigid objects in W.

It is assumed that both the geometry of B,O1, ...,Op and the pose of O1, ...,Op in W are
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known. Moreover, it is supposed that B is free-flying, that is, the robot is not subject to

any kinematic constraint. The motion planning problem is the following: given an initial

and a final posture of B in W, find if exists a path, i.e., a continuous sequence of postures,

that drives the robot between the two postures while avoiding collisions (including contacts)

between B and the obstacles O1, ...,Op; report a failure if such a path does not exist.

The proposed problem definition focus on the geometrical studies, it tries to find a

sequence of postures (position and orientation) of the robot that lets it to perform the

task, if possible.

Fig. 1.2: Path planning procedure.

However the motion planning problem has to consider also the kinematic constraints

of the robot. Every robot has physical limitations due to actuator limitations, i.e. how

fast they can change velocity. The most sophisticated planners consider this limits and a

common approach to solve the entire motion planning problem is to decompose it. First a

geometric path is found (path planning problem), then it is smooth and finally it is time-

parameterized, in order to satisfy actuator constraints (trajectory planning problem). An

example of this implementation is in [2].

It is not mandatory to separate the problem in this two part, they could be solved

together simultaneously. Nevertheless this is the strategy that this thesis follows. In par-

ticular in this thesis only the first step is performed, the creation of the free geometric path

and a simple smoothing. Before starting the discussion on the path planning algorithms,

let’s make some clarifications.

1.2.1 Difference Between Path and Trajectory Planning

It is very important not to confuse the path planning problem with the trajectory planning

problem. Even if these two terms are often used as synonymous, in this specific case they

represent two different issues.

A path denotes the locus of points in the space, which the robot has to follow in the

execution of a assigned motion; a path is a pure geometric description of motion.

On the other hand, a trajectory is a path on which a timing law is specified, for instance

in terms of velocities and/or accelerations at each point. The trajectory planner receives

as inputs: the geometric path, all the constraints due to the physical limitations of the

motor’s actuators and other constraints specified by the user.

In the following is reported the trajectory planning problem [2] in order to understand

the difference with the path planning problem reported in section 1.2:



4 Path planning techniques

Given an initial state and a set of final states, the goal of this problem is to find a valid

trajectory between these two states, where the term state indicates the vector of positions

and velocities [p,v]. The final trajectory must satisfy constraints on position, velocity and

acceleration and it must be collision free.

1.2.2 Online and Offline Planners

The robot’s ability to autonomously plan its movement is an element that provides a

classification in different types of planners.

If a robot calculates its entire path in advance, before starting the movement, it is an

offline planner. Instead, if it is able to decide movements in real time, while on the move,

it is an online planner.

Online planners are able to react to changes in the environment, to moving targets,

and to errors encountered during movement. However, they require a very sophisticated

path planner that has to quickly deal with high-dimensional search space, moving objects,

kinematic and dynamic constraints of the robot.

So even if online planners are very attractive and powerful, they are not always used

because they are very difficult to create. Fortunately in many industrial applications

reacting in real time to the change of the environment or having flexible behaviour are not

required, i.e. a manipulator closed in an automated cell that always performs the same

tasks. For all these cases it is sufficient to realize a good offline planner, which finds the

path at the beginning, testing offline all the possibilities. The only thing to pay attention

is to think about how to pass information about the obstacles to the planner. This delicate

argument is treated in the following section.

1.2.3 Configuration Space

As reported in the canonical problem (see Section 1.2) the robot moves in a Euclidean

space W = RN , with N = 2 or 3, called workspace. The workspace is the operational

space, where the robot moves and where there are the obstacles.

For an n-DOF manipulator it is possible to divide the workspace in two:

the reachable workspace, which is the portion of environment that the manipulator’s end-

effector can access with at least one orientation;

and the dexterous workspace, the region that the end-effector can reach while attaining

different orientations.

The task must be done in W, but many times it is preferable to work with a simpler

space. In 1979 T. Lozano-Pérez and M. A. Wesley [3] introduced a new idea to solve path

planning problem which becomes very popular.

The very effective scheme, proposed by Lonzano-Pérez and Wesley, is obtained by

representing the robot as a mobile point in an appropriate space, where are reported also

the obstacles. A good choice for that space is to used the configuration space C of the

robot. A configuration describes the pose of the robot, and the configuration space C is

the set of all possible configurations.



1.2 Motion Planning Problem Definition 5

A configuration has to express the generalized coordinates of a robot (or an object),

which are generally of two types. The first represents the position of the body and it

is expressed in Cartesian space; the latter is for body orientation and it is an angular

coordinate.

The angular coordinates takes values in SO(m) (m = 2 or 3) the Special Orthonormal

group of real (m × m) matrices (see Appendix A for all details on angular coordinates

representation). The configuration space is finally obtained as the cartesian product of

the two spaces, the Cartesain and the SO(m).

Some examples are discussed below:

• If the robot is a 2D shape that can translate and rotate in W = R2, C is the Special

Euclidean group SE(2) = R2×SO(2) (where SO(2) is the special orthogonal group

of 2D rotations), and a configuration can be represented using 3 parameters (x, y, θ);

• If the robot is a solid 3D shape that can translate and rotate in W = R3, C is the

Special Euclidean group SE(3) = R3×SO(3) (where SO(3) is the special orthogonal

group of the 3D rotations), and a configuration requires 6 parameters: (x, y, z) for

translation, and the Euler angles (θ, φ, η) for rotations;

• If the robot is a fixed-base manipulator with N revolute joints (and no closed-loops),

C is N -dimensional.

Also the obstacles are reduced to a set of points that corresponds to the collision con-

figurations of the robot, this subset of the C space is called Cobs. The set of configurations

that does not collide is called Cfree = C\Cobs. With this new notation it is possible to

redefine the path planning problem as: find a path in the Cfree space from an initial point

to a final point [4], see Figure 1.3.

However still remain an hard topic how to represent the Cfree, similarly the Cobs.

In the following different types of path planner will be presented. Not all the planners

required the explicit computation of the C space, for example the sampling-based planner

which are the subject of this study.

Fig. 1.3: C space description.
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1.3 Different Types of Path Planners

In this section many types of path planner algorithms are going to be introduced. In 1991

Latombe [5] subdivides the path planner algorithms in three big classes, according to the

methodologies used to generate the geometric path:

• Roadmap algorithms are also known with the name Planning via Retraction (section

1.3.1). The main idea of this kind of planners is to represent the Cfree space by a

roadmap. A roadmap is a particular graph which is able to express the connectivity

of the Cfree space;

• Cell decomposition algorithms (reported in section 1.3.2) try to subdivide (exactly

or approximately) the Cfree space in simply-shaped regions with the following char-

acteristics: configurations in the same cell are easy to connect with a free path and

also configurations in adjacent regions could be connected (easily);

• Artificial Potential algorithms (see section 1.3.3), they are very used for online plan-

ners, because they react quickly to environment changes. They move the robot under

the influence of a potential field U.

However there is another important and efficient group not mentioned by Latombe,

which is:

• the Sampling-based path planners ([6]), which will be discussed in section 1.3.4.

A sampling-based algorithm represents the connectivity of the configuration space

with a set of sampled states that build a graph. At each iteration a new sampled

configuration is chosen and if it is collision free it is added to the graph. There

are different ways to select the new sample and different data structures (graph) to

represent C space, according to them there exist different types of sampling based

algorithms:

- Probabilistic roadmap algorithms, the new sample is created using a randomized

approach and if it is collision free it is added to a roadmap;

- Tree based algorithms has a new data structure: a tree. The construction is

based on random samples added progressively to the tree, following specific

rules.

Recently others types of methodologies have been developed and an overview of some

of them is given in section 1.3.5.

1.3.1 Roadmap Algorithms

Algorithms that use retraction planning procedure represent the connectivity of the free

space with a roadmap, which is a network of safe path. The first step for these kind of

algorithms is to create the roadmap, while the second one is the retraction procedure, i.e.

the connection of the start and goal state with the roadmap. Depending on the type of
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roadmap and on the retraction procedure adopted, this general approach leads to different

planning methods.

One of the most popular of these methods is described in the following, under the

simplifying assumption that Cfree is a limited subset of C (just for simplicity C = R2)

and is polygonal, i.e. its boundary is entirely made of line segments.

The method which is going to be described uses the Voronoi diagram to create the

roadmap and to perform the retraction (see [7]). Intuitively if a body B has to move

amidst obstacles in the space, it is better not to let it get too close to the obstacles, but if

it is possible, it has to move sufficiently far from them, in order to avoid collisions. A nice

criterion is to keep B equidistant from at least two obstacles at all time during its motion.

To carry this approach out in detail, an in-deep study of Voronoi diagram is required.

An example of Voronoi diagram is depicted in Figure 1.4, the black line is equidistant

from obstacles and boundaries and it represents the roadmap.

For each configuration q in Cfree is defined the clearance by

γ(q) = mins∈∂Cfree
||q − s|| (1.3.1)

where ∂Cfree is the boundary of the Cfree. The clearance γ(q) represents the minimum

Euclidean distance between the configuration q and the Cobs region.

Moreover, considering the set of points N(q) on the boundary of Cfree that are neigh-

bours of q:

N(q) = {s ∈ ∂Cfree : ||q − s|| = γ(q)}, (1.3.2)

it is possible to define formally the generalized Voronoi diagram of the Cfree space as:

V(Cfree) = {q ∈ Cfree : card(N(q)) > 1}, (1.3.3)

where card() denotes the cardinality of the set. Therefore the Voronoi diagram is the

locus of all the configurations that have more than one neighbor.

Fig. 1.4: On the left the roadmap creation with Voronoi diagram, on the left the retraction proce-
dure in details.

If the initial and goal configurations (qi and qg) do not belong to the Voronoi diagram,

as it is shown in Figure 1.4, it is important to pay attention to the retraction procedure.
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A simple retraction method is discussed here. First the clearance of qi is derived, then the

gradient of the clearance ∇γ(qi) is recovered. The gradient identifies the direction of the

steepest ascent for the clearance at qi. It is directed as the half-line originating in N(qi)

and passing through qi. So the first point of intersection with V(Cfree) is the connection

point r(qi). The same procedure is repeated for qg.

Now a search graph algorithm is required in order to find a path in the roadmap, which

connects the initial configuration with the goal configuration.

Regardless of the search algorithm used, it is worth to notice that the above path

planning method is complete. A path planner is complete if it finds a solution (if one

exists) or reports a failure; it always gives an answer to the path planning problem.

The motion planning method based on retraction can then be considered multiple-

query. In fact, once the generalized Voronoi diagram is complete, it could be easily and

quickly used to solve other instances (queries) of the same motion planning problem.

However it is preferable to employ this planner in small dimensional spaces, due to

the fact that the difficulty on implementation of the Voronoi diagram increases with the

complexity of the spaces.

1.3.2 Cell Decomposition Algorithms

A cell decomposition algorithm (also known as grid based algorithm) is a procedure which

divides the free configuration space into regions of simple shape. There exist two types of

cell decomposition algorithms, depending on the type of decomposition used and they are

both reported below:

- Exact decomposition if the union of all the regions forms exactly the entire Cfree

space.

Fig. 1.5: Exact cell decomposition. On the left the space cell subdivision in trapezoids, on the
right the graph found.

In Figure 1.5 it is possible to see the cell decomposition stage and the relative

connectivity graph associated. The nodes of the graph represent the cells, while the

edges connecting two nodes indicate that the two regions are adjacent. Adjacent

regions could be easily connected. Typically the center of the region is taken as

node for the graph in order to figure also the shape of the free connected space.

After the computation of the connectivity graph, the algorithm searches for the path

that connects the two regions (ci) and (cg), which contain respectively the initial
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and goal configuration. The path turns out to be a channel, namely a sequence of

adjacent cells from ci to cg.

- Approximate decomposition if the union of all the regions is contained in the

Cfree but does not coincide with it.

Fig. 1.6: Approximate cell decomposition. On the left the assigned problem, on the right the
approximation.

The approximate decomposition works in a different manner. As it is shown in

Figure 1.6 the algorithm starts dividing the Cfree space into four cells, that are

labelled and classified according to the following specifications:

free cells, they have not obstacles inside;

occupied cells, they are entirely contained in the Cobs space;

mixed cells, if they are neither free or occupied.

The algorithm continues by creating the associated graph, which has all the free and

the mixed cells as nodes. Then a path is searched in this graph. If the path does

not exist a failure is reported. However if the path exist and it is composed by all

free cells, the procedure ends. Instead if the path exist but contains mixed cells, for

each of these cells it is done the decomposition step. In turn they must be divided

in four parts and classified as free, mixed and occupied. The algorithm works until

an error or a complete path of the free cells is detected.

The main advance of this kind of path planner is that (as the roadmap planners) they

can be considered multiple-query path planners. Namely once the connected graph has

been computed it can be used to solved multiple path planning problem in the static

environment considered.

However when there are moving objects in the workspace the cell decomposition al-

gorithms cannot be used, because they have to change their structure (graph) in real

time.

Another disadvantage of both the exact and approximate algorithms is that, even if

they could be used in high dimensional spaces (RN ), the complexity of these planners is

prohibitive, being exponential in the dimension of C. Their importance is therefore mainly

theoretical. As a consequence, this technique is effective in practice only in configuration

spaces of low dimension (typically, not larger than 4).
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1.3.3 Artificial Potential Field Algorithms

In artificial potential field (APF) algorithms the robot moves under the influence of a

potential field Utot, which is the superposition of an attractive and a repulsive potential:

Utot(q) = Uatt(q) + Urep(q). (1.3.4)

The attractive potential Uatt is typically a paroboloid or a cone with vertex in the

desired goal state qg. This potential is designed in order to guide the robot to the final

configuration.

Instead the repulsive potential Urep has to move the robot away from obstacles. In

particular under a certain range of influence the robot is rejected. The repulsive potential

increases as a function of the inverse of the distance between the robot and the limits of

the obstacle. Outside this range of influence the potential is null.

The total force which acts on the robot is the opposite of the gradient of the total

potential:

ftot(q) = −∇Utot(q) = fatt +

p∑
i=1

frep,i(q). (1.3.5)

In Figure 1.7 there are shown two possible movements of the robot in order to avoid

the obstacle and reach the target.

Fig. 1.7: Simple artificial potential field example with repulsive potential around the obstacle and
attractive potential around the goal.

The idea of imaginary forces acting on a robot has been suggested by Andrews and

Hogan (1983) [8], it is a very elegant and simple idea, which continues to be studied.

In fact these algorithms are very used in real time applications, where an online planner

is required, because they are very fast in computation and they are able to react to

environment changes quickly.

However they are intrinsically affected by major problems. A study of Koren and

Borenstein in 1991 [9] well investigates all the principal drawbacks of APF algorithms.

During their experiments Koren and Borenstein identified four significant problems, typical

of all the APF algorithms:
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- the presence of local minima, where the robot may find itself trapped;

- no passage between closely spaced obstacles could be found;

- there are oscillations in the presence of obstacles;

- and also in narrow passages.

In Figure 1.8 it is depicted a simple example of a two-dimensional local minima prob-

lem. The local minima problem is the most discussed and famous and it is also known

with the name trap-situations problem. A trap-situation may occur when the robot runs

into a dead end (e.g., inside a U-shaped obstacle), but of course many other obstacles

configuration can lead to the same bad situation. A heuristic or global recovery is used to

escape local minimum.

Fig. 1.8: On the right the local minima problem, on the left no passage between closely spaced
obstacles.

Oscillations in presence of obstacles and moreover in narrow passages are the two

most significant limitations of potential field methods. In particular in narrow passages

the robot experiences repulsive forces simultaneously from opposite sides and that causes

large unstable and undesired motion. In the most unfavorable case, the robot is unable

to cross the small crack, because the sum of all the repulsive forces moves the robot away

from the slit.

1.3.4 Sampling-Based Algorithms

Many times the explicit representation of the C space is very difficult to provide. For that

reason sampling-based algorithms have been developed, because these kind of algorithms

prevent the explicit construction of the Cfree space.

The basic idea consists of determining a finite set of collision-free configurations that

adequately represent the connectivity of Cfree. These configurations are used to build

a graph that can be employed for solving path planning problems. At every iteration a

new configuration is sampled and tested with a collision detector, if it will be free from

collisions it is added to the graph.

The two most famous sampling based algorithms are reported in the following, this

subdivision refers to the structure and construction of the graph used.

- The probabilistic roadmap algorithms (PRM) typically start with the roadmap

construction (depicted on the left of Figure 1.9).
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The construction is different from the one explained in section 1.3.1. One may pro-

ceed in a deterministic way, choosing the samples by means of a regular grid that is

applied to C. However, it is preferable to use a randomized approach, in which the

sample configurations are chosen according to some probability distributions.

Fig. 1.9: On the left the roadmap construction phase and on the right in purple the final path.

More information about good probability distributions are given in section 1.4, in-

stead let’s see how to build a roadmap. One possible method is the following: at

each iteration a new sample qrand is generated from a probability distribution in C.

Then qrand is tested for collision, if qrand does not cause collisions it becomes a node

of the roadmap; otherwise the configuration is discard.

Once a configuration is added to the roadmap, it is immediately connected (if pos-

sible) through free local paths to sufficiently “near” configurations already in the

roadmap. Usually the new roadmap node is connected with all the nodes within a

circle of radius α(i) or with the closest node in terms of Euclidean distance. In most

cases the edge connecting two nodes is a straight line between them.

The algorithm goes on until a maximum number of iterations is reached or the num-

ber of connected components in the roadmap becomes smaller than a given threshold.

The output of the algorithm is a list of free configurations or a failure message if the

path does not exist.

The PRM method is intrinsically multiple-query. The main result of this method is

the remarkable speed in finding a solution to motion planning problems. In particu-

lar in high-dimension spaces, the time required to have a first valid solution is very

reduced compared to the methods already presented in the previous sections.

The main downsize of PRM is that they are only probabilistically complete. An al-

gorithm is probabilistically complete if the probability to find a solution (when one

exists) tends to 1 as the computational time tend to infinity.

This means that, if one solution does not exist, the algorithm will run forever. In

case of no solution a stopping criterion is enforced by the user in order to end the

method. Some common shutdown criteria set a maximum threshold on the number

of iterations or on the time elapsed since the beginning.

- The tree based algorithms are based on the concept of Rapidly-exploring Random

Tree, RRT. In 1998 La Valle introduced this innovative and efficient procedure in

[10]. In this case the space is represented with a tree, that has a root node which

is incremented at each iteration through the goal. This special tree is called RRT
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and it is a randomized data structure specifically designed to handle problems with

nonholonomic constraints (i.e. dynamics) and high degrees of freedom.

It is a single-query planner and it does not rely on the generation of a graph that

represents exhaustively the connectivity of the free configuration space. In fact it

works in a subset of the Cfree space.

In the following will be discussed the RRT behaviour and here it is reported also the

pseudocode.

RRT Algorithm

Input: qi, qg, Tmax

Output: Tree T
5

V ← {qi};
E ← ∅;
while E ∩ qg = ∅ & t < Tmax do

qrand ← Sample();

10 qnear ← NearestNeighbor(V, qrand);
qnew ← NewState(qnear, qrand);

if CollisionFree(qnear, qnew) then

V ← V ∪ {qnew};
E ← E ∪ {(qnear, qnew)};

15 return T = (V, E);

A tree data structure is defined by the set of its nodes (vertices) V and the set of its

edges E . The initialization is very easy, the edge set is put equal to null, instead the

vertex set contains only the root node (i.e. the starting configuration or ending one).

Then a new sample is generated by a probability distribution on the C space (Sample).

If this new node is not in collision the algorithm searches for the node of the tree

closest to it (qnear), with the function NearestNeighbor. It is worth to notice that

the choice of the distance metric influences a lot the tree structure and the compu-

tational time.

Finally a new configuration is found with the NewState function and if the path

between qnear and qnew is free from collisions the new node is added to the tree.

There exist many ways to implement the NewState function, in Figure 1.10 is de-

picted one simple. Every edge of the tree has the same length δ, so the new con-

figuration is the one belonging to the straight line connecting qnear with qrand far δ

from qnear. Other implementations are discussed in the next chapter.

The tree grows until the goal configuration or a stopping condition is reached. A

stopping condition is required in order to forced the shut down when a solution does

not exist. In fact (like PRM) RRT is also probabilistically complete. Usually a good

stop criterion adopts the computational time: if the time required for the computa-

tion exceeds a certain threshold (Tmax), the algorithms arrests. Another possibility

concerns the maximum number of iterations of the algorithm, as already said.
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Fig. 1.10: Rapidly-exploring Random Tree (RRT) based algorithm.

To speed up the search for a free path going from qi to qg, the Bidirectional Rapidly-

exploring Random Tree (B-RRT) method uses two trees Ti and Tg, respectively

rooted at qi and qg. A simple implementation is reported in section 2.3.1 and an

upgrade version in section 2.3.2.

So the major drawback of probabilistic planners is that they are probabilistically

complete. Both the sampling based algorithm presented do not known anything of the

workspace. The collider, the instrument which does the collision detection and knows

where obstacles are, is like a black box for the algorithms. They work purely at random,

for that reason in some environments they are not successful and spend much time. One

example is ambient with narrow passages and holes, which are very difficult to individuate

with a randomized approach.

Over years, many different variations of these kinds of algorithms have been suggested.

Many papers have been written and it is not trivial to compare them, because the algo-

rithms and the test environments are different.

1.3.5 Evolutionary Algorithms

In recent years new methods have been developed and one of the most interesting takes

inspiration from nature: the Evolutionary algorithms.

Evolutionary algorithms use mechanisms inspired by biological evolution, such as re-

production, mutation, recombination and selection to solve the path planning problems

[11]. The solutions of the algorithm are considered as individuals within a population.

There is a “fitness function” which determines the relations between individuals and the

level of aptitude that a particular individual has to solve the given optimization problem.

The most popular type of evolutionary algorithm is the Genetic algorithm (GA). John

Holland introduced genetic algorithms in 1960 based on the concept of Darwin’s theory of

evolution, then one of his student extends them. A genetic algorithm is an evolutionary

optimization method used to solve, in theory “any” possible optimization problem.

For a genetic algorithm each individual can be encoded in a finite set of parameters.

These parameters are the gens (genetic information) that make up the chromosome. The

chromosome is the real structure of the individual and the solution of the planning problem.

Let’s see more in details a simple GA. The GA is an evolutionary method, this means

that each iteration of the algorithm is used to evolve a population S of p individuals to
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find the “fittest” individual to solve a particular problem.

Every iteration starts with a generation. In this step a new set of individuals is

created using genetic operators (i.e Crossover and Mutation). These operators make new

chromosomes with the intention of bettering the overall fitness of the population. The

individuals, that have to perform a genetic operation, are chosen with a Selection method.

Finally the new chromosomes replace some old chromosomes according to a Replacement

method. The Simple GA [12] is known to have the next set of common characteristics:

• Constant number of p individuals in the genetic search population;

• Constant length binary string representation for the chromosome;

• One or two point crossover operator and single bit mutation operator, with constant

values for µ (mutation rate) and γ (crossover rate);

• Roulette Wheel (SSR) Selection method;

• Complete or Generational Replacement method or Generational combined with an

Elitist strategy.

An example of simple GA implementation is reported in [13] and in the following is

reported the flowchart associated.

Fig. 1.11: Conventional genetic algorithm flowchart with one optimization objective.

The population S, used in the genetic search, is initialized with p total individuals. In

the path repair mechanism each path is classified inside of the population S, as valid or
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non-valid. The path are non-valid if:

- it contains cells with obstacles;

- it contains cells out of bounds;

- the final cell is not the destination.

The subpopulation S′ is made up by entirely non-valid paths in S. The path repair

procedure tries to establish if the non-valid path in S′ could be saved and if they could

become valid.

Paths which are still non-valid after the repair step are bad evaluated at the fitness

evaluation step, all the valid path however are accurately analyzed. Usually the fitness

evaluation function optimizes only one objective, which is the path length. Then we define

fitness fi(x) as given by:

fi(x) = n2 − c, (1.3.6)

where c is the number of cells in a given path x and n is the number of columns and rows

in the grid representing the map of a given terrain.

For the termination criteria of the GA, a fixed upper limit k gives the maximum

number of generations.

1.4 Generation of Random Points

The planners already described in section 1.3 can require:

- A distance metric to express relations between samples, which will be discussed in

section 1.5;

- A distribution function to generate samples in the space. This function is really

important and necessary for Sampling-based algorithms, because it is the core for

their growth techniques.

In many applications a uniform sampling distribution guarantees success and it be-

comes one of the most used probability distribution. Computing a good uniform distribu-

tion it is useful for search algorithms because it lets to avoid oversampling and undersam-

pling of large regions.

A point in the Cartesian space can be uniformly random sampled, in a very simple

way. It is sufficient to take three independent random values, one for each coordinate

(x, y, z).

Instead all these requirements are not trivial for rotation in SO(3), in particular having

a basic uniform sampling distribution for rotation it is not so immediate.

Before explaining how to obtain a uniform distribution let’s consider what uniformity

means for rotations. A standard approach to give the definition of uniformity uses the

Haar measure. The Haar measure says that: “if X is a random rotation with uniform

distribution, then for any fixed but arbitrary rotation R, R · X and X · R must have the

same distribution as X.”

Unfortunately it is not possible to create a uniform distribution of rotations taking

three independent uniformly distributed Euler angles between [−π,+π]. Three indepen-
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dent random Euler angles (sampled between [−π,+π)) provides a distribution that is

heavy biased towards polar regions, as it is depicted in Figure 1.12.

A proof of this statement could be easily provided. As it is explained in the following

subsection, uniformly distributed unit quaternions correspond to uniformly distributed

rotations. The average magnitude of the w component for uniformly distributed unit

quaternions is give by:

1

π2

∫ π/2

0
4π cos2 θ sin θdθ =

4

3π
' 0.4244. (1.4.1)

Now it is possible to prove that a uniformly distributed spatial rotation does not have

a uniformly distributed angle. In fact the w component of a unit quaternion is the cosine

of half the angle of rotation. When the angle is uniformly distributed between 0 and 2π,

the average magnitude of w will be 2/π � 0.6366, which exceeds the correct value for a

uniform rotation by a factor of 2
3 .

Fig. 1.12: Not uniform (a) and uniform sampling (b) of SO(3), using Euler angles. There are 5000
rotation samples, represented with their orientation, depicted on the surface of a sphere.

In [14] and in [15] are proposed some methods that guarantee a uniform sampling also

for rotations in SO(3). There are two possible approaches to obtain a good sampling

distribution, working with Euler angles or with quaternions. Both methods are reported

in the following.

1.4.1 Uniform Sampling with Euler Angles

As said in the previous section, independent Euler angles do not provide uniform distri-

bution of rotations. If all the angles can vary between [−π,+π] the distribution is biased

toward polar regions. Fortunately there exist simple ways to create a uniform distribution,

which is explained in [14] for Roll-Pitch-Yaw Euler angles. The idea behind Algorithm 1

is the following: two Euler angles can vary between [−π,+π] (θ and η), instead the third

(ψ) must be chosen in the range [−π
2 ,+

π
2 ). In this way it is possible to avoid oversampling

in polar region and also a double coverage of the space of rotations which is obtained when

all the angles can vary between [−π,+π].
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The ψ angle is calculated from the inverse of the cosine plus a correction factor. The

term rand() expresses a random number between [0, 1].

ALGORITHM 1: Uniform Sampling with Euler Angles

Input: none

Output: uniform random Euler angles (Roll-Pith-Yaw) (θ, φ, η)

5

θ = 2π ∗ rand()− π;
φ = arccos 1− 2 ∗ rand() + π/2;

if (rand() < 1/2) then

if (φ < π) then φ = φ+ π

10 else φ = φ− π
end

η = 2π ∗ rand()− π;
return (θ, φ, η);

1.4.2 Uniform Sampling with Unit Quaternions

In [15] it is reported the simplest method for creating a uniform distribution of SO(3).

This method involves the use of quaternions.

The geometric problem of generate uniform rotations, in the quaternion representation,

turns out to be one of generating a point uniformly distributed in a sphere of size four,

the quaternion unit sphere w2 + x2 + y2 + z2 = 1.

Composition of rotation matrices is equivalent to the product of the corresponding

quaternions. So uniformly distributed unit quaternions correspond to uniformly dis-

tributed rotations. As in the previous algorithm, the term rand() indicates a random

number between [0, 1]. The proof of the correctness of the Algorithm 2 is explained in

[15].

ALGORITHM 2: Uniform Sampling with Quaternions

Input: none

Output: uniform random quaternion (w,x,y,z)

5

s = rand();

σ1 =
√

1− s;
σ2 =

√
s;

θ1 = 2π ∗ rand();

10 θ2 = 2π ∗ rand();

w = cos θ2 ∗ σ2;
x = sin θ1 ∗ σ1;
y = cos θ1 ∗ σ1;
z = sin θ2 ∗ σ2;

15 return (w,x,y,z);
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1.5 Distance Metrics

In some path planning algorithms it is useful to have a distance metric defined on the

C-space in order to give a measure of the “closeness” between two points.

In this subsection it will be presented some possible distance metrics for the configu-

ration space.

The purpose is to derive a scalar weighted function (d) which considers the distance

between two configurations in terms of translation (ρt) and rotation (ρrot):

d = wt ∗ ρt + wr ∗ ρrot. (1.5.1)

The choice of the weights wt and wr is very crucial for the success of the algorithm.

In the following there are described some metrics appropriate for the Euclidean space

R3 and others for the special orthogonal group SO(3).

• Euclidean Space The classical method is the Euclidean norm, it is very easy and

used in Cartesian space:

ρt = ‖V1 − V2‖. (1.5.2)

• Special Orthogonal Group The metric has to measure the distance between two

rotations and it has to be a positive scalar function. There are many solutions to

that issue;

- Working with Euler angles, in particular with their Roll-Pith-Yaw representa-

tion it is possible to express the difference of rotations as a difference between

angles. The sum of the squares o the differences between two triples of Euler

angles can provide an estimate of distance:

ρrot =
√

(θ1 − θ2)2 + (φ1 − φ2)2 + (η1 − η2)2. (1.5.3)

However this kind of measure is very poor and does not respect efficiently what

really happens between rotations. It could happen that big difference in angles

does not cause a big rotation;

- Quaternions helps to be more accurate, doing

ρrot = (1− ‖Q1 ·Q2‖), (1.5.4)

where Q1 ·Q2 is the inner product of the quaternions.

- Also the direct manipulation of the rotation matrix guarantees good estimate

with

ρrot = (R1)
−1 ∗R2. (1.5.5)



20 Path planning techniques

1.6 Smoothing Path Techniques

Most of the planning algorithms generate a path consisting of a set of straight lines and

sharp turnings. It is preferable to recover from the broken lines a smooth and continuous

path.

There exist many techniques in literature that studies how to smooth, however this

problem becomes critical and not trivial in the presence of obstacles. It is not guaranteed

that interpolating the broken points will provide a smooth path free from collisions.

However a simple improvement of the path can be done pruning.

This strategy is efficient with path obtained by sampling based algorithms in which

points are random. It starts taking the list of all the vertices of the sequence of straight

lines. Then the algorithm continues iteratively with the following considerations.

The first configuration considered and saved in the final path is the initial.

If there exist a collision free path between the configuration in position (i) of the list and

the configuration in position (i + k), the configuration in position (i + k − 1) is deleted,

otherwise the (i+ k − 1)-configuration is saved in the final path and the algorithm starts

again considering this position as start. The parameter k has not to be greater of the

number of configurations of the current path.

The algorithm goes on until the final pose is reached and saved in the final path.

The final path could be shorter than the initial sequence of configurations, bu it is not

guaranteed. It depends on the initial structure of the path. However, most of the sharp

turnings are deleted and it provides a more linear path if possible.



Chapter 2

Methods and Materials

2.1 Problem Formulation

The objective of this work has already been briefly presented in the introduction of Chap-

ter 1, without a formal explanation. However, after the brief theoretical background on

different types of path planners and common tools generally used to create them, it is now

possible to have an adequate formulation for this thesis problem.

The aim of this thesis is to analyze, implement and compare two different tree-based

path planners, which are tested in different static environments.

In this chapter all methods and material employed in this thesis are presented in details.

In particular in the following there is the explanation, implementation and analysis of the

two bidirectional RRTs used, the sampling strategies adopted and the collision detector

behavior.

The target to move is a thin, long rod that is able to autonomously plan its movements,

like a UAV and it is described in the next paragraph.

2.2 The Choice of the Moving Object

Typically, path planner algorithms work on a robot that can move around a certain portion

of space. However, in this thesis, the element to be moved is an object, a thin and long

rod, which is very common as payload, for a manipulator or for a UAV.

The rod is supposed to be a free-flying object, which can translate and rotate at will.

So the configuration represents the position p in Cartesian coordinates of the center of

mass of the rod and the orientation in terms of rotation matrix R. An homogeneous

matrix is sufficient to describe its pose:

M =

[
R, p

0, 1

]
. (2.2.1)

The rod has 6-DOFs: (x, y, z) for position and (θ, φ, η) Euler angles for rotation.

2.3 Algorithms Used

In this thesis the sampling based algorithms will be investigated, in particular the tree

based algorithms.

The choice of that algorithm is justified by its numerous benefits. One of them is

that the RRT is an efficient data structure and sampling scheme that quickly searches for

solutions in high dimensional spaces.

21
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In particular a special improvement of the RRT is going to be used in this thesis: the

Bidirectional RRT, also known with the name RRT-Connect. This planner is tailored to

problems in which there are no differential constraints and it is faster than RRT.

Two implementations of this algorithm, used in the experiments, will be presented

below.

2.3.1 Bidirectional RRT

The first algorithm is a simple bidirectional RRT, inspired by [16]. The implementation

is reported and explained in the following.

A bidirectional RRT builds two trees, one rooted in the initial configuration and the

other in the final configuration. These two trees (Ti and Tg depicted respectively in blue

and red in Figure 2.1) are maintained at all times until they become linked and a path

is found. In each iteration, one tree is extended and an attempt is made to connect the

nearest node of the other tree to the new vertex. Then the roles are reversed by swapping

the two trees. In this way both the trees grow in the same manner and they have more or

less the same size, namely number of nodes.

Fig. 2.1: Bidirectional tree based algorithm.

In the following is reported the pseudocode of the implemented simple bidirectional

algorithm used in the experiments. Let’s see in details all the steps.

First of all the initialization is necessary. Here the two trees are initialized by inserting

the root node of the trees. In these phase also other data structures, explained in the next

sections, are initialized. The novelty of this algorithm compared to canonical bidirectional

RRTs is that for the same problem it is possible to derive different solutions. The initial

loop of the algorithm allowed to find out N different solutions.

The difference between the various solutions is guaranteed by eliminating the junction

point between the two trees after finding a path. This is done by the function Delete().

For each of the N desired solution the algorithm goes on calculating until the boolean

parameter foundPath becomes true. This parameter becomes true only when a path is

finally found.

The core of the algorithm is inside the while cycle (line 10 of the pseudo code), where

there are the tree expansion and the connection.

At the beginning of the cycle a new sample is achieved from the Sample() function.

This function gives a new candidate configuration of the moving object according to dif-

ferent types of probability distributions (all of them are discussed in section 2.5).
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Then, if the new configuration lies in free space, the NearestNeighbor function looks

for the closest node of the tree (which is going to be extended) using Equation 1.5.1 as

distance metric; otherwise a new configuration is sampled by Sample(). After some tests

the values for the weight coefficients are chosen equal to wt = 0.2 and wrot = 0.8. In this

ways the ρrot metric is taken more into account, i.e. among nodes at the same Euclidean

distances you choose the one that differs least from the new point in terms of rotations.

The function ρrot considered for the tests is the one written in Equation 1.5.4.

At first the NearestNeighbor function evaluated the closest node inside a sphere

centered in qrand and radius 1000. Then, if the sphere does not contain nodes, the research

is extended to all the tree. This strategy is intended to speed up the search for the

candidate parent. The value 1000 for the radius was suggested by the distances between

the initial and final configurations of two of the three experiments, it is half the distance.

To conclude the tree extension part is sufficient to say that if the straight line connect-

ing qnear with qrand is free (function IsCollisionFree()), qrand is added to the growing

tree. Otherwise the configuration is discard and the algorithm starts again from line 10.

When the growth of the current tree has success, the connection is attempted. The

CONNECTION function searches for all the points of the other tree within a sphere centered

in qrand and then it proves to connect them with qrand. The connection has success if

a free path exists between qrand and one of these configurations. If the sphere is empty

the nearest configuration of the other tree is found and tested. If no connection runs, the

algorithm swaps the trees and extends the other repeating the same procedure.

Otherwise if there is connection, the qrand configuration is added in both trees. This

is very important in order to recover the final path, which links together qi and qg (PATH

function). Starting from the qrand configuration and asking each node for its parent in

both trees, you can easily get a list with all the configurations of the desired path.

Bidirectional RRT Algorithm

Input: qi, qg, N

Output: Trees Ti, Tg and PATH(Ti, Tg)
5

Ti ← Initialize{qi};
Tg ← Initialize{qg};
for n = 0 to N do

while (!foundPath)

10 qrand ← Sample();

qnear ← NearestNeighbor(Ti, qrand);
if IsCollisionFree(qnear, qrand) then

Ti.Insert(qrand);

if (CONNECTION(Tg, qrand))

15 return PATH(Ti, Tg);
SWAP(Ti, Tg);

Delete(qrand);
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2.3.2 Augmented Bidirectional RRT

In this paragraph a different Bidirectional RRT is introduced. The variations of this

implementation compared to the one of the previous section derive from two simple ob-

servations:

• Whenever the simple B-RRT detects a collision, checking the reachability of a new

sample qrand, it discards the configuration and all information on where the path is

free before the collision;

• The free edges that connect the tree nodes are not taken into account when looking

for new connections of adjacent configurations.

So considering these remarks, two changes were made.

During the edges collision checking, if a collision occurs, the qrand is discard but the

configuration qs, which stands just before the collision, is added to the tree. In this way

the part of the free branch is not thrown. These techniques is depicted on the left of

Figure 2.2.

However on the right there is the second upgrade. When a new node is added to the

tree also other nodes belonging to the connection branch are added to it. How many

configurations to take in the link is a big issue. Taking too close configurations implies a

large increase in number of nodes and the computation time, on the contrary, taking few

of them does not bring an advantage in finding near configurations. After some tests the

distance between nodes belonging to same link is put equal to 50 cm.

Fig. 2.2: Augmented bidirectional RRT algorithm.

These modifications require some changes to the code written in the previous section.

In particular the second change involves some tricks in the Delete method. It is no more

sufficient to eliminate only the connection node, but it is necessary to delete all its children

too. Otherwise there are nodes which have a null parent that are not the root node. This

fact could be very dangerous for the successive iterations of the algorithm.

The CONNECTION function changes too. The connection is attempted within a sphere

centered in the last valid node added to the tree (i.e. qrand or qs). All nodes in the sphere

are tested for connection not only qrand. This was done in order to increase the probability

of having valid connections and because there could be more new points in the tree.

The two spheres, the one used for connection and the other used for the NearestNeighbor

function, have radius equal to 500 mm. It is half the radius of the simple bidirectional

algorithm because here there could be more nodes to test and the algorithm could become

slower.
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2.4 Space Representation

Even if the B-RRTs adopted in this thesis do not need an explicit representation of the

space, some data structures that give a space representation where used in order to improve

the performances.

In the following two data structures that represent the 3D-space in which the object

is moving, are explained and analyzed.

The first data structure is a data grid, it is useful to increase in terms of velocity and

efficiency the performances of the algorithms.

Instead the second, the octree where used to derive a new sampling techniques in order

to investigate portions of space not already visited. Indeed the B-RRT discovers the world

moving in a random way. This approach in some case is very bad and takes a lot of time.

One example is Environment 3, presented in section 3.3. When there are holes and narrow

passages the B-RRT algorithm struggles to find a solution. So to help him move, other

sampling strategies need to be used and one of them requires more information about the

workspace, which are located within the octree.

2.4.1 Data Grid

A data grid is a two-dimensional matrix in which each element is a list of arrays containing

two elements: a triplet and a payload. The triplet contains the Cartesian coordinates

(x, y, z) which identifies the position of the payload in the workspace, the payload is what

it is desired to save in such position. In this case the payload is the homogeneous matrix

representing the object.

In Figure 2.3 is shown in green the principal matrix, instead in yellow and red are

reported two triplets of the array list. With the columns and rows are identified the x and

y components translated of half of the size of the grid. Instead the z axis is saved in the

array list.

The final data grid results to seem a three-dimensional matrix, if all the arrays are

considered as depth of the two-dimensional matrix. However this data structure was

adopted because it is faster and leaner to implement and use than the three-dimensional

matrix.

Fig. 2.3: Data grid 3D-space partitioning procedure.
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The data grid represents only a portion of the 3D space, a cube of size 6m× 6m× 6m.

This choice was done to limit the sampling in a space sufficiently big but not infinite.

The data grid initialization is easy, it corresponds to the two-dimensional matrix ini-

tialization. The elements needed are:

the size of the cell of the data grid, which is a small cube of side 1 mm. It represents

the maximum resolution of the data grid;

the origin of the data grid, which is the smaller corner (-3 m, -3 m);

the grid size (6 meters).

This data structure is used to search for the nearest node of a new node configuration,

within the NearestNeighbor function. At first, this function looks for the nearest node

inside a sphere and the data grid is able to quickly answer the question that asks which

points are inside the sphere.

2.4.2 Octree

The octree is a data structure in which each internal node has exactly eight children. This

data structure is used to represent the 3D-space by recursively subdividing it in eight

octants, as it is depicted in Figure 2.4.

Fig. 2.4: Octree 3D-space partitioning procedure.

Each node contains information on the region it represents (storing the smallest and

largest corner) and the list of all the points that belong to its region.

An octants splits in its eight children when there is more than one point inside its

region. However it is not possible to divide the space into infinity. For this reason, an

octant can divide itself only if the depth of the tree is lower than a specified threshold or

the side of its region is greater than another specified threshold. Once the lower or upper

limit is achieved the octant can contain more than one point.

This data structure was introduced in order to realize a sampling distribution which

will be discussed in section 2.5.

The octree initialization must consider the size of the space that it has to represent.

As for the data grid, the space is a cube of size 6m× 6m× 6m, so the root of the octree

must have the lower edge equal to (-3m, -3m, -3m) while the upper one (3m, 3m, 3m).
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2.5 Sampling Strategies

The efficiency of the algorithms proposed are strictly related with the metrics, but also

with the sampling strategies. Four sampling strategies have been adopted and mixed

together in this work in order to increase the performances. They are all discussed in the

following:

• A uniform distribution;

• A polar distribution;

• An “informed” distribution;

• An Octree based distribution.

The first two have been already introduced in section 1.4. They have both a uniform

distribution of the Cartesian coordinates, which are sampled uniformly within a cube of

size 6m× 6m× 6m. Instead they differ in sampling of the rotations.

The uniform strategy chosen is the one reported in Algorithm 2, which uses the quater-

nion representation for rotations. However in the polar distribution the rotations have been

realized with independent Euler angles sampled between [−π,+π]. As discussed in section

1.4 it is a distribution heavy biased through polar regions.

The last two distributions need more explanations. They could have uniform or po-

lar distribution of rotations, as preferred, instead they change the Cartesian coordinates

sampling.

However before talking about them, it is worth dwelling on how a PC can generate

random points.

Creating a random sequence is not trivial, a PC can only have a deterministic behavior,

therefore it can only give a pseudo-random number. All the work presented was done in

the C sharp language and one of the fundamental classes used is the Random class.

This class represents a pseudo-random number generator, i.e. a device that produces

a sequence of numbers that satisfy certain statistical requirements of randomness.

Pseudo-random numbers are chosen with equal probability from a finite set of numbers.

The numbers chosen are not completely random because a mathematical algorithm is used

to select them, but they are random enough for practical purposes.

The current implementation of the Random class is based on a modified version of

Donald E. Knuth’s subtractive random number generator algorithm. More details are in

[17].

2.5.1 “Informed” Distribution

As said in the previous paragraph this distribution could have two possibilities for rota-

tions distribution (polar or uniform) and it has not uniform Cartesian distribution. The

idea behind this distribution is the subsequent: instead of searching for the Cartesian

coordinates within the big cube of size 6m×6m×6m, the coordinates are sampled within

a cube of small size.
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In details the algorithm follows these steps:

- A node of the growing tree is selected from a uniform distribution over all nodes of

the tree;

- then the distance between the selected node and the root of the other tree is calcu-

lated. If this distance is bigger than the distance between the two roots it is discard

and the initial distance (from one root to the other) is set as cube’s side. Otherwise

the calculated one becomes the cube’s side;

- the center of the cube is located in the center of the segment passing through the

two points considered (the sampled and the root);

- the three Cartesian coordinates are uniformly sampled within this new cube.

In this way the growing tree tends to reach the other tree and does not explore too far

regions from the goal.

The name informed recalls a sampling technique present in the literature, which tries

to concentrate the sampling in a specific area between the initial and final state.

2.5.2 Octree Based Distribution

The octree, already introduced in section 2.4.2, was used in this work to proposed a new

sampling technique for the Cartesian coordinates.

This new procedure aims to search for new nodes in regions where the algorithm has

not yet gone. To do this, it is very important to take the memory of where the nodes were

sampled and the octree data structure can help with its representation of the 3D-space.

Every time a new configuration is inserted in the tree structure, it is also inserted in

the octree. In this way small regions of the octree identifies a huge sampling in the area

considered. Instead big region provides poor sampling.

It is simple to understand that if the aim is to search in non-sampled regions, the

sampling must be performed in large octants. Between the largest regions the one selected

is chosen randomly.

It is worth noting that no connection points are removed from the octree, as smaller

regions are preferable for the route already found. In this way the new route searches for

other regions and becomes different from the previous one.

2.6 Collision Detection

Collision detection is the operation in which the algorithm takes the most time. It is a

very delicate step to achieve the goal of having a free path.

Although the sampling-based path planners proposed to use a collision detector like a

black box, which says whether the current configuration is colliding or not. However it is

worth understanding how this collider works.

Having a good and efficient collider greatly increases the performance of the whole

algorithm.
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In the initialization all the objects in the space were analyzed, the bounding boxes and

the mesh regions are determined for each of them. The mesh used is a triangle one, so the

faces are small triangles determined according to the shape of the object.

In Figure 2.5 it is represented an example of triangular mesh regions decomposition

and in Appendix B there are some method for 3D object representation.

Fig. 2.5: Triangular mesh regions.

After the mesh regions storage the collider checks the collisions. In the beginning all

the objects were tested in pairs, then during the algorithm only the moving objects are

taken into account.

If two objects intersect then there are two possibilities: the collision checking could stop

when the first colliding triangle is found or it could continue looking for all the triangles

in collision. In this thesis the first solution was done, it is not necessary to find all the

triangles in collision, it is a waste of time.

However testing all the triangles to find the first in collision could be a very long

operation, i.e. there exist objects that have millions of triangles. For that reason some

optimization techniques were adopted.

A simple and effective approach is to group triangles into small regions, which divide

the object into several parts. Then the collision test is done between these areas. This

method speeds up the collision checking procedure.





Chapter 3

Experimental Results

In this chapter all the experimental results, obtained in three different environments, will

be presented:

• A simple situation with one big obstacle;

• A navigation problem, in which the moving object must cross many objects scattered

in space;

• And in the end the most difficult environment, where there are narrow passages that

the rod must go through.

For each environment the same tests were performed, that involves the two tree-based

algorithms (discussed in section 2.3.1 and 2.3.2) and the different sampling strategies

(reported in 2.5).

The sampling strategies already discussed can be easily summarized in the following

table:

Uniform Not Uniform

Uniform Real Uniform Polar
Octree Octree-Uniform Octree-Polar

Informed Informed-Uniform Informed-Polar

Tab. 3.1: Sampling Distributions.

On the first row all rotational sampling techniques proposed are reported, instead on

the first column all the Cartesian space coordinates’ sampling strategies used.

The Cartesian sampling strategies are used separately but also mixed together in three

different manners:

- Separated Generation searches for the first solution with Real Uniform or with Polar,

instead the second one comes from the Octree-based distributions;

- Mixed Generation uses the Octree-based sampling techniques together with the Uni-

form and Polar distribution;

- Very Mixed Generation mixes all the Cartesian sampling distributions together.

The Mixed and Very Mixed generations randomly select at each iteration which sam-

pling strategy to adopt among their candidates.

Both the algorithms look for two solutions (N = 2) and what you want to observe

is: the time required to compute both the solutions, the numbers of nodes of the two

trees and the length of path before and after the simple smoothing procedure explained

in section 1.6.

31
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The following sections have the same structure: firstly there is the explanation of

the current environment, then all experiments are reported in two subsections, one with

uniform rotational sampling and the other with polar rotational sampling. The sampling

strategies used are the three above and the Informed sampling used alone. Four different

sampling strategies applied to the two RRT algorithms for a total number of tests equal

to 16 for each environment. One hundred samples were collected and analyzed for each

test. Some additional graphical results are reported in Appendix D.

In the last section 3.4 there is a comparison between all experiments and some general

considerations.

All this thesis is done in a plugin of a new software, recently developed in Euclid

Labs S.r.l called Vostok Studio. It is a innovative software which simulates the real time

behaviour of the robot. The Vostok Studio interface of the plugin is explained in Appendix

C.

Measurements are done with my personal computer, an Asus PC (Operative system

Windows 10) with CPU intel core i7 4510u up to 3.1 ghz and memory of 6 GB.

3.1 Environment 1: Simple Problem with One Big Obstacle

This is the simplest path planning problem, in this case the algorithms search for a path

avoiding collisions with one big red obstacle shown in Figure 3.1. The obstacle is 1m×3m×
3m and it is centered in the origin of the workspace. The moving object (depicted in blue),

which dimensions are 0.1m×1m×0.2m, has to move from the initial pose pi = [−1m, 0, 0]

and (θi, φi, ηi) = (0, 0, 0) to the final pose pg = [1m, 0, 0] and (θg, φg, ηg) = (π, 0, 0).

It is worth to remember that the considered workspace is not infinite, but it is a cube

of side 6m centered in the origin.

Fig. 3.1: Environment 1: One big obstacle avoidance.

In the following two subsections all relevant results of computational time, path length

and number of nodes are reported. The first section groups all experiments performed with
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non-uniform sampling of rotations, while the second section contains all the experiments

with uniform sampling of rotations.

3.1.1 Uniform Rotational Sampling

The computational time required to find a solution is strictly related on how much the

trees grow.

So before introducing all computational times, just have a look on the size of the two

trees.

In Table 3.2 and Table 3.3 are reported the mean number of nodes and the standard de-

viation of all trails performed with the Simple RRT and the Augmented RRT respectively

using all the sampling strategies.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 7.65 3.58 9.93 4.09
Mixed 7.04 3.04 9.02 3.51

Separated 6.55 2.79 8.60 3.28
Informed 8.46 4.32 12.14 4.75

Tab. 3.2: Number of the nodes of the two trees with the simple RRT algorithm.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 80.73 27.87 96.90 27.23
Mixed 69.66 25.27 81.53 25.63

Separated 64.95 21.72 81.9 19.75
Informed 79.11 26.11 92.65 27.35

Tab. 3.3: Number of the nodes of the two trees with the augmented RRT algorithm.

As expected, in the second table the number of nodes belonging to the trees is higher

than the ones in the first table.

Although the augmented algorithm provides multiple nodes (due to the changes ap-

plied to tree growth), both algorithms have a reduced number of nodes, not more than a

hundred. What it is expected to be observed is that the computational time should be

small, due to the simple complexity of the problem.

To proof that statement in the following three-dimensional histograms all solutions

found for each sampling method are grouped together.

The time required to find the first solution (depicted in blue) is compared with the

computational time of the second one (orange histogram in Figure 3.2).

It is possible to notice that in all the histograms the time required to find the second

solution is always slower than the first one. This is due to the fact that not the whole tree

is deleted when the first path is found, but only one or few points are removed.

However, all tests claim that the simple path planning problem could be easily solved

with all the methods presented. Therefore, on average the first solution is found in 3 or

4 seconds, while the second one is about 1 second after the first one. These results have

been very satisfied.
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Fig. 3.2: Time required for the computation of the first (light blue) and second solution (orange)
with all the sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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Then in Figure 3.3 the four sampling techniques are directly compared. In this case

only the first solution is taken into account, because this is the most complicated to

find out. The four sampling strategies but also the RRT algorithms have the similar

performances.

Fig. 3.3: Comparison of the results of the first solution with all sampling strategies on the top with
the Simple RRT, instead on the bottom with the Augmented RRT.

Another important aspect that will be analyzed, is the path length. Just for simplicity

it is considered only the Cartesian distance function to calculate it, i.e. the Euclidean

norm.

However before considering the final path length it is convenient to discuss the smooth-

ing. In Table 3.4 and Table 3.5 it is possible to observed the first difference between the

two RRT algorithms.

The Simple one after the smoothing procedure is able to reduce on average the length

of the path of a 9%, instead the Augmented can reduce of a factor of 19%. Considering also

the standard deviation the Simple can have a maximum reduction of 19%, the Augmented

of 30%.

The structure of the initial path is the most influential parameter to decide if the

smoothing is useful or not, but having a larger number of nodes to compare provides

smoother solutions.

Lengths of the final path are shown in Appendix D, while the following tables (Tab.
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3.6 and 3.7) show the average and the standard deviation obtained in each experiment.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 9.12 % 9.96 10.01 % 9.99
Mixed 8.22 % 11.01 10.86 % 9.89

Separated 7.23 % 9.45 10.47 % 11.28
Informed 10.91 % 11.21 14.04 % 12.14

Tab. 3.4: Percentage reduction from first to second solution with the Simple RRT algo-
rithm.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 18.87 % 10.79 21.72 % 10.80
Mixed 18.00 % 11.87 19.77 % 10.11

Separated 19.95 % 11.19 21.00 % 11.29
Informed 19.80 % 9.75 22.62 % 10.37

Tab. 3.5: Percentage reduction from first to second solution with the Augmented RRT
algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 9493.40 1453.24 9480.78 1424.51
Mixed 9516.35 1381.30 9604.46 1401.33

Separated 9559.11 1380.87 9802.81 1275.40
Informed 9543.93 1420.44 9783.07 1535.43

Tab. 3.6: Final length path after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 8074.54 1071.23 8110.41 1160.98
Mixed 8239.44 1148.76 8088.01 1169.01

Separated 8138.23 1106.80 8362.08 1153.27
Informed 7647.65 1028.00 7540.52 1068.53

Tab. 3.7: Final length path after the smoothing with the Augmented RRT algorithm.

3.1.2 Polar Rotational Sampling

The structure of this paragraph is similar to the one already read but the rotational

sampling is polar now. At first the number of nodes of the two trees is considered for each

experiment.

It is possible to see from Table 3.8 that the mean for all sampling in Simple RRT is

around 7 nodes for the first solution. The second solution employs the construction of

trees of size 9 or 10 nodes, only 3 or 4 nodes more than the first solution. This means that

the second solution it is immediately found after the first.

The standard deviation is small even if it is about half the number of nodes. Instead

from Table 3.9 it is easy to see that on average 70 configurations in both trees are required

for the first solution, while the second one adds about 15 configurations. The standard

deviation is about one third the mean in both the solutions. These results were comparable

to those found in the previous subsection. The calculation time graphs of Figure 3.4 show
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First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 7.82 3.76 10.38 4.37
Mixed 7.03 2.51 9.02 3.06

Separated 6.64 2.45 8.44 2.79
Informed 8.58 4.10 11.45 4.21

Tab. 3.8: Number of the nodes’ tree with the simple RRT algorithm.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 82.33 26.68 98.09 27.64
Mixed 71.00 23.04 81.94 21.79

Separated 64.01 21.54 83.35 21.69
Informed 73.97 29.25 90.34 29.07

Tab. 3.9: Number of the nodes’ tree with the augmented RRT algorithm.

how much faster the second solution is compared to the first. It takes on average 1 second

to recover the second solution after the previous one. However the first is found after 2 or

3 seconds.

In Figure 3.5 the times required to find the first solutions are shown. The Simple RRT

implies 2 or 3 seconds to find the solution, except in the case of Informed sampling (4

seconds are required on average).

Augmented algorithm has similar results, the mean is about 3 seconds with all the

sampling strategies. Experiments confirm the validity and effectiveness of all algorithms

to solve this type of problem. However as already seen in the previous section, the only

difference between the Simple and Augmented algorithms consists on the path length. The

smoothing acts better on tests where the Augmented algorithm is used. The percentage of

reduction is shown in Table 3.10 and 3.11. To be complete, there are two tables containing

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 8.63% 9.83 10.05% 9.69
Mixed 9.58% 11.78 10.11% 10.37

Separated 8.42% 10.24 11.15% 11.45
Informed 9.22% 10.62 12.63% 11.57

Tab. 3.10: Percentage reduction from first to second solution with the Simple RRT algo-
rithm and all the sampling techniques.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 20.01% 11.30 21.73% 11.33
Mixed 19.80% 10.67 22.34% 10.83

Separated 19.26% 10.30 20.48% 11.69
Informed 16.24% 10.54 20.75% 10.01

Tab. 3.11: Percentage reduction from first to second solution with the Augmented RRT
algorithm and all the sampling techniques.

the average and the standard deviation of the length of the final path. On average the

solutions of Augmented RRT are about one thousand less the ones calculated with Simple

RRT. In general, first and second paths in both tables (3.12 and 3.13) have similar length.
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Fig. 3.4: Time required for the computation of the first (light blue) and second solution (orange)
with all sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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Fig. 3.5: Comparison of the results of the first solution with all the sampling strategies on the top
with Simple RRT, instead on the bottom with Augmented RRT.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 9692.30 1193.82 9634.52 1325.60
Mixed 9491.21 1292.30 9680.67 1326.63

Separated 9771.64 1181.63 9590.67 1413.905
Informed 9373.51 1500.31 9288.23 1340.18

Tab. 3.12: Final length path after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 7851.73 1005.09 7937.62 1014.97
Mixed 8408.76 1187.39 8251.78 1234.44

Separated 8067.36 1073.64 8418.11 1147.23
Informed 8054.10 1159.17 7841.00 1294.95

Tab. 3.13: Final length path after the smoothing with the Augmented RRT algorithm.
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3.2 Environment 2: Navigation Problem

Fig. 3.6: Environment 2: Navigation problem set up.

This is the classic navigation path planning problem, which consists in finding a

collision-free route that passes through red and green obstacles shown in Figure 3.6.

In this case there are many obstacles scattered throughout the entire workspace. They

were randomly placed inside the space, without following a criterion. The moving ob-

ject (depicted in blue), which dimensions are always the same, has to move from the

initial pose pi = [−2m, 0, 0] and (θi, φi, ηi) = (0, 0, 0) to the final pose pg = [2m, 0, 0] and

(θg, φg, ηg) = (π, 0, 0).

3.2.1 Uniform Rotational Sampling

In this section all results provided by a uniform rotational sampling are discussed and

analyzed.

First of all let’s consider the size of the trees. In the two tables 3.14 and 3.15 it is

possible to notice that the mean total number of nodes is about 11 for the Simple RRT

and about 110 for Augmented one. The augmented RRT is one hundred of nodes greater

that the simple one. The second solution on average is found after 5 nodes with a simple

RRT, instead after 30 vertices with augmented. The standard deviation of the samples is

half the mean value in both algorithms. So the variability is quite large.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 11.82 5.99 15.47 6.17
Mixed 11.29 5.83 16.21 6.70

Separated 12.76 7.27 17.87 6.90
Informed 10.97 5.93 15.20 6.51

Tab. 3.14: Total number of the nodes in the two trees with the Simple RRT algorithm.

Regarding the computational time in Figure 3.7 it is shown a histogram for each
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First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 116.46 64.84 143.04 71.01
Mixed 102.26 55.04 132.31 69.16

Separated 99.03 55.83 131.67 72.59
Informed 120.88 64.45 149.19 69.91

Tab. 3.15: Total number of the nodes in the two trees with the Augmented RRT algorithm.

test. On the left there are all graphs that use the simple RRT, instead on the right the

augmented one. For each sampling strategy are considered both the solutions (N = 1, 2).

In order to provide a clear image, the horizontal axis is not composed by single values

but by time intervals of length of 10 seconds. Only the last interval is open and solutions

that take more than 2 minutes to find a route fall into it.

For all the two algorithms it is true that the Very Mixed technique is the best. With

the simple RRT it takes 12 seconds and 4 more seconds to find respectively the first and

second solution. Instead with the augmented it takes 40 seconds for the first and 14 for

the second. It is preferable to the others also because it has few values in the highest

intervals.

The mean and standard deviation of the computational time of the all the experiments

are reported in Table 3.16. The time is reported in seconds. The two vertical lines in the

middle of the Table divide the measurements done with the Simple RRT from the ones

done with the Augmented. The term “Mean1” and “Mean2” indicate the mean between all

the times used to calculate the first and the second solution respectively. While “S.Dev.”

is the standard deviation of the previous mean.

Mean1 S.Dev. Mean2 S.Dev. Mean1 S.Dev. Mean2 S.Dev.

Very Mixed 12s 5s 4s 3s 40s 30s 14s 12s
Mixed 19s 13s 9s 8s 44s 39s 20s 30s

Separated 20s 18s 11s 14s 37s 32s 18s 20s
Informed 11s 5s 5s 3s 44s 37s 15s 17s

Tab. 3.16: Computational time mean and standard deviation of all the samples depicted
in Figure 3.7. On the left the Simple algorithm, on the right the Augmented.

From the table it is possible to notice that with the Simple RRT also the Informed

strategy has good performances, therefore in its graph of Figure 3.7 it has similar shape

of the Very Mixed one.

Similarly for the Augmented RRT the Separated strategy could be also adopted with

similar results of the Very Mixed.

What has already been said is clearly shown in Figure 3.8, where all the first solutions

are compared directly. The blue and yellow histogram are the best for the simple RRT,

instead the blue and the grey for the augmented.

The percentage reduction of the smoothing is summarized in the following tables

Tab.3.17 and Tab.3.18. As for the previous experiment even in this case the presence

of more nodes in the path provides a better smoothing. The reduction is about a 6% for

the Simple algorithm, instead about 14% for the Augmented.
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Fig. 3.7: Time required for the computation of the first (light blue) and second solution (orange)
with all sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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Fig. 3.8: Comparison of the results of the first solution with all the sampling strategies on the top
with Simple RRT, instead on the bottom with Augmented RRT.

There is no surprise to find out that lengths of path calculates with Augmented RRT

are on average smaller than the one find out with Simple RRT, as reported in Tab. 3.19

and 3.20.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 6.64% 9.02 7.94% 9.45
Mixed 5.30% 7.91 5.35% 6.94

Separated 7.14% 8.86 6.52% 8.09
Informed 5.24% 7.54 7.21% 9.32

Tab. 3.17: Percentage reduction from first to second solution with the Simple RRT algo-
rithm and all the sampling techniques.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 13.86% 7.40 15.51% 7.87
Mixed 13.09% 8.51 15.45% 8.67

Separated 14.04% 6.96 16.96% 8.01
Informed 13.91% 7.74 16.26% 7.83

Tab. 3.18: Percentage reduction from first to second solution with the Augmented RRT
algorithm and all the sampling techniques.
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Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 8872.38 1605.90 9226.36 2049.25
Mixed 8697.87 1610.34 9416.56 1911.47

Separated 9036.25 1832.02 9547.96 2107.41
Informed 9172.00 2250.60 9265.10 2267.41

Tab. 3.19: Final path length after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 7612.31 1515.46 7640.45 1441.83
Mixed 7478.00 1120.92 7628.75 1482.64

Separated 7527.18 1416.01 7868.81 1634.86
Informed 7413.14 1421.87 7273.92 1240.54

Tab. 3.20: Final path length after the smoothing with the Augmented RRT algorithm.

3.2.2 Polar Rotational Sampling

In this paragraph all the results obtained with a polar rotational sampling are explained.

The topics to be discussed are always the same:

at first the number of nodes presented in the two trees is exposed, then the computational

time and finally the final path length and smoothing action are analyzed.

Let’s start from the beginning, in Table 3.21 and 3.22 the mean number of nodes

and the standard deviation are reported. The Simple RRT finds the first path after the

generation of twelve nodes and the second after sixteen nodes. Instead the Augmented

needs for the first one hundred of nodes and for the second one hundred and forty.

This results are comparable and similar to the ones already found with the uniform

rotational sampling.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 12.42 5.93 16.40 6.53
Mixed 11.04 6.57 16.27 8.57

Separated 13.29 7.34 18.38 8.67
Informed 11.29 6.52 14.96 6.87

Tab. 3.21: Number of the nodes’ tree with the Simple RRT algorithm.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 117.26 62.08 148.93 60.07
Mixed 104.45 53.26 136.61 70.54

Separated 96.52 44.66 140.44 71.21
Informed 113.37 58.26 135.41 68.47

Tab. 3.22: Number of the nodes’ tree with the Augmented RRT algorithm.

The computational time respects what already said for the number of nodes, in fact

Table 3.23 has similar times as the ones reported in the previous paragraph. On average

twelve seconds are needed to find the first path for the Simple RRT, instead 36 for the

Augmented. This are good results.

All graphs of Figure 3.9 show the computational times. In this specific case the Very
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Mean1 S.Dev. Mean2 S.Dev. Mean1 S.Dev. Mean2 S.Dev.

Very Mixed 14s 9s 6s 8s 48s 41s 22s 24s
Mixed 11s 5s 6s 4s 35s 29s 18s 23s

Separated 12s 4s 7s 5s 36s 28s 23s 28s
Informed 11s 5s 5s 3s 35s 27s 12s 14s

Tab. 3.23: Computational time mean and standard deviation of all the samples depicted
in Figure 3.9. On the left the Simple algorithm, on the right the Augmented.

Mixed technique, even if it has not bad performances, is the worst strategy in both Simple

and Augmented. Informed and Mixed are the best for Simple and Augmented too.

Simple algorithm is better than Augmented one in this case, not only for the average

time performance but also because it has got few solutions that take lot of time to find

a valid path. In Figure 3.9 simple and augmented graphs have the same horizontal axis.

This choice was made to immediately identify the big difference in performance.

The graphical comparison of the performance in finding the first solution is shown in

Figure 3.10.

The last element to discuss is the length of the final path and how the smoothing

acts in these experiments. In Table 3.24 and 3.25 the percentage reduction is taken

into account. The values inside the tables are very similar to the ones of the previous

paragraph, where there are uniform sampling of rotations. When the Simple RRT builds

the path, the smoothing is not so large, the reduction is about the 7%. However in case

of Augmented algorithm the reduction is the double, about 14%. As expected the final

length of the Augmented is smaller (it is about 7500) than the Simple (it is more the

8500). All measurements are shown in Table 3.26 and 3.27.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 7.01% 10.23 8.30% 9.29
Mixed 5.13% 7.73 6.02% 8.63

Separated 6.87% 8.91 7.07% 8.75
Informed 6.66% 10.23 7.88% 9.51

Tab. 3.24: Percentage reduction from first to second solution with the Simple RRT algo-
rithm and all the sampling techniques.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 13.23% 8.02 15.00% 7.27
Mixed 13.76% 8.07 15.90% 7.92

Separated 13.55% 8.41 15.04% 8.95
Informed 13.19% 7.44 14.23% 7.14

Tab. 3.25: Percentage reduction from first to second solution with the Augmented RRT
algorithm and all the sampling techniques.
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Fig. 3.9: Time required for the computation of the first (light blue) and second solution (orange)
with all sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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Fig. 3.10: Comparison of the results of the first solution with all the sampling strategies on the
top with the Simple RRT, instead on the bottom with the Augmented RRT.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 8826.97 1942.31 9687.81 2460.35
Mixed 9154.23 1924.26 9462.59 2017.83

Separated 9367.79 1982.98 9810.54 2378.09
Informed 8783.29 2078.97 8964.67 1961.53

Tab. 3.26: Final path length after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 7494.79 1179.34 7400.09 1279.84
Mixed 7748.97 1582.33 7926.48 1603.22

Separated 7649.52 1607.68 8416.48 1930.94
Informed 7458.32 1200.94 7337.55 1165.97

Tab. 3.27: Final path length after the smoothing with the Augmented RRT algorithm.
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3.3 Environment 3: Narrow Passages Problem

The moving object (blue), with the same dimensions as before, has to move from the

initial pose pi = [−1m, 0, 0] and (θi, φi, ηi) = (0, 0, 0) to the final pose pg = [1m, 0, 0] and

(θg, φg, ηg) = (π, 0, 0).

This is the most difficult experiment, because the rod must necessarily go through one

of the two thin corridors to reach the final pose.

Fig. 3.11: Environment 3: Narrow passages problem set up.

In this environment the Separated techniques is not used, only the first solution with

respectively uniform or polar distribution is found. The second solution, which was found

only with the octree-based distributions is not done, because it takes to much time.

Fig. 3.12: Five different paths in the same environment with the same RRT.
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Another important aspect concerns the differences between paths calculated on same

trees. In this type of environment is more evident the effectiveness of the Delete method

describes in Chapter 2. Every new path is different from all the others already found.

In Figure 3.12 are reported 3 tests where algorithms search for five paths (N = 5). In

light green are depicted the three Cartesian axes, instead all colored broken lines represent

the different paths. No path is perfectly equivalent to another, sometimes they differ by

one or two points, but other times they are completely different. It could happen that

some solutions go through the upper free corridor, instead others go through the lower

one.

The ability to change the path structure a lot can offer benefits in possible future works

(see Section 3.6).

3.3.1 Uniform Rotational Sampling

Passing through holes and narrow passages is the most complicate issue for sampling based

path planners. Sampling randomly in position and rotations in all the space is not a good

strategy to find out small apertures, that need a precise pose.

As expected in this case the number of nodes required for both trees increases a lot

with respect to the previous tests. Thousands nodes are necessary in both algorithms, in

particular four thousands of nodes are required when the Uniform sampling is used alone.

Mean and standard deviation of all measurements are reported in the following tables

3.28 and 3.29.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 1460.40 1295.03 2059.19 1468.74
Mixed 2963.96 2795.58 4568.35 3231.21

Uniform 4171.35 6602.75 - -
Informed 1655.67 1524.30 2269.11 1860.33

Tab. 3.28: Number of the nodes’ tree with the Simple RRT algorithm.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 2437.98 2074.35 3430.49 3264.40
Mixed 4439.01 4258.46 6141.25 5560.91

Uniform 4749.10 5341.08 - -
Informed 2505.99 2648.65 3477.94 3340.14

Tab. 3.29: Number of the nodes’ tree with the Augmented RRT algorithm.

Computational time reflects what already shown with the number of nodes, but also

reveals more information on the two algorithms.

Working with the Augmented algorithm is not recommended, on average the compu-

tational time is about 20 minutes for all sampling strategies except for the Very Mixed

that takes 5 minutes.

The very Mixed strategy provides the best results also for the Simple algorithm, the

mean is about 2:33 minutes. From Table 3.30 is possible to notice how faster the Simple

algorithm is with respect to the Augmented one in this environment.



50 Experimental Results

However the standard deviation in all tests is very high, so there is a lot of variability

on the computational time.

Mean1 S.Dev. Mean2 S.Dev. Mean1 S.Dev. Mean2 S.Dev.

Very Mixed 02:33 02:59 01:00 01:24 04:49 07:20 06:16 18:44
Mixed 04:36 04:56 02:40 03:27 21:12 35:13 12:25 26:51

Uniform 05:28 09:07 - - 24:15 50:45 - -
Informed 02:59 03:36 01:12 01:54 17:01 50:07 18:21 41:31

Tab. 3.30: Computational time mean and standard deviation of all the samples depicted
in Figure 3.13. On the left the Simple algorithm, on the right the Augmented.

In Figure 3.13 all results are shown, first and second solution respectively in blue and

orange are reported below. However as already said, the first couple of graphs has no

second histogram, because the time required to conclude the second set of measurements

with only the octree strategies takes too much time.

It is worth to notice that the horizontal time scaling are different between left and right

graphics. The horizontal axes are composed by time intervals of length of one minutes

until 8 minutes, then Simple and Augmented differ and group the time intervals in different

ways. Simple bidirectional algorithm is faster than the Augmented one, so the last interval

is composed by all solutions that take more than ten minutes to find a solution. Instead

for the Augmented the three last intervals of the horizontal axis group more solution,

from eight to fifteen minutes, from fifteen to thirty minutes and finally more than thirty

minutes to find a solution.

In the two comparison graphics of Figure 3.14 is possible to compare the sampling

strategies. The best sampling strategies is the Very Mixed one. It has the lowest com-

putational time and also the smallest number of “outliers”, where with this term are

identified all the solutions that take long time.

For the Augmented algorithm only the Very Mixed sampling is competitive with the

Simple algorithm’s solutions.

Considering now the length of the final path and the percentage reduction of the

smoothing, new observations can be done in this environment.

First of all, looking at Table 3.31 and 3.32 it is possible to see how smaller is the

difference of the smoothing applied on the two RRTs. In previous sections (Environment

1 and 2) one common consideration was that the smoothing performs better where there

are more nodes in the path, i.e. in the Augmented algorithm. In this environment however

the smoothing is able to save and reduce about a 40% of the initial path length in both

algorithms. This means that the cutting off procedure works similarly in both RRTs.

Maybe the big portion of free space, on the left and on the right of the green thin foils,

helps the smoothing.

The lengths of the final paths are all reported in Table 3.33 and 3.34. On average, the

length of the final path is more than double the linear distance between the start and the

target pose, which is two meters.



3.3 Environment 3: Narrow Passages Problem 51

Fig. 3.13: Time required for the computation of the first (light blue) and second solution (orange)
with all sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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Fig. 3.14: Comparison of the results of the first solution with all the sampling strategies on the
top with Simple RRT, instead on the bottom with Augmented RRT.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 44.59% 17.20 46.13% 15.12
Mixed 47.10% 17.04 50.24% 15.62

Uniform 49.88% 15.94 - -
Informed 41.53% 16.77 42.25% 15.50

Tab. 3.31: Percentage reduction from first to second solution with the Simple RRT algo-
rithm and all the sampling techniques.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 36.91% 18.75 42.35% 19.13
Mixed 39.39% 15.55 41.71% 16.75

Uniform 39.46% 16.15 - -
Informed 29.47% 15.24 29.46% 16.50

Tab. 3.32: Percentage reduction from first to second solution with the Augmented RRT
algorithm and all the sampling techniques.
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Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 5545.74 1914.80 5391.16 1779.08
Mixed 6283.33 1892.44 6434.42 1911.30

Uniform 6342.36 1938.14 - -
Informed 4813.70 1648.36 4469.53 1588.75

Tab. 3.33: Final path length after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 4671.99 1789.35 4699.05 1759.41
Mixed 6425.08 1938.29 6442.94 1944.62

Uniform 6064.91 1789.66 - -
Informed 4778.13 1864.75 4735.48 1693.04

Tab. 3.34: Final path length after the smoothing with the Augmented RRT algorithm.

3.3.2 Polar Rotational Sampling

In this paragraph all results derived from a polar sampling of rotations are discussed. It

is worth to notice that having a polar distribution means having an heavy biased rotation

though the polar regions. In this environment, this sampling could bring great advantages,

if the polar regions are oriented like the reduced aperture, or great disadvantages if the

polar regions are not parallel to the aperture.

Some preliminary tests were done in order to understand how the polar regions are

oriented. This tests were made only with one sampling strategies (the Very Mixed) and

only with one algorithm (the Simple), that were chosen without a specific criterion. In

all tests the algorithm and sampling strategy selected were used,instead the environment

changes. One hundred tests were done with the aperture horizontal, as depicted in Figure

3.11, the second hundred of measurements were done with traversal aperture (slanted by

45 degrees) and the last with vertical slits.

In Table 3.35 the mean and standard deviation for each test of the computational time

are reported. Only the time required to find out the first path is considered.

First mean Stand. Dev.

Horizontal 00:43 00:35
45 degrees 01:31 01:30

Vertical 02:51 02:47

Tab. 3.35: Preliminary test to verify the orientation of the polar regions.

The values in Table 3.35 are reported in minutes and it is evident that the sampling

is not uniform because changing the apertures orientations modifies the time required to

find a path. In particular the polar regions are oriented parallel to the y-axis and this

sampling influences a lot the performances. The algorithm results very fast with horizontal

apertures, however if the slits are vertical the performances are worst.

In the following considerations it is important to keep in mind that we are working in

a favorable situation, so in other cases results could be worst.

In Table 3.36 and 3.37 the number of nodes required to build the two trees respectively
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Fig. 3.15: Time required for the computation of the first (light blue) and second solution (orange)
with all sampling techniques on both the algorithms (Simple RRT on the left, Augmented RRT
on the right).
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First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 445.32 382.88 637.70 464.06
Mixed 918.02 824.75 1445.66 1293.36
Polar 1054.40 1208.46 - -

Informed 332.17 314.30 530.29 450.99

Tab. 3.36: Number of the nodes’ tree with the Simple RRT algorithm.

First mean Stand. Dev. Second mean Stand. Dev.

Very Mixed 1335.37 1028.30 1610.00 1194.75
Mixed 2315.49 1950.22 3216.24 3007.55
Polar 2240.30 2258.09 - -

Informed 1625.76 1594.80 2103.53 1880.69

Tab. 3.37: Number of the nodes’ tree with the Augmented RRT algorithm.

Mean1 S.Dev. Mean2 S.Dev. Mean1 S.Dev. Mean2 S.Dev.

Very Mixed 00:43 00:35 00:18 00:21 01:37 02:45 00:31 00:57
Mixed 01:31 01:28 00:56 01:47 06:15 09:26 05:42 20:01
Polar 01:42 02:18 - - 04:58 08:00 - -

Informed 00:29 00:25 00:16 00:21 04:10 11:58 03:07 07:31

Tab. 3.38: Computational time mean and standard deviation of all the samples depicted
in Figure 3.15. On the left the Simple algorithm, on the right the Augmented.

when the simple and augmented algorithms are used are shown.

The number of nodes is very high, especially when the Augmented RRT works. The

Simple builds trees of size about 500-1000 nodes, instead the Augmented builds trees of

size about 1500-2000 vertices.

Table 3.38 reports all computational times in mean and standard deviation and Figure

3.15 shows how each test behaves.

The Very Mixed sampling is the most efficient in both algorithms. Especially for

Augmented RRT it is the unique sampling strategy that provides a result in less than 4

minutes.

The horizontal time scale is different between Simple and Augmented graphs, because

the choice of the algorithms in this case influences a lot the computational time.

In Figure 3.16 all performances of the sampling strategies that look for the first solution

are compared. The Simple algorithm has good results with the Very Mixed and the

Informed sampling, instead the Augmented, as already said, works well with the Very

Mixed one.

For what concerning the final path length and the action of the smoothing Table 3.39

3.40 and 3.41 and 3.42 summarized all the principal information.

For both Simple and Augmented the smoothing reduces about the 40% of the path.

The sampling strategy that provides less smoothing is the Informed one. A possible

explanation of that fact could be that this strategy samples near the goal pose and does

not wander around the entire space.

On average the length found by Simple and Augmented RRT are comparable, it is
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Fig. 3.16: Comparison of the results of the first solution with all the sampling strategies on the
top with Simple RRT, instead on the bottom with Augmented RRT.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 37.92% 16.78 42.70% 18.87
Mixed 43.77% 18.09 47.98% 14.91
Polar 45.98% 17.06 - -

Informed 33.07% 17.86 38.56% 18.07

Tab. 3.39: Percentage reduction from first to second solution with the Simple RRT algo-
rithm and all the sampling techniques.

First % Reduction Stand. Dev. Second % Reduction Stand. Dev.

Very Mixed 33.94% 19.80 38.13% 18.58
Mixed 38.14% 18.10 39.67% 17.57
Polar 37.34% 16.94 - -

Informed 29.31% 17.64 34.39% 18.07

Tab. 3.40: Percentage reduction from first to second solution with the Augmented RRT
algorithm and all the sampling techniques.
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about 5000/6000.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 5336.70 1901.18 5252.44 1866.59
Mixed 6305.28 1820.23 6223.57 1912.33
Polar 6303.39 1710.98 - -

Informed 4896.73 1641.60 4808.24 1850.66

Tab. 3.41: Final path length after the smoothing with the Simple RRT algorithm.

Mean Path 1 [mm] Stand. Dev. Mean Path 2 [mm] Stand. Dev.

Very Mixed 4897.53 1963.96 4998.18 1941.62
Mixed 5998.03 1750.43 6232.94 1906.54
Polar 6208.44 1604.99 - -

Informed 4734.86 1639.47 4479.96 1497.25

Tab. 3.42: Final path length after the smoothing with the Augmented RRT algorithm.

3.4 Discussion and Observations

It is possible to extract some general considerations from all tests previously discussed.

In general it is true that the second solution requires less time to be found out. Usually

having trees, already built, helps the algorithm to connect rapidly the two trees. These

RRTs are not multiple query, because they cannot solve different problems, but for one

specific task they can find out different solutions. The brief discussion at the beginning of

section 3.3 on path diversity still holds for the other two environments.

As for the computational time, it is possible to deduce that having a simple RRT struc-

ture, with not a large number of nodes, helps the algorithm to speed up the calculations.

A large number of nodes slows down the algorithm, however the presence of more vertices

in the final path usually provides better smoothing. It could be a good choice to select

the Simple RRT to resolve a specific task and then to add intermediate nodes in the final

path.

Especially where it is employed the uniform sampling of rotations, mixing sampling

strategies allows to speed up the search for a path. The Very Mixed strategy offers greater

performance in the case of uniform sampling of rotations because the polar one in lucky

cases (such as environment 3 with horizontal openings) offers some advantages on its

own. So sometimes with polar rotational sampling is sufficient to provide an Informed

distribution or a Cartesian sampling which is focused on the target.

However, it is worth noting that working with polar rotations can also provide worse

performance, so it is not advisable to rely on such sampling if you are not familiar with

the working environment.
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3.5 Final Considerations

In Chapter 3 all measurements were discussed and analyzed looking at three dominant

components: the number of nodes belonging to the two trees, the computational time

needed to find out the first and second paths and finally the action of the smoothing

associated to the final length of the path.

The analysis of the previous chapter shows some results that will be resumed in the

following:

• The three environments are reported in order of complexity. The first is the sim-

plest one and it witnesses that both the algorithms and all sampling strategies work

properly. The second environment is a classic navigation problem that allows you to

consider the first differences on the various approaches used. Instead the third one

is a difficult problem that can be solved only with some techniques.

• The search for the second solution with an already built tree improves temporal

performance.

• Having a simple construction of the trees (i.e. Simple Bidirectional RRT) provides

better results than a more complex built tree (i.e. Augmented RRT). In the sec-

ond and third environments, the advantages of a simple construction are visible in

the best temporal performances. This fact underlines that what really affects the

temporal performances of the RRT algorithms is the sampling strategy adopted.

• Between all the sampling strategies proposed, especially when there is uniform sam-

pling of rotations, the best strategy is the Very Mixed one. This implies that mixing

different sampling strategies provides better solutions than using them alone. The

Very Mixed manages to perform well in all the environments and independently from

the algorithm used.

• The sampling of rotations is the most delicate issue to deal with. The uniform

distribution ensures uniform coverage of the rotation space, but sometimes it is

not necessary to rotate in all directions and a good approach would be to limit

movement. However you can limit rotations only when some information on the

environment are known a priori. It could be interesting to mix together also different

sampling of rotations (i.e uniform and polar) and see what happens on the temporal

performances. In this way no a priori information is needed and the sampling could

guaranteed the complete coverage of rotations space too.

• The action of the smoothing is more incisive when there are more points (vertices)

inside the path, it could be reasonable to add some points within the path in order

to have smoother paths.
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3.6 Possible Improvements

As already said in Chapter 1, usually path planning algorithms are designed and projected

on the robot’s configuration space. So a sequence of joint’s variables is the output of the

planning algorithms and the end-effector pose is just a consequence of this sequence, thanks

to the direct kinematics.

This choice was done because working with the direct kinematic of the robot is faster

then using the inverse kinematics, that from the end-effector pose recovers all the chain

of joint’s variables. The inverse kinematics is more delicate and not trivial, however when

a robot is manipulating a big payload also the direct kinematics is not so efficient. The

inefficiency is due to the collision detection procedure, when the payload is greater than

the robot it could happen that the most number of collisions are provided by the payload.

Taking these considerations into account, the reason behind this study is well explained.

In this work, a long, thin rod, which is an example of a common manipulator payload, has

the ability to independently plan its movements. In the future, it may be interesting to

connect a robotic arm to the rod and to study whether performing an inverse kinematic

procedure could bring some advantages in applications where there are high payloads.

Another important consideration, done in section 3.3, turns out to be very useful for

such purpose: the possibility to have different paths to be tested. The inverse kinematics

is more complicate than the direct one, this is why one of the goals of this work is to find

big or small variances between paths in the same environment. In this way you can have

more paths to be recovered in joint space.
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Appendix A

Algebraic Groups and Orientation Representation

A.1 Algebraic Group

An algebraic group is an algebraic structure equipped with an inner product (·) and

characterized by the following four properties:

• Closeness Group G is close:

∀g1, g2 ∈ G : g1 · g2 ∈ G (A.1.1)

• Associativity Group G is associative:

∀g1, g2, g3 ∈ G : g1 · (g2 · g3) = (g1 · g2) · g3 (A.1.2)

• Existence of the neutral element

1 ∈ G such that g · 1 = 1 · g = g (A.1.3)

• Existence of the inverse element

g−1 ∈ G such that g · g−1 = g−1 · g = 1 (A.1.4)

Now it is presented a list of different algebraic groups of interest, with some notes

regarding their meaning.

The General Linear group GL(n) is the set of all the linear transformations/matrices

A ∈ Rn×n that are non-singular and equipped with the standard matricial product.

A : Rn → Rn (A.1.5)

x→ Ax.

The Affine Linear group A(n) is define by a matrix A ∈ Rn×n and a vector b ∈ Rn

with the map:

A : Rn → Rn (A.1.6)

(A, b) : x→ Ax+ b.

The Orthogonal group O(n) is define by a matrix A ∈ Rn×n(A ∈ GL(n)) invertible

such that the inner product between vectors in Rn is preserved:

∀x, y ∈ Rn :
〈
Ax,Ay

〉
=
〈
x, y
〉
. (A.1.7)
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It is the group of orthogonal matrices:

〈
Ax,Ay

〉
= xTATAy = xT y =

〈
x, y
〉
→ ATA = I. (A.1.8)

We have distance preserving, angle preserving and area preserving transformations, in

other words they are isometries.

We are interested in a subgroup of O(n), which is the Special Orthogonal group

SO(n):

SO(n) =
{
A ∈ O(n) such that detA = 1

}
. (A.1.9)

Note that SO(n) is a group of rotations (for example SO(2)) describes planar rotations).

The orthogonal groups are a subgroup of the general linear group, while the next one

is a subgroup of the affine group.

The Euclidean group E(n) is define by an affine transformation, where R ∈ O(n),

T ∈ Rn:

A : Rn → Rn (A.1.10)

x→ Rx+ T.

We are interested in a particular subgroup of E(n), where R ∈ SO(n), called Special

Euclidean group SE(n).

A.2 Orientation Representation

A rigid body is completely described in space by its position and orientation (in brief pose)

with the respect to a reference frame.

Usually for the position is taken the center of mass of the object and its position with

respect to the orthonormal reference frame is:

O′ = o′xx+ o′yy + o′zz (A.2.1)

Instead the rigid body orientation is obtained looking at the orthonormal frame at-

tached to the body from the reference frame.

Fig. A.1: Bounding Box.

The orientations can be expressed in terms of rotation matrices. A rotation matrix

R ∈ Rn belongs to the Special Orthogonal group SO(n). When n = 2 there are planar

rotations, however with n = 3 there are spatial rotations.
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A rotation matrix has three equivalent geometrical meanings:

- it represents the mutual orientation between two coordinate frames;

- it is the operator that allows the rotation of a vector in the same coordinate frame;

- it describes the coordinate transformation between the coordinates of a point ex-

pressed in two frames.

However there exist two other ways to describe the frame orientation in addition to

the rotation matrix:

• Three-angle representation: this is the minimal representation, three independent

parameters are sufficient to describe orientation of a rigid body in the space. In fact

the minimal space representation of the SO(n) group requires n(n−1)
2 parameters.

There is also a theorem that states that: the Euler’s rotation theorem affirms that any

two independent orthonormal coordinate frames can be represented by a sequence

of rotations (not more than three) about coordinate axes, where no two successive

rotations may be about the same axis.

The most popular set of angles is the triplets of roll-pitch-yaw angles (θ, φ, η) re-

spectively about the z-axis, the y-axis and the x-axis.

• Quaternion representation: this is a four-parameters representation, alternative to

the axis-angle representation. The quaternion is an extension of the complex number,

a hyper-complex number, and it is written as a scalar s plus a vector v:

q̂ = s+ v = s+ v1i+ v2j + v3k. (A.2.2)

TO represent rotations are required quaternions with unit magnitude: |q̂| = 1. It

has the special property that it can be considered as a rotation of an angle θ about

a unit vector r, which are related to the quaternion’s component by:

s = cos
θ

2
, v = (sin

θ

2
)r. (A.2.3)
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Appendix B

Description of Object’s Size, Position and Shape

There exist many methods to represent a concise description of the size, position and

shape of an object. In the following are reported some useful techniques.

The simplest representation of size and shape of is the bounding box for a point set

(S) in N dimensions is the box with the smallest measure (area, volume, or hypervolume

in higher dimensions) within which all the points lie.

It differs from the convex hull of a shape, which is in geometry the smallest convex set

that contains it. For a bounded subset of the plane, the convex hull may be visualized as

the shape enclosed by a rubber band stretched around the subset.

Formally, the convex hull may be defined either as the intersection of all convex sets

containing a given subset of a Euclidean space, or equivalently as the set of all convex

combinations of points in the subset. Convex hulls of open sets are open, and convex hulls

of compact sets are compact. Every convex set is the convex hull of its extreme points.

The convex hull operator is an example of a closure operator. In Figure B.1 is shown the

difference between the bounding box and the convex hull of a two-dimensional object with

a particular geometry.

Fig. B.1: Example of bounding box and convex hull in two-dimensional space.

A polygon mesh is a collection of vertices, edges and faces that defines the shape of a

polyhedral object in 3D computer graphics and solid modeling. The faces usually consist

of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-

gons), since this simplifies rendering, but may also be more generally composed of concave

polygons, or even polygons with holes. As polygonal meshes are extensively used in

computer graphics, algorithms also exist for ray tracing, collision detection, and rigid-

body dynamics with polygon meshes.

Objects created with polygon meshes must store different types of elements. These

include vertices, edges, faces, polygons and surfaces all reported in Figure B.2.

• Vertex: A position (usually in 3D space) along with other information such as color,
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normal vector and texture coordinates.

• Edge: A connection between two vertices.

• Face: A closed set of edges, in which a triangle face has three edges, and a quad

face has four edges. A polygon is a coplanar set of faces. In systems that support

multi-sided faces, polygons and faces are equivalent. Mathematically a polygonal

mesh may be considered an unstructured grid, or undirected graph, with additional

properties of geometry, shape and topology.

• Surfaces: More often called smoothing groups, are useful, but not required to group

smooth regions.

Fig. B.2: Elements that can be stored in a mesh regions.

Polygon meshes may be represented in a variety of ways, using different methods to

store the vertex, edge and face data.



Appendix C

Vostok Interface

In this thesis a graphical interface was built in order to allow some user to work without

the need of using a less intuitive C sharp code.

The graphical interface is depicted in Figure C.1. The workspace is loaded and shown

in the big light blue space on the left, instead on the right there are a list of all possible

commands. Let’s consider all of them in details.

On the top of the right white space there are the Cartesian coordinates and the angles

(expressed in degrees) of the initial and final pose of the target to move. They can be all

modified putting the desired value on the small grid. In Figure C.1 is reported the initial

and final pose of the moving object used in Environment 1 or 3, just for example.

Instead below there are some buttons. The two upper buttons “Test Start” and “Test

End” verify if the starting and goal configurations set previously are in collision of not, if

they are in collision an error message appears on the display.

Below these two buttons there are “Load” and “Save”, these respectively are used to

load a program/workspace already stored and to save the current project if the user wants

to remember it.

The “Process” and “Process Multiple” buttons were adopted to test the algorithm in

the current ambient, the first runs the algorithm one time, instead the second runs the

algorithm one hundred of times.

The button “Play” can be work only when the process is concluded, if it is pressed

before the “Process” button an error occurs. This button is called “Play” because it starts

moving the target through the path already found in the process stage.

The last button is the “Stop” which interrupt the movement of the target to move.
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Fig. C.1: The interface of the Vostok plugin.



Appendix D

Graphical Results

In this appendix are reported all the graphical results already discussed in Chapter 3. In

particular they show the length of final paths.

Fig. D.1: Environment 1: Uniform Rotational Sampling. The final path length of the path after
the smoothing of the first (light blue) and second solution (orange), on the left with the Simple
RRT, on the right the Augmented.
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Fig. D.2: Environment 1: Polar Rotational Sampling. The final path length of the path after the
smoothing of the first (light blue) and second solution (orange), on the left with the Simple RRT,
on the right the Augmented.
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Fig. D.3: Environment 2: Uniform Rotational Sampling. The final path length of the path after
the smoothing of the first (light blue) and second solution (orange), on the left with the Simple
RRT, on the right the Augmented.
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Fig. D.4: Environment 2: Polar Rotational Sampling. The final path length of the path after the
smoothing of the first (light blue) and second solution (orange), on the left with the Simple RRT,
on the right the Augmented.
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Fig. D.5: Environment 3: Uniform Rotational Sampling. The final path length of the path after
the smoothing of the first (light blue) and second solution (orange), on the left with the Simple
RRT, on the right the Augmented.
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Fig. D.6: Environment 3: Polar Rotational Sampling. The final path length of the path after the
smoothing of the first (light blue) and second solution (orange), on the left with the Simple RRT,
on the right the Augmented.
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